
DIPLOMA THESIS

Martin Červeň

Control system for badminton
shuttlecock collecting robot

Department of Theoretical Computer Science and Mathematical Logic

Supervisor of the diploma thesis: David Obdržálek
Study programme: Computer Science

Study branch: Artificial Intelligence

Prague 2021

I declare that I carried out this diploma thesis independently, and only with the
cited sources, literature and other professional sources.
I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the
Charles University has the right to conclude a license agreement on the use of
this work as a school work pursuant to Section 60 subsection 1 of the Copyright
Act.

In date signature of the author

i

Title: Control system for badminton shuttlecock collecting robot

Author: Martin Červeň

Department: Department of Theoretical Computer Science and Mathematical
Logic

Supervisor: David Obdržálek, Department of Theoretical Computer Science and
Mathematical Logic

Abstract: Badminton is a racquet game played on court with shuttles made from
feathers or plastic. Top players train with hundreds of shuttles at once which
are fed by coach from hand. After a short training period there are hundreds
of shuttles scattered around the court, which need to be arranged in rows so
that coach can feed them from hand. In this thesis we created software for
autonomous robot that detects shuttlecocks with camera, estimates their position
and picks them up. We implemented this as nodes in ROS middleware. During
development we created simulated environment in Gazebo simulator where we
tested our solution.

Keywords: Autonomous robot control, Object tracking,Computer vision, Plan-
ning, Badminton

ii

I would like to thank to my supervisor David Obdržálek for answering my ques-
tions and for his patience. I would also like to thank to my family for continuous
support throughout my study.

iii

Contents

1 Introduction 4
1.1 Goals of the thesis . 5

1.1.1 Detection and recognition of shuttles 5
1.1.2 Control system . 5
1.1.3 Map . 5
1.1.4 Planning . 6
1.1.5 Movement . 6
1.1.6 Visualisation . 7
1.1.7 User Interface . 7

1.2 Structure of the thesis . 7

2 Background 9
2.1 Game of Badminton . 9

2.1.1 Shuttlecock . 9
2.1.2 Badminon court . 10

2.2 Training . 11
2.3 Shuttle picking . 12
2.4 Environment . 13

3 Related work 15
3.1 Fruit picking robots . 15

3.1.1 Cucumber picking robot 15
3.1.2 Strawberry picking robot 16
3.1.3 Kiwi picking robot . 17

3.2 Plant polination . 18
3.2.1 Pepper picking robot . 19

3.3 Sport mobile robots . 19
3.3.1 Tennis ball picking robot 19
3.3.2 Golf ball picking robot . 20
3.3.3 Autonomous Table Tennis Ball Collecting Robot 21
3.3.4 Badminton . 22

4 Analysis 23
4.1 Application architecture . 23

4.1.1 Monolithic application . 23
4.1.2 Using ROS . 23

4.2 Hardware . 24
4.3 Software . 27

4.3.1 Control system . 27
4.3.2 Shuttle recognition . 30
4.3.3 Mapping . 30
4.3.4 Planning . 30
4.3.5 Visualisation . 31
4.3.6 User interface . 31
4.3.7 Picking . 31

1

5 Proposed solution 32
5.1 ROS . 32
5.2 Gazebo . 32

5.2.1 Preparing the simulation 33
5.3 Control system . 33
5.4 Mapping and localisation . 34
5.5 Computer vision . 35

5.5.1 Object recognition . 36
5.5.2 Training neural network 36
5.5.3 Position estimation . 37

5.6 Planning . 37
5.6.1 Mapping . 37

5.7 Movement and shuttle picking . 38
5.8 Visualization . 38

5.8.1 RViz . 38
5.9 Shuttlecock picking . 39
5.10 User interface . 39

6 Implementation 40
6.1 Launchfiles . 40
6.2 Training data . 40
6.3 Visual processing . 42
6.4 Visualisation . 43
6.5 Control system . 44
6.6 Gazebo simulation . 45

6.6.1 Gazebo Plugins . 46
6.6.2 Sensor plugin for picking shuttlecocks 46
6.6.3 World plugin for controlling simulation 47

6.7 Picking system . 48

7 Results 49
7.1 Evaluation of simulated shuttle picking 49

7.1.1 Discussion . 49
7.2 Evaluation of shuttle picking in real world 50

8 Conclusion 52

Bibliography 53

List of Figures 56

Appendix A User documentation 58
A.1 Hardware . 58

A.1.1 Robot base . 58
A.1.2 Computer . 58
A.1.3 Camera . 59
A.1.4 Shuttle picking mechanism 59

A.2 Software . 59
A.2.1 Jetson Xavier NX . 59

2

A.2.2 ROS . 59
A.2.3 Jetson - inference . 60
A.2.4 Kobuki base . 60
A.2.5 Other dependencies . 60
A.2.6 Source code . 61

A.3 Usage in simulation . 61
A.4 Usage in reality . 61

A.4.1 Start Kobuki . 61
A.4.2 Map the environment . 61
A.4.3 Usage . 62
A.4.4 Remote operation . 62

Attachments 63

3

1. Introduction
Badminton is a racket game for two or four players played on indoor court

by striking projectiles called shuttlecocks or shuttles (Figure 1.1) over the net.
Shuttlecocks have conical shape where top part is made from cork and bottom
part called skirt is made from natural feathers or plastic. Top players train with
hundreds of feathered shuttlecocks which are fed by coach from hand. After a
short training period there are hundreds of shuttles scattered around the court
which need to be manually picked up by players and coach and arranged in rows
so that coach can use them again. This manual and monotonous labor takes lot of
time, which if automated, can be spent on more intensive training (Figure 1.2) or
explaining next exercise. In this thesis we propose control system for autonomous
robot that picks these scattered shuttlecocks. We also analyse other necessary
parts to design and built such robot. To achieve goal of the thesis we aim to
create autonomous robot. It needs to have:

• Computer vision to sense and recognize shuttlecocks as objects in the real
world that needs to be picked up.

• Control system to decide what robot should do. We want this to be ex-
plainable, i.e. we want to know exactly in what state is robot currently in,
for example, planning, picking, moving to the next goal.

• Mapping the environment to create a map, with whitch it can then localise
itself, and mark other objects of interest, such as shuttlecocks.

• Planning of the path subject to constraints of the imperfect information
robot gets about the world from sensors and thus create plan.

• Movement to get from one place where it needs to pick a shuttlecock to the
next place.

• Visualisation of the map representing the environment that robot had cre-
ated and give commands and check settings and variables using

• User interface with basic ability to start and stop the robot, since robot
should be otherwise autonomous.

Figure 1.1: Feathered shuttlecock Figure 1.2: Multi-shuttle training.

4

1.1 Goals of the thesis
The goal of our thesis is to create control system for autonomous robot that

picks badminton shuttlecocks and to test it on a real hardware.
This can be divided into following goals:

Goal 1.) detection and recognition of shuttles

Goal 2.) control system

Goal 3.) create internal map of environment and position of shuttles

Goal 4.) plan how to pick shuttles

Goal 5.) movement

Goal 6.) visualisation

Goal 7.) user interface

1.1.1 Detection and recognition of shuttles
We need to sense where shuttles are located relative to the robot, so we can

generate movement instructions for the robot to move close enough to the shut-
tlecocks to pick them up. Because we are using camera as the input, we need to
be able detect shuttlecocks in images. This could be done by various approaches,
most common and successful nowadays is to train deep neural network. For this
a lot of training data is needed. Luckily, there exists pretrained neural networks.
They are trained on large image datasets such as MS COCO: Common objects
in context [1].

1.1.2 Control system
We need to be able to tell what the robot is doing at each point in time [2].

This does not mean that software needs to run in one process, on the contrary we
need many processes running simultaneously. But just as well human that tells
that he is studying for exam, can be holding pen and writing and thinking about
math problem, overall state would be studying. Thus if robot state is "moving
to shuttle", it could be simultaneously checking visual input for human stepping
into his path and stopping to not hit human or plan path around him. Control
system would be something that tells us what is the robot doing, but under the
hood, multiple processes and programs could be running.

1.1.3 Map
After the robot sensed positions of shuttlecock from visual input, It needs to

remember them somewhere. It could be just a list of coordinates (x,y) or shuttles
relative to the robot, or to some fixed frame. Since robot moves, it also needs
to keep its position in the map, so it needs to have sense of environment around
it. We could give robot a man-made map, but since we want to use it at many
different courts, we want it to create a map itself. This problem of creating map

5

and localising itself is called Simultaneous localisation and mapping or SLAM [3].
It can be solved by various approaches, most commonly probabilistically from
sensors, trying to estimate most probable location given previous sensed parts of
the environment. Things are easier using simpler sensors like ultrasound or 2D
lidar, since there are not many data points to match, and more complicated using
cameras, because then it needs extract only some interesting points (landmarks)
from images to match between frames, since matching many megapixels would
be wasteful and also computationally very hard. Visual SLAM [4] from sequence
of images works then by searching interesting points from each image and then
trying to match them between successive frames and trying to infer position
changed. This is also called visual odometry. Some algorithms also use fact that
many cameras nowadays have inertial measurement unit-IMU built in, so they can
sense direction of where camera had been moving between frames. Many mobile
robots have wheel odometry and this can be used in estimating match between
frames or helpful in estimation of position. Lastly, there is interesting notion of
loop closure, where if robot sensed the same scene two or multiple times, its error
of localisation should get smaller because it knows where it is more accurately,
as opposed thinking of it as new location entirely because it didn’t know it is at
previously visited location.

1.1.4 Planning
In an ideal setting, we would have knowledge about all coordinates of shut-

tles relative to some frame (for example map), but since our robot looks at the
world from camera mounted on itself, it only sees part of the world at the time.
Therefore we do not have perfect information about all the shuttle coordinates,
and have to build this knowledge iteratively.
We can assume that court is perfectly flat plane and thus we can only care about
(x,y) coordinates. If we had list of all positions, we could use some TSP solver
with robot position as start and although TSP is NP-complete problem, it can
be solved approximately for our purposes of hundreds of shuttles.

1.1.5 Movement
Badminton courts are flat surfaces, usually made of rubber, wood or plastic

materials, and are therefore suitable for wheeled robot. We can assume that we
have approximate locations of shuttles from vision system, then we need to process
them using planner to get sequence of positions to visit, i.e. goals. We could use
only one step to plan movement of robot from shuttle positions and map, but
robot movement is usually done with respect to map, we also need to take care
that robot does not go off somewhere or hit anything. If we have a map, then
in this map we can mark safe space for robot, and unsafe. Then we have next
goal to go, and we give it to motion planner and it gives commands for wheels to
robot platform. We could have feedback from wheel odometry and cameras with
respect to map so we can navigate safely.

6

1.1.6 Visualisation
We would like to visualise input from robot sensors, such as cameras. Images

from cameras would be used to build map for the robot, so we could also visualise
this map in 3D interactive manner. Robot should also be displayed as 3D model.
Our objective is to pick up badminton shuttlecocks, so they should be visualised as
well, for example as their estimated location by points or bounding cubes. Because
we want to pick up shuttles as fast as possible, we need to plan shortest path, this
path could be visualised as lines between estimated locations of shuttlecocks. We
do not want robot to hit humans or other parts or environment so differentiation
of safe and unsafe space by colours would be helpful. Visualisation is also needed
for remote control of robot and debugging.

