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ji v experimentech na realných datech.
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Chapter 1

Introduction

Voronoi diagrams (VD) describe spatial relationships among a given finite set of
objects. The term was formally defined by Russian mathematician G. F. Voronoi
at the beginning of the 20th century [18].

There are many variants of VD. The best known is probably VD(P) (Voronoi di-
agram of points) in Euclidean space: We are given a finite set of points S, which
are the Voronoi sites (or generators). Each site s ∈ S has a Voronoi region V (s)
consisting of all points that are closer to s than to any other site. Refer to Fig. 1.1
for an E2 example.

Figure 1.1: Voronoi diagram for a set of points in E2

The VD(P) family of Voronoi diagrams has been studied for many years and its
properties and algorithms for their construction are well-known [7, 15].

Depending on the application, we might want to change the family of VD(P) into
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something else that would better suit our problem’s domain. For example, we might
want to:

• specify the dimension of the metric space

• employ another metric than the Euclidean distance

• use some different class of generators than points

This usually leads to a different family of diagrams with different properties than
VD(P). For example, we might want a VD of line segments in E3, of circles in E2

or assign a weight to every generator and change the metric in order to end up with
some kind of weighted VD(P).

With the development in the field of molecular biology, some geometric problems
have arisen that could be solved more easily if some kind of VD for the given set of
atoms was available. This motivates the use of VD(S) (Voronoi diagram of spheres)
because molecules consist of atoms and each atom can be approximated by a sphere.
See Fig. 1.2 for an example of this kind of VD.

Figure 1.2: Voronoi diagram for a random set of spheres in E3

Zemek describes an approach to searching tunnels in protein molecules in his the-
sis [20]. He uses a regular triangulation for their searching. The tunnel analysis is
used in protein engineering for the research and modifications of protein molecule
behavior.

Kim et al. showed, how VD(S) can be used for the computation of surfaces defined
on a protein and the extraction and characterization of interaction interfaces between
multiple proteins [10].
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Gavrilova and Rokne mentioned an application of VD(S) to the study of the struc-
ture of polydisperse packing of spheres [6]. The diagram can be used for the analysis
of empty spaces (voids) in the system of spheres.

At Voronoi Diagram Research Center [1], they have extensively studied Voronoi
diagrams of circles and spheres for last few years. In 2004, Kim et al. reported the
edge-tracing algorithm for the construction of VD(S) [8, 9]. The algorithm starts
at an arbitrary Voronoi vertex and traces Voronoi edges in order to construct the
diagram. In 2005, they reported the region-expansion algorithm [12, 13], which in
fact turns a VD(P) into the VD(S) by expanding generators in their radii. They
discussed the representation of the topology in [3]. The proposed data structure is a
variation of the radial-edge or the partial-entity data structure but greatly simplified
to the problem domain. In 2006, they discussed QT(S) (quasi-triangulation) as the
dual of VD(S) and introduced the interworld data structure [11, 16], which can be
used to store the topology of the diagram or its dual more compactly than with the
previously mentioned structure. They also introduced the face-tracing algorithm as
the dual to the edge-tracing algorithm.

Although VD(S) truly represents the spatial relationships among a set of spheres,
VD(P) is often used instead, because VD(P) and its variants are well-explored and
effective algorithms for their construction are known.

The goal of this work is to survey the theory behind VD(S), implement one of the
existing algorithms for their construction as a library and use the library on a real
data, such as proteins. Our priority1 is to get some diagrams to experiment with
and hence we do not address issues regarding numerical stability of the solution nor
the performance.

The work is divided into several chapters. Basic definitions and properties of VD(S)
and its dual structure are in Chap. 3. Differences between VD(S) and VD(P) are
summarized in Chap. 4. Algorithms for the construction of VD(S) are briefly sum-
marized in Chap. 5. There is also a discussion to the algorithm chosen for imple-
mentation – the edge-tracing algorithm. Chap. 6 is dedicated to the computation of
geometry of Voronoi vertices and edges. The construction of VD(S) by edge-tracing
together with our modifications and improvements can be found Chap. 7. Details
of the algorithm implementation and the related library are in Chap. 8. Our exper-
iments performed on both protein and random data, their results and pictures of
real diagrams can be found in Chap. 9.

1emphasized by the supervisor
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Chapter 2

Preliminaries

In this work, En is the Euclidean metric space (Rn, d) defined over the n-dimensional
vector space of real numbers R with the Euclidean metric d : Rn → R. The metric
is defined as

d(x, y) = ‖x− y‖ =

√√√√ n∑
i=1

(xi − yi)2

We use the metric to measure the distance from a point x to a sphere s = (c, r) as

d(x, c)− r

where c is the center and r is the radius of the sphere s. This is shown on Fig. 2.1.

x

cr

s=(c, r)

d(x, c)-r

Figure 2.1: The Euclidean distance of the point x from the sphere s.

When we are given a point x and two spheres s1 = (c1, r1) and s2 = (c2, r2), this
allows us to compare the distance of x with respect to s1 and s2 as

d(x, c1)− r1 ≤ d(x, c2)− r2

Some figures representing three-dimensional situations, such as Fig. 2.1, 3.2a or 3.4,
are drawn in a schematic 2-dimensional view or in a 2-dimensional analogy and
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others, such as Fig. 3.3c, are drawn in a 3-dimensional view. Sometimes, we are
using these two views interchangeably without any explicit warning. When it does
matter, we explicitly specify the lower dimension. When it does not matter, we
specify or do not specify the dimension.
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Chapter 3

VD(S) and QT(S)

3.1 VD(S) as a set of Voronoi regions

Definition 3.1. Let S = {si|i ∈ {1, . . . , n}} be a set of n spheres in E3, where
si = (ci, ri) is a generator sphere with the center ci ∈ R3 and the radius ri ∈ R.

Then for each generator si ∈ S, its Voronoi region is defined as

V Ri = {x|∀sj ∈ S, j 6= i : d(x, ci)− ri ≤ d(x, cj)− rj}

and for the set S, its Voronoi diagram is defined as

VD(S) = {V Ri|si ∈ S}.

For the purpose of diagram construction, we allow generator spheres to intersect each
other, but we do not allow any sphere to be fully contained in another. Further-
more, we assume that the spheres are in general positions. The first assumption pro-
hibits empty Voronoi regions and the second assumption prohibits over-constrained
Voronoi vertices, edges and faces (constrained by more spheres than it is necessary).

The interesting part about a Voronoi region is its boundary. It consists of lower-
dimensional primitives: 2-dimensional faces, 1-dimensional edges and 0-dimensional
vertices. Boundaries ”connect” regions together.

For the purpose of defining Voronoi faces, edges and vertices, we will define Voronoi
regions by an equvalent definition as in Gavrilova’s thesis [7].

Definition 3.2. For two different spheres s1 = (c1, r1) and s2 = (c2, r2) in E3, their
Euclidean bisector is defined as

B(s1, s2) = {x|d(x, c1)− r1 = d(x, c2)− r2}.
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The bisector divides the space into two quasi-halfspaces1. The quasi-halfspace of s1

is defined as
H(s1, s2) = {x|d(x, c1)− r1 ≤ d(x, c2)− r2}

In Fig. 3.1, the bisectorB(s1, s2) divides the space into two connected quasi-halfspaces
H(s1, s2) and H(s2, s1). Note that this holds even when the spheres would intersect
each other, because r1 − r2 is constant for all x in the definition of H(s1, s2).

H(s2, s1)

H(s1, s2)

r1
r2

c1

c2

s1=(c1,r1)

s2=(c2,r2)

B(s1, s2)

Figure 3.1: Bisector and halfspaces in E2

Definition 3.3. Let S be a set of generator spheres. For each generator si ∈ S, we
define its Voronoi region as the intersection of all quasi-halfspaces H(si, sj):

V Ri =
⋂

sj∈S
j 6=i

H(si, sj)

3.2 Faces, edges and vertices

From Def. 3.3 it immediately follows that the boundary of a Voronoi region consists
of 2-dimensional hyperplanes2 - bisector subsets.

• Each maximal connected 2-dimensional subset is a Voronoi face. It is defined
by two immediately neighboring generators.

• Each maximal connected 1-dimensional intersection of faces is a Voronoi edge.
It is defined by three neighboring generators. Edges are oriented3

• A Voronoi vertex is the 0-dimensional intersection of edges. It is defined by
four neighboring generators.

1the bisector does not have to be a linear plane in general
2they do not have to be linear planes
3see Sec. 3.4 for details
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We require a subset to be maximal and connected, since a single bisector can par-
ticipate to the boundary of a region by a number of isolated hyperplanes. Basic
VD(S) elements and their defining generators are shown on Fig. 3.2.

g1

g2

f

(a) Voronoi face f de-
fined by 2 generators
(g1, g2) in E2

e

g1

g2

g3

(b) Voronoi edge e defined
by 3 generators (g1, g2, g3)

g1

g2
g4

g3

v

(c) Voronoi vertex v as the cen-
ter of an empty sphere tangent
to 4 generators (g1, g2, g3, g4)

Figure 3.2: Schematic view to faces, edges and vertices in VD(S).

Some differences between VD(P) and VD(S) are shown on Fig. 3.3. Three generators
can form an elliptic edge without any bounding vertex, an edge does not have to
be defined uniquely by three generators and similarly a vertex does not have to be
defined uniquely by four generators.

e

(a) Big brothers
form an elliptic
edge e

v2
v1

e1
e2

(b) Two vertices v1 and v2 defined by a
single quadruple of generators, two edges
e1 and e2 defined by a single triplet

e
v1

v2

(c) Two vertices v1 ∈ e
and v2 ∈ e by four gen-
erators

Figure 3.3: Cases that can occur in VD(S) but not in VD(P).

A Voronoi face f is always a connected subset of hyperboloid of two sheets, each
edge e is a conic section and each vertex v is a point equidistant to the four defining
generators. The position of a Voronoi vertex is given by the center of a sphere
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tangent to four generators defining the vertex - a vertex sphere. The vertex sphere
is called empty, since it never intersects nor contains any other generator.

3.3 Separation of geometry and topology

For Voronoi regions, faces, edges and vertices, we distinguish their geometry from
their topology:

• The geometry of an element is a set of points in the metric space. For example,
the geometry of a Voronoi vertex is a single point (its position). The geometry
of a Voronoi face is a set of points on its hyperplane.

• The topology, on the other hand, describes the constraints of the geometry in
terms of their defining generators, and incidence relationship among vertices,
edges, faces and regions. For example, the topology of a Voronoi vertex consists
of its four defining generators and we may want to know which edges, faces or
regions are incident to the vertex.

Tab. 3.1 summarizes VD(S) topology and geometry in E3.

• A vertex is always defined by 4 generators and it is incident to exactly 4 edges.

• An edge is defined by 3 generators, it is incident to exactly 3 faces and can be
bounded by maximally two vertices. Unfortunately, it can be also unbounded
(elliptic or infinite).

• A face is defined by 2 generators and it connects exactly two regions. It can
be bounded by a number of edges and can have some topological holes inside.

