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Abstract: Unlike the English language, languages such as German, Dutch, the
Skandinavian languages or Greek form compounds not as multi-word expres-
sions, but by combining the parts of the compound into a new word without any
orthographical separation. This poses problems for a variety of tasks, such as
Statistical Machine Translation or Information Retrieval. Most previous work
on the subject of splitting compounds into their parts, or “decompounding” has
focused on German. In this work, we create a new, simple, unsupervised system
for automatic decompounding for three representative compounding languages:
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Introduction

In the English language, when we want to use a specific meaning of a word, we
can use prepositions such as “of” or “for”: a club for sports, a bottle of water.
Here, the first noun remains the head of the entire constituent, and the second
one is the modifier used for restricting the kind of the first noun (along with other
functions, see Chapter Compounds). In other words, a bottle of water is still a
bottle (but not a water).

Alternatively, the words can be combined without prepositions by merely
using them sequentially. In this case, the modifier is the first noun, and the
second one is the head: a sports club, a water bottle.

In some languages (called compounding languages here) this process of form-
ing compounds results in words that (orthographically) look like proper words
themselves. There are a few examples of these kinds of words in English, too,
but they are lexicalized and largely come from the German influences of English:
A bookshelf is a shelf for books, but a bottleshelf isn’t a shelf for bottles, it’s a
non-word; the correct form would at best be bottle shelf.

In compounding languages sets of nouns can freely be combined into other
nouns. In German, a water bottle is called Wasserflasche (water + bottle), a
shelf for bottles could be called Flaschenregal (bottle + shelf). This process
can be repeated recursively, such that a shelf for water bottles could be called a
Wasserflaschenregal, and so on, leading to famous extreme examples such as Rind-
fleischetikettierungsüberwachungsaufgabenübertragungsgesetz (roughly beef label-
ing supervision task delegation law, a compound with 7 parts). This results in
longer word lengths in compounding languages (see Figure 1).

For processing of natural language, this can cause problems: The more com-
plex a compound is, the lower the likelihood of it appearing in corpora, and while
some common compounds can be found in dictionaries, a large part of them
won’t. We can’t dismiss these words as made-up words or names and ignore the
problem, because any typical speaker of such a language will effortlessly under-
stand their meaning. They also make up a significant part of language: Schiller
[2005] find that in a newspaper corpus, 5.5% of all tokens and 43% of all types
were compounds.

Consider, for example, the task of Machine Translation from German to En-
glish: Compounds that are encountered need to be translated, and without having
ever seen them before, this becomes difficult (see for example Koehn and Knight
[2002]). In addition, this is problematic for word alignment, because one word in
the source language has to be aligned to two or more words in the target language,
or vice versa. This difficulty is illustrated in Figure 2.

In Information Retrieval, compounds can also cause problems: A user search-
ing for a rare compound won’t get many results, but if the compound can be
analyzed and understood, more relevant results (not containing the original com-
pound, but its head and modifier) can be retrieved. This is especially relevant in
cross-lingual Information Retrieval.

The solution of these problems of course lies in reversing the process: de-
compounding, splitting a compound into its parts. A system that hasn’t seen
Wasserflasche, but has seen both Wasser and Flasche, can, once it knows that
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Figure 1: Word lengths of tokens in our evaluation corpus (see Chapter Corpora.
Compared to English, where the most common word length is 7 [Adda-Decker
and Adda, 2000], compounding languages have higher modes of 9 (Swedish), 10
(Hungarian) or even 11 (German).

Die1 Wasserflasche2 steht3 auf4 dem5 Holztisch6.

The1 Water2 bottle3 is4 on5 the6 wooden7 table8.

Figure 2: Word alignment is tricky between compounding and non-compounding
languages: Wasserflasche2 has to be aligned with Water2 bottle3, and
Holztisch6 with wooden7 table8.

Wasserflasche indeed consists of those two parts infer that the word must mean
“water bottle”.

Decompounding isn’t always as easy as in the previous example. Some com-
pounding languages insert letters between the parts when phonologically required,
so called linking morphemes : The German word for eye drops is Augentropfen,
consisting of Auge (eye), tropfen (drop), and an n in the middle.

The process also isn’t necessarily unambiguous, for (at least) two reasons:
morphosyntactic ambiguity and morphological ambiguity.

Compounds that are truely morphologically ambiguous aren’t that common,
but they exist, for example in the German word Fluchtraum (shelter; safe room):
It can either (correctly) be split into Flucht (escape) and Raum (room), or (in-
correctly) into Fluch (curse) and Traum (dream). There’s no systematic reason
the former is correct, in fact, in the right context, one could even use it with the
second way of splitting it meaning something akin to nightmare. The only reason
shelter is the more “correct” solution is that it is a somewhat commonly used
word.
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Morphosyntactic ambiguity is more common, but also less of a problem. In
any compound of three or more parts, there is a question of hierarchy, with this
problem also arising in languages that don’t freely compound: Is a house door
key a key for the house door, or is it a door key of the house? The question is as
difficult to answer as it is irrelevant for most purposes.

Most previous work has focused on German, since it’s the compounding lan-
guage with the biggest population by far. In this work, we take a look at more
compounding languages, and build a system that is largely independent of any
specific language. In the process, we also contribute a multi-lingual evaluation
corpus for this task.

There are a few goals for our system:

• Language agnosticism. While a few languages are built-in, it should be
possible to extend it to new languages in minutes.

• Low resource friendliness. Not all languages have as much annotated
data and NLP tools as German, so the system should work with as little
annotated data as possible. Usage of raw text corpora is fine, since they
exist wherever such a system may be needed.

• Usability. The system should be easy to set up, not require large depen-
dencies, and be quick to run.

