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Introduction

This doctoral dissertation consists of three theoretical articles with a common

interest in the creation of interconnections in an economy and the role of these

interconnections in spreading bad shocks. The spread of bad shocks has been

explored in economics literature mainly in the context of contagious bank runs

but the following articles focus on different aspects of economy where the effects

of deterioration of an economy’s characteristics occur.

Interconnections in economies are often necessary for production or they

serve as an insurance tool but they at the same time expose the economy to a

possible spread of damage. The mechanism is very simple. A negative shock

that hits one agent in the economy can spread through interconnections in the

economy, such as financial linkages between banks, supply linkages between

firms, or personal linkages, like marriage, between agents.

In the following models I study optimal creation of interconnections in two

different types of economy and I also study properties of an interconnected

economy in general equilibrium.

In the first article I propose a general equilibrium model of an economy where

firms are connected through supply linkages crucial for their production. I study

the properties of the proposed model and compare it to a benchmark model

without linkages. The model with supply linkages exhibits lower aggregate level

of production but in case of increase of individual fluctuations of firms the

supply linkages help to boost aggregate production, i.e. the production can be

increasing at the margin while it is always decreasing in the benchmark model.

The second and the third article are theoretical matching models. In the

second article I construct a model in which agents search for partners to establish

5



a pair interaction that brings them profit. The agents differ in their probabilities

of exit from the economy. The composition of every pair determines its expected

lifetime and profits the agents have from the interaction. The model allows for

the study of equilibrium properties of the matching market with entry and exit

of agents. Optimal individual decisions of accepting or rejecting each particular

type of match are analyzed. It is shown that for a certain range of parameters

multiple equilibria exits. Social optimality of agents’ decisions is assessed and

it is shown that for a range of parameters the social planner is able to impose

Pareto improving matchings.

The third article is a matching model between firms and workers. Workers do

not differ in their productivity but they differ in their probability of leaving the

labor force. Firms choose whether to accept a match with workers depending

on their type and they also choose whether and when to fire them. A stationary

situation of the economy is considered. It is shown that several types of stable

matching can be a stable stationary equilibrium of the economy depending on

the parameters of the model. Multiplicity of equilibria occurs for some ranges

of parameters. Stable matchings chosen by the agents are shown to be almost

always socially suboptimal. The planner’s solution is never Pareto improving

for the agents.
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Chapter 1

Supply Linkages Creation -

a General Equilibrium

Approach

1.1 Introduction

This paper studies an equilibrium model of an economy where for an exchange

between firms they need to have a specific exchange relationship. In standard

macroeconomic literature the exchange between firms happens through a mar-

ket without any special arrangements. Every period the given firm goes to the

market to find a firm to exchange with, without questioning its identity. Microe-

conomic literature has often a more complicated view on exchange, considering

repeated exchange between two specific firms and all the arrangements that can

exist between them. In his paper Ben-Porath [2] describes it as follows: “Par-

ties to a transaction can establish rules or norms for their exchange relationship,

a common view concerning contingencies, and procedures for settling disputes

that can serve them beyond a single transaction. The cost of negotiating and

establishing these rules will have to be incurred again if the parties change.”

Recently also macroeconomists are not completely satisfied with their simpli-

fied picture of firms’ exchange and have started to consider firms organized in
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networks rather than anonymous markets.

Relationships between firms can, of course, be of very different nature, go-

ing from really tight to really loose financial, commercial or other types of

relationships. These different arrangements are often described as Hybrid Or-

ganizations [16]. Despite the fact that there is a whole literature dedicated to

theory of hybrid forms of firms, due to confidentiality of business data there are

only a few empirical studies dealing with the topic.

In France, in 2003, the Ministry of Economy, Finance and Industry organized

a Survey of inter-firm relations [18]. This survey provides a strong evidence of

inter-firm relations: “In industrial groups 82% of producers are organized in

a system of cooperation among firms.” The survey shows not only that firms

tend to enter industrial relationships, but also that they tend to stay in them. It

shows that 52% of relations of independent industrial firms last for more than 5

years. This number is valid for relationships outside of industrial groups. Inside

the groups it is up to 79% of relationships that last for more than 5 years.

For the United States there exists an empirical study by Lafontaine and

Shaw [14] focused on franchises, one specific form of hybrid organization. They

show on their sample of almost twelve thousands firms that the mean for the

duration of franchising is 9.4 years. Moreover, this paper also clearly shows that

relationships between firms are costly to establish. In this context a franchise

fee needs to be payed to establish the relationship. The mean of franchise fees

for the given sample of firms is 23 300 US dollars.

The evidence above only confirms a generally accepted idea that inter-firm

relations are common and they have often long term character. In this light

the market of firms where each period firms find a new exchange partner does

not seem to be an entirely appropriate model of a real economy. The following

paper proposes a new step from standard economic theory towards a model of

an economy with firms interconnected by long term linkages.

A simple dynamic model of economy with heterogeneous firms building sup-

ply linkages is presented. The linkages are a necessity for one specific type of

exchange in the economy. Building linkages is costly but the linkages can per-

sist over time. Heterogeneity of firms causes that sometimes linkages have to

be newly constructed. The aim of the model is to explore the properties of the
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economy with linkages in a steady state when compared to a standard economy.

Because the aim is to capture purely the effect of building linkages, we assume

a very simple setting with no storage technology available in the economy. This

allows us to study the effect of building linkages isolated because the possibility

of storage would have an impact on the properties the economy exhibits.

Models of economies with interconnected firms have two aspects that are

different from standard markets. The structure of connections allows for the

pooling of the risk as the linkages guarantee a certain stability in supply and

demand of goods. Of course, as building linkages is costly, the number of con-

nections each firms has is limited and therefore the risk of losing supply is not

fully eliminated. On the other hand, connections allow for transmissions of bad

shocks in the economy. If a firm is hit by a bad shock affecting its production

then this can provoke a chain reaction where all the firms connected with the

given firm can suffer a lower or nonexisting supply. This has a direct negative

effect on their production or they can decide to replace the concerned connection

by a new one, which is costly.

The positive effect of risk pooling and chain reactions of negative shocks

on structures of interconnected firms are effects that we can not observe in

standard markets and that is why it is important to see what properties gives

the composition of these two effects compared to the standard market economy.

In the past economies with inter-firm relations have been discussed from

several angles in the economic literature. A model of buyer-seller networks has

been explored by Kranton and Minehart [13]. Their paper shows solid empirical

motivation for the existence of network structures in several industries. They

ask why these structures arise in real economies. And they answer by showing

that networks alow for the pooling of the risk. On the other hand they also show

that in a non-cooperative environment the networks that arise are not always

socially optimal.

The idea of financial interdependence has been explored by Kiyotaki and

Moore [7]. Their study explores the consequences of a small temporary shock

to the liquidity of firms that are part of a network interconnected by financial

obligations. They conclude that although on an individual level firms are able

to deal with this problem by rescheduling the debt, in aggregate it may lead
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to serious consequences such as a large and persistent fall of production. A

similar idea is explored by the same authors in Kiyotaki and Moore [6]. They

show that the dynamic interaction between credit limits and asset prices is a

strong transmission mechanism by which the shocks can persist, amplify and also

transmit to other sectors of the economy. Small temporary shocks to technology

or to income distribution can have a large effect, create fluctuations in asset

prices and in output of the economy.

The idea of firms interconnected in a network structure has been explored in

a paper by Kakade, Kearns, and Ortiz [10]. Their model is a general equilibrium

one on a fixed network. The network structure implies existence of local prices

that depend on interconnections in the network. The distribution of prices

across the network is an equilibrium result. An important fact to note is that

the network does not evolve over time, it is fixed and agents can not take any

decisions that would change the network’s structure.

In empirical literature the idea of interdependence in an industry has been

used by Elsinger, Lehar, and Summer [4]. They study vulnerability of the

Austrian banking system to a contagion of bankruptcies. Based on Austrian

data they identify the network of credit links in between Austrian banks and

they use a scenario analysis to test for a possible contagion. Their approach is

suitable for testing contagion effects on any type of static network but they do

not introduce any dynamics into the model.

This paper is a first step in modelling of firms’ connections in a dynamic

general equilibrium setting. The novelty of the model is in the endogenous

creation and destruction of supply linkages of firms. Linkages are modelled

explicitly for each firm but connections between firms are not explicit, they

pass through a market, to allow for market clearing as in standard general

equilibrium models.

A possible next step in this line of research is to add fixed costs of production

to the model in the spirit of the models of Hopenhayn[7] and Hopenhayn[8]. This

should allow us to observe endogenous exit of firms in the economy. Considering

one of the models of Hopenhayn as a benchmark we can then compare whether

the endogenous loss of linkages in the proposed model increases or decreases

the fraction of firms that decide to exit the economy. An increase in exits
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would mean that the linkages cause a spread of bad shocks in the economy. A

decrease on the other hand would mean that linkages ensure more stable supply

of intermediary good that would prevent from exits.

1.2 The Economy

Time in the economy is discrete and the horizon is infinite. The economy is

populated by intermediate production firms and final production firms, as well

as by a homogeneous mass of workers. Each of these three groups of agents is of

mass 1. Workers are employed by intermediaries who produce an intermediary

good. The intermediary good serves as an input in the production of the final

producers who produce a consumption good for workers. All the goods are non-

storable. Prices are established competitively and the economy is studied in a

stationary recursive competitive equilibrium.

The seller-buyer relationship between intermediaries and final producers is

different from the standard literature. For every unit of intermediary good sold

there must be a special supply linkage created between intermediaries and final

producers. Building linkages is costly but they persist over time.

In the model the supply linkages are not modelled explicitly, i.e. we do

not have supply linkages between a specific intermediary and a specific final

producer, but for every unit of intermediary good sold a given intermediary firm

must have supply linkages of the same size created, and similarly for the final

producers, for every unit of intermediary good bought a given final producer

must have supply linkages of the same size created. Therefore the linkages are

not directly connecting firm to firm but they are connecting firm to a market.

Building linkages represents communication of special requirements firms have

on the intermediary good. To transmit this requirement to the market is costly,

so there are set-up costs for linkages, but on the other hand, once the cost is

incurred linkages persist over time. Linkages can disappear in two ways, either

by a random shock or they disappear when they are not used. For every amount

of the intermediary good the supply can be done only through linkages of the

same size. When the amount of the supplied intermediary good is smaller than

the size of the linkages the redundant ones disappear. Linkages destroyed can
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be rebuilt at the usual cost.

1.2.1 Workers

There is a unit mass of workers. They supply inelastically labor to intermediary

firms. At the same time they are the owners of the firms therefore their income

consists of the wages obtained for their work as well as profits of the firms.

The proceeds collected in the economy from the costs of link creation are also

divided among workers. The income of workers serves them to buy consumption

good. Workers have no decision to make, they simply spend all their income on

consumption.

1.2.2 Intermediary Firms

Intermediaries are of mass 1. They maximize discounted expected stream of

profits. They use labor n ∈ N = [0, 1] as the only input to their production.

The intermediaries are heterogeneous. Their production is subject to an id-

iosyncratic productivity shock z ∈ Z = [0,∞) that follows a first-order Markov

process, characterized by a transition matrix Q. The production function of

intermediaries is given by f(z, n) = z · nγ , where γ ∈ (0, 1) is the production

parameter. The result of the production is an intermediate good that serves

as input to the production of final producers. The intermediate good is in the

model considered to be a numeraire, therefore its price is normalized to 1. The

competitive wage paid to the labor force is denoted w.

The intermediate good can be sold to the final producers only through supply

linkages, denoted li. Creation of linkages is costly. The cost per unit is denoted

g. When the linkages are not used in the given period they automatically

disappear. This happens at no cost.

The decisions of an intermediary firm in one period is as follows. The firm

enters the period with linkages built in previous periods and it observes its

productivity shock, so the firm’s state is (z, li). Based on the state it decides

how much to produce knowing that for every unit of the intermediary good the

firm produces it needs to have or to build linkages to be able to sell the good.

For the linkages built the firm pays per-unit cost and the linkages persist to
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the next period. The decision on the size of the production is equivalent to

the decision on the size of the workforce employed, because the productivity

shock is already revealed. While deciding on the size of the production the

firm considers not only the size of the present productivity shock but, based on

the matrix characterizing the Markov process, also the expected future shocks.

Because building linkages is costly, even with a high shock in the present period

it is not profitable to invest in an extensive building of linkages if the expected

future shocks are low because the linkages will not be fully used in the next

period and therefore the unused capacity will disappear.

The decision of an intermediary characterized by the productivity shock

z and level of links li, and discounting future by a factor β ∈ (0, 1), can be

formalized in a recursive way as follows

vi(z, li) = max
n

{
z ·nγ − n·w − g ·max{0, z · nγ − li}+

β ·
∑

z′
vi(z′, li

′
)·Q(z′|z))

}

s.t. li
′
= z ·nγ ,

where Q(z′|z) is the conditional probability of the shock z′ in the next period,

given the present shock is z. This probability is given by the transition matrix

Q characterizing the Markov process for the productivity shocks.

As described already above, the linkages with which the firm will start next

period, li
′, are the same as the linkages at the end of the present period, i.e. the

level is equal to the present production that was sold through the linkages.

1.2.3 Final Production Firms

There is a unit mass of final producers. They maximize discounted expected

stream of profits. They use intermediate good i ∈ I = [0,∞) as input to their

production. The production function of intermediaries is non-stochastic and it

is given by f(i) = iα, where α ∈ (0, 1) is the production parameter. The result

of the production is the consumption good. The price of the consumption good

is denoted p.

The intermediate good can be bought from the intermediaries only through

supply linkages, denoted lf . Similarly as for the intermediaries, also for the final
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producers creation of linkages is costly. The cost per unit stays the same, g,

and linkages that are not used disappear at no cost.

Because linkages are the connection between intermediaries and final pro-

ducers the loss of linkages on one side of the market should be reflected on

the other side of the market. The loss of linkages of the final producers is the

implication of the individual fluctuations in the production of intermediaries.

Every individual final producer perceives such a loss of linkages as a shock. In

the model this shock is multiplicative. The fraction lf · (1 − s) represents the

linkages that are lost, while lf · s are the linkages that persist. The evolution of

shocks affecting linkages follows a Markov process.

The decisions of a final production firm in one period is as follows. The

firm enters the period with linkages built in previous periods and it observes

its shock to linkages. Based on these variables it decides how much to produce

knowing that for every unit of the intermediary good that should serve as an

input to its production it needs to have or to build linkages to be able to buy

the good. For the newly built linkages the firm pays per-unit cost. The linkages

at the end of the period, i.e. after purchase, will persist to the next period but

will again be subject to shocks.

The decision of the final producer entering the period with the linkages lf

and being subject to the shock s can be formalized in a recursive way as follows:

vf (lf , s) = max
i

{
p · iα − i− g ·max{0, i− lf ·s}+ β ·

∑

s′
vf (i, s′)·Π(s′|s)

}

,

where the linkages at the beginning of the next period are equal to the linkages

used to buy input in the present period, i.e. lf
′ = i.

1.3 Equilibrium

Because there is no aggregate uncertainty in the model we are able to study

the economy in a stationary recursive competitive equilibrium. For exposition

purposes it is convenient to consider a specific case of the general model, i.e.

to assume particular forms of distributions of shocks. We first start with the
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description of the equilibrium in the general case and afterward we discuss the

specific case of the general model.

1.3.1 General Case

In the general case we do not assume any specific form of the transition matrix

for the productivity shocks of the intermediaries and we assume that the shocks

to linkages of the final producers are idiosyncratic.

Therefore the problem of an intermediary is as follows

vi(z, li) = max
n

{
z ·nγ − n·w − g ·max{0, z ·nγ − li}+β ·

∑

z′
Q(z′|z)·vi(z′, z ·nγ)

}

.

The problem of final producers is as follows

vf (lf , s) = max
i

{
p · iα − i− g ·max{0, i− lf ·s}+ β ·

∑

s′
Π(s′|s)·vf (i, s′)

}

.

In this general case we can not directly solve the optimal closed-form policy

functions of intermediaries and final producers and to get results it’s necessary

to use simulations.

Let us denote the optimal policy function of intermediaries n(z, li). This

policy function describes the optimal labor force employed in the production

depending on the current productivity shock and existing linkages. Let us denote

i(lf , s) the optimal policy function of final producers. This policy describes the

optimal level of input used in the production of the final producers depending

on the existing linkages and shocks. The described policy functions directly

imply the policies for the linkages of both intermediaries and final producers.

li
′
(z, li) = z · (n(z, li))γ

lf
′
(lf , s) = i(lf , s)

On the aggregate level the shocks to linkages are determined in an endoge-

nous way. The shocks in the model serve as a transmission mechanism. When

intermediaries optimally decide to down-size their linkages this should have an

impact on the linkages of the final producers. There is no market mechanism

that would inform the final producers about the loss of linkages and therefore

they perceive this loss as a shock. Because the linkages are not modelled as a
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connection between two specific firms but rather they are the connection of firms

to a market, the distribution of shocks can not be determined by the model, it is

a modelling choice. On the other hand we know exactly what is the individual

as well as aggregate loss of linkages of the intermediaries, which is determined

endogenously, and this loss should hit the final producers. Therefore the ag-

gregate of the final producers’ linkages lost due to shocks is, in equilibrium,

equal to the aggregate of the linkages lost due to the down-sizing decisions of

intermediaries. The distribution and persistence of the shocks are exogenous.