• A region is defined by 1 generator and can be bounded by a number of faces.

Element Topology Geometry
Region 1 generator sub-space
Face 2 generators, 2 incident regions hyperboloid
Edge 3 generators, 3 incident faces conic section
Vertex 4 generators, 4 incident edges point

Table 3.1: Summary of VD(S) topology and geometry in E3.
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In general, an n-tuple of generators, n ∈ {2, 3, 4}, does not have to define exactly
one element as it is common in VD(P). A quadruple of generators can define two
different vertices, for instance. See Chap. 4 for details and Fig. 4.1 for the summary.

For the computation of topology, only the computation of vertex geometry is in-
evitable. The remaining geometry of edges and faces can be computed from the
knowledge of the topology.

3.4 Edge orientation via angular distance

Motivation

The ability to determine if a point lies on a valid edge segment becomes important
at the moment when one needs to compute its geometric representation. Further-
more, the main idea of the edge-tracing algorithm4 heavily depends on the ability
to establish an ordering among points of a possible edge.

Terminology

Given an edge e bounded by one or two vertices, the first vertex is called a start
vertex and the second is an end vertex. Three generators that define the edge are
called gate balls and they are shared by the vertices. The single remaining generator
that defines the start or end vertex is called a start ball or an end ball, respectively.

An angular distance of a point p ∈ e from the start vertex vs ∈ e is the angle
θ = ∠vscg1p, where cg1 is the center of the first5 gate ball with the minimal radius.
θ ∈ (0, 2π) is a directed distance, positive from vs in the edge direction.

In Fig. 3.4, there is an edge e oriented from its start vertex vs to the end vertex
ve with their corresponding vertex spheres Ss and Se. Only two of the three gate
balls defining the edge are shown: bg1 and bg2. The angular distance of ve from ve is
denoted as θ.

Classification of angular distance

Depending on its role with respect to an edge e, we classify an angular distance as
valid, unreachable or prohibited, as it is shown on Fig. 3.5.

4an algorithm that computes VD(S) topology – see Sec. 5.1
5in the sense of a global ordering of generators, e.g. by their indices
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vs

Ss

Se

ve
bs

be
bg1

bg2

e

O

cg1

Figure 3.4: Angular distance and edge orientation.

In Fig. 3.5, the edge e has a start vertex vs and its orientation is indicated by an
arrow. Starting from vs, the angular distance is classified as valid until it points to
the infinity. Since then, it is classified as unreachable – there is no point p ∈ e that
could possibly have any angular distance from this interval. The rest is classified as
prohibited, since the edge would intersect the fourth generator that defines vs if it
was from this interval.

vs

infinity infinity

e

V

UP

=

=

=

=

+

_

Figure 3.5: Angular distance classified as valid, unreachable and prohibited.
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3.5 Quasi-triangulation

A quasi-triangulation is the dual of VD(S)6. The word quasi highlights the differ-
ence from Delaunay triangulation (DT ) for a set of points. Note however, that
QT(S)=DT when all spheres in S are of equal radii. This chapter summarizes [11].

Definition 3.4. Let S be the set of generator spheres in E3. A quasi-triangulation
of the set S is defined as

QT (S) = {V Q, EQ, FQ, CQ} = Dual(V D(S))

where

V Q = {vQ
i |i ∈ {1, 2, . . . }}

EQ = {eQ
i |i ∈ {1, 2, . . . }}

FQ = {fQ
i |i ∈ {1, 2, . . . }}

CQ = {cQi |i ∈ {1, 2, . . . }}

denote the sets of vertices, edges, faces and cells in the quasi-triangulation. V D(S) =
{RV , F V , EV , V V } is the Voronoi diagram (RV , F V , EV and V V are the Voronoi
regions, faces, edges and vertices). Dual is a duality operator defined as follows

• ∀rV ∈ RV : Dual(rV ) ≡ vQ is the dual vertex. It is a topological point and
corresponds to the center of the generator defining ri.

• ∀fV ∈ F V : Dual(fV ) ≡ eQ is the dual edge. It is a topological line segment
between two dual vertices

• ∀eV ∈ EV : Dual(eV ) ≡ fQ is the dual face. It is a topological triangle over
three dual vertices. Every two vertices form a dual face.

• ∀vV ∈ V V : Dual(vV ) ≡ cQ is the dual cell. It is a topological tetrahedron
over four dual vertices. Every two vertices from cQi form a dual edge.

• Dual(X) ≡ {Dual(x)|x ∈ X} – defines Dual(V D(S)) and its parts

In DT, all elements are topologically distinct (defined by different vertices) and each
face belongs to a cell. But QT(S) differs from DT since VD(S) differs from VD(P).
There are following anomalies.

6see Def. 3.3 and Sec. 3.2
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Multiplicity anomaly is caused by doubled Voronoi vertices7. In the dual space,
the anomaly is interpreted as two tetrahedra sharing two or more faces. As a
consequence, they are defined by the same four vertices.

Degeneracy anomaly is caused by elliptic Voronoi edges8. In the dual space, the
triangle defining the dual face does not belong to any tetrahedra. It can be
looked at as a tetrahedron degenerated to a triangle (such as g1, g2 and g3 on
Fig. 3.6b, for instance).

Singularity anomaly is caused by topological holes in Voronoi faces9.

An example of the singularity anomaly is shown on the Fig. 3.6. An ordinary Voronoi
face without any anomaly is shown on Fig. 3.6a. In the dual space, it is an edge
between two vertices g1 and g2. On Fig. 3.6b is the same Voronoi face but with
an elliptic edge causing a very simple topological hole inside the face. In the dual
space, it corresponds to the triangle defined by g1, g2 and g3.

g1

g2
(a) Ordinary Voronoi face
shown in the dual space

g1

g2

g3

(b) Voronoi face with a hole
caused by an elliptic edge

Figure 3.6: Singularity anomaly

7see Fig. 3.3b, 3.3c and 4.1h
8see Fig. 3.3a and 4.1f
9see Fig. 4.1d
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Chapter 4

Differences between VD(P) and
VD(S)

The shape of Voronoi regions, and therefore of the entire diagram, is given by the
shape of its bisectors1. Even when every bisector B(s1, s2) in VD(S) is a hyperboloid
in general, it is a simple linear plane when s1 and s2 have equal radii. Therefore,
VD(P) ⊂ VD(S). To be more specific, VD(P) = VD(S) when all generators are
of equal radii.

Since bisectors in VD(P) are linear, their intersection is linear as well. Hence it can
be described by a system of linear equations in terms of coordinates of the generator
points. When the system is regular2, it has a unique solution. As a result, elements
of VD(P) are convex and uniquely defined by their generators. This also means that
there are no topological holes inside any element. We define a duality as a Delaunay
triangulation DT(P) and benefit from the fact it is a bijective transformation.

In VD(S), on the other hand, bisectors are hyperbolic planes and all the good we
used to have from the linearity is lost3. Regions do not have to be convex any more.
They are star-shaped. Thanks to the requirement that there is no generator sphere
fully contained in another and that we do not allow negative nor complex radii, there
are no topological holes in regions. Unfortunately, this is not true for the remaining
elements. There can be an arbitrary number of holes in a face or an edge. Because
of its 2-dimensional nature, a single bisector can be split into multiple disconnected
faces. Each face can have an arbitrary number of holes inside. An ”edge” can be
split into multiple disconnected segments and we have to treat each segment as a

1see Def. 3.3
2given points are linearly independent, i.e. the determinant is non-zero
3see Fig. 3.3 for an example
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different edge element. Furthermore, we can get elliptic edges without any bounding
vertex. Given configuration of generators does not have to define any edge or vertex
at all or it can define a vertex in two different positions. Hence we can get two
different vertices from four generators or a single vertex and two positions, where it
could possibly be located.

Fig. 4.1 shows differences between VD(P) and VD(S) elements in a schematic view.

On Fig. 4.1a and 4.1b, there are VD(P) and VD(S) regions, respectively. The VD(P)
region is convex and bounded by linear faces f1 . . . f5. Its VD(S) counterpart is
bounded by hyperbolic faces and thus not convex. There are no topological holes.

Fig. 4.1c shows a VD(P) face f . It is a subset of a linear plane bounded by a set
of linear edges (which are not shown, it is just a schematic view). In the sense of
topology, it is uniquely defined by two generator points.

Fig. 4.1f shows the VD(S) case. There are several isolated faces f I . . . fV . From the
topological point of view, all these faces are defined by the same couple of generators.
Hence, now from the geometrical point of view, all f I . . . fV are exclusive subsets of
the single bisector. In other words, where would be a single face f in VD(P), there
are now five faces f I . . . fV in VD(S).

Note that f II , f III and fV have some inner holes inside. Such a face has still its
outer boundary formed by an edge-loop but it has also an inner edge-loop that makes
a hole inside the face (in the geometrical sense as well as in the topological sense).
Note that there is no edge that would connect the outer loop with the inner loop.
These topological holes make the utilization of DT difficult and it is the reason why
an inter-world data structure [11] uses an additional array of gates to overcome this
problem (viz. Sec. 5.2).

Figures 4.1e and 4.1f show differences between VD(P) and VD(S) edges, respectively.
This is similar to the case of faces but in a lower dimension. A simple VD(P) edge
is a line segment, it is bounded by two vertices and its three generators define it
uniquely. In VD(S) on the other hand, both hyperbolic and elliptic edges can be
split into several segments: There are five different edges eI

1 . . . e
V
1 defined by the

same triplet of generators that would otherwise define a hyperbolic edge e1. It is
similar for edges eI

2 . . . e
V
2 that would otherwise define an elliptic edge e2 (imagine

e2 surrounded by five generators, for instance). The last edge e3 is an elliptic edge
with no vertices – this makes difficult to represent the diagram as a graph of edges
over vertices.

Figures 4.1g and 4.1h show that a vertex v in VD(P) is always defined by four
generators uniquely, but in VD(S), there can be two such vertices vI and v2. For
example, these could be the vertices between eI

1 and eII
1 if the hole between them

would be caused by a single generator.
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f1

f2

f3

f4

f5

VRi

(a) VDP region V Ri

bounded by faces f1 . . . f5
(2-dimensional analogy)

f1

f2

f3

f4

f5

VRi

(b) VDS region V Ri bounded
by faces f1 . . . f5 (2-dimensional
analogy)

f

(c) VDP face f (without
the geometry of bounding
edges)

(d) VDS face f is split into isolated parts f I . . . fV

(each of them belongs to the same hyperbolic bi-
sector); faces f II , f III and fV have some topo-
logical holes inside

e

(e) VDP edge e (f) VDS edges e1 and e2 are split into isolated parts eI
1 . . . e

V
1 and

eI
1 . . . e

V
1 , respectively; e3 is an elliptic edge without any vertex

(g) VDP vertex v (h) VDS vertex v is split in two vertices vI and vII

Figure 4.1: Topological differences between VD(P) and VD(S)
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Chapter 5

Overview of VD(S) algorithms

A schematic top-level view to the problem of VD(S) computation is shown on
Fig. 5.1. An algorithm gets a set of generators and computes the topology of their
Voronoi diagram. From the topology, another algorithm can be used to compute
the geometry of Voronoi edges and faces. The problem of topology computation
can be solved in quite different ways by different algorithms. The computation of
VD(S) geometry is separated from them and can be reused. Furthermore, for the
computation of topology, only the geometry of Voronoi vertices is required.

some specific 
VDS algorithm

generators

Face

Region

Edge

Vertex

...

