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citovaných pramen̊u. Souhlaśım se zap̊ujčováńım práce.
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Kĺıčová slova: extrakce textur, registrace obrazu, 3D rekonstrukce

Title: Phototextures extraction for 3D photometric reconstruction
Author: Hedvika Peroutková
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Chapter 1

Introduction

The task of extracting textures for real objects from photographs is one of the key
problems in the process of 3D reconstruction. As there is a natural trend of cre-
ating 3D models of objects, buildings, places around us, a need for automated 3D
reconstruction process becomes more significant. The quality of texture extraction
and registration is the main factor that affects the quality of the resulting 3D recon-
struction. Textures from different images need to be enhanced and the fact that we
can’t assume that camera parameters, lighting conditions and 3D model geometry
are exactly known makes this task difficult.

The solution of this problem can be used in 3D reconstruction and other fields
of computer vision as well as in industry.

Nowadays, systems dealing with this problem are for instance the program Im-
ageModeler developed by Realviz, program Canoma from Adobe or PhotoModeler
developed by Eos Systems. However, results from the existing solutions are satisfy-
ing only for simple models that can be reconstructed from small set of photographs.
When a large number of images is used, programs are not stable or are not able to
use information from images obtained from different views, especially when textures
are partly occluded.

This thesis deals with the problem of texture creation for a 3D model, where
the goal is to create the best texture for each model face from given images. This
means that the texture should be in high resolution, sharp enough and should cover
all texture parts which can be seen from at least one camera. To meet all these
requirements, it is necessary to create complex utility for image matching, which
could help to prepare textures by exploiting all given information.

The goal of this thesis is not a complete model reconstruction, but only texture
creation for already reconstructed model. As the reconstruction of model vertices
and their back projection is very sensitive to the precise estimation of the camera
calibration parameters and the accuracy of reconstructed point positions, one part of
this thesis used also information about border texture points on images. By involving
this information we can improve the texture accuracy but it is also limited by the
fact that borders are generated manually. This process can be used only for small
or not very complex models.
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In chapter 2, various aspects and problems of texturing are discussed. Vari-
ous methods for texture extraction and image matching are surveyed in chapter 3.
Chapter 4 describes the applied methods that are suitable for our problem. Pro-
posed solutions were used and tested in the project of digitalization of Langweil’s
model of Prague which due to its size enables to thoroughly test our algorithms,
this is further described in chapter 5. In chapter 6, our solutions are compared to
the existing ones. Chapter 7 concludes our results and offers possible improvements
for the future.
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Chapter 2

Problem of texturing

The problem of model texturing can be divided into three steps. It is texture extrac-
tion from photographs, image matching of extracted textures and texture building
for attaining final texture from deformed textures. Texture extraction can be real-
ized by means of ray casting if we had a 3D model of scene or using information
about texture borders. In the second case it is easy to implement but there is need
to establish border points or edges by hand, in the first case we don’t need border
information, however textures can be affected by reprojection error.

Image matching is the key step in the texturing process. Final quality of textures
particularly depends on efficiency of matching system. There are two main possi-
bilities how we can estimate a mapping from one image to another. Firstly, it can
be realized by finding features in both images, matching them and warping image
piecewise. Secondly, we can compute deformation field for whole image pixel-wise
(or block-wise).

Building the final texture should be done with respect to the picture illumination,
local texture sharpness and size of not occluded parts of texture. It means textures
should be bright balanced before using, only focused parts of texture without reflec-
tions should be used and they should be added to the final texture according to size
of their contribution to the final texture.

2.1 Input data

The quality of final textures greatly depends on the quality of images of recon-
structed object. For attaining textures of sufficient quality, we need enough images
from different angles, especially if we prepare textures for some structured object.
On the other hand, a large number of images assumes bigger demands to our sys-
tem. Anyway we usually don’t have many different images for faces which are not at
the easily visible places, in some small or narrow places of the object. Hence most
cameras show only small parts of the texture or they show textures from very small
angle.

Another aspect that should be considered is texture blur caused by camera’s
focus and depth of field. We can’t expect to get textures that are sufficiently sharp
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Figure 2.1: On the left image we can see hardly visible textures in the narrow streets,
the right image shows texture affected by small depth of field. The top of the texture
appears sharp, the bottom is blurred [1].

over their whole area, especially if we take photos with small depth of field.

We must also consider the surface of textured objects before texturing process.
Reflections from the surface affects negatively color of scanning object. If we use
a flash within capturing images of our scene, we should expect unpleasant surface
reflections. These damaged parts of textures should be detect and not used for
the final texture building. Recently, Jan Kirschner deals with this problem in his
thesis[9].

Texturing is usually done for wired models of objects. Surface of this model is
built up from plains, or mathematically easy defined surfaces. It is simplification of
real bumpy surfaces, which is necessary for reconstruction; however, it may cause
problems within the texturing process. Image registration system should be able to
process textures extracted from not exactly planar surfaces, which causes deforma-
tions in the texture viewed from different angles.
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Chapter 3

Analysis and solution

3.1 Extraction

The texture extraction is the first step in the texturing process. It can be performed
using various methods depending on different types of input data. As texturing isn’t
usually performed without previous processing of the model reconstruction, input
data are given from this process.

We typically know the 3D model geometry and camera calibrations and we have
to extract textures using this information. In this case, we are also able to extract
information about the texture visibility over its area, the angle between a face normal
and a ray from camera to each pixel and also distances of texture pixels from the
focus plain within capturing the image, supposing that we know used camera’s focal
length. There are two main methods how we can achieve this. These methods are
based on z-buffer or on raycasting. For computation of the complexity we assumed
that we have camera count NC with resolution RC and face count NF with common
face resolution RF .

3.1.1 Extraction using z-buffer

Using this method we can extract all textures from one image at once. For each
image we allocate a buffer (a two-dimensional array) with resolution of our images
containing information about the front face for each pixel. The texture visibility
is saved directly in z-buffer. However, we have to look for each texture surround-
ings and from depth information identify at texture boundaries possible occlusion
of farther texture by closer one. Possible occlusion should be considered because the
model geometry and camera calibration aren’t usually absolutely exact, moreover,
small depth of field can cause that the front blurred face affects the texture of far-
ther face. Therefore unpleasant artifacts could appear in the extracted textures. The
observation angle of each visible texture can be computed from the model geome-
try. Local texture sharpness is obtained for rasterized texture from 3D data. Each
texture should be extracted by means of projection of its face in the given camera
to the area corresponding to perpendicular view of our texture. This can lead to

5



Figure 3.1: Rasterization vectors xr and yr are given by the ratio between size of
the face in 3D and size of the 2D bitmap.

loss of texture information if the target texture size in perpendicular view isn’t large
enough. The z-buffer preparation has a computational complexity of O(NCNFRC),
texture transformation to perpendicular view O(NCNFRF ), estimation of possible
occlusion can be also computed in O(NCNFRF ) using only information at the tex-
ture boundaries. Texture sharpness has the same complexity and observation angle
of the texture can be estimated either for whole texture in O(NCNF ) or more ex-
actly for each texture pixel in O(NCNFRF ). Total complexity of this z-buffer-based
method is therefore O(NCNFRC + kNCNFRF ), where k = 3 or 4 depending on the
chosen observation angle estimation method, which leads to O(NCNFRC).

The part of this method is texture rasterization process. It is the transformation
of a 3D face to a 2D bitmap by transformation a 2D base of a texture bitmap to a 2D
base of the texture face in coordinate system of the model. The rasterization function
is a function which assigns to a point x ∈ R2 a point x′ ∈ R3, x′ = raster(x). The
rasterization function can be expressed via the minimal point A and two rasterization
vectors xr, yr.

raster(x) = A+ x1 · xr + y1 · yr,
x = (x1, y1), A, xr, yr ∈ R3

Rasterization vectors can be seen on the Fig. 3.1. If A,B,C and D are vertices of
circumscribed rectangle of the face (rotation of the rectangle in the face plain is
given by the face rotation in final texture bitmap) and hres, vres are horizontal and
vertical resolutions of texture in bitmap, then xr, yr are given by the expression:

xr = (B − A)/hres
yr = (C − A)/vres

The minimal point A and rasterization vectors xr, yr create the base of the texture.
However, textures are usually polygons not only triangles and their points usually
don’t lay in one plain, which can be caused by an inaccuracy of the model or the
item itself can be deformed in various ways. In this case, polygons are triangulated
(e.g. by Delaunay triangulation) and approximated by a plain and the triangles of
this polygon can be projected to this plain and rasterized as a planar polygon.

6
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Figure 3.2: Casting rays from the center of projection to points on the texture.

