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patiici do Bi(H(U)) a je ukdzano, ze za urcitych dodateénych predpokladi na mnozinu
U je téz postacujici.

Klicova slova: Dirichletuv problém, harmonické funkce, funkce prvni Baireovy
tridy, simplicialni prostory

Title: Baire and Harmonic Functions

Author: Petr Posta

Department: Departement of mathematical analysis
Supervisor: Prof. RNDr. Jaroslav Lukes, DrSc.
Supervisor’s e-mail address: lukes@karlin.mff.cuni.cz

Abstract: It is well known that the Dirichlet problem on a bounded open subset U of R"
need not have a classical solution. However, it is always possible to construct a general-
ized (Perron-Wiener-Brelot) solution, which is identical with the classical one if it exists.
This generalized solution is a Baire-one function on the closure of U. Lukes et al. (2003)
proved that PWB-solution is even a pointwise limit of a sequence of functions harmonic on
U and continuous to the boundary. The first part of this thesis describes their proof which
uses pointwise approximation in simplicial function spaces and compiles a necessary the-
oretic background, especially parts of abstract Choquet theory and a characterization of
Baire-one functions. The second part treats an open problem how to characterize a space
B1(H(U)) of pointwise limits of sequences of functions harmonic on U and continuous to
the boundary. A similar problem was solved by Gardiner and Gustafsson (2005). They
characterized a space B1(Hy(K)) of pointwise limits of sequences of functions harmonic on
some neighbourhood of a compact subset K of R™. In the thesis, a necessary condition for
functions in Bi(H(U)) is proved and are presented several cases when, under additional
assumptions on the set U, the condition is also sufficient.
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Introduction

It is almost one hundred and ten years, since René-Louis Baire (1874-1932) designed
a classification of functions into, nowadays, so called Baire classes. The zero-th
Baire class consists of all continuous functions and each class that follows consists of
pointwise limits of functions in the previous class(es). It is often useful to know that
a function is of Baire class one. It does not need to be continuous but still cannot be
"too terrible”. For example, if f is a Baire one function on a metric space P, then
every nonempty closed subset F' of P contains a point x such that f restricted to F’
is continuous at x. So the behavior of functions in Baire class one can be somewhat
controlled.

If one says the concept of Baire classes is old, then the Potential Theory is even one
or two hundred years older. Perhaps its oldest problem is the one of Dirichlet, to
find a function f which solves the Laplace equation

_O*f | O*f >Pf
Af—a—x%—Fa—x%—F...—F@—o

on a given bounded open subset U of R™ and can be continuously extended to the
boundary where it coincides with a prescribed boundary condition. Such a function
is called a classical solution for the Dirichlet problem and functions which satisfy the
Laplace equation on U are called harmonic on U. For a long time, it was believed
the Dirichlet problem is solvable for all open sets and all continuous boundary data;
some sort of arguments which should have supported this statement can be found
in Dirichlet’s work in this area but the original stone was a physical interpretation
of the equation: it describes a gravitational or electromagnetic field and continuous
boundary conditions simply characterizes its sources, so it was natural to assume
something like that every distribution of electric charge would evoke a corresponding
electric field.

Karl Weierstrass published a counterexample in 1895, about one hundred year later
since the Laplace equation made his first appear on the stage of science. Although
his counterexample appears rather easy and natural nowadays, a shock to physical
belief was not easy to overcome and lead to an extensive study of various aspects of
the problem.

A set U is called regular if there exists a classical solution for the Dirichlet problem
with any continuous boundary data. However, several methods were developed
which associate a solution of the Dirichlet problem even for irregular set U, the



solution is harmonic on U, continuous on the boundary except of the set which is
negligible in a certain sense and this generalized solution coincides with the classical
one if that exists.

The properties of the generalized solution have been studied quite extensively. It
does not have to be continuous but it is a function of Baire class one. The original
argument was based on the study of so called fine topology — the coarsest topology
in which every superharmonic function is continuous. The fine topology has a lot
of bad properties, for example, it is not normal and compact sets are exactly the
finite ones. However, it has some nice properties and one of them is: every finely
continuous function is of Baire class one.

In 2003, a refinement of this statement was given by Lukes et al. They proved
that every generalized solution to the Dirichlet problem on U is a pointwise limit of
a sequence of harmonic functions on U continuous to the boundary. Basic ideas of
the proof are given in this thesis. In the same article, the properties of pointwise
limits of continuous harmonic functions are studied but a complete characterization
of the space was not made.

They were, however, able to achieve a rather general theorem for pointwise approx-
imation in simplicial function spaces which was used two years later by Gardiner
and Gustafsson to give a complete characterization of a similar space of pointwise
limits of functions harmonic on some neighbourhood of a given compact subset K
of R™. Their proof is also contained in this thesis.

The plan for the thesis is the following: Chapter one provides a short look at the
abstract Choquet theory of function spaces. Chapter two is devoted to deriving
an approximation theorem in simplicial spaces and contains also necessary back-
ground for that, mainly elements of convex analysis, the concept of state spaces and
a nontrivial characterization of Baire one functions. In Chapter three, Gardiner’s
characterization of pointwise limits of functions harmonic on some neighbourhood of
a given compact set is presented. The Chapter four is devoted to pointwise limits of
functions harmonic on a bounded open set U which are continuous to the boundary.
A necessary condition for a function to be in this space, analogous to the one of
Gardiner, is proved here. The rest of the chapter provides some sufficient conditions
and examples, but the complete characterization of this space still remains unclear.

Before proceeding, we give here some notation used in the following. The word
positive stays for greater or equal to zero, the word strictly positive for greater than
zero. Similarly, negative stays for less or equal to zero. Order, partial order, ordering
and partial ordering are synonyms for us, it is a binary relation which is reflexive,
antisymmetric and transitive.

The n-th dimensional Euclidean space is denoted as R™, where mostly n is assumed
to be greater or equal to two. Whenever P is a metric space and d its metric, the
symbol B(z,r) stands for open ball with the center x € P and radius r > 0,

B(z,r)={y € P:d(y,z) <r}.
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By open unit ball we mean the set B(0, 1).

In the first two chapters, however, we work mostly in the context of compact topo-
logical space K which is always meant to be Hausdorff. By C(K'), we mean a space
of all continuous real-valued functions on K equipped with the supremum norm
|lloo- Where it is obvious which norm is used we will write simply ||-|| without an
index.

If f: X — Y is amapping and A is a subset of X, then the restriction of f to A is
denoted as f|4.

If X is a topological space and A is a subset of X, then x4 denotes a characteristic
function of A defined by one on A and zero elsewhere.

If X is a Banach space or a locally convex space, we denote X* the corresponding
dual space (of all continuous linear functionals on X). On the dual space to the
Banach space, we recognized three different topologies: a natural one induced by
the dual norm, a weak topology w and a weak star topology w*.

For a subset A of a topological space (X, 7), we denote int, A or A°" the interior
of A in the topology 7. We write simply int A or A° in the case the topology is
natural for the space, namely for an Euclidean topology in R™. The same goes for
the closure A” and the boundary 9, A, we shall write simply A and 94 if no mistake
can arise. Especially, we write A" for the closure of A in the topology induced by

a given norm and A" resp. A" for the closure of A in the weak, resp. weak star
topology. We use a symbol A€ for the complement of A in X, that is, A= X \ A.

The space of all (signed) Radon measures on a compact space K is denoted as
M(K'). We often identify this space with the dual space (C'(K))* and we consider,
if not said otherwise, a weak star topology on this space. By M!(K), we denote a set
of all positive probability Radon measures on K which is a convex and w*-compact
subset of M(K).

In the context of a locally convex space E, we denote co A a convex hull of the
subset A of E, that is,

coA:{Z)\ia:i N >0, Z)\izlandxieA}
i=1 ;

i=1

and we denote €0 A a closed convex hull, that is the smallest closed convex set which
contains A. It is simple to see that

co A =coA.

And at last, we recall some classical theorems here for reader’s convenience.



Theorem 0.1. (Green formula)

Let V. C R" be a bounded open set with smooth boundary. Let U D'V be an open set
and f,g € C*(U). Then

B dg of
/V(ng—gAf) ax = /W <fane —gan) do

where 8%5 denotes the exterior normal derivative at points of OV .

Theorem 0.2. (Separation theorem for LCS spaces)

Let X be a locally convex space, A, B convex subsets of X, A compact and B closed.
Then there exists continuous linear functional F € X* and ¢ € R such that

F(a) <c< F(b), forallae A, b e B.

Theorem 0.3. (Tietze’s extension theorem)

If X is a normal topological space and f: A — [—1,1] is a continuous map from a
closed subset A of X into the real numbers carrying the standard real line topology,
then there exists a continuous extension of f to the whole space X.

Theorem 0.4. (Intersection of a system with finite intersection property)

If X is a compact space and F is a collection of nonempty closed subsets of X which
has a finite intersection property, that is, if Ay, ..., A, are elements of F, then the
intersection NI A; is nonempty, then

m F' is nonempty as well.
FeF



Chapter 1

Abstract Choquet theory

1.1 Definitions and basic properties

Definition. (Function space, representing measures, Choquet boundary)

Let K be a compact space. We shall call function space on K any subspace of C'(K)
which contains the constant functions and separates points of K, that is, if x,y are
elements of K and x # y, then there exists a function f in the function space such

that f(x) # f(y).

Let ‘H be a function space on K. Then any u € M'(K) is called H-representing
measure for x € K if

f(x):/dep, for any f € H.

A collection of all H-representing measures for z € K will be denoted by M, (H).

The set
Chy(K)={r € K : M,(H) = {e,}}

is called the Choquet Boundary of H.

We shall denote H a function space on compact space K during the rest of this
section.

Definition. (H-affine functions, barycentric formula)
A bounded Borel function f: K — R is called H-affine function if
flz) = / fdup  forall z € K and u € M,(H). (1.1)
K

The condition (1.1) will be called from now on the barycentric formula. A collection
of all H-affine function form a space of functions on K and it is denoted by A(H).
Its subspace which contains continuous H-affine functions is denoted by A°(H).

9



In the following, we shall denote (whenever it makes sense)

p(f) = /K fdp.

Let (£(K),||-]|) be a linear space of all bounded Borel functions on a compact space
K equipped with the supremum norm. If ' C £(K), then we define

Fr={pe M(K) : u(f)=0 forall fec F}.
We recall that M(K') denotes the family of all (signed) Radon measures on K.

Definition. (Completely H-affine function)

Let f: K — R be a bounded Borel function. We say that f is completely ‘H-affine
if
u(f)=0 for all © € H*.

The family of all completely H-affine functions will be denoted by A(H). Let us
remark that the set A°(H) of continuous completely H-affine functions coincides
with the closure of ‘H in the supremum norm.

A(H) = TH.

Indeed, if f € H, then there exists a sequence of functions {f,} in M such that
fn converges uniformly to f and by the Lebesgue dominated convergence theo-
rem p(f) = limu(f,) = 0. On the other hand, let us assume that there exists
f € A°(H) \ 'H. Then one can find a Radon measure (as a member of the dual space
of C(K)) such that u(f) = 1 and u(g) = 0 for all g € H. Since H D H, then u € H*
and this argument would lead to p(f) = 0. This is an obvious contradiction.

Definition. (H-convex functions, Choquet ordering, simplicial spaces)

Let ‘H be a function space on a compact space K. A bounded Borel function f on
K is called H-convez if

flx) <u(f) forallz € K and pu € M (H).

The family of all H-convex continuous functions on K forms a convex cone which
will be denoted K¢(H). Now, let i, v be positive Radon measures on K. We define

p=<v &, w(f) <wv(f) for each f € K°(H).

The relation ”<” is a partial ordering, so called Choquet ordering, on the set of all
positive Radon measures on K. A rather deep result of Choquet’s theory is that,
with respect to this ordering, there is always a maximal measure in M, (H).

A function space H is called simplicial if for each x € K there is a unique maximal
measure in M, (H).

10



If H is a function space, then we also define an upper envelope for an upper bounded
function f on compact space K as the function

ffrx—inf{h(z) : heH, h> fon K}.
Theorem 1.1. (Mokobodzki’s maximality test)

A positive Radon measure p on K is maximal if and only if u(k) = p(k*) for any
ke K(H).