...

...

topology

geometry
computation

geometry

Figure 5.1: Schematic view to VD(S) computation

In the following sections, we briefly summarize some algorithms for the construction
of VD(S) topology. Details to the computation of Voronoi vertices and edges geome-
try can be found in Chap. 6, details to the topology computation and representations
are in Chap. 7.
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5.1 Edge tracing

This algorithm constructs the diagram as a graph G = (V,E) of Voronoi edges E
over Voronoi vertices V . Starting from an initial vertex v0, it traces four edges
emanating from v0 in order to find their end-vertices. When an end-vertex of an
edge is found, three new edges can be traced. This process repeats as long as there
are some edges to be traced. When it finishes, it returns the graph G of vertices
and edges. Note that G is just a subgraph of the entire diagram. Edge tracing can
not find elliptic edges and isolated subgraphs.

Lets n be the number of generators and m = |E| be the number of edges in G.
Without any optimization, edge-tracing has O(nm) time complexity.

There are more details to this algorithm in Sec. 7.1.

5.2 Face tracing

This is in fact the edge-tracing algorithm but reinterpreted in the dual space. Its
main benefit is the data structure it uses to represent the topology.

It deals with a quasi-triangulation QT(S) by using an inter-world data structure [11],
abbreviated as IWDS 1. The structure is similar to the well-known Delaunay trian-
gulation for points DT(P) but it can handle anomalies that can occur in VD(S).
Instead of explicitly representing Voronoi regions, faces, edges and vertices, it deals
with the corresponding vertices, edges, faces and cells in the dual space. A vertex
in the dual space is represented as a simple tetrahedron and the remaining elements
are represented implicitly, i.e. they can be derived from the tetrahedron. Further-
more, the concept of a big-world and small-worlds is used to deal with disconnected
subgraphs. Big world represents the main triangulation and small worlds the dis-
connected subgraphs. These worlds are disconnected in the sense of Voronoi edges
but connected in the sense of Voronoi faces. An array of gates is used to represent
this relationship. A gate is the entry from a world to another world via a Voronoi
face (or edge in the dual space).

The algorithm first discovers the big-world as an ordinary edge-tracing would do.
Then it finds isolated generators and identifies the elliptic edges, or constructs small-
worlds from them in the similar manner as the big-world. These small-worlds are
then connected with their neighboring worlds via an array of gates.

1there is also eIWDS [16] which represents edges and faces explicitly – e stands for extended
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5.3 Region expansion

Recall that VD(P) ⊂ VD(S). For a set of generator spheres, VD(P) = VD(S) when
radii are equal, e.g. zero.

The region expansion algorithm [13, 12] benefits from an observation that the
Voronoi diagram of generator centers, which is a VD(P), often is topologically very
close to the VD(S) we are looking for. The algorithm expects that a diagram of
generator centers is already computed – it can be obtained by an arbitrary algorithm
for VD(P). Then it expands generators one-by-one in their radii in order to obtain
the entire VD(S). Local changes in the topology can occur during an expansion. The
algorithm drives the expansion of a region trough these topological changes (it uses
an event-based approach) and updates the topology in order to keep the diagram
a valid VD(S). Region expansion could be considered as a top-down algorithm – it
works on the entire hierarchy from regions to vertices.

A 2-dimensional analogy of an expanded region is shown on Fig. 5.2. In most cases,
the topology did not change. Note that only one edge has disappeared as well as its
start and end vertices, and a new one just originated together with two new vertices.

Figure 5.2: Expanding region

Pros and cons

Because the algorithm starts from a VD(P), which is expected to be very close to the
desired VD(S), the main benefit is the running time – with a little bit of imagination,
it could be looked at as if the linear part was computed by an efficient algorithm
for VD(P) and the quadratic part by expanding regions. Furthermore, topological
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changes involving elliptic edges are calculated in a similar way as changes involving
non-elliptic edges.

The main drawback could be the requirement of an efficient and easily modifiable
hierarchical structure with many (six) levels of hierarchy and the numerical calcu-
lation involved, such as finding roots of a quartic polynomial with coefficients that
has been already burdened by some non-trivial calculation.

5.4 Selected solution

From the previously mentioned algorithms, we have implemented the edge-tracing
algorithm. In our implementation, we do not address issues regarding the numerical
stability. We do not search for isolated subgraphs, ignore elliptic edges (they are
rare in proteins anyway) and did not optimize the algorithm in the searching for
end-vertices. The data structure for a diagram is the näıve one as it is shown on
Fig. 7.1. The idea was to get some diagrams in an easy way and try to experiment
with them, instead of dealing with sophisticated data structures, numerical stability,
running time, etc. Furthermore, this allowed us to implement our new idea of finding
an initial vertex for edge-tracing. The algorithm is described in Sec. 7.1 and its
implementation is elaborated into more detail in Sec. 8.6.

Although region-expansion should be significantly faster, it requires a heavy topolog-
ical structure (see Sec. 7.2.1) and involves more complex numerical calculations - we
could not afford to avoid issues regarding the numerical stability in the calculation
of topological events (finding roots of a quartic polynomial).

Face tracing would be probably a better choice than edge-tracing. It would mean to
use the inter-world data structure (see Sec. 7.2.2) for topology representation. This
would not improve the time complexity but it would provide us complete diagrams
(as a quasi-triangulation).
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Chapter 6

Geometry computation

In this chapter, we briefly summarize how to compute the geometry of Voronoi
vertices and edges as it is described in [9].

In the case of edge geometry, we have to find the center of a circle inscribed to three
circles which is The Apollonius 10th Problem. In the calculation of vertex geometry,
we need to find the center of a sphere inscribed to four generator spheres. This is the
same problem but formulated in a higher dimension (we are given four spheres in
3D instead of three circles in 2D). Gavrilova and Rokne described a solution for the
general n-dimensional case in [6]. We use their approach in the following sections.

6.1 Vertices

The geometry of a Voronoi vertex v is the center of an empty sphere S(v) inscribed
to four generator spheres. Let us denote them as s1, s2, s3 and s4 respectively. We
want to find the center of S(v).

Let us denote si = (xi, yi, zi, ri), where (xi, yi, zi) is the center and ri is the radius of
the sphere si. Without the loss of generality, we assume that s4 is the sphere with
the minimum radius.

At first, we transform si so that s4 becomes the origin:

si := si − s4

We will compute the tangent sphere (x, y, z, r) in this new system. The solution is
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hidden in equations:

(x− x1)
2 + (y − y1)

2 + (z − z1)
2 = (r − r1)2 (6.1)

(x− x2)
2 + (y − y2)

2 + (z − z2)
2 = (r − r2)2 (6.2)

(x− x3)
2 + (y − y3)

2 + (z − z3)
2 = (r − r3)2 (6.3)

x2 + y2 + z2 = r2 (6.4)

We expand Eq. 6.1, 6.2 and 6.3, subtract Eq. 6.4 from them and get: x1 y1 z1 r1 (x2
1 + y2

1 + z2
1 − r2

1)/2
x2 y2 z2 r2 (x2

2 + y2
2 + z2

2 − r2
2)/2

x3 y3 z3 r3 (x2
3 + y2

3 + z2
3 − r2

3)/2

 (6.5)

This is a system of three linear equations in four variables x, y, z and r. We solve
it in terms of one of them as a free variable. By substituting the result into Eq. 6.4,
we get a quadratic equation in the free variable. We solve it for its real roots, get
the remaining unknowns and transform them back to the original system by adding
the s4. We are interested only in spheres with real, non-negative radii.

Depending on configuration of the four generators, we can end up with none, one,
two or infinite number of tangent spheres [6].

How to choose a free variable

We want to mention here that the choice of a free variable in 6.5 is important. In
other words, solving the system in terms of r all the time is not as wise as it is
convenient.

Let Dr be the determinant of a linear system in unknown variables x, y, z and r
defined as

Dr =

∣∣∣∣∣∣
x1 y1 z1

x2 y2 z2

x3 y3 z3

∣∣∣∣∣∣
Imagine the case when centers of three generators are co-linear or nearly co-linear
(the vertex belongs to an edge that is almost a circle) and we choose r to be the
free variable. Then the determinant Dr will be zero or almost zero and the solution
will be therefore lost or we will run into numeric issues.

We propose here to select a variable q ∈ {x, y, z, r} to be free when it maximizes the
absolute value of the determinant Dq after normalization of its columns. In other
words, we want the most orthogonal system.
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6.2 Edges

Because a Voronoi edge is always a conic section, it can be represented as a quadratic
rational Bézier curve

B(t) =
w0(1− t)2P0 + 2w1(1− t)tP1 + w2t

2P2

w0(1− t)2 + 2w1(1− t)t+ w2t2
, (6.6)

where P0, P1 and P2 are the control points, w1, w2 and w3 are their weights.

Suppose that we are given a conic section. We can represent it as a quadratic
rational Bezier curve in the form given by Eq. 6.6 if we know these five parameters:
two different points, tangent vectors at both these points and a passing point (another
point on the conic section) [5, Section 12.6].

From this information, we are able to calculate coordinates of the middle control
point P1 and its weight w1. The points we know tangent vectors for, they define the
first control point P0 and the last control point P2 with their weights set to 1.

This is illustrated on Fig. 6.1. The five parameters of an edge e are shown on
Fig. 6.1a. The middle control point P1 can be calculated easily from them. Note
that the passing point Q lies on the opposite edge segment e′. In Fig. 6.1b, several
modifications were made to the weight w1 > 0 of the middle control point P1. There
holds 0 = wIII

1 < w1 < wI
1 < wII

1 = 1. Weights wV I
1 < wV

1 < wIV
1 are all negative.

Furthermore, wV
1 = −w1 and this weight defines e′.

When we get a Voronoi edge bounded by two vertices, the position of the start
vertex becomes P0, the position of the end vertex becomes P2 and w0 = w2 = 1.
The problem is to calculate coordinates of P1 and the weight w1.

Coordinates of P1 can be calculated as the intersection of two rays passing through P0

and P1 in the direction of the respective tangent vectors as it is shown on Fig. 6.1a.
The weight w1 is then calculated from barycentric coordinates (τ0, τ1, τ2) of the
passing point1 with respect to the triangle (P0, P1, P2) as

w1 =
τ1

2
√
τ0τ2

(6.7)

Detailed explanation to Eq. 6.7 including its derivation can be found in [5, Sec. 12.5].

