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jaderné fyziky

Abstrakt: Tato diplomová práce je zaměřena na Minimálńı SO(10) Teorii velkého
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Introduction
The search for understanding the fundamental structure of matter has always

been one of the core endeavors in physics. In the 20th century, particle physics has
enjoyed an immense flourishing thanks to the development of quantum mechanics
and quantum field theory, complemented by mathematical advancements in gauge
theories. On the experimental side, the arrival of large-scale particle colliders
brought forth a bewildering amount of newly discovered particles. All of this led
to the formulation of the Standard Model (SM) - a theory describing virtually all
of the matter and its interactions we deal with in our every day lives. It is the
most successful particle theory there has ever been, as it has been tested to an
astounding accuracy and it has stood up to most of the experiments to date. The
SM contains 3 generations of fermionic matter consisting of quarks and leptons,
3 fundamental interactions - strong, weak, and electromagnetic force mediated
by vector bosons, and last but not least it contains the Higgs field responsible
(among other things) for the generation of masses.

Despite all the successes the SM has had over the years it is a known fact
that it is not the complete theory of matter. This is true even if one ignores
the unanswered questions of dark matter, dark energy, and quantum gravity. At
the turn of the 21st century, the phenomenon of neutrino oscillations has been
conclusively established and this in turn implied that at least 2 neutrinos are
massive (albeit very light). This is a clear signal of physics beyond the Standard
Model (BSM) since the SM neutrinos are massless. Another phenomenon the SM
does not account for is the discrepancy of matter and antimatter we observe in
the universe.

There are various directions one can take when addressing the aforementioned
issues. One such direction of proposals describing BSM physics present the so-
called Grand Unified Theories (GUTs). The core idea of these model is the suppo-
sition of new fields residing at large-energy scales which allow for the unification
of the three gauge interactions present in the SM. In a sense, it is a relatively
straightforward extension of the SM since the structure of a symmetry broken
down at low energies is already present in the SM in the electroweak sector. As
GUTs contain new fields they also bring new predictions, such as the prediction
of the proton decay and magnetic monopoles.

In this thesis, there will be studied the minimal nonsupersymmetric SO(10)
GUT, which has been been dismissed in the 1980s as unphysical, because it was
thought to suffer from tachyonic instabilities. Recently, this has been shown to
be a mere artifact of the tree-level approximation in the perturbation expansion,
which has brought back the interest in the theory. In order to tame the tachyonic
issues, it is necessary to perform the computations of the 1-loop corrections to
the masses in the spectrum of the theory. This also brings up the perturbative
aspects of the theory in general, namely the identification of the Landau poles is
vital for the analysis of the stability of the predictions with respect to quantum
corrections within the theory. In order to understand the structure of higher
orders in the perturbative expansion of the theory, it is necessary to evaluate the
running of the couplings within the Higgs sector.

The purpose of this thesis is to calculate the beta functions of some of the
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scalar couplings in the Higgs sector. In order to understand the quantum correc-
tions better and to have independent checks of correctness, this will be done using
two methods: the direct diagrammatic approach and the Coleman-Weinberg ef-
fective potential method.

In the first Chapter, a historical and theoretical background of the SM is pro-
vided as well as a review of some of its salient features. Some of its shortcomings
are explained in more depth and this will motivate its extension in the form of
GUTs.

The second Chapter is devoted to a theoretical discussion regarding the Higgs
sector in the minimal nonsupersymmetric SO(10) GUT. The model is explicitly
defined via the Lagrangian and the Higgs mechanism is described. Subsequently,
the tachyonic issues are described in more depth as well as their remedies. Lastly,
the study of the perturbative aspects of the theory and, in particular, of the beta
functions is provided.

In order to understand the particular structure of the calculations, there is a
study of a toy SO(4) Higgs model presented in the third Chapter. The explicit
computations are described in detail, as they are much more transparent than in
the SO(10) case.

The fourth Chapter is devoted to the calculation of the selected beta functions
within the SO(10) GUT, which are the main results of this thesis. Thanks to the
work done in the previous chapter, the otherwise complex diagrammatic approach
is better understood.

In the fifth Chapter the results from Chapters 3 and 4 are verified. In par-
ticular, the beta functions of the selected scalar couplings are evaluated via the
effective potential method.
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1. Beyond Standard Model

1.1 Standard Model and its shortcomings
Today the most general theory describing the fundamental properties of mat-

ter is the Standard Model of Particle Physics, which is a self-consistent and renor-
malizable theory.

The SM is formulated in the language of quantum field theory and it is also
a gauge theory with the gauge group being SU(3) ⊗ SU(2) ⊗ U(1). The corre-
sponding gauge fields mediate the fundamental interactions of matter - SU(3)
is responsible for the strong interaction and SU(2) ⊗ U(1) is responsible for the
weak force and electromagnetism [1], [2]. To this day the SM is being tested and
its predictions have been confirmed to an astounding accuracy.

In this context it is perhaps appropriate to bring up the fact that all of the
matter which has been directly observed makes up only about 5% of the known
universe. The rest is made up of dark matter (about 25%) and dark energy
(about 70%). Curiously, the existence of dark matter and dark energy has only
been established through the cosmological observation of their effects while their
sources remain a mystery.

Putting the questions of dark matter and dark energy aside, it is known that
there are other phenomena which the SM does not account for. One such example
is the neutrino oscillations, which is the process of neutrinos changing their flavors
as they propagate through space and time and it implies that (at least 2) neutrinos
are massive. In other words, the neutrinos’ flavor and mass eigenstates differ. This
effect was conclusively observed at Super-Kamiokande for the case of atmospheric
neutrinos [3] and at the Sudbury Neutrino Observatories for the case of solar
neutrinos [4].

Another problem unexplained by the SM is the baryon asymmetry problem
which refers to the imbalance of baryon matter and antimatter observed in the
universe. A simple idea to resolve the question would be to consider the asym-
metry as an initial setting of the Big Bang, however, this explanation is widely
considered unsatisfactory. A much more natural assumption seems to be that
equal amounts of matter and antimatter were created by the Big Bang and thus
the overall baryon number would have been equal to zero as an initial setting.
If that is the case, there had to exist a process which violated the baryon num-
ber and hence created the asymmetry. The SM does in fact allow for a baryon
number violation via a non-perturbative processes referred to as sphalerons. In
particular, denoting the baryon number density by nB and the photon density by
nγ, the ratio of baryons to photons given by the theoretical prediction of the SM
(via sphalerons) reads

ηSM
B = nB

nγ

∼ ×10−19. (1.1)

However, the result above is in disagreement with the experiments which give the
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ratio

ηexp
B = nB

nγ

∼ 6 × 10−10. (1.2)

Therefore, sphalerons cannot explain the observed ratio of matter and antimatter
within the SM and so the baryon asymmetry problem remains unresolved.

There are other unresolved issues with the SM, including:

• gravity is not included in the theory

• the hierarchy problem

• the strong CP problem

• the charge quantization

There are many proposals of potential solutions to the mentioned issues but more
experimental evidence is needed in order to decide which one is correct.

As was mentioned earlier, there are three fundamental gauge forces described
by the SM. The strong nuclear force is mediated by an octet of gluons Ga

µ, which
are vector bosons associated to the group SU(3). The group SU(2) ⊗ U(1) has
four associated gauge bosons where the mass eigenstates are W +

µ , W −
µ , Zµ, and

Aµ. The first three mediate the weak nuclear force while the last one mediates
the electromagnetic force.

The fermionic content (also referred to as the matter content) of the SM
consists of three generations of quarks and leptons. All these fields interact with
each other via the gauge and Higgs fields in an elaborate way. This can be
summarized to an extent by their representations shown in the first section of the
Table 1.1. The first two numbers in the parenthesis refer to their transformation
properties with respect to the groups SU(3) and SU(2), while the last number
denotes their hypercharge.

Table 1.1: Field content in the SM

Particle type and chirality Representations
Left-handed Quarks (3,2,+1/6)
Right-handed up-type Quarks (3,1,+2/3)
Right-handed down-type Quarks (3,1,-1/3)
Left-handed Leptons (1,2,-1/2)
Right-handed Leptons (1,1,-1)
Higgs (complex scalar) (1,2,+1/2)
Gluons (8,1,0)
Weak Gauge Bosons (1,3,0)
Photon (1,1,0)

In the second section of the Table 1.1 there is the Higgs scalar doublet. The
presence of the doublet is necessary for the Higgs mechanism to take place which
spontaneously breaks the symmetry SU(2)L ⊗ U(1)Y → U(1)Q while generating
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masses via Yukawa interactions in a renormalizable way (see [2]). Lastly, the
transformation properties of the gauge bosons are given in the last section of the
Table 1.1.

1.2 Grand Unified Theories
When one tries to formulate a theory beyond the Standard Model (BSM) it

is necessary to make sure the new theory incorporates the SM since so many
of its predictions have been confirmed and thus it is clearly a good low-energy
effective theory. One class of such BSM theories is called the Grand Unified
Theories (GUTs); these offer a natural explanation for the occurrence of neutrino
oscillations, baryon asymmetry, and charge quantization.

There exist several hints at the existence of new physics at large energies. One
such hint comes from the study of the 1-loop renormalization group equations
(RGE) of the running gauge couplings in the SM. The solutions of the equations
are known (for a detailed analysis see e.g. [5]). Let the gauge couplings associated
with a gauge group be denoted by: gs for SU(3)c and g for SU(2)L and let

αi := g2
i

4π
. (1.3)

Then the graph of the running gauge couplings takes on a remarkably simple form
displayed in Figure 1.1. The fact that the couplings nearly converge suggests that
there may be a larger theory unifying the couplings at a scale MGUT ∼ 1016GeV
which is the core feature of GUTs 1. If there were new fields with large masses
(so that they would not have been able to be observed by today’s colliders), they
would affect the running of the couplings and this might then result in exact
convergence of the couplings.

Figure 1.1: Running of the gauge couplings gs and g in the SM (see [5]).

Another hint of new physics at large energies comes from the seesaw mecha-
nism which is a realistic proposal of a solution of the neutrino oscillations prob-

1Note that in the Figure 1.1 there is no coupling associated to U(1)Y . The reason for this
is that within the SM the overall normalization of the hypercharge is arbitrary. Therefore, the
U(1)Y coupling g′ can be rescaled which means it is not relevant for the observations of the
large unification scale from the SM point of view. However, once a GUT is constructed the
normalization of the hypercharge comes naturally.
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lem. The seesaw mechanism can be understood by considering the addition of
the non-renormalizable Weinberg d=5 operator to the SM, namely

Ld=5
W = 1

2cαβ

(
Lc

αH̃∗
) (

H̃†Lβ

)
, (1.4)

where LL = (νL, ℓL)T is the left-handed lepton doublet of the SM, H̃ = iσ2H
∗

with H being the SM Higgs doublet and cαβ are the elements of a 3 × 3 complex
symmetric matrix. The Weinberg operator generates Majorana mass terms for
the neutrinos, in fact, it is the unique operator at d=5 to do so.

In order to formulate a more complete theory, it is necessary to introduce a
mediating field which generates Ld=5

W at low energies (this is similar to the case
of the Fermi theory and the weak bosons). There are three ways to do that at
the tree level, with the mediating fields being a fermionic singlet, a scalar triplet,
or a fermionic triplet. The calculation of the masses of the neutrinos and the
mediating fields dictate that the mass of the left-handed neutrinos is proportional
to the inverse of the mass of the mediating field (the explicit formula depends on
the type of the seesaw mechanism). Since the upper bounds for the left-handed
neutrinos are very small (eV ballpark), the mass of the mediating fields has to
be large and explicit calculations show that it should be close to the MGUT scale
(although probably a few orders of magnitude smaller)2.

These are some of the main reasons to study GUTs so let’s look at how such
models come about. First thing one has to think about when formulating a GUT
is the gauge group of the theory. It is clear, that all of the content of the SM has
to be present within a broader model, which also means that the gauge group of
a GUT has to contain the SM gauge group.

Another thing to consider is the fact that in order to have one universal cou-
pling at large energies, the gauge group should be simple. Having these conditions
in mind, the candidate with the smallest gauge group is the SU(5) GUT, which
was identified by Georgi and Glashow in 1974 [7]. Within the new theory there
has to exist a Higgs scalar with a vacuum expectation value (VEV) which spon-
taneously breaks the SU(5) symmetry into the SU(3) ⊗ SU(2) ⊗ U(1) symmetry
of the SM. This is the same Higgs mechanism, which is present already in the
SM and is responsible for the symmetry breaking SU(2)L ⊗ U(1)Y → U(1)Q.
Unfortunately, the SU(5) GUT suffers from various problems - for example it is
greatly disfavored by its prediction of sin2 θW (where θW is the weak-mixing an-
gle) at low energies where it does not coincide with the experimentally measured
value. Therefore, in what follows I will focus on the next smallest possible theory
which is the SO(10) GUT.

The SO(10) GUT was formulated by Fritzsch and Minkowski in 1975 [8], [9].
The group SO(10) has rank 5 as opposed to the SM gauge group which has rank
4. This allows for multiple stages in the symmetry breaking process down to
the SM gauge group and there also exist various breaking chains with different
intermediate stages (for details see [10], [11]).

Since the SO(10) gauge group is 45-dimensional, it contains new gauge bosons
mediating new interactions compared to the SM which has a 12-dimensional gauge

2In principle, the mediating field which generates the Weinberg operator does not necessarily
have to have a large mass. It could also be that the corresponding Yukawa coupling is very
small.
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group. This in turn generates new predictions of GUTs, for example the afore-
mentioned proton decay. Particularly, the minimal SO(10) GUT described in
[10], [12] is very interesting for the near future experiments, because it has very
robust predictions for the proton lifetime which are in the vicinity of today’s lim-
its 3. In about a decade, the observatory Hyper-Kamiokande [13] should achieve
at least an order of magnitude more, which would then tell us more about mat-
ter stability. Another striking prediction of GUTs is the existence of magnetic
monopoles [14], [15].

3E.g. in Super-Kamiokande the measured lower limit for the proton decay is around 1034yr

9



2. Higgs sector of the SO(10)
GUT

2.1 Model description
A key ingredient to any GUT is a Higgs sector, which is responsible for the

spontaneous symmetry breaking while generating masses for the fields in the
theory. This thesis is mainly focused on the minimal non-SUSY SO(10) GUT
described in detail in [10]. In this model the Higgs fields belong to the direct sum
45 ⊕ 126 of SO(10) where the 45 denotes the adjoint representation and 126
denotes the self-dual 5-index antisymmetric tensor irreducible representation. In
what follows, the real Higgs field in 45 will be denoted by φij and the complex
Higgs field in 126 by Σijklm. The complex conjugated representation will be
denoted by Σ∗

ijklm. These representations’ properties can be also expressed by
the equations

φij = −φji (antisymmetry)
Σ[ijklm] = Σijklm (antisymmetry)

Σijklm = − i

5!ϵijklmnopqrΣnopqr (self-duality)
(2.1)

where ϵ is the fully antisymmetric Levi-Civita tensor determined by the conven-
tion ϵ12345678910 = +1 and a sum over repeating indices is implicit (for the rest of
the thesis).

The Higgs sector of the SO(10) GUT is defined in the following way [10]. The
SO(10) generators

(
T̂ αβ

)
ij

are defined as
(
T̂ αβ

)
ij

= − i√
2

(δαiδβj − δαjδβi) (2.2)

and the gauge fields Aαβ
µ in the adjoint representation satisfy

(Aµ)ij = 1
2Aαβ

µ

(
T̂ αβ

)
ij

. (2.3)

From these building blocks the covariant derivatives are constructed as

Dµφij =∂µφij − ig [Aµ, φ]ij
DµΣijklm =∂µΣijklm − ig

{
(Aµ)ia Σajklm + (Aµ)jb Σibklm+

+ (Aµ)kc Σijclm + (Aµ)ld Σijkdm + (Aµ)me Σijkle

}
.

