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Vedoućı diplomové práce: RNDr. Eduard Feireisl, DrSc.
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Abstrakt: Jedna z obecně přij́ımaných hypotéz mechaniky tekutin tvrd́ı, že vazká
tekutina plně ulṕıvá na hranici oblasti j́ıž proud́ı, za předpokladu, že tato je ne-
propustná. V posledńı době se objevilo množstv́ı praćı, jež se snaž́ı tuto hypotézu
ospravedlnit z matematického hlediska takzvanou metodou hrubé hranice. Tato
metoda předpokládá, že ”reálná” hranice neńı nikdy dokonale hladká, ale ob-
sahuje mikroskopické výstupky. ”Ideálńı” oblast Ω je nahrazena tř́ıdou {Ωε}ε>0,
kde parametr ε zastupuje amplitudu výstupk̊u. Za dodatečných předpoklad̊u na
konvergenci oblast́ı Ωε → Ω, stejnoměrného rozprostřeńı výstupk̊u a nepropust-
nosti hranic ∂Ωε lze ukázat, že pro limitńı problém je nutno předepsat silněǰśı
podmı́nku úplné přilnavosti. V této práci chceme podrobit zkoumáńı optimalitu
výsledk̊u jež jsou uvedeny v Bucur et al. [3], Bucur a Feireisl [4] nebo Dı́az et al.
[5] a předvést několik konkrétńıch př́ıklad̊u. Nakonec rozš́ı̌ŕıme dosavadńı výsledky
pro širš́ı tř́ıdu oblast́ı {Ωε}, předevš́ım pro oblasti Ωε jejichž hranice obsahuje hroty
a daľśı nelipschitzovské utvary, které znemožňuj́ı použit́ı Kornových nerovnost́ı.
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Abstract: Well-accepted hypothesis in the fluid dynamics is that if the boundary
of the physical domain is impermeable then the viscous fluid adheres completely
to it. Many authors recently proposed mathematical justifications for this hypoth-
esis using the so-called method of rugous boundary. The main idea is to assume
that the ”real” boundary is never absolutely smooth, but it contains microscopic
asperities. They use a family of rough domains {Ωε}ε>0, where the parameter ε
corresponds to the amplitude of asperities, as a substitute for the ”ideal” domain
Ω. Assuming that Ωε → Ω in some sense, asperities are uniformly distributed, and
all ∂Ωε are impermeable, they are able to show that stronger no-slip condition has
to be imposed on the solution of the limit problem. In Thesis we want to discuss
optimality of results obtained in Bucur et al. [3], Bucur and Feireisl [4] or Dı́az
et al. [5] and we show several corresponding examples. Finally we extend results
for more general case of {Ωε}, mainly for Ωε whose boundaries contain cusps and
similar non-Lipschitz shapes, which does not allow using Korn’s inequalities.

Keywords: rough boundary, no-slip, Korn’s inequality, cusps
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1 Introduction

For a number of problems studied in fluid dynamics it is typical that suitably
chosen boundary conditions play an important role. Well-accepted hypothesis is
that if the boundary of the physical domain is impermeable then the viscous fluid
adheres completely to it. This hypothesis is commonly used in various theoretical
papers as well as in numerical experiments. Let u = u(x) be the Eulerian velocity
of the fluid at x ∈ Ω ⊂ R3; the impermeability of the boundary ∂Ω means that

u(x) · n(x) = 0 for any x ∈ ∂Ω, (1.1)

where n will always stand for the outer normal vector. On the other hand complete
adherence is formulated as the no-slip boundary condition

u(x) = 0 for any x ∈ ∂Ω. (1.2)

Many authors recently proposed mathematical rationalizations for this hypothesis
using the so-called method of rugous boundary. The main idea is to assume that
the ”real” boundary is never absolutely smooth, but it contains microscopic as-
perities of the size significantly smaller than the characteristic length scale of the
flow. Therefore we use a family of rough domains {Ωε}ε>0, where the parameter ε
corresponds to the amplitude of asperities, as a substitute for the ”ideal” domain
Ω. Assuming that Ωε → Ω in some sense, asperities are uniformly distributed,
and the condition of impermeability (1.1) is satisfied for all ∂Ωε, we are able to
show that stronger no-slip condition (1.2) has to be imposed on the solution of the
limit problem. Although this result may be considered as confirmation of (1.2)
for viscous fluids, it seems to be in contradiction with various numerical studies
based on the scale analysis of the boundary layer. This method replaces the no-
slip boundary condition on a rough boundary by ”milder” ones of Navier-type (see
Jaeger and Mikelić [6], Mohammadi, Pironneau and Valentin [7], Basson and Varet
[2], among others). This apparent contradiction disappears, however, as soon as
we realize that the Navier conditions always contain a friction term proportional
1
ε
, which actually yields the no-slip boundary condition in the asymptotic limit

ε → 0. Therefore there is no problem from the purely mathematical viewpoint.
To avoid unnecessary technical details, we will always assume in the Thesis

that all quantities are periodic with respect to the plane variables (x1, x2) with
period 1. Note, however, that no periodicity of the rugous boundary restricted to
the period 1 is a priori assumed. We consider a family of domains

Ωε = {(x1, x2, x3)| (x1, x2) ∈ T 2,−1 < x3 < Φε(x1, x2)},
where {Φε}ε>0 is a family of functions from W 1,∞(T 2), such that Φε ≥ 0 and
Φε → 0 uniformly on T 2, where T 2 = ([0, 1]|{0,1})2 is the 2-dimensional torus. We
define a limit domain

Ω = {(x1, x2, x3)| (x1, x2) ∈ T 2,−1 < x3 < 0},
and the upper part of its boundary

Γ := {(x1, x2, x3)| (x1, x2) ∈ T 2, x3 = 0}.
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Next we consider a family of functions uε ∈ W 1,2(Ωε,R3) that is uniformly bounded
(with regard to ε ∈ (0,∞) ) with respect to some suitable norm or semi-norm on
Ωε, and satisfying impermeability boundary condition (1.1) on the upper part of
∂Ωε in the sense of traces, in other words

uε · n = 0 a.e. on {(x1, x2, x3) | (x1, x2) ∈ T 2, x3 = Φε(x1, x2)}. (1.3)

By reflexivity of W 1,2(Ω,R3) we can find a subsequence of {uε} that weakly con-
verges to a u ∈ W 1,2(Ω,R3).

