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Abstract: This thesis studies the volume of the unit ball of finite-dimensional
Lorentz sequence spaces ℓp,q

n . Lorentz spaces are a generalisation of Lebesgue
spaces with a quasinorm described by two parameters 0 < p, q ≤ ∞. The volume
of the unit ball Bp,q

n of a general finite-dimensional Lorentz space was so far an
unknown quantity, even though for the Lebesgue spaces it has been well-known for
many years. We present the explicit formula for Vol(Bp,∞

n ) and Vol(Bp,1
n ). We also
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dimension n and show that [Vol(Bp,q
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Introduction
During the last century, the scale of the Lebesgue spaces Lp(X, µ) (where (X, µ)
is an arbitrary measure space) proved to be insufficiently fine to describe the
properties of functions and operators. Thanks to the work of G. Lorentz [12]
and R. Hunt [9], a new scale of spaces arose – the Lorentz spaces Lp,q(X, µ).
Whereas the quasinorm in a Lebesgue space is determined by a single parameter
0 < p ≤ ∞, the quasinorm in a Lorentz space is described by two parameters
0 < p, q ≤ ∞. For p = q we obtain the classical Lebesgue space Lp(X, µ).
The space Lp,∞(X, µ) is usually called the weak Lebesgue space. The Lorentz
spaces play an important role in the interpolation theory (e.g. the Marcinkiewicz
theorem, see [2, 3]) as they are interpolation spaces of the Lebesgue spaces. They
also found applications in other mathematical branches such as the harmonic
analysis or the analysis of PDE’s (cf. [7, 13]).

When µ is the counting measure, we arrive to the Lorentz sequence spaces
ℓp,q (for X = N) or ℓp,q

n (for X = {1, . . . , n}). The space ℓp,q
n is then Rn equipped

with the quasinorm

||a||p,q =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(︄
n∑︂

k=1
(a∗

k)qk
q
p

−1
)︄ 1

q

, q ∈ (0, ∞),

sup
k∈{1,...,n}

{k
1
p a∗

k}, q = ∞,

where a = (a1, . . . , an) ∈ Rn and a∗ is the nonincreasing rearrangement of
(|a1|, . . . , |an|).

The volume of the unit ball Bp,q
n in a (general) finite-dimensional Lorentz

space ℓp,q
n was so far an unknown quantity, even though for the Lebesgue spaces

it has been well-known for many years. In that case,

Vol(Bp
n) = 2nΓ(1 + 1/p)n

Γ(1 + n/p) ,

where Vol(A) denotes the n-dimensional Lebesgue measure of a (measurable)
set A ⊆ Rn and Γ denotes the gamma function. The motivation to study this
problem is the fact that the properties of the unit ball describe or determine many
interesting properties of the whole space and mappings between them (cf.[16]).
However, despite some attempts in [14], there seems to be only very little known
about the volume of the unit balls of the Lorentz spaces. The aim of this thesis
is – at least to some extent – to fill this gap. Our goal is to determine the
volume of the unit ball for special choices of parameter q and to get some overall
results concerning the asymptotic behaviour of the volumes with respect to the
dimension.

In Chapter 1 we introduce the Lorentz spaces and their basic properties. We
describe the Lorentz sequence spaces and point out some of their specifics. For
those who are not familiar with entropy numbers we offer a brief summary of their
behaviour for the Lebesgue spaces and for the interpolation spaces in general.

The focal point of this thesis lies in Chapters 2 and 3. We present two ap-
proaches to determine the volume of the unit ball for q = ∞, the first through

2



the recursive formula

Vol(Bp,∞
n,+ ) =

n∑︂
j=1

⎡⎣(︄n

j

)︄
(−1)j+1

(︃ 1
n

)︃ j
p

Vol(Bp,∞
n−j,+)

⎤⎦
and the second through integration of a suitable function. Though we offer an ex-
plicit formula in Theorem 2.2.2, the recursive formula is more suitable for calcu-
lating the volume (see Section 2.5). For the case q = 1 we use another approach
to obtain an elegant formula

Vol(Bp,1
n ) = 2n

n∏︂
k=1

1
κp(k) , where κp(k) =

k∑︂
j=1

j
1
p

−1,

in Theorem 2.4.1 which allows us to prove that

n
√︂

Vol(Bp,1
n ) ≈ n−1/p

for all 0 < p < ∞ (the multiplicative constants of equivalence are independent of
n). Due to embeddings of the Lorentz spaces and the theory of entropy numbers
we get the same asymptotic result for all choices of parameter q in Theorem 3.3.3.
Figure 1 offers a summary of what is achieved (we identify 1/∞ = 0). With the
only exception of the formula for the Lebesgue spaces the results are new.

1/q

1/p

1

10
0

Lebesgue spaces – explicit formula

q = 1 – explicit formula

weak Lebesgue spaces – explicit formula

overall asymptotic
result

Figure 1: Comparison of the results with respect to p and q

Furthermore, we consider the volume of the unit ball in the weak Lebesgue
space ℓp,∞

n and in the corresponding Lebesgue space ℓp
n and examine the ratio

Rp,n = Vol(Bp,∞
n )

Vol(Bp
n) .

Even though Bp,∞
n is generally considered as ”slightly larger” than Bp

n and the
behaviour of the n-th root of the volume was the same for both of them, we show
that if the parameter p is sufficiently small, then the growth of Rp,n is exponential
in n.

Chapter 4 is dedicated to further properties of the unit ball, such as a char-
acterisation of spaces where the ball is convex. We study the decay of entropy
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numbers of the embeddings of the Lorentz spaces. In most of the cases they
exhibit the same behaviour as for the Lebesgue spaces, however, it is not always
the case as we show that

ek(Id : ℓ1,∞
n → ℓ1

n) ≈
⎧⎨⎩ log(1 + n/k), 1 ≤ k ≤ n,

2− k−1
n , k ≥ n,

where the constants are independent of n and k (cf. Theorems 1.3.1 and 4.2.4).

4



1. Notation and preliminaries
In this chapter we introduce the general Lorentz spaces as well as show some of
their basic properties. However, later on we will consider only special cases of
these spaces. We also offer a quick glance at entropy numbers which will serve
us as a useful tool later.

1.1 Lorentz spaces
Definition. Let (X, S, µ) be a space with a σ-finite measure µ which is defined
on a σ-algebra S. Suppose that f is a measurable function X → R. We define
the distribution function of f as µf : [0, ∞) → [0, ∞],

µf (ω) = µ{x ∈ X : |f(x)| > ω}

and the nonincreasing rearrangement of f as f ∗ : [0, ∞) → [0, ∞],

f ∗(t) = inf{ω > 0 : µf (ω) ≤ t}.

It is clear that both µf and f ∗ are nonincreasing (see Figure 1.1).

0
1
2
3

f(x)

x
◦
•

f : [0, ∞) → R

0
1
2
3

µf (ω)

ω

◦
•

◦
•

µf : [0, ∞) → [0, ∞]

0
1
2
3

f ∗(t)

t

f ∗ : [0, ∞) → [0, ∞]

Figure 1.1: Main steps in forming f ∗ for f : [0, ∞) → R

Definition. Let (X, S, µ) be a space with a σ-finite measure µ which is defined
on a σ-algebra S. Suppose that p, q ∈ (0, ∞]. Then we define the Lorentz space
Lp,q(X, µ) as the space of all measurable functions f : X → R for which the
following quantity is finite:

||f ||p,q =

⎧⎪⎪⎨⎪⎪⎩
||t 1

p
− 1

q f ∗(t)||Lq(R+,λ), 0 < q < ∞,

sup
0<t<∞

{t
1
p f ∗(t)}, q = ∞,

where f ∗ is the nonincreasing rearrangement of f . (We identify 1/∞ = 0.) The
special case Lp,∞(X, µ) is often called the weak Lebesgue space.

Remark. To be precise, as in the Lebesgue space Lp(X, µ), two functions are
considered to be equal if they differ only on a µ-negligible set. This means that
formally the Lorentz space Lp,q(X, µ) consists not of functions, but of classes of
functions with respect to this equivalence.
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Recall the definition of norm, p-norm and quasinorm:

Definition. Let X be a (real) vector space and || · || : X → [0, ∞) satisfying

(i) for all x ∈ X it holds that ||x|| = 0 if and only if x = 0,

(ii) for all x ∈ X, t ∈ R it holds that ||tx|| = |t| · ||x||,

(iii) for all x, y ∈ X it holds that ||x + y|| ≤ ||x|| + ||y||.

Then || · || is caled a norm. If it satisfies

(iii)’ there exists a constant p ∈ (0, 1] such that for all x, y ∈ X it holds that
||x + y||p ≤ ||x||p + ||y||p

or

(iii)” there exists a constant C such that for all x, y ∈ X it holds that ||x + y|| ≤
C(||x|| + ||y||)

instead of (iii), then it is called a p-norm or a quasinorm, respectively.

The following proposition presents some of the basic properties of the nonin-
creasing rearrangement and of the Lorentz spaces. Most parts of the proof are
omitted as they are well-known and can be found in [7, Chapter 1].

Proposition 1.1.1. Let (X, S, µ) be as before, p, q ∈ (0, ∞].

(i) If f , g : X → R are measurable, ω1, ω2, t1, t2 ≥ 0, then

µf+g(ω1 + ω2) ≤ µf (ω1) + µg(ω2) and (f + g)∗(t1 + t2) ≤ f ∗(t1) + g∗(t2).

(ii) If f : X → R is measurable, p < ∞, then ||f ||Lp(X,µ) = ||f ∗||Lp(R+,λ).

(iii) If f ∈ Lp,q(X, µ), then ||f ||p,q = p
1
q ||t1− 1

q [µf (t)]
1
p ||Lq(R+,λ).

(iv) The function ||·||p,q is a quasinorm on Lp,q(X, µ), together they form a com-
plete space.

(v) If p = q, then Lp,q(X, µ) = Lp(X, µ).

(vi) If p = ∞, q < ∞, then Lp,q(X, µ) = {0}.

Proof. (i) – (iv) See [7, Chapter 1].

(v) Follows from (ii), as

||f ||p,p = ||t 1
p

− 1
p f ∗(t)||Lp(R+,λ) = ||f ∗||Lp(R+,λ) = ||f ||Lp(X,µ)

for p < ∞ and

||f ||∞,∞ = sup
0<t<∞

{f ∗(t)} = f ∗(0) = inf{ω > 0 : µf (ω) ≤ 0}

= inf{ω > 0 : µ{x ∈ X : |f(x)| > ω} = 0} = ||f ||∞.
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(vi) Assume f ∈ L∞,q(X, µ). Then

||f ||q∞,q =
∫︂ ∞

0
t−1(f ∗(t))qdt.

If f is nonzero, there exist ε > 0 and E of nonzero measure such that f > ε
on E. Therefore f ∗ > ε on (0, µ(E)). However, t−1ε is not integrable on
(0, µ(E)), so ||f ||q∞,q = ∞, which is a contradiction.

Notation. From now on, we always assume that p is finite or that p = q = ∞,
as for q finite the space L∞,q contains only the zero function.

Lemma 1.1.2. Suppose that f belongs to Lp,q(X, µ), 0 < p < ∞, 0 < q ≤ ∞,
E ⊆ X and ε > 0. If f(x) ≥ ε for every x ∈ E, then µ(E) < ∞.

Proof. We prove the statement by contradiction, let µ(E) = ∞ and f ≥ ε on E.
Then µf (ω) = ∞ for every ω ≤ ε and it easily follows that f ∗(t) ≥ ε for every
t. The function t1/p−1/q does not belong to Lq(R+, λ), therefore ||f ||p,q = ∞, so
f does not belong to Lp,q(X, µ).

1.2 Lorentz sequence spaces
A special case of the above-mentioned spaces is when we take the positive integers
or just {1, . . . , n} (both with the canonical atomic measure) as the space X. We
arrive at the definition of the Lorentz sequence spaces. We denote such spaces
as ℓp,q and ℓp,q

n . Although the previous definitions and propositions hold, we will
reformulate some of them in order to be more clear and we introduce an equivalent
quasinorm which will be used later on.

Proposition 1.2.1. It holds that ℓp,q ⊆ ℓ∞. If p < ∞, then ℓp,q ⊆ c0 (where c0
denotes the space of all sequences whose limit is zero).

Proof. Let us firstly assume p = ∞, then q = ∞. According to Proposition 1.1.1
(iii), the space is ℓ∞.

For p finite we proceed by contradiction. Let a ∈ ℓp,q \ c0, then there exists
ε > 0, N ⊆ N infinite such that |an| > ε for all n ∈ N . However, as N is infinite,
we have µ(N) = ∞, which contradicts Lemma 1.1.2.

Theorem 1.2.2. Let 0 < p < ∞, 0 < q ≤ ∞, a = (a1, a2, . . . ) ∈ ℓp,q (i.e., a is
a function N → R). Let us denote f ∗

a the nonincreasing rearrangement of a (i.e.,
f ∗

a is a function [0, ∞) → [0, ∞]). Then there exists a sequence b = (b1, b2, . . . )
and π a permutation of N such that

bk ≥ bk+1 ≥ 0 and bk = |aπ(k)|.

Moreover it holds that f ∗
a (t) = b⌈t⌉.

Proof. We know from Proposition 1.2.1 that a ∈ c0. Therefore absolute values of
its coordinates can be reordered into nonincreasing sequence, which we denote b.
For a countable set A denote |A| the number of its elements.

Now for every ε > 0 and k ∈ N we have

µa(bk − ε) = |{n ∈ N : |an| > bk − ε}| = |{n ∈ N : bn > bk − ε}| ≥ k,
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because b is nonincreasing and bk > bk − ε. It follows that f ∗
a (k) ≥ bk. On the

other hand,

µa(bk) = |{n ∈ N : |an| > bk}| = |{n ∈ N : bn > bk}| < k,

thus we obtain the equality f ∗
a (k) = bk.

Since µa acquires its values only in N, µa(bk) ≤ k − 1. For k − 1 < t < k we
have µa(bk) ≤ k − 1 < t < k = µa(bk − ε), so bk ≥ f ∗

a (t) ≥ bk − ε. This completes
the proof.

For p = q = ∞ the situation is slightly different, since the sequences do
not have to decay to zero. For example, for the sequence {1 − 1

n
}∞

n=1 we have
b = (1, 1, . . . ).

We usually denote the sequence b from the last proposition by a∗ and call it the
nonincreasing rearrangement of a (when we use the original meaning, we denote
the nonincreasing rearrangement f ∗

a as in the statement above). For illustration
see Figure 1.2.

−1
0
1
2
3

ak

k

•

•
•

•

a = (a1, a2, a3, a4)
−1

0
1
2
3

|ak|

k

•

•
•

•

|a| = (|a1|, |a2|, |a3|, |a4|)
−1

0
1
2
3

a∗
k

k

•
•

•
•

a∗ = (a∗
1, a∗

2, a∗
3, a∗

4)

Figure 1.2: Main steps in forming a∗ for a ∈ R4

Proposition 1.2.3. Let a = (a1, a2, . . . ) ∈ ℓp,q and a∗ = (a∗
1, a∗

2, . . . ) be its
nonincreasing rearrangement, then

||a||p,q =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⎛⎝p

q

∑︂
k∈N

(a∗
k)q(k

q
p − (k − 1)

q
p )
⎞⎠ 1

q

, q ∈ (0, ∞),

sup
k∈N

{k
1
p a∗

k}, q = ∞.