3.1.2 Extraction using raycasting

The method based on raycasting extracts a texture from the camera by casting a ray
from each texture pixel. It is more difficult method than computing with z-buffer,
but it uses model information in better way, such as relative positions of faces. A
ray is casted from the texture pixel and it is necessary to detect collisions with
other faces within traversing the model. For enabling the estimation of a possible
occlusion in the given pixel, we have to adjust either the faces to bigger ones with
partly transiting margins or to traverse the model with a cylinder instead of a ray.
We have to extract NCNF textures with RF pixels and for a ray casted from each
pixel, we have to compute collisions with other NF − 1 faces. For speeding up the
traversing, we can use some accelerating structure, such as k-d tree. It gives us
complexity O(log(NF )), which leads to the total complexity O(NCNF log(NF )RF ).

Rays are casted from camera position to the points of rasterized faces represent-
ing pixels of extracted textures. When we extract texture pixel (i, j) from camera
C with position Cpos, where A is the minimal face point and xr, yr are rasterization
vectors of the texture, then the ray for traversing the model is defined as:

R = Cpos + t · dr
dr = A+ xr · i+ yr · j − Cpos,

where dr is direction of ray. Polygons can be easily extracted by extracting all of
their triangles and composing the whole texture. By means of kd-tree collisions with
other faces are found and ray R can be with actually extracted triangle T in three
different position.

1. R and T don’t have an intersection, extracting pixel is out of the triangle.

2. R and T have an intersection, but the distance from Cpos is greater than the
distance of intersection with any other face. Then the pixel of triangle T is
occluded.
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3. R and T have an intersection, which is the nearest one. The pixel color for the
texture can be retrieved from the camera C.

In the third case we can get pixel color for texture using the information about 3D
point I = A+xr ·i+yr ·j and camera projection matrix. Image coordinates x/w, y/w
are computed using expression:

w ·

xy
1

 = P3×4 ·


X
Y
Z
1


where P3×4 is projection matrix of camera C. Projection matrix is composed from
calibration matrix K3×3, rotation matrix R3×3 and a vector translating center of
projection T 3×1 according to following formula:

P = [KRT | −KRTT ]

The matrices K,R, T can be composed using camera calibration information.

K =

−fc · kx s x0

0 fc · ky y0

0 0 1


R =

cos αz −sin αz 0
sin αz cos αz 0

0 0 1

 ·
 cos αy 0 sin αy

0 1 0
−sin αy 0 cos αy

 ·
1 0 0

0 cos αx −sin αx
0 sin αx cos αx


T =

pxpy
pz

,

where x0, y0 are coordinates of the principal point, x0 = resx/2, y0 = resy/2, s
is skewness factor, kx, ky are focal lengths along the x and y axes, which can be
expressed as:

kx =
resx

2fc · tanfovx
2

After computing the real values x, y we can get image coordinates using nearest
neighbor interpolation. We use a pixel color from the image for our texture pixel
(i, j). Pixel focusing over the texture can be estimated from 3D geometry of the
face and camera calibration parameters. The observation angle of the texture can
be estimated either for whole texture or pixel-wise as in the previous case.

3.1.3 Extraction using border texture points

We can’t always suppose that we have a prepared 3D model geometry before the
start of texturing process. It might happen that the reprojection error is considerably
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Figure 3.3: Perspective camera projection.

high and it is necessary to add 2D information from images about border points for
accuracy improvement or we obtain 2D point correspondences which a 3D model is
then prepared from. In this case we have no information about face positions in the
3D space, not even the distances of face border points from the camera, which we
could use for the texture rasterization.

By simple cutting these faces from images, we get a set of textures of various
sizes and various perspective deformations. For an approximate texture fitting we can
compute homography matrix from their border points. The homography is defined
in 2D space as a mapping between the point on the plane as seen from one camera,
to the same point on the plane as seen from another camera.

p′b = Hab · pa

p′b =

xb · ω′yb · ω′
ω′

, pa =

xaya
1

, Hab =

h11 h12 h13

h21 h22 h23

h31 h32 h33

,

where pa, pb are homogeneous coordinates of 2D border points. Usually a more ap-
propriate model of image displacements is used, which is called affine homography.
The affine homography is a special type of a general homography, whose last row is
fixed to h31 = h32 = 0 and h33 = 1. For computing the homography we need at least
4 pairs of corresponding non-collinear points. In the case of affine homography, 3
points are needed. Details about the estimation of homography can be found in [8].

The disadvantage of this approach is that the homography can be used only for
planar or almost-planar textures. Also some image information can be lost when
we use homography. Hence, it has to be considered whether our registration meth-
ods are enough robust to scale changes, or whether we want to use homography
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and acquire approximate range of correspondence point positions within the texture
borders.

After extraction process is finished, wide-baseline stereo problem must be solved.
It is problem of establishing correspondences between two textures taken from dif-
ferent viewpoints. The original image, which is kept unchanged, will be referred to
as the reference image and the image to be mapped onto the reference image will
be referred to as the target image.

3.2 Registration algorithm classification

Image registration algorithms fall within two sections of classification: area-based
methods and feature-based methods. Feature-based methods detect salient points
in the images and the mapping from one image to another is set according to the
correspondences of these image features (points, lines, curves, closed-boundary re-
gions, etc.) Alternatively for area-based image registration methods, the algorithms
don’t attempt to detect salient objects, but they look at the structure of the image
via correlation metrics, Fourier properties or by other means of structural analysis.
Usually windows of predefined size or entire images are used for the correspondence
estimation. The special case of area-based method is registration based on deforma-
tion model. A well-arranged review of existing image registration methods can be
found in [15].

3.3 Feature-based registration

This approach is based on searching salient structures - features in the image. Points
(like line intersections, region corners, salient points on curves), lines (like region
boundaries) or regions are understood as features. These features should be distinc-
tive, spread over the whole images, repeatable (detectable in both registrated images
in the sufficient amount) and accurately localized (with pixel or subpixel position).
Comparison of different feature-based method can be found in [6].

One of the frequently used features are corners. Harris corner detector is popular
interest point detector due to its strong invariance to rotation, scale, illumination
variation and image noise.

3.3.1 Harris corner detector

Harris corner detector [7][13] is based on the local auto-correlation function of image
intensity I. The local image intensity changes are measured with patches shifted by
a small amount in different directions. Our interest points have high changes in every
shift. Change of intensity can be computed as the weighted sum of square difference
between two patches, one is the window W (x, y) and second is shifted by (∆x,∆y).
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Figure 3.4: Harris response to two textures of the same roof from different cameras.
For white areas maximum values are found in both images and then matched using
image information.

E(x, y,∆x,∆y) =
∑

u,v∈W (x,y)

w(u, v)[I(u+ ∆x, v + ∆y)− I(u, v)]2,

where w(u, v) is a weight function and W (x, y) is a set of pixels in the window
centered at point (x, y). When the Harris matrix A is found by approximating S
with a second order Taylor series expansion E can be expressed as:

E(x, y) ≈ 1

2

(
∆x
∆y

)
A(x, y) (∆x, ∆y).

where A is a 2x2 Hessian matrix of second derivatives of image intensity I:

A(x, y) =
∑
u

∑
v

w(u, v)

[
I2
x IxIy

IxIy I2
y

]
,

A circular window or circularly weighted window, such as a Gaussian, should be
used so that the response can be isotropic.

A corner is characterized by a large variation of E in all directions. This charac-
terization can be expressed via eigenvalues of A. In the interest point A should have
two large eigenvalues. There are three cases to be considered:

1. If λ1 ≈ 0 and λ2 ≈ 0 then there are no points of interest at this patch, a
windowed image region is of approximately constant intensity.

2. If λ1 ≈ 0 and λ2 has some large positive value, local shifts in one direction
cause little change in E and significant change in the orthogonal direction. An
edge is found.

3. If λ1 and λ2 are both large, distinct positive values. Shifts in any direction will
result in a significant change of E. A corner is found.

11



As exact computation of the eigenvalues is computationally expensive, the following
function is suggested instead:

R = λ1λ2 − κ(λ1 + λ2)
2 = detA− κ · tr2(A),

where κ is a tunable sensitivity parameter. Therefore, we don’t have to compute the
eigenvalue decomposition of the matrix A and for finding features it is sufficient to
evaluate the determinant and trace of A.

Pixels with R greater than some threshold T are chosen for further processing.
The maximum value of regions created by thresholding has to be found. The accurate
feature point localization can be done by fitting a parabola to the neighboring pixels
of the maximum point.

After feature detection, matching of the obtained features follows. There are three
main methods how to perform matching. Firstly, area around feature points from
different images can be compared by sum of absolute differences in image intensities.
Alternatively, sum of square differences can be used. Another method is correlation
of rectangle areas around two feature points. The value of feature correlation can be
computed as:

C =

∑
i∈{1..n}

(ai − a) · (bi − b)√ ∑
i∈{1..n}

(ai − a)2 ·
√ ∑

i∈{1..n}
(bi − b)2

,

where ai, bi are pixels around feature points, n is number of pixels in this area and
a, b are mean values of ai, bi:

a =

∑
i∈{1..n} ai

n
, b =

∑
i∈{1..n} bi

n

Feature point with the lowest correlation value from the target image is assigned to
feature point from reference image.