Theorem 1.2. (Edwards separation theorem)

Let 'H be a simplicial function space, —f, g be continuous H-convex functions and
g < f. Then there exists a continuous H-affine function h such that

g<h<f onK.

We note that the Edwards theorem in fact characterizes simpliciality. These two
theorems above give us the following lemma which will be essential in deriving a key
result in the following chapter.

Lemma 1.3. Let H be a simplicial function space and 0, be the (unique) mazimal
measure in My (H). Then

6:(9) = 0:(9") = g"(x)  for any g € K°(H).

Proof. (cf Lukes et al. [17], Lemma 2.1-2.3.)

At first, we will show that whenever f is a continuous function on K and z a fixed
point of K, then there exists u € M, (H) such that f*(x) = p(f).

The mapping p : g — ¢*(z) is a sublinear functional on C'(K) and by the Hahn-
Banach theorem, we get a linear functional py on C(K) such that us(f) = f*(z)
and pr(g) < g*(z) for any g € C(K). Let now g be negative, then identical zero
function on K is an element of H and majorizes g, hence

g<0 = pur(g) <g'(z) =inf{h(x) : heH, h>gon K} <O0.

This means that 11f is a positive linear functional, thus positive Radon measure on
K. If now h € 'H, then

py(h) < h(z) = h(x),  —pp(h) = pp(=h) < (=h)"(z) = —h(z).
So ps(h) = h(z) for any h € ‘H. Therefore, p is a H-representing measure of z.

This claim is still valid if we take f only upper semicontinuous on K. Let us consider
a lower directed family G of all continuous functions which majorizes f on K. For
each g € G we can find a H-representing measure p, of = such that u,(g) = g*(z).
Given ¢ € G, we denote

M,={pg : g€G, g <}

11



Since M, (H) is w*-compact and Ew* is a w*-closed subset of M, (H), for every

v € G is the set mw* a w*-compact set. Therefore, the intersection taken over the
entire family G is nonempty and there is

we (M,

peg

It is obvious that p is an element of M, (H). We observe

inf{v(p) :ve M,} =inf{v(p): v e Ew*} < u(yp) for each ¢ € G.
Hence

[ (=) inf{g"(z) : g € G} =inf{uy(g) : g€ G}
inf{inf{pe(¢) : g€G, g<¢}:pe G} <inf{u(p) : p€G}

= u(f) <inf{u(h) : h>f, he H} =inf{h(z) : h> f, he H} = f*(z)

We shall need one other claim before proving the statement. In the definition of the

upper envelope, we take an infimum over functions in the function space. We will
show that no difference is caused by taking an infimum over all continuous H-affine
functions.

Given a bounded function f on K, fixed z € K and g € A°(H) such that g > f
on K, by the previous part we can find a measure u € M, (H) which satisfies
u(g) = g*(x). Since H is a subset of A°(H), it follows

g(x) =u(g) = g"(x) > f*(x) = inf{h(z) : heH, h> f}
> inf{g(z) : g€ A(H), §> f}

and by taking an infimum over all functions in A°(H) on the left side, we arrive to
the equality
f(x) = inf{g(z) : g€ A(H), g = f}.

We are now prepared for the proof of our lemma. Fix now g € K°(H), we want to
show that

02(9) = 02(9") = g"(2).

The first equality is a direct consequence of the Mokobodzki test. For each h € 'H,
since the measure §, is an element of M, (H), we have J,(h) = h(z). Furthermore,
the family {h € A°(H) : h > g} is lower directed due to the Edwards theorem,
since a simple reasoning shows that the function —min{fi,..., f,} is a H-convex
function if f1,..., f, are elements of H. Hence,

g (x) = if{h(z) : he A(H), h > g}
= inf{d,(h) : he€ A(H), h > g}
= 0,(inf{h : h € A°(H), h > g}) = 0.(g").

The proof is complete. 0

12



1.2 Subclasses of Baire-one functions

Definition. (Subclasses of Baire-one functions)

We recall that f is a Baire-one function on K if there exists a sequence {f,} of
continuous functions on K such that f, — f pointwise on K.

Now, we define the set

Bi(H) = {f:K — R, there exists a sequence {f,} in H such that
fn — [ pointwise on K}.

Furthermore, we shall denote by B?(H) a family of bounded elements of B;(H) and
B (H) a subset of By (H) defined as functions which are pointwise limit of bounded
sequences of elements of H

BY(H) = {f:K — R, there exists a bounded sequence {f,} in H such that
fn — f pointwise on K}.

In the following, we shall denote By (K) = By (C(K)) where By (C(K)) is in fact the
space of Baire-one functions on K. Analogously, we shall denote B¢(K) = B(C(K))
and B (K) = B®(C(K)).

13
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Chapter 2

Approximation theorem in
simplicial spaces

The purpose of this section is to establish the following theorem about pointwise
approximation of bounded, Baire-one and H-affine functions by continuous and H-
affine functions.

Theorem 2.1. (Pointwise approximation of bounded H-affine functions)

Let K C R™ be compact and H be a simplicial function space on K. Let f : K — R
be bounded, Baire-one and H-affine. Then there exists a bounded sequence {h,} of
continuous H-affine functions which converges pointwise to f on K.

2.1 Affinity on compact convex sets

In this section, we shall recall a small part of functional analysis on compact convex
sets and derive results that will be of use in the theory of state spaces. The concept
of state space is an idea to inject a general function space into a suitable compact
convex space in which we can use a lot of means presented here.

Definition. (Affine function, extreme points, barycenter)

Let X be a compact convex subset of a locally convex space. Then we call f : X — R
an affine function on X if

fOz+ (1 =Ny)=Af(z)+(1—=X) f(y) forall z,y € X and X € [0, 1].

We denote the space of all continuous affine functions on X by A(X) and the space
of all affine functions on X by 20(X). Obviously, A(X) is a function space on X.

We call z € X an extreme point if there do not exist different points x,y of X and
A € (0,1), such that z = Az + (1 — \)y. Alternatively, z is an extreme point if and
only if z = xTer for some z,y of X implies that x = y. We denote

ext X = {z € X : x is an extreme point of X}.

15



We recall that the set M!(X) denotes the set of all (positive) probabilistic Radon
measures on X. Let u be in M'(X). We say that a point x of X is a barycenter of
the measure p and we also say that the measure p represents x if

p(h) = h(x) for each h € A(X).
Then we denote the barycenter of p as r(u).

Theorem 2.2. (Existence and uniqueness of the barycenter)

Let E be a locally conver space, X C E be a compact convez set and p € M*(X).
Then there is a unique point x € X such that x = r(u).

Furthermore, the mapping r : MY X) — X defined as v : p v r(p) is surjective,
affine and continuous (if we take the space M*(X) with w*-topology and X with the
original topology given by E ).

Proof. Uniqueness: Let us consider x,y € X which satisfy the condition on barycen-
ter. Then h(z) = p(h) = h(y) for all h € A(X) and it implies that x = y, since
the space of all continuous affine functions contains all continuous linear functionals
and these functionals separate points of F.

FEzistence: For h € A(X), consider the set
Xp={xe X : ulh)=h(z)}.

We would like to show that
[ Xu#0.
heA(X)
If o, — x, then h(z,) — h(z) by continuity. But h(z,) = u(h), hence h(x) = u(h)
and this implies that X}, is closed, and therefore compact. Therefore, it is sufficient
to prove that the system {X}, h € H} has a finite intersection property.

Choose hy,...,h, € A(X) and define the mapping

Then ¢ is continuous and ¢(X) is a compact convex subset of R”. We denote
c=(u(hy),...,u(hy)). If ¢ € (X), there is nothing else to prove.

Let us assume that ¢ & ¢(X). Then there exist « = (aq,...,a,) € R and d € R
such that

c-a<d<£ré1)r(10z-go(x).

(It is a consequence of the earlier mentioned separation theorem and the fact that in
Hilbert spaces the continuous linear functionals can be represented by the Frechet-
Riesz theorem as elements of the space through scalar product.) Thus we have

n

;u(hi)ai <d< min 2 hi(z) oy

16



and hence
1 (; aihl) <d< lgél)l(l (ZZ_; Oéihi> (x).

But f=>" a;h; € A(X) and p € M (X), so that

u(f) = /X () dp(z) > min f(2)- /X L dy = min f(z) - p(X) = min f(z).

zeX reX

This is a contradiction.
The mapping r is obviously surjective. For any = € X it follows that r(e,) = x.

The mapping r is affine on M!(X). Given 0 < o < 1 and py, iy € M(X), we get
for every h € A(X)

hr(ops + (1 = a)pz) = (o + (1 — a)u2)(h)
= api(h) + (1 — a)ua(h)
= ah(r(pm)) + (1 —a) h(r(u2))

The mapping r is continuous if we consider M*(X) with the w*-topology and X
with the w-topology. If an arbitrary net {u,} converges in the w*-topology to p,
then

ta(h) — p(h) and then h(r(pa)) — h(r(p)) forall h € A(X)

and the family of all continuous affine functions obviously contains the family of
all continuous linear functionals on X. But it is well known fact that on convex
compact subsets of locally convex spaces the weak topology and the initial locally
convex topology coincide. O

Theorem 2.3. (Krein-Milman theorem)

Let X be a compact convexr set in a locally convex space. Then X 1is equal to the
closed convex hull of the set of extreme points of X, that is,

X =¢o ext X.

We will omit the proof here since it can be found in almost every textbook of
functional analysis, for example [15], [18] and others. As its consequence, we shall
derive a theorem on integral representation and another theorem of Milman which
will be needed later.

Theorem 2.4. (Integral representation theorem)

Let X be a compact convex set in a locally convexr space. Then for every point x of
X, there exists a representing measure p for x which is supported by the closure of
the set of the extreme points of X.

17



Proof. If x € X, then, by the Krein-Milman theorem, x € 0 ext X. So there exists
a net of finite sums {> 1 ¢fa?}, where 2§ € ext X and > % ¢ = 1 with ¢ > 0.
Then the family of measures

Na
{Z Cf'ez0 to is a net in M (ext X)

=1

and, since M!(ext X) is a w*-compact, there exists a subnet which converges in the
w*-topology to a measure y. It is not difficult to prove that u € MY(X) and pu is
a representing measure of x because for every h € A(X) we get

p(h) = lim (Z cffgr?) (h) = limz cth(xf) =limh (Z cffxff) = h(x).
Obviously, i (as a measure on X) is carried by ext X. O

Theorem 2.5. (Milman)

Let X be a compact convex set in a locally convexr space. Then

FCX F=X — extX CF.

Proof. Let us suppose that there exists 2 € ext X \ F. We claim there exists
a continuous affine function f on X such that f(z) > 0 > max f(F). If that is so,
then

f(z) > 0 > max f(co F)

and then ¢o F' # X which is a contradiction.

What remains is to prove the claim. Let x be an extreme point of X and U be its
open neighbourhood, then W = X \ U is closed set. If now z € @@ W then due to
the theorem of integral representation there exists a representing measure p such
that u € MY (W). In a while, we will show that the only representing measure for
an extreme point is a Dirac measure and that would be a contradiction. Let u be
a representing measure for x and p # ,. Then there is a compact set K such that

px and p|x\x are nontrivial measures. Then p, = s in MY(X) and so it is

n(EK)
o = % The measure p is then a convex combination

= pu(K)py + (X \ K)o,
which implies that x is not an extreme point of X since
x=r(p) = p(I)r(p) + p(X\ K)r(ps)

and at least one of these measures does not have x as its barycenter. O

We close this section with a lemma on density of continuous linear functionals in
affine functions which we shall need later in the theory of state spaces and with
a theorem of Mokobodzki which is an essential tool in deriving the approximation
theorem mentioned at the beginning of this chapter.
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Lemma 2.6. (Density of continuous linear functionals in continuous
affine functions)

Let E be a locally convex space and X C E be a compact convex set. Then
Elx + R = A(x).
That is, for every f € A(X) and ¢ > 0 there exist g € E*|x and ¢ € R such that

If =g+ )l <e

Proof. Let f € A(X) and € > 0 be given. Without any loss of generality, let us
assume that 0 < f <1 (since continuous functions on compact set are bounded and
attain their minimum and maximum, we can rescale f by shifting and multplying
with a suitable real constant). We denote

Ki={(z,t) e X xR : 0<t< f(a)},

Ky={(z,t) e X xR : f(z)+e <t <2}

Then K, Ky are compact, convex and disjoint. Hence, by the separation theorem
(0.2) there exist ¢ € (X x R)* and ¢ € R such that

max p(K;) < ¢ < min p(Ks).