1.1.7 User Interface
For controlling robot, an easy user interface would be necessary. Since our

main goal is to create control system with all the necessary software, we are con-
tent with creating simple user interface using premade controls such as buttons,
sliders, windows and graphs.

1.2 Structure of the thesis
In the second chapter, Background, we describe the game of Badminton,

it’s rules and history. We describe environment of where robot would operate.

In the third chapter, Related work, we describe already made solutions
that employ autonomous robots from different domains such as agriculture and
other sports.

In the fourth chapter, Analysis, we describe decision process that we used
to select architecture of our control system, which frameworks and technologies
we used and which algorithm we chose.

In the fifth chapter, Proposed solution, we present how we developed our
control system.We also detail what 3rd party packages we used and how we
interconnected them.

In the sixth chapter, Implementation, we describe what software we devel-
oped as part of our solution.

In the seventh chapter, Results, we will present results of running robot in
real life collecting shuttlecocks and comparison to human performance.

In the last, eight chapter, Conclusion, we summarise what we have achieved
and we will outline the future work that could be done and was not part of our
goals.

7

User documentation will be presented in the Appendix A. We will describe
how to setup robot, how to setup software and our control system.

8

2. Background
In this chapter we introduce the game of Badminton. We describe how players

train with many shuttles at once and when the problem of picking shuttles arises
in training. Robots could up speed training substantially by picking shuttlecocks
on the ground instead of humans. We also show what is normal environment for
robot for this task.

2.1 Game of Badminton
Badminton is a racket game for two (singles) or four (doubles) players. It is

played by hitting feathered projectile called shuttlecock by light racket nowadays
made from carbon. Courts have standard dimensions, as shown in Figure 2.3.
For singles court is shorter on sides, and for doubles it is wider. We will not be
going into details of the rules of the game any further since we are interested in
picking up shuttles during training.

2.1.1 Shuttlecock
According to Laws of badminton, published by Badminton World Federation

[5], badminton shuttlecock is made of 16 bird feathers arranged in cone with tips
of feathers glued to cork head (Figure 2.1). It can be also made from nylon or
other synthetic materials, but flight characteristics are different, and they are not
used for serious competition. The tips of the feathers shall lie on a circle with a
diameter from 58 mm to 68 mm. Weight of shuttlecock should be between 4.74
to 5.50 grams.

Figure 2.1: Yonex feather shuttlecock

Shuttlecock is aerodynamically different to balls used in other racket sports
such as tennis, ping pong, or squash. Because of its conical shape and holes
between feathers, it creates small vortices, shown in Figure 2.2, that increases
air drag as it travels further and abruptly decelerates [6]. This means that it

9

hard to predict where shuttle lands, and players have to train for many years to
develop intuition about this.

Figure 2.2: Vortices create drag, from [6]

2.1.2 Badminon court
Badminton court is rectangular area marked by perpendicular lines. Court

for doubles is slightly larger at the sides, similar to tennis. Total length of court
is 13.4m and width 6.1 m [5], shown in Figure 2.3.

Figure 2.3: Badminton court dimensions

10

2.2 Training
Badminton is both skill based and fitness based game. Players spend lot

of time on court practicing and polishing shots and also spend lot of time in
gym working out. Top players at international and national level do multishuttle
training (Figure 2.4), which consists of using many shuttles instead of just one.
This has many benefits such as:

• more pressure to simulate harder opponent,

• more repetitiveness, i.e. player have to smash 20 times, or play netshot 20
times in a row and coach can observe shortcomings or these strokes and
correct them,

• longer exercise to increase stamina

• train explosiveness,

• random shuttle throwing to train reflexes and improve reaction time.

Coach can feed shuttles with more frequency than is normally possible and
therefore creating high pressure situation and increasing players reflexes, fitness
and coordination in process.

Players and coaches can see where shuttles actually land, this is not possible
with one shuttle since it is constantly in play, and in top level of badminton,
centimeters matter. Players think that they are hitting perfect shots to the
sideline and in fact they are hitting well into the court, and seeing where the
shuttle actually lands helps a lot.

Figure 2.4: Picture of Kento Momota from Japan,currently no.1 player in the
world, practicing with former Korean gold olympic medalist, Japan Head Coach
Park Joo-Bong

11

2.3 Shuttle picking
During training, after using 100-1000 shuttles at once, players have to man-

ually pick up shuttles and arrange them into rows to be used again in next
excercise. Shuttlecocks are delicate, and since one costs 1-2 euros depending on
the quality, they also have to take care to not damage then unnecessarily in the
picking process. It also takes lot of effort and time to pick them up by hand and
arrange them into rows (Figure 2.5).

We empirically tested how fast can one person arrange 100 shuttles in rows
and it took around 5 minutes. This train-pick pair happen around 4-8 times per
hour depending on how fast coach is feeding, thus the overall time can be up to
two thirds of the actual training time spent.

Players thus spend 2/3 of their time picking shuttles. This time could be spend
for more training. Moreover, amateur players usually have to pay for courts and
therefore this would also save 2/3 of their money.

Therefore if picking of shuttles could be automated, players and coaches could
spend more time practicing or take a break for drinking or talk about next exer-
cise.

Figure 2.5: Hans-Kristian Vittinghus, no. 20 singles player in the world [7],
responds to the author that even pro players like Rasmus Gemke (no. 12) lose
time in training due to slow shuttle picking technique

12

2.4 Environment
Shuttlecock collecting robot will be used on badminton courts, doing its work

alongside humans. This is natural environment for humans, not environment
crafted for robot.

There are environments specifically crafted for robots, such as warehouses as
shown in Figure 2.6. The robots and human worker areas are separated. Robots
thus can roam freely without need of giving care to humans. They navigate
themselves by going by QR codes glued to floor. They arrive at current pod and
deliver it to the humans at the side of warehouse, separated by fence [8].

Figure 2.6: Kiva Robot, now Amazon robotics

Example of robots that works in human/natural environment are robotic vac-
uum cleaners such as Roomba, shown in Figure 2.7. It does not use any artificial
landmarks such as QR codes, but instead it moves randomly or use SLAM.

Figure 2.7: Roomba vacuum cleaner

We will be using our robot on court in the public halls, so we won’t be able
to install birds eye camera, although in future this could be possibility.
We also want to use robot on different courts as shown in Figures 2.8, 2.9. This
means that we cannot use any other cameras stationed on tripod for example, or
birds eye view camera on roof. Every sensor should be on robot.

13

Robot should also adapt to changes in illumination, cast shades, or number
of light sources. Color of the court also shouldn’t pose problem for navigation or
visual recognition of shuttlecocks.

Badminton courts are made from rubber, hard wood, soft rubber, or plastic.
They can cost up to 20 000 euro, thus robot should not be excessively heavy or
make markings when moving or picking shuttlecocks or not damage court surface
or equipment otherwise.

Courts are located in large halls with as much as 20 courts in one hall, so
robot should not venture from his assigned court, it needs to know which courts
he is assigned to, and not disturb players on the other courts.

Figure 2.8: Example of green court
Figure 2.9: Example of hardwood
court

14

3. Related work
In this chapter we present related work. Similar technologies that we listed

in goals in introduction are being used in agricultural robots. Furthermore, mo-
bile robots were created for other sports similar to badminton. We found that
advances in vision correlates to development in robotics. Also cheaper comput-
ers and sensors such as stereo cameras are widening the scientific community
from large corporations such as automobile industry to smaller companies and
universities.

3.1 Fruit picking robots
One field where robots, picking and vision is used, is agriculture, mainly fruit

picking. There is need to visually identify fruit from background to correctly
position the arm with gripper. There is also tendency to select fruits by ripeness,
mainly colour and size is used, for example green tomatoes are not picked, and
red are because red colour is associated with ripeness. Similarly, size of the fruit
could be used, in asparagus, if the sprouts are between some size, they are cut
and picked.

3.1.1 Cucumber picking robot
In 2002, researchers in Netherlands developed cucumber picking robot [9],

shown in Figure 3.1. It takes long time to pick, around 90s. Robot consists of
6DOF robotic arm on the rails. It has camera mounted on end effector.

• Detection of fruit, shown in Figure 3.2, is based on different reflectances
of leaves and cucumbers. 3D localisation is made by taking images from
different position by sliding robot across rails.

• It moves along greenhouse by rails. This also means that it can safely take
pictures from different positions and do 3D reconstruction since it moves
only in one known direction.

• Ripeness is estimated by measuring volume and thus weight from images.
Authors report 95% accuracy of this method.

• Gripper grips cucumber with suction.

• Cuts cucumber with thermal knife, so transmission of viruses is minimised,
and freshness of fruit is preserved.

• Slow - 45s on average to pick a cucumber, 10s is required for commercial
use.

15

Figure 3.1: Cucumber robot Figure 3.2: Segmented cucumbers

3.1.2 Strawberry picking robot
Agrobot E-Series (Figure 3.3) is a robot for strawberry picking devel-

oped in Spain[10]. There is not much information to find about this robot, but
youtube video suggest it works in practice. https://www.youtube.com/watch?
v=M3SGScaShhw

Figure 3.3: Agrobot E-Series

Problem of picking strawberries by robotic hands similar to the Agrobot could
be solved by method developed by Zhang et.al [11]. They applied R-CNN algo-
rithm for detection of strawberries. They also devised method for estimating
picking points, shown in Figure 3.4.

Figure 3.4: Bounding boxes around recongized strawberries with solid points
representing picking points, from [11]

16

https://www.youtube.com/watch?v=M3SGScaShhw
https://www.youtube.com/watch?v=M3SGScaShhw

Picking point (Figure 3.5) was calculated by taking left and right points of
strawberry that collided with bounding box (a and b), then drawing line d,
computing barycenter e. For each countour point c above line they split the
image and tested for similarity. This means that if the fruit is bent from its stem,
picking point found by this algorithm will be off, like the orange strawberry shown
in Figure 3.4. It could be interesting to use deep learning segmentation to also
get stems and choose picking point only located on the stem.

Figure 3.5: Creation of picking points, from [11]

3.1.3 Kiwi picking robot
In 2019 team from New Zealand made kiwi picking robot[12] with four grip-

pers1,2. It is using ROS to manage messages between four grippers (Figure 3.6)
. It is also using R-CNN.

• Robot has four robotic hands, calibrated before running with Diamond
Markers3.

• They use one upward looking camera, from it plan for four harvesting arms
is made so that they don’t collide between themselves.

• Rugged base, in development for at least 10 years.

• Fruit recognition done by adapted VGG-net16 network4. Trained only on
48 hand labeled kiwi images, network was pretrained 5 on PASCAL VOC
dataset[13]. After locating fruit, blob detector is run on each fruit to locate
center of fruit for grippers (Figure 3.7).

1https://www.roboticsplus.co.nz/kiwifruit-picker
2https://www.youtube.com/watch?v=b4L-oMd0yVk
3https://www.docs.opencv.org/master/d5/d07/tutorial_charuco_diamond_

detection.html
4https://github.com/shelhamer/fcn.berkeleyvision.org/tree/master/

pascalcontext-fcn8s
5https://stats.stackexchange.com/questions/193082/what-is-pre-training-a-neural-network

17

https://www.roboticsplus.co.nz/kiwifruit-picker
https://www.youtube.com/watch?v=b4L-oMd0yVk
https://www.docs.opencv.org/master/d5/d07/tutorial_charuco_diamond_detection.html
https://www.docs.opencv.org/master/d5/d07/tutorial_charuco_diamond_detection.html
https://github.com/shelhamer/fcn.berkeleyvision.org/tree/master/pascalcontext-fcn8s
https://github.com/shelhamer/fcn.berkeleyvision.org/tree/master/pascalcontext-fcn8s
https://stats.stackexchange.com/questions/193082/what-is-pre-training-a-neural-network

Figure 3.6: Kiwi robot with four
arms

Figure 3.7: Visual output of network
and blob detector

3.2 Plant polination
BrambleBee [14] is robot for plant polination (Figure 3.8). It is using

Clearpath robotics Husky platform [15].