3.3.2 SIFT

Scale-invariant feature transform is an algorithm for detection and description of
local features in images. It is very popular and effective method for image matching
but it is also used for general object class recognition. Feature descriptors are invari-
ant to image scale and rotation and they are also robust to changes in illumination
and noise.

The algorithm was published by David Lowe[11]. It includes two steps, feature ex-
traction and feature matching. Feature extraction has 4 phases: scale-space extremes
detection, keypoint localization, orientation assignment and keypoint descriptor cre-
ation. In the first stage of computation potential interest points are searched over
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Scale

Figure 2: Maxima and minima of the difference-of-Gaussian images are detected by comparing a
pixel (marked with X) to its 26 neighbors in 3x3 regions at thecurrent and adjacent scales (marked
with circles).

Laplacian. The factor(k − 1) in the equation is a constant over all scales and therefore does
not influence extrema location. The approximation error will go to zero ask goes to 1, but
in practice we have found that the approximation has almost no impact on the stability of
extrema detection or localization for even significant differences in scale, such ask =

√
2.

An efficient approach to construction ofD(x, y, σ) is shown in Figure 1. The initial
image is incrementally convolved with Gaussians to produceimages separated by a constant
factork in scale space, shown stacked in the left column. We choose todivide each octave
of scale space (i.e., doubling ofσ) into an integer number,s, of intervals, sok = 21/s.
We must produces + 3 images in the stack of blurred images for each octave, so thatfinal
extrema detection covers a complete octave. Adjacent imagescales are subtracted to produce
the difference-of-Gaussian images shown on the right. Oncea complete octave has been
processed, we resample the Gaussian image that has twice theinitial value ofσ (it will be 2
images from the top of the stack) by taking every second pixelin each row and column. The
accuracy of sampling relative toσ is no different than for the start of the previous octave,
while computation is greatly reduced.

3.1 Local extrema detection

In order to detect the local maxima and minima ofD(x, y, σ), each sample point is compared
to its eight neighbors in the current image and nine neighbors in the scale above and below
(see Figure 2). It is selected only if it is larger than all of these neighbors or smaller than all
of them. The cost of this check is reasonably low due to the fact that most sample points will
be eliminated following the first few checks.

An important issue is to determine the frequency of samplingin the image and scale do-
mains that is needed to reliably detect the extrema. Unfortunately, it turns out that there is
no minimum spacing of samples that will detect all extrema, as the extrema can be arbitrar-
ily close together. This can be seen by considering a white circle on a black background,
which will have a single scale space maximum where the circular positive central region of
the difference-of-Gaussian function matches the size and location of the circle. For a very
elongated ellipse, there will be two maxima near each end of the ellipse. As the locations of
maxima are a continuous function of the image, for some ellipse with intermediate elongation
there will be a transition from a single maximum to two, with the maxima arbitrarily close to

7

Figure 3.5: Finding extremes in scale-space of difference of Gaussians [11].

all image scales and locations. This is implemented using differences of Gaussian
(DoG), see Fig. 3.6.

DoG = (G(x, y, kσ)−G(x, y, σ)) ∗ I(x, y),

where G(x, y, σ) = 1
2πσ2 e

−x2+y2

2σ2 , I is an input image and ∗ is convolution operation
in x and y. Candidate points are local maxima in DoG, see Fig. 3.5. This yields a
non-integer position (x, y).

After this first choice by maximizing DoG in scale and in space, accurate keypoint
localization follows. Location, scale and ratio of principal curvature have to be found.
It is necessary to reject keypoints with low contrast and keypoints lying on the edges,
which could be poorly localized. This can be done by fitting a 3-variate quadratic
function to surround values of keypoint at selected scaled picture. By finding a
maximum (minimum) of this function we get a subpixel localization of keypoint.
According to shape of the quadratic function we can reject low contrast keypoints.
For eliminating edge responses we can compute 2x2 Hessian matrix and by means
of this matrix find out the ratio of its eigenvalues.

H =

[
Dxx Dxy

Dxy Dyy

]
The derivatives can be estimated by differences of neighboring points. In case of
edge response DoG has a large principal curvature across the edge but a small one
in the perpendicular direction. This can be found out via the eigenvalue ratio of H.
The ratio between the larger magnitude eigenvalue and the smaller one r, α = rβ,
can be computed as:

TR(H)2

Det(H)
=

(r + 1)2

r

Then checking that ratio is under some threshold decides about preserving or re-
jecting the keypoint:

TR(H)2

Det(H)
<

(r + 1)2

r
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Gaussian (DOG)
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Figure 1: For each octave of scale space, the initial image isrepeatedly convolved with Gaussians to
produce the set of scale space images shown on the left. Adjacent Gaussian images are subtracted
to produce the difference-of-Gaussian images on the right.After each octave, the Gaussian image is
down-sampled by a factor of 2, and the process repeated.

In addition, the difference-of-Gaussian function provides a close approximation to the
scale-normalized Laplacian of Gaussian,σ2∇2G, as studied by Lindeberg (1994). Lindeberg
showed that the normalization of the Laplacian with the factor σ2 is required for true scale
invariance. In detailed experimental comparisons, Mikolajczyk (2002) found that the maxima
and minima ofσ2∇2G produce the most stable image features compared to a range ofother
possible image functions, such as the gradient, Hessian, orHarris corner function.

The relationship betweenD andσ2∇2G can be understood from the heat diffusion equa-
tion (parameterized in terms ofσ rather than the more usualt = σ2):

∂G

∂σ
= σ∇2G.

From this, we see that∇2G can be computed from the finite difference approximation to
∂G/∂σ, using the difference of nearby scales atkσ andσ:

σ∇2G =
∂G

∂σ
≈ G(x, y, kσ) −G(x, y, σ)

kσ − σ

and therefore,

G(x, y, kσ) −G(x, y, σ) ≈ (k − 1)σ2∇2G.

This shows that when the difference-of-Gaussian function has scales differing by a con-
stant factor it already incorporates theσ2 scale normalization required for the scale-invariant
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Figure 3.6: Scale-space of difference of Gaussians [11].

where we can use as a threshold e.g. r = 10 for eliminating curvature with eigenvalue
ratio greater than 10.

To the rest keypoints a local orientation should be assigned. Keypoint descriptor
can be then computed with respect to this orientation and therefore it achieves
invariance to the image rotation. For image sample L(x, y), let dx, dy be local first
derivatives in x and y, which can be established by dx = L(x + 1, y) − L(x − 1, y),
dy = L(x, y+ 1)−L(x, y− 1). Then gradient magnitude m(x, y) and its orientation
θ(x, y) can be computed as:

m(x, y) =
√
d2
x + d2

y

θ(x, y) = arctan(dy/dx).

An orientation histogram is created from orientations in sample points within a
region 16x16 pixels around the keypoint. Each sample added to the histogram is
weighted by its gradient magnitude and by a Gaussian-weighted circular window.
Orientations are placed in histogram in 36 bins covering 360 degrees range of orienta-
tion. Dominant direction in histogram is detected, and then if any other orientation
is presented also at least in 80% frequency of highest direction, another keypoint is
created at the same location and scale but different orientation. For finding accurate
direction a parabola is fit to the 3 histogram values closest to highest peak in the
histogram.

SIFT descriptor is then prepared using sample gradients weighted by their mag-
nitude and Gaussian and rotated relative to the keypoint orientation. They are
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Image gradients Keypoint descriptor

Figure 7: A keypoint descriptor is created by first computingthe gradient magnitude and orientation
at each image sample point in a region around the keypoint location, as shown on the left. These are
weighted by a Gaussian window, indicated by the overlaid circle. These samples are then accumulated
into orientation histograms summarizing the contents over4x4 subregions, as shown on the right, with
the length of each arrow corresponding to the sum of the gradient magnitudes near that direction within
the region. This figure shows a 2x2 descriptor array computedfrom an 8x8 set of samples, whereas
the experiments in this paper use 4x4 descriptors computed from a 16x16 sample array.

6.1 Descriptor representation

Figure 7 illustrates the computation of the keypoint descriptor. First the image gradient mag-
nitudes and orientations are sampled around the keypoint location, using the scale of the
keypoint to select the level of Gaussian blur for the image. In order to achieve orientation
invariance, the coordinates of the descriptor and the gradient orientations are rotated relative
to the keypoint orientation. For efficiency, the gradients are precomputed for all levels of the
pyramid as described in Section 5. These are illustrated with small arrows at each sample
location on the left side of Figure 7.

A Gaussian weighting function withσ equal to one half the width of the descriptor win-
dow is used to assign a weight to the magnitude of each sample point. This is illustrated
with a circular window on the left side of Figure 7, although,of course, the weight falls off
smoothly. The purpose of this Gaussian window is to avoid sudden changes in the descriptor
with small changes in the position of the window, and to give less emphasis to gradients that
are far from the center of the descriptor, as these are most affected by misregistration errors.