What are we able to say about the trace of u on Γ ? First we observe that for
Lipschitz domains Ωε, u satisfies boundary condition (1.1) a.e. on Γ in sense of
traces.

Lemma 1.1. Let {uε} satisfy condition (1.3),

‖uε‖W 1,2(Ωε,R3) ≤ K < ∞ uniformly for ε ∈ (0,∞), (1.4)

and uε → u weakly in W 1,2(Ω,R3).
Then

u · n = 0 a.e. on Γ,

in sense of traces.

Proof. Without loss of generality we may assume that the functions Φε determining
the upper part of the boundary are strictly positive. We start with Green’s formula
for Lipschitz domains Ωε \ Ω,

∫

∂(Ωε\Ω)

uε · nϕ dS =

∫

Ωε\Ω
div uεϕ dx +

∫

Ωε\Ω
uε · ∇ϕ dx, ϕ ∈ C1(R3).

Using boundary condition (1.3) and Hölder inequality,

∫

Γ

uε · nϕ dS ≤ ‖ϕ‖C1(R3)‖uε‖W 1,2(Ωε,R3)|Ωε \ Ω| 12 , ϕ ∈ C1(R3).

Eventually, thanks to (1.4), uniform convergence of Φε → 0, and compactness of
the trace operator on the space W 1,2(Ω), we get

∫

Γ

u · nϕ dS = 0, ϕ ∈ C1(R3),

which concludes the proof.

Now let us review in detail the known results that are of our interest.
In Dı́az, Cara, and Simon [5], the authors considered Φ ∈ C1(T 2) generating

{Φε}ε>0 in the following way:

Φε(x1, x2) := εΦ(
x1

ε
,
x2

ε
) for ε ∈ (0,∞).

uε ∈ W 1,2(Ωε,R3), ‖∇uε‖L2(Ωε,R3×3) ≤ K < ∞ uniformly for ε ∈ (0,∞).
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Moreover, they assume that there is a distribution u on Ω such that, as ε → 0,
one has for all c ∈ (0,∞)

uε → u in L2(Ωc,R3×3),

where Ωc := {(x1, x2, x3) | (x1, x2) ∈ T 2, −1 < x3 < −c}. Finally, Φ varies in any
direction at least at one point, more specifically,

∇Φ ·w 6≡ 0 for any |w| = 1.

Under these hypotheses, they showed that if the boundary condition (1.3) is
satisfied for all uε, then the limit u satisfies the no-slip boundary condition (1.2)
a.e. on Γ in the sense of traces.

In Bucur et al. [3], the authors assume that

Φε ∈ W 1,∞(T 2), Φε > 0, Φε → 0 uniformly on T 2,

|Φε(y1)− Φε(y2)| ≤ L|y1 − y2| for any y1, y2 ∈ T 2, (1.5)

with L independent of ε,

‖uε‖W 1,2(Ωε,R3) ≤ K < ∞ uniformly for ε > 0,

and that uε satisfy the impermeability condition (1.3).
They show that any limit function u satisfies the no-slip condition (1.2) provid-

ing that a certain quantity termed measure of rugosity {Ry}y∈T 2 is non-degenerate
at a.a. y ∈ T 2. The measure of rugosity {Ry}y∈T 2 is simply a Young measure as-
sociated to the family of gradients {∇Φε}ε>0 (for more details on Young measures
see Theorem 6.2 in Pedregal [8]). A measure of rugosity is called non-degenerate
at y ∈ T 2 if supp[Ry] contains two linearly independent vectors in R2. Thus the
measure of rugosity, associated with the directions of the normal vectors on the
upper part of ∂Ωε, vanishes on the region with none or mild asperities, while it is
strictly positive in the area, where ”many” microscopic asperities prevent the fluid
from slipping.

Remark 1.2. The above mentioned results (stated in Bucur et al. [3] and Dı́az
et al. [5]) have three common characteristics that are crucially important for their
validity:

1. the family {Φε}ε>0 is equilipschitz, which allows for using Korn’s inequality,
extension operators and other inequalities with constants independent of ε,

2. Φε are regular, which is necessary for Green’s and similar theorems,

3. amplitude and period of oscillations are both of the very same order ε.

For closer comparison of Dı́az et al. [5] with Bucur et al. [3] we refer to Corollary
4.1 in Bucur et al. [3].
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Under slightly different assumptions than in Dı́az et al. [5], Bucur and Feireisl
[4] showed, in addition to fulfilment of (1.2) a.e. on Γ for u, that the rate of
convergence for the traces of uε on Γ can be estimated in terms of ε. For

Φ ∈ C∞(T 2), Φ > 0 and ∇Φ ·w 6≡ 0 for any |w| = 1,

generating {Φε}ε∈(0,∞) as

Φε(x1, x2) := εΦ(
x1

ε
,
x2

ε
) for ε ∈ (0,∞),

they proved that there exists K ∈ (0,∞) independent of ε, such that
∫

Γ

|uε|2 dS ≤ εK‖∇uε‖2
L2(Ωε,R3) for all ε ∈ (0,∞),

for any uε ∈ W 1,2(Ωε,R3) satisfying the impermeability boundary condition (1.3).

Remark 1.3. Even though the results shown in Bucur et al. [3] or Bucur and
Feireisl [4] are developed in the context of particular equations, they are completely
independent of them.

Remark 1.4. The result concerning the rate of convergence is interesting itself.
The rate ε gives us a chance to get (1.2) even for non-equilipschitz domains, namely

Φε(x1, x2) := εαΦ(
x1

ε
,
x2

ε
) for ε ∈ (0,∞) and α ∈ (0,∞).

We see that the results stated so far concern only the case α = 1. The counter-
examples 4.3 and 5.3 show that in fact for α ∈ [2,∞) similar estimates can not be
valid. The case α ∈ (0, 1) simply takes into account highly oscillating boundaries,
on the contrary, the case α ∈ (1, 2) treats mildly oscillating ones.