• Interesting approach to recognising flowers, first they ran naive bayes clas-
sifier on pixels, and after extracting patches of possible flower areas they
run neural network to weed out false positives.

• Motion of arm - used MoveIt ROS package[16] and faster trac_ik 6 library

• Did not solve orientation of flowers, only touched ArUco marker instead of
flowers.

• Camera at the end effector to guide visual servoing.

• Velodyne 3D lidar 7 for SLAM inside greenhouse.

Figure 3.8: BrambleBee
6https://bitbucket.org/traclabs/trac_ik/src/master/
7https://velodynelidar.com/products/hdl-32e/

18

https://bitbucket.org/traclabs/trac_ik/src/master/
https://velodynelidar.com/products/hdl-32e/

3.2.1 Pepper picking robot
Arad et.al. developed sweet pepper picking robot SWEEPER [17] using

ROS8 (Figure 3.9) . They also had 4.3 mil. euro funding from European union
9.

• RGB-D camera Fotonic F80 10

• Arm 6DOF FANUC LR Mate 200iD 11

• It used MoveIt [16] ROS package.

• End effector is shown in Figure 3.10.

• Does not use neural networks for pepper detection, but instead use simpler
algorithms that find peppers by color. They rationalize this by faster FPS
which is useful for visual servoing [18].

Figure 3.9: Sweet pepper robot Figure 3.10: Closeup of end manip-
ulator

3.3 Sport mobile robots
Higher level of mobility is needed in sports, because unlike fruit the objects

robot wants to pick are not in the same position, and are not constrained by
environment, i.e. growing from the same tree. Thus they need to have mobile
base, more advanced sensors to accommodate possible dynamic environment, for
example players on court.

3.3.1 Tennis ball picking robot
Wang [19] proposed mobile robot acting as tennis ballboy (Figure 3.11). It is

using ROS and is build on RC car chassis with stereo cameras.
8Robotic operating systemhttps://www.ros.org/
9https://cordis.europa.eu/project/id/644313/results

10Sweden company, appears to be out of business.
11https://www.fanuc.eu/si/en/robots/robot-filter-page/lrmate-series/

lrmate-200-id

19

https://www.ros.org/
https://cordis.europa.eu/project/id/644313/results
https://www.fanuc.eu/si/en/robots/robot-filter-page/lrmate-series/lrmate-200-id
https://www.fanuc.eu/si/en/robots/robot-filter-page/lrmate-series/lrmate-200-id

Figure 3.11: Autonomous robotic tennis ball boy

3.3.2 Golf ball picking robot
Yun, Moon, Ko [20] from South Korea developed mobile robot for picking up

golf balls at golf driving range (Figure 3.12) . It uses wide view camera mounted
on building for getting approximate location of balls, and then computes direc-
tions for mobile robot. Robot has GPS and inertial unit and is using MCL to
localise itself at the gold range. It then pick ups balls with stereo camera on
board into the body of the robot. Several key points: needs supporting infras-
tructure, does not regard obstacles on golf course, primitive ball detection, does
not discriminate between golf balls and other objects.

20

Figure 3.12: Golf ball picking robot from its wide view camera

3.3.3 Autonomous Table Tennis Ball Collecting Robot
In 2017, Yeon et al. [21] developed mobile table tennis robot for picking

balls (Figure 3.13). It has camera, lidar and ultrasound sensors, does not use
other infrastructure like previous robot, in section 3.3.2. It actively navigates
environment to avoid obstacles and can differentiate between table tennis balls
and other similarly shaped objects. It uses vacuum cleaner suction mechanism to
collect balls and can manipulate nozzle to collect balls from tight spots.

Figure 3.13: Table Tennis Ball Collecting Robot

21

3.3.4 Badminton
For badminton, only few manual solutions exist. First one is ProSort CC-

60 12, shown in Figure 3.14, developed by students at Cambridge University[22].
It puts shuttles on strings moving upwards and lets gravity to orient shuttlecock
head downward. It then drops them into the tubes under the string mechanism.
Energy for carrying shuttlecocks on strings takes from wheels.

Figure 3.14: ProSort CC-60 manual picking mechanism.

Similar manual solutions, such as Shuttlecock Collector Machine(SCM)13,
made by students of Politeknik Kuching Sarawak of Malaysia, show in Figure 3.15
and Shuttlecock Collector / Ballsammler14 made by Helmut Siemen of Germany,
shown in Figure 3.16.

Figure 3.15: Shuttlecock Collector
Machine

Figure 3.16: Shuttlecock Collector /
Ballsammler

We were not able to find any existing autonomous robotic solution that pick
shuttles up and arranges them into suitable format for coaches and players to
train.

12https://www.youtube.com/watch?v=cxVtv0ZTztI
13https://www.youtube.com/watch?v=X5Di1ocYQfY
14https://www.youtube.com/watch?v=4hODzsYsZ7A

22

https://www.youtube.com/watch?v=cxVtv0ZTztI
https://www.youtube.com/watch?v=X5Di1ocYQfY
https://www.youtube.com/watch?v=4hODzsYsZ7A

4. Analysis
In this chapter we analyse goals that we mentioned in introduction. We also

discuss what approach should we take in programming the software, and mention
what hardware is available for construction of the robot.

In the section 4.1, Application architecture, we discuss pros and cons of us-
ing robotic middleware. In the following section Hardware we mention available
hardware for our robot. In the last section 4.3, Software, we analyse possible
software solutions for goals we listed in introduction.

4.1 Application architecture
Our application can be programmed by different approaches. In this section

we describe two types of application architectures, we consider their advantages
and disadvantages and describe which one is better suited for our problem.

4.1.1 Monolithic application
Monolithic application is an application performing all the tasks itself. It has

these advantages:

• It is fast, because there is no overhead between passing data around such
as with messages that need to carry additional data, such as header, time
stamp etc.

But it also has disadvantages, such as:

• It is hard to debug, since everything is coupled tighter than modular design.

• It is hard to modify and maintain.

• Most importantly, we would have to reinvent the wheel by programming
already available solutions.

4.1.2 Using ROS
ROS is an open source1 robotic middleware based on distributed computing

using interconnected nodes. [23].
Using ROS has several advantages:

• We can use message passing middleware to interconnect components.

• We can use already created packages, such as packages for controlling
Turtlebot.

• We can use visualising software RViz for visualising output from cameras.

• We can use packages for creating map of environment.
1https://github.com/ros/ros

23

https://github.com/ros/ros

• Sate of the art (SOTA) algorithms are available as ROS packages.

But it also has disadvantages, such as:

• Since packages are made by different authors, modifying already existing
code can be difficult because authors have different coding style, also lack
of tutorials for some packages/libraries.

• It is not easy to set up.

• Software has to be in form of packages.

• Passing data by messages can have processing overhead, such as seriali-
sation/deserialisation. Message passing also takes some time, so real-time
applications can be affected.

We decided to use ROS, mainly because robotic base we have available,
Kobuki platform has ROS package built, and we can leverage already existing
packages such as mapping, and deep learning, which we will mention in section
4.3

Our goal will be thus to understand third party packages, and develop control
software in form of ROS package, that will:

• recognize shuttlecocks,

• translate them from 2D image space into 3D map positions,

• use knowledge of shuttlecock positions in map to generate a path that robot
will take,

• send commands to the Kobuki base that will result in picking up shuttle-
cocks.

There could be noise in visual sensors and also in ability of neural networks
to detect shuttlecocks. Additionally, there can be imprecision of shuttlecock
positions with respect to the generated map. Another source of noise can be
motors of the robot base, that can cause imperfection in the robot base movement.
We will have to incorporate the assumption of uncertainty when creating the
control software.

4.2 Hardware
We are aiming to use control system on real robot, thus we need to consider

which hardware is suitable for out needs.

There are many embedded computers such as Arduino, Raspberry Pi, Nvidia
Jetsons, etc.

We need computer that will:

24

• be small to be installed on top of a Kobuki robot

• be power efficient, so we can run it with external battery and for prolonged
time

• be sufficiently powerful to seamlessly run ROS,

• be powerful enough to run visual processing such as neural network seg-
mentation and recognition, visual mapping from stereo cameras

We decided to use Nvidia Jetson platform because of better graphic perfor-
mance compared to the other options.

At first we developed on Jetson Nano(Figure 4.1), but it proved not powerful
enough run simultaneously object recognition by deep neural networks, mapping
and other nodes, we acquired Jetson Xavier NX (Figure 4.2), which according
to benchmarks[24] is 10x more powerful in deep learning applications than Nano
(Figure 4.3), and empirically suits our needs.

Figure 4.1: Nvidia Jetson Nano Figure 4.2: Nvidia Jetson Xavier NX

25

Figure 4.3: Performance comparison of Nvidia jetson cameras, from[24]

We summarised relevant data about Jetson kits [25], from:

Name Nano B Xavier NX AGX Xavier
AI perf.1,2 472 GFLOPS 21 TOPS 32 TOPS
GPU 128-core

NVIDIA
Maxwell GPU

384 Volta
CUDA cores
and 48 Tensor
cores

512-core
NVIDIA Volta
GPU with 64
Tensor Cores

CPU Quad-core
ARM® Cortex
®-A57 MPCore
processor

6-core NVIDIA
Carmel
ARM®v8.2
64-bit CPU 6
MB L2 + 4 MB
L3

8-core NVIDIA
Carmel Arm
®v8.2 64-bit
CPU 8MB L2 +
4MB L3

Memory 4GB 64-bit
LPDDR4
25.6GB/s

8GB 128-bit
LPDDR4x
51.2GB/s

32GB 256-bit
LPDDR4x
136.5GB/s

Power cons. 10W 15W 30W
Price 99$ 399$ 699$

1 GFLOPS = giga floating point operations per second
2 TOPS = tera operations per second

26

The only hardware sensor we have available is ZED stereo camera, shown in
figure 4.4. It supports ROS.

Figure 4.4: ZED stereo camera.

4.3 Software
In this section we will analyse what software components we need to success-

fully implement:

• control system,

• mapping - localisation,

• vision - recognition,

• planning,

• movement,

• visualisation

• user interface,

• picking.

4.3.1 Control system
Simplest control system for robots are reactive agents such as Braitenberg’s

vehicle [26] (Figure 4.5) or line follower robot (Figure 4.6), where inputs are
mapped directly or tightly to outputs.

27

Figure 4.5: Braitenberg vehicle. Figure 4.6: Line follower.

More complicated control paradigm is SPA (Sense, Plane, Act) implemented
in robots such as Shakey [27], developed in 1960s, where robot has some internal
representation of the world, and can use it to generate more intelligent actions
by reasoning about the world. Problem with robots like Shakey (Figure 4.7) was
that they were slow, and did not respond to dynamic changes in environment.
After plan was generated, it was carried out without direct feedback from sensors.

Figure 4.7: Shakey the robot.

Possible data flow from sensors, through planning to actions is shown in Fig-
ure 4.8.