The keypoint descriptor is shown on the right side of Figure 7. It allows for significant
shift in gradient positions by creating orientation histograms over 4x4 sample regions. The
figure shows eight directions for each orientation histogram, with the length of each arrow
corresponding to the magnitude of that histogram entry. A gradient sample on the left can
shift up to 4 sample positions while still contributing to the same histogram on the right,
thereby achieving the objective of allowing for larger local positional shifts.

It is important to avoid all boundary affects in which the descriptor abruptly changes as a
sample shifts smoothly from being within one histogram to another or from one orientation
to another. Therefore, trilinear interpolation is used to distribute the value of each gradient
sample into adjacent histogram bins. In other words, each entry into a bin is multiplied by a
weight of1 − d for each dimension, whered is the distance of the sample from the central
value of the bin as measured in units of the histogram bin spacing.
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Figure 3.7: Gradient array and SIFT descriptor visualization [11].

divided in 4x4 sample regions and in each of these regions orientation histogram
with 8 bins is enumerated. The descriptor is therefore a vector of 128 (8 orientation
x 4x4 histogram array) values. This vector is normalized to unit length to make it in-
variant to affine changes in illumination. As non-linear illumination changes can also
occur, the values in the unit feature vector are thresholded and then normalization
to unit length should be done again.

The final descriptor with 128 values in 〈0, 1〉 is therefore invariant to image
scale and rotation, a substantial range of affine distortion, change in 3D viewpoint,
addition of noise, and change in illumination.

After finding features in both images feature matching is performed. The nearest
descriptor from second image is searched for every keypoint. As a distance between
descriptor minimum Euclidean distance can be used. For providing an estimate of
false matching we should consider also the second-closest match. It is effective to
reject all matches in which the distance ratio between the first and the second-closest
match is greater than some threshold, e.g. 0.8.

3.4 Registration via deformation models

Deformation models enable finding 2-dimensional discrete mapping from one image
to another maximizing image quality. This method is based on Markov random
fields.

3.4.1 Deformation model definition

Deformation of reference and target image is represented by a graph G = (V , E) with
E ⊆ V ×V antisymmetric and antireflexive. Each graph node s ∈ V has an assigned
label xs ∈ L, where L = {−K...K} is a finite set of labels. Labeling (configuration)
is defined as x = {xs | s ∈ V}. Let {θs(i) ∈ R | i ∈ L, s ∈ V} be univariate potentials
and {θst(i, j) ∈ R | i, j ∈ L, st ∈ E} be pairwise potentials.
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Figure 3.8: Penalization function derived from discontinuity.

Energy of configuration x is defined by:

E(x|θ) =
∑

s∈V θs(xs) +
∑

st∈E θst(xs, xt),

where θs(xs) is data term and θst(xs, xt) is a pairwise interaction term.

Graph vertices represent pixels (or blocks of pixels) in target image and their la-
beling value defined translation of pixel position in the mapping to the reference
image. Graph has two layers of vertices, which represents via their labeling x and
y displacements of pixels V = V1 ∪ V2, where V1 ∼ V2 (V1,V2 are isomorphic).
Edges are sets of intralayer and interlayer edges E = E1 ∪ E2 ∪ E12, where
E1 (resp. E2) = {(s, t) | s, t ∈ V1 (resp. V2)} and E12 = {(s1, s2) | s1 ∈ V1, s2 ∈
V2, s1 ∼ s2}. Intralayer edges are composed of a set of horizontally and vertically
neighboring pixel pairs in both layers. Interlayer edges lead from a vertex in the first
layer to the corresponding vertex in the second layer, where this correspondence is
an isomorphism.

The algorithm is based on searching configuration that minimizes the energy
minx E(x|θ). Intralayer edge potentials ensure continuity of obtained mapping.
They can be defined as:

θst(xs, xt) = max(c1(|xs − xt| − 1), c2|xs − xt|), for st ∈ E1 ∪ E2

where c1, c2 are constants, c1 � c2 > 0, which penalize transformation discon-
tinuity higher than one pixel dramatically more than lower discontinuity (see Fig.
3.9). This causes that close pixels are forced to be transformed to the close loca-
tions. The low penalization for weak discontinuity enables better deformation field
adaptation also for the other affine transformations in addition to translation, so
that it is more suitable than initial expression θst(xs, xt) = abs(xs − xt).
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(d)

(b)(a)

(c)

Figure 3. Block model: (a) two neighboring blocks of 4×4 pixels; (b)-(d) examples of nonpe-
nalized relative displacements. There is 9 nonpenalized relative displacements total.

corresponding image fragments. For all st ∈ E1 ∪ E2 we set the continuity term to

θst(xs, xt) = max(c1(|xs − xt| − 1), c2|xs − xt|), (3)

where 0 < c2 � c1, see Fig. 4. The subclass of transformations with low penalty (of factor
of c2) naturally incorporate certain range of affine transformations (e.g. it include scale
changes in the range 0.75–1.25, when blocks are 4×4 px) and a certain degree of local
flexibility, as could be seen from our experiments. Also, when the relative displacement
of neighboring blocks equals −1 in one or both of the coordinates (e.g. Fig. 3(d)), the
blocks overlap and we count overlapping pixels twice. We choose to neglect this wrong
counting, also treating it correctly would require using interactions of the 4th order.

−1 0 1
0

|x
s
−x

t
|

θ st
(x

s,x
t)

Figure 4. Continuity term of Eq. (3): shifts of ±1px are penilized by small regularization
constant.

3. Optimization

In this section we give a compact review of the TRW-S algorithm developed in [11, 5].
We rederive it as as (block-) coordinate ascent algorithm for maximization of the lower
bound on the energy function, which is dual to the LP relaxation (originally, TRW
algorithm was inferred [11] from necessary conditions of the maximum). This gives
additional insight on the kind of suboptimality it possess w.r.t. the LP relaxation. We
avoid using reparameterizations and max-marginal factorization in our inference and
we use a simpler inequality for lower bounds, which is without coefficients of convex
combination, as suggested for edge-based bound in [9, 12].

Let us consider graph G = (V , E) and energy function of the from (1). Let ΩG,L =
R(V×L)∪(E×L2) be a state space of parameter vectors θ, as defined in Sec. 2. Let E(x|θ)

5

Figure 3.9: (a) Two neighboring blocks of 4 × 4 pixels; (b)-(d) Examples of block
displacements which would be only ”soft” penalized. It enables better representation
of the image transformation, e.g. scaling [14].

Interlayer edge potentials ensure data similarity for minimized mapping via corre-
lation of pair of image fragments. They can be defined as:

θst(xs, xt) = (I1
s − I2

s+(xs,xt)
)2/2σ2, for st ∈ E12,

where I1
s and I2

s are fragments of reference and target image and σ2 is expected
noise variance of images.

The probability distribution p(x|θ) = exp(−E(x|θ)) is Gibbs distribution and
certain Markov random field is characterized by this distribution. Problem of finding
maximum of this Markov random field corresponds to problem of minimizing energy
E(x|θ).

The division of finding energy minimum in x and y pixel shifts via divided layers
decreases number of kept variational variables from O(|V||L|2) to O(|V||L|).

The exact deformation model definition can be found in [14].

3.4.2 Algorithm design

The problem of finding configuration with minimal energy is in general NP-hard
problem, so the approximate minimization algorithms are being developed (e.g.
graph cuts, max-product belief propagation, max-product tree-reweighted message
passing). However, these techniques can be applied to tree-structured graph only,
otherwise convergence is not guaranteed. We have to create an edge-disjoint cover
of graph G, T = {(V i, E i) | i ∈ I}, where E i ∩ E j = ∅, i, j ∈ I;

⋃
i∈I T

i = G. This
cover can be easily composed of three tree-structured subgraphs: horizontal chains
from both graph layers, vertical chains from both layers and graph with one-edge
chains corresponding to interlayer edges. In this decomposition every vertex is in-
cluded in three subgraphs, in one tree from each of these subgraphs, i.e. a row, a
column and an one-edged tree between layers. Minimization can be then performed
by minimization in each subgraph and subsequent averaging.

Let ΩG,L = R(V×L)∪(E×L2) be a state space of parameter vector θ, which is a
concatenated vector of θs(xs) and θst(xs, xt), θ ∈ ΩG,L. Let E(x|θ) be expressed as
scalar product 〈θ, µ(x)〉, where [µ(x)]s(x) = δ{xs=x}, s ∈ V , x ∈ L; [µ(x)]st(x, x

′) =
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δ{xs=x}δ{xt=x′}, st ∈ E , x, x′ ∈ L, where δ{A} = 1 if A is true and 0 if A is false. Let
θ be a collection of parameter vectors θ = {θi ∈ ΩG,L |i ∈ I}. For θ =

∑
i θ

i, the
value LB(θ) =

∑
i
minx〈θi, µ(x)〉 is lower bound on the optimal energy:

LB(θ) ≤ minx〈θ, µ(x)〉.