Our main goals in the Thesis are:

(i) to show a very illuminating example related to the problem of oscillating
boundaries,

(ii) to show an example of {Φε}ε>0 in R2, R3 that does not satisfy the assumptions
of Bucur et al. [3] mentioned in Remark 1.2 and still converges,

(iii) to show the rate of convergence for these examples and counter examples for
α ∈ [2,∞),

(iv) to discuss much more general assumptions on Φ than those used in Bucur
and Feireisl [4], Dı́az et al. [5] or Corollary 4.1 in Bucur et al. [3],

(v) to show the rate of convergence for the trace of uε on Γ for more general Φ.

The Thesis is organized in the following manner. Section 2 contains notation
and abbreviations used in the text. In Section 3, we show a very illuminating
example of the problem. In Sections 4 and 5, we show an example of {Φε}ε>0

indicating non-optimality of the assumptions in Bucur et al. [3]. We also give
proofs and estimates on the rate of convergence. In Section 6, we introduce a very
general Φ, for which we have convergence and rate of convergence, the relevant
proofs being given in the last part of the Thesis (following the method used in
Bucur and Feireisl [4]).
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2 Notation

We will use the following notation or abbreviation if not stated elsewhere. We
shorten {vn}∞n=1 to {vn}, and also shorten W 1,p(V,Rn) and W 1,p(V,Rn×n) to
W 1,p(V ) and the norm in W 1,p(V ) will be denoted ‖ · ‖1,p. Norm in C1(V ) is
the same as in W 1,∞(V ). Scalar product of two vectors v,u is denoted v · u. We
recall

p′ =
p

p− 1
and p] =





p
2−p

, for p < 2;

arbitrarily large real, for p = 2;
∞, for p > 2.

are the Lebesgue conjugated exponent and the Sobolev trace operator exponent,
respectively (for more see Theorem 1.23 from Roub́ıček [10]). We denote | · | the
Lebesgue measure or Euclidean norm for vectors. Vectors are denoted boldface.

The impermeability boundary condition can be understood in different ways.
For a Lipschitz domain V , we will understand it in the sense of traces of Sobolev
functions, which means

∫

∂V

v · nϕ dS = 0, ϕ ∈ C1(R3), (2.1)

where v ∈ W 1,p(V ) for some p ∈ (1,∞). We will abbreviate it into different form,

v · n = 0 a.e. on ∂V.

In this case (2.1) can be rewritten using Green’s theorem as

∫

V

div vϕ dx +

∫

V

v · ∇ϕ dx = 0, ϕ ∈ C1(R3).

In Section 6 we will need boundary condition for non-Lipschitz domains, where
we do not have traces in the sense of Sobolev functions. Because we will also use
constraint div v = 0 in Section 6, we prescribe boundary condition in form

∫

V

v · ∇ϕ dx = 0, ϕ ∈ C1(R3),

which does not require the existence of traces in the sense of Sobolev functions at
all.

Remark 2.1. We are aware of the fact that the boundary of Ωε or Ω consists of
both the upper and the bottom part. However, we care only for behavior of functions
uε on the upper part, or rather on some neighborhood of it, that does not contain
the bottom part of the boundary. We leave the boundary conditions prescribed on
the bottom part on individual concerns of the reader.
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3 Illuminating example

In this Section we will consider a special case

Φ(x) =

{
x, on [0, 1

2
];

1− x, on [1
2
, 1],

with an associated family

Φn(x) =





1
nα−1 (x− k−1

n
), on [k−1

n
, 2k−1

2n
] for k = 1, ..., n;

1
nα−1 (

k
n
− x), on [2k−1

2n
, k

n
] for k = 1, ..., n.

We consider a family of domains

Ωn = {(x, y) | x ∈ T ,−1 < y < Φn(x)},
and the limit domain Ω = {(x, y) | x ∈ T , −1 < y < 0}, together with the upper
boundary Γ := {(x, y) | x ∈ T , y = 0}.

Next we consider a function v ∈ C1(Ωn) for some n ∈ N, satisfying the imper-
meability boundary condition

v · n = 0 a.e. on {(x, y) | x ∈ T , y = Φn(x)}. (3.1)

Proposition 3.1. There exists K ∈ (0,∞) independent of n such that for any
n ∈ N and for an arbitrarily chosen function v ∈ C1(Ωn) satisfying (3.1), the
following estimates hold true

α ∈





(0, 1),
∫
Γ
|v| ds ≤ K‖∇v‖L∞(Ωn)

nα ;

[1, 2),
∫
Γ
|v| ds ≤ K‖∇v‖L∞(Ωn)

n2−α .

Corollary 3.2. For an arbitrarily chosen family of functions {un}, un ∈ C1(Ωn)
satisfying (3.1),

‖∇un‖L∞(Ωn) ≤ K < ∞ uniformly for all n ∈ N,

and un → u weakly-(*) in W 1,∞(Ω), condition (1.2) is always satisfied, in other
words, u = 0 a.e. on Γ.

We want to point out that assumptions of Proposition 3.1 and the method
used in its proof are quite illuminating and so the results can be referred to as
the ”best” possible with regard to the range of convergence in α and its rate. We
see that the upper bound for α is 2 (which we stated as maximum), and it looks
like the lower bound can even reach 0. From the proof of Proposition 3.1 we can
easily derive another estimate, which is interesting in comparison with the results
of Section 6, namely we can get,

α ∈





(0, 1),
∫

Γ
|v|2 ds ≤ K‖∇v‖2

L∞(Ωn)

n2α ;

[1, 2),
∫

Γ
|v|2 ds ≤ K‖∇v‖2

L∞(Ωn)

n2(2−α) .
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Proof of Corollary 3.2. Corollary results immediately from Proposition 3.1.

Proof of Proposition 3.1. The normal n takes its values in the two-vectors set,

nL := k(−n1−α, 1) and nR := k(n1−α, 1),

where k = 1√
1+n2(1−α)

. Vectors nL, nR are linearly independent vectors generating

R2. We generate from them a new orthogonal basis of R2,

h1 := nL + nR = 2k(0, 1),

h2 := nR − nL = 2k(n1−α, 0).