But the equality
(ExR)"=FE"xR

implies that
o(x,t) = g(x) + at, where g€ E* and o € R.

Thus we get
o, f(z)) <c <o, fz)+e)
and by the equality above
9(@) + af(z) <c<glx)+a((f(z) +e).

It is obvious that a > 0 (because ae > 0) and therefore

c—g(r)

flx) < N < f(x)+e.
Let us define
c—g(zr) ¢ 1
olr) = I = £ g
Then g € E*|x + R and ||lg — f] < e. O
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The proof of the following theorem is omitted here. One can find it, for example,
in Lukes et al. [17]. It is similar to the theorem we want to derive; in fact, with
a suitable chosen function space H one can see it as a special case. In the following,
we will be doing nothing less than finding a suitable connection between general
function spaces and compact convex spaces presented in this section. Such a relation
provides the concept of state spaces which we develop in a while later. And then
we will be able to carry the following theorem in a more general settings of function
space.

Theorem 2.7. (Mokobodzki approximation theorem)

Let X be a compact convex set in a locally convexr space and f a Baire-one affine
function on X. Then there exists a bounded sequence of continuous affine functions
on X which converges pointwise to f on X.

2.2 State space
In this section, let ‘H be a function space on a compact space K. We denote by H*
its dual space, that is, the space of all continuous linear functionals on H.

Definition. (State space)

We define the state space of H as a topological subspace of the dual space H*
equipped with w*-topology

SH)={peM" : ¢20, p(1) =1}

Proposition 2.8. Let H be a function space on compact space K. Then there exists
a mapping (C(K))*/HLt — H* which is an isomorphism and homeomorphism if we
endow (C(K))* and H* with w*-topology and the quotient space (C(K))*/HL with
the corresponding quotient topology.

Proof. At first, let us describe a dual space H*. By the definition of the dual space
H*={f:H— R, fislinear and continuous},

(C(K))"={f:C(K)— R, fislinear and continuous}.

Since H is a subspace of C'(K), we may construct the dual space H* by simple
restriction of elements of (C'(K))* on H and identifying those functionals which give
the same value on the elements of H. As for the representing functional, the natural
option is to take ones that are zero on the complement of H.

Now, we consider a mapping
U (C(K)) /M =K U([f]) = fln, where f € (C(K))".

We shall prove that this mapping is an isomorphism and w*-homeomorphism.
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1. The mapping V is defined correctly. Indeed, if f|y # g|x, then (f — g)|n # 0
on H. It follows that U[f — g] # [0] which implies W[f] # W[g]. (If that was true,
then f would be equal to g + h, where h is in H*. Then f — g belongs to H* which
means f —g=0on H.)

2. The mapping V is injective. Whenever f|y = g|y, then (f — g)[» = 0 on 'H
which means that (f — g) € H* and [f — g] = [0] (the equivalence class is fully and
uniquely determined by any of its elements). Thus [f] = [g].

3. The mapping ¥ is obviously surjective.

4. The mapping ¥ is w*-homeomorphism. Recall, that ¥ is continuous if and only if
Wor is continuous where 7 is the quotient mapping, namely = : f — [f]. Hence, it is

enough to prove that for every net f, - f in (C(K))* the net ¥(m(f,)) converges
in w*-topology to W(mw(f)). However, that is trivial because

fo 'S f = fula) = f@) Vo € O(K) = faln(z) — flu(z) Yz e H =

= U(n(fa)(@) = W(r(f)(@) Vo e H = W(r(f) = U(r(f)).

The inverse mapping ¥~! is continuous either because W' = 7 o I, where [ is an
injection of H* into (C(K))* given by I(f|y) = f, where f = f|y on H and zero
elsewhere. Then the proof of continuity follows the scheme above in the reverse
direction and the only non-equivalent step is easily overcome. O

It is well known that the Riesz representation theorem allows us to identify spaces
(C(K))* and M(K). Hence, we can identify the space H* with the quotient space

(M(K), w*)[H.
The quotient mapping will be denoted by 7 and
S(H) = m(M'(K)).

Indeed, if p € M'(K), then u € (C(K))*, u(1) =1 and p > 0. On the other hand,
if o € S(H), then by the Hahn-Banach theorem there exists p € (C'(K))* such that
=@ on H and ||u| = |l¢]]. But 1 € H, hence p(1) = ¢(1) = 1 and since p is
positive, ||u|| = p(1) = 1. Tt implies that u € M (K).

Now, we define two mappings. The first is a mapping which ”identifies” points in
K and in the state space S(H). The second mapping ”identifies” the function space
‘H with affine functions in the state space.

Let us note that the state space S(H) is a convex and w*-closed subset of the unit
ball in H* (hence w*-compact set). Hence, to talk about affine functions in the
following definition make sense.

Definition. Let K be a compact space and H be a function space on K. We define

¢: K — S(H), d(x) = Sq, where s,(h) = h(x) for h € H.
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It easily follows that
¢(x)(h) = sz(h) = h(x) = es|u(h) = 7(ez)(h) = ¢(x) = 7(ex).

Since S(H) is a convex and w*-compact set, it makes sense to denote by A(S(H))
the collection of all affine functions on S(H). Then we define a mapping

®:H— AS(H)), ®(h)(s) = s(h), s e S(H).
Let u € MY (K). Then we naturally define ¢u as a functional on S(H) by

(eu)(f) =w(foo),  feSH).
Then ¢p € M*(S(H)) and we denote by r(¢u) the barycenter of the measure ¢pu.

The basic properties of mappings ¢ and ® are presented in the following proposition.

Proposition 2.9. (Basic properties of ¢ and ® mappings)

Let K be a compact space and H be a function space on K. Then

(i) ®(H) is a dense set (in the norm topology) in A(S(H)),
(ii) the barycenter mapping r satisfy the equality
r(¢n) = m(p).

Especially,
T(Qb,u) = ¢($), Jor all i € M$<H)7

(111) the mapping ¢ : K — S(H) is a homeomorphism into S(H) and ¢(Chy(K)) =
ext S(H),

(iv) the mapping ® is an isometric isomorphism between H and A(S(H)),

(v) moreover, ® is surjective if and only if H = H. Then there exists an inverse
mapping ®~1 and it satisfy

O YF)=Fo¢, F e A(S(H)).
Proof. We shall omit several techniqualities in the proof of several parts of the
lemma.
(i) We know from the density lemma (2.6) that
((H*,w")" + R) |s(3) is norm-dense in A(S(H)).

Hence
(®(H) + R) |s(2) is norm-dense in A(S(H))

and because
[®(h) +c|(h) =s(h)+c=s(h+c)=[P(h+c)|(h)
we have that ®(H) is norm-dense in A(S(H)).
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(i)

(iid)

We want to prove the equality r(¢u) = w(u) for every p € M*(K). Because
of the part (i), it is enough to prove this on elements of ®(H). Let h € H,
then by the definition of the barycenter, the definition of the measure ¢u, the
definition of the mappings ®, ¢, 7 and again ¢ we get

O(h)(r(op) = (op)(B(h)) = u(®(h) 0 ¢) = /K(@(h))(cb(fv))du(x) =

= /K ¢(x)(h) du(x) = /K h(z) dp(z) = p(h) = (7(p))(h) = (2(h)) (7 (1))
Thus the equality r(¢u) = m(p) is established. Now, if u € M, (H), then
r(op) = m(p) = m(er) = o(z)

because u(h) = h(z) = €,(h) for all h € H and therefore u and ¢, represent
functionals in the same equivalence class.

The mapping ¢ is correctly defined. Indeed,

o(z) = p(y) = ¢(z)(h) = ¢(y)(h) Vh e H —

= h(x)=h(y) VheH = ==y
because H separates the points of K.

The mapping ¢ is injective. Since H separates the points of K, if x # y then
there exists h € H such that h(x) # h(y). Therefore, ¢(x) # ¢(y) because

¢(x)(h) = h(z) # hy) = ¢(y)(h).

The mapping ¢ is continuous. It is sufficient to prove that if the net x, — x
in K, then ¢(x,) — ¢(x). By continuity of functionals in H, we get

To — ¢ = h(z,) — h(z) Vhe H =

= (o) (h) — d(z)(h) Yh e H = ¢(wq) > ¢(a).

Now, it remains to prove that ¢(Chy(K)) = ext S(H). At first, we will show
that S(H) = co¢(K). Since ¢(K) C S(H), S(H) convex and w*-closed, it
follows that co ¢(K) C S(H).

On the other hand, consider s € S(H) \ €0 ¢(K). Then by separating theorem
in a locally convex space (0.2) there exists F' € (H*,w*)* and ¢ € R such that

F(s) > ¢ >sup F(co¢(K)).
Then there exists h € H such that F(s) = s(h) if s € S(H). Hence

s(h) > ¢ > sup (¢(z)) (h) = sup h(z).

zeK rzeK
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However, there is € M'(K) such that p|g = s a this implies

p(h) > Sg}}g h(x).

Since p is nonnegative and ||| = 1, this is an evident contradiction.

Now, consider s € ext S(H). Then by Milman theorem (2.5) s € ¢(K) and
there is x € K such that s = ¢(x). We want to show that the only H-
representing measure for x € K is the Dirac measure. So, let us choose
p € My(H). Then by (ii) r(¢u) = ¢(x) and therefore pu € Mye)(S(H)).
But s = ¢(x) is an extreme point so ¢ = g4(;). Since ¢ is injective, p has to
be the Dirac measure ¢,.

For the converse inclusion, consider x € Chy(K) and assume that ¢(z) =
%(31 + 89) and s; # so. Then there are uy, s € MY(K) such that |y = s
and o]y = s9. Therefore,

S0+ 1) (h) = (st + 52)(8) = 5(h(x) + h(x)) = hx)  VheEH

so it follows because the Dirac measures are the extreme points in M!(K)
that

1 1
§(M1+M2) € M,(H) = §(ﬂ1+ﬂ2)=€x ==
= =l =&, => S$1 = S92 = ().

This is a contradiction.

We should prove at first a little debt that the mapping ® is defined correctly.
So let hy, hy € ‘H and it follows

O(hy) = P(hy) = P(h1)(s) = P(ha)(s) Vs € S(H) =
= s(hy1) = s(hy) Vs € S(H)
and since ¢,y € S(H) for each x € K, we have
ex(h1) = ep(hy) Vo € K = hy(x) = hg(x) Ve € K = hy = hs.
Since every isometric mapping is injective, it is sufficient to prove
|P(h)|loc = ||h]|ee for an arbitrary h € H.

That follows from the following inequalities. The first one is justified by for-
merly proved inclusion ¢(K) C S(H), the second one by the elementary fact

that |p(h)| < ||p]l - sup,er [A(z)].

[2(A)|lo = sesggﬂ@(h)(s)! = sup |s(h)] > ig}gw(w))(h)! ZSEIg!h(w)\ =

seS(H

= [[hllc = sup |u(h)] = sup [s(h)] = [|P(h)]le
peML(K) s€S(H)
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(v) Let us assume that H = H, especially H is a complete metric space. Since
®(H) is dense in A(S(H)) and ® is an isometric mapping (hence uniformly
continuous) and therefore ®(H) is complete — hence closed in A(S(H)) — it
has to be ®(H) = A(S(H)).

On the contrary, if ® is onto, then A(S(H)) = ®(H) is complete. Every
isometric isomorphism is obviously an uniform homeomorphism. Therefore,
‘H has to be complete and therefore closed.

Lastly, let us take an arbitrary F' € A(S(H)). Then there h € H such that
F = ®(h) and

(Fop)(x) = Fp(x)) = ®(h)(p(z) =

So we have proved that

and the proof is complete. Il

2.3 Characterization of Baire-one functions

Theorem 2.10. (Characterization of Baire-one functions)

Let P be a metric space and f : P — R. Then the following are equivalent:

(i) f is of Baire class one,

(ii) for each a € R, the sets {f > a} and {f < a} are Gs-sets.