The rest of this thesis is organized as follows: In Chapter Compounds, we look
deeper into the process of compounding itself, followed by investigating previous
work in the area in Chapter Related Work. We continue by describing the creation
of our corpora in Chapter Corpora. In Chapter Methods we describe our system
and the experiments made on top of it. Its performance is evaluated compared to
previous work in Chapter Evaluation, and in Chapter Conclusion we conclude and
discuss possible improvements and related challenges to be addressed in future
work.
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Compounds

Compounding is an extremely frequent process occurring in many languages. It
is the process of combining two or more content words to form a novel one. While
in many languages (such as English), these are typically expressed as multi-word
expressions, in a few languages, such as German, Dutch, Hungarian, Greek, and
the Scandinavian languages the resulting words, or compounds, are written as a
single word without any special characters or whitespace in-between. In this work,
these languages are called compounding languages, even though compounding in
a broader sense also occurs in languages that write compounds as separate words,
such as English.

The most frequent use of compounding by far [Baroni et al., 2002] is com-
pounds consisting of two nouns, but adjectives and verbs form compounds as
well. Compounds are also formed from any combination of nouns, verbs, and
adjectives.

Languages such as English also have a few examples of compounds that are
written as a single word, but these cases are lexicalized, i.e. they have become
words of their own. New compounds of this kind cannot be arbitrarily created,
whereas in compounding languages they can. In compounding languages, there
exists some kind of fluid lexicality, as frequently used compounds are fully lexical-
ized, newly created ones are not lexicalized, while most compounds are somewhere
in-between; not lexicalized in the sense that you would find them in a dictionary,
but frequent enough, that many speakers will have heard or even used them.

Looking at the German noun compounds as an example, compounding per-
forms different semantic functions on the compound parts, but in all cases the first
part is the modifier and the second part is the head: A Taschenmesser (pocket
knife), consisting of Tasche (pocket) and Messer (knife) is a certain kind of knife,
not a certain kind of pocket (see Figure 3).

In some cases, it is no longer true that the resulting compound is still some
kind of its head: A Geldbeutel (wallet) consists of Geld (money) and Beutel (bag),
and while one probably wouldn’t call a wallet a bag, it is still clear that the bag is
the head of the compound and the money the modifier. In many of these cases this
has historical reasons: At some point in time, a compound got lexicalized, then
it later shifted in meaning. According to Lieber and Stekauer [2009], endocentric
compounds are compounds where the compound is an instance of the head (e.g. a
bookshelf is also a shelf), while exocentric compounds are those where they aren’t
(a skinhead isn’t a head).

The compounding process can be repeated in a recursive way: A Taschen-
messerklinge (blade of a pocket knife) consists of the compound Taschenmesser
(pocket knife) and Klinge (blade). This way of combining existing compounds
could conceivably be repeated, making compounding a recursive process.

Taschenmesser

Tasche messer

Figure 3: Decompounding Taschenmesser. The head is marked in bold.
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Taschenmesserklinge

Taschenmesser

Tasche messer

klinge

Taschenmesserklinge

Tasche messerklinge

messer klinge

Figure 4: Morphosyntactic ambiguity: The correct (left) and incorrect (right)
way of splitting Taschenmesserklinge.

As soon as three parts are combined to a compound as above, morphosyntactic
ambiguity arises: A Taschenmesserklinge could also be constructed from Tasche
(pocket) and Messerklinge (knife blade). For an illustration of this effect, see
Figure 4.

In most cases these ambiguities are either not perceivable by humans, or
one reading is strongly preferred, other readings not even considered. This is
especially true when a compound part is a lexicalized compound itself, like with
Taschenmesser.

Morphological ambiguity is more subtle, and occurs when a word has several
possibilities to be split into compound parts. The already mentioned Fluchtraum
is one example, and there are even cases of non-compounds that can be analysed
as compounds: Verbrennen is a verb meaning to burn something, which can (but
shouldn’t) be analysed as a compound of Verb and Rennen, or “verb running”.

The compounding process is not always a simple concatenation of the com-
pound parts: In Taschenmesser, the n is neither part of Tasche nor of messer,
it is a so called linking morpheme (German: Fugenmorphem or Fugenelement)1.
Sometimes, linking morphemes can be interpreted as endings of an inflected form
of the modifying compound part (in this case Taschen is the plural of Tasche),
but oftentimes they can’t.

Any given language can have several linking morphemes, and some of them
can even be “negative”: A Schulbuch (school book) consists of Schule (school)
and Buch (book), but the final e of Schule is removed when using it as the first
part of a compound.

The choice of a linking morpheme depends entirely on the modifier, never on
the head [see Baroni et al., 2002].

During composition, more changes can happen to the modifier than just an
attached linking morpheme: In some cases, umlauting is happening to a vowel in-
side the modifier: Combining Blatt and Wald creates the compound Blätterwald.
Due to the unpredictability of this process, especially (for the author) in lan-
guages other than German, we simply ignore this, as it doesn’t occur very often:
In German, less than 0.3% of all compound types experience umlauting, according
to Langer [1998].

1Langer [1998] criticizes the term, prefering the term “compositional suffix”, since it doesn’t
have much to do with the head of the compound, and must really be seen as just another suffix,
one that is used for composition.
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Related Work

Wanting to split German compounds, Koehn and Knight [2002] learn splitting
rules from both monolingual as well as parallel corpora. They generate all possible
splits of a given word, and take the one that maximizes the geometric mean of
the word frequencies of its parts, although they find that this process often leads
to both oversplitting words into more common parts (e.g. Freitag (friday) into
frei (free) and tag (day)), as well as not splitting some words that should be
split, because the compound is more frequent than the geometric mean of the
frequencies of its parts.

Since their objective is to improve machine translation, they then make use
of a parallel corpus: Given a split S of a compound c, if translations of the
parts of S occur in the translation of a sentence containing c, the word should
probably be broken up: Freitag will probably have never beed translated as
“free day”, so it would not be split. This, of course, can only work for those
compounds that actually occur in the parallel corpus, not for completely unseen
ones. Furthermore, they constrict parts using a part-of-speech tagger: Words
that aren’t usually parts of compounds (like determiners), are excluded with this
method. Their combined method using frequency information, parallel corpus
data and POS tag restriction gives them the highest result, with a recall of about
90.1% and a Precision of about 93.8%2.