Because the intermediaries as well as the final producers are heterogeneous

we should have a tool to describe this heterogeneity. Let us denote λi and λf

the distributions of intermediaries and final producers. The policy functions

determine the laws of motion for these distributions.

λi′(z′, li
′
) =

∑

(z,li):z·(n(z,li))γ=li′
Q(z′|z) · λi(z, li)

λf ′(lf
′
, s′) =

∑

(lf ,s):i(lf ,s)=lf ′
Π(s′|s) · λf (lf , s)

The stationary recursive competitive equilibrium consists of the value func-

tions vi(z, li), vf (lf , s), policy functions n(z, li), i(lf , s), prices p, w, and prob-

ability measures λi, λf such that

1. given the prices p and w the policy functions solve the optimization prob-

lems of every intermediary and final producer,

2. the probability measures λi and λf are time invariant,

3. the aggregate of linkages of final producers lost in every period is deter-

mined endogenously and it is time invariant, i.e. the shocks s are drawn

from such a distribution that the following aggregate equality holds

∑
z

∑

li

max
{
0, li − li

′
(z, li)

}·λi(z, li) =
∑

lf

∑
s

(1− s) ·lf ·λf (lf , s),

4. the prices p and w are such that markets clear,

market for labor:

1 =
∑

z

∑

li

n(z, li) · λi(z, li),
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market for intermediary good:

∑
z

∑

li

z · (n(z, li))γ · λi(z, li) =
∑

lf

∑
s

i(lf , s) · λf (lf , s),

market for final good:

∑

lf

∑
s

(i(lf , s))α · λf (lf , s) = C,

5. aggregate variables, i.e. intermediate production I, final production F ,

and consumption C, are constant,

I =
∑

z

∑

li

z · (n(z, li))γ · λi(z, li)

F =
∑

lf

∑
s

(i(lf , s))α · λf (lf , s)

C = F,

6. aggregate feasibility holds,

C · p = w + Πi + Πf + CLi + CLf ,

where Πi and Πf are the profits of the intermediaries and the final pro-

ducers, and CLi and CLf are the costs of building linkages paid by the

intermediaries and final producers for which the following holds

Πi =
( ∑

z

∑

li

z · (n(z, li))γ − n(z, li) · w −

g ·max
{

0, z ·(n(z, li))γ − li
})

· λi(z, li)

Πf =
( ∑

lf

∑
s

p · (i(lf , s))α − i(lf , s)−

g ·max
{

0, i(lf , s)− lf ·s
})

· λf (lf , s)

CLi =
( ∑

z

∑

li

g ·max
{

0, z ·(n(z, li))γ − li
})

· λi(z, li)

CLf =
( ∑

lf

∑
s

g ·max
{

0, i(lf , s)− lf ·s
})

· λf (lf , s).
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1.3.2 Specific Example

To make the exposition of the equilibrium easy to follow we take several as-

sumptions that allow us to find an analytical solution of the equilibrium of the

model.

We assume that the productivity shocks of intermediaries can take only two

values, that we will call “high” and “low”. We consider a simple transition

matrix, we assume that all the conditional probabilities for the productivity

shock in the next period, given this period’s shock, are equal to 1/2.

With these simplifying assumptions the problem of every intermediary in

the steady state is the following

vi(z, li) = max
n

{
z ·nγ − n·w − g ·max{0, z ·nγ − li}+β ·

∑

z′

1
2

vi(z′, z ·nγ)
}

,

where z, z′ ∈ {zl, zh}.

For the final producers we assume homogeneity of shocks to linkages. The

probability of the shock is assumed to be one. Out of the steady state the firms

are uncertain about the size of the shock, which is determined endogenously as

a part of the equilibrium.

Since we assume homogeneity of firms with respect to the shock to linkages,

s, and because the size of this shock is endogenously determined in the model,

in a stationary recursive competitive equilibrium this value is not changing and

therefore s loses it’s properties of a state variable.

With these simplifying assumptions the problem of every final producer is

the following

vf (lf ) = max
i

{
p ·iα − i− g ·max{0, i− lf ·s}+ β · vf (i)

}

.

Since problems involving link-building as the one described above are not

standard in economic theory we will discuss the solution to firms’ problems in

detail to get some intuition about their optimal behavior.

Intermediary Firms

The intermediaries are subject to the productivity shocks. These shocks are

multiplicative constants in the optimization problems of the firms, therefore
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we can consider a general solution for a fixed z and only then see what is the

solution when there are two shocks1.

To find the solution we have to consider three possible cases, depending on

the relation between z · nγ and li0.

If z · nγ > li0, then the optimal size of intermediary production, i.e. also

the optimal size of linkages, is li
′
= z

1
1−γ

(
γ(1−g+ β

2 g))

w

) γ
1−γ

. If z · nγ < li0, then

the optimal production is li
′

= z
1

1−γ

(
γ(1+ β

2 g)

w

) γ
1−γ

. The third option is that

z · nγ = li0. For each of the two possible productivity shocks we get this type

of solution. For the sake of simplicity of the exposition in this specific example

we suppose that the size of the two shocks is such that the two policy functions

do not cross, i.e. ll < lh. This assumption guarantees a very simple steady

state distribution of firms. Graphically we represent the described policies in

the following way.
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Figure 1

The levels of l′ in the graphical representation are as follows

1This is possible only because we assume the transition matrix for shocks that guarantees

the same expected future for intermediaries independent of their present shock.
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ll = zl
1

1−γ ·
(

γ · (1− g + β
2 g)

w

) γ
1−γ

ll = zl
1

1−γ ·
(

γ · (1 + β
2 g)

w

) γ
1−γ

lh = zh
1

1−γ ·
(

γ · (1− g + β
2 g)

w

) γ
1−γ

lh = zh
1

1−γ ·
(

γ · (1 + β
2 g)

w

) γ
1−γ

.

The intuition for these results is simple. No matter what is the production

shock, we have two possible types of firms. Those that need to build up their

linkages and those that do not. Because the costs of production in these two

cases are different the solutions to their profit-maximizing dynamic problem are

different too. We obtain a small firm size z
1

1−γ

(
γ(1−g+ β

2 g))

w

) γ
1−γ

, in the plot

denoted l, as a result of the problem of those firms that need to build up their

linkages. We obtain a large firm size z
1

1−γ

(
γ(1+ β

2 g)

w

) γ
1−γ

, on the plot denoted

l, for those that are scaling down their linkages to the maximal size that is

still profitable. Due to the discontinuity of the costs between the firms that

are building up linkages and the firms that are scaling down we obtain a whole

region of firm’s size where they stay inactive, i.e. they take no action with

respect to their initial size of the linkages.

If the policies for the two productivity shocks were crossing it would im-

ply a continuum of types of intermediary firms in the steady state. On the

contrary, in our specific example with policies that do not cross we can show

that in the steady state of the economy there are only two stationary points

zl
1

1−γ

(
γ(1+ β

2 g)

w

) γ
1−γ

and zh
1

1−γ

(
γ(1−g+ β

2 g)

w

) γ
1−γ

.

It is clear that no matter what the initial conditions in the economy are,

after the first period the agents with the low productivity shock will have the

size of linkages belonging to the interval [ll, ll], and similarly, the agents with

the high shock the size belonging to the interval [lh, lh]. Because we consider

the economy in the steady state and because there is non-zero probability of

switch between the high and the low shock we know, that after such a switch

the agents will end-up either in ll or in lh. After that they continue only to
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switch between these two points when the shock changes. These two points are

therefore the only stationary points for the size of linkages.

The two steady state levels of linkages size correspond to two levels of labor

force used in the production. The two levels are as follows

nl =
(

γ · zl · (1 + β
2 g)

w

) 1
1−γ

nh =
(

γ · zh · (1− g + β
2 g)

w

) 1
1−γ

.

Although we have only two steady state levels of the labor force used by the

firms, and therefore only two levels of production, we have three levels of profits.

This is a consequence of the fact that the firms that have the high productivity

shock in the present period, depending on the shock they had in the previous

period, have or do not have to build additional linkages.

The intermediaries that face the low productivity shock never build any

linkages because they were either in the same situation in the previous period,

or they faced the high shock in the previous period and therefore they have

too many linkages built. Therefore these intermediaries make one-period profits

that can be expressed in the following way:

Πil
= zl · nγ

l − nl · w.

On the other hand the profits of the intermediaries that face the high pro-

ductivity shock depend on their shock in the previous period.

The intermediaries that face two subsequent high shocks have no linkages to

build and their profits can be therefore expressed in the following way:

Πihh
= zh · nγ

h − nh · w.

The intermediaries that face the high shock in the present period and had

the low shock in the previous period have to build some links and their profits

can be expressed in the following way:

Πihl
= zh · nγ

h − nh · w − (zh · nγ
h − zl · nγ

l ) · g.
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Final Producers

Final producers are subject to loss of linkages caused by fluctuations in individ-

ual productions of intermediaries.

To make the exposition easy to follow, we first start by solving the final

producers’ problem for the limit case when s = 1 and then for the general case,

which is the case of our interest, s ∈ [0, 1).

When the shock s is equal to 1 this means that the linkages that were built

in the previous period are entirely preserved for the present period. To find the

solution we have to consider three possible cases. If i > lf , then the optimal size

of input, i.e. also the optimal size of linkages, is i = ( p·α
1+g·(1−β) )

1
1−α . If i < lf ,

then the optimal i is i = (p · α)
1

1−α . The third option is that i = lf . This is a

similar type of solution as for the intermediary firms.

Now we consider the case when s ∈ [0, 1), i.e. in every period a fraction of

linkages disappears. Here too there are three cases to be considered. If i > lf ·s,
i.e. when the initial linkages need to be build up, similarly to the case when

s = 1, the optimal solution is i = ( p·α
1+g·(1−β·s) )

1
1−α , denoted islow. This solution

corresponds to the region lf ∈ [a, b] in Figure 2. In the other two cases, because

the shocks to linkages play a role now, the intuition differs from the case when

s = 1. Now in every period a part of linkages disappears so if the firm stays

inactive in building its linkages, at some point in time its size will shrink under

the lower-bound size level established above and the firm will have to build-up

a part of its linkages. This is the case when initially i = lf ·s, which corresponds

to the region lf ∈ [b, e] in Figure 2. Because the linkages are shrinking at some

point lf ·s will fall below the lower bound threshold and the firm will have to

build up the linkages to get to the size islow. The last case to consider is the case

i < lf ·s, in Figure 2 in the region lf ∈ [e,∞), where the firm initially needs to

downsize its linkages. Here, intuitively, firm will not directly downsize to the

size islow. For several periods it will take advantage of the fact that a fraction

of linkages is disappearing in every period. For how many periods the firm will

let it’s linkages disappear without any up-scaling depends on the parameters

of the model and if we denote the number of such periods k then the optimal

solution to the firms size is i = (p·α·(1+β·sα+(β·sα)2+)+...+(β·sα)k−1

1+β·s+(β·s)2+...+(β·s)k−1−g·(β·s)k )
1

1−α , in the

plot denoted ishigh.
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In this case, when s ∈ [0, 1), the only stationary point for the size of links is

the point islow.

The results are plotted in Figure 2.
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Figure 2

In the plot, as s ∈ [0, 1) increases and approaches to 1 the plot that corre-

sponds to the case s ∈ [0, 1) approaches to the one that corresponds to the case

s = 1. But only the case s = 1 implies a whole interval of stationary points

[ilow, ihigh].

In the steady state problem of final producers the loss of part of their linkages

in every period is a fixed and known fraction s ∈ [0, 1). The steady state solution

to the problem of the final producers is therefore as follows:

i =
(

α · p
1 + g · (1− β · s)

) 1
1−α

.

Now that we know what are the solutions to the firms’ problems we can

establish equilibrium prices and aggregate levels in the model.
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Definition of Equilibrium

Because the structure of the productivity shocks to intermediate production is

assumed to be very simple we know exactly what will be the distribution of

intermediary firms in the stationary state. We know that 1/2 firms have high

productivity shocks and 1/2 have low shocks. Therefore, the overall labor force

used by the intermediary firms is the following:

1
2
·
(

γ · zh · (1− g + β
2 g)

w

) 1
1−γ

+
1
2
·
(

γ · zl · (1 + β
2 g)

w

) 1
1−γ

.

At the same time we know that the workers supply the labor inelastically, and

therefore the labor force is equal to 1.

Having both sides of the equation for labor used in the economy we can

compute the price of labor

w = 2γ−1 · γ ·
((

zh · (1− g +
β

2
g)

) 1
1−γ

+
(
zl · (1 +

β

2
g)

) 1
1−γ

)1−γ

.

By similar reasoning we can establish the price of the final good p. We know

that the final producers will use in their production the following amount of the

intermediary good (
α · p

1 + g · (1− β · s)
) 1

1−α

.

At the same time we know that the intermediary goods used by the final produc-

ers in their production must be produced by the intermediaries. The production

of intermediaries is the following:

1
2
· zh · nγ

h +
1
2
· zh · nγ

l .

We know that in the steady state the good produced by intermediaries is

entirely used in the production of final producers. This equality allows us to

compute the price of the final good, p, having in mind that the price of the

intermediary good is normalized to 1.

p=

(
2γ−1· z

1
1−γ

h · (1− g + β
2 g)

γ
1−γ + z

1
1−γ

l · (1 + β
2 g)

γ
1−γ

((
zh · (1− g + β

2 g)
) 1

1−γ

+
(
zl · (1 + β

2 g)
) 1

1−γ

)γ

)1−α

·1 + g · (1− β · s)
α

Now let us turn our attention to the shocks to linkages. The supply linkages

in the economy create a direct connection between intermediaries and final pro-

ducers. If on one side of this connection the intermediary firms optimally decide
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to down-size their production due to the low productivity shock, this should be

reflected on the other side and, in this model, this is done using the shock to

linkages.

More specifically, consider an intermediary that had in the previous period

high productivity but in the present period its productivity is low. Such in-

termediary will have to down-size its production. Because this is done at no

cost there is no mechanism in the economy that would transmit the information

about the down-sizing to the other side of the market, therefore the other side

perceives this downsizing as a shock.

Because we have assumed a specific structure of the productivity shocks we

know that in our economy, in every period, we have a mass of 1/2 of interme-

diaries that are hit by the low productivity shock and we also know that 1/2

of these had the high productivity shock in the previous period. Therefore we

have 1/4 of intermediaries that are downsizing their links in every period.

The aggregate of the linkages lost due to the down-sizing of the production

of some intermediaries is therefore the following:

1
4
·
(
zh · nγ

h − zl · nγ
l

)
.

We know that the aggregate of the linkages lost due to the shocks to linkages

of the final producers is:

(1− s) ·
(

α · p
1 + g · (1− β · s)

) 1
1−α

.

In the steady state the mass of linkages lost on one side of the market should

be equal to the mass lost on the other side which allows us to determine the

expression for the fraction of linkages persisting to another period

s = 1− z
1

1−γ

h · (1− g + β
2 g)

γ
1−γ − z

1
1−γ

l · (1 + β
2 g)

γ
1−γ

2 ·
(

z
1

1−γ

h · (1− g + β
2 g)

γ
1−γ + z

1
1−γ

l · (1 + β
2 g)

γ
1−γ

)

.

In the stationary recursive equilibrium the policy functions, value functions,

prices, and aggregate variables are stable. The policy function of intermediaries

determines the law of motion for their distribution2.
2Note that we have assumed that the transition probabilities are equal to 1

2
for all the

possible transitions between the shocks.
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λ(z′, li
′
) =

∑

(z,li):li′(z,li)=li′

1
2
· λ(z, li)

The stationary recursive competitive equilibrium of the described economy

consist of the value functions vi(z, li), vf (lf ), policy functions n(z, li), i(lf ),

prices p, w, and probability measure λ such that

1. given the prices p and w the policy functions solve the optimization prob-

lems of every intermediary and final producer,

2. the probability measure λ is time invariant,

3. the fraction of linkages of every final producer that persist in every period

is determined endogenously and it is time invariant,

s = 1− z
1

1−γ

h · (1− g + β
2 g)

γ
1−γ − z

1
1−γ

l · (1 + β
2 g)

γ
1−γ

2 ·
(

z
1

1−γ

h · (1− g + β
2 g)

γ
1−γ + z

1
1−γ

l · (1 + β
2 g)

γ
1−γ

)

,

4. the prices p and w are such that markets clear,

market for labor:

1 =
1
2
· nh +

1
2
· nl,

market for intermediary good:

1
2
· zh · nγ

h +
1
2
· zl · nγ

l =
(

α · p
1 + g · (1− β · s)

) 1
1−α

,

market for final good:
(

α · p
1 + g · (1− β · s)

) α
1−α

= C,

5. aggregate variables, i.e. intermediate production I, final production F ,

and consumption C, are constant,

I = 2γ−1 · z
1

1−γ

h · (1− g + β
2 g)

γ
1−γ + z

1
1−γ

l · (1 + β
2 g)

γ
1−γ

((
zh · (1− g + β

2 g)
) 1

1−γ

+
(
zl · (1 + β

2 g)
) 1

1−γ

)γ

F =

(
2γ−1 · z

1
1−γ

h · (1− g + β
2 g)

γ
1−γ + z

1
1−γ

l · (1 + β
2 g)

γ
1−γ

((
zh · (1− g + β

2 g)
) 1

1−γ

+
(
zl · (1 + β

2 g)
) 1

1−γ

)γ

)α

C = F,
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6. aggregate feasibility holds

C · p = w +
1
4
·Πihh

+
1
4
·Πihl

+
1
2
·Πil

+ Πf + CLi + CLf ,

where CLi and CLf are the costs of link building paid by the intermedi-

aries and final producers.