Proof. (i) = (ii): Let f : P — R be a Baire-one function. Then there are
continuous functions f,, : P — R such that f(z) = lim f,(z), x € P.

Since f(x) = lim f,(x) = sup,>;(infz>, fr(x)), we see that f is an increasing limit
of upper semicontinuous functions. If f(x) < «, then infy>, fi(z) < a as well, so

{féa}zg{f<a+%}zg{g£fk<a+%}-

But the set {¢g < a} is open whenever @ € R and ¢ is an upper semicontinuous
function.

(11) = (i): We shall give the proof a little while later. O

Let P be a metric space and F be a family of real valued functions on P which
satisfies the following conditions:
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L1. F is a lattice cone, that is, for every f,g € F and a > 0 we have

f+geF, afeF, max{f,g}€F, min{f,g} € F.

L2. F contains constant functions.

L3. F is closed on uniform convergence.

Then we denote
Fl ={f : there exists an increasing sequence {f,} of F such that f, — f pointwise}

Fl= {f : there exists a decreasing sequence { f,} of F such that f,, — f pointwise}

We say that a set A is F-separated from B if there exists f € F such that f(A) = {0}
and f(B) = {1}. Obviously, A is F-separated from B if and only if for every a < b
there exists g € F such that g(A) = {a}, g(B) = {b} and a < g <b.

Lemma 2.11. Let F be a system of functions which satisfies conditions (L1) and
(L2). Then both of systems F' and F' satisfy all conditions (L1)-(L3).

Proof. (L1) and (L2) are almost obvious. For (L3), let us assume that a sequence
{f.} in FT converges uniformly to f. Without any loss of generality, we may assume
that

1
|fk—f|<E for each k € N,

otherwise we may choose a suitable subsequence. Now, we define

1 1
hk:max{fl_la f2_§7"'7 k_E}

Then hy, € F' and hy, / f. Hence f € F'. O

Lemma 2.12. (Abstract in-between theorem)

Let F be a system of functions which satisfies (L1)-(L3) and let t < s be bounded
functions on P. Then the following are equivalent:

(1) there exists f € F such thatt < f <'s,
(i1) if a < b, then {s < a} is F-separated from {t > b}.
Proof. (i) = (it): The function
h(z) = max{a, min{ f(z), b}

is obviously a member of the lattice cone F, h(z) = a on {s < a}, h(z) = b on
{t > b} and a < h(z) < b for each x € P. In view of the definition, the sets {t > b}
and {s < a} are F-separated by the function h.
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(11) = (i): Without any loss of generality, we may assume that 0 <t < s < 1,
otherwise we can rescale both of these functions (by adding and multiplying with
suitable constants).

Let now € > 0. Then there exists p € N such that £ < ¢ and for each k = 1,2, ..., p,
due to the assumption on F-separation, we can find f, € F such that

k
ngké_ ODP,
p
k—1
fr=20 0n{3<—},
p

Let
f(z) = max{fi(z),..., fp(z)}.

Then f € F and f satisfies the inequality for each x € P

Hz) — ¢ < t(x) —% < (@) < sla) < sla)

(If% <t(x) < % for i € {0,1,...,p — 1}, then f(z) > fi(z) = zl; = %—% > t(x) — %.
The other part of inequality is valid due to similar reason.)

So, for every € > 0, there exists f. € F such that
t—e< f.<s+¢ on P.

Hence, there exists a sequence { f,} in F such that

1 1

t—— < f, < —.

2n - f =S + 2n

We put
1. 1 .
hi = fi, hp, =max{h,_; — 2—n,m1n{hn_1 - 2_n’f”}}’ f =limh,,.

Obviously, each h,, € F,

1 1
t—2—n§h §8+2—n and if n — oo we get t< f<s.

Hence, f has to be in F because h,, converges uniformly to f. O

27



Lemma 2.13. (Baire-one functions are uniformly closed)

Let P be a metric space. Then the space B1(P) is closed under uniform convergence.

Proof. Let f be a Baire-one function. Then

f(a) =lim fu(z) = sup(inf fi(x))

neN k2n
= Inflsup fu(@))
It implies that
B,(P) c C™Y(P)nCY(P).

We will prove the converse inclusion. Let now be h € CH(P) N CH(P). Then
there exist sequences {g,} in C*(P) and {f,} in CT(P) such that g, / h and
fn \\ h. Obviously, g, < h < f, for each n € N. We want to show that there exists
h, € C(P) such that g, < h, < f, for each n € N because then h,, — h pointwise
and therefore h € By(P).

For this purpose, we will use the previous Lemma (2.12) (with F = C(P)), so we
have to show that for each a < b there exists a continuous function which separates
{gn < a} and {f, > b}. In view of Tietze’s extension theorem, it is enough to show
that both of these sets are closed, since they are obviously disjoint. But g,, € C*(P),
that is, there exists an increasing sequence (g, ;) C C(P) such that g, — g, as
k — oco0. So

{gn < a} = m{gn,k < a}.

The inverse image of closed set is a closed set and every intersection of closed sets
is a closed set. The set {f, > b} is closed due to similar reason.

So we have proved that
B,(P) = CH(P)nCH(P).

Due to Lemma (2.11), the space B;(P) is closed under uniform convergence. O

Lemma 2.14. Let G be a G5 subset of a metric space P. Then there exists f €
CHP) such that 0 < f <1 and G = {f = 0}.

Proof. Let G = N2, G,, where G,, are open sets. We consider the function

[e.e]

1

=1-Y —xa..
f o X G

n=1

In view of Lemma (2.11) it is enough to prove that ¢, belongs to C1(P). However,
if U is an open set, there exists u € C'(P) such that u > 0 on P and U = {u > 0}
(for example, u(z) = dist(x, P \ G)) and obviously

mln{lvng} / XU-
So xv € C1(P) for every U open. O
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Proof of the implication (ii) = (i) of the main theorem. It follows from the con-
dition (i7) that for each a < b in R the sets {f < a} and {f > b} are disjoint G,
sets. Hence, there are functions hy, hy € C*(P) such that

0<h<l i=12% {f<a}={m=0}, {f=b}={h=0)

Now, we consider a function

 hithy
Obviously h € Bi(P), h=0on {f < a} and h =1 on {f > b}; so these sets are

By (P)-separated and by Lemma (2.12), there exists u € By (P) such that f < u < f.
Inevitably, f is a function of Baire class one. O

h

2.4 Preparatory results

Lemma 2.15. Let K be a compact space, i € MY(K) and f be a pointwise limit
of a bounded sequence of continuous functions on K. Then the function

g:p—p(f)

is a Baire-one function on M'(K).

Proof. There is a bounded sequence {f,} in C(K) such that f, — f pointwise
on K. Then the function g, : u +— p(f,) is w*-continuous by the definition of
w*-convergence

Mo w—*> n = /La(fn) - ﬂ(fn)
Then
In(p) = p(fn) — n(f) = g(f)

so we have a sequence of w*-continuous functions g, which converges pointwise to
g. Thus, by the definition, g is a Baire-one function on (M!(K), w*). O

Proposition 2.16. Let 'H be a function space on a compact space K and [ be
a bounded Baire-one function on K. Then the following conditions are equivalent:

(i) f € BY(H),
(i) f is completely H-affine,

Proof. (cf. Lukes et al. 2003 [17])

(i) = (ii): Since f € BY(H), there exists a bounded sequence {f,} in H such
that f, — f pointwise and if u € H*, then we have by the Lebesgue dominated
convergence theorem

u(f) = lim p(f,) = 0.
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(ii) = (i): Let us define
F:seSH)— ps(f) where i, € MY(K) and 7(u,) = s.

The function F' is correctly defined because such a measure exists (7 as a quotient
mapping is automatically surjective) and the value does not depend on the choice
of the measure. If w(us) = m(As), then both measures are in the same equivalence
class and therefore j; — Ay € H+. Hence,

(:us_/\s)fzo — ﬂs(f) :>\s<f)

The function F' is an affine function on S(H). If sy, s2 € S(H) and A € [0, 1], then
we have (by the Lebesgue theorem)

F(As1 +(1=X)s2) = fias+(1-x)ss(f)
= lim fons,+(1-2)ss (fn)
= lim(As; + (1 — A)s2)(fn)
= AMimsi(f,) + (1 = X) lim so(f,)
= Mim g, (fo) + (1= X) lim g, (f)
= Mg, (f) + (1= Mg, (f)
= AF(s1) + (1= X)F(s2).

We have to verify that f = F o ¢. Each measure u € M!(K) belongs to one
equivalence class determined by the quotient mapping 7 and uniquely determines
an element s in the state space S(H). Hence,

F(r(p) = F(s) = ps(f) = p(f)

because we have proved in the beginning that the value F(s) does not depend on
the choice of a measure in the equivalence class.

But we have proved in the Proposition (2.9) that w(u) = ¢(x) for all p € M, (H)
and thus

f(z) =e(f) = Fln(er)) = F(o(x)), zeX,
so the equality f = F o ¢ is successfully verified.

It remains to prove that F' is a bounded and Baire-one function on S(H). It is quite
obvious that F' is bounded because F(s) = us(f), ps € M*(K) and f is bounded
on K

F(s)] = pe()] < sup £ [l = sup | f@), s € S(30).

To show that F is a Baire-one function, it is sufficient to prove that F~(U) is
an F,-set whenever U is an open subset of R (due to Theorem (2.10)). We have
F(m(w)) = p(f), so for an open set U C R,

FHU) = {r(p) : pe€ MY(K), F(r(p) e Uy =n({p : p € MY(K), p(f) € U}).
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But the quotient mapping 7 is continuous and closed and the mapping g : u — u(f)
is a Baire-one mapping by the previous Lemma (2.15). So

FH(U) = (g~ (V))

and since mappings preserve unions, closed mappings map closed sets to closed sets
and due to (2.10) Baire-one mappings map open sets to F,-sets.

Now, by Mokobodzki’s approximation theorem (2.7), there exists a bounded se-
quence {F,} in A(S(H)) such that F,, — F on S(H). Then f, = F, 0 ¢ is an
element of H, this is a consequence of the Proposition (2.9), part (v) in which we
assume that the function space is uniformly closed.

Thus we have f,, = F,o0¢ — Fo¢ = f,so f € B(H).

It remains to prove that B%(H) = B (H). One inclusion is trivial, for the other: if
there are f, € H, f, — f pointwise, then for given f,, we have g, € H such that
|gn — full < L. So for each z € K and € > 0 there is k € N such that + < ¢/2 and
for every n > kit is | fo(z) — f(z)| <€/2 so

|gn(2) = f(2)] < lgn(2) = fu(@)] + [fu(z) = f(2)] <e.

Hence g, — f pointwise. The proof is complete. O

2.5 Proof of the main theorem

This section follows closely the work of Lukes et al.

Proof of the main theorem. We need to proof that every bounded Baire-one H-affine
function on K is a pointwise limit of bounded sequence of continuous H-affine func-
tions, that is, !

BY(K) N A(H) C BY'(A°(H)).

For that purpose, it is enough to show that every bounded Baire-one H-affine func-
tion on K is completely A°(H)-affine. (Here, it is essential that the function space
H is simplicial.)

If f is H-affine function, then

f<x>::u(f)v r € K, [LGM;AH)

Since H is simplicial, there exists a unique maximal measure 6, € M, (H) and it is
obvious that

0 (f) = f().
So it is sufficient to prove that the function z — d,(f) is completely A°(H)-affine,
that is, if p € (A°(H))*, then pu(HY) = 0.

1) the other inclusion is obviously valid due to the Lebesgue dominated convergence theorem
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1. step: let now g be a continuous H-convex continuous function and H9(z) := d,(g).
Then (see Lemma (1.3))

H9(x) = 8,(9) = 9" (x)
and it follows that HY is an upper semicontinuous on K, hence obviously Baire one

on K. Let p € (A°(H))* be given and let u = p; — pp where puy, o are positive
Radon measures on K. Then

m(H?) = p(g") = m(@nt{h : he A(K), h = g})
= inf{ui(h) : h e A h>g}
= inf{us(h) : h e A h>g}
= pp(inf{h : he A(H), h > g}) = pa(g”) = pa(H?)
since pu(h) = 0 for any h € A°(H) (hence py(h) = pa(h)) and since the family of

functions {h € A°(H) : h > g} is lower directed due to the Edwards separation
theorem.