(2.4)

The gauge field tensor is defined in the standard way by

(F µν)ij = ∂µ (Aν)ij − ∂ν (Aµ)ij − ig [Aµ, Aν ]ij (2.5)
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Finally, the kinetic part of the Higgs model has the following form

Lkin = 1
4 (Fµν)ij (F µν)ij + 1

4 (Dµφ)†
ij (Dµφ)ij + 1

5! (DµΣ)†
ijklm (DµΣ)ijklm . (2.6)

The renormalizable potential of the introduced Higgs fields has the general form

V0 (φ, Σ, Σ∗) =Vφ(φ) + VΣ (Σ, Σ∗) + Vmix (φ, Σ, Σ∗)

Vφ(φ) = − µ2

4 (φφ)0 + a0

4 (φφ)0(φφ)0 + a2

4 (φφ)2(φφ)2,

VΣ (Σ, Σ∗) = − ν2

5! (ΣΣ∗)0 + λ0

(5!)2 (ΣΣ∗)0 (ΣΣ∗)0 + λ2

(4!)2 (ΣΣ∗)2 (ΣΣ∗)2 +

+ λ4

(3!)2(2!)2 (ΣΣ∗)4 (ΣΣ∗)4 + λ′
4

(3!)2 (ΣΣ∗)4′ (ΣΣ∗)4′ +

+ η2

(4!)2 (ΣΣ)2(ΣΣ)2 + η∗
2

(4!)2 (Σ∗Σ∗)2 (Σ∗Σ∗)2 ,

Vmix (φ, Σ, Σ∗) =iτ

4! (φ)2 (ΣΣ∗)2 + α

2 · 5!(φφ)0 (ΣΣ∗)0 + β4

4 · 3!(φφ)4 (ΣΣ∗)4 +

+ β′
4

3! (φφ)4′ (ΣΣ∗)4′ + γ2

4! (φφ)2(ΣΣ)2 + γ∗
2

4! (φφ)2 (Σ∗Σ∗)2 ,

(2.7)

where the following notation has been used

(φφ)0 = φijφij

(φφ)2 = φijφik ≡ (φφ)jk

(ΣΣ∗)0 = ΣijklmΣ∗
ijklm

(ΣΣ∗)2 = ΣijklmΣ∗
ijkln ≡ (ΣΣ∗)mn

(ΣΣ∗)4 = ΣijklmΣ∗
ijkno ≡ (ΣΣ∗)lmno ,

(2.8)

and the full contractions are defined by

(ΣΣ∗)2 (ΣΣ∗)2 = (ΣΣ∗)mn (ΣΣ∗)mn ,

(ΣΣ∗)4 (ΣΣ∗)4 = (ΣΣ∗)lmno (ΣΣ∗)lmno ,

(ΣΣ∗)4′ (ΣΣ∗)4′ = (ΣΣ∗)lmno (ΣΣ∗)lnmo ,

(φ)2 (ΣΣ∗)2 = φmn (ΣΣ∗)mn ,

(φφ)4 (ΣΣ∗)4 = φlmφno (ΣΣ∗)lmno ,

(φφ)4′ (ΣΣ∗)4′ = φlmφno (ΣΣ∗)lnmo ,

(φφ)2(ΣΣ)2 = (φφ)jk(ΣΣ)jk.

(2.9)

In the potential, there are 3 parameters with the dimension of mass {µ, ν, τ},
then there are 9 real dimensionless parameters playing the role of quartic scalar
couplings {a0, a2, λ0, λ2, λ4, λ′

4, α, β4, β′
4}, and lastly there are 2 complex dimen-

sionless couplings {η2, γ2}.
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With all the necessary definitions at hand, it is now possible to write down
the full Lagrangian of the Higgs model which will be studied in this thesis

L = Lkin − V0 (φ, Σ, Σ∗) . (2.10)

To summarize the field content of the Higgs sector of the SO(10) GUT in [10]
- there are 45 vector gauge bosons and the Higgs scalars residing in the 45⊕126.
For the details of the decompositions of the representations, see Appendix A.

2.2 Spontaneous symmetry breaking in SO(10)
One of the core ingredients of a realistic SO(10) GUT (or any other BSM

theory) is that at low energies the model has to coincide with the SM. In order
for that to happen, the large gauge group of the SO(10) theory has to be reduced
to the one of the SM SU(3)⊗SU(2)⊗U(1). This symmetry breaking is achieved
via the so-called Higgs mechanism, which is explained in detail in e.g. [17]. This
mechanism is also a part of the SM where gauge group SU(3)c ⊗SU(2)L ⊗U(1)Y

is broken down to SU(3)c ⊗ U(1)Q.
In order to break the SO(10) symmetry, scalar fields from the Higgs sector

need to receive a VEV. There are 3 SM scalar singlets in the 45 ⊕ 126 represen-
tation, namely

(1, 1, 1, 0)φ (1, 1, 3, 0)φ (1, 1, 3, +2)Σ, (2.11)

where the multiplets are described in the language of the SO(10) subgroup
SU(3)C ⊗SU(2)L ⊗SU(2)R ⊗U(1)B−L. The reason one looks for the SM singlets
in this context is that VEVs cannot break the SM symmetry group in order to
end up with the SM low energy theory. The subscripts φ or Σ symbolize the fact
that the first two multiplets reside in the 45 while the third in 126. The VEVs
of the multiplets (2.11) are denoted by

⟨(1, 1, 1, 0)φ⟩ =
√

3ωb

⟨(1, 1, 3, 0)φ⟩ =
√

2ωr

⟨(1, 1, 3, +2)Σ⟩ =
√

2σ.

(2.12)

The VEVs of the real φ-fields are real while the VEV of the complex Σ-fields is
in general complex. However, through a redefinition of the overall phase of the
Σ-fields the VEV σ can be made real as well.

In the case of the SO(10) GUT in [10] the symmetry breaking may take
place in multiple stages. Interestingly enough, there is more than one possible
intermediate breaking stage. Following [11] and the notation therein, some of the
potentially realistic choices for the intermediate symmetry are

SO(10) → SU(4)C ⊗ SU(2)L ⊗ U(1)R → SU(3)c ⊗ SU(2)L ⊗ U(1)Y

SO(10) → SU(3)c ⊗ SU(2)L ⊗ SU(2)R ⊗ U(1)B−L → SU(3)c ⊗ SU(2)L ⊗ U(1)Y

SO(10) → SU(5) ⊗ U(1) → SU(3)c ⊗ SU(2)L ⊗ U(1)Y .
(2.13)
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Table 2.1: Summary of the breaking patterns depending on the structure of the
VEVs [10]. There is the so-called ’flipped’ SU(5) ⊗ U(1) scenario in the last
column denoted by 5′1Z′ described in [20], [21].

ωb ̸= 0, ωr ̸= 0 ωb = 0, ωr ̸= 0 ωb ̸= 0, ωr = 0 ωb = ωr ̸= 0 ωb = −ωr ̸= 0
σ = 0 3c2L1R1B−L 4c2L1R 3c2L2R1B−L 51Z 5′1Z′

σ ̸= 0 3c2L1Y 3c2L1Y 3c2L1Y 5 3c2L1Y

A few explanatory remarks are in order here: the subscripts c stand for color,
L and R stand for left and right, Y stands for hypercharge, and B − L stands
for (baryon number) - (lepton number), where the (baryon number) is defined as
1/3 for quarks and 0 for other fields and the (lepton number) is defined as 1 for
leptons and 0 for other fields. The symmetry breaking of SO(10) is facilitated by
the 45 while the symmetry breaking of the intermediate stage is by the 126.

Regarding the intermediate stage corresponding to the gauge group SU(5) ⊗
U(1), this scenario has been shown to be very problematic in terms of phe-
nomenology. This is due to the fact that it is very difficult to satisfy the current
limits on the proton lifetime as well as the SM gauge couplings unification con-
dition, which is a must in a GUT. For this reason, this option is ultimately
discarded.

There are several ways how to set up the VEVs which imply various breaking
patters. These breaking patterns are summarized in the Table 2.1. The phe-
nomenologically favored structure of the VEVs is the one where σ corresponds
to the seesaw scale. One of the other two VEVs in 45 then corresponds to the
larger scale of the grand unification [19].

2.2.1 Mass generation
So far in this chapter there have been discussed the aspects of the Higgs

mechanism regarding the symmetry breaking chains. Another inseparable (and
vital) feature of the Higgs mechanism is the generation of masses of the physical
fields in the theory. The standard description of the Higgs mechanism in the
introductory textbooks (cf. [17]) is to take the derivative of the potential with
respect to all its variables (i.e. fields) and equate the obtained expressions to
0. This way one has formulated the conditions for all the stationary points of
the potential and now it may be possible to find a minimum having the residual
symmetry, which one desires in a given context. However, this method would be
extremely inefficient in the present setting.

In the case of the Higgs sector presented in this section, there was already
argued that the fields (2.11) should receive the non-zero VEVs based on the
symmetry group requirements. This implies the rest of the (many) scalar fields
will have their VEVs equal to 0. Thus, the proper way to calculate the stationarity
conditions here is to plug the three VEVs (2.12) into the Higgs potential (2.7)
along with the rest of VEVs (which are equal to 0). Subsequently, one takes
the derivatives with respect to three singlets (2.12) and set these derivatives
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equal to zero. Afterwards, the three equations (corresponding to the stationarity
conditions) can be solved for the parameters {µ, ν, τ} with the dimension of mass,
giving (cf.[10], [22])

µ2 = (12a0 + 2a2) ω2
b + (8a0 + 2a2) ω2

r + 2a2ωbωr + 4 (α + β′
4) |σ|2

ν2 = 3 (α + 4β′
4) ω2

b + 2 (α + 3β′
4) ω2

r + 12β′
4ωbωr + 4λ0|σ|2+

+ a2
ωbωr

|σ|2
(ωb + ωr) (3ωb + 2ωr)

τ = 2β′
4 (3ωb + 2ωr) + a2

ωbωr

|σ|2
(ωb + ωr) .

(2.14)

After these results are plugged back into the potential (2.7) the physical spectrum
of theory is revealed. In order to obtain the scalar spectrum explicitly, it is
necessary to study the second derivatives of the Higgs potential potential.

However, once the masses are computed, there appear a few tachyonic in-
stabilities in the scalar spectrum. In particular, two pseudo-Goldstone boson
multiplets1 have been found to potentialy suffer from this problem (cf. [23], [25])
with their tree-level masses being

M2
S(1, 3, 0) = 2a2 (ωr − ωb) (ωb + 2ωr)

M2
S(8, 1, 0) = 2a2 (ωb − ωr) (ωr + 2ωb) ,

(2.15)

where the fields have been described by their transformation properties with
respect to the SM gauge group. Their tachyonicity would imply that the the
stationary points found above do not correspond to physical vacua - this is referred
to as the selected vacuum being unstable. What this means is that the parameters
appearing in (2.15) have to be constrained into certain domains in order to make
sure the vacuum is stable. Namely, the parameters have to satisfy

a2 > 0

−2 <
ωb

ωr

< −1
2 .

(2.16)

Note that it has been shown that for the case τ = 0 the conditions become (cf.
[23], [25], [26])

a2 > 0

−1 <
ωb

ωr

< −2
3 .

(2.17)

Comparing the conditions with Table 2.1, one arrives at the fact that the inter-
mediate breaking stage would have to be in the vicinity of SU(5)′ ⊗ U(1)Z′ . As
was already mentioned above, this scenario is disfavored due to phenomenology.
This is true when one talks about the minimalistic setting of theory, which means
that there might exist various extension of the model which would allow for this
intermediate symmetry group. However, by introducing more free parameters the
theory becomes less predictive and loses simplicity and elegance.

1Note that these pseudo-Goldstone bosons belong to the 45 in the scalar spectrum.
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These observations have been made already in the 1980s and, subsequently
the minimal SO(10) unification models with the Higgs fields belonging to the
adjoint representation were dismissed as unphysical [23], [25], [26]. Therefore,
these models fell out of the spotlight for about 30 years until recently when it
has been shown that these drawbacks are in fact mere artifacts of the tree-level
approximation [27]. In fact, the tachyonic instabilities can be avoided if one
goes to higher orders in the perturbative expansion. The formulae for the masses
squared (2.15) then receive corrections and, subsequently, the available domains in
the parameter space are adjusted, allowing for more realistic symmetry breaking
patterns.

2.2.2 Perturbative aspects of the Higgs sector
The observations made in the previous subsections call for a comprehensive

study of all of the masses in the scalar spectrum and their 1-loop corrections.
This is an ongoing project and this thesis is effort within that direction. The
(non)tachyonicity of the physical masses is studied [10] via the second derivatives
of the effective potential [28, 29] in a vacuum. However, these corrections depend
on the renormalization scale µ. Therefore, it is important to know the dependence
on µ of the scalar parameters appearing in the corrections in order to study the
reliability of the results.

A dominant role have the scalar couplings a0 and a2 among the others, since
they appear not only in the 1-loop corrections but, crucially, a2 appears already at
the tree-level, where it multiplies the (potentially) negative expressions in (2.15).
This implies the couplings a0 and a2 should be under control which can be studied
by calculating their beta functions defined by

βai
= µ

∂ai

∂µ
. (2.18)

This is related to another issue of the so-called Landau poles which are defined as
the scale at which the pertubartive approach breaks down. Formally, it is the scale
where the sub-leading corrections become too large and thus the perturbative
expansion loses validity. A notorious example of this phenomenon is the running
of the electric charge in quantum electrodynamics (QED), described in e.g. [30].
Denoting the effective charge by eeff (Q2) and the renormalized coupling by eR :=
eeff (m) for an arbitrary energy scale m, it can be shown that the sum of all
quantum corrections to the photon propagator made out of vacuum polarization
loops (depicted in Figure 2.1) yields the following expression

e2
eff(Q) = e2

R

1 − e2
R

12π2 ln Q2

m2

. (2.19)

It is now easy to see what is meant by the pole, as the effective charge in QED
eeff (Λ2

Landau) → ∞, where the Landau pole is ΛLandau ≈ 10286eV .
Going back to the SO(10) Higgs sector, the running scalar couplings in (2.7)

tend to have the Landau pole close to the unification scale MGUT ∼ 1016GeV .
This is so because below the unification scale there are way less propagating fields
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Figure 2.1: The sum of QED vacuum polarization loop corrections to all orders.

than above MGUT (since, e.g., the scalar fields in 45 ⊕ 126 tend to have their
masses around MGUT ). Therefore, it is natural to expect that the beta functions
for the running scalar couplings will have much larger numerical coefficients above
the scale MGUT than below it. Thus, the perturbative approach is much more
likely to break down above MGUT . In order for the predictions of the theory
(e.g. the scalar masses discussed earlier) to be stable with respect to quantum
corrections, the running couplings need to be constrained such that their Landau
poles appear at higher energies than MGUT .

For the reasons laid out in this section, the Chapters 4 and 5 will be devoted
to a detailed computation of the beta functions of the scalar couplings a0 and
a2 in the Higgs sector of the SO(10) GUT which will be the main results of
this thesis. The evaluation of the beta functions of a0 and a2 will be done using
two methods: the direct diagrammatic approach (Chapter 4) and the Coleman-
Weinberg effective potential method (Chapter 5).

Both computational methods will be also presented for an SO(4) toy model
in Chapter 3 and in Chapter 5, where the calculations are much simpler. This
experience will then prove beneficial for obtaining the main results of this thesis
regarding the SO(10) GUT.

It is appropriate to acknowledge that the beta functions of the rest of scalar
couplings in the Higgs sector are also necessary for the full analysis of the pertur-
bative aspect of the model. However, that goes beyond the scope of this work.