1.4 Results

This chapter discusses in details the results for the specific model introduced

in the previous chapter. Because this link building model is a completely new

type of theoretical model of production, despite the fact that this paper has no

aspirations to calibrate the proposed model, it is still good to make sure that the

relative levels of aggregates and relative prices we obtain in the equilibrium are of

plausible magnitudes. The parameters of the model are fixed to standard values.

The discount factor β = 0.95, the parameter of the intermediary production,

in which the input is labor, γ = 2/3, the parameter of the final production

α = 1/3. The parameters specific for the proposed model we fix as follows:

productivity shocks are zh = 1 and zl = 0.5, the cost of link building g = 0.5,

the same as numeraire, which is the price of the intermediary good.

With these parameters fixed we obtain the following equilibrium results. The

fraction of linkages preserved to the next period s = 0.76, the wage w = 0.46

and the final good price p = 2.70, keeping in mind that the intermediary good

is numeraire in the model. For the aggregates, the labor is by assumption equal

to 1, the intermediary production I = 0.79 and the final production is 0.92.

This means that the model is sustainable in the long term, it does not collapse

and does not explode. Moreover, the results are not particularly sensitive to

changes in parameters, as can be seen in the table provided in the appendix.

1.4.1 Comparison with Benchmark Model

In this section we discuss what are the consequences of building linkages in the

proposed model by comparing it to a benchmark model. We do the comparison
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with the model without linkages. Important to note is the fact that in the

benchmark model, by construction, we do not have any intertemporal variable.

In the proposed model linkages are the only intertemporal element of the model.

For the benchmark model we assume the same characteristics as for the

link-building model. We assume homogeneous workers and homogeneous final

producers. We assume heterogeneous intermediaries characterized in the same

way as in the proposed model. The benchmark model, in mathematical terms,

corresponds to the limit case of the proposed model when the parameter g equals

to zero.

The results of the benchmark model are summarized in the following table.

benchmark model

nh ( zh·γ
w )

1
1−γ

nl ( zl·γ
w )

1
1−γ

w 2γ−1·γ·(z
1

1−γ
h

+z
1

1−γ
l

)1−γ

I (α · p)
1

1−α

p 2(γ−1)(1−α) · (z
1

1−γ

h + z
1

1−γ

l )(1−γ)(1−α) · 1
α

When we plug-in general equilibrium prices the optimal results, in terms of

numeraire, which is the intermediary good, are the following.

benchmark model

nh
2·z

1
1−γ
h

(z
1

1−γ
h

+z
1

1−γ
l

)1−γ

nl
2·z

1
1−γ
l

(z
1

1−γ
h

+z
1

1−γ
l

)1−γ

I 2γ−1 ·(z
1

1−γ

h + z
1

1−γ

l )1−γ

Because the final production is always the same monotone function of the

input, iα, it is enough to compare the proposed model with the benchmark in

terms of the aggregate intermediary production I, for the final production the

same qualitative properties hold, it is only the magnitude that is different.

To compare the models in terms of the intermediary good produced we

consider the ratio of the productions in the two models IB

I , where IB denotes

the intermediary production in the benchmark and I denotes the production

in the proposed model. After a straightforward simplification the ratio is the

following:
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IB

I
=

zh
1

1−γ + zl
1

1−γ

zh
1

1−γ (1− g + β
2 g)

γ
1−γ + zl

1
1−γ (1 + β

2 g)
γ

1−γ

·
((

zh(1− g + β
2 g)

) 1
1−γ +

(
zl(1 + β

2 g)
) 1

1−γ

zh
1

1−γ + zl
1

1−γ

)γ

.

This ratio helps us to determine in which of the two models the intermediary

production is higher. If the ratio is greater than one, then the benchmark pro-

duction is higher, if on the other hand it is lower than one, then building linkages

helps to increase the production over the level of the benchmark production.

To determine whether the ratio is greater than one it is enough to realize

that the benchmark model is a limit of the link-building model, when the cost

of link-building is equal to zero. Therefore, if the function I(g) is monotone we

will be able to compare the two intermediate productions. The derivative of the

intermediate production I with respect to the cost g is the following:

∂I

∂g
=

21+γ · γ ·
((

zh(1− g + β
2 g)

) 1
1−γ +

(
zl(1 + β

2 g)
) 1

1−γ

)−1−γ

· (zhzl)
1

1−γ

(
4 + 4g(−1 + β) + g2β(−2 + β)

) · (−1 + γ)
·

(
(1− g +

β

2
g)

γ
1−γ (1 +

β

2
g)

1
1−γ − (1 +

β

2
g)

γ
1−γ (1− g +

β

2
g)

1
1−γ

)

This derivative is negative for every possible combination of parameters, this

is due to the negative denominator in the fraction above. The negativity can

be seen once we realize that in order to have policy functions that do not cross

parameter g must satisfy the following inequality:

g <
1− (zl/zh)1/γ

1− β
2

(
1− (zl/zh)1/γ

)

From the fact that ∂I/∂g < 0 we conclude that the intermediate production

is a decreasing function of the cost g for all the possible combinations of the

parameters of the model. Therefore we conclude that since the intermediate

production in the benchmark model is equal to I(g = 0) and the intermediate

production in the link-building model is equal to I(g > 0), the ratio IB

I is greater

than one.

We have established that the intermediate production is lower in the link-

building model than in the benchmark model. That is an intuitive result becasue
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in the link-building model marginal costs are higher due to the building and re-

building of links after a bad shock.

Now let us focus on the composition effect between the firms with a low pro-

duction shock and the firms with a high production shock. In both benchmark

as well as in the link-building model we have the same equilibrium fractions of

firms with high and low shock, i.e. one half of the firms have a high shock and

one half have a low shock. Therefore it is not the composition but the size of

the two types of production that makes the difference between the models. We

want to know whether the benchmark production is higher because both the

firms with high productivity as well as the firms with low productivity produce

more or is it just one of the firms’ type that drives the result?

For the benchmark model the equilibrium intermediate productions of the

firms with high productivity shock and the firms with the low productivity shock

are the following:

(il)B =
2γ · zl

1
1−γ

(
zh

1
1−γ + zl

1
1−γ

)γ

(ih)B =
2γ · zh

1
1−γ

(
zh

1
1−γ + zl

1
1−γ

)γ

.

For the model with linkages the equilibrium intermediate production of the

firms with high productivity shock and the firms with the low productivity shock

are the following:

il = 2γ · zl
1

1−γ ·
(

(1 + β
2 g)

1
1−γ

(
zh(1− g + β

2 g)
) 1

1−γ +
(
zl(1 + β

2 g)
) 1

1−γ

)γ

ih = 2γ · zh
1

1−γ ·
(

(1− g + β
2 g)

1
1−γ

(
zh(1− g + β

2 g)
) 1

1−γ +
(
zl(1 + β

2 g)
) 1

1−γ

)γ

.

Using simple algebra we can establish that (il)B < il and (ih)B > ih. The

intuition for these two results is quite simple. The firms that are hit by the

low shock in the model with linkages do not want to destroy too many linkages

because destruction today implies costly reconstruction in the future, once hit

by a high productivity shock. Therefore the firms will try to save as many

linkages as possible because they bring them future value.
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On the other hand, once hit by the high productivity shock the firms in the

model with linkages may want to build up linkages, which is at additional per

unit cost g. This cost decreases their production with respect to the level of the

production in the benchmark model.

We can conclude that the second effect is predominant because in aggregate

the link building model exhibits lower level of intermediary production than the

benchmark model.

The analysis above illustrates negative effect of network structures. In the

economy where linkages are necessary for exchange the fall of production of

part of the intermediaries causes lost of linkages that translates into additional

costs for building new linkages and lower production. So the negative shock to

intermediaries’ production transmits as a lower and more costly production of

the final producers.

From the results established above we can see that the benchmark model

and the model with linkages exhibit different equilibrium levels of production.

It is important to see how much of this difference comes from the differences in

the technology assumed in the two models, i.e. building linkages, and what is

the effect of the general equilibrium, which implies different prices in the two

models.

We therefore consider the benchmark and the model with linkages out of

equilibrium, with the same level of wages, and we obtain the following result:

(IB

I

)
fixed wage

=
zh

1
1−γ + zl

1
1−γ

zh
1

1−γ (1− g + β
2 g)

γ
1−γ + zl

1
1−γ (1 + β

2 g)
γ

1−γ
.

Also with the fixed wages the level of intermediary production in the bench-

mark model is higher than in the link building model. This relative difference

is purely technological. On the other hand if we go back to the result already

established for the relative difference of intermediary productions taking into ac-

count respective general equilibrium prices we will see that the following holds:

(IB

I

)
GE wages

=
(IB

I

)
fixed wage

·
((

zh(1− g + β
2 g)

) 1
1−γ +

(
zl(1 + β

2 g)
) 1

1−γ

zh
1

1−γ + zl
1

1−γ

)γ

.

Therefore we can separate the effect of technology from the effect of the general

equilibrium. As a matter of fact, the effect of general equilibrium is, naturally,
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proportional to the difference in wages:

wB

w
=

(
zh

1
1−γ + zl

1
1−γ

(
zh(1− g + β

2 g)
) 1

1−γ +
(
zl(1 + β

2 g)
) 1

1−γ

)1−γ

.

For the effect of the general equilibrium we conclude that the term belongs

to the interval (0, 1) and depends on all the parameters of the model. Intuitively,

the effect approaches one when the cost of link building g approaches zero.

Because the general equilibrium effect is smaller than 1 it is clear that the

general equilibrium prices help the model with linkages to approach the levels

of production of the benchmark model by diminishing the gap between the

productions under the fixed wages.

1.4.2 Comparative Statics of the Model with Linkages

Now let us discuss the comparative statics of the proposed model with linkages.

In the model there are two parameters that can have a major influence on

the behavior of the model: the cost of creation of linkages g and the relative

difference in productivity shocks, i.e. the ratio zl/zh.

We have already seen in the previous section that the intermediary pro-

duction is a monotone function of the cost g. As long as the ratio zl/zh is

considered, this represents the relative changes in productivity shocks, which

cause fluctuations in output of the intermediaries. It is interesting to see the

sensitivity of the output to a change in the ratio of shocks. We present the

results both for the benchmark model as well as for the model with linkages.

For the benchmark model we obtain the following derivative

∂IB

∂(zl/zh)
= 2γ−1 · zh · (zl/zh)

γ
1−γ

(
1 + (zl/zh)

1
1−γ

)−γ

.

Clearly, the derivative ∂IB

∂(zl/zh) is always positive.
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For the model with linkages the derivative is the following

∂I

∂(zl/zh)
=

2γ−1 ·zh ·(zl/zh)
γ

1−γ

−1 + γ

(
(zl/zh)

1
1−γ (−1 + γ)(1 +

β

2
g)

1+γ
1−γ −

(1 +
β

2
g)

γ
1−γ (1− g +

β

2
g)

1
1−γ + γ(1− g +

β

2
g)

γ
1−γ (1 +

β

2
g)

1
1−γ

)

(
(1− g +

β

2
g)

1
1−γ + (zl/zh)

1
1−γ (1 +

β

2
g)

1
1−γ

)−1−γ

.

Due to the second part of the expression above, the derivative ∂I
∂(zl/zh) can

be both negative as well as positive. That is an important result. It implies that

for a range of parameters an increase in the fluctuations, which is the decrease

of the ratio zl/zh, leads to an increasing additional intermediary production.

This can never be observed in the benchmark model where the derivative of the

intermediary production with respect to the ratio zl/zh is always positive. We

can see from the following plot that the derivative in the link building model

gets negative for a range of parameters where the cost of link building is high

and the ratio of production shocks is small3.
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This property is observed in the model with linkages and not in the bench-

mark as it is caused by the interaction between the technology parameter γ and

the cost of building linkages g, which is not present in the benchmark model.

More specifically, in the benchmark model, when fluctuations increase the pro-

duction of firms with low shock goes down, the production of firms with high
3The plot area is restricted to such g and zl/zh that the policy functions for high and low

productivity shock do not cross and the prices are computable.
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shock goes up and while the overall effect is positive, the marginal effect is

always negative, i.e. the additional production is decreasing with increase in

fluctuations. On the other hand, in the model with linkages, the marginal effect

can be both positive as well as negative, i.e. the additional production can be

both increasing and decreasing with increase in fluctuations. It is because of

the composition of the production of firms with high and low shocks?

In the model with linkages the role of firms with high shock is diminished, as

the shock is always multiplied by the factor 1−g+ β
2 g < 1, while the role of firms

with low shock is amplified because of multiplication by the factor 1 + β
2 g > 1.

These multipliers cause the difference in the composition of the overall effect in

the benchmark model and model with linkages.

From this result we can conclude that in an environment where fluctuations

in production of big magnitude are present and costly building of linkages is

necessary for supply of goods, these linkages are an arrangement that helps to

boost intermediate production when an increase in fluctuations occurs. This

is a clear positive effect that the economy with linkages has compared to the

anonymous market economy.

1.5 Conclusions and Possible Extensions

This paper presents a new type of general equilibrium model in which we model

supply linkages between firms that are often present in real economies. It is

shown that this type of model has properties different from a standard produc-

tion model. The model exhibits both positive as well as negative properties we

expect network structures to have. The aggregate production in the proposed

model is lower than in the benchmark economy. That is a direct consequence

of transmission of bad shocks in the economy through linkages that imply re-

building of linkages, which increases the marginal cost of production. On the

other hand the proposed model has better behavior than the benchmark with

respect to fluctuations in production. In case of increase in fluctuations the

links help to boost aggregate production, which is always marginally decreasing

in the benchmark model.

The model should be further explored in a more general setting without
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any restricting assumptions on shocks, with continuum of types of firms and a

convex cost function for building linkages. Such a model has a more complicated

distribution of firms that can have a significant influence on the aggregates of

the economy. The generalized model is not tractable analytically and therefore

requires simulation of all the results.

It would be also interesting to explore the model with more than two shocks.

In the presence of several, or continuum of, shocks the economy with linkages

should exhibit a certain degree of stability. While in the benchmark model

the output is expanded or shrunken as an immediate response to a shock, in

the model with linkages this structure of the economy creates disincentives to

diminish output once the links are created and also, if the links are not created,

their cost is a disincentive for expansion4.

Another possible extension of the suggested model is to model the supply

structure explicitly and therefore assume a certain network structure of the

economy and possibly allow this structure to dynamically change.

The model can be also enriched in terms of entry and exit of firms. It can

help to explore whether the persistent supply relationships in the economy help

to avoid exits or they, due to a possible chain reaction, help to propagate bad

shocks causing increasing number of exits from the economy.

4These effects are present also in this paper and are visible on the comparison of outputs

of firms with low and high shock in the benchmark model and the presented model, but the

stability should become more obvious in the model with continuum of shock where firms when

hit only by a slightly different shock than in the previous period should be reluctant to change

the level of production.
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1.A Appendix

1.A.1 Sensitivity of the Model w.r.t. Parameters

The following Table summarizes several possible parameterizations of the pro-

posed model with linkages. In the upper part of the table parameters of the

model are fixed. The lower part then present prices and aggregates computed

for the given fixed parameters. The presented parameterizations of the model

differ only in one parameter at a time, the parameter is highlighted in bold font.

As in the model, also in the table the aggregate labor is assumed to be equal

to 1 and the price of the intermediary good is also equal to 1.

β 0.95 0.95 0.95 0.95 0.95 0.95 0.99

α 1/3 2/3 1/3 1/3 1/3 1/3 1/3

γ 2/3 2/3 2/3 2/3 2/3 2/3 2/3

zh 1 1 1 1 1 1 1

zl 0.5 0.5 0.9 0.7 0.5 0.5 0.5

g 0.5 0.5 0.1 0.1 0.3 0.1 0.5

s 0.7603 0.7603 0.9711 0.7953 0.6869 0.6325 0.7582

w 0.4555 0.4555 0.6300 0.5692 0.4879 0.5281 0.4607

p 2.7046 1.3487 2.5479 2.5188 2.6521 2.5078 2.6720

I 0.7875 0.7875 0.9502 0.8738 0.8146 0.8245 0.7884

F 0.9234 0.8527 0.9831 0.9560 0.9339 0.9377 0.9238

As we can concluded from the table, the model is not particularly sensitive

to changes in parameters, and relative prices as well as relative size of aggregates

are of reasonable magnitude.
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Chapter 2

Stable Matchings in an

Economy with Strong and

Weak Agents

2.1 Introduction

This paper describes the properties of the stationary equilibrium of a particu-

lar matching market. Agents in the economy meet at random and they have

possibility to create a match. It is assumed that agents are heterogenous in

their probabilities of leaving the economy, which effectively means destruction

of their match. Probabilities of exit influence lifetime of matches and therefore

profit the matches bring to the agents.