H),
H),

2. step: let now g be a continuous function on K. Due to the Stone-Weierstrass
theorem, the space K°(H) — K°(H) is uniformly dense in C(K) and therefore, the
function HY is again completely H-affine.

3. step: let now F be a family of bounded Borel functions on K such that for f € F
the function H” is a Borel function and completely A°(H)-affine. Then F contains
all continuous functions on K and, obviously, F is closed with respect to limits of
bounded sequences. Thus F contains all bounded Borel functions. ([l
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Chapter 3

Pointwise limits of functions in
Hy(K)

From now on, we divert our look from abstract theory in simplicial spaces and close
our attention on the classical harmonic case on R™. At first, some definitions and
notations. Let U be an open subset of R". We say that h : U — R is harmonic
on U if

Ah=0 onU.

Let now U be a bounded open subset of R™ and K be a compact subset of R". We
will consider two spaces of harmonic functions in the following.

H(U)={f:U — R, fisharmonic on U and continuous on U},

Ho(K)={f: K — R, fisharmonic on some neighbourhood of K}.

In this chapter, we will be concerned mostly about the pointwise limits of functions
in Hy(K) and give here a complete characterizations of these functions which was
proved in 2005 by Gardiner and Gustafsson [14].

Theorem 3.1. (Gardiner, Gustafsson (2005)) Let K C R" be a compact set
and f : K — R. Then f is a pointwise limit of functions in Hyo(K) if and only if
the there exists a sequence of compact sets K. /* K and the following conditions are
satisfied:

(i) f| Ky is bounded, Hy(Ky)-affine and Baire-one,
(i1) every bounded component of R" \ K intersects R"\ K.

In the following, we will represent their proof of this characterization.
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3.1 Preparatory results

At first, we present a simple lemma. See, for example, Dautray and Lions [8], Lemma
11.4.2.1.

Lemma 3.2. Let U be an open set in R". There exists an increasing sequence of
reqular bounded open sets with boundaries of class C*> whose union is U.

Sketch of the proof. Let us choose for every x € U an open ball B(z,r,) such that
B(z,r,) C U. Then the collection U = {B(x,r,), x € U} is a covering of U and
there exists a sequence of balls {B,} from U such that B;, C U and the balls of the
sequence covers U.

Now, given By,..., B,, there exists a regular bounded open set U, of class C*
containing By U...UB, such that U,, C U. (There exists an open set GG such that
U>G DG DU, B; and C* function f which is 1 on the union and zero on G°.
Now, consider the set {f > 1}. Tt is known that a set with C2?-boundary is regular
due to the external ball touching criterion.) O

For the proof of the main result in this chapter, we shall need several theorems on
harmonic approximation outside compact sets. The first one is a simple application
of Green’s identity and states that a function harmonic on some neighbourhood of
a compact set can be approximated uniformly on this compact by a finite sum of
potentials (with singularities outside the compact set).

The second important result relies on the technique of pole-pushing. Roughly, it says
that a function harmonic outside connected open set with singularity inside can be
uniformly approximated outside this set by functions which have a singularity in
the set either but anywhere else.

For each y € R™ we define

_ e =yl ifn>2,
Uy(w) = { “logllz —y|| ifn—2.

Lemma 3.3. Let K C R"™ be compact and h be a function which is harmonic on
some neighbourhood of K. For e > 0 chosen arbitrarily there exists real numbers
Aty Oy and Yy Ym € R\ K such that 0 < dist{y;, K} < e fori=1,...,m

and
h—Zaini <e on K.
i=1

Proof. Since h is harmonic on some bounded open set U D K, we can choose
a bounded open set V' such that U DV DV D K and V has a smooth boundary.
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Let us choose x € K. Then the Green formula applied for f = U, and g = h on
Ls :=V \ B(x,0) (with ¢ sufficiently small to be B(z,d) C V) gives

(00 5 = ) 520 ) o)

[ )50 - np) AU ) 36 = [

dLs

Since h and U, are harmonic on Ls

o= (0.2 w) - 1)) doty)
/(9]:5( on, on,

and therefore

Oh ou,,
- Lo (T - 1) 50 det) =

— /(W (U:s@)aa:e (y) — h(y)ggz (y)) do(y). (3.1)

Since U, is constant on dB(z,d), Green’s formula applied on the set B(z,d) and
functions f = 1 and g = h gives

oh oh
U, do =C /
/a o Vg wdo) =i [

Using mean value theorem for harmonic functions with the direct calculation of
normal derivative for the potential U,(y), we get

(y) do(y) = 0.

[ %) doty) = —annta),
0B(x,0) e

where a,, = 0, max{1,n — 2} and o, is a surface area of unit sphere in R". Thus,
from the equation (3.1), we get

b = [ (e ge) = )G 0)) dot), o€ K.

Qn

The integrand is uniformly continuous as a function of (x,y) on K x 0L. Therefore,
there are y; € L such that the Riemannian sum

32ty (V) )~ ) 3,0 )

uniformly approximates the integrand as close as we need. Furthermore, the deriva-
tion gg: (y;) can be suitably approximated by linear combination of U,(y;), U.(y;)
for some y; € R™ (using the definition of the derivation). So the lemma is established
by rellabeling the points y;, y;. O
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The proof of the following lemma requires a lot of work which we will omit here and
give only a short overview of the facts in background. It is known (cf. Armitage
and Gardiner [4], sections 2.4-2.6 or Gardiner [13], section 1.6) that every function
h harmonic on the annulus {x € R" : r < |z —y| < R}, where y € R" is fixed, can
be written as

h(z) = a+ bU,(y +ZH’f Z ||glj yH2k+n 2

where Hj, I, are harmonic polynomials of degree k on R™. The series is convergent
on the annulus and convergent absolutely and uniformly on

{zeR" : r+e<|z—y|<R—¢} for every € > 0.
By truncating such a series, we can derive this statement:

If h is harmonic on R™\ B(y,r) and R > r, then, for each ¢ > 0, there exists
a function H harmonic everywhere except y and |H — h| < e on R"\ B(y, R).

It is now easy to derive the following statement which is sometimes refered as
"pole-pushing lemma”.

Definition. (path, tract)

If 21, z5 are points in R™, then by a path from z; to 2o we mean a continuous function
g :10,1] — R™ such that ¢(0) = z; and g(1) = z2. By a tract of this path from z; to
29 we mean a connected open set containing this path. Generally, by a tract from
z1 to 2o we mean any connected open set containing some path from z; to zs.

Lemma 3.4. (Pole-pushing lemma)

Let yo,y1 be points in R™ and T be a tract from yo to y1. If € > 0 and u is
harmonic on R™ \ {yo}, then there exists a harmonic function w on R™\ {y1} such
that lw —u| < e on R*\ T.

Proof. There exist a finite number of balls B(x;,r;) C T where z1 = yo, T = U1
and every x;_; is an element of B(z;,r;). We put g1 = u. In view of the statement
before, we can now recursively find functions g; harmonic everywhere except the
point x; such that

lg; — g;1| < 277¢ outside the ball B(z;,r;), j =2,...,m.

Hence
m
U — gm| < Z 277e <€ outside the tract 7T
j=1
So we put simply g,, = w and the proof is complete. O
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Let us remark that the lemma is still valid if the point y; is the point in infinity:
by a path from yy to co, we mean then a continuous function g : [0,1) — R™ such
that ¢(0) = yo and lim; .;_ g(t) = oo and by a tract of this path we mean a given
connected open subset of R” containing this path. Then the lemma can be read this
way':

Lemma 3.5. (Pole-pushing to the infinity)

Let yy be a point in R™ and T be a tract from yy to oo. If € > 0 and u is harmonic
on R™\ {yo}, then there exists a harmonic function w on R™ such that lw —u| < €

on R"\ T.

3.2 Proof of the main theorem

1. part: the condition is necessary

Let us assume that f : K — R is a pointwise limit of functions h, € Hy(K). We
shall consider sets

Ky ={zr € K, |h,(z)| <k for each n € N}, ke N.

Obviously, K1 DO Ky and every K is closed (and therefore compact) because

Ky = () by ([=k, k).

neN

For fixed x € K, the sequence h,(x) is convergent and hence bounded, so there is
k., € N such that |h,(x)| < k,. So for every x € K there is k € N such that x € Kj.

Hence,
U K =K.
keN

Now, we have to verify that f|x, is bounded, Baire-one and Hy(K})-affine. But
flk, is a limit of bounded sequence {h,|k, } of continuous functions. Therefore, f is
obviously bounded and Baire-one and the Lebesgue dominated convergence theorem
assures its affinity.

So the last thing remains: whether every bounded component of R™\ K, intersects
R™\ K. If K, = K, then there is nothing to discuss. If K} # K and U is bounded
open component in R™\ K}, then oU C K. If (R"\ K)NU = (), then K D U
and hence K NU = U. But |h,| < k on OU C K}, and hence |h,| < k on U due to
maximum principle. Therefore U C K, which is an obvious contradiction.

2. part: the condition is sufficient

We require the following result (cf. Debiard and Gaveau [9], theorem 1).
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Theorem 3.6. (Debiard, Gaveau; 1973)

Let K be a compact subset of R and f : K — R. The following statements are
equivalent:

(a) there exists a sequence {hy} in Hy(K) such that h,, — f uniformly on K,

(b) the function f is continuous on K and Hy(K)-affine, that is,

f(x):/fdu forallz € K and pp € M,(Hy(K)).

Now we can continue in the proof with the sufficiency part. For reader’s convenience,
we shall divide the proof in several steps.

"Simplicial” approximation. We assume that there are compact sets Ky / K
such that f|g, is bounded, Baire-one and Hy(K})-affine. Since the function space
Hy(Ky) is simplicial there are continuous Hy(Kj)-affine functions g, such that
Gn, —> fl|k, pointwise. Due to the Debiard-Gaveau theorem (3.6), we may as-
sume without any loss of generality that the functions g, , are harmonic on some

neighbourhood of Hy(Kjy).

Reconstruction of compact sets into more suitable form. For n € N, we now define
1

Then (since the distance function is continuous), L, is a finite union of disjoint
compact sets and hence L,, is compact. We put

1
L,=K U{zr € Ky, dist(z,K;) > -} U...U{x € K, dist(z, K,,_1) >
n

Un = @Gni on anKh
Un = YGnk Onan(Kk\Kk_l),k:2,...,n.

Hence, we may assume that v,, is harmonic on some neighbourhood of L,,. By Lemma
(3.3), there are points Yy, 1, ..., Yni, € R\ L, and real numbers a,, 1, ..., @y, such

that
in
i=1

By detail examination of the proof of the Lemma (3.3), we can arrange that the
singularity points v, 1, ..., Yn,, are distinct and as close to L,, as we wish.

1
< = on L,
n

Construction and approximation on tracts. We have a lot of singularities outside
compact sets L,. So we put

Obviously AN K, =0, so
A = (UgAp) U Aw.
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We can arrange that any limit points in Ay belongs to K. We now may choose
inductively a countable collection of tracts {T,,, € Ax} such that

(i) Ty is a tract from z to some point 2’ in R™ \ K such that R™ \ T, is connected
and T, C R™\ K}, (This is due to the assumption that every bounded component
of R™\ K} intersects R\ K.)

(ii) the sets T, are pairwise disjoint (due to the distinction of singularities and
absence of limit points)

For each choice of n,7 such that y,; € K we apply Lemma (3.4) to the function
iUy, .- Hence, there exists a function w,, ; harmonic on R"™ apart from a singularity
outside K such that

1
< — OHR”\Tni.
ne ’

n

Wi — iUy,

If now yy,; is outside the compact K, we simply put wy; = oy, ;Uy, , and T, . = ().
Now we consider a function '
in
Wy = E Wy, 5 -
i=1

Final estimate. 1t is obvious that w is harmonic on some neighourhood of K. It
remains to show that w,, — f pointwise.

We have - j
in in
’Un - wn’ < |vp, — Z an’in"»i + Z ‘Oén,inn,i ~ Wnil <
i=1 i=1
1 in 1 2 i
< - 4 ZZI: n—zn < - on L, \ Ui:lTyn,i'

Let now zg € K. Then there is ky € N such that xy € Ky, \ Ki,—1 and ng > kg such
that dist(z, Ky, — 1) > nio We conclude that z¢ € L,, whenever n > ny.