As we decomposed graph G to the tree-structured subgraphs, minimization prob-
lems are tractable for each subgraph and therefore computation of LB(θ) is tractable.

Minimization problem for tree-structured graph can be solved using dynamic
programming. Let T i be a chain (each our subgraph is composed from chains).
Let Φi

s be a min-marginal of vertex s ∈ V in tree i, which can be computed as

Φi
s =
−→
Ψ i
s + θis +

←−
Ψ i
s. Let Ψi

s be incomplete min-marginals, Ψi
s =
−→
Ψ i
s +
←−
Ψ i
s, where−→

Ψ i
s(xs) = minxt{

−→
Ψ i
t(xt) + θit(xt) + θist(xs, xt)} if t is the vertex previous to vertex s

in the chain T i and
−→
Ψ i
s(xs) = 0 if s is the first vertex in the chain. Analogously for←−

Ψ i
s(xs) = minxt{θit(xt) + θist(xs, xt) +

←−
Ψ i
t(xt)} if t is the vertex next to s in the chain

T i and
←−
Ψ i
s(xs) = 0 if s is the last vertex of chain. By means of min-marginals we

are able to find minimal labeling for each vertex in the chain. Now we can formulate
an algorithm for finding optimal lower bound configuration.

3.4.3 TRW-S

We have implemented sequential TRW algorithm as suggested in [10]. The algo-
rithm iteratively updates θs and thereby it increases lower bound. It performs the
minimizing and the averaging step sequentially for each vertex of both layers.

Algorithm 1 TRW-S

1. Initialize θis = 1
|Is|θs, i ∈ I, Is = {i, s ∈ T i}.

2. For each s ∈ V sequentially perform:
2.1 Compute Ψi

s, i ∈ Is on the tree Ti using dynamic programming
2.2 Update θis = 1

|Is| ( θs +
∑

j∈Is Ψj
s ) - Ψi

s, i ∈ Is
3. Compute actual lower bound LB(θk) =

∑
iminx〈θi, φ(x)〉

4. Check the stopping criterion, if not satisfied go to step 2.

Incomplete min-marginals for each vertex are kept in memory which enables
faster further computation. Updates for intralayer edges can be easily computed due
to divided layers V1,V2 for x and y shifts with complexity O(L2). However, there
exists a method which computes the update in O(L) [5]. Updates for interlayer edges
are slower and it is necessary to prepare block correlations from reference and target
image before starting the computation.

Stopping criterion can be based on convergence of lower bound. Algorithm creates
a sequence {θk} performing sequential maximization of LB(θ). There are fixed points
in the algorithm possessing the property, called Weak Tree Agreement(WTA), each
xs from minimizing configuration x is equal in all chains, so we can choose local
minimizers xs from arbitrary tree as the resulting labeling, which determines most
suitable block displacement.
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Figure 1: An example of the L1 distance transform for a grid with n = 9 points
containing the point set P = {1, 3, 7}. The distance transform value at each point
is given by the height of the lower envelope, depicted as a dashed contour.

(see e.g., [8]), employing the recursive equation

δt+1(j) = bj(ot+1)max
i

(δt(i)aij) ,

where δt(i), for i = 1, 2, . . . , n, encodes the highest probability along a path which
accounts for the first t observations and ends in state si. The maximization term
takes O(n2) time, resulting in an overall time of O(Tn2) for a sequence of length
T . Computing δt for each time step is only the first pass of the Viterbi algorithm.
In a subsequent backward pass, a minimizing path is found. This takes only O(Tn)
time, so the forward computation is the dominant part of the running time.

In general a variant of the Viterbi algorithm is employed that uses negative
log probabilities rather than probabilities, such that the computation becomes
δ′t+1(j) = b′j(ot+1) + mini(δ′t(i) + a′ij), where ′ is used to denote a negative log
probability. We now turn to the computation of δ′ for restricted forms of the tran-
sition costs a′ij , where there is an underlying parameter space such that the costs
can be expressed in terms of a distance between parameter values corresponding to
the states. Let us denote such cost functions by ρ(i− j). Then,

δ′t+1(j) = b′j(ot+1) + min
i

(δ′t(i) + ρ(i− j)) . (1)

We now show how the minimization in the second term can be computed in O(n)
time rather than O(n2). The approach is based on a generalization of the distance
transform, which is defined for sets of points on a grid. Consider a grid with N
locations and a point set P on that grid. The distance transform of P specifies for
each grid location, the distance to the closest point in the set P ,

DP (j) = min
i∈P

ρ(i− j).

Clearly the distance transform can be computed in O(N 2) time by considering all
pairs of grid locations. However, it can also be computed in linear time for many
distance functions using simple algorithms (e.g., [2, 5]). These algorithms have small
constants and are fast in practice. The algorithms work for distance transforms of
d-dimensional grids, not just for the one-dimensional case that we illustrate here.

In order to compute the distance transform efficiently it is commonly expressed as,

DP (j) = min
i

(ρ(i− j) + 1(i)) ,

where 1(i) is an indicator function for the set P such that 1(i) = 0 when i ∈ P and
1(i) = ∞ otherwise. Intuitively one can think of a collection of upward facing cones,
one rooted at each grid location that is in the set P . The transform is then obtained
by taking the lower envelope (or minimum) of these cones. For concreteness consider

Figure 3.10: A grid with N = 9 points containing the point set P = {1, 3, 7}. The
cones are v-shaped of slope 1. The distance transform as height of lower envelope,
depicted as a dashed contour. The example is reprint from [5].

3.4.4 Method of finding incomplete min-marginals in O(L)

As the computation of incomplete min-marginals is one of the key step in the iter-

ative deform matching algorithm, it has to be done very efficiently.
−→
Ψ i
s and

←−
Ψ i
s are

enumerated for every algorithm iteration 4 · |V|2 times (for horizontal and vertical

chains left and right min-marginal). The computation of
−→
Ψ i
s(xs) shows the following

formula,

−→
Ψ i
s(xs) = minxt{

−→
Ψ i
t(xt) + θit(xt) + θist(xs, xt)},

where t is the vertex previous to s in the chain. The formula has to be evaluated for

every xs ∈ L. The elements
−→
Ψ i
t(xt) and θit(xt) are computed from previous processing

and θist(xs, xt) is defined as:

θist(xs, xt) = max(c1(|xs − xt| − 1), c2|xs − xt|).

Therefore,
−→
Ψ i
s(xs) can be easily computed in O(L2) (xs ∈ L, xt ∈ L). However, as

θist(xs, xt) is not dependent on the exact values xs and xt, but only on their absolute
difference, a method based on Viterbi algorithm finds L-times minimum in O(L).

This method can be easily explained by means of the distance transform problem
for a 1D grid with N locations containing the point set P in this grid. The distance
transform of P specifies for each grid location the distance to the closest point in
the set P . The distance transform can be expressed as:

D(j) = min
i∈P

(ρ(i− j) + δ(i)),

where ρ(x) is a distance function, e.g. ρ(x) = |x|, and δ(i) is an indicator function
for the set P such that δ(i) = 0 for i ∈ P and δ(i) =∞ otherwise. Distance function
creates an “upward facing cone”, which is rooted at each grid location with point
from P . On the picture 3.10 we can see an example of a grid containing the point
set P , using distance function ρ(x) = |x|. The distance transform at each point is
given by the height of the lower envelope of the cones.
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We can correctly compute this distance transform using a simple two-pass algorithm.
First of all, the vector D(j) is initialized to δ(j). Then two passes are necessary for
finding minimal distance. In the forward pass, each successive element D(j) is set
to the minimum of its own value and the value of previous element incremented by
one.

D(j) = min(D(j), D(j − 1) + 1), for j = 1 ... (n− 1)

The backward pass is analogous:

D(j) = min(D(j), D(j + 1) + 1), for j = (n− 2) ... 0.

Now we can adapt this algorithm to our problem. Our grid has |L| locations rep-
resenting xs values and our ”cones” are placed in each grid location. They represent
θist(xs, xt), so that their shape is defined by penalization function. They are rooted

in
−→
Ψ i
t(xs) + θit(xs) instead of 0. The lower envelope of these cones is our searched−→

Ψ i
s(xs), see Fig. 3.11.