The stationary situation of the economy with exit and entry of agents is

studied. Optimal individual decisions of accepting or rejecting each particu-

lar type of match are analyzed and the social optimality of these decisions is

assessed.

In economic literature the models where markets are modelled as a place

for social contacts between individuals are referred to as search models. Search

models have been used to study the properties of labor markets, money markets
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and also so called marriage markets. The basic model of reference in the labor

market literature is Mortensen and Pissarides [10]. They developed a model

of two-sided matching between vacant jobs and unemployed workers that was

able to explain reasonably well the job creation and job destruction observed

in the United States. Mortensen-Pissarides aggregate matching function was

afterwards widely used in macroeconomic models of job search. Since then the

research moved towards empirically more appealing models that allow on-the-

job search. From this literature the model of matching between employers and

workers by Kiyotaki and Lagos [6] is close in its spirit to the model presented in

this paper. The matching model of Kiyotaki and Lagos helps to explain several

features of labor market like the size and persistence of changes in income of

workers due to job-to-job transitions, the length of job tenures and unemploy-

ment duration.

The matching models have been used also in the money market literature

in order to explain why fiat currency can function as medium of exchange. For

reference see Kiyotaki and Wright [7], [8].

The marriage market literature has its origins in the paper of Gale and

Shapley [5]. They study the equilibrium properties of a particular two-sided

matching market, the marriage market. They assume that every man has pref-

erences over women and every woman has preferences over men and they study

properties of the set of stable matchings in the economy. The “marriage” model

was then extended in many ways, especially by assuming different degrees of

transferability of the utility within pairs (e.g. Burdett and Wright [3]).

An interesting two-sided matching model is proposed also by Burdett and

Coles [1]. They assume that the agents are ex-ante heterogenous, each is charac-

terized by a real number which is in fact the utility of the spouse after they agree

to marry. In this setting the authors are able to observe an equilibrium sorting

of agents into clusters based on the numbers by which they are characterized.

Burdett and Coles focus their attention only on the process of match creation,

i.e. once a match is created the agents leave the market and are replaced by

new agents.

The model presented in this paper also focuses on the process of match

creation. Agents are assumed to be of two ex-ante types - strong agents and
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weak agents. The types differ by their exogenous probabilities of leaving the

market. Since, by assumption, the matched agents do not have an opportunity

to meet other agents, the matches split only due to exogenous reasons, i.e. when

one of the partners exits the economy. The strength of the agents has therefore

a direct impact on the expected lifetime of a match.

Matching enables interaction of agents, which is modelled like a production

process. Proceeds from the production are split between the members of the

pair. Single agents can not produce but they have prospects of being matched

in the future. Optimal behavior of agents imply that a match is created only

when both partners find it profitable, taking into account the outside option

of staying single. Once the match is created, the matched agents do not have

any incentives to walk away because their outside options do not change over

time. Agents’ optimal decisions of creating or rejecting a match are studied in

an environment where agents differ only in their probabilities of exit from the

economy but not in their productivity.

Possible extension of the proposed model are to assume that agents can

search while matched or to allow for interaction of more than two agents. These

extensions may allow the model to be suitable as the model of search on the

labor market.

2.2 The Model

Time in the economy is discrete and the horizon is infinite. The economy is

populated by agents of unit mass. There are two observable types of agents

- strong ones and weak ones. We will refer to these characteristics as ex-ante

types of agents. The mass of the strong agents is A and the mass of the weak

agents is 1−A. The strength of agents is measured by their probability of exit

from the economy. Let w denotes the probability of exit of a weak agent in a

given period and s the probability of exit of a strong agent in a given period

(w > s).

The interaction between agents, modelled like a production process, is hap-

pening in pairs. By assumption a pair of agents produces 2 · π units of goods

which they split. The pair bargains over splitting the proceeds from production.

45



Agents in the economy can be not only matched but also single. Those that

are matched produce every period until one member of the pair exits. The other

member is left single and the exiting one is replaced by a single agent of the

same type, i.e. of the same strength as the exited one. Note that since no new

information is revealed over time, we are focusing on the stationary situation of

the economy, and the agents can not search for a new partner while matched,

the agents do not have any incentives to walk away from the match once it was

formed, i.e. the exits in the economy are only exogenous.

Single agents enter a market of singles. On this market in every period a

fraction m of the singles is randomly proposed matching into pairs. This fraction

is fixed, it is not dependent in any way on the searching behavior of individual

agents in the economy.

The matching offer can come only once per period. Agents individually

choose whether to accept the proposed match or stay single for another period. If

both agents accept the match is created. Agents’ individual decisions determine

the types of possible equilibria. The conditions under which agents accept the

proposed matches are discussed. The analysis is performed with respect to 4

parameters: the fraction of strong agents in the population A, the probability

of being matched when single m, the probability of exit of the weak agents

from the economy w, and the probability of exit of the strong agents from the

economy s.

There can be up to 6 types of agents in each population. Three types of

strong agents: a strong one matched with another strong, denoted ss type; a

strong one matched with a weak one, sw type; and a non-matched strong, so

type; and similarly three types of weak agents: ws type, ww type, and wo type.

We will refer to these characteristics as ex-post types of agents.

2.2.1 The Bargaining Procedure

When two agents meet and have a possibility to create a match, they enter

a bargaining procedure. The bargaining takes into account that the outside

option of agents is to stay single for another period. When the two agents are

of a different strength their values of being single differ. Therefore if they create

46



a match the split of the proceeds from their production will be uneven.

As was already stated, the one-period production of a pair is independent of

the composition of the pair. Pairs differ only in their expected lifetime, which

depends on the composition of the particular pair. Therefore the pairs differ in

their expected future profits.

Agents do not have any decisive power over the production, the only decision

agents face is whether to match with a proposed partner when the matching

situation occurs. Intuitively it is in the interest of both sides to match because

only the pair interaction brings profits to agents. But due to bargaining it can

happen that not every proposed match is accepted. The basic trade-off of the

model is between the expected profit extracted from the particular match and

the expected lifetime of the match1. Based on this trade-off agents may be

willing to reject a certain type of the proposed match. As an example, consider

the case when the probability of matching in each period is relatively high (m

is high), the fraction of weak agents in the economy is high (A is small), and

the difference between the strength of weak and strong agents is big (w − s

is big). Then when two strong agents meet they may consider rejecting the

proposed match because they know that in the next period they have a high

probability to be matched with weak agents and because of the big difference

between the strengths they will be able to extract a lot of profit from the weak

agents through the bargaining procedure.

The bargaining is assumed to be a take-it-or-leave-it offer. When two single

agents meet one of them is randomly chosen to suggest the split of the ex-

pected proceeds from the future production of the pair (each of the agents is

chosen with probability 1
2 ). This agent will offer to his counterpart the smallest

share possible so that the counterpart still accepts the offer, i.e. the profit the

counterpart would have today when taking an outside option of staying single.

The value of the outside option is the discounted value of being single (of the

corresponding type) in the next period (it is discounted by the time factor β

but also by the probability that the agent survives till the next period). But

this value sums up all the future profits of the particular type of agent. The

1Either the agents can gain high one-period profits but the pair has a short life expectancy,

or they have lower one-period profits with high life expectancy.
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proposing agent will offer only the part of this value that corresponds to the

present period2.

This means that, for example, in the case of the match of a strong and a

weak agent when the strong agent is proposing the split, the outside value of his

weak counterpart is β(1−w)vwo, where vwo denotes the value of being wo type

at the beginning of every period. The value is the sum of all expected future

profits of a weak single agent that come from the possible matches in the future.

The exact formula for the value will be stated later on.

The outside option differs from the value vwo because the agent was in the

present period already proposed a match and if he rejects it his profit in the

present period is 0 and the value comes only from the future prospects given

the agent will survive till the next period. The present’s part of the outside

value is (1 − β(1 − w))β(1 − w)vwo
3. The strong agent therefore has to offer

(1 − β(1 − w))β(1 − w)vwo to the weak one and he will take 2π − (1 − β(1 −
w))β(1−w)vwo. This happens with probability 1/2. With the same probability

he will get (1−β(1− s))β(1− s)vso when the weak agent is proposing the split,

and the weak one will take 2π − (1− β(1− s))β(1− s)vso.

Note that when the agents of the same type meet they both have the same

bargaining power and therefore they must split the proceeds of the production

equally, i.e. both agents get exactly π. Also note that the split of profits, as

described above, is in fact a Nash bargaining result.

The bargaining procedure makes agents indifferent between accepting a pro-

posed match and taking the outside option. When computing agents values

of being a certain type the possibilities that the agent is proposing the split

and the agent is accepting the split are taken into account. Since this expected

profit from the bargaining can be either greater or smaller than the outside op-

tion for some parameters, agents will reject the proposed match and for other

parameters they will accept it.

2One-period profit as a flow variable while the value of agents is the corresponding stock

variable.
3(1− β(1−w))β(1−w)vwo(1 + β(1−w) + (β(1−w))2 + (β(1−w))3 + ...) = β(1−w)vwo
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2.2.2 Values and Distributions

Because no searching while matched is allowed the agents have no incentives to

walk away from a match once they have accepted it. Moreover, every period a

particular type of agent faces the same prospects. Consequently, we can express

the value of being a certain type recursively. The values for the six types, under

the assumption that each agent would accept the proposed match, are:

vss = π + β

(
(1− s)2 · vss + (1− s)s · vso

)

vsw = 1/2
(

2π − (1− β(1− w))β(1− w) · vwo + (1− β(1− s))β(1− s) · vso

)
+

β

(
(1− s)(1− w) · vsw + (1− s)w · vso

)

vso = m ·
(

S · vss + W · vsw

)
+ (1−m)β(1− s) · vso

vww = π + β

(
(1− w)2 · vww + (1− w)w · vwo

)

vws = 1/2
(

2π − (1− β(1− s))β(1− s) · vso + (1− β(1− w))β(1− w) · vwo

)
+

β

(
(1− w)(1− s) · vws + (1− w)s · vwo

)

vwo = m ·
(

S · vws + W · vww

)
+ (1−m)β(1− w) · vwo

where we assume that the value of exit is 0, β is a factor by which agents

discount the future.

Under the assumption that the Law of Large Numbers holds, in a matching

situation agents will face a weak or a strong counterpart with probabilities that

are proportional to the fractions of weak and strong agents that are single. The

probabilities, and also the fractions of weak and strong agents in the pool of

single agents, are denoted W and S respectively.

The probability S is equal to

S = dso/(dso + dwo)

and the probability W is equal to

W = dwo/(dso + dwo) = 1− S

where d.. are distribution fractions of agents of indicated types.
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The system of value functions can be rewritten in a matrix form as

V · v = π

where v′ = (vss, vsw, vso, vws, vww, vwo), π′ = (−π,−π, 0,−π,−π, 0) and V

is the matrix implied by the system of equations. The matrix equation can be

analytically solved and we get the value functions dependent only on parameters

of the model.

v = V−1 · π

The distribution of agents across types distr = (dss, dsw, dso, dws, dww, dwo)

evolves in time according to the vector equation

distrt+1 = distrt ·Q.

Q is a transition matrix that describes movement of agents across the states.

We are looking for a stationary distribution distr∗, i.e. distribution that is

stable in time

distr∗ = distr∗ ·Q

Since agents are ex-ante of two strengths we will look for two stationary dis-

tributions, one for each type. Note that the fraction of ws type in the stationary

distribution of weak agents must be the same as the fraction of sw type in the

stationary distribution of strong agents.

Under the assumptions that the Law of Large Numbers holds and every

agent accepts the proposed matching the transition matrices for strong and

weak agents are QS and QW . The interpretation is that an element qij is the

probability that the next period the agent will be of type j given that today he

is of type i.

QS =




(1− s)2 0 (1− s)s + s

0 (1− s)(1− w) (1− s)w + s

mS(1− s)2 mW (1− s)(1− w) (1−m)+mS((1−s)s+s)
+mW ((1−s)w+s)




QW =




(1− w)2 0 (1− w)w + w

0 (1− s)(1− w) (1− w)s + w

mW (1− w)2 mS(1− w)(1− s) (1−m)+mS((1−w)s+w)
+mW ((1−w)w+w)



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The types are ordered ss, sw, so in QS matrix and ww, ws, wo in QW

matrix.

When computing the stationary distributions of weak and strong agents we

have to take into account that dss +dsw +dso = A, and dww +dws +dwo = 1−A

must hold.

It is important to note that S and W are functions of the stationary distri-

bution, therefore the system of equations describing the stationary distribution

is not linear.

2.2.3 Stable Equilibria

This section in detail describes what is understood, in the context of this model,

to be a stable equilibrium, and how different types of equilibria occur.

A set of agents’ matching strategies together with corresponding values form

the stable equilibrium if they constitute a Nash equilibrium and the strategies

are evolutionary stable4. This means that none of the agents has incentives to

change his strategy, given the strategy of the other agents. At the same time

the strategies are resistent to small invasions, i.e. if there exists a fraction ε

of agents that have decided to deviate in their strategy the agents playing the

equilibrium strategy do not find it profitable to join the group of deviants.

In the context of the model there are up to six types of agents in the station-

ary situation of the economy. Fewer types can occur in the stable equilibrium

depending on the strategies of agents. For all the possible strategies we have to

check whether they constitute a Nash equilibrium and then check whether they

are evolutionary stable. It is easy to see that, for example, some trivial Nash

equilibria will not be stable from the evolutionary point of view.

The agents of both weak and strong type have 4 possible strategies5:

1. reject every match proposed

4Only pure strategies are discussed in this paper.
5Agents of the same ex-ante type use the same strategy.
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2. accept only the match with an agent of the same ex-ante type

3. accept only the match with an agent of the opposite ex-ante type

4. accept all the proposed matches

These strategies can lead to several types of matchings. Each of the matchings

can be characterized by the types of agents that exist in the matching. When

respecting the assumptions of the model, the candidates for equilibria are6:

1. the matching consisting of types so, and wo

2. the matching consisting of types ww, so, and wo

3. the matching consisting of types sw, ws, so, and wo

4. the matching consisting of types sw, ws, ww, so, and wo

5. the matching consisting of types ss, so, and wo

6. the matching consisting of types ss, ww, so, and wo

7. the matching consisting of types ss, sw, ws, so, and wo

8. the matching consisting of types ss, sw, ws, ww, so, and wo

There are no other possibilities that can occur. If the assumptions of the model

are respected the single agents must always be present, and if the type sw exists

so must the type ws.

Graphically we can represent the matchings as follows:

6Further on we will refer to the matchings based on the number assigned to them here.
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The system of equations for the values of the types that has been described

in the previous section applies to the matching 8. The rest of the matchings

are less complex. They can be described by systems of equations similar to the

one that applies for matching 8. The systems of equations are simpler because

some of the nonexisting types are not present and the values of these types of

agents can be considered to be zero. Similarly, the transition matrices have to

be adjusted to the fact that some of the types of agents do not exist in matchings

1− 7.

We consider the stationary situations of the above described matchings, i.e.

the situation when the values of the types of agents as well as the distribution

are stationary. A stationary matching is considered to be a stable equilibrium if

it is a Nash equilibrium with strategies that are evolutionary stable. It is easy to

see that from the eight candidates for stable equilibrium matchings matchings

1, 2, and 5, i.e. the matchings that leave the whole populations of weak and/or

strong agents single, are not evolutionary stable. Take as an example matching

2, where all the strong agents are single. Assume there exists a small group of

strong agents that decide to deviate in their strategy and match with a strong

agent if they meet one that is willing to match with them. Then the strategy of

not accepting any match proposed is evolutionary unstable, because it assigns

agents the value of 0, while the strategy of accepting a match with another

strong agent has a positive value implied by the fact that the match, unlike
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single agents, is productive7.

2.2.4 Multiple Stable Equilibria, Pareto Dominance

The theoretical matching model described in the previous sections has 4 param-

eters: m, A, w and s. The goal is to describe how the existence of different

stable equilibria depend on the parameters of the model. Naturally, for a given

combination of the parameters, several stable equilibria can occur, i.e. param-

eters are such, that several combinations of weak and strong agents’ strategies

lead to Nash equilibria that are also evolutionary stable. In this situation the

question of Pareto dominance of one equilibrium over another one occurs. It

is important to notice that the stationary equilibria are never directly compa-

rable because they never consist of the same types of agents. Therefore it is

not enough to compare the value of a certain type of agents in one equilibrium

with the value of the same type of agents in the other equilibrium. A Pareto

dominating equilibrium, in the context of this model, is such that all the values

of a fixed ex-ante type of agent in this equilibrium are higher that the values of

the same ex-ante type in another equilibrium. The condition, though it seems

rather strict, is necessary because the ex-post types of agents as well as their

distribution in the two equilibria are different and therefore one type of agent

in the first equilibrium can become a different type in the other equilibrium8.