28

map with
shuttlecock
positions

real world

stereo camera

R-CNN

sensors

RTAB-map

processing
algorithmsdata fusionmove commands for robot base

Figure 4.8: Example of data flow of possible robot in a SPA paradigm.

Next progression of robotic control systems was Subsumption rachitecture
created by Rodney Brooks[28] in 1986. It was composed of progressively complex
control programs (behaviours) on top of each other. Higher level behaviour
could override lower level behaviour. For example, zeroth level would be collision
evasion, first level wandering, and second exploration.

However, control based on behaviors hit its ceiling, because it proved hard to
create long lasting goals that were difficult to optimize[29].

Next followed architectures that combined reactivity and planning called lay-
ered or hybrid architectures, such as Firbys[30] three layered architecture (Fig-
ure 4.9) that was divided into planning, executive, behavioral layers.

Figure 4.9: Three layered architecture according to Firby, from[30].

29

4.3.2 Shuttle recognition
We need to detect position of shuttles, so our robot can approach them and

pick them up. We will be using visual inputs from camera.

Since shuttles can be scattered across court almost everywhere, we need
reliable and fast method to detect them.

Then we also need to distinguish object of our interest, shuttles, from
background-floor. Our robot could also incorporate human detection to not hit
any players that could be in its vicinity.

Since 2000s there has been interest in using neural networks for vision pro-
cessing, such as classification of numbers by LaCunn[31]. In the 2010s there
have beed numerous advances in computer vision using neural networks, such as
R-CNN[32] (Figure 4.10).

Figure 4.10: Overview of R-CNN architecture.

4.3.3 Mapping
Badminton courts are flat surfaces with marked lines. We could have two

approaches to solving shuttle localization problem. First,we could have running
localization and mapping at all times, and detect shuttles from point clouds
created by mapping algorithm. This is very energy inneficient, and after the
robot picks up shuttle the algorithm need to update place where the shuttle has
been.
Secondly, we could run mapping algorithm to create map of the court without
any shuttles present, and then by just mark positions of shuttles as points in
map. This of course has few problems, for example we need to keep track of
which shuttles are which as to not mark them in our map more than once, and we
have lot of similar frames from the camera. We could also assume that nobody
will shuffle shuttle positions behind robots back since that would complicate
matters.

4.3.4 Planning
Another step we need to consider is planning of robot motion. Assume we

can give robot coordinates (x, y) where to move, relative to some frame, for
example robot’s map. In this way, if we had list of coordinates of shuttles

30

[(x1, y1), (x2, y2), ..., (xk, yk)] we could use some TSP solver like integer program-
ming to get shortest path through these coordinates. Of course this does not
consider time constraints such as turning of the robot base. Another problem
is that we have only partial knowledge of the world, i.e. where the shuttles are
located because we look at the world from the view of robot (Figure 4.11). This
could be alleviated if we had camera at the roof looking at the court below, but
this is undesirable because we want to have compact robot that we could use at
many different places without any difficult and time consuming installation of
cameras.

Robot senses only part of the world

Robot senses the whole world

wifi

Figure 4.11: Partial vs whole view of the world.

4.3.5 Visualisation
We need to visualise output from the robot. Mainly for debugging and

development. We need to see images from camera, map the robot creates, objects
-shuttles the robot recognizes from environment, path or plan the robot generates
to pick up the shuttles in some shortest metric such at shortest time or shortest
path (we prefer shortest time).

Fortunately, all this is available in RViz- ROS visualization software. Some
things we need to create ourselves, all this is described in 5.8.1

4.3.6 User interface
We would like to visualise output from robot cameras, or where are the shut-

tles. For simulation we will uze RViz and for real operation of the robot, we need
to setup RViz on remote laptop.

4.3.7 Picking
After we located shuttle and moved to it, we need to pick it up.

31

5. Proposed solution
In this chapter we describe how we designed control system, what parts it is

composed of, what packages we used. Because our software is implemented as
ROS nodes within ROS framework, we will also describe additional files such as
configuration, model, launch files, URDF files and world files.

In the section 5.1, ROS, we introduce essential ROS concepts, in the sec-
tion 5.2, Gazebo we describe Gazebo simulator and its components. In the fol-
lowing sections we describe goals from introduction, each goal is implemented in
as one or more ROS nodes.

5.1 ROS
ROS is an open source robotic middleware used for speeding up robotic de-

velopment. It provides many useful features as shown in Figure 5.1.

Figure 5.1: ROS equation

Main advantage of using robotic middleware such as ROS is that software
is split into interconnected nodes that communicate with messages over topics.
It is advantage because we can swap parts such as camera for another one, the
only requirement is that data is still being published on the same topic with
same message type. Nodes are included in packages which are built using catkin
tool which uses cmake. Nodes use publish subscribe paradigm or service/reply
paradigm. Messages are defined in the .msg format which are then converted
to the Python or C++ classes.

We will use RViz 3D rendering program to visualize what robot sees, map,
goals, path etc. Nodes can be run from terminal as normal program, or can be
run by writing launchfile for convenience. Launchfiles can include parameters and
themselves can be included in other launchfiles. Last part is Gazebo, which we
will describe in next section.

5.2 Gazebo
Gazebo [33] is a robotic simulator with physics engine (ODE) with 3D

rendering capability, now independent of ROS. Robot inputs from simulated
environment, such as cameras, odometry, lasers are supplied by writing C++
plugins inside Gazebo, which publishes corresponding messages over topics that
we can use for programming the robot. If published topics and simulated physics

32

are somewhat similar to real sensors and real physics, we can use same or slightly
modified software for both simulated and real robots.

Environments in Gazebo are called worlds1 and are specified by writing XML
files in SDF format.

Because we need to test algorithms before we apply them to a real robot, we
will use simulated robot in a simulated environment. For this we will use Gazebo
simulator [34], which has ROS integration via gazebo_ros 2 package. Gazebo is
designed to be separate from ROS, and can be controlled programmaticaly using
plugins3. Plugins are also used to generate sensor data for robots, and can be
used to control the world4.

5.2.1 Preparing the simulation
We designed few worlds that will serve as a test environment for our simu-

lation. We downloaded free models such as badminton court, shuttlecock and
bench from the internet and modified them in Blender to decrease vertex size
because our computing platform is very limited. We will describe this more in
section 6.6, Gazebo simulation. Robots are usually spawned in from launchfile
and their models are not included in SDF.

5.3 Control system
For controlling behaviour of the robot, we could use state machine, which

are similar to finite state machines [35],[36]. Possible state machine is shown in
Figure Figure 5.2.

Idle

Planning

picking up
shuttle

going to the
next shuttle

Unloading

Figure 5.2: Example of possible state machine of the robot.
1http://gazebosim.org/tutorials?tut=build_world&cat=build_world
2http://gazebosim.org/tutorials?tut=ros_overview&cat=connect_ros
3http://gazebosim.org/tutorials/?tut=plugins_hello_world
4http://gazebosim.org/tutorials?tut=plugins_world_properties&cat=write_

plugin

33

http://gazebosim.org/tutorials?tut=build_world&cat=build_world
http://gazebosim.org/tutorials?tut=ros_overview&cat=connect_ros
http://gazebosim.org/tutorials/?tut=plugins_hello_world
http://gazebosim.org/tutorials?tut=plugins_world_properties&cat=write_plugin
http://gazebosim.org/tutorials?tut=plugins_world_properties&cat=write_plugin

5.4 Mapping and localisation
For the robot localisation and mapping we chose open source ROS package

RTAB-Map5[37]. It is a graph-based SLAM approach[38]. It supports inputs
from stereo and RGB-D cameras (Figure 5.3) and outputs pose and occupancy
grid which we can use in navigation. First we need to drive robot around environ-
ment to get images from which RTAB-Map constructs nodes used in localisation.
Images are compared using SIFT or SURF algorithms for matching features.
Algorithm also takes input odometry from the robot or can use RGBD visual
odometry from camera. If the match between images is found, algorithm creates
link - loop closure (Figure 5.4). During the mapping, many loop closures can be
found and algorithm tries to minimise error with respect to the measurements -
images and their extracted features.

Figure 5.3: Survey of ROS compatibile SLAM packages, table from [37].
5http://wiki.ros.org/rtabmap_ros

34

http://wiki.ros.org/rtabmap_ros

Figure 5.4: Loop closure detection in Rtabmap viewer

5.5 Computer vision
We need to recognise shuttlecocks from visual input and represent them in a

way that robot can generate movement commands to pick them up. We should
be able to recognize shuttlecock on different ground colors (Figure 5.5). Our
input is simulated RGB and depth cameras in Gazebo simulation. In real life
we got depth information from stereo camera that is produced by merging data
from left and right cameras. In ROS this information is produced by Gazebo plu-
gin and in real world by camera drivers by publishing sensor_msgs::Image6 for
image data and sensor_msgs::PointCloud2 7 for depth information, called point
clouds. Point cloud is an array of n-dimensional points, usually 3 or 6 dimen-
sional such as (x, y, z) for position or (x, y, z, r, g, b) with added colour informa-
tion8. Fortunately, camera drivers output point clouds in organised point cloud9

format, meaning points from depth camera are organised as 2D matrix row-major
order in the array, and can be accessed by (x,y) indexing.

6http://docs.ros.org/en/api/sensor_msgs/html/msg/Image.html
7http://docs.ros.org/en/api/sensor_msgs/html/msg/PointCloud2.html
8http://pointclouds.org/documentation/structpcl_1_1_point_x_y_z_r_g_b.html
9https://pcl.readthedocs.io/projects/tutorials/en/latest/basic_structures.

html

35

http://docs.ros.org/en/api/sensor_msgs/html/msg/Image.html
http://docs.ros.org/en/api/sensor_msgs/html/msg/PointCloud2.html
http://pointclouds.org/documentation/structpcl_1_1_point_x_y_z_r_g_b.html
https://pcl.readthedocs.io/projects/tutorials/en/latest/basic_structures.html
https://pcl.readthedocs.io/projects/tutorials/en/latest/basic_structures.html

(a) Blue court (b) Orange court

(c) Green court (d) Wooden court

Figure 5.5: Example of different court colors and materials.

5.5.1 Object recognition
For shuttle recognition we will use library for neural network inference, de-

veloped by Nvidia, jetson-inference10. They also developed ROS node for this
library 11.

Input for the detection are sensor_msgs/Image messages. Neural network
outputs detected objects as vision_msgs/Detection2DArray12.

5.5.2 Training neural network
Training consists of feeding data of the form (xtrain, xtarget) to the training

algorithm and tweaking weights of the neural network by backpropagation. We
have several choices for creating datasets. We could use already created network
and hope that it generalizes to the new objects, but this usually does not work at
all. Another option is to use pretrained network for similar purposes, and then
retrain it with more examples, this time with shuttlecock images and rectangles
by hand.
Third option is to create dataset synthetically [39], i.e. in some modelling pro-
gram, if done correctly, can be huge benefit to training algorithm (Figure 5.6).
It is because we could in theory generate large amounts of training data. The

10https://github.com/dusty-nv/jetson-inference/
11https://github.com/dusty-nv/ros_deep_learning
12http://docs.ros.org/en/melodic/api/vision_msgs/html/msg/Detection2DArray.

html

36

https://github.com/dusty-nv/jetson-inference/
https://github.com/dusty-nv/ros_deep_learning
http://docs.ros.org/en/melodic/api/vision_msgs/html/msg/Detection2DArray.html
http://docs.ros.org/en/melodic/api/vision_msgs/html/msg/Detection2DArray.html

problem with this is that we would have to generate training data as closely
resembling the real world as possible, in various instances that could arise in the
real world.