For 0 < p, q < ∞ the original quasinorm || · ||p,q is equivalent to the function

||a||′p,q = ||k 1
p

− 1
q a∗

k||q =
⎛⎝∑︂

k∈N
(a∗

k)qk
q
p

−1

⎞⎠ 1
q

,

where || · ||q is the (quasi)norm in ℓq. The function || · ||′p,q is also a quasinorm and
we will use it as the canonical one from now on. By equivalence || · ||p,q ≈ || · ||′p,q

we mean that there are constants c1, c2 depending only on p and q such that

c1|| · ||p,q ≤ || · ||′p,q ≤ c2|| · ||p,q.
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Proof. The two equalities follow immediately from the definition of || · ||p,q, as for
q < ∞

||a||qp,q = ||t 1
p

− 1
q f ∗

a (t)||qLq(R+,λ) =
∫︂ ∞

0
t

q
p

−1(a∗
⌈t⌉)qdt

=
∞∑︂

k=1

∫︂ k

k−1
t

q
p

−1(a∗
k)qdt =

∞∑︂
k=1

p

q
(k

q
p − (k − 1)

q
p )(a∗

k)q

and for q = ∞

||a||p,q = sup
0<t<∞

{t
1
p f ∗

a (t)} = sup
0<t<∞

{t
1
p a∗

⌈t⌉} = sup
0<t<∞

{⌈t⌉ 1
p a∗

⌈t⌉} = sup
k∈N

{k
1
p a∗

k}

(since sup{τ 1/p, τ ∈ [t − 1, t]} = ⌈t⌉ 1
p ).

The equivalence of || · ||p,q and || · ||′p,q is obtained by using the mean value
theorem. There exists ξ ∈ (k − 1, k) such that

k
q
p − (k − 1)

q
p = q

p
ξ

q
p

−1.

For any k > 1 we see that k/2 ≤ ξ ≤ k, so k
q
p − (k − 1)

q
p ≈ k

q
p

−1, where the
constant is independent of k. For k = 1 we have k

q
p = k

q
p

−1 trivially, hence
|| · ||p,q ≈ || · ||′p,q.

Let us denote K the constant of the quasinorm || · ||p,q. Thanks to the equi-
valence, for every a, b ∈ ℓp,q we have

||a + b||′p,q ≤ c2||a + b||p,q ≤ c2K(||a||p,q + ||b||p,q) ≤ c2Kc1(||a||′p,q + ||b||′p,q),

so || · ||′p,q satisfies (iii)”. Properties (i) and (ii) are satisfied trivially, hence || · ||′p,q

is a quasinorm, too.

Notation. From now on, we use only the functional || · ||′p,q as the Lorentz quasi-
norm.Therefore we denote it again || · ||p,q. For the case q = ∞ we still assume
the quasinorm ||a||p,∞ = sup{k1/pa∗

k}.

Remark. As we can see, the expression ||k1/p−1/qa∗
k||q makes sense even for q finite

and p = ∞ (for 1/∞ = 0). However, it is not equivalent to the original Lorentz
quasinorm. The corresponding spaces would be nontrivial; nevertheless, we will
study them separately, as they actually behave differently, see Section 4.3.

The previous statement holds analogously for the finite-dimensional case ℓp,q
n ,

since the space ℓp,q
n can be seen as a subspace of ℓp,q. Therefore we can equip it

with the quasinorm || · ||′p,q and we know that the constant of equivalence so not
depend on the dimension n. Figures 1.3 and 1.4 show the unit balls in dimension
two or three for some choice of the parameters p and q.

Notation. By Bp,q
n we mean the unit ball in ℓp,q

n . By Bp,q
n,+ we mean those se-

quences from Bp,q
n such that all the coordinates are nonnegative. By a volume of

a (measurable) subset of Rn we mean its n-dimensional Lebesgue measure.

As we can choose the sign of each coordinate, which gives 2n possibilities, it is
easy to see that Vol(Bp,q

n ) = 2nVol(Bp,q
n,+). For convenience we set Vol(Bp,q

0,+) = 1.
Obviously, Bp,q

1 = [−1, 1], as the quasinorm in a one-dimensional space is always
the absolute value.

9



−1 0 1
p = q = 1/2

−1 0 1
p = 1, q = 1/2

−1 0 1
p = 2, q = 1/2

−1 0 1
p = 1/2, q = 1
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−1 0 1
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−1 0 1
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−1 0 1
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−1 0 1
p = q = 2

−1 0 1
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−1 0 1
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−1 0 1
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Figure 1.3: Comparison of unit balls in ℓp,q
2 for different parameters
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p = 1/2, q = ∞ p = 1, q = ∞

p = 2, q = 1/2

p = 2, q = 1 p = 1, q = 2

Figure 1.4: Comparison of unit balls in ℓp,q
3 for different parameters
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1.3 Entropy numbers
We introduce here the entropy numbers of an operator, since they can serve as an
useful tool when dealing with asymptotic estimates of volumes of unit balls. We
also study them (for the case of embeddings of the Lorentz spaces) separately in
Section 4.2. For those who are interested in more details we recommend e.g. [6].

Definition. Le X and Y be quasi-Banach spaces, T : X → Y be a bounded linear
operator and k ∈ N. Denote BX , BY the unit balls in these spaces. Then the
k-th entropy number of T is defined as

ek(T : X → Y ) = inf
{︂
r > 0 : ∃y1, . . . , y2k−1 ∈ Y : T (BX) ⊆

2k−1⋃︂
i=1

(yi + rBY )
}︂
.

The entropy numbers are monotone in the sense that ek(T ) ≥ ek+1(T ). Con-
sider the special case when T is the identity mapping between two finite-dimensio-
nal quasi-Banach spaces. The identity is bounded, since any linear mapping be-
tween finite-dimensional spaces is bounded, therefore the entropy numbers are
well-defined. For the special case of the Lebesgue spaces, the following theorem
holds. Its proof can be found in [11] and is therefore omitted.

Theorem 1.3.1. Let p, q ∈ (0, ∞], n ∈ N.

(i) If p ≤ q, then for all k ∈ N it holds that

ek(Id : ℓp
n → ℓq

n) ≈

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1, 1 ≤ k ≤ log2 n,(︄
log2(1 + n/k)

k

)︄ 1
p

− 1
q

, log2 n ≤ k ≤ n,

2− k−1
n n

1
q

− 1
p , k ≥ n.

(ii) If q ≤ p, then for all k ∈ N it holds that

ek(Id : ℓp
n → ℓq

n) ≈ 2− k−1
n n

1
q

− 1
p .

The constants of the equivalences depend only on p and q, i.e., they are indepen-
dent of k and n.

Now we present a modification of [6, Theorem 1.3.2], where the proof of the
original statement can be found. By the Aoki-Rolewicz theorem, every quasinorm
is equivalent to a p-norm for some p ∈ (0, 1], on the other hand, every p-norm is
a quasinorm with the constant 21/p−1 (see e.g. [1]). Therefore the validity of the
theorem does not change if we replace p-norms with quasinorms and add multi-
plicative constants on corresponding places. For further details on interpolation
spaces, see [2] or [3].

Definition. Let X0, X1 be quasi-Banach spaces, we say that (X0, X1) is an
interpolation couple, if both of them are linearly continuously embedded in a
common quasi-Banach space X. We endow the set X0 ∩ X1 with the quasi-
norm max{||x||X0 , ||x||X1} and the set X0 + X1 (i.e., the set {x : x = x0 + x1,
x0 ∈ X0, x1 ∈ X1}) with the quasinorm inf{||x0||X0 + ||x1||X1 : x = x0 + x1,
x0 ∈ X0, x1 ∈ X1}.
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Theorem 1.3.2. (i) Let X be a quasi-Banach space, (Y0, Y1) be an interpola-
tion couple of quasi-Banach spaces and θ ∈ (0, 1). Let Yθ be a quasi-Banach
space such that

Y0 ∩ Y1 ⊆ Yθ ⊆ Y0 + Y1

and there exists a constant C such that

||y||θ ≤ C||y||1−θ
Y0 ||y||θY1

for all y ∈ Y0 ∩ Y1. Let T : X → Y0 ∩ Y1 be a linear bounded operator. Then
there exists a constant C ′ such that for all k, l ∈ N it holds that

ek+l−1(T : X → Yθ) ≤ C ′(ek(T : X → Y0))1−θ(el(T : X → Y1))θ.

(ii) Let (X0, X1) be an interpolation couple of quasi-Banach spaces, Y a quasi-
Banach space and θ ∈ (0, 1). Let X be a quasi-Banach space such that
X ⊆ X0 + X1 and there exists a constant C such that

t−θK(t, x) ≤ C||x||X

for all x ∈ X and t ∈ (0, ∞). Here K(t, x) denotes the K-functional
K(t, x, X0, X1) defined as

K(t, x, X0, X1) = inf{||x0||X0 + t||x1||X1 : x = x0 + x1, x0 ∈ X0, x1 ∈ X1}.

Let T : X0 + X1 → Y be a linear operator whose restrictions to X0 and X1
are bounded. Then T : X → Y is bounded, too, and there exists a constant
C ′ such that for all k, l ∈ N it holds that

ek+l−1(T : X → Y ) ≤ C ′(ek(T : X0 → Y ))1−θ(el(T : X1 → Y ))θ.

Theorems 3.1.2 and 3.3.4 are two special cases which are proven separately.
In Section 4.2 we use Theorem 1.3.2 in this general form.

13



2. Explicit formulae
We consider two special cases, q = ∞ and q = 1. We offer both recursive and
explicit formulae in Sections 2.1 to 2.4 and use them to calculate the volumes for
some choices of the parameter p in Section 2.5.

2.1 Recursive formula for q = ∞
In this section we focus on the volume of the unit ball of the space ℓp,∞

n . At first
we deduce the recursive formula for the volume which we use later to prove the
explicit formula. We apply the well-known inclusion-exclusion principle:

Theorem 2.1.1. (The inclusion–exclusion principle) Let A be a measurable sub-
set of Rn, Ak ⊆ A be measurable sets such that

A =
m⋃︂

k=1
Ak.

Then
Vol(A) = Vol

(︂ m⋃︂
k=1

Ak

)︂
=
∑︂

K⊆{1,...,m},
K ̸=∅

(−1)|K|+1Vol
(︂ ⋂︂

k∈K

Ak

)︂
. (2.1)

Let us denote

Ak = {a ∈ Bp,∞
n : ak ≤ 1/n1/p},

A+
k = {a ∈ Bp,∞

n,+ : ak ≤ 1/n1/p}
for k ∈ {1, . . . , n}. For every a ∈ Bp,∞

n,+ there exists at least one coordinate, which
is less or equal to 1/n1/p, otherwise the quasinorm of a would be greater than
1. Therefore, there exists k ∈ {1, . . . , n} such that a ∈ A+

k (see Figure 2.1). We
obtain

Bp,∞
n,+ =

n⋃︂
k=1

A+
k .

A1 A2 A3 B1,∞
3

Figure 2.1: Sets Ak for n = 3, p = 1 and their union B1,∞
3

Consider ∅ ⊊ K = {k1, . . . , kj} ⊊ {1, . . . , n} and KC = {1, . . . , n} \ K =
{m1, . . . , mn−j}. We want to apply the inclusion-exclusion principle to Bp,∞

n,+ . For
that we need to know the volume of

A+
K =

⋂︂
k∈K

A+
k .
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For any sequence a ∈ A+
K it holds that aki

≤ 1/n1/p, i = 1, . . . , j. If

ã = (am1 , . . . , amn−j
)

is the restriction of a on KC , then its l-th biggest coordinate can be at most
l−1/p. We get ã ∈ Bp,∞

n−j,+. On the other hand, any sequence ã ∈ Bp,∞
n−j,+ can be

extended on K by aki
∈ [0, n−1/p], i = 1, . . . , j and the resulting sequence a is in

A+
K . Therefore

Vol
(︂
A+

K

)︂
= Vol

(︂
[0, n−1/p]j × Bp,∞

n−j,+

)︂
=
(︃ 1

n

)︃ j
p

Vol(Bp,∞
n−j,+).

In the case {k1, . . . , kj} = {1, . . . , n} there are no other coordinates left, i.e.,

A+
{1,...,n} =

n⋂︂
k=1

A+
k = [0, n−1/p]n.

Since for each j there are exactly
(︂

n
j

)︂
possible subsets of {1, . . . , n} of cardinality

j and the volume of A+
K depends only on the number of elements of K, by (2.1)

we obtain

Vol(Bp,∞
n,+ ) =

n∑︂
j=1

⎡⎣(︄n

j

)︄
(−1)j+1

(︃ 1
n

)︃ j
p

Vol(Bp,∞
n−j,+)

⎤⎦ . (2.2)

2.2 Explicit formula for q = ∞
Now we want to omit the volumes of the lower-dimensional balls in (2.2). We
present two approaches to this problem in the following two sections. Although
the result is the same, there are differences which make each of them more useful
under certain circumstances.

Theorem 2.2.1. The volume of the unit ball in ℓ1,∞
n is given by the formula

Vol(B1,∞
n,+ ) =

∑︂
k∈Kn

j∏︂
l=1

(︄
n −∑︁l−1

i=1 ki

kl

)︄
(−1)kl+1

(n −∑︁l−1
i=1 ki)kl

= n!
∑︂

k∈Kn

(−1)n+j
j∏︂

l=1

1
(n −∑︁l−1

i=1 ki)kl(kl)!

=
∑︂

m∈Mn

j−1∏︂
l=0

(︄
n − ml

ml+1 − ml

)︄
(−1)ml+1−ml+1

(n − ml)ml+1−ml
,

where

Kn = {k = (k1, . . . , kj) : ki ∈ N,
j∑︂

i=1
ki = n},

Mn = {m = (m0, . . . , mj) ⊆ {0, . . . , n} : 0 = m0 ≤ m1 ≤ · · · ≤ mj = n}

and the sum over an empty set is zero.
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Proof. Firstly we prove that the first and the third formulae are equal. We
identify each element of Kn with an element of Mn this way:

(k1, . . . , kj) ↦→ (0, k1, k1 + k2, . . . ,
j∑︂

i=1
ki), i.e., ml =

l∑︂
i=1

ki.

Clearly this mapping is both injective and surjective. By substituting for ml in
the third formula we obtain the first one. The second equality follows easily from
the definition of the binomial coefficient and from ∏︁j

l=1(−1)kl+1 = (−1)n+j, since∑︁j
l=1 kl = n.

Now let us prove that the volume is given by the first formula. We proceed
by induction. For the case n = 1 the expressions are equal, as the only element
of K1 is the sequence (1) and B1,∞

1,+ = [0, 1].
Assume now that the formula holds for all n < n0. Furthermore we put

K0 = ∅. By (2.2) we know that

Vol(B1,∞
n0,+) =

n0∑︂
l=1

[︄(︄
n0

l

)︄
(−1)l+1

(︃ 1
n0

)︃l

Vol
(︂
B1,∞

n0−l,+

)︂]︄
.