The sign of w1 has to be reversed if the passing point does not lie on a valid edge
segment, i.e. when its angular distance is smaller than the distance of the end-vertex.
Otherwise, we would end up with a curve representing the opposite segment of the
conic section as it is shown on Fig. 6.1b – there we get wV

1 from the passing point
Q and we need to revert its sign in order to obtain w1 because Q ∈ e′.

1they do not need to be normalized; τ0τ2 > 0 since the passing point is on the curve
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t2
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(a) Five parameters: end-points P0

and P1, their tangents t0, t1 and a
passing point Q

Q

w1

P1

e

e'

w1
I
w1

II

w1
III

w1
IV

w1
V

w1
VI

(b) The role of the weight w1

Figure 6.1: Edge e as an elliptic segment and its parameters

A passing point can be obtained by this procedure:

1. project three generators of the edge to a plane passing through their centers

2. find the center of a circle inscribed to the three projected generators2

3. transform the center back to the original system

Computation of a passing point p is shown on Fig. 6.2. There is an edge e defined
by spheres s1, s2 and s3. The spheres are projected to the plane passing trough their
centers and p is found as the center of an empty tangent circle.

vs e

s1

s3
s2

vs
p

s1

s2

s3

Figure 6.2: Finding a passing point p

The tangent vector at a vertex v can be calculated as an angle trisector from its
position to the centers of three gate balls defining the edge. Recall that the vertex

2this can be done the same way as we did in Sec. 6.1
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sphere s(v) is tangent to the gate balls at some tangent points tp1, tp2 and tp3. The
tangent vector is the normal of the plane passing through tp1, tp2 and tp3.

Although there is no need for the tangent vector to be in any particular orientation
for the calculation of P1, it is useful to have it oriented in the direction of the edge
for purposes of angular distance comparison.

Rendering of 3-dimensional quadratic rational Bezier curves may seem to be prob-
lematic. Sec. 8.6.2 describes how to render them as ordinary 4-dimensional Bezier
curves.
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Chapter 7

Topology construction and
representation

VD(S) topology is shown on Fig. 7.1: A diagram consists of topological elements -
regions, faces, edges and vertices. They form a topological structure over a set of
generators. Every topological element is defined by a specific number of generators
(Gn is an n-tuple of references to generators). For example, every edge is defined by
exactly three generators. Hierarchical relations are represented as incidence/bound-
ary links. For example, a vertex has always four incident edges. An edge can be
bounded by two vertices. The first vertex is the start vertex. Lets call vertices and
edges as lower topology and regions with faces as higher topology.

Geometry references are shown as well. For the computation of topology, it is
inevitable to maintain only the geometry of generators and vertices.

Fig. 7.1 shows only a very rough model which can be implemented in different ways.
It does not show how to represent relations among elements in the same topological
level (topological holes in faces or incidence ordering among edges, for instance).
Different algorithms prefer different model implementation – edge tracing runs on
lower topology, region expansion maintains the whole diagram and face-tracing does
not use it at all (it works with a dual representation).

Sec. 7.1 describes a slightly modified version of the edge-tracing algorithm [9] for
the construction of VD(S) topology – we present a new approach to finding an
initial vertex and slightly modify the search for end-vertices. Sec. 7.2 describes data
structures for topology representation.
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incidentEdges4
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Figure 7.1: Basic VD(S) model - topology and geometry

7.1 Edge tracing

The idea of this algorithm is quite simple. Given a vertex, there are always four
edges incident to the vertex. The algorithm traces these edges in order to discover
their end vertices. When a new vertex is found, three more edges can be traced.

This can be interpreted as a bottom-up approach (from vertices to edges). The
algorithm runs on the lower topology. It constructs a graph G = (V,E), where V is
a set of Voronoi vertices and E is a set of Voronoi edges. The higher topology can
be constructed from the lower topology without much effort.

Tracing edges from an initial vertex gives us a maximal set of vertices reachable from
the vertex and all incident edges. Note that this is just a subgraph of the whole
lower topology in general! When two graphs are connected only by faces, there is
no way how to get from the first graph to the second by tracing edges. Even if
the second graph would be reachable, there can still be elliptic edges that are not
reachable, since they do not have any vertex.
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Algorithm 1: Edge tracing

Data: Set of generator spheres.
Result: Graph G = (V,E) of vertices and edges, G ⊂ V D(S)
v0 ← find an initial Voronoi vertex1

Push 4 edges emanating from v0 into a stack (v0 is their start vertex)2

while stack is not empty do3

e← stack.pop()4

if e is already computed then5

ignore e (goto 4)6

Find the end vertex vend of e by computing an empty sphere tangent to7

three gate balls and a fourth generator. If it is already computed, use that
one instead of creating a new one to complete the edge definition.
Push 3 edges emanating from vend into the stack.8

end9

return (vertices, edges)10

7.1.1 Finding the very first Voronoi vertex

Algo. 1 can search for Voronoi vertices but it needs an initial vertex to start from.
In [9], they presented two approaches how to find the very first Voronoi vertex:

Näıve brute-force For each quadruple of generators, compute a tangent sphere.
If the sphere is empty, a Voronoi vertex has been found. This is O(n5) and therefore
not recommended.

Explicit vertex workaround Create an explicit initial vertex by adding four ad-
ditional generators to the original set. Run the algorithm and wait until it discovers
an end vertex defined by four original generators. Then restart the algorithm, this
time with the known initial vertex.

The second approach does not change the asymptotic time complexity of the algo-
rithm, however some questions would come to the mind:
Can we just add another four generators to the given array, even for a while? How
big and how far from each other should they be, i.e. how to choose the radius of the
vertex sphere? Where to put them? We want to find some vertex and do not want
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to violate the assumption that any sphere can not be fully contained in another.
Rather than answering these questions, we have devised another algorithm:

Near vertex search algorithm Algo. 2 first locates the nearest face of some
region. Then it locates the nearest edge on the face and the nearest vertex on the
edge. The distance is measured as a radius of an empty tangent sphere.

Algorithm 2: Near vertex search

Data: Set of generator spheres G.
Result: A Voronoi vertex as (g0, g1, g2, g3, sv), where g0, g1, g2 and g3 are its

defining generators and sv is the vertex sphere.
begin1

// for some region

for g0 ∈ G do2

// find the nearest face of the region

g1 ← g ∈ G \ {g0} that minimizes MTS(g0, g).3

// find the nearest edge of the face

g2 ← g ∈ G \ {g0, g1} that minimizes MTS(g0, g1, g).4

// find the nearest vertex of the edge

g3 ← g ∈ G \ {g0, g1, g2} that minimizes MTS(g0, g1, g2, g).5

if g0, g1, g2, and g3 define a vertex then6

return (g0, g1, g2, g3, sv)7

end8

Fail, since no vertex has been found.9

end10

/* MTS(g0, . . . , gn−1) is the minimal tangent sphere for the given

set of n generators, in the sense of its radius. */

The problem of finding MTS in E3 for given n ≤ 4 can be solved as an (n − 1)-
dimensional sub-problem. For n = 2, it reduces to the problem of finding the
nearest neighbor. For n = 3, it can be solved in a plane defined by centers of the
three generators and it is the problem of finding a circle inscribed to three another
circles. For n = 4, it is the problem of finding a sphere inscribed to four other
spheres.

Time complexity
Worst case Expected
O(n2) O(n) or even O(1) if optimized
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Finding the nearest face, edge and vertex is O(n), but it could be optimized in the
same way as the edge tracing algorithm (see [9, 4]). In the worst case, algorithm 2
iterates O(n) times to find a good region where a vertex can be found, thus we end
up with O(n2). Note that it does not have to find any vertex even when there is
some in the true diagram.

These worst cases occur when all regions – or at least most of them – have their
nearest faces unbounded or with ”wrong” nearest edges (even unbounded or elliptic).

Except the elliptic edges, this could be avoided if the entire set of generators would be
closed into an outer tetrahedron (all the previously opened regions become closed).
We hope that elliptic edges can be safely ignored, because edge tracing could not
find them anyway.

On the other hand, we could argue that the algorithm finds the proper region in
O(1) in most cases (elliptic edges are rare, especially on nearest faces). This gives
us expected O(n) or even O(1) if it would be optimized in the same way as edge
tracing.

Why and how algorithm 2 works It turned out that we have used the nearest-
neighbor property from additively weighted Voronoi diagrams: If a sphere si ∈ S is
the nearest neighbor of sj ∈ S, then Euclidean regions of si and sj have a common
facet. See Gavrilova’s Ph.D. thesis [7, part 11] for details to this theorem and its
proof. The theorem is applied to g0 in the first step of the algorithm as the search
for the nearest face. This gives us two regions in terms of their defining generators
g0 and g1. Then, the theorem is applied from both g0 and g1 at the same time in
order to obtain g2. Generators g0, g1 and g2 define the nearest edge in the context
of the face given by g0 and g1. The same rule is used to find a vertex, i.e. using the
theorem from three generators at the same time to find the fourth that defines the
vertex.

This can be viewed in another way. Suppose, that we are given a sphere that is
flexible in its radius. We put this sphere on the hull of a generator g0, set its radius
to zero and let it grow but it has to stay empty and tangent to all generators it
touches. At first, it rolls over the first generator at which we have put it (g0) and it
can grow, because it stays empty. At some moment, it gets big enough and touch
another generator g1. Since then, it can not roll over g0 any more, since it has to stay
tangent to both g0 and g1. All it can possibly do is to rotate around the axis of their
centers. So it rotates and grows. At some moment, it touches another generator
g3 and has to grow on the edge trajectory until it reaches the fourth generator g4

defining a vertex. Because the trajectory of the sphere is empty and the sphere is
tangent to four generators, a Voronoi vertex was just found.
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7.1.2 Searching for end vertices

To trace an edge, we are given its start vertex vs, three gate balls defining the
trajectory (bg1, bg2, bg3) and the fourth generator bs that completes the definition of
the start vertex and determines the direction of the trajectory.

The task is to find the next vertex ve on the edge in the given direction. This
finishes the edge and ve becomes its end vertex. The task reduces to find only
one generator be and the center of the vertex sphere S(ve), because the remaining
generators defining ve are bg1, bg2 and bg3. The ordering is given by the angular
distance (viz. Sec. 3.4).

We could imagine that we are given a vertex sphere S(vs). It is empty and touches
the four generators defining vs. Then we push this sphere in the edge direction. We
want it to remain empty and touch only the edge generators, hence we allow it to
be flexible in its radius. When it hits a fourth generator, it gives us the end vertex.

An example of finding the end vertex is shown on Fig. 7.2. We trace an edge
defined by gate balls (bg1, bg2, bg3). We start at the known start vertex vs and select
candidates from all generators except the three gate balls. The generator bi would
define a vertex vi but it does not, since its tangent sphere Si is not empty – it is
intersected by another generator bj. The generator bj would define a vertex vj but it
does not. In this case, the tangent sphere sj is empty, but there is another generator
be that defines an empty tangent sphere which closer to vs in terms of the angular
distance θ. Because there is no other tangent sphere closer to vs, be defines the end
vertex ve and finishes the edge e.

vs
vj

O

e

bg1

be

bi

bj

bg2, bg3

bs

vive

Si

Sj

Figure 7.2: Finding the end vertex
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The algorithm presented in [9] almost works. It will run into problems with un-
bounded edges leading to the infinity. In this case, it could incorrectly choose the
end vertex from the prohibited part of the edge. A simple workaround can avoid
this problem and we present the improved version here as Algo. 3.