2.2.5 Social Optimality

The proposed model allows for the study of social optimality of the equilibria

implied by the agents’ optimal decisions. Assume that in the model there exists

a social planner who’s goal is to maximize the aggregate welfare of the economy.

Assume the social planner has no means how to change the meeting technology

in the economy but he can influence agents’ decisions by imposing rules on which
7The value of match with another strong agent reflects the fact that the match produces

every period until the exit of one of the matched agents, as well as the fact that the probability

of meeting an agent who is deviating is m · S · ε, where ε is the fraction of deviants in the

population of single strong agents S.
8Note that it is enough to do the comparison of the values for the strong and the weak

agents separately as the ex-ante types of agents can not change over time.
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match they have to accept and which match they have to reject. The only way

of dissolution of a match is exit of one of the matched agents from the economy.

The stability of matchings is therefore imposed on the agents. This implies that

the matchings that would be unstable from the point of view of agents can be

chosen as optimal by the social planner.

The task of the social planner is simple. For each combination of parameters

of the model and for each of the matchings 1 - 8 described in section 2.2.3 he

computes the stationary distribution and the values of the types of agents.

Using these the planner determines aggregate welfare Ω, which is defined as a

weighted average of the values of types of agents with the weights that are the

corresponding fractions of the distribution of agents.

Ω = dss · vss + dsw · vsw + dso · vso + dww · vww + dws · vws + dwo · vwo

The agents’ decisions are then, for the given combination of parameters,

considered to be socially optimal if the set of equilibria stable under the given

combination of parameters contains the stationary matching preferred by the

planner.

In cases where the social optimum differs from the optima chosen by agents

the natural question one can ask is whether the planner’s solution is Pareto

improving for the agents.

By the same argument as in the previous section, the matchings are directly

incomparable between each other because in every comparison at least one type

of agents is missing or is redundant. Moreover, the distribution of agents in

each of these matchings is completely different so it is not clear whether the

agent of a certain type in one matching will be of the same type in the other

matching. The only possibility how to make sure that one matching is Pareto

improving when compared with another matching is to make sure that all the

values of types of agents in one matching are higher than all the values in the

other matching.
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2.3 Results

The stationary distributions as well as the values of types of agents in each of

the 8 matchings mentioned in section 2.2.3 can be analytically expressed as the

functions of parameters of the model. The values are homogenous of degree 1

in π.

To solve for the stationary state, first the stationary distribution has to be

obtained. By a simple fixed point argument the stationary distribution exists

and is unique9 for every well defined transition matrix, which is the case of the

transition matrices described in the theoretical section of the paper. Details of

computation of the distribution can be found in Appendix 2.A.1.

After the stationary distribution is obtained the results enter the computa-

tion of the values of types of agents. The analytical solution to the system of

value functions can be obtained but due to their complexity the analysis that

follows is based on the results of a computation of the values for each particular

combination of the parameters of the model. In the computation the profit π

is fixed and is equal to 1. Since the values are homogenous of degree 1 in π

this choice of the numeric value of π is not restrictive. The discount factor is

β = 0.95, which is a standard value. The computation is performed for different

fixed values of A, m, s, and w between zero and one, more precisely for eleven

cases: for every 0.1 point in the interval (0, 1) and for the extreme cases 0.001

and 0.99910

2.3.1 Results of Agents’ Optimal Decisions:

Agents strategies may lead to 8 possible types of matching. For each of the 8

cases we have to check whether the strategies lead to a Nash equilibrium and if

yes then whether they are evolutionary stable.

When agents follow any of the strategies except for the strategy “accept all

the proposed matches” the resulting matching will consist of single agents of
9The theoretical background discussed in detail can be found in Stokey, Lucas, and

Prescott [12].
10Values 0 and 1 for probabilities pose problems in computation of distribution of agents.

Since the model assumes that w > s all the computations take that into account.
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both ex-ante types and at most one type of match for each of the ex-ante types,

i.e. the resulting matching can be 1, 2, 3, 5, or 6, as described in the section

2.2.3. In these matchings the value of being matched is necessarily higher than

the value of being single. The reasoning behind this fact is simple. Matches

are productive, single agents are not. Because for each ex-ante type there does

not exist more than one type of match, the strategic waiting for a better match

can not be profitable. Therefore the value of being matched consists of today’s

profit from production plus the prospects of being matched (in the same type of

match) or being single. The single agents have zero profits in all the subsequent

periods until they become matched, therefore their value is smaller than the

value of the matched agents.

In the cases of matchings 1, 2, and 5 where the whole populations of strong

and/or weak agents are single their values are necessarily equal to 0 because

they are not producing and they have no prospects of being able to produce in

the future.

From the considerations above it follows that for each of the matchings 1,

2, 3, 5, or 6, the values of the matched agents are higher than the values of the

single agents of the same ex-ante type. Therefore the strategies leading to each

of these matchings, the invariant distributions and the values of the agents in

these matching, constitute Nash equilibria. Another straightforward conclusion

is that matchings 1, 2, and 5 are not evolutionary stable. For each of these if

there exists a small group of agents that decide to accept the match with their

own type, they will make profit by playing this deviating strategy11. Therefore

the candidates for stable matchings for each combination of parameters are

matchings 3, 4, 6, 7, and 8. For each of these the evolutionary stability of the

corresponding strategies has to be checked.

If either the population of weak and/or the population of strong agents

plays the strategy of accepting all the matches proposed the strategic rejection

of certain type of match becomes an issue. Therefore, for some combinations

of parameters the matchings resulting from this strategy may not be a Nash

equilibrium. For example, strong agents may find it profitable to reject the

11Value of deviating is positive. The reasoning behind this fact has been discussed at the

end of section 2.2.3
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match with a weak agent in a situation where the population of strong agents

is big and meetings are common, because they have good prospects of quickly

meeting a strong agent with whom they will produce for many more periods,

in the expected terms. Another strategic consideration, when the population

of weak agents is big, may be to wait for a weak agent from whom the strong

agents can extract a lot of profits through the bargaining procedure.
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The results of computations of stable equilibria with all the combinations of

values of the 4 parameters of the model are summarized in Appendix 3.A.1 in

Table 2.3.

To get the intuition behind the results we will focus our attention to one limit

case of the model. We consider that strong agents do not die, i.e. the probability

s is equal to 0. Even with this limit assumption we are able to obtain all the

interesting combinations of stable equilibria that the general model implies.

Moreover, when the probability of meeting a new partner m is low the

matches in the economy are very valuable, therefore the only equilibrium strat-

egy is to accept all the matches proposed, leading to the equilibrium matching

8, which is therefore for a majority of combinations of the parameters the only

matching that forms stable equilibrium. For the higher probability of being

matched multiple stable equilibria occur. It is due to the fact that both match-

ing 3 and matching 6 are Nash equilibria. If the agents do not have incentives

to deviate from these two towards the same equilibrium, then necessarily we

obtain multiple equilibria. We will therefore focus our attention on the cases

when meeting are common, i.e. m is relatively high.
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As we have already concluded, matchings 3 and 6 are always two coexisting

Nash equilibria and they may be excluded from the results only in the cases

when the strategies leading to this equilibria are not stable. The computations

show, that each of the matchings 3, 4, 6, 7 and 8 can be a stable equilibrium for

certain range of parameters. Matching 3 therefore creates multiple equilibrium

with matching 6 and in some cases with matching 8. Matching 4 always coexists

with matching 6. This happens for the range of parameters where matching 4 is

Nash equilibrium. Agents will always deviate from matching 3 towards matching

4. Matching 6 can coexist either with matching 7 or matchings 7 and 4 at the

same time.

When the probability of meeting m is very high, matchings 3 and 6 form

stable equilibria basically for the whole range of probability w. In this range

matchings 4, 7 and often also matching 8 do not form Nash equilibria and

therefore matchings 3 and 6 are necessarily stable. When the probability of

meeting decreases, matching 4 becomes Nash equilibrium, especially for higher

values of probability w. Weak agents will deviate in their strategy from matching

only with strong agents towards the strategy of accepting every match proposed

and therefore matching 3 will not be stable anymore and will be replaced by

matching 4. The reasoning behind this is as follows. When the probability w

increases, keeping other parameters fixed, value vws goes down due to decreased

life expectancy of the couple. This has an impact on the value of being single

vwo, which also goes down and therefore value vww can easily become greater

than vwo, which makes matching 4 a Nash equilibrium. Once 4 is Nash the

agents will always deviate from 3 towards 4.

The threshold for the probability w at which agents deviate from matching

3 towards matching 4 moves closer to one as the fraction of strong agents in the

economy A gets larger. It is because the probability of meeting a weak agent

goes down, which decreases the value of ww pairs and therefore matching 4 is

Nash equilibrium only for higher values of w.

When the probability of meeting a new partner m decreases towards values

m = 0.6 − 0.7, then for probability w close to one not only matchings 4 and 6

are stable equilibria. Matching 7 joins them in the multiple equilibrium. The

high probability w decreases the value of strong agents in mixed pairs vsw, that
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as a consequence decreases the value of singles vso and the value of pairs of

strong agents can therefore easily become greater than the value of being single.

At the same time pairs of weak agents are not particularly attractive, because

the high probability w and relatively low probability of meeting m imply very

low value of pairs ww, in fact lower than the value of staying single, which

makes matching 7 form a stable equilibrium. At the same time the probability

of meeting is still high enough so that weak agents can reject certain matches.

With a further decrease of probability of matching agents have to accept all the

matches proposed and this implies matching 8.

When 7 is stable equilibrium agents always have incentives to deviate from

3 towards 7. Other types of deviations are not very common. That is why

we can observe coexistence of matching 7 either with matching 6, or with both

matching 4 and matching 6.

One more type of coexisting stable equilibria occurs. It is matching 3 with

matching 8. This happens for high fractions of strong agents in the economy

A and low probabilities w. The usual starting point is matchings 3 and 6

that are Nash. Matching 3 is stable because for the low values of w and low

probability to meet a weak agent, there are no incentives to create weak pairs,

therefore matching 4 is not Nash. On the other hand, given this parametrization,

matching 8 also forms Nash equilibrium and agents will always deviate from

matching 6 towards matching 8. This is an implication of the fact that strong

agents may improve their value by exploiting the bargaining procedure is the

sw pair and weak agents improve lifetime of their pair in the ws match. On

the other hand matching 3 is stable with respect to matching 8 as pairs ww are

not present in matching 3 and they are not an improvement for weak agents in

matching 3.

Despite the fact that this analysis of equilibria is provided for a fixed value

of probability of exit of strong agents, similar results can be obtained without

this restrictive assumption. The analysis without any restrictions has been

performed and summary of the equilibria together with their characteristic range

of parameters can be found in Appendix 2.A.2 in Table 2.3. Illustrative plots of

the equilibria showing the change of equilibria with the change of parameters is

provided in Appendix 2.A.3.
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Among the coexisting equilibria two types of Pareto dominance occur but

they are present only for small ranges of parameters. Matching 4 dominates

matching 6, typically for small values of the parameter A, and matching 8

dominates matching 3, typically for the values of A in the middle range.

2.3.2 Results of Planner’s Optimal Decisions:

In the planner’s problem, when studying which are socially optimal matchings,

matchings 3, 4, 7, and 8 can be socially optimal depending on the combination

of parameters. It is important to realize that for a matching to be socially

optimal several factors play a role. The welfare of the economy depends on

both the stationary distribution and the values of types. So, if in the stationary

distribution fraction of one type of agents is high and at the same time the value

of this type is relatively high this can be crucial for the matching to be socially

optimal.

For the planner the split of profits within a pair does not play any role

because the social value of every pair is the same since every pair produces 2π

per period. The planner is therefore concerned only about the expected lifetime

of every type of producing pair. This is precisely the reason why matching 6

can not be optimal for the planner’s problem. In matching 6 the mixed pairs

are not present. The pairs are only of the ss-type or of the ww-type. This is

inefficient from the planner’s point of view because the planner would prefer to

take advantage from the longer expected lifetime of the strong agents and by

matching them with weak agents improve the lifetime of the weak agents’ pairs.

So the planner will first use the strong agents for the mixed pairs and only in

the situation when there are many strong agents he will allow for the “luxury”

of ss-type of pairs. Therefore, if ss-type is present in the matchings imposed

by the planner so must be the mixed types. That is why matching 6 is never

socially optimal.

The ranges of parameters under which the 4 above listed types of matching

are socially optimal are summarized in Table 2.4 in the Appendix. Briefly the

ranges of the parameters can be characterized as follows.

61



The matching 3 is socially optimal typically when meetings are common

(m ≥ 0.7), strong agents are in a minority in the economy (A ≤ 0.5) and strong

agents are very strong (s very low). Under this parametrization the planner

uses strong agents for increasing the lifetime of matches of the weak agents, i.e.

strong agents are matched with weak agents in mixed pairs. Because the strong

agents are very strong and the probability of meeting is high the planner will

forbid ww-type of matches, he will prefer to let the weak agents wait for a strong

partner that will dramatically prolong the expected lifetime of the couple.

For the similar range of parameters as in the previous case, with the differ-

ence that there is even less strong agents in the economy (A ≤ 0.3), the planner

will allow also for ww-type of matches, implying matching 4. Because there are

too few strong agents in the economy to meet a strong counterpart is difficult.

Therefore more profitable than to wait for a strong agent is to allow weak agents

to create short lasting ww-type couples.

Matching 7 is socially optimal when there are many strong agents in the

economy, i.e. when A is large (A ≥ 0.5). Because there are many strong agents

in the economy the planner wants to use them to improve the expected lifetime

of pairs where weak agents are present, i.e. the planner will allow for the mixed

pairs. And as the strong agents are in the majority the planner can also allow

for creation of ss-type of pairs. On the other hand he will forbid ww-type of

pairs in the cases when the meetings are common (m is high). Under such

parametrization the planner prefers to let the weak agents wait for a strong

counterpart rather then to let them create short-lasting ww pairs. In expected

terms, the waiting time for a strong counterpart should be short as meetings

are common and strong agents are in majority in the economy.

Matching 8 is typically socially optimal in the cases when the strong agents

are not too special, i.e. they are either not too strong (s is relatively high) or

they are almost the same as the weak agents (w − s is small). In these cases

the planner has no reason to forbid any type of match. Matching 8 is also

characteristic for the parameterizations with m small, i.e. when meetings of

single agents are rare. Under these circumstances the planner can not afford to

forbid any type of match as the expected waiting time for another match is too

long.
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The equilibria implied by agents’ decisions are now to be compared with the

socially optimal matchings. For each combination of the parameters it should be

assessed whether the stable equilibria chosen by the agents contain the socially

optimal matching. If that is not the case then the agents’ decisions lead to a

socially suboptimal matching. The reason why agents’ decisions may lead to

the socially suboptimal result is simple. Agents by taking optimal individual

decisions end up in the stable equilibrium. The planner, on the other hand,

can implement a matching that is not evolutionary stable or not even a Nash

equilibrium. That means he can, for example, force agents to create matching

where the value of being single is higher than one of the values of being matched.

Of course, the agents would choose to reject such type of match and they would

prefer to stay single. That would lead to a lower fraction of matched agents

which could have in the end a negative impact on the overall welfare of the

economy.

Computations suggest that about 18% of agents’ choices under all possible

parameterizations are not socially optimal. The types of socially suboptimal

choices the agents make are briefly summarized in Table 2.1. The table shows

all possible types of suboptimal choices that have been obtained in the numeric

computations. The most common socially suboptimal choices of the agents are

the multiple equilibrium of matchings 3 and 6, and the multiple equilibrium

of matchings 4 and 6. In both cases the planner’s choice is typically matching

8, though for small ranges of parameters it can be also other matchings, as

summarized in Table 2.1.

In some of the cases of agents’ socially suboptimal decisions the planner can

achieve a Pareto improvement by implementing the matching optimal from his

point of view. The Pareto improvement, as already described in the previous

section, is achieved when all the values of types in the improving matching are

higher than the values in the matching chosen by the agents. In this way im-

provement is guaranteed for all the agents as the distribution of agents changes

with changing the type of matching. Note that there are two types of Pareto

improvement that can be considered. First type is the one where the Pareto

improving matching is improvement of all the stable matchings for the given set

of parameters. The other, a weaker version, is such that the socially optimal
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Socially suboptimal equilibria

Agents’ choice Planner’s choice

3

8 4

7

7 8

3

4,6 8

3,8 7

4

3,6 7

8

6,7 8

4,6,7 8

Table 2.1: Socially suboptimal choices of agents

matching is Pareto improving at least one of the stable matchings chosen by the

agents.

The Pareto improvement by the social planner can be achieved rarely, in

approximately 14% of the cases when agents do not behave socially optimally.

In most of the cases the improving matching is matching 8, in minority of the

cases it is matching 7. The Pareto improvement is typically achievable for high

values of the parameter m, and it is briefly summarized in Table 2.2.