The initialization of
−→
Ψ i
s(xs) by value

−→
Ψ i
t(xs) + θit(xs) is valid, because if xs = xt

then θist(xs, xt) is zero. Let X(xs) be a variable array representing actual xt which

minimizes
−→
Ψ i
s(xs). We can initialize X(xs) = xs, for each xs ∈ L. The forward and

the backward pass can be then performed as in the algorithm below:

Algorithm 2 Finding minimum for each xs in two passes

for all xs ∈ {1, ..., |L| − 1} do
D(xs) = min(D(xs), D(xs − 1) + θist(xs, X(xs − 1))
if D(xs) was changed then
X(xs) = X(xs − 1)

end if
end for
for all xs ∈ {|L| − 2, ..., 0} do
D(xs) = min(D(xs), D(xs + 1) + θist(xs, X(xs + 1))
if D(xs) was changed then
X(xs) = X(xs + 1)

end if
end for

After this two passes minimums for each xs are found. It needs 2·|L| comparisons,
so that computational complexity of this algorithm is O(|L|).
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xx1 x2 x3 x4 x5

Figure 3.11: One-color functions θist(xs, xt) shifted vertically by the value Ψi
t(xs) +

θit(xs), where xs is x1...x6. The minimum of all these functions at each location is a
lower envelope, depicted as bold contour.
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Chapter 4

Realization

4.1 Platform choice

Firstly, we have to choose a platform and a programming language for our project. It
is suitable to choose C/C++ language with respect to the high computation require-
ments of the project. The project uses STL libraries for conforming implementation
and better abstraction via objects. We have used the library WxWidgets for im-
age manipulation and OpenCV for operations with images. Another library used in
project for database manipulation is MySQL connector enabling access to MySQL
database from C/C++ code.

The project has been primarily developed for MS Windows, but C/C++ envi-
ronment enables easy portability to other platforms (e.g. Linux). All used libraries
WxWidgets, OpenCV and MySQL are also easy portable.

4.2 Project structure

Project consists of two parts, which differs in process of texture acquisition and
matching process used for warping texture to reference one. Both methods consist
of three parts of extracting and warping textures and building final textures, see
Fig. 4.1.

The first method uses information about texture borders, collected in the ap-
plication LangweilGUI, which was specially developed for this purpose. This in-
formation is loaded from database and with respect to these borders, textures are
extracted from each camera. The best texture among them is chosen and features
(SIFT descriptors) are detected in each image. Texture warping is performed via
correspondences found by means of these features. The final texture is composed
from these warped textures.

Second method uses textures acquisition by means of program TextureBuilder[9],
which are extracted via reprojection of the wired 3D model. These extracted textures
are warped using a deformation model. Final textures are built up from warped
textures with respect to their local sharpness, occlusion and observation angle.
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Figure 4.1: Workflow of texture processing with two different data inputs.

4.3 Feature method

We have chosen to implement the feature method based on a SIFT keys because
of their robustness against changes of illumination, scale changes, range of affine
distortion, but also against changes in 3D viewpoint for non-planar surfaces.

4.3.1 Texture acquisition

This method uses information about border point positions on textures and their
correspondences through different images. The process of texture acquisition with
known border points is quite easy. Information about border points corresponding
to one face are found in database and textures are simply cut out of the images via
circumscribed rectangle and masked according to their borders. Except the position
of border point, information about its visibility is saved too. This can help registra-
tion algorithm by supposing that another object occludes the texture in this point
neighborhood, so that feature correspondence from this area are not very trustful.
There is one more information about occlusion. When any item protrudes above the
face, so that there is actually a hole in the face geometry, it is also marked and its
approximate position is saved in the database.

After creating each texture corresponding to one face, we are able to compute
their sharpness by image gradients and reduce textures which are significantly more
blurred than others.

4.3.2 Warping textures

In warping process we choose the extracted texture with the largest area that is
sharp enough to be the correspondence texture, all other textures are target textures.
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Figure 4.2: Example of the textures with marked border points and edges [1]. In the
top left corner the chimney is also marked as a salient object for a higher quality of
warping process.

Correspondences are found by means of SIFT descriptors. For finding keypoints and
computing their descriptors we used a well-known implementation from Sebastian
Nowozin [3], which generates keypoints for an image file. Feature matching is real-
ized via Euclidean distance of keypoint descriptors from different images. For each
reference image key the nearest key from target image is selected. If distance of the
second nearest key is at least 80% of the nearest key distance, correspondence is not
used. For fast searching the nearest key, a tree is build including all the descriptor
values. Branches leading from the root of the tree represent all first descriptors val-
ues. A tree is then branching only for position which the resting keys differ at. The
minimal difference is then depth-first searched. As difference minimum is decreasing
more and more branches don’t have to be searched through, because their partial
difference is bigger than the already found difference. Correspondences obtained by
this way are then further filtered.

Firstly, we can filter apparent mismatches which differ significantly from most
matches. Providing that we approximately know border correspondence of textures,
matches can be filtered also according to this information. For this purpose homog-
raphy matrix defined by corresponding border points is used. Even for significantly
curved textures this filtering can reject some useless mismatches. Furthermore, we
used a grid for detection of the locally not trustful correspondences. Within this
testing, a correspondence is compared to the corresponding points falling to the
neighboring cells. A harder threshold can be used for this local correspondence fil-
tering, because even if our texture faces are not exactly planar, they are continuous
and we can assume a continuous change in correspondence orientation. Finally, fil-
tering is performed also for decreasing density of keypoints in places where their
number is sufficient and where it would only increase computational complexity of
all following steps without appropriate effect on the final quality of the texture. This
reducing is done using a grid. When more correspondences fall into one cell, only
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Figure 4.3: Color lines representing SIFT correspondences in two different images
filtered in area by a grid.

the more trustful ones rest (see Fig. 4.3). The trust in correspondence is given by
similarity of their descriptors and by the ratio of the nearest point descriptor and
the second nearest one.

In case that SIFT keys are not enough dense in the image, which occurs e.g. for
small or narrow faces or faces with almost constant color texture, their image size
can be doubled before processing, which leads to extraction of substantially more
keypoints. It may occur that we don’t have enough correspondence anyway, but it
is usually in cases that it doesn’t matter e.g. almost color constant textures don’t
have to be warped very precisely.

On the other hand, when we have enough trustful correspondences in the location
of given border point, we are even able to place border points in the target image
more precisely. Their improvement is possible in sense of their location in reference
image. If the border point is marked wrongly in the reference image, border point in
the target image can be moved to this wrong location. The improvement of wrong
border point locations can’t be usually easily estimated (e.g. by edge intersection
detector) because of the texture structure including elements, which can be wrongly
thought of as border points, such as tiles on the roof, or window corners on the wall.

After correspondence filtering, the target image is transformed to the form of
reference image via found correspondences. It is done piecewise using a triangulation
created from corresponding points. The triangulation is built up only in the reference
image and points on the border lines are added for improvement of the triangle set.
Then each triangle from the target image is transformed to the triangle in the
reference image. For each pixel in the reference image, the corresponding pixel in
the target image is computed using the barycentric coordinates. In spite of the fact
that the barycentric coordinates conserving the length ratio aren’t very suitable for
perspective projection, they are used here on small areas only, so that it doesn’t
cause any perceivable errors. Moreover, we were assuming only the knowledge of
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Figure 4.4: Texture built from different views around chimney [1].

texture border points in 2D at the beginning of this part, which doesn’t get us
depth information. After computing values corresponding to the reference image
pixel, we get coordinates in target image using nearest-neighbor interpolation.

4.3.3 Building final textures

The fact that we don’t know anything about texture occlusion by other textures
makes the building difficult. We can assume that the object occluding our texture
will change its position in views from different images. If it doesn’t, it probably
occludes part of the texture from all views and this texture part doesn’t have to be
created, because it is not visible from any views. Then places where a few textures
differ from the others are possibly occluded and they are rather not used for building
the final texture.

If there is an occluding object near the polygon for which we’re generating tex-
ture, we need to build the texture from images from cameras with varied position
and orientation. We can use approximate information about the external camera
calibration to choose which images to use to assemble each part of the resulting
texture.

4.4 Deformation model method

This method is based on registration by means of deformation model. Texture acqui-
sition process was performed via program Extractor developed by Jan Kirschner[9].
The program loads 3D model from .rzi file and extracts textures using reprojection
from all cameras. It prepares also masks with local occlusion and sharpness. Textures
can be acquired also by other programs, which extract textures from a model.
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4.4.1 Warping textures

For warping process is chosen one texture as a reference texture according to its total
visibility area. Other textures are warped to this one. Number of warped textures
can be reduced for speeding up the warping process according to their size and local
sharpness.

We have implemented the algorithm as suggested in the previous chapter. First of
all, algorithm constants are set. Block size is adjusted to image size, a smaller image
has a smaller block size for better detail representation and speeding up computation
for huge images. Size of set L is adaptively set according to the difference in the
reference and the target image size. Maximal |L| value can be set in configuration
file, default x and y allowed displacement is L = {−30, ..., 30}. The higher value |L|
is suitable for textures created for faces which have high real curvature and therefore
their textures differ a lot on images taken from different views. The size of the set L
expresses the ability of deformation field to find corresponding points which differ
in x and y pixel position maximally by |L|/2.