16



3. Running of the couplings a0
and a2 in SO(4) - diagrammatic
approach

For the computation of the desired beta functions of the running couplings in
the Higgs sector of SO(10) GUT two methods will be used: the explicit summa-
tion of Feynman diagrams and the Coleman-Weinberg effective potential method.
The latter of the two is much more convenient and efficient while the former offers
perhaps a bit more insight to various contributions and more importantly, it offers
an independent check of correctness of the results. It is worth noting that the
diagrammatic approach was implemented both by evaluating all of the relevant
diagrams by hand and by developing a code in Mathematica, which calculated all
of the diagrams. The program confirmed all of the results that will be presented
in this chapter.

3.1 SO(4) Higgs model
First, it is appropriate to discuss the reason to study the SO(4) Higgs model.

The diagrammatic approach to the evaluation of the beta functions of a0 and a2
in the SO(10) Higgs model turns out to be fairly complex. This can be seen by
looking at the expression for Vφ in the SO(10) Higgs model (2.7) (relevant for
the running of the couplings a0 and a2) which reads

Vφ = −µ2

4 (φijφij) + a0

4 (φijφij)(φklφkl) + a2

4 (φijφik)(φljφlk). (3.1)

In both of the quartic interaction terms in (3.1) there are 4 independent indices
running through {1,..,10} which amounts to 104 individual terms (of course before
considering various symmetries of the structure). However, the goal is to calculate
the 1-loop beta functions of the couplings a0 and a2 within the SO(10) Higgs
model. Therefore, the product L(x)L(y) needs to be evaluated, which contains
108 terms just based off of the number of indices and their domains. The fact
that the number of the individual interaction terms is so large makes the explicit
evaluation of all relevant Feynman diagrams fairly difficult. For this reason, it
appeared to be beneficial to investigate a simpler theory which would still feature
the same structure as the SO(10) model.

The aim of this thesis is to compute the beta functions of the scalar couplings
a0 and a2 in the SO(10) model. Therefore, it will be necessary to evaluate 1-loop
contributions to two different 4-point functions of the form Γ(φφ → φφ) as well
as the self-energy diagram for one of the scalar fields (this will be made explicit
in sec.4.3). The most convenient choice of the 4-point functions will be shown to
be

• Γ1 = Γ(φ12φ12 → φ12φ12)

• Γ2 = Γ(φ12φ13 → φ42φ43)
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In order to simplify the evaluation of Γ1 and Γ2 it would be convenient to find
the smallest SO(N) Higgs model with the same structure as in (3.1) which would
be able to produce such 4-point functions. It is now easy to see that the optimal
choice is the SO(4) Higgs model.

For the reasons laid out above, this Chapter will be devoted to the evaluation
of the beta functions of the scalar couplings a0 and a2 within the SO(4) Higgs
model. The Lagrangian of the SO(4) theory has the form

L = Lkin − Vφ (φ) , (3.2)

where

Lkin = 1
4 (Fµν)ij (F µν)ij + 1

4 (Dµφ)†
ij (Dµφ)ij

Vφ = −µ2

4 (φijφij) + a0

4 (φijφij)(φklφkl) + a2

4 (φijφik)(φljφlk).
(3.3)

In the expressions above all of the indices now run through {1,..,4}. The covariant
derivatives in (3.3) are defined by the formula (2.4) with the indices again running
through {1,..,4}.

By comparing (3.3) with (2.6) and (2.7) one can infer that the index struc-
ture of the SO(4) model is the same as in the SO(10) model. However, since
the number of individual interaction terms in (3.2) is much smaller than in the
SO(10) scenario (i.e. in (2.6) and (2.7)), the calculations here become much more
transparent. This way a lot will be learned from evaluating the beta functions
of the scalar couplings a0 and a2 within the SO(4) Higgs model. The gained
knowledge will then be translated into the calculations within the SO(10) model
presented in the next Chapter.

Needless to say, the SO(4) model does not resemble a realistic physical theory
of our universe in any shape or form. Its purpose is to merely help understand
the structure of the Feynman diagrams.

3.2 Derivation of the beta functions of a0 and a2
within the SO(4) Higgs model

The running of the couplings a0 and a2 will be calculated in the minimal
subtraction (MS) scheme. To begin with, the bare Lagrangian of the theory has
the form (following the notation in [32])

LB
φ =1

4
(
DµφB

)†

ij

(
DµφB

)
ij

− µ2

4 (φBφB)0

− aB
0
4 (φBφB)0(φBφB)0 − aB

2
4 (φBφB)2(φBφB)2,

(3.4)

where the following notation was used

(φφ)0 = (φijφij)
(φφ)2(φφ)2 = (φijφik)(φljφlk).

(3.5)
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The wave-function renormalization factor Zφ is defined by

φB
ij =

√
Zφφij (3.6)

where (ij) is an arbitrary pair of indices. It is convenient to recast the factor Zφ

as

Zφ = 1 + ∆Zφ. (3.7)

The bare Lagrangian may be expressed in the form

LB
φ = Lφ + δLφ (3.8)

where (neglecting the term quadratic in φ)

Lφ = 1
4 (Dµφ)†

ij (Dµφ)ij − a0

4 (φφ)0(φφ)0 − a2

4 (φφ)2(φφ)2. (3.9)

The counterterm-Lagrangian then reads

δLφ = ∆Zφ
1
4 (Dµφ)†

ij (Dµφ)ij − δa0

4 (φφ)0(φφ)0 − δa2

4 (φφ)2(φφ)2. (3.10)

The counterterms δa0 and δa2 are related to the bare quantities by

ai + δai
= aB

i Z2
φ. (3.11)

It is useful to recast the counterterms as

δai
= aiKai

. (3.12)

With the counterterms at hand the bare coupling can be written down as

aB
i = ai(1 + Kai

)Z−2
φ . (3.13)

The dimensional regularization (DR) procedure with the convention d = 4 − 2ϵ
will be used in what follows. A regularization scale µ with the dimension of mass
is introduced into the Lagrangian through the definitions

â0 = a0µ
−2ϵ

â2 = a2µ
−2ϵ

ĝ = gµ−ϵ.

(3.14)

19



With definitions above in mind, the Lagrangian (3.8) within the DR scheme reads

LDR
φ =1

4Zφ (Dµφ)†
ij (Dµφ)ij

− â0µ
2ϵ

4 (φφ)0(φφ)0 − â2µ
2ϵ

4 (φφ)2(φφ)2

− â0µ
2ϵKa0

4 (φφ)0(φφ)0 − â2µ
2ϵKa2

4 (φφ)2(φφ)2.

(3.15)

The running of the scalar couplings a0 and a2 is given by their corresponding
beta functions defined by

βâi
= µ

∂âi

∂µ
. (3.16)

Plugging the relation (3.14) into (3.16) gives

µ
∂âi

∂µ
= µ−2ϵ+1 ∂ai

∂µ
− 2ϵâ. (3.17)

Now, recalling the relation aB
i = ai(1 + Kai

)Z−2
φ and differentiating both sides

with respect to µ gives to the leading order

0 = ∂aB
i

∂µ
= ∂

∂µ

(
ai (1 + Kai

) Z−2
φ

)
=

=∂ai

∂µ
(1 + Kai

− 2∆Zφ) + ai

(
∂Kai

∂µ
− 2∂∆Zφ

∂µ

)
,

(3.18)

where the fact that aB
i is constant with respect to µ was utilized. Given that

the last expression is equal to 0, it can be further recast (to the leading order in
powers of the coupling) as

∂ai

∂µ
= ai

(
−∂Kai

∂µ
+ 2∂∆Zφ

∂µ

)
. (3.19)

Plugging the last equation into (3.17) gives (neglecting terms ∼ O(ϵ))

βâi
= µ

∂âi

∂µ
= µ−2ϵ+1ai

(
−∂Kai

∂µ
+ 2∂∆Zφ

∂µ

)
. (3.20)

The eq. (3.20) is the main result of this section as it gives an explicit prescription
of the running of the couplings a0 and a2 within the SO(4) Higgs model.

The next step is to calculate the quantities Kai
and ∆Zφ which will be de-

scribed in detail in the following sections.
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3.3 Evaluation of ∆Zφ

Within the MS scheme the wave-function renormalization factor Zφ = 1+∆Zφ

is fixed via (see e.g. [30])

Zφ = 1 +
∂ΣMS

φ (p2)
∂p2

⏐⏐⏐⏐⏐
p2=m2

φ

. (3.21)

The quantity ΣMS
φ (p2) corresponds to the 1-loop corrections to the scalar prop-

agator.
The 1-loop contributions to the scalar propagator relevant for the evaluation

of ∆Zφ in (3.21) originate in the term containing covariant derivatives in (3.15).
The relevant interaction terms of the form Aφφ may be recast as

iĝAa
µ

(
∂µφ†

i (T aφ)i − (T aφ)†
i ∂µφi

)
. (3.22)

Now, it is necessary to evaluate the 1-loop contribution produced by the inter-
action term (3.22). The Feynman rule corresponding to the vertex produced by
this term is given in Figure 3.1. The 1-loop contribution to the scalar propagator
coming from (3.22) is shown in Figure 3.2.

Before one can evaluate the integral corresponding to the diagram in Figure
3.2 it is appropriate to discuss the gauge of the vector boson propagator 1. The
general form of the propagator in the Rξ-gauge reads

Dµν
ξ = i

−gµν + (1 − ξ) lµlν

l2−ξM2

l2 − M2 + iϵ
. (3.23)

Ultimately, the choice of a particular gauge is a matter of preference as the final
beta functions do not depend on it. Throughout this thesis, the Lorentz gauge
(also referred to as the Landau gauge) will be utilized, i.e. ξ = 0. This gauge
choice has the following advantages:

• The Goldstone bosons have the same scalar couplings as they would in
the ungauged scalar model. This means that one has to work with the
Lagrangian given in (3.15) and account for the contributions of all the
scalar fields therein the same way. This is a welcome feature because one
does not need to worry about which degrees of freedom are physical and
which are not when it comes to the calculations in this chapter.

• The interaction terms containing the Higgs scalars and the Faddeev-Popov
ghosts are proportional to ξ. Therefore, thanks to the Lorentz gauge ξ = 0
there will be no diagrams with ghosts relevant in this thesis.

The contribution of the self-energy diagram depicted in Figure 3.2 reads (for
ξ = 0)

ΣMS
φ

(
p2
)

= (i)2(−1)T a
ijT

b
jiδabĝ

2µ2ϵ
∫ ddl

(2π)d

i(2p + l)µ(2p + l)ν

l2 − m2
φ

Dµν(l). (3.24)
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Figure 3.1: Feynman rule corresponding to the interaction in (3.22).

Figure 3.2: The self-energy diagram of a scalar field.

After performing the usual steps - Feynman parametrization and the DR
master formula (see Appendix B) - the result is

ΣMS
φ

(
p2
)

= ĝ2C2(Adj.) 3
16π2ϵ

p2 + (irrelevant terms), (3.25)

where C2(Adj.) is the quadratic Casimir of the adjoint representation. The sum-
mand called (irrelevant terms) represents the terms, which vanish or at least are
finite after being plugged into (3.21) and therefore those terms will be discarded
in what follows 2.

The result (3.25) can now be plugged into (3.21) which together with (3.7)
yields

∆Zφ = ĝ2C2(Adj.) 3
16π2ϵ

. (3.26)

3.4 Evaluation of Ka0 and Ka2

The counterterms Ka0 and Ka2 appear in the Lagrangian in (3.15) as factors of
quartic scalar couplings. The corresponding tree diagrams are depicted in Figure
3.3.

In order to fix the counterterms Ka0 and Ka2 it is necessary to consider two
different 4-point functions Γ1 = Γ(φ1φ2 → φ3φ4) and Γ2 = Γ(φ̃1φ̃2 → φ̃3φ̃4). The
contributions of the counterterms corresponding to the two 4-point functions
will be denoted by Γi

Ka0 and Γi
Ka2. Next, the 1-loop contributions to the 4-

point functions with the same outer legs Γ1
1loop = Γ(φ1φ2 → φ3φ4) and Γ2

1loop =
Γ(φ̃1φ̃2 → φ̃3φ̃4) will have to be evaluated. Once these quantities are computed
the counterterms will be fixed via the equations (in the MS scheme)

Γ1
1loop + Γ1

Ka0 + Γ1
Ka2

!=finite

Γ2
1loop + Γ2

Ka0 + Γ2
Ka2

!=finite.
(3.27)

1The discussion of the gauge choice follows [33]
2Note that the calculations are in this thesis are done within the MS scheme
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Figure 3.3: Diagram corresponding to the counterterms Ka0 and Ka2

The equality ’ != finite’ represents the fact that the counterterms Ka0 and Ka2

absorb only the pole terms, i.e. the terms proportional to 1/ϵ.
The outer legs for the 4-point functions Γ1 and Γ2 have to be chosen in such a

way that the two equations in (3.27) are linearly independent. In order to identify
which 4-points functions can be calculated it is convenient to expand the quartic
scalar interaction terms in (3.15).

The â0-term in (3.15) gives

Lâ0 = − â0µ
2ϵ

4 (φφ)0(φφ)0 = − â0µ
2ϵ

4 (φijφij)(φklφkl) =

= − â0µ
2ϵ

4 (2(φ2
12 + φ2

13 + φ2
14 + φ2

23 + φ2
24 + φ2

34))2 =

= − â0µ
2ϵ

4
[
4φ4

12 + 8φ2
12(φ2

13 + φ2
14 + φ2

23 + φ2
24 + φ2

34) +

+ 4φ4
13 + 8φ2

13(φ2
14 + φ2

23 + φ2
24 + φ2

34)+
+ 4φ4

14 + 8φ2
14(φ2

23 + φ2
24 + φ2

34)+
+ 4φ4

23 + 8φ2
23(φ2

24 + φ2
34)+

+ 4φ4
24 + 8φ2

24(φ2
34)+

+4φ4
34

]
.

(3.28)

The â2-term in (3.15) yields

Lâ2 = − â2µ
2ϵ

4 (φφ)2(φφ)2 = − â2µ
2ϵ

4 (φijφik)(φljφlk) =

= − â2µ
2ϵ

4
[
2(φ4

12 + φ4
13 + φ4

14 + φ4
23 + φ4

24 + φ4
34)

+ 4φ4
12(φ2

13 + φ2
14 + φ2

23 + φ2
24)+

+ 4φ4
13(φ2

14 + φ2
23 + φ2

34)+
+ 4φ4

14(φ2
24 + φ2

34)+
+ 4φ4

23(φ2
24 + φ2

34)+
+ 4φ4

24(φ2
34)+

+8φ12φ13φ42φ43 + 8φ12φ14φ32φ34 + 8φ13φ14φ23φ24] .

(3.29)

Note that the antisymmetry of the φ-fields has been utilized in the expressions
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above.
By looking at the expressions (3.28) and (3.29) one can infer that for all 4-

point functions there is a 1-loop contribution proportional to â0â2. Furthermore,
if one considers any 4-point function with a 1-loop contribution proportional to
â2

0 then there is a 1-loop contribution proportional to â2
2. However, the 4-point

function Γ1loop(φ12φ13 → φ42φ43) only has 1-loop contribution proportional to â2
2

and to â0â2 but has no 1-loop contributions proportional to â2
0. Therefore, one of

the chosen Γs will be Γ2 ≡ Γ(φ12φ13 → φ42φ43). For simplicity, the other 4-point
function will be chosen as Γ1 ≡ Γ(φ12φ12 → φ12φ12).

In what follows, the 1-loop contribution to a 4-point function Γ1loop(φ1φ2 →
φ3φ4) proportional to âiâj will be denoted by Γâiâj

1loop(φ1φ2 → φ3φ4).
To summarize, the counterterm fixing conditions now read

Γ1loop(φ12φ12 → φ12φ12)+ΓKa0(φ12φ12 → φ12φ12)

+ΓKa2(φ12φ12 → φ12φ12) != finite
Γ1loop(φ12φ13 → φ42φ43)+ΓKa0(φ12φ13 → φ42φ43)

+ΓKa2(φ12φ13 → φ42φ43) != finite.