Pareto improvement by planner

Agents’ choice Planner’s choice

6 7

6 8

3 8

Table 2.2: Pareto improving matchings

The planner can also achieve the improvement of all the matchings that are
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stable from the agents’ point of view. For a small range of parameters under

which the coexistence of matchings 6 and 3 occurs the planner can achieve a

Pareto improving situation by imposing matching 8.

2.4 Conclusions

The paper studies the stationary situation of the matching market in the econ-

omy where agents differ in their probabilities of exit. In this economy the

agents’ optimal profit maximizing decisions can lead to several types of stable

equilibrium matching. The model produces 5 different types of stable equilib-

ria. Multiple equilibria are possible for certain ranges of parameters. Overall

we observe 7 types of multiple or simple stable equilibria.

The optimal behavior of the agents can be summarized as follows. For the

lower probabilities of meeting a potential partner agents tend to accept every

proposed match. For the higher probabilities of meeting the profit extractions

from the bargaining procedure play a significant role and therefore some of the

proposed matches are rejected. The agents’ optimal decision leads, particularly

for higher probabilities of being matched, to socially suboptimal matchings.

Socially optimal can be 4 of the 5 matchings resulting from the agents’ decisions.

This is an implication of the fact that the social planner does not care about

the division of the profits within pairs.

In approximately 18% of the cases the social planner is able to improve

welfare of the economy by imposing matchings, usually with more types of

matched agents, that are unstable from the point of view of agents. Some of

the planner’s decisions lead to the Pareto improvement for all the agents in the

economy.

The results of this paper suggest that the presence of the social planner in

the organization of matching markets may be beneficial for the overall welfare

of the economy and may have also a Pareto improving effect for all the agents

in the economy.
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2.A Appendix

2.A.1 Results for the Stationary Distribution

The following results for the stationary distribution hold for the case when all

the matches are accepted, i.e. for matching 8.

When solving for the distribution, the system of six equations together with

two constraints, dss + dsw + dso = A and dww + dws + dwo = 1 − A, can be

narrowed down to the system of two quadratic equations with two unknowns

that has two sets of solution. It can be shown that only one of these will give

positive results for all combinations of parameters s, w, m, A. The system of

quadratic equations is:

d 2
so(1−m +

m

2s− s2
) + dsodwo(1−m +

m

s + w − sw
)−Adso −Adwo = 0

d 2
wo(1−m+

m

2w − w2
)+dsodwo(1−m+

m

s + w − sw
)−(1−A)dso−(1−A)dwo = 0.

Then the solution of the system that is plausible, i.e. that gives positive

fractions of dso and dwo, is:

dso =
−xy + y2 − 2Ay2 + 2Axz + (x− y)

√
(1− 2A)2y2 − 4(−1 + A)Axz

2x(−y2 + xz)

dwo = −y2 − 2Ay2 − 2xz + 2Axz + yz + (y − z)
√

(1− 2A)2y2 − 4(−1 + A)Axz

2z(−y2 + xz)

where x, y, z stand for

x = 1−m +
m

2s− s2

y = 1−m +
m

s + w − sw

z = 1−m +
m

2w − w2.

The other four fractions of the stationary distribution can be expressed,

using dso and dwo, like this:

dss = m · d 2
so

dso + dwo
· (1− s)2

2s− s2
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dsw = dws = m · dsodwo

dso + dwo
· (1− s)(1− w)

s + w − sw

dww = m · d 2
wo

dso + dwo
· (1− w)2

2w − w2

In a similar manner the results for all other types of matching, i.e. matchings

3, 4, 6, and 7 can be obtained. As a matter of fact, the same system of quadratic

equations can be used for the computation, only the expressions for x, y, and

z will change. One or two of them will be equal to 1, depending on which

matching we consider.

2.A.2 Summary of the Equilibria

Table 2.3 summarizes the coexisting equilibria implied by agents’ decision and

provides rough intervals for the parameters under which the equilibria occur.

The intervals of parameters are only the estimates done based on the plots done

for 121 combinations of values of the parameters A and m and plotted for the

approximation of a continuous range of the parameters w and s, where w ≥ s.

As stated and explained in section 3.3.1, for each combination of the pa-

rameters one of the matchings 8 and 6 is always stable equilibrium. For the

combinations of parameters where m ≤ 0.7 it is the matching 8, for the extreme

value of m being close to 1 it is matching 6. In between these values the di-

vision of the space of parameters s and w is approximately described by the

line s = max(0.05 + 2.5(m − 0.6) − 0.5Aw, 0). For the values of s higher than

this threshold matching 8 is the stable equilibrium, for the lower values it is

matching 6. Matchings 3, 4 and 7 then can be ordered on the plots from the

left to the right,i.e. matching 3 occurs for the lower values of w, matching 4 for

the middle range and matching 7 for high values of w.

It is important to note that the table summarizing the coexistence of the

equilibria has only an informative character and the inequalities described by the

table do not hold for some exceptional cases of the combination of parameters.

Also, because equilibrium matching 8 forms the stable matching for the majority

of the combinations of parameters it is not described in detail. On the contrary,

all the other cases are described in a great detail and it is implied that the rest

of the combinations of parameters describes matching 8 in case when it is the

only stable equilibrium matching.
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Coexisting Values of the parameters

equilibria A m w, s (s≤w)

7 0.999 0.999 w≥0.6, s≤0.3w-0.03, s≥0.125w+0.075

6, 7 0 - 0.1 0.7 - 0.8 w≥ m+0.1

s∈[0.4·(m-0.7)+0.1-A,0.4·(m-0.7)+0.3-2·A]

4, 6, 7 0.1 - 0.9 0.7 - 0.9 w≥ m+0.1-0.2·A
s∈[0.1+(m-0.7)·3-0.4·A,0.2+(m-0.7)·3-0.4·A]

4, 6 0.001 - 0.5 0.6 - 0.9 w∈[0.1,0,3], s→0 for m=0.6

w≤0.8+A, s≤0.25·w·(1-A) for m=0.7

∀w, s∈[(0.5-A)·w, (0.6-A)·w] for m=0.8

∀w, s∈[0.8·w-A·0.5·w,0.85·w-A·0.5·w] for m=0.9

0.5 - 0.9 0.7 - 0.9 w≥A-0.4, s→0 for m=0.7

w≥A-0.3, s≤0.35·w-(A-0.5)·0.5

s≤0.4-0.35·m-((A-0.5)·0.5)·(1-w) for m=0.8

w≥A-0.2, s≤(1.15-A)·w, s≤1.05-A for m=0.9

3, 6 0.001 - 0.5 0.8 - 0.999 ∀w, s≤(0.6-A)·w for m=0.8

∀w, s≤(0.9-A)·w for m=0.9

∀w, ∀s for m=0.999

0.5 - 0.999 0.7 - 0.999 w∈[0.05, A-0.4], s→0 for m=0.7

w∈[0, A-0.3], s≤(0.9-A)·w for m=0.8

w∈[0, 0.55+(A-0.6)·0.5], s≤(1.15-A)·w for m=0.9

∀w, ∀s for m=0.999

3, 8 0.3 - 0.4 0.6 - 0.9 w∈[0,(m-0.5)·0.5], s .=w

0.6 - 0.999 0.3 - 0.9 w∈[0, 0.5·(A-0.5)+0.4·(m-0.3)], s→0 for m≤0.7

w∈[0, 0.5·(A-0.5)+0.4·(m-0.3)]

s≥((0.9-A)+(m-0.8)·2.5)·w for m≥0.8

8 ∀A 0.001 - 0.9 all the ranges not covered by the previous cases

Table 2.3: Agents’ optimal choice

Table 2.4 summarizes socially optimal matchings and typical parameters for

which they occur. Similarly to the case of agents’ optimal decisions, the in-

tervals of parameters are the estimates done based on the plots done for 121

combinations of values of the parameters A and m and plotted for the approxi-
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mation of a continuous range of the parameters w and s, where w ≥ s. Socially

optimal can be matchings 3, 4, 7, and 8.

Social Values of the parameters

optima A m w, s (s≤w)

3 0.2 0.8-0.999 w∈[0.35-0.5(m-0.8), 0.45+(m-0.8)], s→0

0.3 0.7-0.999 w∈[0.1+6s, 0.3+1.5(m-0.7)-9s], s≤0.1(m-0.6)

0.4 0.5-0.999 w∈(4s, 0.08+0.8(m-0.5)-3s]

s≤0.1(m-0.6) for m≥0.7, s→0 otherwise

0.5 0.999 w∈[0.02, 0.1], s→0

4 0.001 0.7-0.999 ∀w, s≤w[0.5(m-0.7)+0.05]

0.1 0.7 w∈[0.05, 0.45], s→0

0.8-0.999 ∀w, s≤0.5w(m-0.7)

0.2 0.8 w∈[0.1, 0.35], s→0

0.9-0.999 ∀w≥0.05, s≤0.05+w(m-0.9)

except w∈[0.25, 0.55+(m-0.9)], s→0

0.3 0.999 w∈[0.8, 0.95], s→0

7 0.5 0.999 w∈[0.1, 0.25], s≤0.02

0.6 0.8-0.999 w∈[0.05,0.2+0.7(m-0.8)-s], s≤0.01+0.2(m-0.8)

0.7 0.7 w∈[0.05,0.2], s=0.02

0.8-0.999 w∈[0,0.06+0.2(m-0.8)] & s→0

w∈[5s-0.1,0.5m-2.5s+0.05], s∈(0,0.04+0.1(m-0.8)]

0.8 0.6-0.999 w∈[0,0.04+0.4(m-0.6)] & s→0

w∈[2.5s,0.5m-2.5(s-0.02)], s∈(0,0.15m-0.07]

0.9 0.4-0.999 w∈[0,0.4m-0.1] & s→0

0.6-0.999 w∈[0.05+2.5(s-0.02),0.5m+0.1-2.5(s-0.02)]

s∈(0,0.15m-0.07]

0.999 0.4-0.999 w∈[0,m-0.2] & s→0

0.5-0.999 w∈[0.05+2.5(s-0.02),m-5s],s∈(0,0.16m-0.06]

8 0.001 - 0.999 ∀m ranges not covered by the cases 3, 4, and 7

Table 2.4: Planner’s optimal choice
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2.A.3 Plots of Equilibria

This section contains illustrative plots of equilibria implied by individual deci-

sions as well as the social planner’s equilibria. The plots are done for the case

discussed in the paper, i.e. s = 0. The value of parameter A is fixed and the

particular value is stated on each of the plots. The whole range of parameter w

is covered together with higher range of parameter m. The plots show on pur-

pose higher values of parameter m where we can observe many different types

of equilibria with changing values of the parameters w and A.

For each possible combination of parameters the type of equilibrium is com-

puted and then it is plotted in the color reserved for that particular type of

equilibria. The table preceding the plots should help orientation among differ-

ent types of equilibria in both agents’ and planner’s problems.

On the horizontal axis we have parameter w, the vertical axis represents

parameter m.

Different types of equilibria are distinguished by different colors as follows:

Agents’ choice Planner’s choice 

7 

6, 7 

4, 6, 7 

4, 6 

3, 6 

3, 8 

8 

3 

4 

7 

8 
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Equilibria of planner’s problem:
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Chapter 3

Stable Firm-Worker

Matchings in an Economy

with Ageing Workers

3.1 Introduction

This paper is inspired by the research that has been done on equilibrium proper-

ties of two-sided matching markets. Traditionally, the labor market or marriage

market are studied. These markets are considered to be two-sided because

matches are created between agents from two distinct disjoint populations.

Good examples of such populations are firms and workers, men and women.

The match is defined as a long-term relationship of two agents, each coming

from a different population. It is assumed that being in a match is a profitable

activity, and agents maximize their expected future profits. The economy is

studied in a stationary situation when the matching between the two popula-

tions is stable, i.e. no matched individual prefers to be single, and no single

individual, when having an opportunity to match, would choose the match over

the option of staying single.

This paper focuses on a labor market matching. The firms are assumed to

be identical, workers on the other hand are of two types. The types do not
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differ in their productivity but they differ in their probabilities of leaving the

economy. Workers’ probabilities of exit influence the lifetime of matches and

therefore profit from the matches. The proposed model allows for the study of

equilibrium properties of a simple labor market with entry and exit of agents.

Optimal individual decisions of accepting or rejecting each particular type of

match as well as firing decisions of firms are analyzed and social optimality of

these decisions is assessed.

In the past two-sided matching models have been used to address questions

related to labor markets and marriage markets. The two sided matching mod-

els have been widely used to study both macro and microeconomic problems.

Mortensen and Pissarides [10] developed a model of two-sided matching be-

tween vacant jobs and unemployed workers. The model was able to explain

reasonably well job creation and job destruction observed in the United States.

Mortensen-Pissarides aggregate matching function has since then been widely

used in macroeconomic models of job search.

A model of matching between employers and workers by Kiyotaki and La-

gos [6] helped to explain several features of the labor market like the size and

persistence of changes in income of workers due to job-to-job transitions, the

length of job tenures and unemployment duration.

In micro-oriented literature, the discussion on two-sided matchings started

with the “marriage” model of Gale and Shapley [5]. They assumed that every

man has preferences over women and every woman has preferences over men

and they studied properties of the set of stable matchings in the economy. The

marriage model was then extended in many ways, especially by assuming dif-

ferent degrees of transferability of the utility within pairs (e.g. Burdett and

Wright [3]).

An interesting two-sided matching model was proposed by Burdett and

Coles [1]. They assumed that the agents are ex-ante heterogenous, each is

characterized by a real number which is in fact the utility of the spouse after

they agree to marry. In this setting the authors were able to observe an equi-

librium sorting of agents into clusters based on the numbers by which they are

characterized. Burdett and Coles focused their attention only on the process of

76



match creation, i.e. once a match is created the agents leave the market and

are replaced by new agents.

The following model focuses on the process of match creation but allows also

endogenous dissolution of matches. Firms are homogenous in the model. The

workers are heterogenous. They do not differ in their productivity but they

do differ in their probabilities of leaving the workforce. Workers can be young

or old, with the assumption that young with a certain probability become old.

The type of the worker has therefore impact on the expected lifetime of the

worker-firm match.

Matching enables production. Proceeds from the production are split be-

tween the members of the match. Non-matched agents can not produce but

they have prospects of being matched in the future. Optimal behavior of agents

imply that a match is created only when both partners find it profitable, tak-

ing into account the outside option of staying single. Firms, depending on the

parameters of the model, may have incentives to fire their worker when he be-

comes old. Optimal decisions of creating, rejecting and dissolution of a match

are studied and they are compared to the optimal decision of social planner.

3.2 The Model

Time in this economy is discrete and the horizon is infinite. The economy

consists of a mass 1 of firms and a mass 1 of workers. Every firm needs to

employ one worker in order to be able to produce. The proceeds from the

production are split between the firm and the worker.

The characteristics of the agents are as follows. The firms are ex-ante iden-

tical. They are characterized by their probability of bankruptcy, denoted b.

Bankrupted firms are replaced by new firms, characterized by the same proba-

bility of bankruptcy, so that the mass of firms in the economy is kept constant.

The workers are ex-ante of two types - workers with lower probability of exit

from the economy, we will call them young workers, and workers with higher

probability of exit, we will call them old workers. The types do not differ in their

productivity. The young workers are also characterized by their probability of

becoming old. Naturally, the old workers can not become young, they can only
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exit. The workers that exit the economy are replaced by young workers so that

the mass of workers in the economy stays constant.

In mathematical terms, we will assume a simple structure “without mem-

ory”, i.e. probability that a young worker exits labor force is y and that is true

in every period. Probability that he stays in the labor force is 1− y. This case

is further divided into two possibilities. The worker either ages, becomes old,

which happens with probability (1− y)a, or the agent stays young for another

period, which happens with probability (1− y)(1− a). Probability that an old

worker exits the labor force is denoted o, (o > y). Consequently, probability

that an old worker stays in the economy for another period is 1− o.

Workers and firms are matched to pairs at random. Probability of meeting

a partner for match is m and it is the same for the workers and the firms. When

firm meets a worker it chooses whether to accept the worker for the match, in

which case the pair starts to produce, or reject the match and search for a worker

for another period1. Only non-matched firms and workers can be matched, i.e.

there is no “on-the-job” search. The firms can decide to fire the workers that

aged, i.e. became old in the given period2. The dissolutions of pairs happen

also due to exits of firms and workers from the economy. The surviving part of

a dissolved pair becomes again a searching worker or firm and waits for a new

match.

The timing in one period of the economy is as follows. First, the state of the

world is revealed. Bankrupted firms and workers that are out of the labor force

leave the economy and they are replaced by new firms and young workers. Firms,

if they decided to do so, fire the old workers and start to look for young ones. The

firms whose workers exited join the pool of searching firms, the workers whose

firms went bankrupt join the pool of searching workers. A fraction m of the pool

of searching firms at random meets a fraction m of searching workers. In every

1The agents will always accept the match with a firm because being in the match, unlike

being single, brings profit, and because all the firms are the same, i.e. there are no strategic

reasons why not to accept the proposed match. The young agents have no incentives to wait

because their contract will automatically change once they age, as ageing is observable by

firms
2Firms can have incentives for dissolution of their match only when the characteristics of

the worker they employ changes. In other cases they would not create the match at all rather

than split afterwards.
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pair the firm decides whether to match and produce with the proposed worker

or whether to search for another period. Every firm-worker pair produces 2π of

good in every period and these proceeds from production are divided between

the firm and the worker based on the Nash bargaining solution, taking into

account that the outside option for both the firm and the worker is to stay

single and search for another production partner.