For almost all (x, y) ∈ Ωn, we may write un(x, y) as a linear combination of h1

and h2,
v(x, y) = α1(x, y)h1 + α2(x, y)h2.

After scalar multiplying by h1, h2 respectively, we get

v(x, y) · h1 = α1(x, y)|h1|2 = α1(x, y)4k2,

v(x, y) · h2 = α2(x, y)|h2|2 = α2(x, y)4k2n2(1−α).

We can start estimating,
∫

Γ

|v| ds =

∫

Γ

|α1h1 + α2h2| ds ≤
∫

Γ

|v · h1|
|h1| +

|v · h2|
|h2| ds

≤
∫

Γ

(|v · nL|+ |v · nR|) ds

(
1

|h1| +
1

|h2|
)

≤
∫

Γ

(|v · nL|+ |v · nR|) ds

√
1 + n2(1−α)

2

(
1 +

1

n1−α

)
.

We know that

|v(x1, y1)− v(x2, y2)| ≤ ‖∇v‖L∞(Ωn)|(x1, y1)− (x2, y2)|, (3.2)

for (x1, y1), (x2, y2) ∈ Ωn. Let us choose an arbitrary x ∈ T . Then it follows from
(3.1) that there exist

(xL, yL), (xR, yR) ∈ B 1
n
((x, 0)) ∩ ∂Ωn,

such that v(xL, yL) · nL = 0 and v(xR, yR) · nR = 0, for better understanding see
Figure 1.

Then it follows from (3.2) that

|v(x, 0) · nL| = |v(x, 0) · nL − v(xL, yL) · nL| ≤
‖∇v‖L∞(Ωn)

n
,

|v(x, 0) · nR| = |v(x, 0) · nR − v(xR, yR) · nR| ≤
‖∇v‖L∞(Ωn)

n
.

Eventually we get estimate
∫

Γ

|v| ds ≤ ‖∇v‖L∞(Ωn)

√
1 + n2(1−α)

n

(
1 +

1

n1−α

)
.
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k−1

n
k
n

nL

nR
1

2nα

1

n

B 1

n

(x, 0)

x

Figure 1: Graph of Φn

4 Example of oscillating boundaries in R2

In this Section we will consider a special case Φ(x) := 1
4
[sin(2x− π

2
) + 1], x ∈ T ,

where T = ([0, π]|{0,π}) is a 1-dimensional torus and a generated family (ε = 1
n
),

Φn(x) =
1

4nα
[sin(2nx− π

2
) + 1], x ∈ T , α ∈ (0,∞).

We consider a family of domains

Ωn = {(x, y) | x ∈ T ,−1 < y < Φn(x)},

and the limit domain Ω = {(x, y) | x ∈ T , −1 < y < 0}, together with the upper
boundary Γ := {(x, y) | x ∈ T , y = 0}.

Next we consider a function v ∈ W 1,p(Ωn) for some p ∈ (1,∞) and some n ∈ N,
satisfying the impermeability boundary condition

v · n = 0 a.e. on {(x, y) | x ∈ T , y = Φn(x)}. (4.1)

Proposition 4.1. For any p ∈ (1,∞), there exists K ∈ (0,∞) independent of
n such that for any n ∈ N and any arbitrarily chosen function v ∈ W 1,p(Ωn)
satisfying (4.1), the following estimates hold true

∫
Γ
|v| ds ≤ K‖v‖1,p

n
(α(2p−1)−p)

p

, for α ∈
(

p
2p−1

, p(2p]−1)
p(2p]−1)+p](p−1)

)
;

∫
Γ
|v| ds ≤ K‖v‖1,p

n

p−α

p(1+2p]′ )
, for α ∈

[
p(2p]−1)

p(2p]−1)+p](p−1)
, 1

)
;

∫
Γ
|v| ds ≤ K‖v‖1,p

n

2p−α(p+1)

p(1+2p]′ )
, for α ∈ [1, 2p

p+1
);

∫
Γ
|v| ds ≤ K‖v‖1,p

n

1

p′(1+2p]′ )
, if α = 1.
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Corollary 4.2. Let p ∈ (1,∞] and α ∈ ( p
2p−1

, 2p
p+1

). Then for an arbitrarily chosen

family of functions {un}, un ∈ W 1,p(Ωn) satisfying (4.1),

‖un‖1,p ≤ K < ∞ uniformly for all n ∈ N, (4.2)

and un → u weakly in W 1,p(Ω), condition (1.2) is always satisfied, in other words
u = 0 a.e. on Γ.

Counter-example 4.3. Let

un(x, y) = [u1(x, y), u2(x, y)], u1 :≡ 1, u2(x, y) := Φ′
n(x) =

1

nα−1
Φ′(nx),

for (x, y) ∈ Ωn. Then for α ∈ [2,∞) the family {un} satisfies (4.1) and (4.2), but
the limit function u = [1, 0] does not satisfy (1.2).

We immediately see that {Φn} do not satisfy the condition (1.5) for α < 1, as

Φ′
n(x) = n1−αΦ′(nx) ⇒ L(n) →∞,

and do not satisfy the non-degeneracy condition for α > 1, because {Ry}y∈T ≡ 0
at a.a. y ∈ T as

Φ′
n(x) =

1

nα−1
Φ′(nx) → 0 uniformly on T .

Apart from that {Φn} satisfies all other assumptions in Bucur et al. [3]. So
our example shows that condition (1.5) and non-degeneracy condition (see also
Remark 1.2) are not optimal for this type of problem. It also shows that we can
expect to evaluate the rate of convergence even for α 6= 1, where the case α > 1 is
particularly interesting.

Proof of Corollary 4.2. Corollary results immediately from Proposition 4.1.

Proof of Counter-example 4.3. Because α ∈ [2,∞) we easily compute that

un ∈ L∞(Ωn) and ∇un =

(
0 0

1
nα−2 Φ

′′(nx) 0

)
∈ L∞(Ωn),

in other words,

‖un‖1,∞ ≤ K < ∞ uniformly for all n ∈ N.