By using the induction hypothesis we obtain

Vol(B1,∞
n0,+) =

n0∑︂
l=1

⎡⎣(︄n0

l

)︄
(−1)l+1

nl
0

∑︂
k∈Kn0−l

j∏︂
l=1

(︄
n0 − l −∑︁l−1

i=1 ki

kl

)︄
(−1)kl+1

(n0 − l −∑︁l−1
i=1 ki)kl

⎤⎦
=

n0∑︂
l=1

⎡⎣ ∑︂
k∈Kn0−l

(︄
n0

l

)︄
(−1)l+1

nl
0

j∏︂
l=1

(︄
n0 − l −∑︁l−1

i=1 ki

kl

)︄
(−1)kl+1

(n0 − l −∑︁l−1
i=1 ki)kl

⎤⎦ .

Now take k ∈ Kn0−l and define h = (l, k1, . . . , kj) (in the case l = n0 define
h = (n0)). This is an element of Kn0 and each element of this set can be uniquely
produced this way for some l ≤ n0. Therefore

Vol(B1,∞
n0,+) =

∑︂
h∈Kn0

⎡⎣ j∏︂
l=1

(︄
n0 −∑︁l−1

i=1 hi

hl

)︄
(−1)hl+1

(n0 −∑︁l−1
i=1 hi)hl

⎤⎦ ,

which completes the proof.

This approach can be generalised for arbitrary p ∈ (0, ∞).

Theorem 2.2.2. Let p ∈ (0, ∞), then the volume of the unit ball Bp,∞
n,+ is given

by the formula

Vol(Bp,∞
n0,+) =

∑︂
k∈Kn

j∏︂
l=1

(︄
n −∑︁l−1

i=1 ki

kl

)︄
(−1)kl+1

(n −∑︁l−1
i=1 ki)

kl
p

=
∑︂

m∈Mn

j∏︂
l=1

(︄
n − ml−1

ml − ml−1

)︄
(−1)ml−ml−1+1

(n − ml−1)
ml−ml−1

p

,

where Kn and Mn are as before.
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Proof. The proof goes exactly the same way with the only difference being the
power 1/p. Therefore we show here just the most important part, the induction
step for n0 > 1.

Vol(Bp,∞
n0,+) =

n0∑︂
l=1

[︄(︄
n0

l

)︄
(−1)l+1

(︃ 1
n0

)︃l/p

Vol(Bp,∞
n0−l,+)

]︄

=
n0∑︂
l=1

⎡⎣ ∑︂
k∈Kn0−l

(︄
n0

l

)︄
(−1)l+1

n
l/p
0

j∏︂
l=1

(︄
n0 − l −∑︁l−1

i=1 ki

kl

)︄
(−1)kl+1

(n0 − l −∑︁l−1
i=1 ki)kl/p

⎤⎦
=

∑︂
h∈Kn0

⎡⎣ j∏︂
l=1

(︄
n0 −∑︁l−1

i=1 hi

hl

)︄
(−1)hl+1

(n0 −∑︁l−1
i=1 hi)hl/p

⎤⎦ .

Remark. As the inclusion-exclusion principle works also for p = ∞ (in which case
Ak = B∞

n ), we can use the fact that Vol(Bp,∞
n,+ ) = 1 to obtain a combinatorial

identity ∑︂
k∈Kn

(−1)n+j

(︄
n

k1, . . . , kj

)︄
= n!

∑︂
k∈Kn

(−1)n+j
j∏︂

l=1

1
(kl)!

= 1.

In contrast with the multinomial theorem, we allow only kl > 0.

2.3 Integral approach
In this section we determine the volume of Bp,∞

n by using integration.

Definition. Let m ∈ N0, n ∈ N, a ∈ Rn such that a1 ≥ a2 ≥ · · · ≥ an ≥ 0. We
denote

V(m)(n, a) =
∫︂ an

0

∫︂ an−1

xn

· · ·
∫︂ a1

x2
xm

1 dx1 . . . dxn−1dxn.

Furthermore, we set V(m)(0, ()) = 1.

When we set ãk = k− 1
p , the domain of the integration is a subset of Bp,∞

n,+ .
Moreover, when we consider all possible permutations of the n coordinates, these
sets cover Bp,q

n,+ and their intersections are sets of zero (n-dimensional Lebesgue)
measure. Therefore an integral over the ball can be written as a sum of inte-
grals over these sections. Since there are n! such permutations (and values of all
corresponding integrals are equal), we obtain that

Vol(Bp,∞
n,+ ) = n!

∫︂ n
− 1

p

0

∫︂ (n−1)− 1
p

xn

· · ·
∫︂ 1

x2
1dx1 . . . dxn−1dxn = n!V(0)(n, ã). (2.3)

Theorem 2.3.1. Let m ∈ N0, n ∈ N, a ∈ Rn such that a1 ≥ a2 ≥ · · · ≥ an ≥ 0.
Then

V(m)(n, a) =
n∑︂

i=1
(−1)i+1 am+i

i m!
(m + i)!V

(0)(n − i, (ai+1, . . . , an)).

17



Proof. We prove the assertion by induction for n. If n = 1, then we have
V(m)(1, (a1)) = am+1

1
m+1 . Assume that m and a are now arbitrary admissible and

n > 1. We use the integration by parts:

V(m)(n, a) =
∫︂ an

0

∫︂ an−1

xn

· · ·
∫︂ a1

x2
xm

1 dx1 . . . dxn−1dxn

=
∫︂ an

0

∫︂ an−1

xn

· · ·
∫︂ a2

x3

(︄
am+1

1
m + 1 − xm+1

2
m + 1

)︄
dx2 . . . dxn−1dxn

= am+1
1

m + 1V(0)(n − 1, (a2, . . . , an)) − 1
m + 1V(m+1)(n − 1, (a2, . . . , an)).

Let the theorem hold for all k < n and denote

a[l, i] = (al, . . . , ai) for all l, i : 1 ≤ l ≤ i ≤ n,

a[l, i] = () otherwise.

By the induction hypothesis we have

V(m)(n, a) = am+1
1

m + 1V(0)(n − 1, a[2, n]) − 1
m + 1V(m+1)(n − 1, a[2, n])

= am+1
1

m + 1V(0)(n − 1, a[2, n])

− 1
m + 1

(︄
n−1∑︂
i=1

(−1)i+1 am+i+1
i+1 (m + 1)!
(m + i + 1)! V(0)(n − i − 1, a[i + 2, n])

)︄
.

By putting i + 1 = j we obtain

V(m)(n, a) = am+1
1

m + 1V(0)(n − 1, a[2, n])

− 1
m + 1

n∑︂
j=2

(−1)j am+j
j (m + 1)!
(m + j)! V(0)(n − j, a[j + 1, n])

=
n∑︂

j=1
(−1)j+1 am+j

j m!
(m + j)!V

(0)(n − j, a[j + 1, n]),

which is the sought formula.

As we want to proceed from (2.3), we set m = 0. Then

V(0)(n, a) =
n∑︂

i=1
(−1)i+1 ai

i

i! V(0)(n − i, a[i + 1, n]).

It is easy to show by induction that

V(0)(n, a) =
∑︂

m∈Mn

(−1)n+j
j−1∏︂
l=0

a
ml+1−ml
n−ml

(ml+1 − ml)!
.
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For n = 1 there is nothing to prove (V(0)(1, a) = a1) and for n > 1 we proceed
with the recursive formula, assuming the assertion holds for k < n:

V(0)(n, a) =
n∑︂

i=1
(−1)i+1 ai

i

i! V(0)(n − i, a[i + 1, n])

=
n∑︂

i=1
(−1)i+1 ai

i

i!
∑︂

m∈Mn−i

(−1)n−i+j
j−1∏︂
l=0

a
ml+1−ml

n−i−ml+i

(ml+1 − ml)!

=
n∑︂

i=1

∑︂
m∈Mn−i

(−1)n+j+1 ai
i

i!

j−1∏︂
l=0

a
ml+1−ml
n−ml

(ml+1 − ml)!
.

Now denote h = (m0, . . . , mj, n) for each (m0, . . . , mj) ∈ Mn−i (in the case i = n
define h = (0, n)), we obtain each element of Mn exactly once. Therefore,

V(0)(n, a) =
n∑︂

i=1

∑︂
m∈Mn−i

(−1)n+j+1 ai
i

i!

j−1∏︂
l=0

a
ml+1−ml
n−ml

(ml+1 − ml)!

=
∑︂

h∈Mn

(−1)n+j+1
j∏︂

l=0

a
hl+1−hl

n−hl

(hl+1 − hl)!

=
∑︂

m∈Mn

(−1)n+j
j−1∏︂
l=0

a
ml+1−ml
n−ml

(ml+1 − ml)!
.

For a = ã and after multiplication by n! we obtain the same expression as in
Theorem 2.2.2.
Remark. This approach gives us a formula for the weighted weak Lebesgue space
(i.e., the weights are not k1/p, but some arbitrary positive numbers). The same
formula can be also obtained by a slight modification of the first approach. Denote

B∞
n,+(a) = {x ∈ Rn : xk ≥ 0, akx∗

k ≤ 1}

for a ∈ Rn such that a1 ≥ a2 ≥ · · · ≥ an ≥ 0. For ak = k1/p we obtain Bp,∞
n,+ . The

recursive formula works the same way as before, since

Vol(A+
K) = Vol({x ∈ Rn

+ : xk ≤ an, k ∈ K}) = (an)|K|Vol(B∞
n−|K|,+(a)).

We get

Vol(B∞
n,+(a)) =

n∑︂
j=1

[︄(︄
n

j

)︄
(−1)j+1(an)jVol(B∞

n−j,+(a[1, n − j]))
]︄

.

The proof of the explicit formula works analogously (considering p = 1) and we
get

Vol(B∞
n,+(a)) =

∑︂
m∈Mn

j−1∏︂
l=0

(︄
n − ml

ml+1 − ml

)︄
(−1)ml+1−ml+1a

ml+1−ml
n−ml

=
∑︂

m∈Mn

(−1)n+j
j−1∏︂
l=0

(︄
n − ml

ml+1 − ml

)︄
a

ml+1−ml
n−ml

=
∑︂

m∈Mn

(−1)n+j
j−1∏︂
l=0

a
ml+1−ml
n−ml

(ml+1 − ml)!
.
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2.4 Explicit formula for q = 1
In this section we consider another special case, q = 1. As the approaches from
the previous sections fail in this case, we use a technique similar to the one used
when calculating the volume of the unit ball in the classical ℓp

n space.
Let us consider a smooth function f : [0, ∞) → [0, ∞) with a rapid decay

(to zero) at infinity. For such function it holds by the fundamental theorem of
calculus and the Fubini theorem that∫︂

Rn
f(||x||p,1)dx =

∫︂
Rn

∫︂ ∞

||x||p,1
−f ′(t)dtdx = −

∫︂ ∞

0

∫︂
{x∈Rn:||x||p,1<t}

f ′(t)dxdt

= −
∫︂ ∞

0
f ′(t)

∫︂
{x∈Rn:||x||p,1<t}

1dxdt

= −
∫︂ ∞

0
f ′(t)Vol({x ∈ Rn : ||x||p,1 < t})dt

= −Vol(Bp,1
n )

∫︂ ∞

0
tnf ′(t)dt

(2.4)

since all assumptions of used theorems easily hold by the smoothness and decay
of f . By choosing f(t) = e−t we obtain

∫︂
Rn

e−||x||p,1dx = −Vol(Bp,1
n )

∫︂ ∞

0
−tne−tdt = Vol(Bp,1

n )Γ(n + 1) = n!Vol(Bp,1
n ).

That leads us to the following statement:

Theorem 2.4.1. Let p ∈ (0, ∞), n ∈ N, then the volume of the unit ball Bp,1
n is

given by the formula
Vol(Bp,1

n ) = 2n
n∏︂

k=1

1
κp(k) , (2.5)

where
κp(k) =

k∑︂
j=1

j
1
p

−1.

Proof. All that remains is to compute the left-hand side of (2.4), i.e.,
∫︁
Rn e−||x||p,1dx.

Let us denote
Cn(t) = {x ∈ Rn : x1 ≥ x2 ≥ · · · ≥ xn ≥ t}

for t positive and

A(n, p, t) =
∫︂

Cn(t)
exp(−

n∑︂
k=1

k1/p−1xk)dx.

Since ||x||p,1 = ∑︁n
k=1 k1/p−1x∗

k, we obtain
∫︂
Rn

e−||x||p,1dx =
∫︂
Rn

exp(−
n∑︂

k=1
k1/p−1x∗

k)dx.

The set Rn
+ is covered by sections Cn(0) for all possible permutations of coordinates

and their intersections are sets of measure zero. Therefore
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∫︂
Rn

exp(−
n∑︂

k=1
k1/p−1x∗

k)dx = 2nn!
∫︂

Cn(0)
exp(−

n∑︂
k=1

k1/p−1xk)dx = 2nn!A(n, p, 0).

We observe that A(1, p, t) =
∫︁∞

t e−ydy = e−t and that

A(n, p, t) =
∫︂ ∞

t

∫︂ ∞

xn

· · ·
∫︂ ∞

x2
exp(−

n∑︂
k=1

k1/p−1xk)dx1 . . . dxn−1dxn

=
∫︂ ∞

t
e−n1/p−1xn

∫︂ ∞

xn

e−(n−1)1/p−1xn−1· · ·
∫︂ ∞

x2
e−x1dx1 . . . dxn−1dxn

=
∫︂ ∞

t
e−n1/p−1xnA(n − 1, p, xn)dxn.

It can be now easily proved by induction that

A(n, p, t) = e−tκp(n)
n∏︂

k=1

1
κp(k) , where κp(k) =

k∑︂
j=1

j1/p−1,

as κp(1) = 1 and ∫︂ ∞

t
e−(n1/p−1+κp(n−1))xndxn = 1

κp(n)e−tκp(n).

We finish by
Vol(Bp,1

n ) = 1
n!

∫︂
Rn

e−||x||p,1dx = 2n
n∏︂

k=1

1
κp(k) .

Remark. For p = 1 we obtain ∏︁n
1 κ1(k) = n!, therefore we can look at this

expression as a generalisation of the factorial.
The formula (2.5) can be easily rewritten in a recursive manner. This is used

in the next section.