In a stationary situation of the economy there are up to three types of firms

and 4 types of workers. The firm can be either matched with a young worker,

or with an old worker or it can be searching. Both young and old workers can

be either matched with a firm of they can be searching. Consequently, we can

have 7 possible types of agents in a stationary equilibrium. Denote fy the firm

that is matched with a young worker, fo the firm that is matched with an old

worker, and fs the firm that is searching for a worker. Similarly, denote yf the

young worker that is matched with a firm, and ys the searching young worker.

The notation of will be further on used for the old worker matched with a firm,

and os will stand for the old searching worker.

3.2.1 The Bargaining Procedure

When a worker and a firm meet they enter a bargaining procedure. The bar-

gaining takes into account that the outside option of both is to stay single for

another period. Since the values of non-matched firms and non-matched work-

ers differ when a firm-worker match is created they split the proceeds of the

production unevenly.

As was already stated, the one-period production of a pair is independent of

the type of worker. Pairs differ only in their expected lifetime, which depends

on the composition of the particular pair. Therefore the pairs differ in their

expected future profits.

Firms do not have any decisive power over the production, the only decision

they face is whether to match with a proposed worker when the matching situ-

ation occurs. Intuitively it is in the interest of both sides to match because only

the pair interaction brings agents profits. But due to bargaining it can happen

that not every proposed match is accepted. The basic trade-off of the model is
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between the expected profit from bargaining and the expected lifetime of the

match. In pairs where firms have much lower probability of exit than workers

the firms gain a lot through bargaining but the expected lifetime of matches is

small, on the other hand if workers have low probability of exit, firms do not

gain much in bargaining but lifetime of matches is long. Based on this trade-off

firms may decide to reject a certain type of worker they meet. For example, in

the situation when the meetings are common (the probability m is high) and

the old workers leave the workforce often (the probability o is high), if the firms

are characterized by a low probability of bankruptcy (b is low) then they have

a lot of bargaining power over the old workers and they extract a lot of profits

from the production. In such a situation the firms may decide to reject matches

with the young workers that would take part of the profits due to their stronger

bargaining position. It is simply more profitable to be matched with old work-

ers whose turnover is higher but because of the high probability of meeting a

new worker when non-matched the firms can be sure to be producing in almost

every period and extracting profits from the bargaining over the production.

Therefore this is the case when the extracting of profits from the old agents

more than offsets the effect of the longer expected lifetime of matches with the

young workers.

The bargaining is assumed to be a take-it-or-leave-it offer. When a firm

meets a worker one of them is randomly chosen to suggest the split of the

expected proceeds from the future production of the pair (each of the agents is

chosen with probability 1
2 ). This agent will offer to his counterpart the smallest

share possible so that the counterpart still accepts the offer, i.e. the profit

the counterpart would have today when taking an outside option of staying

single. The values of the outside options are the discounted values of being

non-matched (of the corresponding agent) in the next period (discounted by

the time factor β but also by the probability that the agent survives till the

next period). But these values sum all the future profits of the particular type

of agent. That is why only present parts of these values are taken into account.

The outside options differ from the values of being non-matched because the

agents are proposed in each period at most one match. If they reject the profit

in the present period is 0 and the value of a particular agent comes only from

80



the future prospects given the agent will survive till the next period. Note that

the split of profits, as described above, is in fact the Nash bargaining result.

3.2.2 Values and Distributions

As already discussed, in the stationary situation of the economy there are up to

7 types of agents. In every period every type of agent faces the same prospects

that is why it is convenient to express their values in a recursive way. The

values of the agents, denoted v.., are expressed as discounted future proceeds

from production. The discount factor β is the same for the workers and the

firms.

In the case when all 7 possible types are present in the stationary state of

the economy the values are:

vfy = 1/2
(

2π − (1− β(1− y)(1− a))β(1− y)(1− a) · vys −

(1− β(1− y)a)β(1− y)a · vos + (1− β(1− b))β(1− b) · vfs

)
+

β

(
(1− y)(1− a)(1− b) · vfy + (1− y)a(1− b) · vfo + y(1− b) · vfs

)

vfo = 1/2
(

2π − (1− β(1− o))β(1− o) · vos + (1− β(1− b))β(1− b) · vfs

)
+

β

(
(1− o)(1− b) · vfo + o(1− b) · vfs

)

vfs = m ·
(

Y · vfy + O · vfo

)
+ (1−m)β(1− b) · vfs

vyf = 1/2
(

2π − (1− β(1− b))β(1− b) · vfs + (1− β(1− y)(1− a)) ·

β(1− y)(1− a) · vys + (1− β(1− y)a)β(1− y)a · vos

)
+

β

(
(1− y)(1− a)(1− b) · vyf + (1− y)(1− a)b · vys +

(1− y)a(1− b) · vof + (1− y)ab · vos

)

vys = m · vyf + (1−m)β
(

(1− y)(1− a) · vys + (1− y)a · vos

)

vof = 1/2
(

2π − (1− β(1− b))β(1− b) · vfs + (1− β(1− o))β(1− o) · vos

)
+

β

(
(1− o)(1− b) · vof + (1− o)b · vos

)
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vos = m · vof + (1−m)β(1− o) · vos

The value of exit is naturally considered to be 0.

Under the assumption that the Law of Large Numbers holds, in a match-

ing situation firms will face a young or an old worker with probabilities that

are proportional to the fractions of young and old unemployed workers. The

probabilities, and also the fractions of young and old workers in the pool of

unemployed workers, are denoted Y and O respectively.

The probabilities Y and O are endogenously determined in the model and

they can be expressed as follows

Y = dys/(dys + dos)

O = dos/(dys + dos) = 1− Y

where d.. are distribution fractions of workers of indicated types.

The system of value functions can be rewritten in a matrix form as

V · v = π

where v′ = (vfy, vfo, vfs, vyf , vys, vof , vos), π′ = (−π,−π, 0,−π, 0,−π, 0)

and V is the matrix implied by the system of equations. The matrix equation

can be analytically solved and we get the value functions dependent only on

parameters of the model.

v = V−1 · π

The distribution of firms and workers across types

distr = (dfy, dfo, dfs, dyf , dys, dof , dos) evolves in time according to the vector

equation

distrt+1 = distrt ·Q

where Q is a transition matrix that describes movement of agents across the

states.

We are looking for a stationary distribution distr∗, i.e. distribution that is

stable in time

distr∗ = distr∗ ·Q.
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Since firms can never become workers and the workers can never become

firms the evolution of these two populations are independent, which means that

we look for two stationary distributions, one for firms and the other one for

workers. On the contrary we can not separate young and old workers since their

fractions are determined endogenously in the model.

Under the assumptions that the Law of Large Numbers holds the transition

matrices for firms and workers are QF and QW . The interpretation is that an

element qij ∈ Q is the probability that the next period the agent will be of type

j given that today he is of type i. The presented matrices are for the situation

where all the proposed matches are accepted.

QF =




(1− b)(1− y)(1− a) (1− b)(1− y)a (1− b)y + b

0 (1− b)(1− o) (1− b)o + b

mY (1− b)(1− y)(1− a) mY (1−b)(1−y)a+
mO(1−b)(1−o)

mY (1−b)y+mO(1−b)o+
(1−m)(1−b)+b




QW=




(1− y)(1− a)(1− b) (1− y)(1− a)b + y (1− y)a(1− b) (1− y)ab

m(1− y)(1− a)(1− b) m(1−y)(1−a)b+
(1−m)(1−y)(1−a)+y

m(1− y)a(1− b) m(1−y)ab+
(1−m)(1−y)a

0 o (1− o)(1− b) (1− o)b

0 o m(1− o)(1− b) m(1−o)b+
(1−m)(1−o)




The types are ordered fy, fo, fs in QF matrix and yf , ys, of , os in QW

matrix.

Because the probabilities Y and O are endogenous and they enter the com-

putation of the stationary distribution of the firms, the stationary distribution

of the workers has to be computed first.

3.2.3 Stable Equilibria

This section in detail describes what is understood, in the context of this model,

to be a stable equilibrium, and how different types of equilibria occur.

A set of agents’ matching strategies together with corresponding values form

a stable equilibrium if they constitute a Nash equilibrium and strategies are

evolutionary stable. This means that none of the agents has incentives to change
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their strategy, given the strategy of the other agents, and at the same time the

strategies are resistent to small invasions, i.e. if there exists a fraction ε of agents

that have decided to deviate in their strategy the agents playing the equilibrium

strategy do not find it profitable to join the group of deviants.

In the context of the model there are up to 7 types of agents in the sta-

tionary situation of the economy. But also fewer types can occur in the stable

equilibrium depending on the strategies of agents. For all the possible strategies

of agents we have to check whether they constitute a Nash equilibrium and then

check whether strategies leading to such equilibrium are evolutionary stable. It

is easy to see that, for example, some trivial Nash equilibria are a result of

strategies not stable from the evolutionary point of view.

The firms have 4 possible strategies3:

1. reject every worker they meet

2. accept only the match with young workers

3. accept only the match with old workers

4. accept match with both types of workers

The workers have 2 possible strategies:

1. reject every firm they meet

2. accept every firm they meet

These strategies can lead to several types of matchings. Each of the match-

ings can be characterized by the types of agents that exist in the matching.

When respecting the assumptions of the model, the candidates for equilibria

are4:

1. the matching consisting of types fs, ys and os

3Only pure strategies of agents are considered in this paper.
4Further on we will refer to the matchings based on the numbers assigned to them here.
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2. the matching consisting of types fs, ys, os, fo, and of

3. the matching consisting of types fs, ys, os, fo, of , fy, and yf

4. the matching consisting of types fs, ys, os, fy, and yf

Despite there are 16 possible combinations of the agents’ strategies, there are

no other than the 4 mentioned matchings that can occur. If the assumptions

of the model are respected, due to the exogenous exits, the non-matched firms

and workers must be always present.

Graphically we can represent the matchings as follows:
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The system of equations for the values of the types that has been described

in the previous section applies to matching 3. The rest of the matchings are less

complex. They can be described by similar systems of equations as is the one

that applies for matching 3. The systems of equations are simpler because some

types of agents that are not present in these matchings and the values of these

types of agents are therefore zero. Similarly the transition matrices have to be

adjusted to the fact that some of the types of agents do not exist in matchings

1, 2 and 4.

We consider the stationary situations of the above described matchings, i.e.

the situation when the values of the types of agents as well as the distribution

are stationary. A stationary matching is considered to be a stable equilibrium if

it is a Nash equilibrium with strategies that are evolutionary stable. It is easy

to see that, from the 4 candidates for stable equilibrium matchings, matching

1, even though it is Nash, results from the strategies that are not evolutionary

stable. It is because all the agents are non-matched and therefore their values are
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necessarily 0. By deviation to any of the strategies where the agents match they

will achieve positive value. Therefore matching 1 is never a stable equilibrium.

Matchings 2 and 4 are always Nash. The reasoning behind this is simple.

The firms in matchings 2 and 4 create only one type of match, i.e. they either

match with young workers or with old workers. Having a worker brings profit

so the value of the matched firm is higher than the value of the unmatched firm,

which only has prospects of being matched in the future. Strategic waiting for

a better match does not make any sense because the match that would come

would be the same as the existing one. Workers, no matter what their strategy

is, can end up only employed or unemployed. Since all the types of employment

are the same, due to the fact that firms are homogenous, the strategic waiting

for a better match can not be profitable and the value of being matched with a

firm is higher than the value of being unemployed. From these considerations we

can conclude that matchings 2 and 4 are always Nash. This is not always true

for matching 3 where the firms’ strategic waiting for a better match can play

a role. Therefore, for matching 3 we should verify for which sets of parameters

the model constitutes Nash equilibrium. After that the evolutionary stability

of the matching strategies has to be verified.
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When we focus on the evolutionary stability of the strategies we can see

that the strategy “reject every firm/worker” is not evolutionary stable neither

for firms nor for workers. These strategies imply the value of firms and workers

equal to zero. The firms and workers can always do better, i.e. have a positive

value, by deviating to any other strategy.

Since the agents have only two strategies one of which is not stable it leaves

them with the strategy of accepting every firm they meet. On the other hand

the firms have three strategies left. As a matter of fact each of them leads to

different type of matching. The strategy “accept only the match with young
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workers” implies matching 4, the strategy “accept only the match with old

workers” implies matching 2, and the strategy “accept match with both types

of workers” leads to matching 3. For these firms strategies the evolutionary

stability has to be verified because they can have incentives to deviate from one

to the remaining two, which would mean a deviation from one type of matching

to another one.

3.2.4 Multiple Stable Equilibria and Pareto Dominance

The theoretical matching model described in the previous sections has 5 param-

eters: m, y, a, o, and b. The goal is to describe how the existence of different

stable equilibria depend on the parameters of the model. Naturally, for a given

combination of the parameters, several stable equilibria can occur, i.e. parame-

ters are such, that several sets of agents’ strategies lead to Nash equilibria that

are also evolutionary stable. In this situation the question of Pareto dominance

of one equilibrium over another one occurs. It is important to notice that the

stationary equilibria are never directly comparable because they never consist

of the same types of agents. Therefore it is not enough to compare the value

of a certain type of agents in one equilibrium with the value of the same type

of agents in the other equilibrium. A Pareto dominating equilibrium, in the

context of this model, is such that all the values of firms and workers in this

equilibrium are higher that the values in another equilibrium. The condition,

though it seems rather strict, is a necessary one because the types of agents as

well as the distribution of agents in the two equilibria are different and there-

fore one type of agent in the first equilibrium can become a different type in the

other equilibrium5.

3.2.5 Social Optimality

The proposed model allows us to study social optimality of the equilibria implied

by the agents’ optimal decisions. Assume that in the model there exists a social

planner who’s goal is to maximize the aggregate welfare of the economy. Assume
5The agents can change their type of match, not their ex-ante type, i.e. it is enough to

compare the values for firms, young worker and old workers separately.
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the social planner has no means how to change the meeting technology in the

economy but he can influence agents’ decisions by imposing rules on what type

of match they have to accept and what type they have to reject. Moreover

he can force the agents to stay in the created matches until their exit. The

stability of matchings is therefore imposed on the agents. This implies that

the matchings that would be unstable from the point of view of agents can be

chosen as optimal by the social planner.

The task of the social planner is simple. For each combination of param-

eters of the model and for each of the matchings 1 - 4 described in section

3.2.3 he computes the stationary distributions and the values of the types of

agents. Using these he determines aggregate welfare Ω, which is defined as a

weighted average of the values of types of agents with the weights that are the

corresponding fractions of the distribution.

Ω = dfy · vfy + dfo · vfo + dfs · vfs + dyf · vyf + dys · vys + dof · vof + dos · vos

The agents’ decisions are then, for the given combination of parameters,

considered to be socially optimal if the set of equilibria stable under the given

combination of parameters contains the stationary matching preferred by the

planner.

In cases where the social optimum differs from the optima chosen by agents

the natural question one can ask is whether the planner’s solution is Pareto

improving for the agents.

By the same argument as in the previous section, the matchings are directly

incomparable among each other because in every comparison at least one type

of agents is missing or is redundant. Moreover, the distribution of agents in each

of these matchings is completely different so it is not clear whether the agent

of a certain type under one matching will be of the same type under the other

matching. The only possibility how to make sure that one matching is Pareto

improving when compared with another matching is to make sure that all the

values of types of agents in one matching are lower than all the values in the

other matching.

A simple conclusion that can be made without any computation is that

matching 4, though it theoretically can be socially optimal, can never be Pareto

improving because in this matching the value of the old workers, because they
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are never matched with firms, is zero. On the other hand the values of the old

workers in matchings 2 and 3 are positive, which follows from the fact that their

probability of being employed is non-zero.

3.3 Results

The stationary distributions as well as the values of types of agents in each of

the 4 matchings mentioned in section 3.2.3 can be analytically expressed as the

functions of parameters of the model. The values are homogenous of degree 1

in π.

Although analytical expressions for value functions and also fractions of dis-

tributions can be obtained the expression are very complex and therefore an-

alytical comparative statics would be tedious. That is why some parts of the

following sections rely on numeric computations for particular combinations of

parameters.

First, the stationary distributions has to be obtained. By a simple fixed

point argument the stationary distributions exist and are unique6 for all well

defined transition matrices, which is the case of the transition matrices described

in the theoretical section of the paper. The stationary distribution of workers

has to be computed first because the fractions of non-matched young and old

workers enter the computation of the stationary distribution of the firms.

Once the stationary distributions are obtained the results enter the compu-

tation of the values of types of agents. The analytical solutions can be obtained

but due to their complexity the analysis that follows is based on the results of a

computation of the values for each particular combination of the parameters of

the model. In the computation the profit π is fixed and is equal to 1. Since the

values are homogenous of degree 1 in π this choice of the numeric value of π is

not restrictive. The discount factor is β = 0.95, which is a standard value. The

computation is performed for different fixed values of m, y, o, a, and b. Since

the model assumes that o > y all the computations take that into account. For

the parameters a, and b only three values are considered: 0.1, 0.5, and 0.9, i.e.