Since the tracts {T,, x € Ay} are pairwise disjoint, the point zy can belong only
in one of these for each £k € N. Furthermore, x; cannot belong in the tract 7 if
x € Ay, whenever k > ko since T, C R” \ Kj. We conclude that zo belongs to at
most kg — 1 tracts. So there is ny large enough such that

Zo g U OTTM

n>ny i=1
Hence )
|Un<x0) - wn($0)| < = forn>n; —
n
2
= |gko,n(x0) - wn($0)| < E for n > n;.
But giyn(z0) — f(20), so the proof is complete. 0
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Let us remark, that the theorem remains valid for K being an open set if Hy(K) is
interpreted as all functions which are harmonic on K.

3.3 Properties and examples

It is well known that if a sequence {h,} of harmonic functions on an open set U,
which is locally uniformly bounded from below, converges pointwise to a function
f, then the sequence {h,} converges locally uniformly and f is harmonic on U (see,
for example, Armitage and Gardiner [4], Theorem 1.5.8).

In the following, we shall give several examples that, in general, pointwise limits of
functions harmonic on a neighbourhood of a compact set K need not be harmonic
on the interior of K. They, however, have to be harmonic on a dense subset of the
interior of K. That follows easily from the mentioned theorem. If {h,} is a sequence
of functions harmonic on a neighbourhood of K and converges pointwise to f on K,
then for compact sets

Ky ={z € K : |h,(z)| < k for each n € N}

we have K ' K and f has to be harmonic on the set U2, K} which has to be
dense in the interior of K.

The same fact is true with respect to fine harmonicity of the limit function, it has to
be finely harmonic on a finely open finely dense subset of the fine interior of K. The
reasoning is almost the same, we only refer to the pointwise convergence theorem of
Fuglede ([11], Theorem 11.9) and the fact that R"™ endowed with the fine topology
is a Baire space. For the exact definition of fine harmonicity, see Section 4.1.

In the following two examples, we present a function which is harmonic on a dense
subset of closed unit ball but it is not a pointwise limit of functions harmonic on
a neighbourhood of this closed unit ball. The examples are from Lukes et al. [17]
and Gardiner, Gustafsson [14].

Example 3.7. Let K = B(0,1) be a closed unit ball and let B; = B(x;,7;) be a
sequence of pairwise disjoint open balls of which union V is a dense subset of K.
Let us consider the characteristic function yy. Then yxy is lower semicontinuous

and harmonic on V' but it is not a pointwise limit of any sequence of functions in
Hy(K).

If it was so, then there would have to be a sequence of compact sets K, ~* K
on which f would be bounded, Baire-one and Hy(K})-affine and every bounded
component of R™ \ K} would have to intersect the set R™ \ K. Let xy € K\ V and
U be an open neighbourhood of x, then U would contain B—]0 for some jg.

But_B? is not a subset of Kj for any k; otherwise, the function f would be
Hy(Bj,)-affine and normalized surface measure o, ., on 9B, is a Ho(Bj,)-represen-
ting measure for the center z, of Bj,. And we know that 0 = o, . (f) # f(z;) = 1.
Then

R"\ Kp) N (K\V)nU D (R"\ K;) N OBy, # 0,
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so that R™\ K} would be dense in K \ V for each k and hence R"\ K = Ni(R"\ K})
would be dense in K \ V. This is a contradiction.

FEzample 3.8. Let K, B; and V be as in the previous example. Let us further remark
that the function yy is not even a pointwise limit of functions h,, which are harmonic
on V and continuous on 9V. The reasoning is similar. Let z € V \ V and U be
an open neighbourhood of x. Then U contains By for some natural k. Let o, be
a normalized surface measure on 0By. Since h, € H(By) for every n € N, we get
ok(hn) = hy(z) — f(x) # 0 and since h,, — 0 on 0By, the sequence {h,} cannot be
bounded on 0By, in view of the Lebesgue dominated convergence theorem. Then

VAVInU N (Il =1} 2 0B 0| J{|hil =1} #0  for each n € N

>n >n

So the set (V' \ V) N U, {|hi| > 1} intersects every neighbourhood of an arbitrary
point z in (V'\ V), namely, the set {J,,,{|hs| > 1} is dense in V' \ V for every n and

hence
N UL\ V) N[k > 1} #0.

neNi>n

This is a contradiction since h,, — 0 on V \ V.
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Chapter 4

On the space B{(H(U))

In the Chapter 3, the complete characterization of the space By (Hy(K)) was given.
Namely, if K C R™ is compact, then the function f : K — R is a pointwise limit
of functions harmonic on some neighbourhood of K if and only if there exists an
increasing sequence K}, " K such that each bounded component of R™\ K}, intersects
R™\ K and f|K} is bounded, Baire-one and Hy(Kj})-affine.

We shall prove that the functions belonging to By (H (U)) have to satisfy an analogous
condition. We recall that by U we mean throughout this thesis a bounded open set
in R™ where n > 2.

4.1 Fine topology and fine harmonicity

At first, we review some basic facts of the fine topology. Let V' be an open subset
of R". The function s : V — [—o0, +00] is called hyperharmonic on V if it is lower
semicontinuous on V' and

s(x) > 04.(s)

whenever B(x,r) C V. We recall that o, , denotes a normalized surface measure on
OB(z,r). The function s is called superharmonic if it is hyperharmonic and finite
on a dense subset of V.

The fine topology is the coarsest topology R™ in which every function superharmonic
on R™ is continuous. Since the fine topology is generated by a family of functions,
one can show that the fine topology is completely regular. However, it is not normal.

If we talk about, say, an interior of a set A C R™ with respect the fine topology, we
will simply say the fine interior of A and denote it by inty A. The same goes for the
closure, the boundary and so on.

We say that a subset A of R™ is thin at a point z € R™ if A\ {z} contains a fine
neighbourhood of z, that is, a finely open set containing x. We remark that the set
of boundary points of U where R™ \ U is not thin is precisely the set of all regular
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points where the Perron-Wiener-Brelot generalized solution of the Dirichlet problem
is continuous to this points for any continuous boundary condition.

Now, and let u be a hyperharmonic function on €2 where 2 = R" if n > 3 or
a (sufficiently large but bounded) open ball if n = 2. Let A be an arbitrary subset
of Q. We define R the reduite of u on A by

R% = inf{v hyperharmonic on Q :v > u on A}

w —

and Rf the balayage of u on A as the greatest lower semicontinuous minorant of
R#. One can show that there is a unique Radon measure €2, called the balayaged
measure of €, on A, such that

RA(z) = e (u) for every positive hyperharmonic function u on €.

We say, that a function f is finely harmonic on a finely open subset V' of €2 if it is
finely continuous and the fine topology on V' has a basis consisting of finely open
sets W with W’ c V such that f is integrable with respect to ¢V for every x € W
and

flx) = /fdegvc for every z € W.

4.2 Necessary condition

If K Cc U is compact, we define
Hi(U)={f € C(K) : fis finely harmonic on the fine interior of K N U}.
Theorem 4.1. (Necessary condition)

Let U be a bounded open set in R™ and {h,} be a sequence in H(U) converging
pointwise on U to a real-valued function f. Then there exists an increasing sequence
of compact sets K, /' U such that

(1) f restricted to Ky is bounded, Baire-one and Hg, (U)-affine,

(ii) either K = U for some k € N or every (bounded) component of R™ \ Kj,
intersects OU.

We would like to remark before proving this theorem that if K;, = U for some k € N,
then f is H(U)-affine. In view of Theorem (2.1) and the fact that A°(H (U)) = H(U),
there exists even a bounded sequence in H(U) which converges pointwise to f.

Proof. We define

K, ={x €U : |h,(x)] <k for each n € N}.
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Then obviously f is bounded and Baire-one on Kj. Since every h,, is H(U)-affine (by
definition) and hence h,|k, is Hg, (U)-affine, the Lebesgue dominated convergence
theorem gives

u(f) = lim p(hy) = lim hy(z) = f(2), x € Ky, p€ My(Hp, (U))
so the function f restricted to K is also H, (U)-affine.

For the condition (ii): let V' be a bounded component of R™ \ K. If VN oU = 0,
then V' C U and h,, is defined on V. Since 0V C Kjy, it follows that |h,,| < k on
JV and in view of the maximum principle for harmonic functions, |h,,| < k on V.
Hence, V' C K} by the definition of K}, but this is an obvious contradiction with
the assumption V' being the component of R™ \ Kj. O

We do not know, whether the conditions in Theorem (4.1) are also sufficient. If
one repeats the scheme of the proof of the Gardiner and Gustafsson result he may
get the following: there exists a countable set of points {y;, ¢ = 1,2,...} which is
a subset of R" \ U (but a lot of points can be on the boundary) and a sequence of
functions which are finite sums of U,,. This sequence converges pointwise to f but
the functions within are far from being continuous on the boundary. The proof will
be given a little while later.

4.3 Concept of stability

The first question is how far are functions in H(U) and Hy(U), that is, whether
functions harmonic inside U and continuous on the boundary cannot be extended
or uniformly approximated by functions harmonic on some neighbourhood of the
compact set U.

The following theorem is due to Deny [10], the formulation follows [19].

Theorem 4.2. (Deny)

Let U be a bounded open subset of R". The following statements are equivalent:

(i) R\ U and R\ U are thin at the same points

(ii) for every f € H(U) and for each € > 0 there exists a function h € Hy(U) and

\h—f]l<eonU.

Ezample 4.3. Let U be an open unit ball in R" without its center. Then U is
not regular for the Dirichlet problem but since R" \ U and R" \ U are thin at the

same points (open unit ball exactly), the function spaces H(U) and Hy(U) coincides
(together with the function space H(B(0,1)).
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Ezxample 4.4. Let now U be an open unit ball in R? without a line segment I =
[—3, 3] x {0}. Since the line segment is not thin at any of its points in R?, it follows
that R\ U and R™\ U are not thin at the same points. So there has to be a harmonic
function on U which is continuous on U but cannot be uniformly approximated by

functions harmonic on some neighourhoods of U.

To give an example of such a function is quite easy. The set U is regular for the
Dirichlet problem and therefore, there exists a harmonic function f which is equal
to zero on 0B(0,1) and to one on the line segment [ inside the ball. If now g is

harmonic on some neighbourhood of U = B(0, 1) and |g — f| < € on B(0, 1), then
by the maximum principle |¢ — f| < € on the entire ball.

This example relies on non-thin segment of boundary which is part of the interior of
U. Every such a set obviously does not satisfy conditions of the previous theorem.
However, there are more sophisticated examples of compact sets K in R” such that
R™\ K and R™\ K° are not thin at the same points. See, for example, a so called
”Swiss cheese” in Gardiner’s book [13], Example 1.2.

Remark 4.5. This remark serves as a motivation for the definitions which follow.

The points where the set R™ \ U is not thin are precisely the regular points for
Dirichlet problem and the points where the set R™ \ U is not thin are the stable
points for the Dirichlet problem.

The definition of a regular point is well known: these are points where the generalized
PWB-solution of the Dirichlet problem coincides with boundary condition for every
continuous function on the boundary.

The meaning of a stable point is roughly the following: every f € C'(0U) can be ex-
tended continuously on R" (by Tietze’s theorem). Then we can choose a decreasing
sequence of (regular) open sets w, containing U such as w, \, U and define h,, on
W, as the solution to the Dirichlet problem with the boundary data fls.,. The
sets can be chosen regular because every open set can be exhausted by open sets
of C*-class. One can prove that the sequence {h,} converges on U, the limit is
harmonic function on U (but can be different from PWB-solution) and the limit
function does not depend on the choice of the extension f or of the sequence {w,}.
We call a boundary point stable if the limit function is equal to f in this point
(independently of the chosen boundary condition, of course).

A trivial observation is that every irregular point is also an unstable point. Thus
irregular points are not something which should concern the stability problem. In
the example (4.3) we presented an irregular but ”stable” set. Another example is
so called Lebesgue’s cup (cf. Arendt and Daners, [3]).

The theorem of Deny can now be read this way: for a bounded open subset U of
R™, the space Ho(U) is uniformly dense in H(U) if and only if every unstable point
of U is an irregular point as well. Equivalently, if and only if there are not regular

unstable points.