2.5 Numerics
In this section we use the formulae to actually calculate the volumes for some
specific choices of p, namely 1/2, 1, 2 and 100. These values were chosen to
illustrate the behaviour both when p and q are close and far from each other.
First we present table of the values and compare the behaviour of the volumes of
Vol(Bp,∞

n,+ ) and Vol(Bp,∞
n ), then we do the same for the case q = 1. Note that the

precision of the results is limited by the means of storage of numbers in computer
memory. In the following two tables we use a precision satisfying our purpose of
illustrating the behaviour of the volumes. We use the recursive formulae

Vol(Bp,∞
n,+ ) =

n∑︂
j=1

⎡⎣(︄n

j

)︄
(−1)j+1

(︃ 1
n

)︃ j
p

Vol(Bp,∞
n−j,+)

⎤⎦ ,

Vol(Bp,1
n,+) = 1

κp(n)Vol(Bp,1
n−1,+),
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with initial conditions Vol(Bp,∞
0,+ ) = 1, Vol(Bp,1

1,+) = 1 and κp(n) defined as before
(again, which can be written in a recursive manner to speed up the calculations).
The time complexity is quadratic or linear, respectively, in n, which allows us to
compute the volumes for high dimensions with sufficient precision in reasonable
time.

n p = 1/2 p = 1 p = 2 p = 100
1 2 2 2 2
2 1.75 3 3.657 4
3 0.881 3.63 6.207 7.999
4 0.292 3.697 9.888 15.995
5 6.894 · 10−2 3.26 14.901 31.985
6 1.224 · 10−2 2.541 21.376 63.955
7 1.699 · 10−3 1.776 29.333 127.873
8 1.898 · 10−4 1.126 38.659 255.662
9 1.746 · 10−5 0.654 49.1 511.132
10 1.347 · 10−6 0.351 60.262 1,021.834
11 8.846 · 10−8 0.175 71.648 2,042.716
12 5.011 · 10−9 8.138 · 10−2 82.691 4,083.343
13 2.475 · 10−10 3.555 · 10−2 92.81 8,162.143
14 1.076 · 10−11 1.464 · 10−2 101.467 16,314.474
15 4.148 · 10−13 5.698 · 10−3 108.207 32,607.879

Table 2.1: Vol(Bp,∞
n ) for p = 1/2; 1; 2; 100 for dimension up to 15

The quantity Vol(B100,∞
n,+ ) seems to be almost constant in Figure 2.2. This is

due to the fact that p is rather large and therefore this volume for small dimensions
is behaving more like Vol(B∞

n,+), which is constantly 1. However, there is a decay,
Vol(B100,∞

n,+ ) tends to zero, but the decay is much slower (the quantity gets below
0.9 firstly for dimension 71 and below 0.5 for dimension 195). Therefore we
omitted the case p = 100 in the second plot, as the growth for the first twenty
dimensions is almost exponential (and thus much larger than the other data), see
Table 2.1.
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As can be seen, the multiplicative factor 2n changes the decreasing sequence
of volumes into one which can have a peak in some higher dimension. (It is well
known that e.g. for B2

n the maximal volume is obtained at n = 5. For B2,∞
n the

maximum is obtained at n = 17 and for B2,1
n at n = 2.)

n p = 1/2 p = 1 p = 2 p = 100
1 2 2 2 2
2 1.333 2 2.343 2.66
3 0.444 1.333 2.051 2.891
4 8.889 · 10−2 0.667 1.473 2.761
5 1.185 · 10−2 0.267 0.912 2.404
6 1.129 · 10−3 8.889 · 10−2 0.501 1.949
7 8.062 · 10−5 2.54 · 10−2 0.249 1.492
8 4.479 · 10−6 6.349 · 10−3 0.114 1.089
9 1.991 · 10−7 1.411 · 10−3 4.851 · 10−2 0.763
10 7.239 · 10−9 2.822 · 10−4 1.932 · 10−2 0.516
11 2.194 · 10−10 5.131 · 10−5 7.26 · 10−3 0.339
12 5.625 · 10−12 8.551 · 10−6 2.588 · 10−3 0.216
13 1.236 · 10−13 1.316 · 10−6 8.789 · 10−4 0.134
14 2.355 · 10−15 1.879 · 10−7 2.856 · 10−4 8.183 · 10−2

15 3.924 · 10−17 2.506 · 10−8 8.904 · 10−5 4.877 · 10−2

Table 2.2: Vol(Bp,1
n ) for p = 1/2; 1; 2; 100 for dimension up to 15

In the case q = 1 the decay of Vol(Bp,1
n,+) is rapid even for p large (cf. Table 2.2

and Figure 2.3). For example, for p = 100 (even for p = 1000) the quantity is
below 0.1 for dimension 5. This is due to the fact that the limiting case for p → ∞
is not B∞

n as it was before, but B∞,1
n (see Section 4.3).
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3. Asymptotic results
In this chapter we study two quantities – we investigate the asymptotic behaviour
of the term n

√︂
Vol(Bp,q

n ) when n approaches ∞, and the ratio of the volume of
the unit ball in the n-dimensional weak Lebesgue space to the volume of the unit
ball in the corresponding n-dimensional Lebesgue space. We use embeddings as
well as the interpolation theory.

3.1 Asymptotic estimate for q = ∞
Firstly consider the case q = ∞. It is well-known that for the space ℓp

n the volume
of the unit ball is given by the formula

Vol(Bp
n) = 2nΓ(1 + 1/p)n

Γ(1 + n/p) ,

where Γ is the gamma function defined as Γ(x) =
∫︁∞

0 tx−1e−tdt for x > 0 (see [16]).
The following estimate is one of the many forms of the Stirling formula and follows
from [18, Section 12.33]. (More approachable proof can be found in [10].) If x > 0,
then √

2πx
(︃

x

e

)︃x

≤ Γ(1 + x) ≤
√

2πx
(︃

x

e

)︃x

e1/(12x). (3.1)

From the Stirling formula we get that n
√︂

Vol(Bp
n) ≈ n−1/p, i.e., there exist

constants c1, c2 > 0 independent of n such that for all positive integers n it holds
that

c1n
−1/p ≤ n

√︂
Vol(Bp

n) ≤ c2n
−1/p

(for further details see [11]).

Proposition 3.1.1. For every p ∈ (0, ∞] it holds that Bp
n ⊆ Bp,∞

n .

Proof. For p = ∞ it is true since the spaces are the same (Proposition 1.1.1 (iii)).
We can therefore assume p < ∞. Let a be an element of Bp

n. Then we have

k (a∗
k)p ≤

k∑︂
i=1

(a∗
i )

p ,

since a∗ is nonincreasing. It follows that

k
1
p (a∗

k) = (k (a∗
k)p)

1
p ≤

(︄
k∑︂

i=1
(a∗

i )
p

)︄ 1
p

≤
(︄

n∑︂
i=1

(a∗
i )

p

)︄ 1
p

= ||a||p ≤ 1.

The statement is obtained by taking the supremum.

This provides us with the one-sided estimate

n
√︂

Vol(Bp,∞
n ) ≳ n−1/p.

We want to show that it is, in fact, an equivalence.
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The case p = ∞ is already done, since ℓ∞,∞
n = ℓ∞

n . We now deal with the
case p ∈ (0, ∞). To obtain the required result we use the entropy numbers and
their interpolation property. In general, our argumentation goes as follows: Let
ek be the k-th entropy number of Id : ℓp,∞

n → ℓ∞
n , then for any ε > 0 we have

x1, . . . , x2k−1 such that

Bp,∞
n ⊆

2k−1⋃︂
i=1

(xi + (ek + ε)B∞
n ) .

Therefore

Vol(Bp,∞
n ) ≤ 2k−1(ek + ε)nVol(B∞

n ) = 2k+n−1(ek + ε)n

and, by letting ε go to zero,

n
√︂

Vol(Bp,∞
n ) ≤ 21+ k−1

n ek. (3.2)

We use the next theorem to estimate ek.

Theorem 3.1.2. Let 0 < p < ∞ and k, l ∈ N. Then

ek+l−1(Id : ℓp,∞
n → ℓ∞

n ) ≤ 2
2
p

+2
(︂
ek(Id : ℓp/2

n → ℓ∞
n )el(Id : ℓ∞

n → ℓ∞
n )
)︂ 1

2 .

Proof. Take arbitrary ε > 0, fix k and l and set

r0 = (1 + ε)ek(Id : ℓp/2
n → ℓ∞

n ), r1 = (1 + ε)el(Id : ℓ∞
n → ℓ∞

n ).

Then we have y1, . . . , y2k−1 , z1, . . . , z2l−1 such that

Bp/2
n ⊆

2k−1⋃︂
i=1

(yi + r0B∞
n ) and B∞

n ⊆
2l−1⋃︂
j=1

(zj + r1B∞
n ) .

The idea of the proof is the following: For every a ∈ Bp,∞
n we want to find suitable

a0, ỹi ∈ {ỹ1, . . . , ỹ2k−1}, a1, z̃j ∈ {z̃1, . . . , z̃2l−1} (all elements of Rn) such that

a0 + a1 = a and ||a − yĩ − zj̃||∞ ≤ ||a0 − yĩ||∞ + ||a1 − zj̃||∞ ≤ 2
2
p

+2(r0r1)1/2.

We prove that for arbitrary H > 0 and a ∈ Bp,∞
n there exist a0, a1 satisfying

a0 + a1 = a and H−1||a0||p/2 + H||a1||∞ ≤ 2
2
p

+1||a||p,∞. (3.3)

First observe that it is enough to prove (3.3) only for ||a||p,∞ = 1 and a∗ = a,
i.e., 0 ≤ ai ≤ 1/i1/p. We distinguish three cases according to the value of H:

(i) H ≤ 1
Set a0 = (0, . . . , 0), a1 = a, then

H||a1||∞ ≤ H||a||p,∞ = H ≤ 1 ≤ 2
2
p

+1.
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(ii) H > n1/p

Set a0 = a, a1 = (0, . . . , 0), then

H−1||a0||p/2 = H−1
(︄

n∑︂
i=1

|a0
i |p/2

)︄2/p

≤ H−1
(︄

n∑︂
i=1

|1/i1/p|p/2
)︄2/p

= H−1
(︄

n∑︂
i=1

1/i1/2
)︄2/p

≤ n−1/p(2
√

n − 1)2/p

=
(︄

2
√

n − 1√
n

)︄2/p

≤ 22/p,

where we used that
n∑︂

i=1
(1/

√
i) = 1 +

n∑︂
i=2

(1/
√

i) ≤ 1 +
∫︂ n

1
(1/

√
x)dx = 2

√
n − 1.

(iii) H ∈ (1, n1/p]
Let m ∈ {1, . . . , n − 1} and r such that am+1 ≤ r < am. Set

a0 = (a1 − r, . . . , am − r, 0, . . . , 0)

and
a1 = (r, . . . , r, am+1, . . . , an).

This is a decomposition of a. We have

||a0||p/2 =
(︄

m∑︂
i=1

(ai − r)p/2
)︄2/p

≤
(︄

m∑︂
i=1

(ai)p/2
)︄2/p

≤
(︄

m∑︂
i=1

i−1/2
)︄2/p

≤ (2
√

m − 1)2/p

and
||a1||∞ = r.

Set now r = am+1 ≤ (m + 1)−1/p, we obtain

H−1||a0||p/2 + H||a1||∞ ≤ H−1(2
√

m − 1)2/p + H(m + 1)−1/p.

Now it is enough to choose m such that H ∈ [m1/p, (m + 1)1/p] and we
acquire

H−1(2
√

m − 1)2/p + H(m + 1)−1/p ≤
(︄

2
√

m − 1√
m

)︄2/p

+ (m + 1)1/p−1/p

≤ 22/p + 1 ≤ 22/p+1.

As a by-product we obtain that a0 ∈ 22/p+1HBp/2
n , a1 ∈ 22/p+1H−1B∞

n . There-
fore there exist i, j such that

||a − 22/p+1Hyi − 22/p+1H−1zj||∞ ≤ ||a0 − 22/p+1Hyi||∞ + ||a1 − 22/p+1H−1zj||∞
≤ 22/p+1Hr0 + 22/p+1H−1r1.

To complete the proof we just need to set H = (r1/r0)1/2 and let ε go to zero.
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This theorem can be viewed as a special case of Theorem 1.3.2.

Theorem 3.1.3. Let 0 < p ≤ ∞, n ∈ N, then it holds that n
√︂

Vol(Bp,∞
n ) ≈ n−1/p,

where the constants do not depend on n.

Proof. We already have the lower estimate from the inclusion Bp
n ⊆ Bp,∞

n . The
upper estimate is obtained by combining (3.2) with Theorems 1.3.1 and 3.1.2.
Let again be ek = ek(Id : ℓp,∞

n → ℓ∞
n ). For l = 1 and k = n this gives

n
√︂

Vol(Bp,∞
n ) ≤ 21+ n−1

n en ≤ C
(︂
en(Id : ℓp/2

n → ℓ∞
n )e1(Id : ℓ∞

n → ℓ∞
n )
)︂ 1

2 ≲ n− 1
p ,

where C is a constant which depends only on p.

3.2 Asymptotic estimate for q = 1
We proceed from the explicit formula (2.5). Let us estimate the value of κp(k).

Proposition 3.2.1. Let 0 < p ≤ ∞, k ∈ N, then κp(k) ≈ k
1
p , where the constants

depend only on p.

Proof. Let us firstly assume p ≤ 1. Therefore x1/p−1 is a nondecreasing function
and we have

pk
1
p =

∫︂ k

0
x

1
p

−1dx ≤
k∑︂

j=1
j

1
p

−1 = κp(k) ≤
∫︂ k+1

1
x

1
p

−1dx ≤ p(k + 1)
1
p ≤ p2

1
p k

1
p .

Now consider the case p > 1, then x1/p−1 is a decreasing function (but still
integrable on [0, k]) and

p(k
1
p − 1) ≤ p((k + 1)

1
p − 1) =

∫︂ k+1

1
x

1
p

−1dx ≤
k∑︂

j=1
j

1
p

−1 ≤
∫︂ k

0
x

1
p

−1dx = pk
1
p .

For k big enough we have k1/p > 2, so κp(k) ≥ pk1/p/2. The number of k’s for
which this does not hold is finite and depends only on p. For them we know that
κp(k) ≥ p(2

1
p − 1) = cp > 0, therefore we obtain the wanted result at the cost of

the multiplicative constant.

Theorem 3.2.2. Let 0 < p ≤ ∞, n ∈ N, then it holds that n
√︂

Vol(Bp,1
n ) ≈ n−1/p,

where the constants do not depend on n.

Proof. From the explicit formula and the previous proposition we have

Vol(Bp,1
n ) ≈ 2ncn(n!)−1/p,

where c arises from the product of κp(k)’s (κp(k) is equivalent to k
1
p up to a mul-

tiplicative constant). Therefore

n
√︂

Vol(Bp,1
n ) ≈ (n!)−1/np

and from the Stirling formula we get the desired result.
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3.3 Asymptotic estimate for the general case
Proposition 3.3.1. Let n ∈ N. Then we have:

(i) For 0 < p < ∞, 0 < q0 ≤ q1 ≤ ∞ there exists cp,q0,q1 > 0 (independent
of n) such that Bp,q0

n ⊆ cp,q0,q1Bp,q1
n . Moreover, if q0 ≤ p, then Bp,q0

n ⊆ Bp,q1
n .

(ii) For 0 < p0 ≤ p1 < ∞, q ∈ (0, ∞] it holds that Bp0,q
n ⊆ Bp1,q

n .

Proof. Firstly we note that (i) is a generalisation of Proposition 3.1.1.

(i) We begin with proving the assertion for q1 = ∞. For every l ∈ {1, . . . , n}
we have that

||x||q0
p,q0 =

n∑︂
k=1

k
q0
p

−1(x∗
k)q0 ≥

l∑︂
k=1

k
q0
p

−1(x∗
k)q0 ≥ (x∗

l )q0
l∑︂

k=1
k

q0
p

−1.

Therefore

||x||p,∞ = sup
l∈N

{l
1
p x∗

l } ≤ sup
l∈N

{︃
l

1
p

(︂ l∑︂
k=1

k
q0
p

−1
)︂− 1

q0 ||x||p,q0

}︃

= ||x||p,q0 sup
l∈N

{︄(︃
l− q0

p

l∑︂
k=1

k
q0
p

−1
)︃−1/q0

}︄
.