(3.30)

For the 1-loop contributions then holds

Γ1loop(φ12φ12 → φ12φ12) =Γâ2
0

1loop(φ12φ12 → φ12φ12) + Γâ0â2
1loop(φ12φ12 → φ12φ12)

+Γâ2
2

1loop(φ12φ12 → φ12φ12) + Γĝ4

1loop(φ12φ12 → φ12φ12)

Γ1loop(φ12φ13 → φ42φ43) =Γâ0â2
1loop(φ12φ13 → φ42φ43) + Γâ2

2
1loop(φ12φ13 → φ42φ43)

+Γĝ4

1loop(φ12φ13 → φ42φ43).
(3.31)

Note that in the expressions for the 4-point functions above also appeared 1-loop
contributions proportional to ĝ4. These contributions also have to be accounted
for because the interaction term (3.51) does in fact produce diagrams of the type
φ1φ2 → φ3φ4 (where the loop is made out of gauge fields).

In the following subsections the contributions to the 4-point functions in (3.30)
will be evaluated. It is worth to point out that only the pole terms of the 1-
loop contributions will be necessary to compute since the MS scheme is being
employed. With these expressions at hand the counterterms Ka0 and Ka2 will be
determined and plugged into (3.20). This way the contribution of the K-terms
to the beta function will be obtained. Thus, together with the result (3.26) this
will mean that the running of the scalar couplings a0 and a2 in the SO(4) Higgs
model will be fully determined.

3.4.1 Purely scalar contributions to Γ(φ12φ12 → φ12φ12)
To start off, the contributions to Γ1loop(φ12φ12 → φ12φ12) proportional to â2

0

will be evaluated, i.e. the term Γâ2
0

1loop(φ12φ12 → φ12φ12). Looking at (3.28), one
can infer that all of the contributing Feynman diagrams are the ones depicted
in Figure 3.4. Note that the pairs of indices of the fields are written down in
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the ascending order, which automatically includes the other way of ordering the
indices since the φ-fields are antisymmetric.

When it comes to evaluating Γâ2
0

1loop(φ12φ12 → φ12φ12), there are two steps
- evaluation of the integral coming from the loops and the computation of the
combinatorial factor coming from the number of possible contractions of the fields
as well as from the number of summands in (3.28).

First, the evaluation of the integral will be discussed. In order to compute
the integral only the structure of the diagram shown in Figure 3.5 is needed. The
corresponding Feynman rules for the scalar loop are specified in Figure 3.6.

Utilizing the Feynman rules, the contribution corresponding to the diagram
in Figure 3.5 will have the form

iIsc = P

(
−i

â0

4

)2

µ2ϵ 1
2

∫ ddl

(2π)d

i2

(l2 − m2)((l + p)2 − m2) , (3.32)

where the regularization parameter µ popped up as necessary within the dimen-
sional regularization scheme. The factor 1

2 is there because the graphs correspond
to the second order of the Dyson expansion and the factor P denotes all the com-
binatorial factors which appear due to the various ways of how to contract the
fields - this will be discussed in detail later on. Now, the Feynman parametriza-
tion (B.1) will be introduced into the integral in (3.32) and the relation (B.2) will
be utilized which yields

∫ ddl

(2π)d

1
(l2 − m2)((l + p)2 − m2) =

∫ ddl

(2π)d

∫ 1

0
dx

1
(l2 − C)2 =

=
∫ 1

0
dx(−1)2i

1
(4π)d/2 C−ϵ Γ (2 − ϵ)

Γ (2 − ϵ)
Γ (ϵ)
Γ(2) = i

16π2ϵ
+ (O(1)).

(3.33)

In the expressions above there was denoted C = p2x2 − xp2 + m2, in the second
equality there was used the DR master formula (B.2) and in the last equality
there was employed the Taylor expansion of the whole expression where for the
Gamma function holds

Γ(ϵ) = 1
ϵ

− γE + O(ϵ), (3.34)

where γE ≈ 0.577 is the Euler-Mascheroni constant. Plugging the resulting inte-
gral into (3.32) means for the divergent part

Idiv
sc = P

â2
0

32µ2ϵ 1
16π2ϵ

+ O(1). (3.35)

As was mentioned in the previous section the MS scheme is being utilized, there-
fore only the pole the term of Isc was evaluated.

Having evaluated the integral part of Γâ2
0

1loop(φ12φ12 → φ12φ12) now it is neces-
sary to calculate the combinatorial factors for the diagrams in Figure 3.4. There
are two different types of diagrams when it comes to the combinatorial factors
and those are: a diagram where the loop is made of φ12φ12 (the first diagram in
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Figure 3.4: 1-loop diagrams contributing to Γâ2
0

1loop(φ12φ12 → φ12φ12). The pairs
of numbers next to the scalar lines denote the particular scalar fields.

Figure 3.5: A purely scalar 1-loop diagram.

Figure 3.4) and then the rest of the diagrams. For the first diagram the combi-
natorial factor has fL = 42 for the factors in (3.28)3, for the contractions there
are fl =

(
4
2

)(
4
2

)
2 ways of how to construct a loop and then there are fo = 4!

ways of how to connect the outer legs, so together the combinatorial factor is
equal to fd = fL × fl × fo = 42 ×

(
4
2

)(
4
2

)
2 × 4! = 27648 . For the other diagrams

(where the loop is made of fields other than φ12) the combinatorial factor has
fL = 82, for the contractions there are fl =

(
2
2

)(
2
2

)
2 ways of how to construct

the loop, there are fo = 4! ways of how to contract the outer legs, and there
are nd = 5 of those diagrams, so together the combinatorial factor is equal to
fd = fL ×fl ×fo ×nd = 82 ×

(
2
2

)(
2
2

)
2×4!×5 = 15360. Altogether, these numbers

form the total combinatorial factor

P
â2

0
1 = 27648 + 15360 = 43008, (3.36)

where the subscript 1 means that it corresponds to the contribution to the 4-point
function Γ1 ≡ Γ(φ12φ12 → φ12φ12).

When the integral part together with the combinatorial part are put together,
3In order to make the calculations of the combinatorial factors more transparent the following

notation will be used throughout the thesis: fL = (product of the factors coming out of the
interaction terms in the Lagrangian); fl = (number of ways of how to contract the fields in
order to construct a loop); fo = (number of ways of how to connect the outer legs to the
loop);nd = (number of the specified set of diagrams); fd = (the overall combinatorial factor for
the specified set of diagrams)
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Figure 3.6: Feynamn rules for the scalar vertex and the scalar propagator.

Figure 3.7: 1-loop diagrams contributing to Γâ2
2

1loop(φ12φ12 → φ12φ12).

the total contribution reads

Γâ2
0

1loop(φ12φ12 → φ12φ12) = P
a2

0
1

(
−i

â0

4

)2

µ2ϵ 1
2

∫ ddl

(2π)d

i2

(l2 − m2)((l + p)2 − m2) =

= 43008 â2
0

32µ2ϵ 1
16π2ϵ

.

(3.37)

Now the contributions to Γ1loop(φ12φ12 → φ12φ12) proportional to â2
2 shall be

evaluated, i.e. the term Γâ2
2

1loop(φ12φ12 → φ12φ12). Looking at La2 in (3.29), all of
the contributing diagrams are the ones depicted in Figure 3.7.

As was the case for the part proportional to a2
0, the calculation here has two

parts - the integral part and the combinatorial part. However, since the structure
of the scalar loop remains the same, the result of the integration will also be the
same, thus only the combinatorial part has to be computed.

The first diagram in 3.7 which has the loop made of φ12 receives the factor
fL = 22 coming out of the Lagrangian (3.29), then there are fl ×fo =

(
4
2

)(
4
2

)
2×4!

number of possible contractions (as was the case for the a2
0 proportional part),

thus altogether the relevant factor is equal to fd = fL × fl × fo = 22 ×
(

4
2

)(
4
2

)
2 ×

4! = 6912. For the rest of the diagrams together - the combinatorial factor
receives fL = 42, there are fl × fo =

(
2
2

)(
2
2

)
2 × 4! possible contractions, and

there are nd = 4 of such diagrams, hence the factor for the diagrams is equal to
fd = fL × fl × fo × nd = 42 ×

(
2
2

)(
2
2

)
2 × 4! × 4 = 3072. Putting all of the factors
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Figure 3.8: 1-loop diagrams contributing to Γâ0â2
1loop(φ12φ12 → φ12φ12).

together, the overall combinatorial factor has the form

P
â2

2
1 = 6912 + 3072 = 9984. (3.38)

This means that the contribution to Γ1loop(φ12φ12 → φ12φ12) proportional to â2
2 is

Γâ2
2

1loop(φ12φ12 → φ12φ12) = 9984 â2
2

32µ2ϵ 1
16π2ϵ

. (3.39)

Next, the diagrams proportional to â0â2 will be computed. The term in the Dyson
series responsible for these contributions is proportional to

La0(x)La2(y) + La0(y)La2(x) (3.40)

and by evaluating the expression, one arrives at the diagrams shown in Figure
3.8.

The integral part of the computation remains the same as in the previous
cases. For the first diagram in 3.8 the combinatorial factor has 2 for the per-
mutation of vertices x ↔ y and there is a factor of 4 × 2 from (3.28) and (3.29)
resulting in fL = 2 × 4 × 2; fl × fo =

(
4
2

)(
4
2

)
2 × 4! is the factor coming out

of the contractions, so altogether the factor is equal to fd = fL × fl × fo =
2 × 4 × 2 ×

(
4
2

)(
4
2

)
2 × 4! = 27648. For the rest of the diagrams in 3.8, there is

factor of 2 for the permutation of vertices x ↔ y, there is a factor 4 ∗ 8 coming
from (3.28) and (3.29) which means fL = 2×4×8, there are fl ×fo =

(
2
2

)(
2
2

)
2×4!

possible contractions, and there are nd = 4 such diagrams, hence the overall fac-
tor is equal to fd = fL × fl × fo × nd = 2 × 4 × 8 ×

(
2
2

)(
2
2

)
2 × 4! × 4 = 12288. The

overall factor is thus equal to

P â0â2
1 = 27648 + 12288 = 39936, (3.41)

which means the contribution to Γ1loop(φ12φ12 → φ12φ12) proportional to â0â2 is

Γâ0â2
1loop(φ12φ12 → φ12φ12) = 39936 â0â2

32 µ2ϵ 1
16π2ϵ

. (3.42)
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Having computed the 1-loop contributions, now it is necessary to calculate the
contributions of the counterterms ΓKa0(φ12φ12 → φ12φ12) and ΓKa2(φ12φ12 →
φ12φ12) . The diagrams corresponding to Ka0 and to Ka2 are shown in Figure
3.3. Note that the graphs have an identical structure, the only difference comes
from the combinatorial factors. The explicit form of the interaction terms corre-
sponding to the counterterms are the same as the ones in (3.28) and (3.29), with
the only difference being the multiplicative constant âi → âiKai

.
The contribution of the Ka0-term receives a factor of fL = 4 from (3.28) and

a factor of fo = 4! for the contractions. Thus, the overall combinatorial factor
has the form

P Ka0
1 = fL × fo = 4 × 4! = 96. (3.43)

Similarly, the contribution of the Ka2 has the factor of fL = 2 from (3.29) and
fo = 4! for the contractions. Therefore, the total combinatorial factor reads

P Ka2
1 = fL × fo = 2 × 4! = 48, (3.44)

When put together, the overall contributions of the counterterms to the 4-point
function Γ(φ12φ12 → φ12φ12) are

ΓKa0(φ12φ12 → φ12φ12) = −96µ2ϵ â0Ka0

4
ΓKa2(φ12φ12 → φ12φ12) = −48µ2ϵ â2Ka2

4 .

(3.45)

3.4.2 Purely scalar contributions to Γ(φ12φ13 → φ42φ43)

First, the term Γâ2
2

1loop(φ12φ13 → φ42φ43) will be determined which means it is
necessary to compute the contributions to Γ1loop(φ12φ13 → φ42φ43) proportional
to â2

2. Note that in this section there is an exception to the convention of keeping
the indices in the ascending order in the cases of φ42 and φ43 (which is a bit
more convenient choice when looking at the index structure of the a2 term).
Of course this choice of ordering makes no difference whatsoever as long as the
combinatorial factors are evaluated properly.

Looking at the interaction terms in (3.29) one can infer that all of the relevant
diagrams are the ones depicted in Figure 3.9.

The computation of Γâ2
2

1loop(φ12φ13 → φ42φ43) again has two parts - the integral
one and the combinatorial one. However, the integral part is obviously the same
as in the case of Γ1loop(φ12φ12 → φ12φ12). This means that the 1-loop contribution
to the 4-point function proportional to â2

2 is given by eq. (3.35).
Now the combinatorial part of the computation of Γâ2

2
1loop(φ12φ13 → φ42φ43)

shall be presented. The first four diagrams in Figure 3.9 recieve a factor of 2 for
the permutation of vertices x ↔ y, then there is 4 × 8 from the factors in (3.29)
which means fL = 2 × 4 × 8; as for the contraction there are fl =

(
2
1

)(
2
1

)
ways

of how to construct a loop and fo = 1; there are nd = 4 of those diagrams; thus,
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Figure 3.9: 1-loop diagrams contributing to Γâ2
2

1loop(φ12φ13 → φ42φ43).

the overall factor is fd = fL × fl × fo × nd = 2 × 4 × 8 ×
(

2
1

)(
2
1

)
× 4 = 1024. The

last diagram in Figure 3.9 has a factor of 2 for the permutation of vertices, then
it receives 8 ∗ 8 from the factors (3.29) so fL = 2 × 8 × 8 and crucially there is a
factor of (−1)3 responsible for the permutation of the subscripts of the φ-fields,
hence the overall factor is equal to fd = 2 × 8 × 8 × (−1)3 = −128. The overall
combinatorial factor has the form

P
â2

2
2 = 1024 − 128 = 896, (3.46)

which means the contribution to Γ1loop(φ12φ13 → φ42φ43) proportional to â2
2 is

Γâ2
2

1loop(φ12φ13 → φ42φ43) = 896 â2
2

32µ2ϵ 1
16π2ϵ

. (3.47)

Another contribution to Γ1loop(φ12φ13 → φ42φ43) is the one proportional to â0â2,
which again comes from the term La0(x)La2(y)+La0(y)La2(x). After carrying out
the multiplication of all the terms it is easy to see that the diagrams contributing
to Γâ0â2

1loop(φ12φ13 → φ42φ43) are the ones depicted in Figure 3.10.
The structure of all of the diagrams in Figure 3.10 is very similar meaning

that the combinatorial factors for all of the graphs are the same. In particular,
there is a factor of 2 for the permutation of the vertices, there is 8 × 8 from the
factors in (3.28) and (3.29) which means fL = 2 × 8 × 8, there are fl =

(
2
1

)(
2
1

)
ways of how to construct a loop, and there are nd = 6 of the diagrams. Put
together, the overall factor has the form

P â0â2
2 = fL × fl × nd = 2 × 8 × 8 ×

(
2
1

)(
2
1

)
× 6 = 3072, (3.48)

which means the contribution to Γ1loop(φ12φ13 → φ42φ43) proportional to â0â2 is

Γâ0â2
1loop(φ12φ13 → φ42φ43) = 3072 â0â2

32 µ2ϵ 1
16π2ϵ

. (3.49)

30



Figure 3.10: 1-loop diagrams contributing to Γâ0â2
1loop(φ12φ13 → φ42φ43).

As was mentioned earlier, the contribution Γâ2
0

1loop(φ12φ13 → φ42φ43) vanishes since
there is now way to produce a 1-loop diagram of φ12φ13 → φ42φ43 using only the
a0-term in eq. (3.28).