But it is not necessary true that every regular point is also a stable point as we have
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already shown in the previous example.

Definition. Let U be a bounded open subset of R”. We recall that every boundary
point of U in which the set R™ \ U is not thin is called a regular boundary point
(for the Dirichlet problem) and every boundary point of U in which the set R" \ U
is thin is called an irregular boundary point (for the Dirichlet problem).

We say that a boundary point of U is a stable point of U (for the Dirichlet problem)
if the set R™ \ U is not thin.

We say that the set U is stable (for the Dirichlet problem) if every regular point is
also a stable point, that is, the sets R™\ U and R"™ \ U are thin at the same points.

In view of the previous definition, we can reformulate the theorem of Deny:

Let U be a bounded open subset of R™. The set U 1is stable if and only if for each
[ harmonic on U and continuous on the boundary there exists a sequence hy, of
functions harmonic on some neighbourhood of U and h,, — f uniformly on U.

We refer to Vicent-Smith [19] for a proof which carries on in more general harmonic
spaces.

It is kind of obvious that if U is a stable set, then By (H (U)) and By (Hy(U)) coincides.
In a while, we shall give examples of unstable sets in which the equality is still valid.
But for the equality of subclasses B (H (U)) and B (Hy(U)), the stability of U is
essential.

Theorem 4.6. Let U be a bounded open subset of R™ and F be a family of functions
f U — R such as there exists a bounded sequence {h,} in H(U) and f, — f
pointwise on U. Then the following statements are equivalent:

(i) Each member of F is a pointwise limit of a bounded sequence of functions
which are harmonic on some neighbourhood of U,

(i1) the set U is stable,

(iii) Ho(U) is uniformly dense in H(U).

Proof. The equivalence between (ii) and (ii7) is the theorem of Deny. It is obvious
that (ii7) implies (i), so what remains is to prove that (i) implies (7).

However, if (i74) is not valid, then there exists f € H(U)\ Ho(U). If such a function f
was a pointwise limit of a bounded sequence of functions which are harmonic on some
neighbourhood of U, that is, f € B (Hy(U)), then it follows from the Proposition
(2.16) that f has to be Hy(U)-affine. Since f is continuous on U, f has to be in

Hy(U) due to the theorem of Debiard and Gaveau (3.6). This is a contradiction. [
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4.4 Examples and problems

In the last section, we treated the case when the bounded open subset set U of

R™ was stable and thus the function spaces H(U) and Hy(U) coincided. We shall
now present a simple example ofan unstable set for which the spaces By (H (U)) and

By (Ho(U)) will coincide.

For that purpose, the following corollary of the theorem of Deny (4.2) and the pole-
pushing technique (3.5) would be useful.

Theorem 4.7. Let U be a bounded open subset of R™ and suppose that
(1) U is stable,
(1) R\ U is connected.

Then for every € > 0 and every function u harmonic on U and continuous to the
boundary, there exists a function w harmonic on R"™ such that |w — u| < € on the
closure of U.

Proof. By the theorem of Deny, there exists a function v; harmonic on some neigh-
bourhood of U such that |u — v;| < ¢/3 on U. The function v; can be uniformly
approximated by a function v, which would be a finite sum of potentials with sin-
gularities outside U (Lemma 3.3), so we can assume that |v; —vy| < £/3 on U. And
each of these potentials can be uniformly approximated outside a tract from its pole
to the infinity which does not intersect U, so we can construct a function w such
that w is harmonic on R™ and |w — vy| < /3 on U. O

Example 4.8. Let U be a subset of R defined by
U= B(0,1)\ 5(0, %)

Since the sphere S(0, 3) is not thin at any of its points, the set U is not stable and
so H(U) # Hy(U) and also B (H(U)) # B®(Hy(U)).

We will now prove that every function in By (H (U)) also lies in By (H(R™)).

Consider f € By(H(U)). There exists a sequence of functions f,, which are harmonic
on U, continuous to the boundary and converging pointwise to f on the closure of
U. Let us consider sets U,, which are like in the figure below. Explicitly,

U,=U\({z: i<z <i+Llu{z=(z1,...,20): 2] > J and 0 > 21 > —21})

and
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It is obvious, that the sets U, are stable and R" \ U, is connected. So for a given
sequence of positive numbers €, \, 0, we can find functions w,, harmonic on R" such
that |w, — f,| < &, on U,. Since for every x € U there exists n such that x € U,
we observe that functions w, are converging to the function f pointwise on U.

The main idea of the previous example was to exhaust the closure of the given
bounded open set U with stable sets such that their complements are connected.
Using this idea, we can get a sufficient condition for the spaces Bi(H(U)) and
B, (Ho(U)) to coincide.

Proposition 4.9. Let U be a bounded open subset of R™ and suppose that there
exists a sequence {U,} such that

(i) U, /U,
(i) the set U, is stable for eachn € N,
(iii) every component of R™\ U, meets R\ U.

Then the spaces By (H(U)) and By(Ho(U)) coincides.

Proof. The proof is simple. If f is a pointwise limit of a sequence {f,} of functions
harmonic on U and continuous on U, then each f, can be uniformly approximated
on U, by finite sums of potentials with singularites outside U (due to the theorem
of Deny and pole-pushing lemma)). O

Obviously, every stable set satisfies trivially these assumptions and in the previous
example, we presented an unstable set which can be exhausted by "stable sets”
sequence. One can go a little further along this way and discuss whenever such an
exhaustion is possible. This brings us back to a question, how to decide whether
a given set is stable or not. One useful criterion is that if the set is topologically
regular (that means that int U = U) and has a continuous boundary, then the set
is stable (cf. Arendt and Daners, [3]|, Proposition 1.2). Therefore, it follows from
Lemma (3.2) that every open set can be exhausted by stable sets; but it should be
noted that the lemma says nothing about exhausting the set up to the boundary.

Whether such an exhaustion is possible for every bounded open set, it seems to be
an open problem.

We shall now present the promised proof that if the function meets necessary condi-
tions, then it is approximable by functions harmonic on R"™ except some singularities
on the boundary. For that, we shall need stronger approximation theorem than in
Chapter 3.

Theorem 4.10. (Gardiner, 1997)

Let ) be an open of R™, where n > 2 and let E be a relatively closed subset of 2. Let
u be a function continuous on E with the continuous extension to E -, the closure of
E in compactified space R™ U {oc}. Furthermore, assume that u is finely harmonic
on the fine interior of E.
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Then for each € > 0, there exists an open subset V of R™ U {oo} such that EXcvV
and a function w continuous on the space R™ U {oo} and harmonic on V N Q such
that lw —u| < e on E.

The proof can be found in Gardiner (1997) [12], Theorem 2, part (a). Using this
theorem and another general result of Armitage and Goldstein (1990) [5], we are
ready for the promised proof.

Proposition 4.11. Let U be a bounded open subset of R™ and {h,} be a sequence

in H(U) which converges pointwise to a real valued function f on U.

Then there exists a sequence of functions harmonic on R™, except from at most
countable set of singularities on the boundary OU, which converges pointwise to f
onU.

Proof. We know that there exists a sequence of compact sets K, U such that
f restricted to K} is bounded, Baire-one and Hg, (U)-affine. The space Hg (U) is
simplicial for any compact set K C U. This follows from the work of Bliedtner and
Hansen (1975), see Example 111.3.1.2. and Corollary II1.3.8. So as a consequence of
the approximation theorem in simplicial spaces (2.1), there is a bounded sequence
{gn.} of continuous and Hg, (U)-affine functions which converges pointwise to f on
K. Due to the theorem of Debiard and Gaveau (3.6), we may assume that g, are
continuous on K and finely harmonic on the fine interior of K, NU.

We construct a new sequence of compact sets L as we have once done before. Let

Ll = Kl7
1
Ly, = KyU{xe€ K, :dist(z, K;) > 5},

2

1 1
Ly = KU {l’ € Ky: dlSt(x,Kl) > g} U {x € Ks: dlSt(x,KQ) > g

1.

S|

' 1
Ln = Kl U {l’ € K2 . dlSt(x, Kl) 2 —} U...uU {l’ c Kn : dlSt(x, Kn—l) Z
n

and define a new function v, on L, by

() = gna(x) on L, N Ky,
vp(r) = gni(2) on L, N (K \ K1), k=2,...,n.

Hence, we may assume that the function v,, is continuous on L,, and finely harmonic
on the fine interior of L, N U. Then there exists an open set V' containing L, and
a function w, continuous on R™ and harmonic on V N U such that |w, — v,| < %
on L,. This is a direct consequence of the theorem (4.10) mentioned earlier (since
both of the functions w, and v, are uniformly continuous on L, and therefore, the
approximation can be extended up to the boundary).
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Then we can use a general result of Armitage and Goldstein (1990) (cf. the main
result of [5]) to approximate the function w, on L, by functions harmonic on some
neighbourhood of U apart from certain isolated singularities (outside L, ) and pole-
pushing technique to push all of these singularities, which are in U, on the boundary
of U. This is possible since every component of set R™ \ K, intersects OU. The rest
of the proof copies the appropriate parts of Section 3.2. O

The fact that singularities can be wiped from U to the boundary immediately yields
to the following corollaries which are simple consequences of the pole-pushing tech-
nique and, with some additional assumptions on the set U, gives a sufficiency of
presented necessary conditions. Whether the necessary conditions are sufficient
even in the general case, seems to be an open problem.

Corollary 4.12. Let us assume that in every neighbourhood of any boundary point
of U, there is a point which does not belong to U. Then Bi(H(U)) = By(Ho(U))

and the necessary conditions are also sufficient.

FEspecially, every topologically reqular set U (that is, sets for which int(U) = U) has
this property.

The proof is simple since any tract used in pole-pushing technique would contain
a point outside U.!

We presented before an example 4.8 (an open unit ball with an inner cut on the
sphere with half radius) which does not meet the assumptions of this corollary yet
still the conclusion is valid. The example can be derived from the following weaker
version.

Corollary 4.13. Let us assume that there are open sets wy such that for every
x € U, there exists n, € N such that v & w,, for every n > n,, and

(i) every boundary point of U either has in its every neighbourhood a point which
does not belong to U, or

(i) in its every neighbourhood, there exists a point belonging to wy, and in the same
component of w,, there is a point which does not belong to U.

Then every function in By(H (U)) is also in By(Ho(U). Hence, the necessary condi-
tions are also sufficient.

1) The topologically regular sets are important in similar problems in numerical analysis (we
refer, for example, for papers of Babuska and Chleboun on this topic which were devoted to
numerical estimates in unstable domains for Dirichlet problems).
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Appendix: Simpliciality of H/(K)

In this short addition to the thesis, we will follow closely the work of Bliedtner
and Hansen [7]. Without proofs, we shall present several ideas of their view of
simpliciality in potential theory and use it to justify the fact that the space H/(K)
(of all continuous functions on compact set K finely harmonic on the fine interior
of K) is simplicial in the sense we defined at the beginning of the thesis.

A.1 Simplicial cones

Let Y be a locally compact space with a countable base and C'(Y') the space of all
real continuous functions on Y. A convex cone S C C(Y) is called admissible if

(a) ST # {0} and S is linearly separating. This means: for every pair of points
x # 1y of Y and every A > 0, there exists f € ST such that

f(x) # X f(y).

(b) S is dominated by S*. That means: for every f € S, there exists g € ST such
that for any € > 0 there exists a compact set K C Y and

|f(x)| < eg(x) for any x € Y\ K.

We denote W (.S) a min-stable convex cone consisting of all functions min{sy, ..., s,}
where s1,...,s, € S. W(S) is an admissible cone.

Let M(S) be the convex cone of positive Radon measures on Y for which the
functions of S are integrable. The admissible cone S determines an ordering on
M(9):

p=<vif u(s) <wv(s) for all s € W(S).

We denote
M, (S) ={pue M(S) : u(s) <s(z) for all s € S}

and we call M, (S) a set of S-representing measures for x. A measure u € M(S)
is minimal if it is minimal with respect to the ordering <. Note that for every
€ M(S) there is a minimal measure v such that v < p.
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We call an admissible cone simplicial if for every x € Y there exists a unique minimal
measure (i, € M,(S).