Algorithm 3: Find end vertex

Data: Start vertex vs defined by four generators bg1, bg2, bg3 and bs.The edge
trajectory is defined by gate balls (bg1, bg2, bg3). K is the set of
candidate generators (all generators except the gate balls) and s∞ is
an imaginary infinite generator. S(vs) is the vertex sphere of vs.

Result: A pair (S, b), where S is a sphere and b ∈ K ∪ {b∞}. If b = b∞, the
edge leads to infinity. Otherwise, bg1, bg2, bg3 and bs define an end
vertex ve and the center of S can be directly used as its position.

// select the first candidate

if (bg1, bg2, bg3) define an elliptic edge then1

b1 ← b ∈ K2

else3

b1 ← b∞4

S1 ← tangent sphere from bg1, bg2, bg3 and b1, such that S1 6= S(vs). If there5

are more solutions to S1, prefer the one with the minimal angular distance
from vs.

// minimize the angular distance

(S, b)← (S1, b1).6

foreach bk ∈ K \ {b1} do7

Sk ← tangent sphere from bg1, bg2, bg3 and bk.8

if Sk is closer to vs than S then9

(S, b)← (Sk, bk)10

end11

return (S, b)12

A tangent sphere from bg1, bg2, bg3 and b∞ is the common supporting plane of
bg1, bg2, bg3. In the angular comparison, we use its normal vector. This precau-
tion establishes an upper bound to the valid angular distance, avoiding prohibited
and unreachable. See Sec. 3.4 for more details.
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7.1.3 Checking if a vertex is already computed

When an end vertex is computed, it is necessary to find out if it already exists,
since existing vertices have some topological information associated with them. To
achieve this, a dictionary of computed vertices can be used, called as VIDIC (Vertex
Index Dictionary).

A vertex is defined by four generators. We can represent them as a quadruple of
sorted indices into an array of generators1. However, this quadruple does not identify
the vertex uniquely. An additional information must be added to make a unique
key. It could be a flag that says if vertex coordinates are from the first or from the
second solution of Eq. 6.4 or the coordinates directly.

The ordering of generators in the computation of vertex coordinates is important
– different ordering would give us a slightly different results due to floating point
precision loss.

7.1.4 Time complexity

The tracing-loop is iterated as many times as the number of edges, which is O(n2) in
the worst case andO(n) on the average, where n is the number of generators. Finding
an end vertex takes O(n) steps. Checking if the end vertex is already computed takes
expected O(1) when a hash table is employed. Therefore, the expected running time
is O(n2).

The expected running time can be greatly reduced if some kind of geometric filtering
is used in the searching for end vertices. See [9, 4] for details.

1G4 in Fig. 7.1

39



7.2 Data structures

For VD(P) in E3, there are two common ways of its topology representation:

(a) directly as the hierarchy of regions, faces, edges and vertices

(b) indirectly by using a dual structure – Delaunay tetrahedralization DT

DT is often preferred over the direct representation of VD(P), because it introduces
only one level of hierarchy – an array of tetrahedra. It is a very compact repre-
sentation. Each tetrahedron corresponds to a Voronoi vertex – it consists of four
generator indices defining the vertex and four links to neighboring tetrahedra. These
links explicitly represent Voronoi edges in loops bounding Voronoi faces. The higher
topology of the diagram can be obtained easily.

Unfortunately, VD(S) is a non-manifold that can have elliptic edges and holes in
faces as it was shown on Fig. 4.1. Its vertices, edges and faces do not have to
be defined uniquely by their generators. The dual of VD(S) is not a DT, but a
quasi-triangulation [11, 12].

The topology of a VD(S) could be directly represented by an appropriate structure
for non-manifold models, such as RES 2 or PES 3 [14]. However, these structures are
designed to handle a general case and thus too complex. PES consists of 10 levels of
hierarchy, for instance, and it has several pointers at each level. Note that VD(S) is
not so general. Therefore, these structures can be simplified in the problem domain.

A simplified data structure based on RES was introduced by Cho and Kim in [3].
The structure consists of only 6 levels of hierarchy. An IWDS 4 for storing quasi-
triangulation was introduced later on [11]. These are briefly summarized in following
two chapters.

In our implementation of edge-tracing, we did not use any of them and rather used
a näıve model as it is shown on 7.1. It is more simple than the previously mentioned
approaches, edge-tracing runs on the lower topology and the higher topology can be
built separately. We want to mention here that IWDS could be a better choice.

7.2.1 Simplified radial edge structure

The model is shown on Fig. 7.3. There still are regions, faces, edges and vertices,
but also two supplementary entities: an edge-loop and a partial-edge.

2radial-edge structure
3partial-entity structure
4inter-world data structure

40



• A region is bounded by a number of faces and each face is incident to exactly
two regions.

• A face can have an arbitrary number of edge-loops. The first one represents
the outer boundary and the following represent topological holes in the face.

• A loop consists of partial edges – it keeps just a single reference to one of them.

• Partial edge is a supplementary structure for an edge. It references the edge
and contains its state in the context of a loop (i.e. in the context of a face).
Partial edge represents two cycles – a loop-cycle and a radial-cycle. The first
one realizes the corresponding edge-loop and the second loop connects all the
three partial edges around their common referenced edge.

• An edge contains two references to its vertices (i.e. its start- and end-vertex).

• A vertex references all its four incident edges.

Region

Face EdgeLoop

PartialEdgeEdge

Vertex

2

parent

1

1

parent

parent

4

0..2

loop 
cycle

radial 
cycle

parent1

1parent

1

Figure 7.3: Simplified radial edge structure

Fig. 7.4 shows partial edges and their role in a loop. On Fig. 7.4a, there is an edge
e between two vertices vi and vj. The edge references both these vertices and one of
its partial edges – p1. Note that there are three partial edges p1, p2 and p3 around e
but only the first two are shown on Fig. 7.4a. The partial edge p1 is part of a loop
cycle denoted as loop1. The loop belongs to the face f1. Similarly, partial edge p2 is

41



part of a loop cycle loop2 of the face f2. Fig. 7.4b shows partial edges p1, p2 and p3

around an edge e in a radial cycle. The edge references only one of its partial edges.
Remaining partial edges can be found by searching through this cycle.

e
p1

p2

f1

f2

loop1

loop2

vi

vj

(a) Partial edges in loop-cycles (f3 is not shown)

e

p1
p2

p3

f1 f2

f3

radial

(b) Partial edges in a radial-cycle

Figure 7.4: Partial edges and loops

References to defining generators

Even if it would be possible to explicitly store the references to the defining gener-
ators at each level of the hierarchy as it is shown on Fig. 7.1, it should be avoided
because it brings more redundancy to the model. For this purpose, we classify topo-
logical elements by the number of defining generators into Gn classes and introduce
topological derivation and integration as a way of inferring among these classes.

Lets denote Gn as an n-tuple of indices to generators. If an element is defined by
exactly n generators, it belongs to the Gn class.

Voronoi vertices belong to G4, edges to G3, faces to G2 and regions to G1. Fur-
thermore, they can be ordered by some global ordering, e.g. ascending ordering by
generator indices.

Lets define a topological derivation as the process of generating an instance of Gn

from an instance of Gn+1 by leaving out one reference from the (n + 1)-tuple at
the specified derivation index i ∈ {1 . . . n + 1}. Lets define the opposite process of
assembling an instance Gn from an instance of Gn−1 as a topological integration.

Topological derivation does not change the ordering of components but it needs an
index to derive by. Topological integration does not need any index to be specified
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explicitly but it has to infer it from the ordering of components. An example of
topological derivation and integration is shown on Fig. 7.5.

derivation 

integration

G4: (1, 2, 7, 9) G3: (1, 2, 9)

Figure 7.5: Topological derivation and integration

When the hierarchical structure of the topology is known, it is sufficient to store only
G1 at each region. Lower hierarchical levels can integrate their Gn from incident
regions by following the parent-links. This is compact for the entire model and
convenient for the upper topology. But it is less convenient for the lower topology.
Topological integration is more complex than topological derivation – It has to keep
the ordering among the components of Gn. Furthermore, when we integrate over
several hierarchical levels, we get more fields m > n than we need for a Gn instance,
because incident elements share some generators. Superfluous fields needs to be
removed.

It is also possible to keep G4 at vertices and use a topological derivation for getting
Gn at higher hierarchical levels. This is not so compact for the entire model but it is
very convenient for the lower hierarchy. Furthermore, topological derivation is easy
– it keeps the ordering among the components of Gn and it just needs an index to
derive by. The index can be implicitly represented by the ordering of parent-links.
Unfortunately, there is a problem with elliptic edges. They have no vertex from
which a G3 could be obtained. This could be handled by adding an artificial vertex.

Both approaches have their tradeoffs. Keeping G1 at regions is be better suited for
region-expansion, keeping G4 at vertices is better for edge-tracing.

7.2.2 Inter-world data structure

The dual structure for VD(S) is a quasi-triangulation5 QT(S). There are three
anomalies (multiplicity, degeneracy and singularity anomaly) that make it difficult
to store it as a simple array of tetrahedra as it is common for the Delaunay trian-
gulation of points in E3. An inter-world data structure [11], abbreviated as IWDS,
can handle these anomalies. It benefits from the observation that the occurrence of
singularity anomalies is quite rare for real data, such as proteins.

5see Chap. 3.5
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Suppose that we are given a set of spheres S containing an infinity generator s∞
and we have created its Voronoi diagram. We could divide the lower topology of the
diagram into several exclusive parts. Each part corresponds to a maximal connected
set of Voronoi edges. These parts are called as worlds and they are connected only by
Voronoi faces (edges in the dual representation). In order to represent this relation,
IWDS employs a supplementary data structure called a gate. Gates connect worlds
together and they overcome topological holes in Voronoi faces. For the ordering of
worlds and gate orientation, please refer to [11].

IWDS model

Fig. 7.6 shows a model of IWDS. The data structure consists of three arrays. There
is an array of generators representing vertices in the quasi-triangulation, an array of
tetrahedra and there is also an array of gates. A tetrahedron is the basic building
block. It references its four defining vertices and four neighboring tetrahedra. The
references can be realized by indices to the appropriate arrays. A gate connects two
worlds together. It is associated with an edge in the quasi-triangulation, implicitly
represented as a reference to its two vertices. Furthermore, the gate has a reference to
one of the tetrahedra from the source world sharing the edge and to one tetrahedron
per one destination world sharing the edge.

Iwds Generator

Tetrahedron

Gate

4

4

srcWorldTetra

vertices

4

2

neighbors

4
1

srcWorldTetra

associatedEdge

2

1

dstWorldsTetras

Figure 7.6: Inter-world data structure – UML model
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Handling multiplicity anomaly

The case when two tetrahedra share two or more faces can be easily recognized by
looking at the references to neighbors in such a tetrahedron. If there are two or more
valid references that are equal, the tetrahedron causes the multiplicity anomaly.