Firstly assume that q0 ≤ p and denote f(x) = x
q0
p

−1. This function is
convex and nonincreasing on (0, ∞), so we have

l− q0
p

l∑︂
k=1

k
q0
p

−1 = 1
l

l∑︂
k=1

(k/l)
q0
p

−1 = 1
l

l∑︂
k=1

f(k/l) ≥ f

(︄
1
l

l∑︂
k=1

k/l

)︄

= f

(︄
1
l2

l(l + 1)
2

)︄
= f

(︃1
2 + 1

2l

)︃
≥ f(1) = 1,

as 1/(2l) ≤ 1/2.
We obtain

inf
l∈N

{︃
l− q0

p

l∑︂
k=1

k
q0
p

−1
}︃

≥ 1

and since −1/q0 is negative, we finally get

||x||p,∞ ≤ ||x||p,q0 sup
l∈N

{︄(︃
l− q0

p

l∑︂
k=1

k
q0
p

−1
)︃−1/q0

}︄
≤ ||x||p,q0 .

Now we assume p < q0. The function f is now increasing, so f(k/l) ≥ f(x)
for all x ∈ [(k − 1)/l, k/l]. Therefore, from the Riemannian definition of
integral,

l− q0
p

l∑︂
k=1

k
q0
p

−1 = 1
l

l∑︂
k=1

f(k/l) ≥
∫︂ 1

0
f(x)dx
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and the sum on the left-hand side goes to the integral on the right-hand
side as l goes to infinity.
We have an estimate(︄

l− q0
p

l∑︂
k=1

k
q0
p

−1
)︄−1/q0

≤
(︃∫︂ 1

0
f(x)dx

)︃−1/q0

=
(︄

p

q0

)︄−1/q0

and

sup
l∈N

{︄(︃
l− q0

p

l∑︂
k=1

k
q0
p

−1
)︃−1/q0

}︄
=
(︄

p

q0

)︄−1/q0

.

This completes the proof for the case q1 = ∞.
We now return to the general case where q0 ≤ q1 < ∞. We have

||x||p,q1 =
(︄

n∑︂
k=1

k
q1
p

−1(x∗
k)q1

)︄1/q1

=
(︄

n∑︂
k=1

k
q1−q0

p (x∗
k)q1−q0k

q0
p

−1(x∗
k)q0

)︄1/q1

≤
(︄

n∑︂
k=1

||x||q1−q0
p,∞ k

q0
p

−1(x∗
k)q0

)︄1/q1

= (||x||p,∞)
q1−q0

q1 (||x||p,q0)
q0
q1

≤ (cp,q0,∞)
q1−q0

q1 (||x||p,q0)
q1−q0

q1
+ q0

q1 .

Therefore cp,q0,q1 = (cp,q0,∞)
q1−q0

q1 and the proof is complete.

(ii) This part of the proposition follows from the fact that, as 1
p0

≥ 1
p1

,

||x||qp0,q =
n∑︂

k=1
(k

1
p0

− 1
q x∗

k)q ≥
n∑︂

k=1
(k

1
p1

− 1
q x∗

k)q = ||x||qp1,q.

Thanks to this embedding and the results for q = 1 and q = ∞ we easily
obtain the asymptotics for q in-between.

Theorem 3.3.2. For arbitrary 0 < p < ∞, 1 < q ≤ ∞, n ∈ N it holds that
n
√︂

Vol(Bp,q
n ) ≈ n−1/p, where the constants do not depend on n.

Proof. The proof is a consequence of Proposition 3.3.1, as

Bp,1
n ⊆ cp,1,qBp,q

n ⊆ cp,1,qcp,q,∞Bp,∞
n ,

where the constants are independent of the dimension. From Theorem 3.1.3 and
Theorem 3.2.2 we have immediately

n−1/p ≈ n
√︂

Vol(Bp,1
n ) ≲ n

√︂
Vol(Bp,q

n ) ≲ n
√︂

Vol(Bp,∞
n ) ≈ n−1/p.

Next we present a more general result, which has, however, more complicated
proof than the previous theorem. We firstly state the theorem and prove the
interpolation theorem for entropy numbers afterwards.
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Theorem 3.3.3. For arbitrary 0 < p < ∞, 0 < q ≤ ∞, n ∈ N it holds that
n
√︂

Vol(Bp,q
n ) ≈ n−1/p, where the constants do not depend on n.

Proof. The upper estimate is obtained the same way as before, i.e., by

Bp,q
n ⊆ cp,q,∞Bp,∞

n .

We prove the lower estimate with a similar argument as we did for the upper
bound when q = ∞.

Let ek be the k-th entropy number for Id : ℓp/2
n → ℓp,q

n , then for any ε > 0 we
have that

Bp/2
n ⊆

2k−1⋃︂
i=1

(xi + (ek + ε)Bp,q
n ) .

Therefore
Vol(Bp/2

n ) ≤ 2k−1en
kVol(Bp,q

n )
and

n−2/p ≲ 2 k−1
n ek

n
√︂

Vol(Bp,q
n ).

From Theorem 3.3.4 for the choice l = 1, k = n we have

en ≤ cp,q

(︂
en(Id : ℓp/2

n → ℓ∞
n )e1(Id : ℓp/2

n → ℓp/2
n )

)︂ 1
2 ≈ n−1/p,

so
n
√︂

Vol(Bp,q
n ) ≳ n1/p−2/p = n−1/p.

As the reader may notice, we could have used just this version of the theorem
and omit Theorem 3.3.2. However, it gave us the result for q ≥ 1 much easier.

Theorem 3.3.4. Let 0 < p < ∞, 0 < q ≤ ∞ and k, l ∈ N. Then

ek+l−1(Id : ℓp/2
n → ℓp,q

n ) ≤ cp,q

(︂
ek(Id : ℓp/2

n → ℓ∞
n )el(Id : ℓp/2

n → ℓp/2
n )

)︂ 1
2 .

Proof. Take arbitrary ε > 0, fix k and l and set

r0 = (1 + ε)ek(Id : ℓp/2
n → ℓ∞

n ),

r1 = (1 + ε)el(Id : ℓp/2
n → ℓp/2

n ).

Therefore we have y1, . . . , y2k−1 such that

Bp/2
n ⊆

2k−1⋃︂
i=1

(yi + r0B∞
n ) .

Let us denote
Bi = Bp/2

n ∩ (yi + r0B∞
n ) ,

then this set can be covered by 2l−1 balls in ℓp/2
n with radius r1 (as it is a subset

of Bp/2
n ), i.e., we have zi,1, . . . , zi,2l−1 such that

Bi ⊆
2l−1⋃︂
j=1

(︂
zi,j + r1Bp/2

n

)︂
.
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We add the condition that centres of these balls must lie in Bi. Let us denote
si,j an arbitrary fixed point from Bi ∩

(︂
zi,j + r1Bp/2

n

)︂
and take another point x

from this set. Then

||si,j − x||p/2 ≤ max{1, 2
1
p

−1}
(︂
||si,j − zi,j||p/2 + ||zi,j − x||p/2

)︂
≤ max{2, 2

1
p }r1.

In other words, the set Bi is covered by collection of balls in ℓp/2
n with centres

si,j ∈ Bi and radius max{2, 2
1
p }r1. Now it is easy to see that for any x ∈ Bp/2

n

there exist i, j such that

||x − si,j||∞ ≤ ||x − yi||∞ + ||yi − si,j||∞ ≤ 2r0

and
||x − si,j||p/2 ≤ max{2, 2

1
p }r1.

The remaining step is to use an inequality which is a special case of [5, Lemma 4]:

||2sk/2ak||q ≤ C||ak||1/2
∞ ||2skak||1/2

∞ (3.4)
for arbitrary s ∈ R, q ∈ (0, ∞) and some C > 0 (which is independent of the
sequence a). We can set for convenience xk = 0 for k > n. Assume now that
q ≤ p. Then

||x||qp,q =
∞∑︂

k=1
k

q
p

−1(x∗
k)q =

∞∑︂
m=0

2m+1−1∑︂
k=2m

k
q
p

−1(x∗
k)q ≤

∞∑︂
m=0

(2m)
q
p

−1
2m+1−1∑︂
k=2m

(x∗
k)q

≤
∞∑︂

m=0
(2m)

q
p

−1 2m(x∗
2m)q =

∞∑︂
m=0

(2m)
q
p (x∗

2m)q = ||2(m−1)/px∗
2m−1||qq.

In the case q > p there will occur (2m+1)
q
p

−1 instead of (2m)
q
p

−1 in the first
estimate. However, they differ only by a multiplicative constant depending on p
and q, so the rest of the proof will proceed the same way. Now use (3.4):

||2(m−1)/px∗
2m−1 ||qq ≤

(︂
c||x∗

2m−1 ||∞||22(m−1)/px∗
2m−1||∞

)︂q/2

= C||x∗||q/2
∞

(︃
sup
m∈N

{︃(︂
2m−1

)︂2/p
x∗

2m−1

}︃)︃q/2

≤ C||x∗||q/2
∞

(︃
sup
k∈N

{k2/px∗
k}
)︃q/2

= C||x||q/2
∞ ||x||q/2

p/2,∞

≤ C||x||q/2
∞ ||x||q/2

p/2.

This yields

||x||p,q ≤ C||x||1/2
∞ ||x||1/2

p/2,

which leads to the final estimate

||x − si,j||p,q ≤ C(2r0)1/2(max{2, 2
1
p }r1)1/2 = cp,q(r0r1)1/2.

We finish by letting ε go to zero.
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3.4 Ratios of volumes
The unit balls Bp,∞

n of the weak Lebesgue spaces are often considered to be
”slightly larger” than Bp

n. Indeed, they have much in common, as we saw in the
previous section that n

√︂
Vol(Bp,q

n ) ≈ n
√︂

Vol(Bp,q
n ). In this section, we study the

ratio
Rp,n = Vol(Bp,∞

n )
Vol(Bp

n) .

We will show that for p small enough the ratio is growing exponentially.
Theorem 3.4.1. For every p ∈ (0, 2] there exists c > 1 depending only on p such
that

Rp,n ≳ cn,

where the constant depends only on p.

Proof. We show the proof for even n. For odd n which is large enough (at least 7)
the proof is based on the same idea but is slightly more technical. The remaining
cases (n = 1, 3, 5) are negligible as the ratio is some positive number and the
statement allows a multiplicative constant.

Let us assume that

x1 ∈ [1/21/p, 1],
x2 ∈ [1/31/p, 1/21/p],
. . .

xn/2 ∈ [1/(n/2 + 1)1/p, 1/(n/2)1/p],
xn/2+1, . . . , xn ∈ [0, 1/n1/p].

Such x belongs to Bp,∞
n,+ . There are

(︂
n

n/2

)︂
ways how to choose the n/2 largest

coordinates and (n/2)! of ways how to order them. Moreover, there are no over-
laps in the sense that by two different choices we never get the same element x.
Therefore

Rp,n = Vol(Bp,∞
n )

Vol(Bp
n) = Vol(Bp,∞

n,+ )
Vol(Bp

n,+)

= Γ(1 + n/p)
Γ(1 + 1/p)n

·
(︄

n

n/2

)︄
· (n/2)! ·

n/2∏︂
i=1

(︄
1

i1/p
− 1

(i + 1)1/p

)︄
·
(︃ 1

n1/p

)︃n/2

= Γ(1 + n/p)
Γ(1 + 1/p)n

·
(︄

n

n/2

)︄
· (n/2)! ·

n/2∏︂
i=1

(i + 1)1/p − i1/p

i1/p(i + 1)1/p
·
(︃ 1

n1/p

)︃n/2
.

We divide the proof into three steps now. In the first one, we estimate part of
this figure. In the other two we distinguish cases p ∈ (0, 1) and p ∈ [1, 2].

(i) Let us denote

P = Γ(1 + n/p) ·
(︄

n

n/2

)︄
· (n/2)! ·

n/2∏︂
i=1

1
i1/p(i + 1)1/p

·
(︃ 1

n1/p

)︃n/2

= Γ(1 + n/p)n!(n/2)!
[(n/2)!]2+1/p [(n/2 + 1)!]1/p nn/(2p)

.

32



We remind that the equivalence is up to multiplicative constants which are
independent of n. By the Stirling formula (3.1) we have

P ≈
√︂

2πn/p
(︂

n
pe

)︂n/p √
2πn

(︂
n
e

)︂n

(n/2 + 1)1/p (
√

πn)1+2/p
(︂

n
2e

)︂n/2+n/p
nn/(2p)

≈ 2n/2+n/pn1+n/p+n

pn/pn1/2+2/p+n/2+n/p+n/(2p)en/2

≈
[︄

21/2+1/p

p1/pe1/2

]︄n

· nn/2−n/(2p)+1/2−2/p.

We obtain

Rp,n ≈ P

Γ(1 + 1/p)n
·

n/2∏︂
i=1

(︂
(i + 1)1/p − i1/p

)︂
.

(ii) Assume now that p ∈ (0, 1). Therefore 1/p > 1 and we can estimate

(i + 1)1/p − i1/p =
∫︂ i+1

i
(1/p)x1/p−1dx ≥ (1/p)i1/p−1.

Together we have

Rp,n ≳

[︄
21/2+1/p

Γ(1 + 1/p)p1/pe1/2

]︄n

· nn/2−n/(2p)+1/2−2/p · p−n/2 · [(n/2)!]1/p−1

≈
[︄

21+1/(2p)

Γ(1 + 1/p)p1/p+1/2e1/(2p)

]︄n

· n−1/(2p)−1/p.

While estimating Γ(1 + 1/p) we need to be more careful as the n-th power
of the corresponding multiplicative constant (which depends on p) must be
taken into consideration. Recall from (3.1) that

Γ(1 + x) ≤
√

2πx
(︃

x

e

)︃x

e1/(12x).

We obtain

Rp,n ≳

⎡⎢⎣ 21+1/(2p)√︂
2π/p

(︂
1
pe

)︂1/p
ep/12p1/p+1/2e1/(2p)

⎤⎥⎦
n

· n−1/(2p)−1/p

=
[︄

21+1/(2p)
√

2πe1/(2p)−1/p+p/12

]︄n

· n−3/(2p)

=
[︃ 2
ep/12

]︃n
⎡⎣√︄(2e)1/p

2π

⎤⎦n

· n−3/(2p).

By using p < 1 we conclude

Rp,n ≳
[︃ 2
e1/12

√︃
e

π

]︃n

· n−3/(2p) ≥
[︃ 2
e1/12

√︃
e

4

]︃n

· n−3/(2p) ≥
[︂
e1/3

]︂n · n−3/(2p),

which is what we need since e1/3 > 1.
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(iii) The remaining case is p ∈ [1, 2]. Therefore 1/p ≤ 1 and

(i + 1)1/p − i1/p =
∫︂ i+1

i
(1/p)x1/p−1dx ≥ (1/p)(i + 1)1/p−1.

Now continue as in (ii):

Rp,n ≳

[︄
21/2+1/p

Γ(1 + 1/p)p1/pe1/2

]︄n

· nn/2−n/(2p)+1/2−2/p · p−n/2 · [(n/2 + 1)!]1/p−1

≳

[︄
21+1/(2p)

√
2πe−1/(2p)+p/12

]︄n

· n−1/(2p)−1.

By using p ∈ [1, 2] we obtain

Rp,n ≳

[︄
21+1/(2p)e1/(2p)

√
2πep/12

]︄n

· n−1/(2p)−1 ≥
[︄

21+1/4e1/4
√

2πe1/6

]︄n

· n−1/(2p)−1,

and since 23/4e1/12π−1/2 .= 1.03 we may conclude as before.