We define F5(Y') as the set of all lower semicontinuous numerical functions f on Y
which are lower S-bounded. A function f is lower S-bounded if there exists s € S*
such that f > —s. For any f € Fs(Y) and g € —Fs(Y') we define lower S-envelope
and upper S-envelope as

f=sup{te —-S:t<f}
g=inf{te S:t>g}
Finally, we denote S the set of all lower semi-continuous S-concave functions on Y,
S={veFs(Y) : p)<s(x) forallz €Y and p € My(S)}.
By a space of all continuous S-affine functions we mean
H(S)=S8n(=8)={heCs(Y) : p(h)=h(z) forall z € Y and u € M,(S)},

where Cg(Y') denotes the space of all continuous S-bounded functions. A function
f is S-bounded if it is lower and upper S-bounded. Namely, f € Cs(Y) if and only
if there exists s € ST such that |f| < son Y.

The set
ChsgY ={z €Y : M,(5) ={e.}}
is called the Choquet boundary of Y with respect to S.

Proposition A.1. Let S C C(Y) be a simplicial cone and let Sy C Cs(Y') be an
admissible cone such that

H(S)c SycS.
Then the following statements hold:
(i) H(So) = H(S).
(i1) So is a simplicial cone.
(111) Chg, Y = Chg(Y).
(iv) For any x € Y, the minimal measures in M(So) and M (S) coincide.

Proof. See [7] Bliedtner, Hansen (1975), Proposition 1.2.6. O

Let now X be a closed subset of a locally compact space Y with a countable base
and let P C C*(Y) be a convex cone such that P|y is an admissible cone on X.
Let

H = {supp, : pn € P and (p,) is an increasing sequence}.

For any function f : Y — [0, 4o00] and an arbitrary subset A of Y, we define reduced
function by
R} =inf{v € H:. : v > f on A}.
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If R}/ € P for every f € CH(Y), then we call P a cone of potentials.

If P is a cone of potentials, then by P-dilation on X we mean a kernel? T on Y
such that

(a) for every p € P, Tp € Hi and T'p < p,

(b) for every x € X, the measure T'(x,-) is supported by X and for every y € X°
we have T'(y, ) = &,.

The definition allows to apply P-dilations on X to functions defined on X only.
For any P-dilation 7" on X, let

AT)={yeY : T(y,") =¢,}.
Obviously, X¢ C A(T).

For any family 7 of P-dilations on X we shall consider the convex cone §(7) and
the linear space H(7) defined as

S(T)={seCp(X) : Ts<sforevery T €T},

H(T)={h e Cp(X) : Th=hforevery T € T}.
One can see that S(7) D P|x so S(7) is an admissible cone and

Proposition A.2. S§(7) is a simplicial cone and if H(T) is linearly separating,
then H(T) is simplicial as well. Furthermore, the minimal representing measures of

H(T) and S(T) coincide.
Proof. See [7] Bliedtner, Hansen (1975), Theorem I1.3.3. and Corollary 11.3.8. O

We end this section by connecting this abstract theory to the case we need. Let X
be a closed subset of a locally compact space Y with a countable base. Let U be an
open subset of Y which is contained in X and consider a family of P-dilations

T ={(z+— €Y : V is open and relatively compact, V C U}.

T

Then
S(7T)=S(X,U) ={s € Cp(X) : s is superharmonic on U}

and
H(T)=H(X,U)={h € Cp(X) : h is harmonic on U}.

2) By a kernel T', we mean simultaneously an integral operator 7" and a function 7'(-,-) on Y x Y’
such that Tf(z) = [, T'(x,y)f(y) dy.
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We denote
IT={7T(U) : Uopen, X CU}

where
T(U)={(y— ¢, : V open and relatively compact, V C U}.
Then 7 is a decreasingly filtered family of sets of P-dilations on X. We define S(7)

as the set
S@=JsT)=J s,

TeL U open

XcU
HI) = |JH(T)= | HY.U).
TeT U open

One can show that S(7) is a simplicial cone. If X is compact, then H(Z) = H(S(Z)).
And if H(Z) is linearly separating and nontrivial, then H(Z) is simplicial and the
minimal representing measures of H(Z) and S(Z) coincide again. However, the space
H(Z)|x is exactly the space of all functions f : X — R which are continuous on X
and finely harmonic on the fine interior of X as follows from Theorem III.3.15. in
Bliedtner, Hansen [7].

A.2 Simpliciality of H/(K)

What remains is to show that the previous simpliciality result is the same ”simpli-
ciality” we need. We recall that by Hy(K) we mean a space of functions harmonic
on some neighbourhood of a compact subset K of R™. We denote

H'(K) the closure of Hy(K) in the supremum norm in C(K).
The Debiard-Gaveau theorem states that

HY(K) = {f:K —R,fis continuous on K and finely harmonic

on the fine interior of K.}
Thus H/(K) is a function space. Further, let
W = {min(hy,...,hw) © hi,... hy € H(K), m € N}.
For a while, we shall denote H = H/(K) and K = —K¢(H/(K)), that is,
K={feCK) : u(f) < f(x) whenever z € K and p € M (H)}

and let MY denote the collection of all probability measures yu on K satisfying
1(g) < g(x) whenever g € K.
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Lemma A.3. M¥ coincides with M,(H).

Proof. Let p € My(H). Then u(g) < g(x) whenever g € K by definition of K. On
the contrary, let © € MX. We have to show that for every f € H/(K) we have
wu(f) = f(z). But that is obvious because f € K and —f € I, hence

p(f) < flx)  and  —pu(f) =p(—f) < —flx) = p(f) > f(=)

and that completes the proof. O

We recall that we have defined a simplicial function space as a subspace of C(K)
which separates points and contains constant functions and with this additional
property: for each x € K, there exists a unique maximal measure in M, (H) with
respect to the Choquet ordering. This ordering is defined defined as

H=v if  u(f) <v(f) whenever f € K¢(H/(K)).

It is trivial that it is the same as the existence of a unique minimal measure in the
ordering given by

1 =<v if w(f) <wv(f) whenever f € K,

since the first one is an ordering which uses H-convex functions and the second
definition uses H-concave functions.

However, the version of simpliciality presented in this chapter, minimizes the mea-
sures in M, (H) with respect to the ordering

p=v it w(f) <v(f) whenever f € W,

so we have to check whether minimal measures with respect to one ordering are
different from the other ones. But in view of Proposition (A.1) used on S = H/(K)
and Sy = K, we see that the minimal measures in both ordering are the same, since
K is obviously min-stable and hence W (K) = K. So the results of Bliedtner and
Hansen transfer as we need and the assumption of simpliciality of H/(K) is justified
by Theorem II1.3.15. in [7].
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A.3 Proof of the Debiard-Gaveau theorem

The theorem of Debiard and Gaveau (3.6) was an essential tool for the proof of
pointwise approximation theorems presented in this thesis. So we decided to present
here a proof. In fact, we will prove a generalized version which is due to Gardiner.
It has been used in Section (4.4).

In Section (4.1), we defined a balayaged measure of Dirac measure ¢,. We extend
this definition on all admissible measures. Let €2 be a bounded open ball if n = 2
and 2 = R" if n > 2. We call a positive Radon measure p on € admissible if for
each finite and continuous potential p on 2 harmonic off some compact set

1(p) < +o0.

A potential on §2 is a positive superharmonic function whose greatest harmonic
minorant on 2 is zero.

For every admissible measure p and any subset A of €2, there exists precisely one
measure 4 on €2 such that

p(u) = p(Ry)
for every positive hyperharmonic function on 2.
Theorem 4.10. (Gardiner, 1997)

Let Q) be an open of R™, wheren > 2 and let E be a relatively closed subset of 2. Let
u be a function continuous of E with the continuous extension to EOO, the closure
of E in compactified space R™ U {oc}. Furthermore, let us assume that u is finely
harmonic on the fine interior of E.

Then for each € > 0, there exists an open subset V of R™ U {oo} such that EXcvVv
and a function w continuous on the space R™ U {oo} and harmonic on V N QY such
that lw —u| < e on E.

Note, that if E is compact, then this is exactly the nontrivial implication of the
theorem of Debiard and Gaveau. The original proof used a probabilistic potential
theory, another proof can be found in Bliedtner and Hansen [7]. The proof presented
here relies on deep results of Fuglede and Ancona [1], [2], [11].

Proof. (cf. Gardiner, [12])

When E = €, there is little to prove. When n = 2, we may assume without any loss
of generality that {2 is contained in some open ball B (if not, then we use Kelvin’s
transformation). We define Qg = B when n = 2 and €y = R"” when n > 3.

The function w is continuous on compact set E”. Itn > 3, then we may add
a suitable constant so that u(oo) = 0. Suppose that p is a signed Radon measure
on E such that u(f) = 0 whenever f € C(R™ U {co}) N H(V N Q) for some open

subset V of R U {co} that contains E° . Since such Radon measures represent
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continuous linear functionals on continuous functions on compact set EOO, then, due
to the Hahn-Banach theorem, it will be enough to show that u(u) = 0.

We define a so called chordal metric on R™ U {oc} by

[z —y
doo(,y) = where z,y € R"
V[ + [y?)
and .
doo(T,00) = —— where z € R",

V14 |z|?
where | - | denotes the Euclidean norm on R"™. Furthermore, if A C R™ U {oc} we
define

distoo(z, A) = inf{d(z,y) : y € A} where x € R".

Next, let {K,,} be an increasing sequence of closed subsets of {0 \ 2 such that each
set K, is non-thin at each of its points and such that the set Z defined by

Us))

is polar (that is, there exists a superharmonic function on some open neighbourhood
of Z which is equal to 400 on Z). This can be done as a straightforward consequence
of Ancona’s result [1], [2]. Now, let {U,,} be a decreasing sequence of open sets which
are regular for the Dirichlet problem and which satisfy

Z:QO\(QU

: —o0 1 : =0 1
{33 € QO . dlStoo<33,E § Tﬂ} C Um C {.CE < QO . dlStoo(.fE,E < E}

and let V,, = U, \ K,, for each m. It follows that the open sets V,, are also regular
for the Dirichlet problem.

Let w be a continuous potential on €}y whose associated measure has compact sup-
port in €2g. Then we have

RS0\Vm e O(R" U {oo} UH(U,, N Q)
if we extend R0\ by zero outside 2. Hence
(RN =0
since that is true for all functions in C(R" U {oo} U H(U,, N Q). Since Z is polar,
RS0\ (1) 7 RENEVOEND] (1) — RSONE(y) reE”, m— oco.
Let us denote uy = p|g, then
1P (w) = pa (RPN = 0,
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But it is well known that if f € C(R" U {oco}) with value 0 outside €2y, then f can
be uniformly approximated by differences of continuous potentials with the same
properties as above. Hence

Qo\E -0

Hq T)QO\E = (

—)QQ\E'

in the sense that (u Uy

We claim that B
u(x) = e\ (u) r e L.

If x € int; £ that this is true from the definition of the fine harmonicity. (If £ is
unbounded, then

u(z) = eP\MYEE : lyl<m} 4y 200, JQ0\E () T €inty B

in view of the continuity of u at 00).

If z € E\int; E and Qp \ E is non-thin at z, then e\ — 2 and the equality

is trivial. The remaining points form a polar set and we can redefine u there as

we need without touching any of its assumed properties (see Fuglede [11], Theorem
9.14).

Hence,
p(u) = pa(u) = pa (52 (u) = 3\ (u) = 0

and the proof is complete. O

The theorem of Debiard and Gaveau follows this way.

Theorem 3.6. (Debiard, Gaveau; 1973)

Let K be a compact subset of R and f : K — R. The following statements are
equivalent:

(a) there exists a sequence {h,,} in Ho(K) such that h,, — f uniformly on K,
(b) the function f is continuous on K and Ho(K)-affine, that is,

f(x):/fdu forallz € K and pp € M,(Hy(K)).

(c) [ is continuous on K nad finely harmonic on the fine interior of K.

Proof. (a) = (b) is obvious.

(b) = (c) follows from the definition of fine harmonicity with respect to the fact
that measures €V in the definition are in M, (Hy(K)). This is obvious because
functions harmonic on an open set are also finely harmonic there.

(¢) = (a) is a special case of the previous theorem. O
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