Figure 5.6: Example of synthetic dataset, from [39].

Since generating synthetic datasets is computationally very intensive, we will
create smaller datasets by hand i.e. several hundred photos of shuttlecocks and
true positions.

5.5.3 Position estimation
We get bounding box of shuttlecock from neural network node. This is in-

formation about position of shuttlecock in 2D space, and we will merge this
information with depth points in 3D space, acquired from depth camera. Since
depth points are organised into 2D matrix format, we can take rectangle of points
corresponding to the shuttlecock from the point cloud message.

5.6 Planning
Picking shuttlecocks is similar in nature to Traveling salesman problem where

we have to visit n towns with least distance. There are some differences, for
example robot takes time to turn, paths aren’t straight lines, robot takes time
to accelerate/decelerate. But it is useful abstraction.

If we knew position of shuttlecocks in advance, we could plan optimal path
between n shuttlecock. This would be equivalent to Travelling salesman problem.
Because field of view of camera is limited and we are viewing world from low
position instead of birds eye view, we can’t plan in advance optimal path of the
robot on court. We can only estimate position of shuttlecocks we see in front
of the robot. Therefore if we see a shuttlecock, we estimate its position relative
to robot and send command to planning node to generate path to it. ROS has
already available planning package move_base which we will use.

5.6.1 Mapping
If we want to give robot movement position commands such as go to position

(x,y), we need a map. Map for given environment can be created with ROS
package RTAB-Map. This needs to be done manually before autonomous robot

37

driving on court. After the map is created, we turn off mapping, map will be
saved for later use to a database. We then can use this map for localization.

5.7 Movement and shuttle picking
Our robotic base Kobuki has two motors. We could send movement signals

directly to the motors, from the output of the camera. This approach is called
reactive (mentioned in subsection 4.3.1), and does not use map of the environ-
ment. In this case it could happen that robot could run off to neighbouring court
because he saw shuttlecock there, and since he has no notion of map, nothing
would prevent it from doing so.

The other approach is that robot has map of environment and he generates
position of the shuttle respective to the map from the camera. This position is
then transformed to goal for move_base package. This package generates plan
consisting of velocity commands for robot wheels. This is advantageous because
robot can detect obstacles and modify plan so it doesn’t hit anything. It has
disadvantage that it could identify shuttlecocks as obstacles, therefore avoiding
them.

5.8 Visualization

5.8.1 RViz
RViz (ROS Visualization) is a 3D visualization tool for displaying data from

topics in ROS. It is composed of windows letting us display all necessary messages
that robot gets and uses. It can visualise 3D data such as point clouds, 2D
image data from camera and image processing nodes, and also display navigation
information. It also allows us to visualize data for localisation such as map, robot
model, local plan, global plan, and markers for shuttlecock positions.

Specifing robot in URDF

URDF13,14 is an XML format for specifying models of robots. We need it for
both simulation and using robot in real world. Especially we need to set relation-
ships between robot parts, such as wheels, chassis, camera, or other sensors and
actuators. This is essential since we need to know position of data with respect
to some origin, such as sensor or centre of robotic base, and we need to establish
relationship between parts to easily transform between coordinate frames. This
is done by specifying links and joints in URDF. For example, if the camera sensor
is in front of the robot, distance to objects would be different than to centre of
the robot, or its actuators.

Fortunately, there are pre-build URDFs for Kobuki and ZED camera, the only
thing we need to specify is relationship between Kobuki and ZED camera. We
measured this using meter and found out that ZED origin is offset by 0.15m in

13http://wiki.ros.org/urdf
14http://gazebosim.org/tutorials?tut=ros_urdf

38

http://wiki.ros.org/urdf
http://gazebosim.org/tutorials?tut=ros_urdf

x-axis and 0.15m in z-axis. This can be set in ZED launch file15 which passes
parameter to xacro macro.

5.9 Shuttlecock picking
Shuttle picking could be done by arm (Figure 5.7) or by rotary mechanism

(Figure 5.8) as manual solutions mentioned in chapter 3. Arms are slow and would
increase complexity of the system. Because of this, we chose simpler solution
based on rotating brush which will pick up shuttle on the robot chassis.

Figure 5.7: PincherX 100 Robot
Arm by Trossen robotics

Figure 5.8: 3D printed prototype of
picking mechanism

5.10 User interface
Because the robot is autonomous, user interface is using commands in com-

mand line. Another option is to monitor robot outputs in RVIZ and optionally
set goals through clicking on map.

15https://github.com/stereolabs/zed-ros-wrapper/blob/master/zed_wrapper/
launch/zed.launch

39

https://github.com/stereolabs/zed-ros-wrapper/blob/master/zed_wrapper/launch/zed.launch
https://github.com/stereolabs/zed-ros-wrapper/blob/master/zed_wrapper/launch/zed.launch

6. Implementation
In this chapter we describe implementation of proposed solution, that is

visual processing, visualisation for RViz, control system, models needed to run
simulation and other files, such as training data for neural network and .stl files
for 3D printer.

6.1 Launchfiles
Launchfiles are XML files in ROS ecosystem used for running nodes, or recur-

sively other launchfiles. After we type following command into terminal:

roslaunch shuttlebot_control gazebo_all.launch

Roslaunch command finds gazebo_all.launch roslaunch file inside package
shuttlebot_control, and runs in order launchfiles shuttlebot_gazebo.launch,
dl_gazebo.launch and nodes image_processing and point_draw.py.

<launch>
<include file="$(find shuttlebot_control)/launch/shuttlebot_gazebo.launch" >
</include>

<include file="$(find shuttlebot_control)/launch/dl_gazebo.launch" >
</include>

<node pkg="shuttle_distance_estimation" name="image_processing"
type="image_processing"/>

<node pkg="shuttlebot_control" name="point_draw" type="point_draw.py"/>
</launch>

6.2 Training data
We acquired data for neural network training by taking images of shuttle-

cocks in a different scenes. We tried to make images with different backgrounds
and different objects so that neural network would generalize well. We trained
SSD-mobilenet network using jetson-inference1. Dataset is split into training set,
evaluation set, and test set. Since we want to get rectangle of where shuttle is
in the image, we have to provide a rectangle ourselves with which we train the
network, as shown in Figure 6.1.

1https://github.com/dusty-nv/jetson-inference/blob/master/docs/
pytorch-collect-detection.md

40

https://github.com/dusty-nv/jetson-inference/blob/master/docs/pytorch-collect-detection.md
https://github.com/dusty-nv/jetson-inference/blob/master/docs/pytorch-collect-detection.md

Figure 6.1: Creating dataset manually for object detection.

Shuttlecock detection working on images generated in Gazebo simulation (Fig-
ure 6.2).

Figure 6.2: Shuttlecock detection in Gazebo

Working shuttlecock detection is shown in figure Figure 6.3.

41

Figure 6.3: Multiple shuttlecocks detected on real badminton court

6.3 Visual processing
Visual processing is implemented by image_processing node

in image_processing.cpp. It has three subscribers on:

• /detectnet/detections topic, which listens to messages of type
vision_msgs::Detection2DArray

• /camera/rgb/image_raw which listens to messages of type
sensor_msgs :: Image

• /camera/depth/points which listens to messages of type
sensor_msgs :: PointCloud2

Normally, every subscriber has its own callback function, but since we want to
combine them, we use Synchronizer from message_filters2 package. Since mes-
sages have different time arrivals, we combined them into one callback function
using message filter Time Synchronizer3 with ApproximateTime4 policy.

Since these are two independent messages and are likely to have different
timestamps, we will use time synchronizer to combine them into one callback.
We than cut off points that are far behind shuttlecock (Figure 6.4), and compute
average of the points using centroid5 method of the pcl6 library that we are using
for manipulating with point clouds.

2http://wiki.ros.org/message_filters
3https://docs.ros.org/en/api/message_filters/html/c++/classmessage_

_filters_1_1TimeSynchronizer.html
4http://wiki.ros.org/message_filters/ApproximateTime
5https://pointclouds.org/documentation/classpcl_1_1_centroid_point.html
6https://pointclouds.org/

42

http://wiki.ros.org/message_filters
https://docs.ros.org/en/api/message_filters/html/c++/classmessage__filters_1_1TimeSynchronizer.html
https://docs.ros.org/en/api/message_filters/html/c++/classmessage__filters_1_1TimeSynchronizer.html
http://wiki.ros.org/message_filters/ApproximateTime
https://pointclouds.org/documentation/classpcl_1_1_centroid_point.html
https://pointclouds.org/

Figure 6.4: Neural network bounding box vs. point cloud. Some points inside
bounding box are far behind shuttlecock

This gives us relatively accurate estimate of shuttlecock’s position, shown in
Figure 6.6, compared with Figure 6.5. The point we got is in optical frame of the
camera, we only need to set header of the point to this frame, and ROS tf system
will compute the position in map frame for us. We can then set z value to 0, as
to project it to the ground.

Figure 6.5: Shuttlecock in front of
robot, inside Gazebo.

Figure 6.6: Estimated position of
shuttlecock, from RViz

6.4 Visualisation
Shuttlecock position visualisation is done by point_draw ROS node in

point_draw.py file.

class Visualize_node:
def __init__(self):

self.node = rospy.init_node('point_draw', anonymous=True)
self.sub = rospy.Subscriber('/marker',Point,self.visualize_point)
self.pub = rospy.Publisher('shuttlebot_points', MarkerArray, queue_size=10)
rospy.spin()

def visualize_point(self,point):
marker_array = MarkerArray()
marker_array.markers.append(create_rviz_marker(point))
self.pub.publish(marker_array)

43

Where create_rviz_marker(point) method takes Point and outputs array of
Markers7 which are RViz visualisation objects.

6.5 Control system
Our control system is a state machine, with help of SMACH8, a library for

task-level execution and coordination in ROS.
SMACH state is a Python class. We can specify inputs and outputs of a

state. Transition between states is done by implementing execute method. In
comparison to finite state machines from Automata theory, SMACH states are not
fixed description of the world, but can do any computation inside them [smach].

For picking one shuttle, we can design following state machine. It consists of
states IDLE9 (Shown in green in Figure 6.7) and COLLECTING and outcomes10

failed_picking and picked (Shown in red in Figure 6.7).
At start, state machine is in state IDLE, and waits for messages from vision

system. When it gets message about detected shuttlecock, consisting of (x,y)
position in map frame, it passes this information to the next state COLLECTING
using transition got_msg.

Figure 6.7: System is in first state, IDLE.
7http://docs.ros.org/en/api/visualization_msgs/html/msg/Marker.html
8http://wiki.ros.org/smach
9According to SMACH convention, states are named with uppercase.

10In SMACH, state machines can be nested, outcomes can serve as transition from sub state
machine to higher level machine.

44

http://docs.ros.org/en/api/visualization_msgs/html/msg/Marker.html
http://wiki.ros.org/smach

In the state COLLECTING (Shown in green in Figure 6.8), (x,y) coordinate
of shuttlecock is transformed into the move_base11 action and system waits for
the result. If the robot is successful and picks the shuttle up by moving the robot
base, state machine uses transition success and goes to the picked outcome.

Figure 6.8: System is in second state, COLLECTING.