Remark. As it follows from the proof, the assumption holds even for some p
slightly bigger than 2. In fact, we assume that it holds for all p ∈ (0, ∞), however,
our proof does not work in that general case – probably more precise estimate of
Vol(Bp,∞

n,+ ) is needed – and so far it is an open problem.
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4. Further properties
This chapter is devoted to study some further properties of the unit balls of
the Lorentz spaces and the relation between the unit balls in the Lebesgue and
Lorentz spaces. We also deal with the case p = ∞ for q = 1 in Section 4.3. We
want to remind that in the first two sections we still consider p to be finite or
p = q = ∞.

4.1 Properties of the Lorentz quasinorm
In this section we study the Lorentz quasinorm || · ||p,q. As we are in the finite
dimension, there always exists a norm which is equivalent to the Lorentz quasi-
norm. However, the constants of equivalence may depend on the dimension. We
offer a characterisation of the spaces where the quasinorm is actually a norm.
Proposition 4.1.1. Let n ∈ N and denote S(n) the set of all permutations of
{1, . . . , n}. If p, q ∈ (0, ∞], x ∈ Rn, then

||x||p,q =

⎧⎪⎨⎪⎩
min{||k 1

p
− 1

q xπ(k)||q, π ∈ S(n)}, p ≤ q

max{||k 1
p

− 1
q xπ(k)||q, π ∈ S(n)}, p ≥ q.

Proof. For n = 1 there is nothing to prove as well as for x being a constant
sequence. If p = q, then k1/p−1/q = 1 for all k and the permutation of coordinates
of x does not play a role. We can assume for simplicity that xk ≥ 0 for all
1 ≤ k ≤ n. Denote by R the set of permutations which corresponds to the
nonincreasing rearrangement of x, i.e., for σ ∈ R we have xσ(k) = x∗

k. Set ck =
k1/p−1/q. It is obvious that for σ, σ′ ∈ R it holds that ||ckxσ(k)||q = ||ckxσ′(k)||q.

To prove the first part by contradiction, let π be the permutation for which
||ckxπ(k)||q is minimal and assume that π /∈ R. Therefore there has to be an index
k0 such that xπ(k0+1) > xπ(k0). Since 1/p − 1/q > 0 we obtain

(xπ(k0+1) − xπ(k0))(ck0+1 − ck0) > 0,

therefore
ck0+1xπ(k0+1) + ck0xπ(k0) > ck0+1xπ(k0) + ck0xπ(k0+1),

so we can define π̃(k0) = π(k0 + 1), π̃(k0 + 1) = π(k0) and π̃(k) = π(k) otherwise.
Thus we obtained a permutation for which ||ckxπ(k)||q > ||ckxπ̃(k)||q, which is
a contradiction with the assumption on π.

The case p > q can be done analogously.
Proposition 4.1.2. Let p, q ∈ (0, ∞], k, n ∈ N, k ≤ n, π ∈ S(n) and let us
denote

Dπ = {x ∈ Rn : ||k1/p−1/qxπ(k)||q ≤ 1},

Ap,q
k,n =

⋃︂
π∈S(n):
π(k)=n

Dπ for p ≤ q,

Ap,q
k,n =

⋃︂
π∈S(n):
π(k)=n

Dπ for p ≥ q,
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then it holds that

Bp,q
n =

n⋃︂
k=1

Ap,q
k,n =

⋃︂
π∈S(n)

Dπ for p ≤ q,

Bp,q
n =

n⋂︂
k=1

Ap,q
k,n =

⋂︂
π∈S(n)

Dπ for p ≥ q.

Proof. The proof follows immediately from Proposition 4.1.1, as taking minimum
corresponds to a union and taking maximum to an intersection, see Figure 4.1.

−1 0 1
p = 1/2, q = 1

−1 0 1
p = q = 1

−1 0 1
p = 2, q = 1

Figure 4.1: Unit ball as a union or an intersection

Remark. We show how to use Proposition 4.1.2 to get one-sided estimates of
Vol(Bp,q

n,+) by different approach (these estimates are the same as in Theorem
3.3.3, i.e., optimal). Let us denote

A+
k = {x ∈ Ap,q

k,n : ∀i ∈ {1, . . . , n} : xi ≥ 0}

(we omit the indices p, q and n for brevity). We can see that for q = ∞ the sets
A+

k are exactly the sets we used in the calculation of volume of Bp,∞
n .

However, though the principle of computation of the volume for q < ∞ re-
mains the same, the computation itself seems hard to be done. We can at least
get a one-sided estimate – the same one as from the embedding of Bp,q

n and Bp
n.

We show it only for the case p ≤ q, as the procedure works similarly for the
second one. We have

Vol(A+
k ) ≤ Vol(Bp,q

n,+) = Vol(
n⋃︂

k=1
A+

k ) ≤ nVol(A+
k ).

For any sequence a from A+
k it holds that ak ≤ 1/n1/p−1/q. Set

ã = (a1, . . . , ak−1, ak+1, . . . , an),

then
n−1∑︂
i=1

(︂
i1/p−1/qã∗

i

)︂q ≤ 1 −
(︂
n1/p−1/qak

)︂q
.

We obtain
ã ∈

(︂
1 − nq/p−1aq

k

)︂1/q
Bp,q

n−1,+,
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where ak ∈ [0, n−1/p+1/q], and vice versa, for each b element of this set there exists
c ∈ A+

k such that c̃ = b and ck = ak. We may proceed with the calculation:

Vol(A+
k ) = Vol(Bp,q

n−1,+)
∫︂ n−1/p+1/q

0

(︂
1 − nq/p−1xq

)︂(n−1)/q
dx.

First use substitution x = n−1/p+1/qy and then y = s1/q:

Vol(A+
k ) = Vol(Bp,q

n−1,+) · n−1/p+1/q
∫︂ 1

0
(1 − yq)(n−1)/qdy

= Vol(Bp,q
n−1,+) · n−1/p+1/q

q

∫︂ 1

0
s1/q−1(1 − s)(n−1)/qds

= Vol(Bp,q
n−1,+) · n−1/p+1/q

q
· B

(︄
1
q

,
n − 1

q
+ 1

)︄
,

where B denotes the beta function. To sum it up, we have

Vol(Bp,q
n,+) ≥ Vol(A+

k ) = Vol(Bp,q
n−1,+) · n−1/p+1/q

q
· B

(︄
1
q

,
n − 1

q
+ 1

)︄

≥ Vol(Bp,q
1,+)q−n+1(n!)−1/p+1/q ·

n−1∏︂
i=1

B
(︄

1
q

,
i

q
+ 1

)︄

and as we can rewrite the beta function using gamma function,

= q−n+1(n!)−1/p+1/q ·
n−1∏︂
i=1

Γ
(︂

1
q

)︂
Γ
(︂

i
q

+ 1
)︂

Γ
(︂

i+1
q

+ 1
)︂

= q−n+1(n!)−1/p+1/q ·
Γ
(︂

1
q

)︂n−1
Γ
(︂

1
q

+ 1
)︂

Γ
(︂

n
q

+ 1
)︂

= q−nΓ (1/q)n · (n!)−1/p+1/q

Γ
(︂

n
q

+ 1
)︂ .

We finish by using (3.1) to get

Vol(Bp,q
n,+) ≥ q−nΓ (1/q)n · (

√
2πn(n/e)n)−1/p+1/q

2
√︂

2πn/q (n/(eq))n/q
,

thus for an appropriate constant c, which is independent of n,

n
√︂

Vol(Bp,q
n ) ≥ c · n−1/p+1/q · n−1/q ≈ n−1/p.

The case p ≥ q uses the same formula for the volume of A+
k , however, this

time it holds that

Vol(Bp,q
n,+) = Vol(

n⋂︂
k=1

A+
k ) ≤ Vol(A+

k ),

so the estimate would be from above.
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Theorem 4.1.3. For arbitrary 1 ≤ q ≤ p ≤ ∞ the unit ball in ℓp,q
n is a convex

set. Furthermore, || · ||p,q is a norm.

Proof. We use the fact that a quasinorm is a norm if and only if the unit ball
is a convex set (see e.g. [17, Chapter 1]). Let us consider π a permutation of
{1, . . . , n}. The set Dπ is a unit ball in weighted ℓq

n, therefore it is convex whenever
q ≥ 1. According to the Proposition 4.1.2,

Bp,q
n =

⋂︂
π

Dπ.

Since an intersection of convex sets is convex, the proof is complete.

Theorem 4.1.4. Let n ∈ N, then the functional || · ||p,q is a norm on ℓp,q
n if and

only if 1 ≤ q ≤ p ≤ ∞ or n = 1.

Proof. For n = 1 we know that || · ||p,q = | · |, so there is nothing to prove. From
now on, consider only n > 1.

We already have one of the implications from the Theorem 4.1.3. To prove
the other one we distinguish three cases.

(i) p < q < 1
We know that e1 = (1, 0, . . . , 0), e2 = (0, 1, 0, . . . , 0) ∈ Bp,q

n . If the set is
convex, then ||(1/2, 1/2, 0, . . . , 0)||p,q ≤ 1. However, by simple computation,

||(1/2, 1/2, 0, . . . , 0)||qp,q = 2−q + 2q/p−12−q = 2−q(1 + 2q/p−1) > 1,

since q/p − 1 > 0 and 1/2 < 2−q < 1. This yields that the unit ball is not
convex.

(ii) q < 1, q < p

Let us denote

v =
(︄

1
(1 + 2q/p−1)1/q

,
1

(1 + 2q/p−1)1/q
, 0, . . . , 0

)︄
.

Then
||v||p,q = (1 + 2q/p−1) · 1

1 + 2q/p−1 = 1,

so v ∈ Bp,q
n . The same holds for e1. Let us denote s the segment connecting

these two elements, i.e.,

S = {te1 + (1 − t)v, t ∈ [0, 1]}.

For every x ∈ S it holds that x = x∗, so

||x||p,q = (xq
1 + 2q/p−1xq

2)1/q.

Now let us define f(t) = ||te1+(1−t)v||qp,q for t ∈ [0, 1]. This is a continuous
function of one variable and f(0) = f(1) = 1.
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We have

f ′(t) = q

(︄
t + 1 − t

(1 + 2q/p−1)1/q

)︄q−1 (︄
1 − 1

(1 + 2q/p−1)1/q

)︄

+2q/p−1q

(︄
1 − t

(1 + 2q/p−1)1/q

)︄q−1 (−1)
(1 + 2q/p−1)1/q

.

In particular,

f ′
+(0) = q

(︄
1

(1 + 2q/p−1)1/q

)︄q−1 [︄(1 + 2q/p−1)1/q − 1
1 + 2q/p−1 − 2q/p−1

1 + 2q/p−1

]︄
> 0,

since 1/q > 1. Therefore there exists t0 ∈ (0, 1) such that f(t0) > 1, i.e.,
there is a convex combination of e1 and v which has the norm strictly greater
than 1. We obtain that the ball Bp,q

n is not convex.

(iii) q ≥ 1, q > p

First let us consider q < ∞. We proceed similarly to the previous case, set

v1 = (2−1/p, 2−1/q, 0, . . . , 0), v2 = (2−1/q, 2−1/p, 0, . . . , 0),

and
S = {tv1 + (1 − t)v2, t ∈ [0, 1/2]}.

It again holds that x = x∗ whenever x ∈ S. By simple calculation both
v1 and v2 are elements of Bp,q

n . Define f(t) = ||tv1 + (1 − t)v2||qp,q and
differentiate

f ′(t) = q(2−1/pt + 2−1/q(1 − t))q−1(2−1/p − 2−1/q)

+ 2q/p−1q(2−1/qt + 2−1/p(1 − t))q−1(2−1/q − 2−1/p).

We obtain

f ′
+(0) = q(2−1/q − 2−1/p)

(︂
−2(1−q)/q + 2q/p−1+(1−q)/p

)︂
> 0,

since 21/p−1 > 21/q−1, as 1/p > 1/q. This is what we required.
The case q = ∞ works the same way with

v1 = (2−1/p, 1, 0, . . . , 0), v2 = (1, 2−1/p, 0, . . . , 0)

and S defined as before. Then

f(t) = ||tv1 + (1 − t)v2||p,∞ = 1 + t(21/p − 1)

on S and f ′
+(0) = 21/p − 1 > 0.

In the case that || · ||p,q is a quasinorm, we are interested in the corresponding
constant. The next theorem offers a summary of this matter, cf. Figure 4.2.
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Theorem 4.1.5. In the following cases the function || · ||p,q is a quasinorm on
the space ℓp,q such that

(i) for p < q, q ≥ 1 the constant is at worst 2
1
p , i.e., ||a + b||p,q ≤ 2

1
p (||a||p,q +

||b||p,q),

(ii) for p < q < 1 the constant is at worst 2
1
p

+ 1
q

−1,

(iii) for p ≥ q, q < 1 the constant is at worst 2
1
p

+ 2
q

−1.

In general, we can say that the constant is globally at worst 2
1
p

+ 2
q , where we

consider 1/∞ = 0.
Proof. We use Proposition 1.1.1 (i), which tells us that f ∗

a+b(k) ≤ f ∗
a (k/2) +

f ∗
b (k/2). In other words,

(a + b)∗
k ≤ a∗

⌈k/2⌉ + b∗
⌈k/2⌉. (4.1)

(i) First assume that q = ∞, p < q. Thus we have

||a + b||p,∞ = sup
k∈N

{k
1
p (a + b)∗

k} ≤ sup
k∈N

{k
1
p (a∗

⌈k/2⌉ + b∗
⌈k/2⌉)}

= sup
k∈N

{(2k/2)
1
p (a∗

⌈k/2⌉ + b∗
⌈k/2⌉)}

≤ 2
1
p sup

k∈N
{⌈k/2⌉ 1

p (a∗
⌈k/2⌉ + b∗

⌈k/2⌉)}

≤ 2
1
p

(︃
sup
k∈N

{⌈k/2⌉ 1
p a∗

⌈k/2⌉} + sup
k∈N

{⌈k/2⌉ 1
p b∗

⌈k/2⌉}
)︃

= 2
1
p (||a||p,∞ + ||b||p,∞) .

Now assume 1 ≤ q < ∞, p < q. We use that

||⌈k/2⌉ 1
p

− 1
q a∗

⌈k/2⌉||qq = 2||k 1
p

− 1
q a∗

k||qq = 2||a||qp,q. (4.2)

Thanks to the triangle inequality for || · ||q and (4.1) we obtain

||a + b||p,q = ||k 1
p

− 1
q (a + b)∗

k||q ≤ ||k 1
p

− 1
q a∗

⌈k/2⌉||q + ||k 1
p

− 1
q b∗

⌈k/2⌉||q

= ||2 1
p

− 1
q (k/2)

1
p

− 1
q a∗

⌈k/2⌉||q + ||2 1
p

− 1
q (k/2)

1
p

− 1
q b∗

⌈k/2⌉||q.
Now we use that 1/p − 1/q > 0 and (4.2) to conclude

||a + b||p,q ≤ ||2 1
p

− 1
q ⌈k/2⌉ 1

p
− 1

q a∗
⌈k/2⌉||q + ||2 1

p
− 1

q ⌈k/2⌉ 1
p

− 1
q b∗

⌈k/2⌉||q

= 2
1
p

− 1
q

(︂
2

1
q ||a||p,q + 2

1
q ||b||p,q

)︂
= 2

1
p (||a||p,q + ||b||p,q) .