6The theoretical background of stationary distributions discussed in detail can be found in

Stokey, Lucas, and Prescott [12].
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these probabilities are either low, medium or high. The probability of matching

m can take 11 values between zero and one. And the probabilities of exit y and

o take up to 51 values, i.e. the aim is to describe the dependence of the results

on these parameters as if they were continuous variables.

3.3.1 Results of Agents’ Optimal Decisions:

Agents strategies may lead to 4 possible types of equilibria. For each of the 4

cases we have to check whether the strategies lead to a Nash equilibrium and if

yes then whether they are evolutionary stable.

As already discussed in section 3.2.3, matchings 1, 2, and 4 are always Nash

equilibria and the matching 1 is never evolutionary stable.

The computations done for each particular combination of the parameters

of the model show the following. Matching 3 is not a Nash equilibrium in the

cases when the probability of being matched is very high, i.e. the parameter m

is close to one, and the probabilities of exit of workers y and o are low. The

intuition behind this result is simple. Meetings are common, therefore the firms

can afford to strategically reject some matches because it is probable that they

will not wait too long for a new match and therefore will not lose profits from

many periods. Also, since the workers of both types stay in the economy for a

relatively long time the profit lost due to strategic waiting will be compensated

after creation of a match as the match should, in expected terms, produce for

quite a long time.

Each of the matching 2, 3, and 4 is stable equilibrium under a range of

parameters. Multiple stable equilibria occur. Matching 2 coexists for a range

of parameters with matching 3, and for a different range of parameters with

matching 4, we denote these multiple equilibria as (2, 3) and (2, 4). There is a

range of parameters under which none of the matchings is stable. This happens

for the range of parameters where matching 3 is not Nash and agents have always

incentives to deviate from matching 2 to matching 4 and back from matching 4

to matching 2. We denote this unstable situation as situation 0.

The stable equilibria together with the parameters that are characteristic

for them are briefly summarized Table 3.1. A detailed summary is provided in
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the Appendix in Table 3.4.

Stable equilibria Characteristic parameters

2,3 very high m, high a, low b, high y, o

2,4 ∀ a,b,m except very low m, low y, o

2 high m,∀ a,b, very low y, o

3 ∀ a,b,m, medium and high y, o

4 very high m, low a, ∀ b, low y, o

0 very high m, low a, ∀ b, very low y, o

Table 3.1: Stable equilibria

In general we can conclude that for the agents’ decisions the parameter m

plays the most important role. For very low values of m it is stable equilibrium

3 that prevails independently of the values of other parameters of the model.

It is a consequence of the fact that meetings are rare and therefore firms prefer

to take any worker rather than strategically wait. As the probability of being

matched m grows the strategic waiting for a better match may become a prof-

itable strategy because the loss of profits due to the waiting is not substantial.

For the exposition purposes we fix several parameters of the model in order

to discuss the intuition behind results but the full analysis is provided in the

Appendix.

Let us focus on the stationary state of the economy where meetings are

common, i.e. m is high, and young workers rarely die and firms almost never

go bankrupt, i.e. probabilities y and b are very low. In this situation matchings

2 and 4 are stable for lower range of probability o and matching 3 is stable for

high values of probability o. When probability of exit of old workers o is high,

the difference between old and young workers is significant. Both types can

be profitable for firms. Young bring longevity to production pairs, old bring

high one-period profits for firms through the bargaining procedure. Moreover,

replacing workers is relatively easy and therefore firms have no reason not to

take every worker that they meet, which implies matching 3.

For the low probabilities of exit of old workers o the situation is different.

Young and old workers are not very different. Young workers don’t bring signif-
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icant improvement of lifetime of a pair compared to old workers, old workers on

the other hand don’t bring significantly higher profits to firms through bargain-

ing. Depending on which of these two sources of profit weighs more in the value

of firms, the firms will prefer only one type of workers. As it turns out, when

the probability o is close to zero, it is the old workers that firms will choose

to employ, and therefore matching 2 is a stable equilibrium. When probability

o increases, the firms will prefer young workers and they will fire workers once

they age; therefore matching 4 is stable equilibrium. There is a significant range

of parameters where both matchings 2 and 4 are stable. For very high values

of probability of meeting m matchings 2 and 4 become unstable in a sense that

agents have incentives to deviate from matching 2 to matching 4 and then back

to matching 2. It is caused by the fact that values of firms with and without

workers in these two matchings are almost the same, which is a consequence of

the fact that firms almost never go bankrupt and meetings are common. For

firms it is profitable to deviate in their strategy and start to employ the opposite

type of worker than any other firm. The deviation in their strategy brings them

higher value than the values of other firms, but this increased value is only a

consequence of the fact that they have decided to employ the type of workers no

other firm employed, and therefore such a worker was easy to meet. Once all the

firms repeat the deviating strategy their value is driven down by higher scarcity

of unemployed. This reasoning makes firms unstable between two strategies.

Because we have assumed that identical firms use identical strategies and we

considered only pure strategies, under these assumptions we obtain a region of

parameters for which matching 3 is not Nash and matchings 2 and 4 are Nash

but not stable.

Despite the fact that in the explanation above we have focused on a particu-

lar range of parameters the full range has been explored and table summarizing

all the results can be found in the Appendix. Illustrative plots of the equilibria

discussed above can also be found in the Appendix.

In situations of multiple equilibria Pareto dominance of one of the equilibria

never occurs.

92



3.3.2 Results of Planner’s Optimal Decisions:

In the planner’s problem, when studying what is the socially optimal matching

we obtain that three of the 4 possible matchings can be socially optimal. Nat-

urally, matching 1 is excluded from the debate as this matching implies values

zero for all types of agents and therefore is never optimal from the point of view

neither of agents nor the planner.

Interestingly enough we observe that only rarely the stable equilibrium

matching chosen by the agents coincides with the matching chosen by the plan-

ner. While in the case of agents’ choice stable equilibrium 3 is the most common,

in the case of the planner’s choice equilibrium 3 is the rarest choice.

Socially optimal equilibria are never Pareto improving7 for the agents. The

intuition behind this, concerning the equilibrium 4, is obvious. Since in equi-

librium 4 only young agents are working the value of the old agents, which are

non-matched and have no prospects to be matched, is zero. In every other type

of equilibria their value is positive as the implication of the fact that with a

certain probability they can be matched. That’s why the planner’s choice of

equilibrium 4 must be always Pareto inferior to the agents’ choice as at least

the old agents are necessarily better off in any other type of matching.

Another reason why the planner’s choice is Pareto inferior to the agent’s

choice is the following. Agent’s often choose equilibrium 3 where every type of

worker can work. At the same time the planner chooses usually matching 4 or

2, where one type of workers does not work. The case of matching 4 has been

already discussed. For the case of matching 2 a similar argument can be used.

In this matching only the old workers are working. Therefore the value of the

young workers comes from the fact that with some probability they will age and

they will be employed. Of course, the young workers in matching 3 do not wait

and can be employed directly in the given period, moreover their bargaining

power over the splitting of the proceeds from production is higher than the

bargaining power of the old workers, which implies higher one-period profit and

therefore all this sums up to higher value of a young worker in matching 3 than

in matching 2.

7They are not a Pareto improvement of any alternative
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Table 3.2 summarizes the types of socially non-optimal choices the agents

make.

Socially suboptimal equilibria

Agents’ choice Planner’s choice

2,4 3

2 3

4

3 2

4

4 2

3

0 2

4

Table 3.2: Socially suboptimal choices of agents

The planner’s choice of equilibria depends on several factors. The equilib-

rium fractions of agents are the first factor and the values of agents are the

second factor. The planner does not care about division of profits between

members of pairs, because both members of the pair contribute to the econ-

omy’s wealth. The planner on the other hand cares about the lifetime of pairs.

It is also important to realize that the fraction of old agents plays an important

role in establishing social optimum in the economy. This fraction is endogenous

and changes with types of matching and changes in parameters of the model.

The planner chooses equilibrium 2, i.e. the equilibrium with only old workers

employed, as the socially optimal in the cases when the probability of meeting

m is high and typically for the lower range of values of the probability of exit

of the old workers o. Because the probability of exit of young workers is lower

than the probability of exit of old workers, the differences between the workers

are not substantial. Because the workers have low probability of exit their

value whether matched or not is relatively high. Moreover, the young workers

even though they are not working have value implied by the fact that at some

point they will age and therefore will be able to find a firm to work for. All
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these factors together imply that matching 2 with only old workers employed is

socially optimal.

The range of the parameters y and o for which equilibrium 2 is socially opti-

mal gets larger when parameter a increases. The intuition is simple. Parameter

a is in the model responsible for ageing of the young workers. If this parameter

increases it means that the endogenous fraction of the old agents in the economy

increases, which means that the firms meet the old agents even more often than

before.

The planner chooses equilibrium 4 as the social optimum typically when

meetings are rare, i.e. the probability m is low, and the probability of exit y is

in a lower range. The firms find it more profitable to employ a young worker

with whom they will produce for many periods because with an old worker they

would be forced to replace him soon, but the search takes a long time and means

big loss of profits.

Matching 4 is also socially optimal in the cases when the probability of exit of

old workers o is high, independent of the probability of matching m. Naturally

in these cases the matching with young workers brings higher welfare of the

economy because they guarantee long expected lifetime of producing pairs.

Equilibrium 3 is rarely socially optimal. The parameters typical for this

equilibrium are a, b and y low. The range in which this equilibrium is socially

lies between the areas of equilibrium 2 and equilibrium 4.

A brief summary of the socially optimal equilibria is provided in Table 3.3.

Planner’s equilibria Characteristic parameters

2 m high; o, y low

3 m high; a, b, y low

4 m low; y low

y high

o high

Table 3.3: Socially optimal equilibria
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3.4 Final Remarks

In the model of worker-firm matching it is desirable not only to allow for hiring

and firing decisions of the firms but also to allow for job-to-job transitions,

i.e. workers and firms should continue to search even when they are already

matched. In the context of the model presented in this paper, because the firms

are homogenous, the workers never have incentives to leave the existing match.

Therefore if we want to study the job-to job transitions of the workers we have

to assume heterogeneity of the firms. It can be done by extending the proposed

model by assuming 2 or more types of firms.

Another interesting extension of the model is to allow firms to hire more

than one worker but then we are departing from the classical setting of the

two-sided matching models and the analysis may get much more complicated

than in the presented model.

The last extension, bringing more realism into the model, would be to assume

a more realistic structure of ageing, i.e. to assume a Markov process that would

guarantee that young workers age for sure after staying young for a certain

number of periods. This extension brings serious computational complications

to the model. We would have to take into account that there are several types

of young workers depending on their “distance” from the period when they age.

On the other hand Markov probabilities of ageing and of exit would bring a lot

of realism into the model and it would be interesting to see hiring and firing

decisions of firms especially those concerned workers of relatively old age but

not close to exit.

3.5 Conclusions

The paper studies the stationary situation of the matching market in an econ-

omy with firms and workers that are ageing. In this economy the agents’ opti-

mal profit maximizing decisions can lead to several types of stable equilibrium

matching. All theoretically possible stable matchings turn out to be the stable
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equilibrium of the model for a certain range of parameters. Multiple stable equi-

libria occur but within the coexisting equilibria there is no Pareto dominance

of one over the other. There exists a small range of parameters for which none

of the matching is stable.

The optimal behavior of the agents can be summarized as follows. For the

lower probabilities of meeting a potential partner agents tend to accept every

proposed match. For the higher probabilities of meeting the profit extractions

from the bargaining procedure play a significant role and therefore some of the

proposed matches are rejected. There exits a range of parameters where firms

employ only young workers and they fire them once they age, but also a range

of parameters where firms employ only old workers.

The proposed model suggests that the individual profit-maximizing behavior

often leads to the matchings that are suboptimal from the point of view of the

social planner maximizing the general welfare of the economy. This is a direct

implication of the fact that the social planner does not care about the division of

the profits within pairs. Socially optimal matchings are never Pareto improving

for the agents.

The results of this paper suggest that the presence of the social planner in

the organization of matching markets may be beneficial for the overall welfare

of the economy if the planner is able to impose matchings that are not stable

equilibria from the point of view of individual agents.
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3.A Appendix

3.A.1 Summary of the Equilibria

The following table summarizes the multiple as well as unique stable equilibria

implied by agents’ decision and provides approximate intervals for the param-

eters under which the equilibria occur. The intervals of parameters are only

the estimates done based on the plots done for 99 combinations of values of

the parameters a, b, and m and plotted for the approximation of a continuous

range of the parameters o and y, where o ≥ y. When an area of parameters

is described by an inequality it is always understood that the parameters must

satisfy also the conditions that they are from the interval [0, 1]. In the table

below the following notation is used. The arrow ↘ means that the parameter

is going down, while the arrow ↗ means that the parameter is going up. When

talking about parameters y and o, the threshold values are considered.

Coexisting Values of the parameters

equilibria m a b o, y (y≤o)

2,3 0.999 0.5 0.1 ∀ y,o: o≥0.8, y≥0.6, y≤0.75o

0.9 0.1 ∀ y,o: y,o≥0.5, y≤0.7o+0.15

2,4 0.3 0.1, 0.5 ∀ ∀ y,o: y,o≤0.1

0.4 0.1, 0.5 ∀ ∀ y,o: y,o≤0.15

0.5 ∀ ∀ ∀ y,o: o≤0.25, y≤-o+0.25

0.6-0.9 ∀ ∀ ∀ y,o: y≤-o+0.1+0.5(m-0.5)

o∈[0.05,0.3], y≥-o+0.05

y,o↗ with a↗, y,o↘ with b↗
0.999 0.1 0.1 ∀ y,o: o≥0.65, y≤0.5

0.5, 0.9 ∀ y,o: o≥0.65, y≤3o-2, y≤0.8

0.5, 0.9 0.1 ∀ y,o: y≥-o+0.2,y≤0.6

0.5, 0.9 ∀ y,o: y≥-o+0.2, y≤0.9

98



Coexisting Values of the parameters

equilibria m a b o, y (y≤o)

2 0.6 0.1 0.1 ∀ y,o: y,o≤0.05

0.7, 0.8 0.1 ∀ ∀ y,o: o≤0.15+(m-0.7)0.5, o↘ with b↗
y≤-o+0.15+(m-0.7)0.5

0.9 0.1, 0.5 ∀ ∀ y,o: o≤0.1, y≤-o+0.1

0.999 0.1, 0.9 ∀ ∀ y,o: y, o ≤0.05

0.5 ∀ ∀ y,o: o≤0.25, y≤-o+0.25

3 0.001-0.2 ∀ ∀ ∀o , ∀y≤o

0.3 0.1, 0.5 ∀ o≥0.1, ∀y
0.9 ∀ ∀o , ∀y≤o

0.4 0.1, 0.5 ∀ o≥0.15, ∀y
0.9 ∀ ∀o , ∀y≤o

0.5-0.9 ∀ ∀ ∀ y,o: y≥-o+0.1+0.5(m-0.5)

y,o↗ with a↗, y,o↘ with b↗
0.999 ∀ ∀ ∀ y,o: y, o ≥0.5

4 0.9 0.1 0.1 ∀ y,o: o≤0.4, y≥-o+0.3, y≤-o+0.5

0.5 ∀ y,o: y≥-o+0.2, y≤-o+0.7, y≥4o-1.8

0.9 ∀ y,o: y≥-o+0.2, y≤-0.5o+1, y≥o-0.35

0.999 0.1 0.1 ∀ y,o: y≥-o+0.3, y≤0.5, o≤0.65

0.5, 0.9 ∀ y,o: y≥-o+0.3, y≥3o-2, y≤0.8

0 0.9 0.1 0.1 ∀ y,o: y≤-o+0.3, y≥-o+0.1

0.5 ∀ y,o: y≤-o+0.2, y≥-o+0.1

0.999 0.1 ∀ ∀ y,o: y≤-o+0.3, o,y≥ 0.05

Table 3.4: Agents’ optimal choice

3.A.2 Plots of Equilibria

This section contains illustrative plots of stable equilibria implied by individual

decisions as well as the social planner’s equilibria. On each of the plots on the

left hand side we have the plot of agents’ equilibria and on the right hand side

the plot of the planner’s equilibria. The plots are done for fixed values of the
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parameters b = 0.001, and y = 0.001, i.e. firms almost never go bankrupt, young

agents almost never die, and for the whole ranges of the parameters o and m.

The values of probability of ageing a are stated on the plots. For each possible

combination of parameters the type of equilibrium is computed and then it is

plotted in the color reserved for that particular type of equilibria. The table

preceding the plots should help orientation among different types of equilibria

in both agents’ and the planner’s problem.

On the horizontal axis we have the parameter o, the vertical axis represents

the parameter m.

Different types of equilibria are distinguished by different colors as follows:

Agents’ choice Planner’s choice 

2,3 

2,4 

2 

3 

4 

0 

2 

3 

4 
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