We also have
un · n = 0 on the upper part of ∂Ωn,

because n(x) = (−Φ′n(x),1)√
(Φ′n(x))2+1

.

Thus {un} satisfies conditions (4.2), (4.1) for any p ∈ (1,∞), but it is obvious
that un ⇒ [1, 0] on T , so (1.2) is not satisfied.
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In the next proof we do not make a difference between subsets of R× {0} and
their canonical projection onto R and vice versa whenever it is useful. As well we
suppose that functions defined on subsets of R are also defined on R×{0} through
the mapping [x] 7→ [x, 0]. By

∫ · ds we mean the curvilinear integral and by
∫ · dx

the Lebesgue integral.

Proof of Proposition 4.1. We will divide the proof into three steps. In the first
step we deduce estimates for v ∈ C∞(Ωn) based on subtracting the set of ”bad”
points of measure ε ∈ (0, 1

2
) from Γ. In the second step, we replace ε by a suitable

function depending on n and prove desired estimates for v ∈ C∞(Ωn). Finally, in
the third step, we extend the estimates for v ∈ W 1,p(Ωn).

1. step:

Let us choose ε ∈ (0, 1
2
) arbitrarily, fixed. We define

Γnε :=
2n−1⋃

k=1

(
kπ

2n
− ε

2n
,
kπ

2n
+

ε

2n
) ∪ (0,

ε

2n
) ∪ (π − ε

2n
, π),

and Γn := Γ \ Γnε, then |Γnε| = 2n ε
n

= 2ε.

Set Γn is a ”large” subset of Γ without neighborhoods of ”bad” points. Let us
assume that v ∈ C∞(Ωn).

∫

Γ

|v| ds =

∫

Γn

|v| ds +

∫

Γnε

|v| ds ≤
∫

Γn

|v| ds +

(∫

Γ

|v|p]

ds

) 1

p]

|Γnε|
1

p]′

≤
∫

Γn

|v| ds + C‖v‖W 1,p(Ω)|Γnε|
1

p]′ .

We used Hölder inequality and Sobolev trace operator for Ω (independent on
n)(for more see Theorem 1.23 from Roub́ıček [10]). This may be rewritten as

∫

Γ

|v| ds ≤
∫

Γn

|v| ds +C‖v‖W 1,p(Ω)ε
1

p]′ .

Outward normal to the upper boundary of Ωn is n(x) = (−Φ′n(x),1)√
(Φ′n(x))2+1

. Prime ′

above a function always denotes its derivative with respective to x. We denote
k(x) := 1√

(Φ′n(x))2+1
. Now we introduce two vectors, which arise naturally from the

form of n(x):

n1(x) := n(x) = k(x)(−Φ′
n(x), 1),

n2(x) := k(x)(Φ′
n(x), 1).

Vectors n1(x), n2(x) are linearly independent for x ∈ T \ {x | Φ′
n(x) = 0},

whence for all x ∈ Γn. So they form a normal basis of R2. We will generate from
n1(x), n2(x) a new orthogonal basis of R2. We define:

h1(x) := n1(x) + n2(x) = 2k(x)(0, 1),

h2(x) := n2(x)− n1(x) = 2k(x)(Φ′
n(x), 0).
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So we have |h1(x)| = 2k(x) a |h2(x)| = 2k(x)|Φ′
n(x)|.

For all (x, y) ∈ Ωn, we may write v(x, y) as a linear combination of h1(x) and
h2(x),

v(x, y) = α1(x, y)h1(x) + α2(x, y)h2(x).

After scalar multiplying by h1(x), h2(x), respectively, we get

v(x, y) · h1(x) = α1(x, y)|h1(x)|2 = α1(x, y)4k(x)2,

v(x, y) · h2(x) = α2(x, y)|h2(x)|2 = α2(x, y)4k(x)2|Φ′
n(x)|2.

Now we can continue with estimating of
∫
Γn
|v| ds.

∫

Γn

|v| ds ≤
∫

Γn

|α1h1 + α2h2| ds ≤
∫

Γn

|α1||h1|+ |α2||h2| ds

≤
∫

Γn

|v · h1|
2k

+
|v · h2|
2k|Φ′

n|
ds ≤

∫

Γn

(|v · n1|+ |v · n2|) 1

2k

(
1 +

1

|Φ′
n|

)
ds

≤
∫

Γn

(|v · n1|+ |v · n2|)
√

(Φ′
n)2 + 1

2

(
1 +

1

|Φ′
n|

)
ds

≤
∫

Γn

(|v · n1|+ |v · n2|) ds

∥∥∥∥∥

√
(Φ′

n)2 + 1

2

∥∥∥∥∥
L∞(Γn)

∥∥∥∥1 +
1

|Φ′
n|

∥∥∥∥
L∞(Γn)

. (4.3)

Now we estimate the last two terms in (4.3).

Φ′
n(x) =

1

2nα−1
cos(2nx− π

2
).

Set Γn was constructed according to the form of the first of them, so we immediately
read
∥∥∥∥ 1 +

1

|Φ′
n|

∥∥∥∥
L∞(Γn)

=

∥∥∥∥ 1 +
2nα−1

| cos(2n · −π
2
)|

∥∥∥∥
L∞(Γn)

= 1+
2nα−1

cos(−π
2

+ ε)
= 1+

2nα−1

sin(ε)
,

∥∥∥∥∥

√
(Φ′

n)2 + 1

2

∥∥∥∥∥
L∞(Γn)

=

∥∥∥∥∥∥

√
n2(1−α) cos2(2n · −π

2
) + 4

4

∥∥∥∥∥∥
L∞(Γn)

≤
√

n2(1−α) + 4

4
.

We still need to estimate the term
∫
Γn

(|v · n1| + |v · n2|) ds. First we will get

estimates of terms
∫

Γ
|v · n1| ds and

∫
Γn
|v · n2| ds and then desired estimate will

follow.
To get estimates on

∫
Γ
|v · n1| ds and

∫
Γn
|v · n2| ds we use Fubini’s theorem.