Now it is necessary to evaluate the contributions of the counterterms to
Γ(φ12φ13 → φ42φ43) which pictorially look like the one in Figure 3.3. How-
ever, the contribution proportional to Ka0 vanishes since the interaction term
fails to produce tree graphs of the form φ12φ13 → φ42φ43. The contribution to
Γ(φ12φ13 → φ42φ43) proportional to Ka2 only receives a factor of 8 from (3.29),
thus it has the form

ΓKa2
1loop(φ12φ13 → φ42φ43) = −8µ2ϵ â2Ka2

4 . (3.50)

3.4.3 Contributions to Γ1 and to Γ2 proportional to ĝ4

All of the 1-loop contributions to Γ1 ≡ Γ(φ12φ12 → φ12φ12) and to Γ2 ≡
Γ(φ12φ13 → φ42φ43) proportional to ĝ4 come from the term containing covariant
derivatives in (3.15). Namely, the relevant interaction terms are of the φφAA
type and they read

i(−i)1
4 ĝ2µ2ϵ [Aµ, φ]†ij [Aµ, φ]ij = 1

4 ĝ2µ2ϵ
(
AikAilφkjφlj + AikAjlφkjφil

)
. (3.51)

Since the full expansion of the expression above is a bit lengthy it is deferred to
Appendix C.

To begin with, the 1-loop contributions to Γ(φ12φ12 → φ12φ12) proportional
to ĝ4 will be evaluated. The corresponding Feynman diagrams are depicted in
Figure 3.11.

As before, the evaluation of the diagrams in Figure 3.11 has two parts - the
integral part and the combinatorial part. Obviously, all of the diagrams in Figure
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Figure 3.11: Contributions to Γĝ4

1loop(φ12φ12 → φ12φ12). For the momenta it holds
p = p1 + p2.

3.11 produce the same integral which has the form (the momenta are given in the
first graph in the Figure)

Γĝ4

1loop(φ12φ12 → φ12φ12) = P

(
−iĝ4

4

)2

µ2ϵ 1
2

∫ ddl

(2π)d
gµρgνσDµν(l)Dρσ(l + p).

(3.52)

In the expression above the vector boson propagator was denoted by Dµν(l) and
its form was given in eq. (3.23). The factor P in (3.52) stands for a generic
combinatorial factor. After performing the standard procedure of introducing
the Feynman parameters (B.1) and utilizing the DR master formula (B.2) the
expression (3.52) reads

Γĝ4

1loop(φ12φ12 → φ12φ12) = P
ĝ4

32µ2ϵ 3
16π2ϵ

. (3.53)

The second part of evaluating graphs in Figure 3.11 comes down to the combina-
torial factors. The factors are the same for all of the diagrams and they contain
a factor of fL = 1 from (C.3), then there are fl = 2 ways of how to construct a
loop, and there are fo = 4! ways of how to connect the outer legs. Thus the total
factor is equal to

P ĝ4

1 = 1 × 2 × 4! × 4 = 192 (3.54)

Put altogether the 1-loop contribution to Γ(φ12φ12 → φ12φ12) proportional to ĝ4

is

Γĝ4

1loop(φ12φ12 → φ12φ12) = 192 ĝ4

32µ2ϵ 3
16π2ϵ

. (3.55)

The 1-loop diagrams contributing to Γ(φ12φ13 → φ42φ43) proportional to ĝ4 are
depicted in Figure 3.12. From the interaction terms in (C.4)-(C.9) can be inferred
that the first four diagrams in Figure 3.12 receive the same factor 2 × (−2) and
then there is a factor of 2 for the permutation of vertices so fL = 2×(−2)×2, which
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Figure 3.12: Contributions to Γĝ4

1loop(φ12φ13 → φ42φ43).

together gives the factor fd = fL ×nd = 2×(−2)×2×4 = −32. The last diagram
in Figure 3.12 receives a factor of 4 × (−4) from (C.6) and (C.7) and a factor of
2 for the permutation of vertices, which means that fd = 4 × (−4) × 2 = −32.
The overall factor is then equal to

P ĝ4

2 = −32 − 32 = −64, (3.56)

which means the 1-loop contribution to Γ(φ12φ13 → φ42φ43) proportional to ĝ4 is

Γĝ4

1loop(φ12φ13 → φ42φ43) = −64 ĝ4

32µ2ϵ 3
16π2ϵ

. (3.57)

It is necessary to observe that the diagrams presented in this subsection have not
exhausted the full list of 1-loop diagrams with gauge fields potentially contribut-
ing to Γ(φ12φ12 → φ12φ12) or to Γ(φ12φ13 → φ42φ43). Those 4-point functions
may in fact have other contributing 1-loop diagrams proportional to ĝ4 or to ĝ2âi

whose structure is depicted in Figure 3.13. However, all of these diagrams turn
out to be in fact finite. This observation can be shown by counting the superficial
degree of divergence α, which in this case can be defined as

α = 4L − 2B +
∑

i

nidi, (3.58)

where L is the number of loops, B is the number of internal bosonic lines, ni is
the number of i-th vertices and di is the number of derivatives associated to the
i-th vertex.

One can observe that if for a diagram in Figure 3.13 α = 0, then the di-
agram is (potentially) logarithmically divergent. Recall the Feynman rule for
the vertex depicted in 3.1 carries the factor of (l + (other momenta)) but only
the l-proportional part contributes the divergent part of the diagram. This in
turn means it is in fact irrelevant which of the φ-fields in a vertex (see (3.22))
is being taken the derivative of (regarding the divergent part of the diagram).
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Figure 3.13: Diagrams with gauge fields with potentially non-trivial pole terms
contributing to Γ(φ12φ12 → φ12φ12) or to Γ(φ12φ13 → φ42φ43).

This makes the interaction term (3.22) effectively symmetric with respect to the
φ-fields sandwiching the generator, when one only cares about the divergent part
of the diagram. However, since the generator is antisymmetric, the whole contri-
bution of the vertex vanishes.

By looking at the diagrams in Figure 3.13 it is easy to infer that for all of them
α = 0. Also, all of these diagrams contain the triple vertex from the interaction
term (3.22). Hence, due to the observiations presented in the previous paragraph
the divergent parts of the diagrams in Figure 3.13 vanish.

3.5 Beta functions of the couplings a0 and a2 in
SO(4) Higgs model

The beta functions of the couplings a0 and a2 are given by eq. (3.20) where
one needs to plug in the K-terms as well as the wave-function renormalization
factor. The latter of the two has been evaluated in sec. 4.3. and the result is
given by (3.26) which is reiterated here for the reader’s convenience

∆Zφ = ĝ2C2(Adj.) 3
16π2ϵ

. (3.59)

As for the K-terms, these are determined via the equations (3.30) and (3.31).
All of the terms in those equations have been calculated in sec.4.4 and for the
reader’s convenience they are summarized below

Γâ2
0

1loop(φ12φ12 → φ12φ12) =43008 â2
0

32µ2ϵ 1
16π2ϵ

Γâ2
2

1loop(φ12φ12 → φ12φ12) =9984 â2
2

32µ2ϵ 1
16π2ϵ

Γâ0â2
1loop(φ12φ12 → φ12φ12) =39936 â0â2

32 µ2ϵ 1
16π2ϵ

ΓKa0(φ12φ12 → φ12φ12) = − 96µ2ϵ â0Kâ0

4
ΓKa2(φ12φ12 → φ12φ12) = − 48µ2ϵ â2Kâ2

4

Γâ2
2

1loop(φ12φ13 → φ42φ43) =896 â2
2

32µ2ϵ 1
16π2ϵ

(3.60)
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Γâ0â2
1loop(φ12φ13 → φ42φ43) =3072 â0â2

32 µ2ϵ 1
16π2ϵ

ΓKa2
1loop(φ12φ13 → φ42φ43) = − 8µ2ϵ â2Kâ2

4

Γĝ4

1loop(φ12φ12 → φ12φ12) =192 ĝ4

32µ2ϵ 3
16π2ϵ

Γĝ4

1loop(φ12φ13 → φ42φ43) = − 64 ĝ4

32µ2ϵ 3
16π2ϵ

.

Plugging all of the results above into (3.30) and (3.31) and solving for the K-terms
yields

Ka0 = 28â2
0 + 3â2

2 + 14â0â2

8â0π2ϵ
+ 9ĝ4

64â0π2ϵ

Ka2 = 7â2
2 + 24â0â2

8â2π2ϵ
− 3ĝ4

16â2π2ϵ
.

(3.61)

With the expressions for the K-terms as well as for ∆Zφ at hand it is now possible
to plug them into the beta function given by eq. (3.20). In order to solve the
beta function formula (3.20), it is necessary to restore the original couplings
âi = aiµ

−2ϵ into the relations (3.61) and (3.59). The beta function can then be
recast as

βâi
=µ−2ϵ+1ai

(
−∂Kai

∂µ
+ 2∂∆Zφ

∂µ

)
=µ−2ϵ+1ai

(
−
(
−2ϵµ−1Kai

)
+ 2 (−2ϵ∆Zφ)

)
= âi2ϵKai

− âi4∆Zφ.

(3.62)

Finally, plugging the quantities Ka0 , Ka2 , and ∆Zφ (with C2(Adj.) = 2) into the
expression for the beta functions above gives full beta functions for the couplings
â0 and â2 in the SO(4) Higgs model

βâ0 = 224â2
0 + 24â2

2 + 112â0â2 + 9ĝ4 − 48â0ĝ
2

32π2

βâ2 = 14â2
2 + 48â0â2 − 3ĝ4 − 12â2ĝ

2

8π2 .

(3.63)

These relations are the final result of this chapter.
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4. Running of the couplings a0
and a2 in SO(10) - diagrammatic
approach

This chapter is devoted to the main goal of this thesis which is the beta
functions of the couplings a0 and a2 in the Higgs sector of the SO(10) GUT theory.
Thanks to the results obtained in the previous section, here the diagrammatic
computation will turn out to be more efficient, as the structure of the contributing
graphs is now more transparent. Note that all of the results presented in this
chapter have been confirmed by a program in Mathematica, which was developed
by the author of this thesis.

4.1 SO(10) Higgs model description and
the beta functions

The Higgs sector of the SO(10) GUT has been described in Chapter 2. In
this Chapter the aim is to evaluate the running of the scalar couplings a0 and a2
within the SO(10) model, therefore the relevant part of the Lagrangian (2.10) for
the calculations here reads

Lφ =1
4 (Fµν)ij (F µν)ij + 1

4 (Dµφ)†
ij (Dµφ)ij

− µ2

4 (φijφij) + a0

4 (φijφij)(φklφkl) + a2

4 (φijφik)(φljφlk).
(4.1)

The derivation of beta functions for the couplings a0 and a2 within the SO(10)
model actually goes the exact same way as it did for the SO(4) model. Hence, the
notation and formulae presented in sec.4.2 will be used in this Chapter as well.
For the reader’s convenience, some of the definitions and results from sec.4.2 are
reiterated below.

The wave-function renormalization factor Zφ = 1+∆Zφ is introduced by φB
ij =√

Zφφij and the couplings are recast as â0 = a0µ
−2ϵ, where µ is a regularization

scale.
Within the DR scheme the Lagrangian has the form

LDR
φ =1

4Zφ (Dµφ)†
ij (Dµφ)ij

− â0µ
2ϵ

4 (φφ)0(φφ)0 − â2µ
2ϵ

4 (φφ)2(φφ)2

− â0µ
2ϵKa0

4 (φφ)0(φφ)0 − â2µ
2ϵKa2

4 (φφ)2(φφ)2.

(4.2)

The formula for the beta function reads

βâi
= µ−2ϵ+1ai

(
−∂Kai

∂µ
+ 2∂∆Zφ

∂µ

)
. (4.3)
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To summarize, it is again necessary to evaluate Ka0 , Ka2 , and ∆Zφ in order to
obtain the beta functions of the scalar couplings a0 and a2 within the SO(10)
Higgs model. The K-terms will be determined in the following sections.

The contribution of the wave-function renormalization factor to the beta func-
tion (4.3) was evaluated in sec.4.3 for the SO(4) model. However, the computa-
tion goes the same way for the SO(10) model with the only difference being that
within SO(10) one now has C2(Adj.) = 8. Therefore the factor ∆Zφ is given by

∆Zφ = ĝ2C2(Adj.) 3
16π2ϵ

= ĝ28 3
16π2ϵ

. (4.4)

4.2 Evaluation of Ka0 and Ka2

The contribution of the K-terms to the beta function (4.3) within SO(10) has
to be evaluated in a similar manner as it was within SO(4). The counterterms
Ka0 and Ka2 will again be fixed via the equations (where the notation from the
previous Chapter is employed)

Γ1
1loop + Γ1

Ka0 + Γ1
Ka2

!=finite

Γ2
1loop + Γ2

Ka0 + Γ2
Ka2

!=finite,
(4.5)

where the equality != finite means that the counterterms absorb only the pole
terms (i.e. the calculation will be done in the MS scheme).

The 4-point functions Γ1 and Γ2 are set to be the same as they were in the
previous Chapter. This is so because the expectation is that it will be possible
to use the knowledge from the calculations within SO(4) to the SO(10) case.
Therefore, let the 4-point functions be denoted by

Γ1 ≡Γ(φ12φ12 → φ12φ12)
Γ2 ≡Γ(φ12φ13 → φ42φ43).

(4.6)

Since, the index structure of the interaction terms in (4.2) is the same as in (3.15)
one can infer that the contributions to the 4-point functions in (4.6) will have the
same form, namely

Γ1loop(φ12φ12 → φ12φ12)+ΓKa0(φ12φ12 → φ12φ12)

+ΓKa2(φ12φ12 → φ12φ12) != finite
Γ1loop(φ12φ13 → φ42φ43)+ΓKa0(φ12φ13 → φ42φ43)

+ΓKa2(φ12φ13 → φ42φ43) != finite.

(4.7)
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For the 1-loop contributions to the 4-point functions then holds

Γ1loop(φ12φ12 → φ12φ12) =Γâ2
0

1loop(φ12φ12 → φ12φ12) + Γâ0â2
1loop(φ12φ12 → φ12φ12)

+Γâ2
2

1loop(φ12φ12 → φ12φ12) + Γĝ4

1loop(φ12φ12 → φ12φ12)

Γ1loop(φ12φ13 → φ42φ43) =Γâ0â2
1loop(φ12φ13 → φ42φ43) + Γâ2

2
1loop(φ12φ13 → φ42φ43)

+Γĝ4

1loop(φ12φ13 → φ42φ43).
(4.8)

Hence, in order to obtain the K-terms it is necessary to evaluate the contributions
to the 4-point functions in (4.7) and (4.8) and this will be done in the following
subsections. It is perhaps worth to reiterate that all of the following calculations
in this Chapter will be done within the SO(10) model and the MS scheme will
be employed (therefore only the pole terms will be computed).

4.2.1 Purely scalar contributions to Γ(φ12φ12 → φ12φ12)
There are purely scalar 1-loop contributions to Γ(φ12φ12 → φ12φ12) propor-

tional to â2
0, â2

2, and to â0â2 (as was also the case in the previous chapter).
First, the contribution Γâ2

0
1loop(φ12φ12 → φ12φ12) will be evaluated. In the case

of SO(4) the diagrams are depicted in Figure 3.4, from which one can make the
following observations. Regarding the combinatorial factors, there are two types
of graphs in Figure 3.4 - a diagram with the loop made of φ12 and the second type
contains a 1-loop diagram for every pair of indices (ij), where i, j ∈ {1, .., 10}
and (21) ̸= (ij) ̸= (12). Remarkably, the same structure of diagrams also appears
in the SO(10) model, which can be checked by analyzing the index structure in
(4.2). Alternatively, this can be verified by the full expansion of the interaction
terms in (4.2), which was done via the aforementioned program in Mathematica.