(ii) For 0 < p < q < 1 we proceed the same way as in (i), but since || · ||q is a
quasinorm with constant 21/q−1, this factor has to appear when using the
quasitriangle inequality. Therefore

||a + b||p,q = ||k 1
p

− 1
q (a + b)∗

k||q ≤ 2
1
q

−1
(︂
||k 1

p
− 1

q a∗
⌈k/2⌉||q + ||k 1

p
− 1

q b∗
⌈k/2⌉||q

)︂
≤ 2

1
q

−1
(︂
||2 1

p
− 1

q ⌈k/2⌉ 1
p

− 1
q a∗

⌈k/2⌉||q + ||2 1
p

− 1
q ⌈k/2⌉ 1

p
− 1

q b∗
⌈k/2⌉||q

)︂
= 2

1
p

−1
(︂
||2 1

q a||p,q + ||2 1
q b||p,q

)︂
= 2

1
p

+ 1
q

−1 (||a||p,q + ||b||p,q) .
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(iii) The last case is q < 1, p ≥ q. Then (k/2)
1
p

− 1
q ≥ ⌈k/2⌉ 1

p
− 1

q , so we need to
proceed differently. Let us split the following sum into three parts:

||k 1
p

− 1
q a∗

⌈k/2⌉||qq =
∞∑︂

k=1

(︃
2

1
p

− 1
q

(︃
k

2

)︃ 1
p

− 1
q

a∗
⌈k/2⌉

)︃q

=
∑︂

k even

(︃
2

1
p

− 1
q

(︃
k

2

)︃ 1
p

− 1
q

a∗
⌈k/2⌉

)︃q

+
∑︂

k odd,
k ̸=1

(︃
2

1
p

− 1
q

(︃
k

2

)︃ 1
p

− 1
q

a∗
⌈k/2⌉

)︃q

+
(︃

2
1
p

− 1
q

(︃1
2

)︃ 1
p

− 1
q

a∗
⌈k/2⌉

)︃q

=
∞∑︂

n=1

(︃
2

1
p

− 1
q n

1
p

− 1
q a∗

n

)︃q

+
∑︂

k odd,
k ̸=1

(︃
2

1
p

− 1
q

(︃
k

2

)︃ 1
p

− 1
q

a∗
⌈k/2⌉

)︃q

+ (a∗
1)q.

The middle term can be estimated because (k/2)
1
p

− 1
q ≤ ((k − 1)/2)

1
p

− 1
q and

a∗
⌈k/2⌉ ≤ a∗

⌈(k−1)/2⌉. Therefore

||k 1
p

− 1
q a∗

⌈k/2⌉||qq ≤ ||2 1
p

− 1
q a||qp,q +

∑︂
k odd,
k ̸=1

(︃
2

1
p

− 1
q

(︃
k − 1

2

)︃ 1
p

− 1
q

a∗
⌈(k−1)/2⌉

)︃q

+ ||a||qp,q

We can rewrite∑︂
k odd,
k ̸=1

(︃
2

1
p

− 1
q

(︃
k − 1

2

)︃ 1
p

− 1
q

a∗
⌈(k−1)/2⌉

)︃q

=
∑︂

n even

(︃
2

1
p

− 1
q

(︃
n

2

)︃ 1
p

− 1
q

a∗
⌈n/2⌉

)︃q

= ||2 1
p

− 1
q a||qp,q.

Together we get

||2 1
p

− 1
q (k/2)

1
p

− 1
q a∗

⌈k/2⌉||qq ≤ ||2 1
p

− 1
q a||qp,q+||2 1

p
− 1

q a||qp,q+||a||qp,q = (2
q
p +1)||a||qp,q.

Now use (4.1) and property of || · ||q to conclude

||a + b||p,q = ||k 1
p

− 1
q (a + b)∗

k||q ≤ 2
1
q

−1
(︂
||k 1

p
− 1

q a∗
⌈k/2⌉||q + ||k 1

p
− 1

q b∗
⌈k/2⌉||q

)︂
≤ 2

1
q

−1(2
q
p + 1)

1
q (||a||p,q + ||b||p,q)

≤ 2
1
q

−1(2
q
p

+1)
1
q (||a||p,q + ||b||p,q)

= 2
1
p

+ 2
q

−1(||a||p,q + ||b||p,q).

As we are in the finite-dimensional case, the Lorentz quasinorm is always
equivalent to some norm. In the case 1 < p ≤ ∞, 1 ≤ q ≤ ∞ it is well-
known even in the infinite-dimensional case. (The norm is defined similarly to
the Lorentz quasinorm, where f ∗ is replaced by its maximal operator f ∗∗, for
further details see [15].) Therefore for that choice of parameters the constant of
equivalence are independent of the dimension, which may not be true in the rest
of cases.

As the last proposition of this section we offer a summary of relations be-
tween the Lorentz quasinorms. This proposition is (again) a generalisation of
Propositions 3.1.1 and 3.3.1.
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Figure 4.2: Comparison of the ℓp,q-quasinorm with respect to p and q

Proposition 4.1.6. Let 0 < p0, p1, q0, q1 ≤ ∞, n ∈ N, then Bp0,q0
n ⊆ K(n)Bp1,q1

n ,
where

K(n) ≈

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1, p0 < p1, or p0 = p1 and q0 ≤ q1

(1 + log(n))1/q1−1/q0 , p0 = p1 and q0 > q1,

n1/p1−1/p0 , p0 > p1,

(the constants of equivalence do not depend on n).

Proof. We can assume that n ≥ 2, since the case n = 1 is trivial.
The first case can be easily proven by Proposition 3.3.1. If p0 = p1 and q0 ≤ q1,

we have
Bp0,q0

n ⊆ cBp0,q1
n = cBp1,q1

n .

If p0 < p1, we use the fact that Bp0,q0
n ⊆ cBp0,∞ and that x∗

k ≤ ||x||p0,∞k−1/p0 . It
remains to show that Bp0,∞ ⊆ c̃Bp1,q1 for some c̃ > 0. Indeed,

||x||q1
p1,q1 =

n∑︂
k=1

(x∗
k)q1kq1/p1−1 ≤

n∑︂
k=1

||x||q1
p0,∞kq1/p1−q1/p0−1

≤ ||x||q1
p0,∞

∞∑︂
k=1

kq1(1/p1−1/p0)−1.

Since 1/p1 − 1/p0 < 0, the sum converges (to c̃q1). The case q1 = ∞ is trivial
(from Proposition 3.3.1).

The second part is also rather straightforward. If q0 < ∞, then using the
Hölder inequality and ∑︁n

k=2 k−1 ≤ ∫︁ n
1 x−1dx yields

||x||q1
p1,q1 =

n∑︂
k=1

(x∗
k)q1kq1/p1−1

≤
[︄

n∑︂
k=1

(︂
(x∗

k)q1kq1/p1−q1/q0
)︂q0/q1

]︄q1/q0 [︄ n∑︂
k=1

(︂
kq1/q0−1

)︂q0/(q0−q1)
]︄1−q1/q0

= ||x||q1
p0,q0

[︄
1 +

n∑︂
k=2

k−1
]︄1−q1/q0

≤ ||x||q1
p0,q0(1 + log(n))1−q1/q0 .

If q0 = ∞, we use again that x∗
k ≤ ||x||p0,∞k−1/p0 .
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The third case can be shown in a similar manner as the first one, it is enough
to show ||x||p1,q1 ≤ K(n)||x||p,0,∞. If q1 < ∞, then

||x||q1
p1,q1 ≤ ||x||q1

p0,∞

n∑︂
k=1

kq1(1/p1−1/p0)−1 ≤ ||x||q1
p0,∞

∫︂ n+1

0
xq1(1/p1−1/p0)−1dx

= c||x||q1
p0,∞(n + 1)q1(1/p1−1/p0) ≤ c̃||x||q1

p0,∞nq1(1/p1−1/p0),

as q1(1/p1 − 1/p0) > 0 (c, c̃ are constants independent of n). If q1 = ∞, then

||x||p1,q1 = max
k∈{1,...,n}

{x∗
kk1/p1} ≤ max

k∈{1,...,n}
{||x||p0,∞k1/p1−1/p0} = ||x||p0,∞n1/p1−1/p0 .

4.2 Entropy numbers for Lorentz spaces
In this section we focus on the quantity ek(Id : ℓp0,q0

n → ℓp1,q1
n ). As the entropy

numbers were for us more a tool than a focal point of this work, we offer sketches
of proofs where some technical aspects are presented only briefly. For the details
we refer to [11], as the procedure follows a structure very similar to the proof of
their Theorem 2.

We present a (known) result for the case 0 < p0 ̸= p1 < ∞, 1 ≤ q0, q1 ≤ ∞
and a new result for the special case p0 = p1 = 1, q0 = ∞, q1 = 1. However,
firstly we state a technical lemma:

Lemma 4.2.1. For any real x > 2 it holds that

log2(x) ≈ log2(x + 1) ≈ log2(2x),

where the constants do not depend on x, and

log2(log2(x)) ≤ 1
2 log2(x).

Proof. The first part is a consequence of the fact that ratios of these functions
are monotone with positive upper and lower bounds. The second part is obvious
as 0 < log2(x) ≤ x ≤

√
2x. The statement holds for b > 1 an arbitrary base of

the logarithm (for x > b).

Theorem 4.2.2. Let 0 < p0 ̸= p1 < ∞, 1 ≤ q0, q1 ≤ ∞, then

ek(Id : ℓp0,q0
n → ℓp1,q1

n ) ≈ ek(Id : ℓp0
n → ℓp1

n ),

where the constants of equivalence do not depend on k and n.

Proof. (sketch) We use the following two facts: due to the definition of the entropy
numbers and an estimate for the entropy numbers of identity from any quasi-
Banach space into the space itself (see [8, Lemma 2.1]),

ek(Id : ℓp0,q0
n → ℓp1,q1

n ) ≤ ek(Id : ℓp0,q0
n → ℓp0,q0

n )e1(Id : ℓp0,q0
n → ℓp1,q1

n )
≤ c2− k−1

n e1(Id : ℓp0,q0
n → ℓp1,q1

n ),
(4.3)
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where c may depend on p0 and q0, but not on n.. The second fact is based on
[3, Theorem 5.3.1] combined with [2, Chapter 5, Propositions 1.8, 1.10 and 2.10],
which implies that the assumptions of Theorem 1.3.2 are met. (We can apply it
on ℓp0,q0 and ℓp1,q1 , so the constants do not depend on n.) We get an estimate for
ek(Id : ℓp0,q0

n → ℓp1,q1
n ):

To get an upper bound we start with choosing p′
0 < p0 < p′′

0 such that
p1 /∈ [p′

0, p′′
0] to obtain

e2k−1(Id : ℓp0,q0
n → ℓp1

n ) ≤ c
(︂
ek(Id : ℓp′

0
n → ℓp1

n )
)︂1−θ (︂

ek(Id : ℓp′′
0

n → ℓp1
n )
)︂θ

,

where 0 < θ < 1 is a parameter such that ℓp0,q0
n = (ℓp′

0
n , ℓ

p′′
0

n )θ,q0 . (The interpolation
space (ℓp′

0
n , ℓ

p′′
0

n )θ,q0 is defined through the K-functional, for further details on real
interpolation see e.g. [2, Chapter 5] or [3, Chapter 3].) We proceed by choosing
p′

1 < p1 < p′′
1 such that p0 /∈ [p′

1, p′′
1] and obtain

e2k−1(Id : ℓp0,q0
n → ℓp1,q1

n ) ≤ c
(︂
ek(Id : ℓp0,q0

n → ℓp′
1

n )
)︂1−θ′ (︂

ek(Id : ℓp0,q0
n → ℓp′′

1
n )
)︂θ′

,

(4.4)
where ℓp1,q1

n = (ℓp′
1

n , ℓ
p′′

1
n )θ′,q1 .

The lower estimate is done in a similar manner, choose p0 < p̃′
0 < p̃′′

0 such
that p1 /∈ [p0, p̃′′

0] or p1 < p̃′
1 < p̃′′

1 such that p0 /∈ [p1, p̃′′
1], respectively. Then

e2k−1(Id : ℓp0̃′

n → ℓp1
n ) ≤ c (ek(Id : ℓp0,q0

n → ℓp1
n ))1−ω

(︂
ek(Id : ℓp0̃′′

n → ℓp1
n )
)︂ω

,

so

e2k−1(Id : ℓp0,q0
n → ℓp1̃′

n ) ≤ c (ek(Id : ℓp0,q0
n → ℓp1,q1

n ))1−ω′ (︂
ek(Id : ℓp0,q0

n → ℓp̃′′
1

n )
)︂ω′

,

(4.5)
where ℓ

p̃′
0

n = (ℓp0,q0
n , ℓ

p̃′′
0

n )ω,q0 and ℓp1,q1
n = (ℓp′

1
n , ℓ

p′′
1

n )ω′,q1 .
Now let us divide the proof into four cases.

(i) p0 > p1

Let k be a positive integer and let Bp0,q0
n be covered by 2k−1 balls in ℓp1,q1

n

with the radius τ . Then (by Theorem 3.3.3)

τ ≥ 2− k−1
n

(︄
Vol(Bp0,q0

n )
Vol(Bp1,q1

n )

)︄1/n

≥ c2− k−1
n n1/p1−1/p0

for some c > 0 independent of n.
On the other hand, thanks to (4.3) and Proposition 4.1.6 we get

ek(Id : ℓp0,q0
n → ℓp1,q1

n ) ≤ c2− k−1
n ||Id : ℓp0,q0

n → ℓp1,q1
n || ≤ c̃2− k−1

n n1/p1−1/p0 ,

which finishes the proof for this case.

(ii) p0 < p1, 1 ≤ k ≤ 1
2 log2(n)

From (4.4) and (4.5) (combined with Theorem 1.3.1) we have

e2k−1(Id : ℓp0,q0
n → ℓp1,q1

n ) ≤ c,

ek(Id : ℓp0,q0
n → ℓp1,q1

n ) ≥ c̃,

therefore from the monotonicity of the entropy numbers we obtain
ek(Id : ℓp0,q0

n → ℓp1,q1
n ) ≈ 1.
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(iii) p0 < p1, log2(n) ≤ k ≤ n/4
For n ≥ 16, by the same approach as in (ii) combined with Lemma 4.2.1
we obtain ek(Id : ℓp0,q0

n → ℓp1,q1
n ) ≈

(︂
log2(1+n/k)

k

)︂ 1
p0

− 1
p1 . The case n < 16,

log2(n) ≤ k ≤ n/4 contains only finitely many situations, so they are
covered at the cost of the constant of equivalence.

(iv) p0 < p1, k ≥ γn

The lower bound is obtained as in (i). For the upper bound, let τ > 0 and
let {x1, . . . , xN} ⊆ Bp0,q0

n be a maximal τ -distant set in the ℓp1,q1
n -quasinorm,

i.e., for 1 ≤ i ̸= j ≤ N it holds that ||xi − xj||p1,q1 > τ and for z ∈ Bp0,q0
n

there exists 1 ≤ i ≤ N such that ||xi − z||p0,q0 ≤ τ . According to Theorem
4.1.5 and Proposition 4.1.6 we have

(xi + τBp1,q1
n ) ⊆ 21/p0+2/q0(1 + τn1/p0−1/p1)Bp0,q0

n

and (for i ̸= j)(︃
xi + τ

21/p1+2/q1
Bp1,q1

n

)︃
∩
(︃

xj + τ

21/p1+2/q1
Bp1,q1

n

)︃
= ∅.