The second step is value precomputing. It is necessary to prepare block correla-
tions for each pair of reference and target image before start with deformation. These
correlations are computed from bright-balanced images for getting satisfying results.
Block correlation precomputing is quite time-consuming step of the algorithm, but
it enables quick deformation computing. Memory requirements are significant, espe-
cially for large textures. Our solution enables using image masks, which decreases
time and memory requirements during the correlation computing as well as within
algorithm iterations.

After precomputing correlations, graph representation structure is allocated and
initialized. We set the initial values θis to 0. Min-marginals are computed at the
first iteration and their values are recomputed only when any value in the chain
has changed. For intralayer updates, corresponding to the continuity term, we used
O(L) method based on Viterbi algorithm. For interlayer updates, corresponding to
correlation term, we used O(L)2 method, however, number of these updates is lower.
The stopping condition is based on convergence of the lower bound of θ and also on
the ratio of lower bound increments and time of one iteration.

Memory requirements for block correlation are Nb · |L|2, where Nb is the number
of blocks in the image, which can be computed from the image size and the block
size as: Nb = hres · vres/(bsz)2. Memory used for graph representation is given by
number of incomplete intralayer min-marginals Nb · |L| ·I ′s ·2, where I ′s is the number
of intralayer trees each vertex is part of. For our solution I ′s = 2, where number

2 represents left and right part of the chain (
−→
Ψ i
s,
←−
Ψ i
s) plus number of incomplete

interlayer min-marginals Nb · |L| (as only one intralayer chain leads from vertex) plus
number of actual values of θis, which corresponds to the number of intralayer min-
marginals. Therefore total amount of variables is (4 + 1 + 4) ·Nb · |L| = 9(Nb · |L|).
As |L| is usually a few times greater than 9, block correlations represent greater
memory requirements than a graph.

Transformation defined by the resulting deformation field doesn’t have to be
always continuous, especially at the texture borders when the reference image dif-
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fers from the target one in location of unmasked area. Therefore we use a median
filter on the graph before we start with the target image transformation. As our
block model is able to find deformations including scaling, the neighboring blocks in
the target image can be transformed to the blocks with overlapping parts. Alterna-
tively, neighboring blocks in the target image can be transformed to the not directly
neighboring blocks in the reference image. These overlaps can be simply solved by
averaging color values of these double-filled pixels. The holes are filled by interpola-
tion of the neighboring values weighted by their distance from the overlapped pixel.
The nearest neighbor algorithm is not a good approach in this case because the holes
in the deformation can be also wider than a few pixels and unpleasant boundaries
could be created.

4.4.2 Building final textures

After we have warped all textures to the reference one, we can start with the pro-
cess of building the final texture. For composing we use information gathered by
extracting about sharpness, occlusion and observation angle. All these values are
weighted and they create a value of pixel possible contribution. By counting con-
tributions from each texture pixel we get total texture evaluation. These rates are
used for sorting. Pixels from the highest evaluated texture are added to the final
one and each pixel contribution is saved too. Pixels from other textures are then
sequentially added only on so far free pixels or pixels with lower contribution value
than their own. A threshold for maximal contribution value at which pixel can be
overwritten by some next texture is used for preventing from senseless overwriting
single pixels. This approach leads to creation of textures composed of a few source
textures instead of scattered pixels from almost all sources.

4.5 Usage of developed programs

Our solution consists of two programs, Textures and TextureWarper. Program Tex-
tures is the complex program for extraction, matching, warping and building tex-
tures. It uses the program TextureWarper for warping via deformation fields.

Usage of the program Textures
Program Textures enables two different approaches to the texture extraction prob-
lem. The feature-based method of processing that works with texture border points
as an input is default. The deformation model approach can be chosen by parameter
-d. Other parameters are listed below:

• -p Part number Number of the model part, which should be processed. This
parameter is mandatory for both approaches.

The following parameters are intended for feature-based method:

• -f Face ID If this parameter is used, only textures corresponding to the face
with this face ID will be processed.
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• -z Detection of the blurred textures will be performed by grouping textures
according to their gradients for finding the best height for each group of images.
If a value follows this parameter, the threshold is set. The photographs with z
coordinate under this treshold will not be used.

The following parameter is suitable for deformation model method.

• -r First face number, which should be processed.

The program Textures uses the following parameters from configuration file:

• LogFile Filename of log file.

• LogLevelTextures Level of logging (0 - debugging, 1 - warning, 2 - errors).

The following parameters are intended for the feature-based method:

• JPGPath Path to folder containing images.

• Texture2DPath Path to textures extracted using border points, deformed by
feature-based method.

• DownScaleSift Relative scale of image used for Scale-invariant feature trans-
form.

The following parameters are suitable for the deformation model method:

• RziFileName Rzi file name with a model which textures were extracted ac-
cording to.

• TexturePath Path to extracted textures prepared for warping.

• FinalTexturePath Path for final textures built from textures warped by pro-
gram TextureWarper.

• DeformedTexturePath Path to textures deformed by TextureWarper.

• MinFinalPixelWeight Minimal weight of pixel for marking as final.

• MaxTextureNumberVisibility Maximal number of textures from one face that
are deformed.

Usage of the program TextureWarper
Program TextureWarper takes the reference and the target image as inputs. Option-
ally their masks can be given as an extra file or in the alpha channel of the image.
The arguments of this program should be set as:

1. The file name of the reference image.

29



2. The file name of the reference image mask or 0, when file name of the reference
image with ending ”.masks.png” instead of ”.png” should be used.

3. The file name of the target image.

4. The file name of the target image mask or 0, when file name of the target
image with ending ”.masks.png” instead of ”.png” should be used.

5. Optional argument for file name of new deformed image. If it is not used,
target image will be overwritten.

The program uses the following parameters from configuration file:

• DMLogFile Filename of log file.

• LogLevelDeform Level of logging.

• minK Minimal used K value determining allowed block displacement (−K,K)
for deformation model.

• smoothSize Size of smoothing block for deformation field.

30



Chapter 5

Digitalization of Langweil’s model
of Prague

This thesis deals with the problem of texture creation for a 3D model. I had a unique
opportunity to try out the system of texturation on real data from the project of
digitalization of Langweil’s model. Langweil’s model of Prague is a paper and wood
model that was made by Antońın Langweil and shows the centre of Prague how
it looked like back in the 1830s. It depicts Old Town, Lesser Town, Prague Castle
and Hradčany, see Fig. 5.2. The model is now stored in the Museum of the City of
Prague[2].

5.1 Model specifications

Langweil’s model is outstanding also for incredible size and details. In the area of
20m2 it shows more than 2,000 buildings in scale 1:480. There are many details
in the model as chimneys, trees, walls that make the reconstruction difficult and
require considerably high accuracy of reconstructed components. A lot of objects
are also painted on the walls as windows, gates, signboards, so that the high quality
textures are very desirable. As the model documents the appearance of Prague in

Figure 5.1: View over the model. Incredible details on the model [1].
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Figure 5.2: Point cloud of the entire Langweil’s model [1].

the beginning of 19th century, which looks today much different, it has also a great
historical value. The proper reconstruction including textures is important also for
the preservation of the monument.

It would not be feasible, because of the model detail and size, to digitalize it
manually, see Fig. 5.1. Traditional methods are not able to work with models of
such size or they are very time-consuming. There are many obstacles arising from
the fact that it is about 180 years old paper model such as high curvature of the
paper, imperfection of paper joints which don’t create exact edges, dust, cotton-wool
left after model cleaning. These imperfections are easily observable on high quality
macro photos.

5.2 Workflow

The whole process of digitalization must proceed with respect to the model size. The
first stage includes taking images of the model. High color quality macro photos with
high resolution were systematically captured for preparing enough data for model
reconstruction with high quality textures. These pictures were 16Mpix with 13bit
per each color channel and they require approximately 50MB of memory each. The
pictures were taken in a grid for covering all parts with different elevation and
azimuth for getting at least some pictures from hardly visible places. For dealing
with the shallow depth of field a camera was taking pictures in more heights, see
Fig. 5.3.

As the existing systems are not capable to work with such amount of data,
whether we talk about camera calibration tools or 3D model reconstruction or tex-
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Figure 5.3: Dots on the image show systematical image capturing in a grid with
3 different camera elevations α and 8 different azimuths ω. We can see 3 different
focus planes π1, π2, π3 which correspond to three camera heights above the model.
Courtesy of Jan Kirschner [9].

ture creation, we had to create our own workflow and own applications for solving
many subtasks. Firstly we were gathering the 2D topology of model roofs from face
border points and their correspondences. First textures were prepared using this
collected 2D border point data. From these correspondences 3D roof geometry was
created from images taken from perpendicular downward views. Then we calibrated
these top images. The rest image calibrations were computed using the top image
calibrations by means of a camera resectioning tool developed by Lukáš Mach [12].
A model of each object is prepared in the program ImageModeler++. Then we used
the chimney detector developed by Lukáš Mach and floor detector developed by
David Sedláček. Finally, by adding prepared models of trees and bushes to detected
position we get the most parts of wired 3D model. For this model textures are cre-
ated, see Fig. 5.4. Accuracy of the wired model vertices can be further improved
according to the generated textures.
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Figure 5.4: Our workflow of digitalization. Courtesy of Matěj Cáha [4].
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Chapter 6

Testing and method comparison

6.1 Deformation model comparison

We will compare deformation model method implemented by Shekhovtsov, Kovtun
and Hlaváč [14], referred to as DeformMatch, with our deformation model, referred
to as TextureWarper. Firstly, we compare transformation times for one middle-sized
texture (see Fig. 6.1). The texture was deformed with using different block size Blsz
and value K, which defines size of L as L = {−K, ...,K}. Deformations by the help
of the program TextureWarper were performed also with a mask of the texture, it
is marked in a table by ∗, the ratio of unmasked part and the texture size is listed
next to the concrete texture size. All measured times are averages from a few runs
of program with same inputs.