The 1-loop diagrams contributing to Γâ2
0

1loop(φ12φ12 → φ12φ12) in the SO(10)
model are depicted in Figure 4.1. It is immediately obvious that the structure
of the integrals corresponding to the graphs is the same as the one which was
derived in the previous chapter. The 1-loop contribution to 4-point function thus
reads

Γâ2
0

1loop(φ12φ12 → φ12φ12) = P
â2

0
32µ2ϵ 1

16π2ϵ
. (4.9)

where P stands for a generic combinatorial factor.
The combinatorial factors emerging from the diagrams in Figure 4.1 will now

be evaluated. The first diagram receives a factor with the same structure of
contractions as in the case of SO(4) and it also receives the same factors from the
interaction terms in (2.10), which means it is equal to fd = 42 ×

(
4
2

)(
4
2

)
2 × 4! =

27648. The rest diagrams on the left-hand side in Figure 4.1 receive a factor
(which was derived in Chapter 4) of fL × fl × fo = 82 ×

(
2
2

)(
2
2

)
2 × 4! = 3072

and there are nd = 44 them (because there are 45 distinct φ-fields in total).
Altogether, the combinatorial factor is equal to
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Figure 4.1: 1-loop diagrams contributing to Γâ2
0

1loop(φ12φ12 → φ12φ12). As opposed
to the SO(4) model there are many more diagrams of the type on the left-hand
side in the SO(10) model. This is due to the fact that the indices i, j run through
{1, .., 10}.

P
a2

0
1 = 27648 + 44 × 3072 = 162816. (4.10)

The 1-loop contribution to Γ(φ12φ12 → φ12φ12) proportional to a2
0 thus reads

Γâ2
0

1loop(φ12φ12 → φ12φ12) = 162816 â2
0

32µ2ϵ 1
16π2ϵ

. (4.11)

Next, the 1-loop contributions to Γ(φ12φ12 → φ12φ12) proportional to â2
2 are

depicted in Figure 3.8 for the case of the SO(4) model. In order to determine the
diagrams for the SO(10) case, one can observe that the condition for the fields
φij creating the loop is that at least one of the indices i and j has to be equal
to either 1 or 2. This observation can be verified by expanding the full SO(10)
Lagrangian and the diagrams are summarized pictorially in Figure 4.2

As for the combinatorial factors, the first diagram in Figure 4.2 is again one
where the loop is made of φ12 and it receives the same factors from the interaction
term as in the SO(4) case. This means that the factor of the first diagram is
equal to fd = 22 ×

(
4
2

)(
4
2

)
2 × 4! = 6912. Similarly, the factor responsible for the

contractions of one of the diagrams on the right in Figure 4.2 is the same as in
the SO(4) model. There are nd = 2 × 8 viable pairs of indices (again employing
the convention of keeping the indices in the ascending order) - because the first
index can have both of the values 1 or 2 and the second index then has a choice
of 8 remaining indices. Put altogether, the overall combinatorial factor reads

P
a2

2
1 = 6912 + 16 × 768 = 19200, (4.12)

which means that the 1-loop contribution to Γ(φ12φ12 → φ12φ12) proportional to
â2

2 thus reads

Γâ2
2

1loop(φ12φ12 → φ12φ12) = 19200 â2
2

32µ2ϵ 1
16π2ϵ

. (4.13)

The last purely scalar 1-loop contribution to Γ(φ12φ12 → φ12φ12) is the one
proportional to â0â2 and in the SO(4) theory the diagrams are depicted in Figure
3.8. Here one can observe that, pictorially, the diagrams are identical to the ones
proportional to â2

2 and the contribution differs only because the factors fL coming
out of the interaction Lagrangian (2.10) for the â2

2 part are not the same as the
ones for the â0â2 part.
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Figure 4.2: 1-loop diagrams contributing to Γâ2
2

1loop(φ12φ12 → φ12φ12). In the right
diagram at least one of the indices i or j has to be equal to either 1 or 2. The
contributions proportional to â0â2 have the same structure of Feynman graphs.

Looking again at Figure 4.2, the first diagram receives a factor fL = 2 × 4 × 2
from the Lagrangian and the contractions give a factor fl × fo =

(
4
2

)(
4
2

)
2 × 4!,

hence together the factor is equal to fd = 2 × 4 × 2 ×
(

4
2

)(
4
2

)
2 × 4! = 27648.

The diagrams on the right in Figure 4.2 receive a factor equal to fL = 2 × 4 × 8
from the Lagrangian, the contraction give a factor fl × fo =

(
2
2

)(
2
2

)
2 × 4!, and

there are nd = 2 × 8 of such diagrams, which gives an overall factor of fd =
2 × 4 × 8 ×

(
2
2

)(
2
2

)
2 × 4! × 2 × 8 = 49152. The total factor is then equal to

P â0â2
1 = 27648 + 49152 = 76800, (4.14)

which gives the following 1-loop contribution to Γ(φ12φ12 → φ12φ12) proportional
to â2â0

Γâ0â2
1loop(φ12φ12 → φ12φ12) = 76800 â0â2

32 µ2ϵ 1
16π2ϵ

. (4.15)

The contributions of the counterterms ΓKa0(φ12φ12 → φ12φ12) and ΓKa2(φ12φ12 →
φ12φ12) remains the in the SO(10) model as it was for SO(4) (see (3.45)). This is
due to the fact that the diagrams corresponding to the counterterms are tree-level
and therefore the extra fields in the SO(10) theory make no difference. For the
reader’s convenience the contributions of the counterterms to Γ(φ12φ12 → φ12φ12)
are reiterated below

ΓKa0(φ12φ12 → φ12φ12) = −96µ2ϵ â0Kâ0

4
ΓKa2(φ12φ12 → φ12φ12) = −48µ2ϵ â2Kâ2

4 .

(4.16)

4.2.2 Purely scalar contributions to Γ(φ12φ13 → φ42φ43)
In Chapter 4 there was argued that based on the index structure of the in-

teraction terms that the 4-point function Γ(φ12φ13 → φ42φ43) receives 1-loop
contributions only proportional to â0â2 and â2

2 (and no 1-loop contributions pro-
portional to â2

0). Since the index structure remains the same when one moves
from SO(4) to the SO(10) model, the proposition also holds for the SO(10) case.
Therefore, it is necessary to evaluate only the â0â2 and â2

2 terms.
To begin with, the 1-loop contribution Γâ2

2
1loop(φ12φ13 → φ42φ43) will be evalu-

ated. The relevant diagrams for SO(4) are shown in Figure 3.9. Of course, the
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Figure 4.3: 1-loop diagrams contributing to Γâ2
2

1loop(φ12φ13 → φ42φ43). In the first
and third diagram the inner lines correspond to either both the ones before the
slash or to both the ones after the slash. In the second and fourth diagrams it
holds for the inner lines (ij) /∈ {(12), (13), (42), (43)}.

structure of the integrals associated to the diagrams is the same as in the previous
subsection but the determination of the combinatorial factors is more elaborate.

A good way to categorize these diagrams (in order to infer the combinatorial
factors) consists in looking at which outer legs meet in a vertex. Since there
are 4 distinct outer legs, there are

(
4
2

)
= 6 unique combinations of 2 outer legs

connected to a vertex. However, any given pair of outer legs already determines
fully the other pair, therefore there are really only 3 unique categories of dia-
grams. Furthermore, the combinatorial factors depend on whether the outer legs
connecting to a vertex share the same index or not. Last important distinction
for determining the factors is whether the loop is made of some of the same fields
as the outer legs.

The 1-loop diagrams contributing to Γâ2
2

1loop(φ12φ13 → φ42φ43) are summarized
in Figure 4.3. The first and third diagrams in Figure 4.3 receive a factor fL =
2 × 4 × 8 from the Lagrangian, the contraction factor is equal to fl × fo =

(
2
1

)(
2
1

)
,

and there are nd = 4 of such diagrams, hence the factor for those diagrams is
equal to fd = 2×4×8×

(
2
1

)(
2
1

)
×4 = 1024. The second diagram receives a factor

of fL = 2 ∗ 8 ∗ 8 from the Lagrangian and the contraction factor is fl × fo = 1.
The index structure of the a2 term in (4.2) dictates that in the second diagram
that the inner lines share the index j /∈ {1, 2, 3, 4} and the other two indices
take on the values i = 2 and k = 3, which means that there are nd = 6 of
such diagrams. The total combinatorial factor for the second diagram is thus
fd = 2 × 8 × 8 × 1 × 6 = 768. The fourth diagram has the same structure as the
second one when it comes to the combinatorial factor. The fifth diagram receives
a factor fL = 2 × 8 × 8 × (−1)3 and fl × fo = 1. Collecting all the factors yields
the total combinatorial factor

P
a2

2
2 = 1024 + 768 + 768 − 128 = 2432, (4.17)
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Figure 4.4: 1-loop diagrams contributing to Γĝ4
2

1loop(φ12φ12 → φ12φ12), where i ∈
{3, .., 10}.

which means the 1-loop contribution to Γ(φ12φ13 → φ42φ43) proportional to â2
2

reads

Γâ2
2

1loop(φ12φ13 → φ42φ43) = 2432 â2
2

32µ2ϵ 1
16π2ϵ

. (4.18)

Another contribution to Γ1loop(φ12φ13 → φ42φ43) is the one proportional to â0â2.
For SO(4) the diagrams are summarized in Figure 3.10. Remarkably enough, the
relevant diagrams in the SO(10) case are exactly the same as they were in SO(4)
(including the indices of the fields) and this in turn means the total contribution
to the amplitude is

Γâ0â2
1loop(φ12φ13 → φ42φ43) = 3072 â0â2

32 µ2ϵ 1
16π2ϵ

. (4.19)

Just like in the previous subsection the contribution of the counterterms is
the same for the SO(10) model as it was for SO(4) (see (3.50)). Therefore, the
contributions of the counterterms to Γ(φ12φ13 → φ42φ43) read

ΓKa2
1loop(φ12φ13 → φ42φ43) = −8µ2ϵ â2Kâ2

4 . (4.20)

4.2.3 Contributions to Γ1 and to Γ2 proportional to ĝ4

The 1-loop contributions of the gauge fields to Γ(φ12φ12 → φ12φ12) are de-
picted in Figure 3.11 for SO(4). One can observe from there that the structure
of the diagrams is such that the gauge field lines forming the loop are identical
and always share exactly 1 index with the outer scalar fields (which implies the
other index has to be different from 1 and 2). Indeed, the structure of the indices
in the interaction terms in (4.2) dictates that the relevant diagrams in SO(10)
are the ones depicted in Figure 4.4.

The structure of the integrals corresponding to the diagrams in Figure 4.4
is the same as it was in the SO(4) case (see (3.53)). Therefore, in SO(10) the
contribution from Figure 4.4 has the structure

Γĝ4

1loop(φ12φ12 → φ12φ12) = P
ĝ4

32µ2ϵ 3
16π2ϵ

. (4.21)

As for the combinatorial factors, just like in SO(4) the factors from the La-
grangian together with the contraction factors give fd = 2×4! = 48. The number
of contributing graphs is given by the fact that in both of the diagrams in Figure
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Figure 4.5: 1-loop contributions Γĝ4

1loop(φ12φ13 → φ42φ43). In the first and third
diagram the inner lines are either both the ones before the slash or both the ones
after the slash. In the second and fourth diagrams it holds for the inner lines
(ij) /∈ {(12), (13), (42), (43)}.

4.4 the index i can have 8 different values; hence nd = 16. The total combinatorial
factor is thus equal to

P g4

1 = 2 ∗ 4! ∗ 16 = 768. (4.22)

This means the 1-loop contribution to Γ(φ12φ12 → φ12φ12) proportional to ĝ4

reads

Γĝ4

1loop(φ12φ12 → φ12φ12) = 768 ĝ4

32µ2ϵ 3
16π2ϵ

. (4.23)

Lastly, the 1-loop contributions Γĝ4

1loop(φ12φ13 → φ42φ43) for SO(4) are depicted in
Figure 3.12. It useful to compare these 1-loop diagrams to the ones contributing
to Γ(φ12φ13 → φ42φ43) which are proportional to â2

2 in Figure 3.9. It is easy
to observe that the structure of the diagrams in these two Figures is identical
in terms of the index structure and the difference is only that the inner lines
are scalars in Figure 3.9 and the inner lines in Figure 3.12 are vectors. In fact,
this is also the case in the SO(10) theory, which can be seen by expanding the
interaction terms in (4.2). This implies that the 1-loop diagrams contributing to
Γĝ4

1loop(φ12φ13 → φ42φ43) are the ones depicted in Figure 4.5.
The factor fd for the first and the third diagram in Figure 4.5 receives fL = 2×

(−2)×2 (just like they did in the SO(4) theory) and there are nd4 such diagrams,
which means that the overall factor is fd = fL × nd = 2 × (−2) × 2 × 4 = −32.
The second and fourth diagram in Figure 4.5 gets a factor fL = 2 × 2 × 2 from
the Lagrangian and there are nd = 12 such diagrams, giving an overall factor of
fd = fL × nd = 2 × 2 × 2 × 12 = 96. Finally, the fifth diagram gets a factor
fL = 2 × (−4) × 4 = −32. Collecting all of the factors gives a total combinatorial
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factor

P g4

2 = −32 + 96 − 32 = 32, (4.24)

which means the 1-loop contribution to Γ(φ12φ13 → φ42φ43) proportional to ĝ4

reads

Γĝ4

1loop(φ12φ13 → φ42φ43) = 32 ĝ4

32µ2ϵ 3
16π2ϵ

. (4.25)

It is necessary to point out that one should also consider diagrams of the type
shown in 3.13. There was argued in sec.4.4.3 that these diagrams are finite in
the SO(4) model. However, the same arguments hold true also for the SO(10)
model and, therefore, the diagrams in Figure 3.13 do not contribute to the beta
functions of a0 and a2 (or any other beta functions for that matter).

4.3 Beta functions of the couplings a0 and a2 in
SO(10) Higgs model

The evaluation of the beta functions of a0 and a2 in SO(10) follows the same
steps as in the SO(4) (see sec. 4.5). Therefore, it is necessary to collect all of
the contributions to Γ(φ12φ12 → φ12φ12) and to Γ(φ12φ13 → φ42φ43) from the
previous section as well as the wave-function renormalization factor from sec.5.1.
The expression for ∆Zφ was given in (4.4) and it reads

∆Zφ = ĝ2C2(Adj.) 3
16π2ϵ

= ĝ28 3
16π2ϵ

(4.26)

where C2(Adj.) = 8 was used. The K-terms are fixed via the equations (4.7)
where one needs to plug in the contributions to Γ(φ12φ12 → φ12φ12) and to
Γ(φ12φ13 → φ42φ43) which are given below for the reader’s convenience

Γâ2
0

1loop(φ12φ12 → φ12φ12) =162816 â2
0

32µ2ϵ 1
16π2ϵ

Γâ2
2

1loop(φ12φ12 → φ12φ12) =19200 â2
2

32µ2ϵ 1
16π2ϵ

Γâ0â2
1loop(φ12φ12 → φ12φ12) =76800 â0â2

32 µ2ϵ 1
16π2ϵ

ΓKa0(φ12φ12 → φ12φ12) = − 96µ2ϵ â0Kâ0

4
ΓKa2(φ12φ12 → φ12φ12) = − 48µ2ϵ â2Kâ2

4

Γâ2
2

1loop(φ12φ13 → φ42φ43) =2432 â2
2

32µ2ϵ 1
16π2ϵ

Γâ0â2
1loop(φ12φ13 → φ42φ43) =3072 â0â2

32 µ2ϵ 1
16π2ϵ

(4.27)
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ΓKa2
1loop(φ12φ13 → φ42φ43) = − 8µ2ϵ â2Kâ2

4

Γĝ4

1loop(φ12φ12 → φ12φ12) =768 ĝ4

32µ2ϵ 3
16π2ϵ

Γĝ4

1loop(φ12φ13 → φ42φ43) =32 ĝ4

32µ2ϵ 3
16π2ϵ

Finally, plugging all of the contributions from (4.27) into the counterterm-fixing
equations (4.7) and solving for the K-terms yields

Kâ0 = 106â2
0 + 3â2

2 + 38â0â2

8â0π2ϵ
+ 9ĝ4

64â0π2ϵ

Kâ2 = 19â2
2 + 24â0â2

8â2π2ϵ
+ + 3ĝ4

32â2π2ϵ
.