Handling degeneracy anomaly

A tetrahedron degenerated to a triangle can be easily represented by invalidating
one of its vertex references and all neighbors references (they are no more needed).

Handling singularity anomaly

A gate can be formally defined as g = ({si, sj} → (τ, {∆1,∆2, . . . })) where si and
sj are indices of two vertices defining an implicit edge in the quasi-triangulation, τ
is the tetrahedron from the source world that has the implicit edge {si, sj} and ∆k

are the tetrahedra of destination worlds – one ∆ per each world.

Note that the gate g connects exactly one source world to one or more destination
worlds through tetrahedra that are part of the Voronoi face connecting these worlds.

The information that an edge in a tetrahedron is a gate from a source world to a
destination world, i.e. that the tetrahedron is the τ -part of a gate, can be stored
by increasing the indices of the respective vertices in the tetrahedron, such as
si ← si + |S| and sj ← sj + |S|.
The opposite direction, i.e. that an edge of a tetrahedron is a gate from a destination
world back to the source world, i.e. that the tetrahedron is the ∆-part of a gate, can
be stored by decreasing indices of the respective vertices in the tetrahedron, such as
si ← si − |S| and sj ← sj − |S|.
When a tetrahedra with modified vertex indices is encountered during the traversal
through IWDS, it means that there is a gate to another world at some of its edges.
The modification made to the vertex indices can be easily transformed back to the
original system in order to get the real vertex indices.
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Chapter 8

Implementation

8.1 Project structure

Fig. 8.1 shows a basic structure of the entire project. It consists of some libraries
(V dsLib and Algebra), some external libraries and two applications (V dsCmd and
V iewer). These all are in C#. There is also a simple conversion script (Pdb2Txt).
Arrows symbolize dependencies among these parts.

VdsLib is a library for VD(S) computation. It is the most important part of the
project. The library defines the structure of a Voronoi diagram, implements
edge-tracing algorithm for its construction (Sec. 7.1), computes the geometry
of Voronoi vertices and edges, and offers a basic serialization of the diagram.

Algebra is a basic algebraic library. It offers quaternions, two-, three- and four-
dimensional vectors together with their algebraic operations. It can solve
determinants, quadratic equations, etc.

VdsCmd is a command-line application. It reads an array of generators, computes
their Voronoi diagram and serializes the output into an XML document.

Viewer is a GUI application for VD(S) visualisation. It reads a diagram from an
XML document, creates a scene from it and displays the diagram. The user
has a view to the scene managed by a camera. He or she can control the
camera to change the view or select a filter to the diagram with respect to a
selected generator.

Pdb2Txt is a simple conversion script for conversion of protein data from the PDB
format to a simple text file. It is written in Visual Basic.
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Log4Net is a logging library for the .NET platform.1

TaoFramework provides bindings of OpenGL, Cg, etc. from their native libraries
to the .NET and Mono platforms.2

ShaderLoopControl is a component written in C# that makes easy to configure
and use an OpenGL viewport. It is a non-standard library and we have made
some minor modifications to it in order to serve our purposes.3

VdsCmd Pdb2Txt

VdsLib Algebra

TaoFrameworkLog4Net

Viewer

ShaderLoopControl

External Libraries

Libraries

Figure 8.1: Project structure

8.2 Data flow

Fig. 8.2 shows the intended data-flow between applications. There is a PDB text
file. These files can be downloaded from Protein Data Bank4. PDB file describes
a protein molecule. All what the Pdb2Txt script does is that it reads the molecule

1http://logging.apache.org/log4net/
2http://www.taoframework.com/
3http://cgg.ms.mff.cuni.cz/~marsalek/code/ShaderLoopControl.zip
4http://www.rcsb.org/
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and outputs each atom as a line with the position and atomic radius. Then VdsCmd
comes into play, reads the text file as a set of spheres and with the help of VdsLib, it
computes the Voronoi diagram and serializes it as an XML document. The document
can be then read by Viewer and displayed to the user, or used by another application.

PDB file TXT file
(generators as 
"x y z r" lines)

XML file
(diagram)

Pdb2Txt VdsCmd Viewer

Figure 8.2: Dataflow between application

8.3 Implementation considerations

C# as the programming language

The most important part of our project is the library VdsLib. On the other hand, it
would be incredibly hard to implement the library without any decent application
that would display the resulting diagram (Viewer). We have decided to implement
both these parts in C# rather than in C++. As a consequence, also Algebra and
VdsCmd are in C# and we have used the specified external libraries.

It turned out that it is hard to make a reusable DLL library from a code written
in C++, especially when C++ templates are used, such as STL or Boost. Even if
it would be possible, we would need to write also a binding to the .Net platform
because of Viewer (written in C#). Instead of dealing with these issues, we have
decided for C# as the programming language, dropping the performance aspects of
C++, but gaining better debugging ability, trouble-free library making, support for
XML serialization and avoiding interoperability issues.

Restrictions

We have decided to implement edge-tracing algorithm without any support for el-
liptic edges and isolated sub-graphs, without any optimization for searching end-
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vertices and without handling issues regarding the numerical stability of the algo-
rithm (see Sec. 5.4). These issues could be addressed in the future.

Diagram serialization into XML

Instead of keeping the diagram in a plain text or binary file, we keep it as an XML
document and describe its format in an XSD schema. This allows us to easily
validate a file against the format. Furthermore, C# classes can be generated from
the schema that makes serialization and deserialization more convenient. The price
to pay is the greater size of the file and more time needed by an XML parser.

8.4 VdsLib structure

VdsLib is divided into several sections:

Algorithm contains the implementation of edge-tracing.

Geometry defines geometrical entities, such as sphere or Bezier curve. There is
also an implementation of angular distance comparer, code for Voronoi vertices
and edges geometry computation, geometric predicates, etc.

IO cares about reading generators from a text stream, serializing and de-serializing
the diagram, its XSD schema and pre-generated classes.

Topology defines generators and the model of VD(S) topology.

8.5 Computing a diagram with VdsLib

An example of computing a Voronoi diagram for a set of spheres follows. A list
of generators is read in the first step. Then an outer tetrahedron is computed and
added to the list in order to bound infinite regions (and regions that are too large).
This is achieved by computing an approximate bounding sphere of the original set of
generators, magnifying its radius (1.3 times in our case) and computing the minimal
equilateral tetrahedron that contains the sphere. Next step is creating an object
representing the edge-tracing algorithm and defining the input set. After that, the
construction of the diagram is started. It can run pretty long depending on the in-
put size and it can even throw an exception caused by some numerical error. When
the algorithm fails to find an initial vertex to start from, it returns false. Releasing
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the diagram releases also internal structures kept by the algorithm. When the con-
struction is finished, higher topology of faces and regions is created from the lower
topology. As the last step, edge geometry is computed.

// ge t some genera tor s
List<Generator> generators = ReadGenerators ( ) ;

// add outer t e t rahedron ( four more generators , 130% bounding sphere )
Generator [ ] outerTetra ;
Generator . ComputeOuterTetrahedron ( generators , 1 . 30 , out outerTetra ) ;
generators . AddRange ( outerTetra ) ;

// compute Voronoi diagram of spheres
ETDiagram diagram = null ;
EdgeTracing algo = new EdgeTracing ( ) ;
algo . DefineGenerators ( generators ) ;
i f ( algo . ConstructDiagram ( ) )

diagram = algo . ReleaseDiagram ( ) ;

// crea t e the t opo l o gy f o r f a c e s and reg ions
diagram . CreateHigherTopology ( ) ;

// compute the geometry o f edges
Factory geometryFactory = new Factory ( diagram ) ;
foreach ( ETEdge edge in diagram . Edges )

edge . Curve = geometryFactory . ProduceGeometry ( edge ) ;

// . . . use diagram . Generators , Ver t ices , Edges , Faces , Regions . . .

8.6 Implementation details

8.6.1 Edge-tracing algorithm

Follows our implementation of edge-tracing. This is more specific than Algo. 1 and
the implementation underneath this top-level code is slightly different from the al-
gorithm presented in [9]. For the representation of topology we use the näıve model
from Fig. 7.1. We store generator indices at vertex level only and derive them at
higher levels as it is shown on Fig. 7.5. Each vertex has four slots for incident edges
and each edge references two vertices. Our algorithm builds only the lower topology.
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// f i nd the f i r s t v e r t e x and push edge cand ida te s
VertexCandidate tmp ;
i f ( ! FindFirstVertexCandidate (out tmp ) )

return fa l se ;
ETVertex firstVertex = CreateNewVertex ( tmp ) ;
PushEdgeCandidates ( firstVertex ) ;

// t race edges
while ( IsThereAnyEdgeCandidateToProcess )
{

EdgeCandidate ec = PopEdgeCandidate ( ) ;
i f (ec . IsEdgeAlreadyDefined )

continue ;

VertexCandidate endVertexCandidate ;
i f ( ! FindEndVertexCandidate (ec , out endVertexCandidate ) )

continue ;

// ge t the e x i s t i n g end−v e r t e x or c r ea t e a new one i f not found
ETVertex endVertex = FindExistingVertex ( endVertexCandidate ) ;
i f ( endVertex == null )

endVertex = CreateNewVertex ( endVertexCandidate ) ;

DefineEdge (ec , endVertex ) ;
PushEdgeCandidates ( endVertex ) ;

}

// diagram cons t ruc t i on i s f i n i s h e d
return true ;

The algorithm uses vertex and edge candidates. These are simple structures5 which
may eventually become real vertices or edges. A candidate may represent an element
that already exists in the diagram. A vertex candidate may represent a configuration
of four spheres that will never become a vertex. Edge candidates reference their start
vertices but they do not have any end-vertex yet.
Recall Fig. 7.2 – there is a real vertex vs and some edge e that used to be an edge
candidate. Three vertex candidates vi, vj and ve were compared, ve became the
end-vertex and defined the edge.

At first, the algorithm finds some candidate for the very first Voronoi vertex. It uses
our approach described by Algo. 2. Four edge candidates are stored for tracing and
edge tracing loop begins. In our implementation we use a queue of edge candidates
instead of an edge-stack. We believe that a breadth-first discovery will define edges
earlier than a depth-first approach.

5C# structures are value-types – they are allocated on the stack rather than on the heap
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In the loop, some old edge candidates are ignored – their edges are already defined.
This is achieved by looking at incident edges of the start-vertex – when the corre-
sponding edge slot is not empty, the edge already exists and the candidate has to
be ignored.

From the edge candidate, a search for an end-vertex candidate is performed. It is
implemented as a linear search through almost all generators and hence it is the
main performance bottleneck and the source of numerical stability issues. The end-
vertex candidate does not have to be found. This is the case when an edge goes to
the infinity and such edges are ignored. We use Algo. 3 for searching end vertices.