Program name Texture size Blsz K Total Time

DeformMatch 328× 327 4 30 56.9s
TextureWarper 328× 327 4 30 14.2s
TextureWarper∗ 328× 327 ∗ 0.49 4 30 10.2s

DeformMatch 328× 327 6 30 26.6s
TextureWarper 328× 327 6 30 7.9s
TextureWarper∗ 328× 327 ∗ 0.49 6 30 7.7s

DeformMatch 328× 327 4 15 32.4s
TextureWarper 328× 327 4 15 5.6s
TextureWarper∗ 328× 327 ∗ 0.49 4 15 3.5s

DeformMatch 328× 327 6 15 12.2s
TextureWarper 328× 327 6 15 4.0s
TextureWarper∗ 328× 327 ∗ 0.49 6 15 2.4s

Table 6.1: Comparison of deformation models for middle-sized texture.

With regard to our tests, we can see that our program deformed the texture
in shorter time. As block size determines total block count, i.e. the size of the
graph representing deformation, computation is faster with larger blocks. Value K
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defines maximal searched x- and y- displacements and therefore higher K means
a significant slower computation and higher memory requirements. TextureWarper
required approximately 54MB of memory with K = 15 and 116MB with K = 30,
both for block size of 4. The warping process can be speed up using texture with a
mask. This also leads to higher quality textures as surround of the texture doesn’t
affect computing of deformation.

Figure 6.1: The reference image is on the left, the image deformed by program
TextureWarper is in the middle and target image is on the right side [1].

The measurements were repeated with a larger texture. The reference and target
texture have different focused locations, which is quite usual state. The reference
image was focused at the bottom part, the target at the top of texture. The deformed
textures from DeformMatch and TextureWarper are showed on Fig. 6.2.

Program name Texture size Blsz K Total Time

DeformMatch 777× 271 8 15 14.5s
TextureWarper 777× 271 8 15 4.1s
TextureWarper∗ 777× 271 ∗ 0.8 8 15 6.7s

DeformMatch 777× 271 4 15 65.4s
TextureWarper 777× 271 4 15 15.0s
TextureWarper∗ 777× 271 ∗ 0.8 4 15 15.1s

Table 6.2: Comparison of deformation models for large texture.

For the first texture we measured also time for precomputing block correlations
and time needed for one algorithm iteration. Listed values were received for texture
with resolution 328 × 327 for K = 30. From the Table 6.3 it is evident that the
precomputation of block correlation is very time consuming part of the program.
Involving the mask of the texture can even slow down this process. Time spent
in one iteration is proportional to block count, so that their restriction by a mask
speeds up graph iterations.

All tests were performed on computer HP xw4400 Workstation with operating
system Windows XP, Service Pack 2, with 4GB RAM and CPU Intel Core 2 Duo
E6700 2.66 GHz.
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Figure 6.2: The reference image is on the left, the deformed image created by program
TextureWarper is in the middle and image on the right side was deformed by program
DeformMatch [1].

6.2 Feature method versus deformation model method

Our feature based and deformation model method use different input information,
they search image transformation in dissimilar way, therefore also their results differ.
In general the textures from deformation model method seem to be more usable due
to more information being involved, especially about the overlapping faces. The
insufficient knowledge about this occlusion may cause occurrence of mismatches in
feature point correspondences, which cause local imperfections in texture, see Fig.
6.3.

With regard to speed of implemented method, the feature based approach is
the faster one. That came from texture extraction from a model, which sequentially
extracts all textures from each camera without considering their total visible size,
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Figure 6.3: Local imperfection in texture caused by mismatching feature points [1].

Figure 6.4: The neighboring textures don’t pass together, their structure and bright-
nesses differ and the texture on the right involves parts of other faces [1].
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Block count Blsz Total Time Correl. precomp. Iteration time

82× 81 4 14.2s 4.5s 0.547s
82× 81∗ 4 10.2s 5.8s 0.265s
54× 54 6 7.9s 4.2s 0.235s
54× 54∗ 6 7.7s 5.7s 0.125s

Table 6.3: Comparisons of times for precomputing block correlation, total times and
times for one iteration.

Method Texture size K Warping Time

Feature-based method 560× 500∗0.5 X 39s
Deformation model method 560× 500∗0.5 15 37s
Deformation model method 560× 500∗0.5 30 105s

Table 6.4: Comparisons of warping times for 9 extracted textures processed by the
implemented methods.

sharpness, etc. This leads to extraction of a large amount of textures, whose number
is then restricted. On the other hand textures prepared for feature-based method
are obtained from border points, which are marked on photographs where textures
have large visible areas and are sharp enough, but these border points are created
by hand. So that it is the question of automatization rate and speed. The warping
times for both approaches are quite similar, but in the case of deformation model,
it is dependent on maximal searched displacements(K). The times for same texture
processed by both methods are showed in Table 6.4, where one reference and 8 target
images were used.

As textures are created for each face separately, they are continuous inside the
face, however problems might occur at their borders. Neighboring textures don’t have
to pass together in brightness, which can be balanced afterwards. Also discontinuities
in the texture structure might occur at the borders of the neighboring textures as a
consequence of inaccurate reconstruction, see Fig. 6.4. This problem can be solved
for instance by modification of texture coordinates. It is not easy task, however, to
determine their values automatically.
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Chapter 7

Conclusion and future work

In this thesis, we have surveyed main methods for texture extraction and image
registration suitable for model texturing. We have designed and implemented two
techniques for texture creation. The feature based method which is suitable in cases
when limited information about 3D model geometry is available and deformation
model method which can efficiently use a given geometry for computing texture
data, such as occlusions and sharpness, for their subsequent usage in the warping
process. By using our solution even huge models can be textured, which could not
be feasible to do manually. Both methods were tested during the digitalization of
Langweil’s model of Prague, which offered a wide variety of testing data.

This thesis detects some problems in the process of texture creation. For in-
stance problem of not passing structures in neighboring textures on model could
be solved by future development. Another interesting theme for future work can
be the connection of benefits of both methods to a sophisticated system for tex-
ture extraction. The deformation model method could use information about most
trustful correspondences obtained by the feature method. The primary tests based
on adding marks to textures before warping, which represented detected features,
were performed with positive results. Such method could also speed up the texturing
process by allowing narrower range of deformation parameters to search through.
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Appendix A

Configuration file example

[Textures]
LogFile=Textures.log

LogLevelTextures=1

RziFileName=dil 09a.rzi

DownScaleSift=1.0

TexturePath=dil 09\\textures
FinalTexturePath=dil 09\\finalTextures
DeformedTexturePath=dil 09\\deformedTextures
JPGPath=Z:\\jpg4k\\
Texture2DPath=dil 09\\textures2D
MinFinalPixelWeight=0.8

MaxTextureNumberVisibility=30

[TextureWarper]
DMLogFile=TextureWarper.log

LogLevelDeform=1

minK=30

smoothSize=10

Examples for parameter configuration of program Textures for feature-based

and deformation model methods:

Textures.exe -p part number [-f face number ]

[-z [threshold for defocused images ]]

Textures.exe -p part number -d mod deform match

[-r first face number ]

Example for parameter configuration of program TextureWarper:

TextureWarper.exe reference image name name of reference image mask

target image name name of target image mask [name for new deformed image]
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Appendix B

Abbreviation List

2D Two-Dimensional
3D Three-Dimensional
DLM Digitalization of Langweil’s model
LB Lower bound
SIFT Scale-Invariant Feature Transform
STL Standard Template Library
TRW Tree-Reweighted Algorithm
TRW-S Sequential Tree-Reweighted Algorithm
WTA Weak Tree Agreement
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Appendix C

Contents of CD

|

+-src ... source files

| +-Textures ... source files of the main project Textures

| +-TextureWarper ... source files of the TextureWarper project

| +-Textures.sln ... project solution file for both projects

|

+-documentation

| +-index.html ... documentation of the source code

|

+-text

| +-thesis.pdf ... text of the thesis

|

+-data ... data examples

+-textures ... texture samples for program testing
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