Schiller [2005] use a weighted finite-state transducer to split German com-
pounds based on the output of a morphological analyser, which returns some,
but not all possible splits. The necessary weights for the finite-state transducer
are obtained from the frequencies of compound parts in manually decompounded
word lists. This work is also the source for the claim that the split with the lowest
number of (unsplittable) parts is the most likely correct one.

Marek [2006] also use weighted finite-state transducers, but the main contri-
bution of this work for us is the creation of an evaluation corpus and an anno-
tation scheme that was created for annotating it. Our own evaluation corpus is
annotated based on this annotation scheme.

Alfonseca et al. [2008] approach the task from an Information Retrieval per-
spective and wanting to handle noisy data in user input, such as misspellings.
They also propose that a split is more likely to be the correct split if its com-
pound parts have a positive Mutual Information: If they can be composed, that
means there must be some semantic relation between them. For instance, in the
compound Blumenstrauß (flower bouquet), consisting of the parts Blume (flower)
and Strauß (bunch, bouquet, but also: ostrich), the two parts will co-occur with
each other more often than would be expected of two random words of their
frequency.

Soricut and Och [2015] use vector representations of words to uncover morpho-
logical processes in an unsupervised manner. Their method is language-agnostic,
and can be applied to rare words or out-of-vocabulary tokens (OOVs).

Morphological transformations (e.g. rained = rain + ed) are learned from

the word vectors themselves, by observing that, for instance,
−−→
rain is to

−−−−→
rained

2Precision and recall are defined slightly differently than usual, see Chapter Evaluation for
details.
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as
−−→
walk is to

−−−−→
walked. To be able to do that, candidate pairs are first extracted

by looking at whether it’s possible to replace, add, or remove a suffix or prefix
of one word to get to the other word. Given that candidate list, they then use
word embeddings to judge the quality of candidate rules by trying to find several
analogy pairs with the same suffix/prefix in similar relations in the vector space.
This filters out spurious suffixes like -ly in only, or prefixes like s- in scream.

Their system uses a considerable amount of data to train the word embeddings
(they use the skip-gram model of Mikolov et al. [2013b]), something going against
our goal of staying low-resource.

Daiber et al. [2015] apply the approach of Soricut and Och [2015] to decom-
pounding. Using word embeddings of compound and head, they learn prototyp-
ical vectors representing the modifier. During the splitting process, the ranking
occurs based on comparing analogies of the proposed heads with the entire com-
pound.

They achieve good results on a gold standard, and improved translation qual-
ity on a standard Phrase-Based Machine Translation setup.

Bretschneider and Zillner [2015] develop a splitting approach relying on a se-
mantic ontology of the medical domain. They first try to disambiguate candidate
splits using semantic relations from the ontology (e.g. Beckenbodenmuskel (pelvic
floor muscle) is split into Beckenboden and muskel using the part-of relation). If
that fails, they back off to using a frequency-based strategy.

Erbs et al. [2015] compare the performance of recent work in decompounding
using the evaluation corpus from Marek [2006], looking at the correctness scores of
the compared systems. They find that the ASV toolbox [Biemann et al., 2008]
delivers the best results. They then also investigate what benefit decompounding
has on the results of a specific task, keyphrase extraction.
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Corpora

This work made use of several corpora, and produced a new evaluation corpus
for evaluation of decompounding systems in German, Swedish, and Hungarian.

EMEA corpus

The EMEA corpus [Tiedemann, 2009] is a parallel corpus based on documents by
the European Medicines Agency3. It consists of parallel texts for each possible
pairing of the numerous languages it contains, including English and all the lan-
guages we’re investigating (German, Swedish, and Hungarian). For English and
Swedish, the texts are also available as parsed corpus files, but the parsed files
weren’t used by us.

The corpus was chosen as the basis of our evaluation corpus because of our
decision to evaluate in the medical domain.

We also use it as the raw text corpus for our word embeddings, since its size
is approximately the same for all three languages, meaning we can later exclude
different training data size as a cause for differences in the results.

Wikipedia as a raw source

Our system requires some kind of dictionary to serve as a repository of known
words. A good source for arbitrary raw text is Wikipedia, because it is relatively
big — big enough to contain all kinds of words, in many kinds of inflections. As
an encyclopedia, the language use is not necessarily representative, but it was still
chosen because in contrast to some other more balanced corpora, it is available
for most languages in common use, such as the ones we’re investigating here.

Given the restricted domain of our system, and the fact that preliminary
experiments indicated that it would be useful to restrict the size of this corpus,
we used a subset of Wikipedia concerned with medical articles.

The corpus is a pre-existing one, assembled by Jindřich Libovický4. It was
created by first extracting titles of Wikipedia articles in the medical domain
from the semantic knowledge graph DBpedia [Lehmann et al., 2015], and then
extracting the text of those articles from a full Wikipedia dump.

Corpus statistics about the Wikipedia data can be seen in Table 1. The
German part is obviously the biggest one (the German Wikipedia is the second-
biggest Wikipedia, after the original English one), but what is interesting is that
while Swedish has more tokens than Hungarian, Hungarian has more types. This
is probably due to the more complex morphology of Hungarian, compared to
Swedish.

3http://www.ema.europa.eu/ema/
4https://ufal.mff.cuni.cz/jindrich-libovicky
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Types Tokens

German 245256 2326519
Swedish 67422 426193

Hungarian 86002 354120

Table 1: Corpus statistics for the medical Wikipedia corpus

Marek [2006]

The work of Marek [2006] includes an evaluation corpus that was created based
on articles from the German computer magazine c’t — Magazin für Comput-
ertechnik. The corpus itself isn’t used, but our own evaluation corpus annotation
format is based on it. We drop the annotation of part-of-speech of the com-
pound parts, and concentrate only on where a compound should be split. The
annotation scheme is described in more detail below.