(4.28)

With the K-terms and the factor ∆Zφ at hand one can plug them into (4.3)
(recalling that â0 = a0µ

−2ϵ) which yields

βâi
= âi2ϵKai

− âi4∆Zφ. (4.29)

Finally, plugging the full form of the K-terms from (4.28) and of the factor
∆Zφ from (4.4) into (4.29) gives the full beta functions for the couplings â0 and
â2 in 45 in the Higgs sector of the SO(10) GUT

βâ0 = 1
32π2

(
848â2

0 + 24â2
2 + 304â0a2 + 9ĝ4 − 192â0ĝ

2
)

βâ2 = 1
16π2

(
76â2

2 + 96â0a2 + 3ĝ4 − 96â2ĝ
2
)

.
(4.30)

This is the main result of this thesis. The results in (4.30) have been verified by
comparing them with [34].
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5. Effective potential method
In this Chapter, the beta functions of the scalar couplings a0 and a2 in both

the SO(4) Higgs model as well as the SO(10) Higgs model will be evaluated
via the Coleman-Weinberg effective potential method introduced in Appendix D.
Note that the anomalous dimension part in (D.19) is not easily calculable from
the effective potential. Therefore, the term in the beta functions corresponding
to the anomalous dimension (which corresponds to the term obtained from the
wave-function renormalization factor) will not be evaluated in this chapter. In
the final expressions for the beta functions there will be recalled the results for
the wave-function renormalization factor from the previous chapters.

5.1 Beta functions of the couplings a0 and a2 in
the SO(4) Higgs model

First, the relation (D.14) of the scalar coupling a2 and the SO(4) Higgs po-
tential (3.3) will be identified. Looking at the interaction terms (3.28) and (3.29)
(which correspond to the relevant terms in Vφ, but with a minus sign, see (3.1)),
the coupling a2 can be expressed as

a2 = 1
2

∂4Vφ({φk})
∂φ12φ13φ42φ43

. (5.1)

Since the a0-term does not produce any tree-level Feynman diagram which the
a2 term would not contribute to, the a0 has to be expressed through a more
complicated linear combination. Looking again at the interaction terms (3.28)
and (3.29), one can infer that the coupling a0 can be written as

a0 = 1
24

∂4Vφ({φk})
∂φ4

12
− 1

4
∂4Vφ({φk})

∂φ12φ13φ42φ43
. (5.2)

The expressions (5.1) and (5.2) can be verified by plugging in for Vφ from (3.1).
Next, one needs to evaluate are the matrices W 2({φk}) and M4({φk}) defined
by (D.18), which appear in the right-hand side of (D.19). For this purpose a
program in Mathematica was developed.

Having identified the proper derivatives in (5.1) and (5.2) and having eval-
uated the matrices W 2({φk}) and M4({φk}), the Coleman-Weinberg formula
(D.19) gives the expressions for the beta functions. Thus, in order to obtain
the beta functions for the couplings a0 and a2 in the SO(4) Higgs model, it is
necessary to plug the derivatives in (5.1) and (5.2) into (D.19) which yields

βa2 = 1
32π2

1
2

∂4

∂φ12φ13φ42φ43

(
Tr
[
W 2({φk})

]
+ 3 Tr

[
M4({φk})

])
βa0 = 1

32π2

(
1
24

∂4

∂φ4
12

− 1
4

∂4

∂φ12φ13φ42φ43

)
×(

Tr
[
W 2({φk})

]
+ 3 Tr

[
M4({φk})

])
.

(5.3)
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The derivatives of the matrices W 2 and M4 in the expressions above read

∂4

∂φ12φ13φ42φ43
Tr
[
W 2({φk})

]
=16a2(24a0 + 7a2)

∂4

∂φ4
12

Tr
[
W 2({φk})

]
=96

(
56a2

0 + 52a0a2 + 13a2
2

)
∂4

∂φ12φ13φ42φ43
Tr
[
M4({φk})

]
= − 8g4

∂4

∂φ4
12

Tr
[
M4({φk})

]
=24g4

(5.4)

Finally, after plugging (5.4) into (5.3) the beta functions of the couplings a0
and a2 in the SO(4) Higgs model read

βa0 = 224a2
0 + 24a2

2 + 112a0a2 + 9g4 − 48a0g
2

32π2

βa2 = 14a2
2 + 48a0a2 − 3g4 − 12a2g

2

8π2 .

(5.5)

Note that in the resulting expressions (5.5) the part of the beta function depend-
ing on the wave-function renormalization factor (i.e. the part dependent on aig

2)
from Chapter 3 was used (see (3.26) and (3.63)).

The results (5.5) do in fact coincide with the expressions obtained via the
diagrammatic approach (see (3.63)). One can observe that the effective potential
method has proven to be much more efficient than the diagrammatic approach
already for the SO(4) model.

5.2 Beta functions of the couplings a0 and a2 in
the SO(10) Higgs model

To begin with, it is necessary to express the scalar couplings a0 and a2 as
fourth derivatives of the Higgs potential Vφ in (2.7) (see (D.14)). However, one
can observe the index structure of the terms in Vφ in (2.7) (which corresponds to
the SO(10) model) is the same as the one in (3.28) and (3.29) (which corresponds
to the SO(4) model). This in turn means that the couplings a0 and a2 in the
SO(10) model may be expressed the same way as they were in the SO(4) model,
i.e. via the relations (5.1) and (5.2). For the reader’s convenience, the relation of
the couplings a0 and a2 and the potential Vφ in the SO(10) model is reiterated
below

a0 = 1
24

∂4Vφ({φk})
∂φ4

12
− 1

4
∂4V0({φk})

∂φ12φ13φ42φ43

a2 =1
2

∂4Vφ({φk})
∂φ12φ13φ42φ43

.

(5.6)

The relations above can be verified by plugging in for Vφ from (2.7). After plug-
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ging the expressions (5.6) into the Coleman-Weinberg formula (D.19) the beta
functions in the SO(10) model have the same form as in (5.3), namely

βa2 = 1
32π2

1
2

∂4

∂φ12φ13φ42φ43

(
Tr
[
W 2({φk})

]
+ 3 Tr

[
M4({φk})

])
βa0 = 1

32π2

(
1
24

∂4

∂φ4
12

− 1
4

∂4

∂φ12φ13φ42φ43

)
×(

Tr
[
W 2({φk})

]
+ 3 Tr

[
M4({φk})

])
.

(5.7)

Next, the matrices W 2({φk}) and M4({φk}) have to be evaluated within the
SO(10) Higgs model. This was done this using an adjusted version of the code
in Mathematica, which was mentioned in the previous section. The derivatives
of the matrices in (5.7) in the SO(10) model read

∂4

∂φ12φ13φ42φ43
Tr
[
W 2({φk})

]
=16a2(24a0 + 19a22)

∂4

∂φ4
12

Tr
[
W 2({φk})

]
=96

(
212a2

0 + 100a0a2 + 25a2
2

)
∂4

∂φ12φ13φ42φ43
Tr
[
M4({φk})

]
=4g4

∂4

∂φ4
12

Tr
[
M4({φk})

]
=96g4

(5.8)

Finally, plugging the derivatives of the matrices in (5.8) into (5.7) and adding
the term corresponding to the wave-function renormalization factor1 gives the
beta functions of the scalar couplings a0 and a2 in the Higgs sector of SO(10)
GUT

βa0 = 1
32π2

(
848a2

0 + 24a2
2 + 304a0a2 + 9g4 − 192a0g

2
)

βa2 = 1
16π2

(
76a2

2 + 96a0a2 + 3g4 − 96a2g
2
)

.
(5.9)

Note that these results in fact coincide with the beta functions obtained through
the explicit calculation of the Feynman diagrams (see (4.30)).

The efficiency of the effective potential formalism is displayed in this section
in its full glory. While it has taken roughly 10 pages of relatively fast-paced
diagrammatic calculations, the effective potential method has arrived at the same
result much faster (admittedly, with the help of Mathematica). The results in
(5.9) have now been computed in the different ways and they also coincide with
the results in [34].

1This is the part of beta function dependent on aig
2, see (4.26), (4.30).
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Conclusion
In this thesis, the Higgs sector of the minimal SO(10) Grand Unified Theory

was studied. It is a well-motivated extension of the Standard Model which, despite
its astounding success, is not the complete theory of fundamental particle physics.

GUTs represent a prominent direction within the search for BSM physics
because there are multiple hints of a large-energy scale structure including the
approximate convergence of the SM gauge couplings as well as the seesaw mech-
anism.

One of the core aspects which needs to be addressed when constructing a
GUT is the Higgs sector. It is responsible for the appropriate symmetry break-
down to the SM gauge group as well as the mass generation within the theory.
It has been observed that, at the tree level, the scalar spectrum of the model
contains potentially tachyonic pseudo-Goldstone bosons. This would mean that
the vacuum structure, chosen so as to produce symmetry breaking chains leading
to the SM at low energies, is not necessarily stable. This was the reason why in
the 1980s the SO(10) models where dismissed as unphysical.

However, it has been shown recently that quantum effects drastically change
the picture. Namely, the 1-loop corrections to the potentially tachyonic masses
are able to fix those issues in certain domains of the parameter space.

In order to properly analyze the full picture of the 1-loop approximations, it
is necessary to take a look at the running of the scalar couplings (which appear
in the formulae for the masses). Furthermore, the coupling a2 also appears in the
tree-level masses of the potentially tachyonic multiplets (see (2.15)).

Another issue connected to the perturbative aspects is the structure of the
Landau poles of the couplings in the Higgs sector, as these tend to be close to the
unification scale. Having a Landau pole at such energies would bring into question
the perturbative approach as a whole and, as such, it is certainly worthwhile to
look deeper into the topic.

These questions motivated the endeavor of evaluating the beta functions of
at least some scalar couplings within the Higgs sector. This is what was done
in this thesis for the couplings a0 and a2 appearing in the Higgs potential (2.7).
These two couplings play a dominant role when determining the domains of the
parameter space of the theory with stable vacua.

The beta functions of the scalar couplings a0 and a2 in the Higgs sector of the
SO(10) GUT have been computed via two approaches: the explicit evaluation
of all the relevant Feynman diagrams (Chapter 4) and the Coleman-Weinberg
effective potential method (Chapter 5). Due to the complexity of the diagram-
matic approach which is a consequence of having the fairly large 45-dimensional
representation of the scalar fields, a simpler SO(4) toy model has been inspected
first in Chapter 3. The structure of the interaction terms became much more
transparent within the toy model and the results are summarized in (3.63). The
expressions for the running couplings have been also verified via the effective
potential method in Chapter 5 (see (5.5)).

Thanks to the experience gained in Chapter 3, the calculation of the beta
functions of the scalar couplings a0 and a2 within the SO(10) theory became
much easier as well as better understood. This was very welcome as there is a

49



big amount of individual relevant diagrams in the larger theory. The explicit
evaluation of the Feynman graphs was described in Chapter 4 and the resulting
beta functions are given in equation (4.30). This diagrammatic calculation has
never been presented before. The beta functions were also computed via the
effective potential method (see (5.9)) and the results (4.30) were thus confirmed.

The main results of this thesis (4.30) are important for understanding the
perturbative aspects of the minimal SO(10) GUT (as was discussed in more
detail in Chapter 2). However, it is appropriate to point out, that in order to
fully understand the quantum effects on the masses in the scalar spectrum of
the theory, the beta functions of the rest of the scalar couplings contained in
the Higgs potential should be evaluated as well. This is in fact a larger ongoing
project and this thesis is an effort within that direction.
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A. Appendix: SO(10) and its
representations

A.1 Basic definitions
Before going into the specifics of SO(10), the reader will be briefly reminded

of some basic definitions of Lie group theory and its representations. The intro-
duction into group theory will be rather fast-paced, but it will serve well in terms
of fixing the necessary notation.

A Lie group G is defined as a differentiable manifold endowed with a smooth
group structure (see e.g. [35], [36]).

In this thesis, the following two types of matrix Lie groups are important:

• SO(N) is the special orthogonal group defined as the set of all N × N
matrices M satisfying: MT M = MMT = Id. and det M = 1.

• SU(N) is the special unitary group defined as the set of all N × N matrices
U satisfying: U †U = UU † = Id. and det U = 1.

The fact that these are matrix groups makes it much easier to work with than it
would be with general Lie groups.

The Lie algebra g associated to a Lie group G is defined as the tangent space
of G at the identity element. The Lie algebra has a binary operation called the
Lie bracket which can be defined as a simple commutator when working with
matrix groups because one has naturally defined the matrix multiplication. A
basis of the Lie algebra is referred to as the set of generators Xa which satisfy
the commutation relations

[Xa, Xb] = ifabcXc, (A.1)

where fabc are the structure constants.
In the case of SO(10), the generators of its Lie algebra were defined in (2.2);

from there one can infer the commutation relations
[
T̂ αβ, T̂ γδ

]
= i√

2
(
δαγT̂ βδ + δβδT̂ αγ − δβγT̂ αδ − δαδT̂ βγ

)
. (A.2)

The representation of a Lie group is defined as a mapping ρ from the group
to the space of automomorphisms acting on a representation vector space V .
This mapping has to preserve the structure of the group, meaning it is a group
homomorphism. Similarly, one can define the representation of a Lie algebra ρ̃
as a mapping from the algebra to the space endomorphisms on a representation
vector space and the mapping has to be linear and preserve the algebra’s bracket

ρ̃([X, Y ]) = ρ̃(X)ρ̃(Y ) − ρ̃(Y )ρ̃(X). (A.3)

A special case of a representation is an irreducible one which means that the
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vector space V has no invariant subspaces (this would be a subspace of V which
would be mapped into itself by all of the elements of the algebra).

Relevant examples for this thesis are the irreducible representations of the Lie
group SO(10). One important example of an irreducible representation is the
adjoint representation, defined by the set of matrices[

T̃a

]
bc

= −ifabc (A.4)

This is the representation that the Higgs scalar φ transforms under.
The defining representation of the SO(10) corresponds to ρ being just the

identity and thus the representation space is 10-dimensional. This means for a
v ∈ V and M ∈ SO(10)

ρ(M)v = Mv. (A.5)

From the fundamental representation one can build a general tensor representa-
tion, acting on the direct product of the representation spaces of the fundamental
representation, i.e. for tensors of the second order one has

ρ(M)(v1 ⊗ v2) = (ρ(M)v1) ⊗ (ρ(M)v2) = (Mv1) ⊗ (Mv2). (A.6)

In particular, one can build the order 5 tensor representation where the elements
in the representation space carry 5 indices vijklm. However, it turns out that this
representation is reducible. In order to construct an order 5 tensor irreducible
representation one may take the subspace of tensors with fully antisymmetric
indices, i.e. v[ijklm]. Using the 10-dimensional Levi-Civita tensor ϵijklmnopqr with
the convention ϵ12345678910 = +1, one may define the dual map

vijklm → ṽ = − i

5!ϵijklmnopqrvnopqr. (A.7)

This way it is now possible to define the fully antisymmetric self-dual tensors by

Σijklm := 1√
2

(vijklm + ṽijklm) ≡ Σ̃ijklm (A.8)

This is how the representation of the Higgs scalar Σ-fields in 126 (in Chapter 2)
is defined.

A.2 Representations decomposition
In the context of the SO(10) Higgs model studied in this thesis it is useful to

take into account the intermediate stages of symmetry breaking, namely SU(4)C⊗
SU(2)L ⊗ SU(2)R and SU(3)c ⊗ SU(2)L ⊗ SU(2)R ⊗ U(1)B−L. In this section,
there will be presented the decomposition of the SO(10) multiplets utilized in
this thesis under the subgroups corresponding to the intermediate breaking stage.
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Subsequently, it will be shown how they decompose under the SM gauge group.
In doing so, results of [37] will be utilized.