To determine if the end-vertex candidate represents an existing vertex, we use a
dictionary – VIDIC. Our dictionary maps four generator indices to a pair of vertices.
Indices are sorted by the ascending ordering. If there is an entry for the given
candidate, we compare their positions for equality. Note that the coordinates are
floating-point numbers and we test them for an exact match. This works because
a vertex sphere is always computed from four generators in exactly the same way
thanks to the ascending ordering of vertex generator indices.

When an existing vertex is found in VIDIC, it is used directly as the end-vertex.
Otherwise, a new vertex is created, put into VIDIC and used as the end-vertex.
After that, a new edge is defined from the edge candidate and it is bound to the
start- and end-vertex. This is a possible source of errors: Imagine that a wrong end-
vertex has been found due to some numerical error in angular distance comparison.
The end-vertex may already have some edge in the corresponding slot. When the
algorithm tries to bind a new edge to this slot, an exception is thrown, the algorithm
fails an the user gets no diagram at all.

8.6.2 Visualization of Voronoi edges in OpenGL

Voronoi edges can be represented as quadratic rational Bezier curves. To render
them, we could either write a specialized shader or we could try to use some evaluator
which seems to be much more convenient. Unfortunately, OpenGL does not support
rational Bezier curves.

The trick that will help us here is a conversion of a d-dimensional rational Bezier
curve to a (d + 1)-dimensional ordinary Bezier curve. In other words, we get a ra-
tional Bezier, put it into homogeneous coordinates and treat is as it was an ordinary
Bezier.

In our case, we get a control point Pi = (xi, yi, zi) and its weight wi. All we have
to do is to send it as (xiwi, yiwi, ziwi, wi) and let OpenGL to treat is as an ordinary
Bezier curve. The perspective division evaluates it to the rational form.
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stride = 4 , // 4D
order = 3 ; // quadra t i c + 1

glEnable ( GL_MAP1_VERTEX_4 ) ;
glMapGrid1f ( numOfEdgeSegments , t0 , t1 ) ;
glMap1f ( GL_MAP1_VERTEX_4 , t0 , t1 , stride , order , controlPoints4D ) ;
glEvalMesh1 ( GL_LINE , 0 , numOfEdgeSegments ) ;
glDisable ( GL_MAP1_VERTEX_4 ) ;
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Chapter 9

Experiments and results

Different sets of spheres have different Voronoi diagrams. The topology as well
as the geometry of a diagram depends on the distribution of spheres in a set in
terms of their positions and radii. The resulting diagram can be very similar to
the well-known Voronoi diagram of a point set. For some data, the diagram can
be quite different. To investigate these cases, we have used our implementation of
edge-tracing algorithm to find diagrams in some classes of input data and measured
their characteristics. Recall that our implementation (Sec. 8) can find only a sub-
graph of the real diagram. It is quite slow and it does not care much about the
numerical stability. We believe that it is sufficient for experiments and hence we
have measured its characteristics as well.

9.1 Input data

We have focused on two classes of input data - proteins and random spheres.

9.1.1 Proteins

Proteins are large organic compounds made of chains of amino-acids. Therefore,
proteins consist of only a few types of atoms - hydrogen (H), carbon (C), nitrogen
(N), oxygen (O) and sulfur (S).

For our purposes, a protein is just a set of atoms and we interpret each atom as a
sphere (see Fig. 9.1). We use Van Der Waals atomic radii shown on Tab. 9.1. The
usual unit of length is one angstrom, 1Å = 1× 10−10m.
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Element symbol H C N O S

VDW radius [Å] 1.20 1.70 1.55 1.52 1.80

Table 9.1: Van Der Waals atomic radii [19]

Some proteins are simple - they consist of just a small number of atoms. Another
proteins can be quite large - about ten thousands of atoms and more. See Fig. 9.1a,
9.1b, and 9.1a for examples.

(a) 1EVD has
about 10 atoms

(b) 2RE7 has about 1000 atoms (c) 2FXJ has about 10 000 atoms

Figure 9.1: Proteins, rendered by QuteMol

There are about 50 000 protein models available at RCSB PDB1. Fig. 9.2 shows a
part of their histogram with respect to the number of atoms.

For our implementation of edge-tracing, it would be impossible to compute Voronoi
diagrams of all these proteins in a reasonable time because of the time complexity.
Therefore, we have chosen 292 random proteins from some intervals of the histogram
as it is shown in Tab. 9.2. The first table column represents the size of a protein as
the number of its atoms – it is an interval. The second column represents the rough
number of proteins in the interval (after some filtering through the database). The
number of samples from these proteins is given by the third column. Furthermore,
we have computed diagrams for another 500 proteins 101M–1BVV.

1RCSB Protein Data Bank at http://www.rcsb.org/pdb/home/home.do
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Figure 9.2: Distribution of PDB structures with respect to the number of atoms [2].

Atoms Count Proteins Count Selected Proteins Count
3-981 2 000 200

982-1960 8 000 50
1961-2939 8 500 25
2940-3918 6 000 10
3919-4897 4 400 5

12730-13708 600 2

Table 9.2: Random proteins selection.

9.1.2 Random spheres

A set of random spheres should provide diagrams that are more exotic than these
obtained from proteins because differences among their radii can be greater and
their positions can be somehow ”wilder”. Note that in proteins the radii are from
1.20Å to 1.80Å and the atoms are in chains because of peptide bonds.

A set of random spheres can not be arbitrary in order to get an interesting diagram,
i.e. different from VD(P). It needs to fulfill two requirements:

1. Neighboring spheres need to be close enough to each other with respect to
their radii.

2. No sphere is fully contained in another sphere.
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Spheres need to be close to each other in order to get some influence from the
difference in their radii. Consider the case when two spheres have some constant
radii r1 and r2. The more distant they are, the less impact the difference r1 − r2
have to the shape of their bisector. The second requirement is the requirement from
Chap. 3.

The first requirement is easy to accomplish by generating random coordinates from
an interval I ⊂ R3 of the specific size, but the second one is a little more difficult.

A näıve approach that generates random spheres in a 3-dimensional box will start
having problems when they cover most of the box, because the next sphere will be
probably eaten by some existing sphere or eat some existing one. This approach
could be improved by adding a logic that does not allow these cases.

We introduce a policy for the generation of a set of random spheres:

”Do not eat your best friend!”

We say that a sphere s has been eaten by another sphere q when s ⊂ q. Suppose
that a sphere si is a point, i.e. its radius ri is zero, and it starts growing in ri. The
first sphere sj eaten by si becomes the best friend of si.

The policy is formalized by Algo. 4. At first, the algorithm generates random posi-
tions for all spheres. Then it randomly generates their radii, carefully avoiding eating
best friends. The searching for the best friend can be optimized by creating the De-
launay triangulation for the points in the initialization phase, aggregating friends
for each vertex as the neighboring vertices and searching best friends among these
candidates. This improves the expected time complexity from O(n2) to O(nlog(n)).

Algorithm 4: Generate Random Spheres

S ← random set of N spheres with zero radii1

foreach s ∈ S do2

sbest ← find the best friend of s3

rmax ← the minimal radius needed by s to eat sbest4

r ← random radius, but not greater than rmax5

set r as the radius of s6

end7

return S8
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9.2 Measured characteristics

We have measured these global characteristics per each diagram construction:

CPU time as the amount of time spent by a computation process on CPU by
diagram construction.

Generators count as the size of the input, i.e. the number of generator spheres.

Isolated generators count as the number of Voronoi regions that the edge-tracing
algorithm did not found. When this number is zero, the algorithm have found
the complete diagram. Otherwise, there were some isolated subgraphs or el-
liptic edges that the algorithm could not find from the initial starting vertex.

Vertices count as the total number of Voronoi vertices found by the algorithm.

Edges count as the total number of Voronoi edges found by the algorithm.

Collecting these results for some random instances of an input data class, such as
proteins, gives us an approximated characterization of the entire class.

9.3 Experiment model

Our experiments look like the schema on Fig. 9.3. There are several input files, each
one describes a set of generator spheres. We send these files to VdsCmd. It uses
VdsLib to compute the diagram and to get its representation as an XML document.
It serializes the diagram and logs possible errors. Furthermore, VdsCmd collects the
characteristics and logs them to a statistics log file – one record per diagram. These
statistics are then converted to an XML file are further processed.

VdsLib
generators

file

diagram
file

VdsCmd

statistics
log file

log file

statistics
(XML)

Figure 9.3: Context of an experiment - the data flow.
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VdsCmd adds another four generators to each input set. These generators form
an outer tetrahedron which stops edges going to the infinity as well as edges going
to Voronoi vertices that are too far away. This should connect some parts of the
diagram that would be otherwise disconnected, solve some numerical issues and it
is convenient for the visualization of Voronoi edges.

For angular distance comparisons in edge-tracing, we use Shewchuk’s library for ge-
ometric predicates [17]. The library defines several predicates for orientation tests
among points in 2- and 3-dimensions. These tests are based on the sign of a deter-
minant. This should solve some issues regarding numerical stability of the angular
distance comparison but it does not solve all numerical issues of the algorithm. The
library is provided by VdsCmd to VdsLib explicitly. VdsLib does not use it by
default and does not depend on it.

9.4 Results

The experiments were performed on an AMD Athlon XP 2100+, 1.73 GHz, 1.50 GB
RAM. The results are available in enclosed CD.

9.4.1 Running time

Fig. 9.4 shows the running time of our edge-tracing implementation for different
data sets (proteins and random spheres). The horizontal axis represents the size of
the input set (i.e. the number of generators). The vertical axis shows how much
time did a process spent on CPU in the phase of diagram computation. Each mark
represents a diagram.

Recall that our implementation has the time complexity O(mn), where n is the
number of generators and m is the number of edges in the diagram. The number of
edges is expected to be m h O(n). Therefore, the expected running time should be
O(n2). Fig. 9.4 confirms that and shows some real examples.

9.4.2 The number of edges and vertices

The number of Voronoi edges and vertices in a diagram is expected to be linear with
respect to the size of the input set.