Stopwords and affixes

In order for our simple heuristics to filter out obviously wrong splits, we also
employ the use of two additional corpora per language: A list of stopwords and
a list of suffixes.

The stop word lists5 contain 232 German words, 199 Hungarian words, and
114 Swedish words.

Because our candidate extraction algorithm goes from left to right (see Chap-
ter Methods), it might happen that a word or subword is split into root and suffix,
if the root is a known word. Since this is just inflection, not compounding, we
want to filter out such cases. For this purpose, we extract a list of suffixes for
each language from Wiktionary (a sister project of Wikipedia):

We simply take all page titles in the Category:language prefixes and
Category:language suffixes6 and remove the dash at the beginning of each
page title. The resulting suffix list contains 115 suffixes in German, 85 suffixes in
Swedish, and 545 suffixes in Hungarian. The prefix lists contain 116 prefixes in
German, 48 prefixes in Swedish, and 100 prefixes in Hungarian.

Evaluation Corpus

The creation of the evaluation corpus started with the EMEA corpus, which was
first shuffled to ensure that the selection of words wasn’t biased. Care was taken
however, to shuffle the corpus in exactly the same way for each language, so that
randomness didn’t introduce a difference between the languages.

Next, the words were filtered based on their length. Since compounds consist
of at least two parts, they have a certain minimum length. Any word shorter
than seven characters was therefore discarded.

5https://github.com/Alir3z4/stop-words
6For example https://en.wiktionary.org/wiki/Category:German_suffixes
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German Swedish Hungarian

Words 958 565 3361
# Compounds 193 162 512
% Compounds 20.0% 28.7% 15.2%

% 2 parts 91% 93% 93%
% 3 parts 9% 7% 6%
% >3 parts <1% 0% 1%

Table 2: Corpus statistics of the evaluation corpora

This list of words was then given to annotators, with the German part being
annotated by the author himself. The annotators were given the task to split
the words into compound parts using a plus character, when necessary. Non-
compounds were to be left untouched.

Word endings of compounds were put in parentheses, linking morphemes split
off with a pipe character (|). As in the original annotation scheme in Marek [2006],
ablaut and umlaut changes are annotated using capital letters.

When annotating anything there is a choice to be made between accuracy of
the annotation process, and the annotation feeling “natural” for native speakers.

A special case of this is how to handle fully lexicalized compounds: They
aren’t a problem for NLP, since they are frequent enough to be lexicalized. In
fact, splitting them could even worsen results in some cases, where the current
meaning of a compound isn’t directly related to the meaning of its parts anymore:

If a Machine Translation system wants to translate Geldbeutel, but translates
the decompounded parts instead, the translation might be “money bag” instead
of the correct “wallet”.

In our case, a decision was made to trust the annotators and let them annotate
as compounds what feels like a compound to them.

The German and Swedish parts of the corpus were each annotated by a single
person, whereas 10% of the Hungarian corpus was additionally annotated by a
second annotator to calculate inter-annotator agreement. Cohen’s Kappa was
determined to be at κ = 0.95.

The other part of data required for each language was the list of linking
morphemes. The German list is based on Alfonseca et al. [2008], Hungarian and
Swedish linking morphemes were extracted from the annotated corpora. They
are displayed in Table 3.

Corpus statistics about the evaluation corpora can be seen in Table 2. Most
compounds in the evaluation corpora have only two parts, there are very few
examples of compounds of three or more parts.

The evaluation corpus in all three languages is included as Attachment 2
(eval-corpus.tgz).
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Language Linking morpheme Example

German

s Hemdsärmel
e Hundehütte
en Strahlentherapie

nen Lehrerinnenausbildung
ens Herzenswunsch
es Haaresbreite
ns Willensbildung
er Schilderwald

Swedish s utg̊angsdatum

Hungarian

ó oldószer
ő gyűjtődoboz
ba forgalombahozatali
ı́tő édeśıtőszerként
es kékesbarna
s szürkésbarna
i ı́zületifájdalom
a koraszülött

Table 3: Linking morphemes in German, Swedish, and Hungarian

12



Methods

This chapter describes the decompounding sytem created for this work. It consists
of a script written in Python 3, and is not backwards compatible with Python 2,
because it makes heavy use of features missing in Python 2 (and not importable
from the future module).

The script reads a file containing one word per line, and prints a decom-
pounded (if necessary) version of every word. Alternatively, the Splitter class
can be imported from another module.

The only external requirements are docopt7 for argument parsing, and ftfy8

for repairing broken encoding input.

Basic Principle

When calling the script from the command line or creating a Splitter object
manually, an ISO 639-1 language code9 can be specified. If it isn’t given, “de”
(German) is assumed.

Initialization

Based on the language, the list of linking morphemes is set. This list is adapted
from Alfonseca et al. [2008] for German, and based on input from the annotators
for the other supported languages.

In addition to the linking morphemes, a dictionary of known words is read
in. As a source for the dictionary, a Wikipedia dump of articles in the medical
domain is used. The reason for opting for a raw text corpus instead of a real
lexicon is that we will find not only base forms, but also most inflected forms in
it, and won’t have to worry about morphology too much. Since it is our goal to
produce a system that is adaptable to any language where it is needed, we want
to use as little training data as possible, in fact, the only piece of knowledge we
don’t obtain from a raw corpus is the list of linking morphemes. This obviously
doesn’t include the evaluation corpus, which isn’t needed for the system itself.

Generation of candidate splits

After this initialization, words can be decompounded by the system. First, a
sequence of possible binary splits of a given word is obtained. This includes the
“split” where the point of splitting is after the word, meaning nothing is split at
all. Starting with the smallest possible split from left to right, we check whether
either

• the left part of the split is a known word

• the left part of the split is a linking morpheme

7https://github.com/docopt/docopt
8https://github.com/LuminosoInsight/python-ftfy/
9http://www.iso.org/iso/home/store/catalogue_ics/catalogue_detail_ics.htm?

csnumber=22109
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If neither of those conditions are met, the process continues. Otherwise, this
process is repeated recursively for the remaining part.