We integrate with respect to x and y axes stepwise over the set

Υn := {(x, y) | x ∈ T , 0 < y < Φn(x)}.
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Figure 2: Set Υn for n = 8

(i) integrating with respect to x

Set Υn is the union of n geometrically identical domains (see Figure 2), we
provide estimate on the first part and the rest holds in the same way. So we
work only on the set

∆ := {(x, y) | x ∈ (0,
π

n
), 0 < y < Φn(x)}.

For all y ∈ (0, 1
2nα ) we arrive

v(Ly, y)− v(Ry, y) =

∫ Ly

Ry

∂

∂x
v(x, y) dx, (4.4)

where Ly := Φ−1
n (y) < π

2n
and Ry := Φ−1

n (y) > π
2n

(for better understanding
see Figure 3).

1

2nα

y

0 Ly Ry

n(Ry) = n2(Ly)n(Ly)

π
n

π
2n

Figure 3: Graph of Φn on (0, π
n
) alias ∆

Scalar multiplication of (4.4) by normal at exact point n(Ry) gives,

v(Ly, y) · n(Ry)− v(Ry, y) · n(Ry) =

∫ Ly

Ry

∂

∂x
v(x, y) dx ·n(Ry).

Take absolute values of both sides and use Schwartz inequality with |n| = 1,

|v(Ly, y) · n(Ry)− v(Ry, y) · n(Ry)| ≤
∫ Ry

Ly

| ∂

∂x
v(x, y)| dx .

Integrating over y ∈ (0, 1
2nα ) gives rise to

∫ 1
2nα

0

|v(Ly, y) · n(Ry)− v(Ry, y) · n(Ry)| dy ≤
∫ 1

2nα

0

∫ Ry

Ly

| ∂

∂x
v(x, y)| dxdy .
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From the boundary condition (4.1) imposed on v we immediately see that
for all y ∈ (0, 1

2nα ) we get v(Ry, y) · n(Ry) = 0; whence

∫ 1
2nα

0

|v(Ly, y) · n(Ry)| dy ≤
∫ 1

2nα

0

∫ Ry

Ly

| ∂

∂x
v(x, y)| dxdy .

From the definition of n2, it is obvious that n(Ry) = n2(Ly) (for better
understanding see Figure 3). Consequently, using Fubini’s theorem gives us,

∫ 1
2nα

0

|v(Ly, y) · n2(Ly)| dy ≤
∫

∆

| ∂

∂x
v| dxdy .

Using the change of notation Ly = x and substituting y = Φn(x) for x ∈
(0, π

2n
), we get

∫ 1
2nα

0

|v(Ly, y) · n2(Ly)| dy =

∫ π
2n

0

|v(x, Φn(x)) · n2(x)||Φ′
n(x)| dx .

If we change scalar multiplication of (4.4) by n(Ry) for multiplication of (4.4)
by n(Ly), we get, after similar calculation, estimate

∫ π
n

π
2n

|v(x, Φn(x)) · n2(x)||Φ′
n(x)| dx ≤

∫

∆

| ∂

∂x
v| dxdy .

Eventually, we arrive at the following estimate,

∫

T
|v(x, Φn(x)) · n2(x)||Φ′

n(x)| dx ≤ 2

∫

Υn

| ∂

∂x
v| dxdy .

(ii) integrating with respect to y

For all x ∈ T we have

v(x, 0)− v(x, Φn(x)) =

∫ 0

Φn(x)

∂

∂y
v(x, y) dy,

which we rewrite into the form

v(x, 0) = v(x, Φn(x)) +

∫ 0

Φn(x)

∂

∂y
v(x, y) dy . (4.5)

Scalar multiplication of (4.5) by n1(x) gives

v(x, 0) · n1(x) = v(x, Φn(x)) · n1(x) +

∫ 0

Φn(x)

∂

∂y
v(x, y) dy ·n1(x).

Take absolute values of both sides and use Schwartz inequality with |n1| = 1,

|v(x, 0) · n1(x)| ≤ |v(x, Φn(x)) · n1(x)|+
∫ Φn(x)

0

| ∂

∂y
v(x, y)| dy .
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Integrating over x ∈ T , using boundary condition (4.1) and Fubini’s theorem,
we obtain

∫

T
|v(x, 0) · n1(x)| dx

︸ ︷︷ ︸
=

∫
Γ |v·n1|ds

≤
∫

T
|v(x, Φn(x)) · n1(x)| dx

︸ ︷︷ ︸
=0

+

∫

Υn

| ∂

∂y
v| dxdy .

If we change scalar multiplication of (4.5) by n1(x) for multiplication of (4.5)
by n2(x), we get after similar calculation and integrating over x ∈ Γn estimate

∫

Γn

|v(x, 0) · n2(x)| dx

︸ ︷︷ ︸
=

∫
Γn
|v·n2|ds

≤
∫

Γn

|v(x, Φn(x)) · n2(x)| dx +

∫

Υn

| ∂

∂y
v| dxdy .

According to construction of Γn we have Φ′
n 6= 0 on Γn so we can use the

following estimate,

∫

Γn

|v(x, Φn(x)) · n2(x)| dx ≤
∫

T
|v(x, Φn(x)) · n2(x)||Φ′

n(x)| dx

∥∥∥∥
1

Φ′
n

∥∥∥∥
L∞(Γn)

.

Eventually, we get

∫

Γn

(|v · n1|+ |v · n2|) ds ≤ 2

∫

Υn

| ∂

∂x
v| dxdy

∥∥∥∥
1

Φ′
n

∥∥∥∥
L∞(Γn)

+

2

∫

Υn

| ∂

∂y
v| dxdy ≤ 2‖v‖1,p|Υn|

1
p′

(
1 +

∥∥∥∥
1

Φ′
n

∥∥∥∥
L∞(Γn)

)

= 2‖v‖1,p

(∫

T
Φn(x) dx

) 1
p′

(
1 +

∥∥∥∥
1

Φ′
n

∥∥∥∥
L∞(Γn)

)

= 2‖v‖1,p

( π

4nα

) 1
p′

∥∥∥∥1 +
1

|Φ′
n|

∥∥∥∥
L∞(Γn)

.