Hence

N
(︃

τ

21/p1+2/q1

)︃n

Vol(Bp1,q1
n ) ≤ 2n/p0+2n/q0

(︂
1 + τn1/p0−1/p1

)︂n
Vol(Bp0,q0

n ),

i.e.,

N ≤ 2nα

(︄
1 + τn1/p0−1/p1

τ

)︄n Vol(Bp0,q0
n )

Vol(Bp1,q1
n ) ,

where α = 1/p0 + 1/p1 + 2/q0 + 2/q1.
In order to have 2k−1 on the right-hand side we put

τ =
⎡⎣2 k−1

n
−α

(︄
Vol(Bp0,q0

n )
Vol(Bp1,q1

n )

)︄−1/n

− n1/p0−1/p1

⎤⎦−1

.

Thanks to Theorem 3.3.3, there exists a suitable integer γ such that for
k ≥ γn it holds that

2 k−1
n

−α ≥ 2
(︄

Vol(Bp0,q0
n )

Vol(Bp1,q1
n )

)︄1/n

n1/p0−1/p1 ,

so

2 k−1
n

−α

(︄
Vol(Bp0,q0

n )
Vol(Bp1,q1

n )

)︄−1/n

− n1/p0−1/p1 ≥ 2 k−1
n

−α

2

(︄
Vol(Bp0,q0

n )
Vol(Bp1,q1

n )

)︄−1/n

≥ c2 k−1
n n1/p0−1/p1 ,

where c does not depend on n. We may conclude

ek(Id : ℓp0,q0
n → ℓp1,q1

n ) ≤ τ ≤ c−12− k−1
n n1/p1−1/p0 .

This finishes the proof for k ≥ γn.
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To complete the whole proof we need to ”fill the gaps” for k’s between 1
2 log2(n)

and log2(n) or n/4 and γn, respectively. This follows from the monotonicity of
the entropy numbers and the fact that the entropy numbers in the endpoints of
these intervals differ only by a multiplicative constant, therefore these k’s can be
incorporated at the cost of larger constants of equivalence.

As a complementary statement, we show that the entropy numbers in the
limiting case where p0 = p1 (specifically ek(Id : ℓ1,∞

n → ℓ1
n)) behave differently.

First we present a combinatorial lemma from the coding theory which will be
used in the main proof. The proof can be found in [4] and therefore we omit it.

Lemma 4.2.3. Let k ≤ n ∈ N, then there exist M subsets T1, . . . , TM

of {1, . . . , n} such that

(i) M ≥
(︂

n
4k

)︂k/2
,

(ii) |Ti| = k for all i ∈ {1, . . . , M},

(iii) |Ti ∩ Tj| ≤ k/2 for all i ̸= j, i, j ∈ {1, . . . , M}.

Theorem 4.2.4. Let k, n ∈ N, then

ek(Id : ℓ1,∞
n → ℓ1

n) ≈
⎧⎨⎩ log(1 + n/k), 1 ≤ k ≤ n,

2− k−1
n , k ≥ n,

where the constants do not depend on k and n.

Proof. (sketch) We divide the proof into four steps, in which we obtain upper
and lower estimates for the both cases.

(i) the lower bound for k ≥ n

Let B1,∞
n be covered by 2k−1 balls in ℓ1

n with radius r > 0, then using the
volume argument gives (3.2)

n
√︂

Vol(B1,∞
n ) ≤ 2 k−1

n r
n
√︂

Vol(B1
n).

Combined with Theorem 3.3.3 we obtain a lower bound for all k ∈ N.
(However, for 1 ≤ k ≤ n it is not optimal.)

(ii) the upper bound for k ≥ γn

We use the volume argument again, mimicking the part (iv) in the proof
of Theorem 4.2.2. Let us have τ > 0, which will be specified later, and let
{x1, . . . , xN} ⊆ B1,∞

n be a maximal ε-distant set in the ℓ1
n-norm. Due to

Theorem 4.1.5 and Proposition 4.1.6 we have

(xi + τB1
n) ⊆ 2(1 + τ)B1,∞

n

and (for i ̸= j) (︃
xi + τ

2B1
n

)︃
∩
(︃

xj + τ

2B1
n

)︃
= ∅.
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Therefore
N ≤ 4n

(︃1 + τ

τ

)︃n Vol(B1,∞
n )

Vol(B1
n) .

By setting the right-hand side to 2k−1 we get

τ =
⎡⎣2 k−1

n

4

(︄
Vol(B1,∞

n )
Vol(B1

n)

)︄−1/n

− 1
⎤⎦−1

.

As the ratio of the volumes is equivalent to 1, there exists γ a suitable
integer such that for k ≥ γn it holds that

2 k−1
n

8

(︄
Vol(B1,∞

n )
Vol(B1

n)

)︄−1/n

≥ 1,

i.e.,

2 k−1
n

4

(︄
Vol(B1,∞

n )
Vol(B1

n)

)︄−1/n

− 1 ≥ 2 k−1
n

8

(︄
Vol(B1,∞

n )
Vol(B1

n)

)︄−1/n

≥ c2 k−1
n ,

where c does not depend on n. We may conclude

ek(Id : ℓ1,∞
n → ℓ1

n) ≤ τ ≤ c−12− k−1
n .

(iii) the lower bound for 1 ≤ k ≤ n/200
Let n ≥ 200 and 1 ≤ k ≤ n/200. Denote ν the largest integer such that
12 · 4ν ≤ n and η an integer between 1 and ν. We apply Lemma 4.2.3
with k replaced by 4l for every η ≤ l ≤ ν. We obtain a system T l

1, . . . , T l
Ml

of subsets of {1, . . . , n} such that for every 1 ≤ i ̸= j ≤ Ml it holds that
|T l

i | = 4l and |T l
i ∩ T l

j | < 4l/2. Moreover, we know that

Ml ≥
(︃

n

4l+1

)︃4l/2
≥
(︃

n

4η+1

)︃4η/2

as the function f(x) =
(︂

n
4x+1

)︂4x/2
is increasing on [1, ν]. We set

M =
(︃

n

4η+1

)︃4η/2
.

For j ∈ {1, . . . , M} set

T̃
η

j = T η
j ,

T̃
η+1
j = T η+1

j \ T η
j ,

...

T̃
ν

j = T ν
j \ (T ν−1

j ∪ · · · ∪ T η
j ).
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The sets T̃
l

j for fixed j are mutually disjoint with at most 4l elements.
Furthermore, |T̃ η

j | = 4η and for η < l ≤ ν we have

|T̃ l

j| ≥ |T l
j | −

l−1∑︂
s=η

|T s
j | = 4l −

l−1∑︂
s=η

4s ≥ 2
34l.

We associate these sets for l fixed with a vector xl ∈ Rn such that

xl =
ν∑︂

l=η

1
4l

χ
T̃

l
j
,

where χ
T̃

l
j

is the indicator function of the set T̃
l

j. We obtain vectors
x1, . . . , xM .
Observe now that u ∈ {1, . . . , n} belongs to T̃

l

j for at most one l between η
and ν, and therefore

||xj||1,∞ ≤ max
{︃

4η 1
4η

,
(︂
4η + 4η+1

)︂ 1
4η+1 , . . . ,

(︂
4η + 4η+1 + · · · + 4ν

)︂ 1
4ν

}︃
≤ 1 + 1

4 + 1
42 + · · · = 4

3 .

Let now be i ̸= j and u ∈ T̃
l

i \ T̃
l

j. Then

|(xi)u − (xj)u| ≥ 1
4l

− 1
4l+1 = 3

4 · 1
4l

.

Together combined, we get

||xi − xj||1 ≥
ν∑︂

l=η

∑︂
u ∈ T̃

l

i \ T̃
l

j|(xi)u − (xj)u| ≥
ν∑︂

l=η

3
4 · 1

4l
|T̃ l

i \ T̃
l

j|

= 3
4

⎡⎣ ν∑︂
l=η

1
4l

|T̃ l

i| −
ν∑︂

l=η

1
4l

|T̃ l

i ∩ T̃
l

j|
⎤⎦

≥ 3
4

⎡⎣1 +
ν∑︂

l=η+1

1
4l

· 2
34l −

ν∑︂
l=η

1
4l

|T̃ l

i ∩ T̃
l

j|
⎤⎦

≥ 3
4

⎡⎣1 + 2
3(ν − η) −

ν∑︂
l=η

1
4l

· 4l

2

⎤⎦
= 3

4

[︃
1 + 2

3(ν − η) − 1
2(ν − η + 1)

]︃
≥ 1

8(ν − η + 1).

This yields that {x1, . . . , xM} is a 1
8(ν−η+1)-distant set and ||xi||1,∞ ≤ 4/3.

Now if k satisfies the condition 2k−1 ≤ M , we may conclude that
ek(Id : ℓ1,∞

n → ℓ1
n) ≥ c(ν − η + 1), where c > 0 (it can be taken 3/64).

Due to our assumptions on k and n we can now take η as the smallest
integer such that k ≤ 4η/2. Therefore n/4η+1 ≥ 2 and so 2k−1 ≤ M . We
finish by

4ν+1−η+1 ≥ n

12 · 1
2k

= n

24 ,
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which with Lemma 4.2.1 implies that

ν − η + 1 ≥ log4

(︃
n

96k

)︃
≳ log(1 + n/k).

There are only finitely many 1 ≤ k ≤ n < 200, so they are covered at the
cost of the multiplicative constants.

(iv) the lower bound for 1 ≤ k ≤ n

Let us have an integer 1 ≤ l ≤ n/2 and x ∈ B1,∞
n . We set S ⊆ {1, . . . , n}

to be the indices of its l largest coordinates (in absolute value). Denote
xS ∈ Rn its restriction to S, i.e., xS = xχS, where χS is the indicator
function of S. Then

||x − xS||1 ≤
n∑︂

k=l+1

1
k

≤
∫︂ n

l

1
x

dx = log(n/l).

Thanks to (ii) there exist constants γ and c > 0 (both independent of n and
l) such that eγl(Id : ℓ1,∞

l → ℓ1
l ) < c. Therefore there is a set N ⊆ Rl such

that |N | = 2γl−1 which is a c-net of B1,∞
n in the ℓ1

n-norm. We can embed N
into Rn by extending it by zero outside of S. We get NS ⊆ Rn which is a
c-net of

{x ∈ B1,∞
n : xi = 0 for i /∈ S}.

By taking union of all those sets NS such that |S| = l we obtain a set
of 2γl−1

(︂
n
l

)︂
points which is a (c + log(n/l))-net of B1,∞

n in the ℓ1
n-norm.

Therefore whenever 2k−1 ≥ 2γl−1
(︂

n
l

)︂
, we may conclude that

ek(Id : ℓ1,∞
n → ℓ1

n) ≤ c + log(n/l).

We use the estimate
(︂

n
l

)︂
≤ (en/l)l and we may assume that γ ≥ 2 to obtain

γl log(en/l) ≥ l log2(en/l) and

k ≥ γl (1 + log(en/l)) =⇒ ek(Id : ℓ1,∞
n → ℓ1

n) ≲ 1 + log(n/l).

Let 2αγ log(n) ≤ k ≤ n, where α ≥ 1 will be chosen later. Let

k

2αγ log(en/k) ≤ l ≤ k

αγ log(en/k) .

As αγ log(en/k) ≥ 2 log(e), the right-hand side is at most n/2 and

γl(1 + log(en/l)) ≤ γ
k

αγ log(en/k) [1 + log (enαγ log(en/k)/k)]

= k

α log(en/k) [1 + log(en/k) + log(αγ) + log(log(en/k))]

≤ k

α
[1 + 1 + log(αγ) + 1/2] ≤ 3 + log(αγ)

α
k,

because f(x) = x(1 + log(en/x)) is increasing on [1, n].
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If α is chosen in such a way that e3αγ ≤ eα (which is easily met), we may
conclude that

k ≥ 3 + log(αγ)
α

k ≥ γl(1 + log(en/l)).

This finishes the proof for n large enough and 2αγ log(n) ≤ k ≤ n. For
1 ≤ k ≤ 2αγ log(n) we use Proposition 4.3, which implies that

e1(Id : ℓ1,∞
n → ℓ1

n) ≈ 1 + log(n),

and the monotonicity of the entropy numbers. The rest of n’s (the small
ones) can be incorporated again at the cost of the constants.

The gaps between n and γn or n/200 and n, respectively, can be covered as
in the proof of Theorem 4.2.2.

4.3 Concerning p = ∞

p = ∞,
q = 1

p = ∞,
q = 2

Figure 4.3: Sets B∞,1
3 and B∞,2

3

In this section we consider the up-to-now omitted case when p = ∞ and q is
finite. We have

||a||∞,q = ||k− 1
q a∗

k||q =
(︃∑︂

k∈N
(a∗

k)qk−1
)︃ 1

q

.

Though there is no big change at the first sight (cf. Figure 4.3), we show that
the geometry of this space might differ from the geometry of the Lorentz spaces.
This is due to the fact that in this case the quasinorm || · ||∞,q is not equivalent
to the original Lorentz quasinorm. As we now demand q to be finite, we study
the case q = 1, since we have an explicit formula for the volume of the unit ball
in ℓp,1

n for all p finite. When we inspect the course of the proof, we realize that it
works also for the case p = ∞ (identify 1/∞ = 0). Therefore we have

Vol(B∞,1
n ) = 2n

n∏︂
k=1

1
κ∞(k) , where κ∞(k) =

k∑︂
j=1

1
j

.
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We can easily deduce from

log(k + 1) =
∫︂ k+1

1
x−1dx ≤

k∑︂
j=1

j−1 ≤
∫︂ k

0
min{1, x−1}dx = 1 + log(k).

that
κ∞(k) ≈ log(k + 1)

(the constants are independent of k). This yields

n
√︂

Vol(B∞,1
n ) ≈

(︄
n∏︂

k=1

1
log(k + 1)

)︄1/n

≥
(︄

n∏︂
k=1

1
log(n + 1)

)︄1/n

= (log(n + 1))−1 .

We want to show that it is, in fact, an equivalence. The second inequality can be
obtained by using the inequality between the geometric and arithmetic mean:(︄

n∏︂
k=1

1
log(k + 1)

)︄1/n

≤ 1
n

n∑︂
k=1

1
log(k + 1) ≤ 1

n log(2) + 1
n

∫︂ n+1

2

1
log(t)dt.

By using L’Hospital’s rule we can deduce that
∫︁ x+1

2
1

log(t)dt ≈ x
log(x+1) for all x > 1.

Therefore (︄
n∏︂

k=1

1
log(k + 1)

)︄1/n

≲
1

log(n + 1) .

Together we have

n
√︂

Vol(B∞,1
n ) ≈ (log(n + 1))−1,

which is different behaviour than for the Lorentz spaces. As we know that

n
√︂

Vol(B∞
n ) = 2,

it is reasonable to presume that probably

n
√︂

Vol(B∞,q
n ) ≈ (log(n + 1))−1/q.

However, we do not pursue this hypothesis further.
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