This method has several implications:

• The right-most part of the proposed split need not be a known
word. This helps alleviate the need for true morphological analysis as
endings of the head don’t matter so much.

• The process succeeds for any given word. It may however return a
split which contains only a single word, i.e. isn’t a split at all.

• The process often returns several possible ways of splitting. Af-
terwards, a decision needs to be made which of the splits to keep.

Cleaning the splits

As a next step, initial cleaning of the candidate splits is being done, having to do
with linking morphemes:

• Linking morphemes can’t be at the beginning of a word. If the first part of
a split is a linking morpheme, it is merged with the second part.

• Given two consecutive parts, if the right one isn’t a known word, the left
one is a linking morpheme, and the concatenation of the two parts is a
known word, they are merged together. This doesn’t need to be checked
the other way around, because of the left part always being either a known
word or a linking morpheme, based on the previous steps.

The list of possible splits is reduced using this process, but there is often still
a choice to be made.

Ranking the splits

Next, we find splits where each part is either a known word, or a linking mor-
pheme. If at least one such split exists, we consider only those splits, otherwise
we skip this step.

Finally, we take that remaining split with the least amount of parts, following
Rackow et al. [1992]. The result is returned either as a tuple, or if requested, in
the evaluation file format described in Chapter Corpora.

Several variations of the described systems are also available through con-
figuration changes. They are evaluated separately in Chapter Evaluation, and
described below.

Stop words and affixes

Since compound parts are typically content words, we want to limit the available
words the system sees as valid. Since we’re building on raw data, part-of-speech
tags are not available. We therefore use stop word lists: After the lexicon is read,
any words present in the list of stop words is removed from it again.

14



This prevents splits into pseudo-compounds which supposedly begin with a
closed-class word like a determiner. For example, Dermatologe (dermatologist)
isn’t a compound, but without excluding stop words from the list of known words,
it might be split into Der (nominative masculine singular “the”) and matologe
(spurious).

We also do affix-based filtering here: In the step of candidate extraction, we
discard any split that has:

• a prefix as a part anywhere in the split

• a last part that starts with any suffix and is not much longer than it10

From manual inspection of the affix lists, we estimate that this has the po-
tential to remove legitimate splits: For example, the German suffix list contains
-zentrisch (“centrical”), which could conceivably occur as the head of a com-
pound, but it is still our assumption that this filtering will improve more than it
will hurt recall.

Frequencies

Frequency information has been shown to be of use in previous work [Koehn and
Knight, 2002, Baroni et al., 2002]. Since we’re working with a raw text corpus as
a lexicon, it is available to us, too.

We use the frequencies for two purposes:

• filtering out noise: Any word that only occurs once in the entire corpus
is assumed to be either noise or not of use in any case. We therefore discard
words that only occur once.

• frequency-based ranking: As a primary ranking method, we simply take
the split with the highest product of part frequencies. In case of a tie, we
take the split with the smallest amount of parts. If there is still a tie, we
go on to taking the highest sum of logarithms11 of the frequencies.

Word embeddings

A relatively recent trend in Natural Language Processing is the use of semantic
vectors that represent the meaning of words or other textual entities. Such vectors
have been shown to be successful in tasks such as parsing [Socher et al., 2013] or
sentiment analysis [Maas et al., 2011].

A fast, memory-efficient way to obtain a semantic vector space is a family
of methods called word2vec [Mikolov et al., 2013a], of which we use the con-
tinuous skip-gram variety: Word and context vectors are initialized randomly,

10Because not all inflectional variants of all suffixes are present in the list, we are are looking
at whether the last part starts with any suffix. However, since we assume just blindly doing this
would introduce many false negatives, we only allow the last part to be up to two characters
longer than the suffix.

11With log 0 := 0. This makes it so that even if a part is zero, the result will still be defined.
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then, iterating over all words in a given corpus, the model tries to predict context
words from a given word. In the process, word vectors are brought closer to the
context vectors of their context words, and, using negative sampling, distanced
from random “noise” contexts.

Distance between two vectors is measured in terms of cosine similarity ; the
cosine of the angle between the vectors. Using cosine similarity is equivalent to
using a euclidean distance between unit vectors, and results in values between 0
and 1, inclusive.

As word embeddings require only raw data, we also investigate its use in our
scenario. The idea is to look at the (proposed) parts of a split, and see if adjacent
parts are at least a little bit similar to each other, and then returning the split
with the highest average similarity. We choose the average of the similarities
because a product would massively favour short splits, and a sum would favour
longer splits. Comparing only adjacent parts makes sense, because we assume
only they share some meaning: In Taschenmesserklinge (pocket knife blade),
Tasche (pocket) and Messer (knife) are often seen together, even more so with
Messer and Klinge (blade), but Tasche and Klinge are likely not to be similar at
all.

One of the proposed splits is always the hypothesis that the given word isn’t
a compound, we also need to assign a value to this case. A default value of 1
would make it such that this ranking method never splits, making it equivalent
with the baseline described in Chapter Evaluation, a value of 0 would force it
to always split, if possible. Since neither of those options are acceptable, and
any other value in-between would be a magic number, having to be tuned for
each language, we instead use this method as a secondary ranking method if the
primary method can’t decide between several options.

Typically, lemmatization or stemming is used as a preprocessing step for cre-
ating vector spaces. On any given language, we won’t necessarily have tools for
that available, which is why we use a very primitive stemming method for all
languages: From all words, we strip away any characters after the 6th one. We
assume that this will be enough to uniquely identify most words, but also to strip
away any possible suffixes. Using this process, goat remains as is, but hamster is
transformed to hamste.

We use the gensim implementation [Řeh̊uřek and Sojka, 2010] of the skip-
gram model. As the gensim package has quite a few bigger dependencies12, we
save the vector spaces as pickled objects13, which means that gensim will only
be loaded when the respective option is enabled.

We use the raw EMEA corpus for training the embeddings, throwing away
any tokens that contain non-alphabetic characters. The corpus contains about
23 million tokens in every language.