The 45 representation of SO(10) decomposes under the SU(3)c ⊗ SU(2)L ⊗
SU(2)R ⊗ U(1)B−L subgroup as

45 =(1, 1, 3, 0) ⊕ (1, 3, 1, 0) ⊕
(
3, 2, 2, −2

3

)
⊕
(
3, 2, 2, +2

3

)
⊕ (1, 1, 1, 0) ⊕

(
3, 1, 1, +4

3

)
⊕
(
3, 1, 1, −4

3

)
⊕ (8, 1, 1, 0).

(A.9)

In order to express the decomposition under the SM gauge group, it is useful to
recall the relation for the hypercharge

Y = T 3
R + 1

2(B − L) (A.10)

where T 3
R corresponds to the third generator of SU(2)R (analogously to the stan-

dard SU(2)L notation in the SM). For the submultiples in (A.9) one gets

(1, 1, 3, 0) = (1, 1, +1) ⊕ (1, 1, 0) ⊕ (1, 1, −1),
(1, 3, 1, 0) = (1, 3, 0),(

3, 2, 2, −2
3

)
=
(
3, 2, +1

6

)
⊕
(
3, 2, −5

6

)
,(

3, 2, 2, +2
3

)
=
(
3, 2, −1

6

)
⊕
(
3, 2, +5

6

)
,

(1, 1, 1, 0) = (1, 1, 0),(
3, 1, 1, +4

3

)
=
(
3, 1, +2

3

)
,(

3, 1, 1, −4
3

)
=
(
3, 1, −2

3

)
,

(8, 1, 1, 0) = (8, 1, 0).

(A.11)

The fundamental representation of the SO(10) decomposes under the SU(3)c ⊗
SU(2)L ⊗ SU(2)R ⊗ U(1)B−L subgroup as

10 =
(
3, 1, 1, −2

3

)
⊕
(
3, 1, 1, +2

3

)
⊕ (1, 2, 2, 0), (A.12)

where the submultiplets above decompose under the SM gauge group as(
3, 1, 1, −2

3

)
=
(
3, 1, −1

3

)
,(

3, 1, 1, +2
3

)
=
(
3, 1, +1

3

)
,

(1, 2, 2, 0) =
(
1, 2, +1

2

)
⊕
(
1, 2, −1

2

)
.

(A.13)

The fully antisymmetric self-dual rank 5 tensor representation of the SO(10)
decomposes under the SU(4)C ⊗ SU(2)L ⊗ SU(2)R subgroup as

126 = (10, 3, 1) ⊕ (10, 1, 3) ⊕ (6, 1, 1) ⊕ (15, 2, 2), (A.14)
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where the submultiplets above decompose under the SM gauge group as

(10, 3, 1) =(6, 3, −1
3) ⊕ (3, 3, +1

3) ⊕ (1, 3, +1),
(10, 1, 3) =(6, 1, −1

3) ⊕ (6, 1, +2
3) ⊕ (6, 1, −4

3) ⊕ (3, 1, +1
3)

⊕ (3, 1, −2
3) ⊕ (3, 1, +4

3)
⊕ (1, 1, 0) ⊕ (1, 1, +1) ⊕ (1, 1, +2),

(15, 2, 2) =(1, 2, +1
2) ⊕ (1, 2, −1

2) ⊕ (3, 2, +1
6) ⊕ (3, 2, −1

6)
⊕ (3, 2, +7

6) ⊕ (3, 2, −7
6) ⊕ (8, 2, +1

2) ⊕ (8, 2, −1
2)

(6, 1, 1) =(3, 1, +1
3) ⊕ (3, 1, −1

3).

(A.15)

Lastly, a single generation of fermions belongs to the 16-dimensional spinorial
representation decomposes under the SU(3)c ⊗SU(2)L ⊗SU(2)R ⊗U(1)B−L sub-
group as

16 =
(
3, 2, 1, +1

3

)
⊕ (1, 2, 1, −1) ⊕

(
3, 1, 2, −1

3

)
⊕ (1, 1, 2, +1), (A.16)

where the submultiplets above decompose under the SM gauge group as(
3, 2, 1, +1

3

)
=
(
3, 2, +1

6

)
(1, 2, 1, −1) =

(
1, 2, −1

2

)
(
3, 1, 2, −1

3

)
=
(
3, 1, +1

3

)
⊕
(
3, 1, −2

3

)
,

(1, 1, 2, +1) = (1, 1, +1) ⊕ (1, 1, 0)

(A.17)
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B. Appendix: Integral methods
for the DR procedure

In Chapters 3 and 4 there are described the computations of various 1-loop
diagrams which often diverge. In order to tame the divergences the DR procedure
is employed. In this Appendix a brief summary of standard formulae used within
this procedure is provided. Note that the full treatment of the DR procedure can
be found in e.g. [30].

The introduction of Feynman parameters allows one to merge multiple frac-
tional expressions into one fraction. The general formula for two fractions reads

1
AB

=
∫ 1

0
dx

1
[Ax + B(1 − x)]2 (B.1)

After the Feynman parameters have been introduced the DR master master can
be employed to solve the integral and it reads

∫ ddl

(2π)d

(l2)r

(l2 − C + iϵ)s = i(−1)r−s 1
(4π)d/2 Cr−s+ d

2
Γ
(

d
2 + r

)
Γ
(

d
2

) Γ
(
s − r − d

2

)
Γ(s) . (B.2)
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C. Appendix: The interaction
term of the φφAA type

In section 3.4.3 there are the calculations of the contributions to the studied
4-point functions proportional to ĝ4 in the SO(4) model. In order to identify and
evaluate the relevant diagrams, it is necessary to inspect the interaction term

LφφAA =1
4 ĝ2µ2ϵ [Aµ, φ]†ij [Aµ, φ]ij =

=1
4 ĝ2µ2ϵ

(
AikAilφkjφlj + AikAjlφkjφil

)
.

(C.1)

The full expansion of the interaction term reads (lower indices are used for the
A-fields for better legibility since the upper index slot is often used by the powers)

LφφAA = − A2
23φ

2
12 − A2

24φ
2
12 − 2A24A34φ12φ13 − A2

12φ
2
13

− A2
23φ

2
13 − A2

34φ
2
13 + 2A23A34φ12φ14

− 2A23A24φ13φ14 − A2
12φ

2
14 − A2

24φ
2
14

− A2
34φ

2
14 + 2A12A2,3φ12φ23 − 4A12A34φ14φ23

− A2
12φ

2
23 − A2

24φ
2
23 − A2

34φ
2
23

+ 2A12A24φ12φ24 + 4A12A34φ13φ24

+ 2A23A24φ23φ24 − A2
12φ

2
24 − A2

23φ
2
24

− A2
34φ

2
24 − 2A12A24φ13φ34 + 2A12A23φ14φ34

+ 2A23A34φ23φ34 + 2A24A34φ24φ34 − A2
23φ

2
34

− A2
24φ

2
34 − A2

13

(
φ2

12 + φ2
14 + φ2

23 + φ2
34

)
− A2

14

(
φ2

12 + φ2
13 + φ2

24 + φ2
34

)
+ 2A14(−A24φ13φ23 + 2A23φ13φ24 + A24φ14φ24

− 2A23φ12φ34 + A34(φ12φ23 + φ14φ34)
+ A12(φ12φ14 + φ23φ34)) + 2A13(A23φ13φ23

+ 2A24φ14φ23 − A34φ12φ24 − A23φ14φ24

+ A14(φ13φ14 − φ23φ24) + 2A24φ12φ34

+ A34φ13φ34 + A12(φ12φ13 − φ24φ34))

(C.2)

Since the full expression (C.2) is fairly complicated, for the reader’s convenience
the interaction terms relevant for the calculations in section 4.1.7 are given below.
Let the part of the Lagrangian containing the fields φijφkl be denoted by L(ij)(kl).
The relevant expressions read

L(12)(12) = φ2
12

(
−A2

13 − A2
14 − A2

23 − A2
24

)
, (C.3)

L(12)(13) = φ12φ13(2A12A13 − 2A24A34), (C.4)

L(12)(24) = φ12φ24(2A12A24 − 2A13A34), (C.5)
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L(12)(34) = φ12φ34(−4A14A23 + 4A13A24), (C.6)

L(13)(24) = φ13φ24(4A14A23 + 4A12A34), (C.7)

L(13)(34) = φ13φ34(−2A12A24 + 2A13A34), (C.8)

L(24)(34) = φ24φ34(−2A12A13 + 2A24A34). (C.9)
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D. Appendix: Theory of the
effective potential method

The effective potential method was described by J. Goldstone, A. Salam,
S. Weinberg in the context of spontaneous symmetry breaking in QFT [28].
S.Coleman and E.Weinberg in their paper ’Radiative Correcrtions as the Ori-
gin of Spontaneous Symmetry Breaking’ [29] then further expanded the topic
and their work will be presented in this chapter.

In this Appendix, the effective potential will be defined and, subsequently, it
will be used it to derive some important results. In Chapter 5, the method will
be utilized to evaluating the beta functions of scalar couplings.

The theory of effective potential will be formulated via the path-integral ap-
proach, following [29]. Therefore, various basic definitions and results regarding
the path-integral formalism will be stated, which can be found in many QFT
textbooks, e.g. in [31].

Consider a simple φ4 scalar theory given by the Lagrangian L(φ, ∂µφ) and
suppose there is a classical external source J(x) coupled linearly to φ

L → L + J(x)φ(x). (D.1)

The standard definition of the generating functional reads

Z[J ] =
∫

Dφ exp
{

i
∫

d4x [L(φ) + J(x)φ(x)]
}

∝ ⟨0, inf | 0, −∞⟩J

(D.2)

where the last expression corresponds to the vacuum-to-vacuum transition ampli-
tude in the presence of the external field J . Then, one may define the connected
generating functional W [J ] via the relation

eiW [J ] := Z[J ]. (D.3)

Using the quantity W , it is useful define the classical field φc

φc(x) = δW

δJ(x) . (D.4)

As the name suggests, the connected generating functional W generates connected
Green’s functions. In other words, W can be expanded in a functional series where
the coefficients are the connected Green’s functions G(n)

W =
∑

n

1
n!

∫
d4x1 · · · d4xnG(n) (x1 · · · xn) J (x1) · · · J (xn) . (D.5)

Similarly, one can define a functional called the effective action Γ which generates
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the contributions of amputated 1PI diagrams Γ(n). The effective action is defined
as the functional Legendre transformation of W

Γ (φc) = W (J) −
∫

d4xJ(x)φc(x), (D.6)

which implies

J(x) = − δΓ
δφc(x) . (D.7)

The effective action can be expanded in a series

Γ =
∑

n

1
n!

∫
d4x1 · · · d4xnΓ(n) (x1 · · · xn) φc (x1) · · · φc (xn) . (D.8)

Crucially, one can also expand the effective action in an alternative manner

Γ =
∫

d4x
[
−V (φc) + 1

2 (∂µφc)2 Z (φc) + · · ·
]

. (D.9)

The quantity V (φc) is called the effective potential and it will be the central object
within the following calculations. One can show, that V can be approximated
via the loop expansion, which means it can be expressed as a series, where the
coefficients correspond to the sums of all 1PI graphs with k loops, denoted by Vk:

V =
inf∑

k=0
Vk

(
h

2π

)k

= V0 +
(

h

2π

)
V1 + O

⎛⎝( h

2π

)2
⎞⎠ . (D.10)

Note that, here V0 is equal to the potential part of the Lagrangian (in other words,
it corresponds to the non-derivative terms with a negative sign).

Ultimately, the purpose of introducing the effective potential in the thesis is
to calculate the beta functions in the aforementioned Higgs sector. This can be
achieved with the help of the renormalization group equation(

∂

∂ log µ
+ β

∂

∂λ
+ γφφc

∂

∂φc

)
V = 0, (D.11)

where µ is the renormalization scale, λ is the coupling constant, β is the beta
function defined as

β := ∂λ

∂ log µ
(D.12)

and γ is the so-called anomalous dimension defined as

γφ := 1
2

1
Zφ

∂Zφ

∂ log µ
. (D.13)

The quantity Zφ is the wave-function renormalization factor (also referred to as
field strength renormalization).
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The generalization to a Higgs model with multiple scalar fields {φi} and gauge
fields {Aa} is straightforward. In what follows, the notation introduced in chapter
2 will be used.

Consider a general scalar theory with multiple scalar fields where all the in-
teraction terms are quartic in the scalar fields and suppose there exists a constant
Ci such that

λi = Ci
∂4V0({φj})∏4

i=1 ∂φi

. (D.14)

The last expression can be plugged into into eq. (D.11), where the appropriate
fourth derivative is taken and V is expanded to the 1-loop order

⎛⎝ ∂

∂ log µ
+ βλi

∂

∂λi

+
∑

j

γφj

∂

∂φj

+
4∑

i=1
γφi

⎞⎠Ci
∂4(V0({φi}) + V1({φi}, µ))∏4

i=1 ∂φi

= 0.

(D.15)

After some manipulations, the equation for the beta function becomes in the
leading order

βλi
= −Ci

∂4∏4
j=1 ∂φj

∂V1({φi}, µ)
∂ log µ

−
4∑

j=1
γφj

Ci
∂4V0({φk})∏4

l=1 ∂φl

. (D.16)

Let the first term on the right-hand side of (D.16) be denoted by β
(1)
λi

. For the
evaluation of β

(1)
λi

, one needs to determine the structure of V1. This has been done
in [29], [10] and after implementing the renormalization conditions (note that the
calculations are done in the MS scheme here) it has the form

β
(1)
λi

= 1
32π2 Ci

∂4∏4
j=1 ∂φj

(
Tr
[
W 2({φk})

]
+ 3 Tr

[
M4({φk})

])
. (D.17)

In the last expression the standard matrix multiplication rule is implicit and the
matrices are defined by

[W ({φk})]ij = ∂2V0

∂φi∂φ∗
j[

M2({φk})
]

ab
= g2 1

2

[(
T̂ aΦ

)† (
T̂ bΦ

)
+
(
T̂ bΦ

)† (
T̂ aΦ

)]
≡ g2

[(
T̂ aΦ

)† (
T̂ bΦ

)]
(a↔b)

(D.18)

where T̂ a denotes the action of a generator of the Lie algebra associated with the
gauge group, Φ denotes the collection of fields {φk} in their given representation,
and the last equality just corresponds to the symmetrization.
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Plugging the expressions (D.17) and (D.14) into (D.16) yields the full beta
function

βλi
= 1

32π2 Ci
∂4∏4

j=1 ∂φj

(
Tr
[
W 2({φk})

]
+ 3 Tr

[
M4({φk})

])
− λi

4∑
j=1

γφj
(D.19)

The last formula is the main result of this Appendix as it provides a straight-
forward prescription on how to compute the beta function of a gauged quartic
scalar theory.
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0
1loop(φ12φ12 → φ12φ12). The pairs

of numbers next to the scalar lines denote the particular scalar fields. 26
3.5 A purely scalar 1-loop diagram. . . . . . . . . . . . . . . . . . . . 26
3.6 Feynamn rules for the scalar vertex and the scalar propagator. . . 27
3.7 1-loop diagrams contributing to Γâ2
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0

1loop(φ12φ12 → φ12φ12). As op-
posed to the SO(4) model there are many more diagrams of the
type on the left-hand side in the SO(10) model. This is due to the
fact that the indices i, j run through {1, .., 10}. . . . . . . . . . . . 39

4.2 1-loop diagrams contributing to Γâ2
2

1loop(φ12φ12 → φ12φ12). In the
right diagram at least one of the indices i or j has to be equal
to either 1 or 2. The contributions proportional to â0â2 have the
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