6.6 Gazebo simulation
For development and testing of our solution, we created multiple worlds for our

simulation in the Gazebo simulator (Figure 6.9). Simulation consists of building
a world populated with models with visual and physical attributes such as mesh,
mass, inertia, etc. Gazebo uses physics engines such as ODE to simulate physics,
and OGRE engine to draw 3D graphics. We already mentioned parts of gazebo
in section 5.2. World is a XML file in SDF [40] format. It is specified by world
tag. Inside it we can place models which are also files in SDF format.

<sdf version='1.6'>
<world name='default'>
<!-- populated with models -->
</world>

</sdf>
11http://wiki.ros.org/move_base

45

http://wiki.ros.org/move_base

Figure 6.9: Gazebo world.

Models are also specified in SDF format. Necessary parts for Gazebo simulator
models are physical properties such as inertia, mass, staticness.

Mesh is the actual 3D data of the model, i.e. information about vertices,
edges, faces, textures etc. It is in Collada .dae [41] format.

6.6.1 Gazebo Plugins
Gazebo plugins12 are shared libraries written in C++ used to control parts

of simulation. There are 6 types of plugins, we will use world plugin that attaches
to the world, and sensor plugin which attaches to link of a model and produces
data that can be further used in simulation.

6.6.2 Sensor plugin for picking shuttlecocks
To simplify picking shuttles in simulation, as mentioned in section 5.9, we

created a sensor plugin for Gazebo. It’s function is, when robot touches the
shuttle, we delete it from simulation and count it as picked up, for simplicity.

We do this by creating contact plugin13 for contact sensor14. Gazebo is using
similar message system as ROS. Messages are published on topics, and are using
publish/subscribe paradigm. Contacts are published on shuttle_contact topic.

This is done by detecting collisions between models.
One thing we need to be wary of is that robot should not go into some weird

state when it touches shuttle. i.e. shuttle needs to disappear before it triggers
any Kobuki’s collision avoidance system (for example by touching bumpers). To
do this, we added collision cylinder (Figure 6.10) to Kobuki’s model by modifying
original URDF.

12http://gazebosim.org/tutorials?tut=plugins_hello_world&cat=write_plugin
13http://gazebosim.org/tutorials?tut=contact_sensor
14http://osrf-distributions.s3.amazonaws.com/gazebo/api/9.0.0/classgazebo_1_

1sensors_1_1ContactSensor.html

46

http://gazebosim.org/tutorials?tut=plugins_hello_world&cat=write_plugin
http://gazebosim.org/tutorials?tut=contact_sensor
http://osrf-distributions.s3.amazonaws.com/gazebo/api/9.0.0/classgazebo_1_1sensors_1_1ContactSensor.html
http://osrf-distributions.s3.amazonaws.com/gazebo/api/9.0.0/classgazebo_1_1sensors_1_1ContactSensor.html

Figure 6.10: Contacts (pointed by arrow) detected between shuttle model and
collision element (in Orange).

We then attached this cylinder to base link of the robot.

<joint name="bounding_joint" type="fixed">
<parent link="base_link"/>
<child link="cylinder_link"/>
<origin xyz="0.00 0.0 0.0" rpy="0 0 0"/>
<axis xyz="0 0 0"/>

</joint>

Because we want to use this bounding cylinder to detect collisions but
be "contact-free" to remove shuttle before it touches the robot, we use col-
lide_without_contact property of contact tag. We care only about collisions of
cylinder with shuttlecocks, so we set same collide_bitmask15 on both models16.

<contact>
<collide_without_contact>1</collide_without_contact>
<collide_bitmask>0xf000</collide_bitmask>

</contact>

6.6.3 World plugin for controlling simulation
For evaluating performance of robot, automatic spawning of shuttles and fol-

lowing collection of shuttles in episodes is done by world plugin17. World plugin
subscribes to the topic and processes GzString message in callback, using World18

class to delete the model.
15http://gazebosim.org/tutorials?tut=collide_bitmask&cat=physics
16Links to be precise
17http://osrf-distributions.s3.amazonaws.com/gazebo/api/9.0.0/classgazebo_1_

1WorldPlugin.html
18https://osrf-distributions.s3.amazonaws.com/gazebo/api/dev/classgazebo_1_

1physics_1_1World.html

47

http://gazebosim.org/tutorials?tut=collide_bitmask&cat=physics
http://osrf-distributions.s3.amazonaws.com/gazebo/api/9.0.0/classgazebo_1_1WorldPlugin.html
http://osrf-distributions.s3.amazonaws.com/gazebo/api/9.0.0/classgazebo_1_1WorldPlugin.html
https://osrf-distributions.s3.amazonaws.com/gazebo/api/dev/classgazebo_1_1physics_1_1World.html
https://osrf-distributions.s3.amazonaws.com/gazebo/api/dev/classgazebo_1_1physics_1_1World.html

6.7 Picking system
We developed a prototype of picking mechanism based on rotating brushes.

We then printed it on 3D printer, and used small DC motor19 to rotate brushes,
show in Figures 6.11,6.12 and 6.13. Parts are screwed together using M3 bolts
and nuts.

Figure 6.11: Long part extending
forward

Figure 6.12: Side part, with holes for
brush

Figure 6.13: 3D printed prototype of picking mechanism.

19https://www.laskarduino.cz/tt-motor-s-prevodovkou-plastove-prevody/

48

https://www.laskarduino.cz/tt-motor-s-prevodovkou-plastove-prevody/

7. Results
In this chapter, we evaluated our proposed solution. Robot should be able to

recognize shuttlecock in both simulated and real world. We evaluate ability of
robot to estimate 3D position of shuttlecock. There are many situations we could
evaluate performance in simulation using Gazebo and then using real robot in
real environments. In real environments robot could have difficulty recognizing
shuttles because of different light conditions or because there are players occluding
shuttles. Installation steps and user documentation for robot are in Appendix A,
User documentation.

7.1 Evaluation of simulated shuttle picking
For evaluation of simulated shuttle picking we used Gazebo simulator. We

designed badminton court as Gazebo world, mentioned in section 6.6. It consists
of green floor with white lines and few models, such as bench, crates etc.

Our testing procedure consists of:

1. spawning robot in the middle of the court,

2. spawning a badminton shuttlecock,

3. launching control system, neural network, visual processing, localisation,
and movement system

Visual system of out robot consisting of neural network recognized shuttlecock.
Then the visual processing node fused depth information from depth camera and
estimated position of shuttlecock in 3D space with respect to the robot. Then
our control system sent command to planning system, which generated movement
plan. Robot moved to the shuttlecock and picked it up.

7.1.1 Discussion
During testing and development, we encountered several issues.
We found out that performance of RTAB-Map varies with different environ-

ments and ability of algorithm to perform accurate matchings. If, for example,
in the simulation, walls have periodic texture, as shown in Figure 7.1, the
RTAB-Map will have a difficulty creating loop closures since lot of input images
are very similar to each other, even when robot should be in different place
according to the odometry from the robot base.

We then made world without repeating textures, using only simple coloured
materials for walls and badminton court. This helped in a way, because algorithm
no longer picked features in the middle of texture, but on the edges of court and
lines, or edges between floor and wall. But we also encountered that robot had
troubles with creating loop closures because court is symmetrical, without any
features that would tell the robot he is visiting place he was before.

49

Figure 7.1: Wrong loop closure.

Next, we tried to mimic real world and put objects such as bench, boxes
and others to create some not repeating visual cues for the robot. This helped,
because RTAB-map then created loop closures when visited and viewed these
locations.

Another issue was with Gazebo simulator, due our low testing hardware
capabilities, we found out that after we spawned only small number of shuttles
(10) the simulation time speed was 10 times slower than real time.

This could be alleviated by having faster computer, or tweaking physics pa-
rameters, such as simpler collision meshes of shuttlecocks, or less compute
resources (limiting max_contacts of models or larger max_step_size1) available
for physics engine.

7.2 Evaluation of shuttle picking in real world
We evaluated robot in real environments on different halls with different sur-

faces under various light conditions. We found out, that reflective floor surfaces
such as badminton court poses problems for the ZED stereo camera (Figure 7.2).
It puts points that lie on the floor below the floor.

1http://gazebosim.org/tutorials?tut=physics_params&cat=physics

50

http://gazebosim.org/tutorials?tut=physics_params&cat=physics

Figure 7.2: Exported pointcloud from the RTAB-Map, showing points that should
lie on the floor are much lower, as marked by yellow line.

We took robot to real badminton courts. We created map of the environment
by RTAB-Map. We then put several shuttles on the court and robot recognized
them.

51

8. Conclusion
We have developed control system for the robot that pick shuttles scattered

on badminton courts, by using ROS - Robot Operating System and designing our
own control nodes.

Deep neural network was trained to recognise shuttlecocks from both simu-
lated images and images from real life. To accomplish this, we created image
dataset.

To estimate position of shuttlecock in 3D, we created program that integrates
depth information from camera and neural network segmentation.

We integrated and tested multiple existing ROS packages such as RTAB-Map
for creating maps of the environment and then then used these maps for robot
localisation.

We used Turtlebot Kobuki robot as base of the platform and Nvidia Jetson
Xavier NX for computation.

To test and develop our solution, we created virtual badminton court and
simulated Kobuki robot in Gazebo simulator to test, debug and evaluate our
solution and then used this solution with minimal changes on a real robot.

We designed a prototype of simple shuttlecock picking mechanism on a 3D
printer.

Our approach was tested in simulation, and our robot recognized badminton
shuttlecock using neural network, estimated its position in 3D world using depth
information from camera, generated plan and autonomously picked it up.

Future work

It could be useful to test out other types of sensors such as RGB-D cameras
that projects IR pattern such as Intel Realsense.

We could also benefit from faster mobile base, but it may be counterproductive
because robots should not in any case damage floor surface with excessive weight.

Model training for shuttlecock detections could be trained on larger synthetic
dataset to increase accuracy of recognition instead of small dataset made by hand.

Our solution could be adapted in other domains, such as picking of other
objects. Because our solution is fairly general, only thing that would have to
be modified would be training neural network to recognize objects in the other
domain.

52

Bibliography
[1] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P.

Dollár, and C. L. Zitnick, “Microsoft coco: Common objects in context,” in
European conference on computer vision, Springer, 2014, pp. 740–755.

[2] D. Gunning, “Explainable artificial intelligence (xai),” Defense Advanced
Research Projects Agency (DARPA), nd Web, vol. 2, no. 2, 2017.

[3] C. Cadena, L. Carlone, H. Carrillo, Y. Latif, D. Scaramuzza, J. Neira, I.
Reid, and J. J. Leonard, “Past, present, and future of simultaneous localiza-
tion and mapping: Toward the robust-perception age,” IEEE Transactions
on robotics, vol. 32, no. 6, pp. 1309–1332, 2016.

[4] G. Bresson, Z. Alsayed, L. Yu, and S. Glaser, “Simultaneous localization
and mapping: A survey of current trends in autonomous driving,” IEEE
Transactions on Intelligent Vehicles, vol. 2, no. 3, pp. 194–220, 2017.

[5] BWF. (2019). Bwf statutes, section 4.1: Laws of badminton, BWF,
[Online]. Available: https : / / extranet . bwfbadminton . com / docs /
document-system/81/1466/1470/Section%204.1%20-%20Laws%20of%
20Badminton.pdf (visited on 02/06/2021).