Forcing decomposition

Finally, we experiment with whether it makes sense to insist on splitting words,
whenever possible: This setting causes the ranking system to always produce a

12smart-open, six, scipy, and numpy
13https://docs.python.org/3/library/pickle.html
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split with more than one part (i.e. the claim that any word is a compound).
We don’t expect this to do better than the other methods, but assume it

might be useful when it is already known that a word must be a compound.

Interface

The system can be used in two different ways: As an imported module, or using
its command-line interface. The latter is described here.

The script takes one required argument, which is the name of a file which
contains the candidates to decompound. This file should contain a single word
per line. When the decomposition should happen on demand, the file name can
be replaced with /dev/stdin to instead read from standard input.

In addition, the script can take a number of options:

• A two-letter language code can be specified using the --lang option. This
defaults to --lang=de, German.

• If the list of stop words should not be used, one can pass --stopwords=no.

• If the system should try to split words whenever possible, one can pass
--force-split=yes.

• The system uses the word frequencies from the corpus by default. If it
shouldn’t do so and instead resort to the more basic method, the switch
--use-counts=no will change the behavior.

• To specify a minimum word frequency under which words should be dis-
carded from inclusion in the lexicon, the option --min-freq=... can be
used. By default, a value of 2 is used, meaning that any word occurring
less than twice will be discarded.

• By default, the lexicon is read using the latin-1 encoding. Although incor-
rectly encoded files will typically still be decoded correctly using ftfy, the
argument --encoding=... can be passed to the script to explicitly set the
encoding.Possible values are dependent on Python’s supported codecs14.

• If the vector spaces should be used as a secondary ranking method, the
option --use-vectors=yes can be provided. The vector spaces can be
found in the vec directory.

When called, the script first reads in the dictionary and then the list of stop
words from two files in the lex directory.

The dictionary is expected to contain one word per line, in the format fre-
quency\tword\n15. The stop word list simply consists of one stop word per line.

After this initial setup is done, the system will read words from the input file,
one at a time. The decompounded result is then printed to the standard output,
in the same format the evaluation corpus uses.

14https://docs.python.org/3/library/codecs.html#standard-encodings
15The system will also accept lines that start with some amount of whitespace. This is such

that it can handle output from cat raw words.txt | sort | uniq -c | sort -nr.
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Because it doesn’t wait for the input file to be read in completely, it is possible
to run the decompounding system as a server and use it on-demand, for example
using a named pipe created using mkfifo.

When used from another Python script, the returned value can alternatively
be in tuple form, then the result will be a tuple of compound parts.

The source code, along with all the lexical resources required to get it to run,
is included as Attachment 1 (compound-splitter.tgz).
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Evaluation

Our system is evaluated against other systems and a baseline here. The competing
systems are:

• Baseline: This is a hypothetical16 identity system which when given any
word, returns the same word. When seen as a decompounding system, it
always postulates that any given word isn’t a compound. Since most words
in the evaluation corpus aren’t compounds, its Accuracy will be fairly high,
but Recall and F1-score are zero (since it never finds a single compound),
and its Precision is undefined.

• ASV Toolbox: This is a supervised system described in Biemann et al.
[2008].

• compound-splitter-nl: This is an apparently unpublished system17 by
Katja Hofmann, Valentin Jijkoun, Jaap Kamps, and Christof Monz (in al-
phabetical order). The system is primarily designed for the Dutch language,
but can be configured to work for German, Finnish, Swedish, and Afrikaans,
too.

• jWordSplitter: Originally created by Sven Abels, and now maintained
by Daniel Naber, this is a rule-based Java library for splitting German
compounds18.

Our system is evaluated in various configurations:

• basic: This is the most basic version using the raw words without fre-
quency information. The splits are ranked based on how many parts are
known words first, and if there’s a tie, based on the amount of (non-linking-
morpheme) parts (fewer ranks higher).

• basic+stop: The same as basic, but with stop words removed.

• basic+counts: This is like basic, but it ranks the splits based on the
geometric means of the frequencies of the parts.

• basic+counts+stop: This is like basic+counts, but with stop words
removed and affix-related filters active.

• basic+counts+stop+force: This is like the previous system, but will
assume the word is a compound and always return a split with more than
one part, if possible. This could be useful when used on top of another
system that knows a word is a compound, but doesn’t know how to split it.

• basic+counts+stop+sem: This builds on top of basic+counts+stop
to rank the candidate splits, falling back to average semantic similarity of
their parts when there’s a tie.

16It wasn’t actually implemented as its performance metrics are evident from the data.
17http://ilps.science.uva.nl/resources/compound-splitter-nl/
18https://github.com/danielnaber/jwordsplitter
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Precision Recall Accuracy F1

Baseline - .00 .80 .00
ASV Toolbox .41 .42 .75 .41
compound-splitter-nl .23 .05 .77 .09
jWordSplitter .88 .57 .91 .69

basic .44 .18 .81 .26
basic+stop .47 .18 .81 .25
basic+counts .49 .53 .84 .51
basic+counts+stop .59 .59 .88 .59
basic+counts+stop+force .57 .57 .87 .57
basic+counts+stop+sem .59 .60 .88 .60

Table 4: Performance of all systems compared on the German evaluation corpus.
The best system for a score is marked in bold, the best of our systems in italic.

Since this isn’t a simple binary classification task, the definitions for Precision
and Recall (and therefore, F-Score) differ slightly:

Precision =
correct splits

correct splits + superfluous splits + wrong splits

Recall =
correct splits

correct splits + wrong splits + incorrect non-splits

As accuracy is only dependent on the correctness of the work, it keeps the
familiar definition:

Accuracy =
correct splits + correct non-splits

all instances
The F1-score is defined as a trade-off between Precision and Recall, giving

them equal importance:

F1-score = 2 ∗ Precision ∗ Recall

Precision + Recall

Whether the F1-score is a fitting evaluation metric depends on the task at
hand, on what is more important; Precision or Recall. Since we report both of
them here, too, only the F1-score is included here, but any other kinds of F-scores
can easily be computed from Precision and Recall.