Fig 9.5 shows results from our experiments for both protein data (Fig. 9.5a) and
random spheres (Fig. 9.5b) – it is apparent that they both fulfill this expectation.
In the case of random spheres, isolated generators were subtracted before doing the

59



● ● ● ●
●
● ●

●
●●

●●
●●

●●●●
●●

●●

●●
●
●●●●●●

●●●●

●

●●
●
●
●●
●●●●
●●

●

●●
●●
●
●
●●
●●
●●
●●●
●
●●●●
●
●●
●

●

●
●●
●
●●●●●●●
●●
●●●●●●●●●●●●
●●●●●
●●

●●
●●
●
●
●●
●●
●
●●●●●
●●
●
●
●
●●
●●
●
●●●●
●
●●●●

●●●
●●
●●●●
●●●

●

●

●●
●●●●●●
●
●

●●
●
●●●●
●
●●
●●●
●●
●
●●●●●●●
●
●●

●●

●

●
●●●●
●
●●
●●
●●●
●
●●

●●
●

●

●

●

●

●●●●●●●●●●●●
●

●
●

●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●

●

●●●
●●●
●
●●●●●●●

●
●●

●●

●
●
●●
●
●

●●●●●●
●
●●

●

●
●
●●●
●
●●
●

●

●
●●

●

●
●

●
●

●

●

●

●
●●●

●

●
●●

●
●

●●

●

●

●

●●

●

●●

●

●●●

●

●●●

●

●●

●

●

●

●

●

●●

●
●
●

●●
●

●

●●●●

●
●

●●

●

●

●
●

●

●
●

●●●

●

●●
●

●
●●
●

●
●●

●

●●●
●

●●
●●●
●
●●

●

●●●
●●●●

●
●●

●
●

●

●

●
●

●

●
●●

●●

●

●

●

●

●●
●

●

●

●

●

●●

●

●●●
●

●

●
●●●●

●

●●

●

●
●
●
●
●

●

●

●
●
●

●

●

●●●

●
●
●●

●

●

●
●

●

●

●●
●
●

500 1000 1500

0
50

10
0

15
0

20
0

25
0

Diagram Computation − CPU Time

Generators Count

C
P

U
 s

ec
on

ds

(a) 500 proteins

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●
●●●●●●●●
●●●
●●●●●●●
●●
●
●●
●●●

●●
●●●●●●

●
●●
●
●●●
●●●

●●
●

●
●●

●
●
●●

●●

●

●

●●

●

●●

●
●●

●

●

●●●●

●

●
●●
●
●●

●●●

●
●
●
●
●

●
●
●●

●●
●

●

●

●

●

●

●

●

0 1000 2000 3000

0
20

0
40

0
60

0
80

0
10

00

Diagram Computation − CPU Time

Generators Count

C
P

U
 s

ec
on

ds

(b) 292 proteins

●●●●●●●●●● ● ● ● ●
●

●
●

●

●

●

●

●

●

0 500 1000 1500 2000 2500 3000

0
10

0
20

0
30

0
40

0
50

0

Diagram Computation − CPU Time

Generators Count

C
P

U
 s

ec
on

ds

(c) 23 sets of random spheres
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(d) 50 sets of random spheres

Figure 9.4: Running time of our edge-tracing implementation – the reality.

statistics. Note that each figure has a line that approximates the linear trend of the
respective quantities. The line represents the linear model of the data. Coefficients
of these models are listed in Tab. 9.3. This could be used to predict the total number
of vertices and edges in a Voronoi diagram of spheres for random or protein data
only from the knowledge of the number of atoms.
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(a) 292 proteins; linear model
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(b) 23 sets of random spheres; linear model

Figure 9.5: The number of edges and vertices with respect to the input size.

Vertices Edges Input data
Proteins 6.72 13.44 292 proteins

6.69 13.38 500 proteins
6.60 13.20 292 proteins, equal radii

Random spheres 6.52 13.04 23 sets, equal radii
5.72 11.44 23 sets
5.53 11.01 50 sets

Table 9.3: Coefficients of linear models for edges and vertices
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9.4.3 The number of isolated generators

Recall that our implementation of edge-tracing searches only for the maximal con-
nected set of edges from an initial start vertex and it can not handle elliptic edges.
Unfortunately, the true diagram can consist of several disconnected subgraphs (con-
nected only by faces). The fact that the algorithm did not find an edge of such a
disconnected subgraph is revealed by the presence of isolated generators – these are
the generators that do not define any region, because they do not participate to any
face, any edge and any vertex. Isolated generators can be identified easily from the
set of vertices or edges.

Our experiments show that the number of isolated generators in a diagram2 is almost
always zero for protein data and very small for sets of random spheres (about 2%
from the size of the input set).

Fig. 9.6 shows the number of isolated generators for protein data. There are some
outliers - for example, 1NIL has 65 and 1COD even 180 isolated generators which is
pretty much relative to their size. Rendering their models in JMol has shown obvious
z-fighting among spheres representing their atoms. We suspect these models to be
wrong.

Fig 9.7 shows the number of isolated generators for random spheres (generated by
Algo. 4). It seems that their count linearly depends on the size of the input set and
hence we express it in percents and use a median to get the expected value. Accord-
ing to our experiments, approximately 2% of an input set are isolated generators.

The values measured from our testing sets are summarized in Tab. 9.4.

median (% isolated) mad (% isolated) Input data
Proteins 0 0 292 proteins

0 0 500 proteins
Random spheres 1.881 0.911 23 sets

1.948 0.806 50 sets

Table 9.4: The percentage of isolated generators in a diagram – characterized by
median and its absolute deviation.

2we always add four generators that form an outer bounding tetrahedron
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(a) 500 proteins; left – linear model; right – percents and their median
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(b) 292 proteins; left – linear model; right – percents and their median

Figure 9.6: The number of isolated generators for protein data.
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(a) 23 sets of random spheres; left – linear model; right – percents and their median
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(b) 50 sets of random spheres; left – linear model; right – percents and their median

Figure 9.7: The number of isolated generators for random spheres.
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9.4.4 Summary

Our experiments showed that the number of isolated generators for protein data
is almost zero and about 2% from the input size for pseudo-random data. The
experiments also confirmed that the number of vertices and edges is linear with
respect to the input size. To be more specific, the total number of vertices seems to
be 6.5 times greater and the total number of edges seems to be 13.5 times greater
than the total number of atoms in a protein. Diagrams for the input size of about
1000 generators are still achievable for our implementation of edge-tracing, which is
not so low when looking at the histogram of protein size available at RCSB PDB.
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Chapter 10

Conclusion

We have explored Voronoi diagrams for a set of spheres. From the known algorithms
for VD(S) construction we implemented edge-tracing as a library. In the implemen-
tation we successfully use our new algorithm for finding an initial Voronoi vertex
(Algo. 2). With the help of this library and related applications, we performed
experiments on protein data as well as on random data and provided the results
in Chap. 9. We also proposed an algorithm for generating a pseudo-random set of
spheres avoiding any full-containment (Algo. 4).

The main purpose of the library is to provide some data for experiments and its prac-
tical usability is limited. The library is written in C#, the expected time complexity
of the algorithm is O(n2), it does not handle issues regarding numerical stability and
the current implementation ignores elliptic edges and isolated sub-graphs that may
occasionally occur in VD(S). On the other hand we have not found any library for
computation of VD(S) publicly available.

Despite these facts we successfully used the library in our experiments. They showed
that elliptic edges and isolated subgraphs are almost absent in protein data and also
rare (about 2%) in random data (generated by Algo. 4). The number of vertices
and edges is linear in the size of the input set and we experimentally obtained the
constants of the respective linear models.

10.1 Future work

The main drawback of our implementation is the expected O(n2) time complexity.
The running time of edge-tracing is dominated by the time spend on searching
for end-vertices which is O(n) in the current implementation. This behavior can
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be improved by utilizing some kind of geometric filtering. It could be worth to try
Delaunay triangulation of sphere centers for prediction of the end-vertices, especially
for protein data.

It seems that VD(S) for protein data is similar to the respective VD(P) for the
respective atom positions. This could be further investigated by comparing the
topology of these diagrams on the same data. Maybe the differences are big enough
to give better results in the tunnel-analysis in proteins.
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Appendix A

Screenshots

We rendered some diagrams obtained by the experiments discussed in Chap. 9.
Our tool for VD(S) visualization is shown on Fig. A.1. Following pictures are real
examples of diagrams computed by our library and rendered by our Viewer.

Fig. A.2 shows two diagrams. The first one is a complete VD(S) for a protein
consisting of about 800 atoms. As it was mentioned before, the number of isolated
generators for protein data is almost always zero hence it is expectable that the
diagram computed for a protein will be complete. The second diagram is a diagram
computed for a set of 2500 random spheres generated by Algo. 4. Note that it is not
a complete VD(S) because it has 50 isolated generators (2% of the size of the input
set) Fig. A.3 shows a dense set of 70 random spheres. The diagram is complete.

Fig. A.4 shows an importance of adding an outer tetrahedron to the original set of
generators. The role of the four spheres of the tetrahedron is to stop edges going to
the infinity or creating distant vertices that are too far away to be important but too
far away to cause numerical stability issues. When this outer tetrahedron is absent,
regions at the convex hull boundary of the original input set can be incomplete.

In Fig. A.5, there are some Voronoi regions for protein data. At the first look,
they seem to be quite linear, such as regions in VD(P). This is not any surprising
discovery because atoms in proteins have similar radii and they are not so close to
each other to have very significant impact on the shape of bisectors. Interesting
non-linear edges can be found in regions near the boundary of the protein. In other
words, an edge needs to be long enough to be bent enough and for this it needs
some space (on the convex hull boundary, for instance).

Next Fig. A.6 shows some regions for a random set of spheres. There things get more
interesting, because generator spheres can have greater differences in their radii. The
first two figures show regions with topology impossible for VD(P) and hard-to-find

70



in proteins. The next figure shows a small sphere between two great spheres (”big
brothers”). This configuration would result in an elliptic edge, but there is another
sphere that breaks the ellipse and creates two vertices on the same four generators.
Next figure is similar – there is also an elliptic edge segment. But we want to show
a different point here and it is that the ”Do-no-eat-your-best-friend-policy” followed
by Algo. 4 really works...

Circular configurations of atoms as they are shown on Fig. A.7 are quite frequent
in proteins. These configurations produce almost identical edges. This could be
problematic for edge-tracing – it fails on an attempt to define a wrong vertex.

Figure A.1: Viewer and the diagram of a set of random spheres
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(a) Full VD(S) for a protein with PDB id 1AAJ (about 800 atoms)

(b) VD(S) for a random set (about 2500 spheres, 50 isolated generators)

Figure A.2: Voronoi diagrams for different input sets

72



Figure A.3: Full VD(S) for a dense set of random spheres (70 generators)

(a) Small protein 1EVD with an outer
tetrahedron added to the set of atoms

(b) Small protein 1EVD without any
outer tetrahedron

(c) Valid Voronoi region for an atom
on the convex hull boundary (protein
1TKQ)

(d) Incomplete Voronoi region (caused
by the absence of the outer tetrahe-
dron)

Figure A.4: It is important to add an outer tetrahedron to the input data set.
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(a) Some ordinary Voronoi regions (protein 1AAJ)

(b) Voronoi edges are less linear for regions close to the convex hull boundary (proteins
1AUM and 1TKQ)

(c) A region containing an el-
liptic edge segment (protein
1TKQ)

(d) A region in the protein 1LVQ

Figure A.5: Voronoi regions for protein data
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(a) Two edges are defined by the same
three generators

(b) A region in the random set of spheres

(c) A small generator between two ”big
brothers”

(d) A sphere has been almost ”eaten” but it still
defines part of a small elliptic edge segment

(e) Two regions shown without their neighbors

Figure A.6: Voronoi regions from random spheres
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(a) Protein 1C2A

(b) Protein 1AUM

Figure A.7: Problematic configuration of atoms in proteins – almost identical edges
are a possible source of numeric stability issues
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