[6] S. Kitta, H. Hasegawa, M. Murakami, and S. Obayashi, “Aerodynamic prop-
erties of a shuttlecock with spin at high reynolds number,” Procedia Engi-
neering, vol. 13, pp. 271–277, 2011.

[7] BWF. (Jul. 20, 2021). Bwf world rankings. BWF, Ed., [Online]. Available:
https://bwfbadminton.com/rankings/2/bwf-world-rankings/6/men-
s-singles/2021/29/ (visited on 07/21/2021).

[8] D. B. Poudel, “Coordinating hundreds of cooperative, autonomous robots
in a warehouse,” Jan, vol. 27, no. 1-13, p. 26, 2013.

[9] E. J. Van Henten, J. Hemming, B. Van Tuijl, J. Kornet, J. Meuleman, J.
Bontsema, and E. Van Os, “An autonomous robot for harvesting cucumbers
in greenhouses,” Autonomous robots, vol. 13, no. 3, pp. 241–258, 2002.

[10] (2021). Agrobot, [Online]. Available: https : / / www . agrobot . com / e -
series.

[11] Y. Yu, K. Zhang, L. Yang, and D. Zhang, “Fruit detection for strawberry
harvesting robot in non-structural environment based on mask-rcnn,” Com-
puters and Electronics in Agriculture, vol. 163, p. 104 846, 2019.

[12] H. A. Williams, M. H. Jones, M. Nejati, M. J. Seabright, J. Bell, N. D.
Penhall, J. J. Barnett, M. D. Duke, A. J. Scarfe, H. S. Ahn, et al., “Robotic
kiwifruit harvesting using machine vision, convolutional neural networks,
and robotic arms,” biosystems engineering, vol. 181, pp. 140–156, 2019.

[13] M. Everingham, L. Van Gool, C. K. Williams, J. Winn, and A. Zisserman,
“The pascal visual object classes (voc) challenge,” International journal of
computer vision, vol. 88, no. 2, pp. 303–338, 2010.

53

https://extranet.bwfbadminton.com/docs/document-system/81/1466/1470/Section%204.1%20-%20Laws%20of%20Badminton.pdf
https://extranet.bwfbadminton.com/docs/document-system/81/1466/1470/Section%204.1%20-%20Laws%20of%20Badminton.pdf
https://extranet.bwfbadminton.com/docs/document-system/81/1466/1470/Section%204.1%20-%20Laws%20of%20Badminton.pdf
https://bwfbadminton.com/rankings/2/bwf-world-rankings/6/men-s-singles/2021/29/
https://bwfbadminton.com/rankings/2/bwf-world-rankings/6/men-s-singles/2021/29/
https://www.agrobot.com/e-series
https://www.agrobot.com/e-series

[14] N. Ohi, K. Lassak, R. Watson, J. Strader, Y. Du, C. Yang, G. Hedrick,
J. Nguyen, S. Harper, D. Reynolds, et al., “Design of an autonomous pre-
cision pollination robot,” in 2018 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), IEEE, 2018, pp. 7711–7718.

[15] (2021). Husky robot, [Online]. Available: https://clearpathrobotics.
com/husky-unmanned-ground-vehicle-robot/.

[16] ROS. (Feb. 15, 2021). Moveit! ros package, [Online]. Available: https://
moveit.ros.org/.

[17] B. Arad, J. Balendonck, R. Barth, O. Ben-Shahar, Y. Edan, T. Hellström,
J. Hemming, P. Kurtser, O. Ringdahl, T. Tielen, et al., “Development of a
sweet pepper harvesting robot,” Journal of Field Robotics, vol. 37, no. 6,
pp. 1027–1039, 2020.

[18] B. Arad, P. Kurtser, E. Barnea, B. Harel, Y. Edan, and O. Ben-Shahar,
“Controlled lighting and illumination-independent target detection for real-
time cost-efficient applications. the case study of sweet pepper robotic har-
vesting,” Sensors, vol. 19, no. 6, p. 1390, 2019.

[19] J. Wang, “Ballbot: A low-cost robot for tennis ball retrieval,” Electrical
Engineering and Computer Sciences University of California at Berkeley,
Berkeley, CA, USA, Tech. Rep. No. UCB/EECS-2012-157, 2012.

[20] C. H. Yun, Y.-S. Moon, and N. Y. Ko, “Vision based navigation for golf ball
collecting mobile robot,” in 2013 13th International Conference on Control,
Automation and Systems (ICCAS 2013), IEEE, 2013, pp. 201–203.

[21] S. H. Yeon, D. Kim, G. Ryou, and Y. Sim, “System design for autonomous
table tennis ball collecting robot,” in 2017 17th International Conference
on Control, Automation and Systems (ICCAS), IEEE, 2017, pp. 909–914.

[22] B. Sarah, L. Tianyi, L. Thomas, and M. Patel. (2016). Prosort cc-60. U. of
Cambridge 2016, Ed., [Online]. Available: https://www.ifm.eng.cam.ac.
uk/education/met/a/design/design-show-2015/#ProSort%20CC-60.

[23] J. M. O’Kane, A gentle introduction to ros, 2014.
[24] D. Franklin. (Nov. 6, 2019). Introducing jetson xavier nx, the world’s

smallest ai supercomputer. D. Franklin, Ed., [Online]. Available: https:
/ / developer . nvidia . com / blog / jetson - xavier - nx - the - worlds -
smallest-ai-supercomputer/ (visited on 07/18/2021).

[25] Nvidia. (Jul. 27, 2021). Developer kit technical specifications. Nvidia, Ed.,
[Online]. Available: https : / / www . nvidia . com / en - us / autonomous -
machines/embedded-systems/jetson-xavier-nx/.

[26] V. Braitenberg, Vehicles: Experiments in synthetic psychology. MIT press,
1986.

[27] N. J. Nilsson, “A mobile automaton: An application of artificial intelligence
techniques,” Sri International Menlo Park Ca Artificial Intelligence Center,
Tech. Rep., 1969.

[28] R. Brooks, “A robust layered control system for a mobile robot,” IEEE
journal on robotics and automation, vol. 2, no. 1, pp. 14–23, 1986.

54

https://clearpathrobotics.com/husky-unmanned-ground-vehicle-robot/
https://clearpathrobotics.com/husky-unmanned-ground-vehicle-robot/
https://moveit.ros.org/
https://moveit.ros.org/
https://www.ifm.eng.cam.ac.uk/education/met/a/design/design-show-2015/#ProSort%20CC-60
https://www.ifm.eng.cam.ac.uk/education/met/a/design/design-show-2015/#ProSort%20CC-60
https://developer.nvidia.com/blog/jetson-xavier-nx-the-worlds-smallest-ai-supercomputer/
https://developer.nvidia.com/blog/jetson-xavier-nx-the-worlds-smallest-ai-supercomputer/
https://developer.nvidia.com/blog/jetson-xavier-nx-the-worlds-smallest-ai-supercomputer/
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-xavier-nx/
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-xavier-nx/

[29] E. Gat, R. P. Bonnasso, R. Murphy, et al., “On three-layer architectures,”
Artificial intelligence and mobile robots, vol. 195, p. 210, 1998.

[30] R. J. Firby, “Adaptive execution in complex dynamic worlds,” PhD thesis,
Yale University, 1989.

[31] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86, no. 11,
pp. 2278–2324, 1998.

[32] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature hierarchies
for accurate object detection and semantic segmentation,” in Proceedings
of the IEEE conference on computer vision and pattern recognition, 2014,
pp. 580–587.

[33] N. Koenig and A. Howard, “Design and use paradigms for gazebo, an open-
source multi-robot simulator,” in 2004 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS)(IEEE Cat. No. 04CH37566),
IEEE, vol. 3, 2004, pp. 2149–2154.

[34] (2020). Gazebo website, [Online]. Available: http : / / gazebosim . org /
tutorials.

[35] M. Sipser, Introduction to the Theory of Computation. Cengage learning,
2012.

[36] R. Balogh and D. Obdržálek, “Using finite state machines in introductory
robotics,” in International Conference on Robotics and Education RiE 2017,
Springer, 2018, pp. 85–91.

[37] M. Labbé and F. Michaud, “Rtab-map as an open-source lidar and visual
simultaneous localization and mapping library for large-scale and long-term
online operation,” Journal of Field Robotics, vol. 36, no. 2, pp. 416–446,
2019.

[38] G. Grisetti, R. Kümmerle, C. Stachniss, and W. Burgard, “A tutorial
on graph-based slam,” IEEE Intelligent Transportation Systems Magazine,
vol. 2, no. 4, pp. 31–43, 2010.

[39] S. I. Nikolenko et al., “Synthetic data for deep learning,” arXiv preprint
arXiv:1909.11512, vol. 3, 2019.

[40] (2021). Sdformat (simulation description format), [Online]. Available: http:
//sdformat.org/.

[41] (Aug. 1, 2021). Collada dae format, [Online]. Available: https://docs.
fileformat.com/3d/dae/.

[42] ROS. (2021). Ros installation, [Online]. Available: http://wiki.ros.org/
melodic/Installation/Ubuntu.

[43] D. Franklin. (2021). Nvidia jetson inference, [Online]. Available: https:
//github.com/dusty-nv/jetson-inference.

[44] T. Fischer, W. Vollprecht, S. Traversaro, S. Yen, C. Herrero, and M. Mil-
ford, “A robostack tutorial: Using the robot operating system alongside the
conda and jupyter data science ecosystems,” IEEE Robotics and Automa-
tion Magazine, 2021. doi: 10.1109/MRA.2021.3128367.

55

http://gazebosim.org/tutorials
http://gazebosim.org/tutorials
http://sdformat.org/
http://sdformat.org/
https://docs.fileformat.com/3d/dae/
https://docs.fileformat.com/3d/dae/
http://wiki.ros.org/melodic/Installation/Ubuntu
http://wiki.ros.org/melodic/Installation/Ubuntu
https://github.com/dusty-nv/jetson-inference
https://github.com/dusty-nv/jetson-inference
https://doi.org/10.1109/MRA.2021.3128367

List of Figures
1.1 Feathered shuttlecock . 4
1.2 Multi-shuttle training. 4

2.1 Yonex feather shuttlecock . 9
2.2 Vortices create drag, from [6] . 10
2.3 Badminton court dimensions . 10
2.4 Picture of Kento Momota from Japan,currently no.1 player in the

world, practicing with former Korean gold olympic medalist, Japan
Head Coach Park Joo-Bong . 11

2.5 Hans-Kristian Vittinghus, no. 20 singles player in the world [7],
responds to the author that even pro players like Rasmus Gemke
(no. 12) lose time in training due to slow shuttle picking technique 12

2.6 Kiva Robot, now Amazon robotics 13
2.7 Roomba vacuum cleaner . 13
2.8 Example of green court . 14
2.9 Example of hardwood court . 14

3.1 Cucumber robot . 16
3.2 Segmented cucumbers . 16
3.3 Agrobot E-Series . 16
3.4 Bounding boxes around recongized strawberries with solid points

representing picking points, from [11] 16
3.5 Creation of picking points, from [11] 17
3.6 Kiwi robot with four arms . 18
3.7 Visual output of network and blob detector 18
3.8 BrambleBee . 18
3.9 Sweet pepper robot . 19
3.10 Closeup of end manipulator . 19
3.11 Autonomous robotic tennis ball boy 20
3.12 Golf ball picking robot from its wide view camera 21
3.13 Table Tennis Ball Collecting Robot 21
3.14 ProSort CC-60 manual picking mechanism. 22
3.15 Shuttlecock Collector Machine . 22
3.16 Shuttlecock Collector / Ballsammler 22