The results for the German evaluation task can be seen in Table 4. As with
all classification systems, the question is which metrics are more important to the
user:

Putting an emphasis on Recall means caring more about splitting all com-
pounds than about potential incorrect decompositions. Higher Precision focuses
on being more “careful”, and prefering to decompound easier compounds cor-
rectly, rather than decompounding too much. Since most words in the evaluation
corpora aren’t compounds, obtaining a high accuracy value is easy: The simple
identity baseline obtains 80% accuracy, because 80% of the instances in the Ger-
man corpus aren’t compounds. One could argue for such a system to have perfect
Precision, but it is marked here as not having a value. However, a system that
has a few cases hard-coded could still easily obtain a precision of 100%.
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Precision Recall Accuracy F1

Baseline - .00 .72 .00
compound-splitter-nl .26 .04 .70 .07

basic .35 .21 .73 .26
basic+stop .38 .21 .74 .27
basic+counts .47 .33 .77 .39
basic+counts+stop .52 .34 .78 .41
basic+counts+stop+force .53 .35 .78 .42
basic+counts+stop+sem .52 .37 .78 .43

Table 5: Performance of all systems compared on the Swedish evaluation corpus.
The best system for a score is marked in bold, the best of our systems in italic.

In this task, it isn’t as easy to obtain a high Recall. Whereas in binary
classification tasks selecting every instance yields a recall of 100%, due to the
more complex job a decompounding system has, the same result can’t be obtained
here.

In this case however, the rule-based jWordSplitter clearly outperforms all
other systems, losing only in Recall to our best systems.

Although forcing decomposition expectedly doesn’t improve the basic sys-
tem, all other improvements seem to do, improving on all performance metrics.
basic+counts+stop+sem is a special case, it improves Recall (and therefore
F-Score) so slightly, that one could argue not to use it at all, because of the work
involved in getting vectors and the required large dependencies.

Since the situation is different in the other languages, we still set the configu-
ration (basic+counts+stop+sem) as the default configuration for our system.

In the Swedish dataset (see Table 5), the situation is similar, but here the sys-
tem using word embeddings is the clear winner, and even forceful decompounding
works better than just basic+counts+stop. Overall, the scores are consider-
ably lower. This could be either due to the smaller amount of data available
(see Table 1), or possibly due to the task being more difficult in Swedish. This
hypothesis is supported by the accuracy of the baseline being lower here, too.

On the Hungarian corpus, the results are different: Here no clear winner can
be seen, although the overall best system is probably basic+counts+stop.

The more complicated methods using stop words and forcing decompound-
ing lose in Recall what they gain in Precision. Adding word embeddings as a
secondary ranking method retains the same F-Score, while improving Recall and
hurting Precision.

Annotation quality discrepancies could also have played a role in the differ-
ences between the languages, but since the author speaks neither Swedish nor
Hungarian, that is merely another hypothesis.

It should be noted, that the numbers given here don’t necessarily say much
about the usefulness of the decompounding systems within other tasks (this is why
it can be more insightful to evaluate using a task-based method; i.e. measuring
how much a system’s results on a task improve when using decompounding, this
is e.g. how Daiber et al. [2015] and Erbs et al. [2015] evaluate):

A given system using a decompounder is typically not completely unknowl-
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Precision Recall Accuracy F1

Baseline - .00 .85 .00

basic .22 .16 .77 .18
basic+stop .33 .21 .82 .25
basic+counts .53 .30 .87 .38
basic+counts+stop .64 .29 .88 .40
basic+counts+stop+force .69 .21 .87 .32
basic+counts+stop+sem .59 .30 .87 .40

Table 6: Performance of all systems compared on the Hungarian evaluation cor-
pus. The best system for a score is marked in bold, the best of our systems in
italic.

German Swedish Hungarian

Baseline .00 .00 .00
ASV Toolbox .95
compound-splitter-nl .08 .06
jWordSplitter .62

basic .29 .41 .40
basic+stop .27 .39 .36
basic+counts .84 .52 .29
basic+counts+stop .78 .50 .26
basic+counts+stop+force .78 .50 .26
basic+counts+stop+sem .80 .53 .40

Table 7: Coverage of the various systems on all languages

edgable about what word is a compound: It will often have POS-tagged the
source text already, and might only resort to using the decompounding system
when a given word can’t be found in a dictionary. In such a case, Recall can be
more important than Precision.

We therefore also report coverage percentages, defined as the fraction of com-
pounds that are correctly identified as compounds by the various systems (but
not necessarily correctly split):

Coverage =
correct splits + incorrect splits (of compounds)

all compounds

The Coverage values can be seen in Table 7 for all languages. In this case, Cov-
erage can’t be seen as a direct measure of system quality, but more of the eager-
ness of a system to split. From our systems, one would expect basic+counts+
stop+force to be the one with the highest coverage, because it literally splits
whenever it can, but the usage of stop words and affixes will reduce the amount of
times the system splits. The highest coverage is achieved in German by a system
that doesn’t use stop words, and therefore splits more, but it is not the best of
our system configurations. In Swedish and Hungarian, the system falling back to
using word embeddings has the highest coverage, because like basic+counts+
stop+force, it splits whenever there’s a tie between systems in the first ranking
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system under-split over-split wrongly-split

German

ASV Toolbox 12 214 7
compound-splitter-nl 176 40 0
jWordSplitter 76 13 0
basic 144 30 8
basic+stop 148 22 8
basic+counts 31 82 36
basic+stop+counts 42 35 40
basic+stop+counts+sem 38 37 40

Swedish

compound-splitter-nl 152 20 0
basic 102 28 25
basic+stop 104 16 27
basic+counts 80 24 28
basic+stop+counts 84 12 28
basic+stop+counts+sem 78 16 29

Hungarian

basic 324 437 41
basic+stop 342 247 32
basic+counts 373 69 11
basic+stop+counts 391 25 10
basic+stop+counts+sem 324 75 19

Table 8: Error analysis. under-split are those instances that are split into less
parts than they should have been. over-split are those instances that are split
into more parts than they should have been. wrongly-split are those instances,
which have the right amount of splits, but are incorrectly split.

method, given that any similarity value between two vectors will be higher than
0.