Now if we put all so-far obtained estimates together we read out
∫

Γ

|v| ds ≤
∫

Γn

|v| ds +C‖v‖W 1,p(Ω)ε
1

p]′

≤
∫

Γn

(|v ·n1|+ |v ·n2|) ds

∥∥∥∥∥

√
(Φ′

n)2 + 1

2

∥∥∥∥∥
L∞(Γn)

∥∥∥∥1 +
1

|Φ′
n|

∥∥∥∥
L∞(Γn)

+C‖v‖W 1,p(Ω)ε
1

p]′

≤ ‖v‖1,p

( π

4nα

) 1
p′

∥∥∥
√

(Φ′
n)2 + 1

∥∥∥
L∞(Γn)

∥∥∥∥1 +
1

|Φ′
n|

∥∥∥∥
2

L∞(Γn)

+ C‖v‖1,p ε
1

p]′

≤ C‖v‖1,p

(
1

n
α
p′

(
1 +

2nα−1

sin(ε)

)2 √
n2(1−α) + 4 + ε

1

p]′

)
. (4.6)

We see that C is independent of n.
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2. step:

Because ε was chosen arbitrary in the previous step, we can fit ε to n. In this step
we replace ε by suitable function (denoted f) of n. The idea is the following. For
each n ∈ N we can take ε as small as we wish nevertheless we don’t reach good
estimates because of the term 1

sin(ε)
. We need to balance the dependence of ε on n

so that we get optimal decay at both terms of addition in (4.6). We do so through
f such that both terms will have the same decay. Using Taylor expansion at 0 and
ε ∈ (0, 1

2
) we have estimates

sin(ε) ≥ ε(6− ε2)

6
≥ ε

2
,

1

n
α
p′

(
1 +

2nα−1

sin(ε)

)2 √
n2(1−α) + 4 + ε

1

p]′ ≤ 1

n
α
p′

(
1 +

2nα−1

ε
2

)2 √
n2(1−α) + 4 + ε

1

p]′ .

For each n ∈ N we choose ε = f(n), where f is a nonnegative function such
that limn→∞ f(n) = 0. We calculate f(n) by comparing the decay of

1

n
α
p′

(
1 +

4nα−1

f(n)

)2 √
n2(1−α) + 4 and f(n)

1

p]′ .

We will distinguish two cases with regard to α:

(i) case α ∈ [1,∞):

In this case, we have 2 ≤
√

n2(1−α) + 4 ≤ C(α) < ∞, which means that this
term has no influence on decay, so we can omit it. We can also omit any
constant that has no influence on decay. We have

nα−1

f(n)
≥ 1 for n ∈ N,

too. Altogether it means that we need to evaluate f(n) from

n2(α−1)

f(n)2n
α
p′

= f(n)
1

p]′ ⇒ f(n) =
1

n
p]′ (2p−α(p+1))

p(1+2p]′ )

,

where f(n) decays to 0 if and only if α < 2p
p+1

.

(ii) case α ∈ (0, 1):

In this case we have n1−α <
√

n2(1−α) + 4 < C(α)n1−α. We also have

nα−1

f(n)
= 1 ⇔ f(n) = nα−1 ⇒ n(1−α)

n
α
p′

= n
α−1

p]′ ⇒ α =
p(2p] − 1)

p(2p] − 1) + p](p− 1)
.

Above f(n) decays to 0 because α < 1.

We easily deduce that for α ≥ p(2p]−1)
p(2p]−1)+p](p−1)

one has nα−1

f(n)
≥ 1, and, conse-

quently, we need to calculate f(n) from

n(α−1)

f(n)2n
α
p′

= f(n)
1

p]′ ⇒ f(n) =
1

n
p]′ (p−α)

p(1+2p]′ )

,
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where f(n) always decays to 0 because α < 1 < p.

Furthermore for α < p(2p]−1)
p(2p]−1)+p](p−1)

we have nα−1

f(n)
≤ 1; whence we need to

calculate f(n) from

n(1−α)

n
α
p′

= f(n)
1

p]′ ⇒ f(n) =
1

n
p]′ (α(2p−1)−p)

p

,

where f(n) decays to 0 if and only if α > p
2p−1

.

Now we calculate the desired K from C and the constants omitted during the
previous calculations. We see that K is independent of n and α.

3. step:

To get above estimates for v ∈ W 1,p(Ωn) we will use the approximation Theorem
3.22 from Adams and Fournier [1].

Theorem 3.22 from [1]: Let V ∈ C0,1 and v ∈ W 1,p(V ) for p ∈ [1,∞). Then
there exists {vk} ⊂ C∞(V ) such that vk → u in W 1,p(V ) strongly.

Direct using of Theorem 3.22 from [1] for V = Ωn, which satisfies assumption
Ωn ∈ C0,1, gives us desired estimates for v ∈ W 1,p(Ωn).

5 Example of oscillating boundaries in R3

In this Section we will consider a special case

Φ(x1, x2) :=
1

8
[sin(2x1 − π

2
) + 1][sin(2x2 − π

2
) + 1], (x1, x2) ∈ T 2,

where T 2 = ([0, π]|{0,π})2 and a generated family (ε = 1
n
),

Φn(x1, x2) =
1

8nα
[sin(2nx1− π

2
)+1][sin(2nx2− π

2
)+1], (x1, x2) ∈ T 2, α ∈ (0,∞).

We consider a family of domains

Ωn = {(x1, x2, x3) | (x1, x2) ∈ T 2,−1 < x3 < Φn(x1, x2)},

and the limit domain Ω = {(x1, x2, x3) | (x1, x2) ∈ T 2, −1 < x3 < 0}, together
with the upper boundary Γ := {(x1, x2, x3) | (x1, x2) ∈ T 2, x3 = 0}.