4.1 Nvidia Jetson Nano . 25
4.2 Nvidia Jetson Xavier NX . 25
4.3 Performance comparison of Nvidia jetson cameras, from[24] 26
4.4 ZED stereo camera. 27
4.5 Braitenberg vehicle. 28
4.6 Line follower. 28
4.7 Shakey the robot. 28
4.8 Example of data flow of possible robot in a SPA paradigm. 29
4.9 Three layered architecture according to Firby, from[30]. 29
4.10 Overview of R-CNN architecture. 30
4.11 Partial vs whole view of the world. 31

56

5.1 ROS equation . 32
5.2 Example of possible state machine of the robot. 33
5.3 Survey of ROS compatibile SLAM packages, table from [37]. . . . 34
5.4 Loop closure detection in Rtabmap viewer 35
5.5 Example of different court colors and materials. 36
5.6 Example of synthetic dataset, from [39]. 37
5.7 PincherX 100 Robot Arm by Trossen robotics 39
5.8 3D printed prototype of picking mechanism 39

6.1 Creating dataset manually for object detection. 41
6.2 Shuttlecock detection in Gazebo 41
6.3 Multiple shuttlecocks detected on real badminton court 42
6.4 Neural network bounding box vs. point cloud. Some points inside

bounding box are far behind shuttlecock 43
6.5 Shuttlecock in front of robot, inside Gazebo. 43
6.6 Estimated position of shuttlecock, from RViz 43
6.7 System is in first state, IDLE. 44
6.8 System is in second state, COLLECTING. 45
6.9 Gazebo world. 46
6.10 Contacts (pointed by arrow) detected between shuttle model and

collision element (in Orange). 47
6.11 Long part extending forward . 48
6.12 Side part, with holes for brush . 48
6.13 3D printed prototype of picking mechanism. 48

7.1 Wrong loop closure. 50
7.2 Exported pointcloud from the RTAB-Map, showing points that

should lie on the floor are much lower, as marked by yellow line. . 51

A.1 Kobuki platform . 58
A.2 Nvidia Xavier NX . 59
A.3 ZED camera . 59

57

A. User documentation
This chapter describes hardware of the robot and installation of the software.

We will describe our particular build, since the software is changing and we had
to build packages that are already unmaintained.

In section Software we describe how to setup all necessary software.

A.1 Hardware
In this section we describe what hardware we used for robot base, what

computer we used for running robot control system and other hardware such as
camera and picking mechanism.

A.1.1 Robot base
Kobuki is implementation of Turtlebot 2 by Yuijin Robots1.

Figure A.1: Kobuki platform

A.1.2 Computer
We are using Nvidia Jetson Xavier NX as robot’s computer running all the

software.
1http://kobuki.yujinrobot.com/about2/

58

http://kobuki.yujinrobot.com/about2/

Figure A.2: Nvidia Xavier NX

A.1.3 Camera
We are using ZED stereo camera.

Figure A.3: ZED camera

A.1.4 Shuttle picking mechanism
Picking mechanism is attached to robotic base.

A.2 Software

A.2.1 Jetson Xavier NX
To install Linux operating system with preinstalled Nvidia software,

use steps described in https://developer.nvidia.com/embedded/learn/
get-started-jetson-xavier-nx-devkit

A.2.2 ROS
Install ROS Melodic according to [42]

59

https://developer.nvidia.com/embedded/learn/get-started-jetson-xavier-nx-devkit
https://developer.nvidia.com/embedded/learn/get-started-jetson-xavier-nx-devkit

A.2.3 Jetson - inference
Next we install pretrained neural networks for Nvidia Jetson platform [43]

from 2

sudo apt-get update
sudo apt-get install git cmake libpython3-dev python3-numpy
git clone --recursive https://github.com/dusty-nv/jetson-inference
cd jetson-inference
mkdir build
cd build
cmake ../
make -j$(nproc)
sudo make install
sudo ldconfig

A.2.4 Kobuki base
We have to build Kobuki packages from source for ROS Melodic.

Because official Kobuki release at https://github.com/yujinrobot/kobuki de-
pends on packages that did not work with Melodic, we used script from:
https://github.com/gaunthan/Turtlebot2-On-Melodic
that downloads all dependencies.

Lastly, there was need to downgrade OpenCV on Jetson platform so packages
would succesfully compile.
https://github.com/ros-perception/vision_opencv/issues/329

To test that everything is installed correctly, use:

source ./devel/setup.bash
roslaunch turtlebot_bringup minimal.launch

A.2.5 Other dependencies
RTABmap mapping ROS package:

sudo apt install ros-melodic-rtabmap-ros

ZED stereocamera:
Download ZED SDK for Jetpack 4.5 from https://download.stereolabs.

com/zedsdk/3.5/jp45/jetsons.

cd path/to/download/folder
chmod +x ZED_SDK_Tegra_JP45_v3.5.0.run
./ZED_SDK_Tegra_JP45_v3.5.0.run

PCL library : https://pointclouds.org/downloads/#linux

2https://github.com/dusty-nv/jetson-inference/blob/master/docs/
building-repo-2.md

60

https://github.com/yujinrobot/kobuki
https://github.com/gaunthan/Turtlebot2-On-Melodic
https://github.com/ros-perception/vision_opencv/issues/329
https://download.stereolabs.com/zedsdk/3.5/jp45/jetsons
https://download.stereolabs.com/zedsdk/3.5/jp45/jetsons
https://pointclouds.org/downloads/#linux
https://github.com/dusty-nv/jetson-inference/blob/master/docs/building-repo-2.md
https://github.com/dusty-nv/jetson-inference/blob/master/docs/building-repo-2.md

A.2.6 Source code
Source code is organized as catkin packages, which is hosted at Github. To

download packages use:
cd ~/catkin_ws/src
git clone https://github.com/martinerk0/shuttlebot.git
cd ..

Then use:
catkin_make --only-pkg-with-deps <package_name>

to compile packages. Gazebo plugins in badminton_court directory is not a ROS
package,

A.3 Usage in simulation
To start example world with control system run:

roslaunch shuttlebot_control scenario_01.launch

Then we need to tell RTAB-Map where is the robot.3

rostopic pub -1 /rtabmap/initialpose
geometry_msgs/PoseWithCovarianceStamped '{header: {stamp: now,
frame_id: "map"}, pose: {pose: {position: {x: 0.0, y: 0.0, z: 0.0},
orientation: {x: 0.0, y: 0.0, z: 0.0, w: 1.0}}, covariance: [0.25,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.25, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.06853892326654787]}}'

↪→

↪→

↪→

↪→

↪→

↪→

Then we run control system:
rosrun shuttlebot_control control_02.py

A.4 Usage in reality

A.4.1 Start Kobuki
roslaunch kobuki_node minimal.launch --screen

A.4.2 Map the environment
roslaunch rtabmap_ros demo_turtlebot_mapping.launch
roslaunch rtabmap_ros demo_turtlebot_rviz.launch

Then drive with Kobuki around and try to map the environment.
roslaunch turtlebot_teleop keyboard_teleop.launch

Map will be saved for later use at:
~/.ros

3This is needed for convenience, because RTAB-Map saves map after each run, therefore if
you run move robot then quit, robot would think it is at saved position and you would need to
localize manually.

61

A.4.3 Usage
Launch necessary nodes:

roslaunch shuttlebot_control shuttlebot_reality_working.launch

Launch control system:

rosrun shuttlebot_control control_02.py

A.4.4 Remote operation
To use robot in real world situation, it needs to be operated remotely and

checked upon. To do this, we set up Jetson Xavier to creates access point at
startup to which we can connect with notebook. We can connect by ssh, but to
open more shells and use GUI of the Ubuntu, we can also run vnc4 server on
Xavier and connect this way. Only disadvantage of this approach is that it does
not support OpenGL, so we cannot visualise RViz this way.

To view robot’s output using RViz , we have to run RViz on notebook and
setup ROS networking.

Since we are using Mac, and ROS is not easily compatible with Mac,
we used installation using conda5 environments called Robostack6 [44] where
we used ROS Noetic. Then we set up few environment variables on client such as:

ROS_MASTER_URI=http://10.42.0.1:11311
ROS_HOSTNAME=10.42.0.245

which point to IP address of the robot that acts as ROS master node. These
variables are also needed to be setup on host (robot). To check if everything
works, we can use:

rostopic list

on client computer to see if the topics from robot are accessible through the
network.

Another approach could be for Xavier and notebook join another network,
but since this requires knowing password of the network in advance, and robot
having large throughput of data messages to RViz resulting in latency of data,
we think approach with creating access point on Xavier is better.

4https://www.digitalocean.com/community/tutorials/how-to-install-and-configure-vnc-on-ubuntu-18-04
5https://docs.conda.io/en/latest/
6https://robostack.github.io/GettingStarted.html

62

https://www.digitalocean.com/community/tutorials/how-to-install-and-configure-vnc-on-ubuntu-18-04
https://docs.conda.io/en/latest/
https://robostack.github.io/GettingStarted.html

Attachments
The attachment contains 2 directories. Firstly, directory shuttlebot, which

contains:

• badminton_court, directory containing Gazebo worlds, models, meshes,
Gazebo plugin code and original Blender files

• shuttle_distance_estimation, directory containing
shuttle_distance_estimation package

• shuttlebot_control, directory with shuttlebot_control package

• README.TXT

Lastly, attachment contains directory thesis, which contains PDF document
of this thesis.

63

	Introduction
	Goals of the thesis
	Detection and recognition of shuttles
	Control system
	Map
	Planning
	Movement
	Visualisation
	User Interface

	Structure of the thesis

	Background
	Game of Badminton
	Shuttlecock
	Badminon court

	Training
	Shuttle picking
	Environment

	Related work
	Fruit picking robots
	Cucumber picking robot
	Strawberry picking robot
	Kiwi picking robot

	Plant polination
	Pepper picking robot

	Sport mobile robots
	Tennis ball picking robot
	Golf ball picking robot
	Autonomous Table Tennis Ball Collecting Robot
	Badminton

	Analysis
	Application architecture
	Monolithic application
	Using ROS

	Hardware
	Software
	Control system
	Shuttle recognition
	Mapping
	Planning
	Visualisation
	User interface
	Picking

	Proposed solution
	ROS
	Gazebo
	Preparing the simulation

	Control system
	Mapping and localisation
	Computer vision
	Object recognition
	Training neural network
	Position estimation

	Planning
	Mapping

	Movement and shuttle picking
	Visualization
	RViz

	Shuttlecock picking
	User interface

	Implementation
	Launchfiles
	Training data
	Visual processing
	Visualisation
	Control system
	Gazebo simulation
	Gazebo Plugins
	Sensor plugin for picking shuttlecocks
	World plugin for controlling simulation

	Picking system

	Results
	Evaluation of simulated shuttle picking
	Discussion

	Evaluation of shuttle picking in real world

	Conclusion
	Bibliography
	List of Figures
	Appendix User documentation
	Hardware
	Robot base
	Computer
	Camera
	Shuttle picking mechanism

	Software
	Jetson Xavier NX
	ROS
	Jetson - inference
	Kobuki base
	Other dependencies
	Source code

	Usage in simulation
	Usage in reality
	Start Kobuki
	Map the environment
	Usage
	Remote operation

	Attachments