We also do an error analysis of all systems but basic+stop+counts+force
(because the mistakes it makes are expectable) in Table 8. Most of the time a
system makes a mistake, it is in how many splits a word should be split, rarely is
there a case where a system splits the compound in the right amount of pieces, but
in the wrong position(s). This is to be expected. From our systems, we can see
that once word frequencies are introduced, the amount of under-split compounds
is drastically reduced. The only exception is Hungarian, where it, for what-
ever reason, behaves the other way around: Here, frequency information reduces
over-split compounds, increasing the amount of under-split instances slightly. In-
troducing word embeddings decreases under-splits and increases over-splits, as
expected.

Interestingly, while in German we reach almost the same number of over- and
under-splits, in the other languages there are more under-splits by quite a bit.
This points to too many words not being known; i.e. a corpus that is too small.
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Conclusion

This work compared previous work on decompounding applied to the medical
domain, and developed a new system that is compatible with German, Swedish,
and Hungarian, and can easily be extended to work with other languages as well.

It is clear that as easy as the task might seem at first, it is far from solved.
Given a good lexicon, all systems can decompound obvious, clear cases, but more
complex compounds, those that are ambiguous, and those being noisy in other
ways are still hard to split.

This is especially true in a specific domain such as the medical one, as the lan-
guage and the used compounds are different from regular language. While some
compounds, like Krankenschwester (nurse, literally “sick sister”, as in “sister for
the sick”) are in common use in colloquial language, more specific terms, such as
Thrombozytenzahlen are not. This makes the task more difficult than it would be
for non-expert language, and explains the comparably low results of all systems
when compared to other evaluations (such as in Erbs et al. [2015]).

It is also apparent that the amount of data used influences the accuracy of
the various decompounding systems, as the results for German are consistently
higher than for the other languages.

Evidently this kind of language-agnostic word splitting system is one with
limited use. When building a system for a specific language, one could employ
any number of language-specific improvements. While we did end up using word
embeddings to improve the ranking procedure, our stemming method was very
primitive in order to stay language-independent. It was nevertheless required:
Given a candidate split S consisting of the parts A,B, we need to either lemma-
tize or stem both A and B to be able to map them to their semantic vectors.
One benefit of our basic left-to-right system described in the Chapter Methods
is that we can largely ignore morphological changes like suffixes, because they
typically only happen to the head, apart from the binding morphemes that we
do handle. This is why we also chose such a simple stemming method, but better
pre-processing tools would probably improve our results.

The downsides of our system are also its benefits: Without any annotated
training data, it will likely work for any additional languages with composition
systems similar to Germanic, Skandinavian, or Uralic languages. For example,
Modern Greek also exhibits compounding, and given a Wikipedia dump or some-
thing similar as a source corpus, it is hypothesized that it will also work for
Greek.

Like all systems not exclusively concerned with semantics, it can handle both
endocentric and exocentric compounds, while some of the systems, like those that
are only based on word embeddings can’t decompound exocentric compounds (e.g.
Daiber et al. [2015]).

For future work we propose the following:

• Evalutating on other domains. Our medical evaluation corpus has
proven to be a tough one for all systems. A cleaner, balanced evaluation
corpus not restricted to a specific domain would be more informative re-
garding the performance of decompounding systems in naturally occurring
language.
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• Learn from easy compounds. A system could, instead of splitting com-
pounds one by one, require a list of words to decompound, before it will
start the decompounding process. It could then first decompound those in-
stances that are less ambiguous, or for other reasons easier to decompound,
and then learn from those presumably correct splits. This way, the system
would stay unsupervised, but still acquire examples to learn from during
execution. In very recent work, Riedl and Biemann [2016] use a similar
method to generate a dictionary of “single atomic word units”.

• Evaluation on non-compounding languages. As a sort of “sanity
check”, one could run decompounding systems on non-compounding lan-
guages. Ideally, very few words would be tagged as compounds and split,
except possibly for lexicalized compounds.

• Knowledge transfer from high-resource languages. We purposefully
don’t use methods requiring large amounts of data, such as word embed-
dings, or tools such as POS-taggers. One way of staying true to our goals,
but still using such methods would be to transfer information from high-
resource languages to low-resource languages: For example, word vectors
could be first trained on German corpora, and then retrained on other (Ger-
manic) languages, or a (more sophisticated) stemmer from German could
be blindly applied to other languages.

Looking back at our goals defined in the Chapter Introduction, Language
agnosticism is achieved, because the only knowledge required to extend the
system to another language is a list of linking morphemes of that language. Even
when not supplying this list, the system will work, although to a lesser degree.

Another big goal was low resource friendliness. Corpora of the size we used
are available in many languages, not just the few big ones with lots of attention
from the NLP community. We also don’t require the existence of any other parts
of the NLP pipeline (stemmers, lemmatizers, POS-taggers, parsers, ...).

In terms of usability, if the word embedding method isn’t used19, the system
has only two dependencies, both only a few kilobytes large. Once the dictionary
and the lists of stop words and affixes are read in, decomposition takes less than
a millisecond even for long, complex examples.

19The gensim package required for the use of our embeddings requires bigger dependencies,
but those (namely numpy and scipy) are frequently used packages in the scientific Python
community.
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Attachments

The following attachments have been uploaded to SIS.

1. compound-splitter.tgz: A gzip file containing the source code of the
compound splitter, along with all the required lexical resources (frequency
information, affix and stop word lists; and vector spaces).

2. eval-corpus.tgz: The evaluation corpus in German, Swedish, and Hun-
garian. Each file contains one word-annotation pair per line, separated by
a tab character.
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