Next we consider a function v ∈ W 1,p(Ωn) for some p ∈ (1,∞) and some n ∈ N,
satisfying the impermeability boundary condition

v · n = 0 a.e. on {(x1, x2, x3) | (x1, x2) ∈ T 2, x3 = Φn(x1, x2)}. (5.1)

Proposition 5.1. For any p ∈ (1,∞), there exists K ∈ (0,∞) independent of
n such that for any n ∈ N and any arbitrarily chosen function v ∈ W 1,p(Ωn)
satisfying (5.1), the following estimates hold true
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∫
Γ
|v| ds ≤ K‖v‖1,p

n
(α(2p−1)−p)

p

, for α ∈ ( p
2p−1

, p(4p]−1)
p(4p]−1)+3p](p−1)

);

∫
Γ
|v| ds ≤ K‖v‖1,p

n

p−α

p(1+6p]′ )
, for α ∈ [ p(4p]−1)

p(4p]−1)+3p](p−1)
, 1);

∫
Γ
|v| ds ≤ K‖v‖1,p

n

2p−α(p+1)

p(1+6p]′ )
, for α ∈ [1, 2p

p+1
);

∫
Γ
|v| ds ≤ K‖v‖1,p

n

1

p′(1+6p]′ )
, if α = 1.

Corollary 5.2. Let p ∈ (1,∞] and α ∈ ( p
2p−1

, 2p
p+1

). Then for an arbitrarily chosen

family of functions {un}, un ∈ W 1,p(Ωn) satisfying (5.1),

‖un‖1,p ≤ K < ∞ uniformly for all n ∈ N, (5.2)

and un → u weakly in W 1,p(Ω), condition (1.2) is always satisfied, in other words
u = 0 a.e. on Γ.

Counter-example 5.3. Let

un(x1, x2, x3) = [u1(x1, x2, x3), u2(x1, x2, x3), u3(x1, x2, x3)],

u1 :≡ 1, u2 :≡ 1, u3(x1, x2) :=
∂

∂x1

Φn(x1, x2) +
∂

∂x2

Φn(x1, x2),

for (x1, x2, x3) ∈ Ωn. Then for α ∈ [2,∞) the family {un} satisfies (5.1) and (5.2),
but the limit function u = [1, 1, 0] does not satisfy (1.2).

We again immediately see that {Φn} do not satisfy the condition (1.5) for
α < 1, as

∇Φn(x1, x2) = n1−α∇Φ(nx1, nx2) ⇒ L(n) →∞,

and do not satisfy non-degeneracy condition for α > 1, because {Ry}y∈T 2 ≡ 0 at
a.a. y ∈ T 2 as

∇Φn(x) =
1

nα−1
∇Φ(nx) → 0 uniformly on T 2.

Apart from that {Φn} satisfies all other assumptions in Bucur et al. [3]. So
our example shows that condition (1.5) and non-degeneracy condition (see also
Observation 1.2) are not optimal for this type of problem. It also shows that we
can expect to evaluate the rate of convergence even for α 6= 1, where the case
α > 1 is particularly interesting. Comparing results obtained in 2D and 3D case
shows that the dimension should not be significant factor in this type of problem.

Proof of Corollary 5.2. Corollary results immediately from Proposition 5.1.

Proof of Counter-example 5.3. The proof is done in the same way as in R2 case.
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In the next proof we do not make a difference between subsets of R2×{0} and
their canonical projection onto R2 and vice versa whenever it is useful. As well
we suppose that functions defined on subsets of R2 are also defined on R2 × {0}
through mapping [x1, x2] 7→ [x1, x2, 0]. By

∫ · dS we mean the surface integral and
by

∫ · dx the Lebesgue integral.

Proof of Proposition 5.1. The proof will be done in a similar way to the proof of
Theorem 4.1. So we will omit some calculations and comments that are identical
to those already made.

1. step:

Let us choose ε ∈ (0, 1
2
) arbitrarily, fixed. We define Γnε the set of neighborhoods

of ”bad” points. For simplicity we define it through Figure 4.

0
π

n

π

n

ε
√

2n

Figure 4: One of n2 parts of Γnε

Γn := Γ \ Γnε and |Γnε| = 2ε(
√

2π − ε) ≤ 2
√

2πε.

Let us assume that v ∈ C∞(Ωn).
∫

Γ

|v| dS ≤
∫

Γn

|v| dS + C‖v‖W 1,p(Ω)ε
1

p]′ .

We denote

k(x1, x2) :=
1√

( ∂
∂x1

Φn(x1, x2))2 + ( ∂
∂x2

Φn(x1, x2))2 + 1
.

Outward normal to the upper boundary of Ωn is

n(x1, x2) = k(x1, x2)(− ∂

∂x1

Φn(x1, x2),− ∂

∂x2

Φn(x1, x2), 1).

Now we introduce three vectors, which arise naturally from form of n(x1, x2).

n1(x1, x2) := n(x1, x2),

n2(x1, x2) := k(x1, x2)(
∂

∂x1

Φn(x1, x2),− ∂

∂x2

Φn(x1, x2), 1),

n3(x1, x2) := k(x1, x2)(− ∂

∂x1

Φn(x1, x2),
∂

∂x2

Φn(x1, x2), 1).

23



Vectors n1(x1, x2), n2(x1, x2), n3(x1, x2) are linearly independent for

(x1, x2) ∈ T 2 \ {(x1, x2) | ∂

∂x1

Φn(x1, x2) = 0 ∨ ∂

∂x2

Φn(x1, x2) = 0},

whence for all (x1, x2) ∈ Γn. So they form a normal basis of R3. We will generate
from n1, n2, n3 a new orthogonal basis of R3. We define:

h1(x1, x2) := n2(x1, x2)− n1(x1, x2) = 2k(x1, x2)(
∂

∂x1

Φn(x1, x2), 0, 0),

h2(x1, x2) := n3(x1, x2)− n1(x1, x2) = 2k(x1, x2)(0,
∂

∂x2

Φn(x1, x2), 0),

h3(x1, x2) := n2(x1, x2) + n3(x1, x2) = 2k(x1, x2)(0, 0, 1).

So we have

|h1(x1, x2)| = 2k(x1, x2)| ∂

∂x1

Φn(x1, x2)|,

|h2(x1, x2)| = 2k(x1, x2)| ∂

∂x2

Φn(x1, x2)|,

|h3(x1, x2)| = 2k(x1, x2).

For all x ∈ Ωn, we may write v(x) as linear combination of h1(x1, x2), h2(x1, x2)
and h3(x1, x2),

v(x) = α1(x)h1(x1, x2) + α2(x)h2(x1, x2) + α3(x)h3(x1, x2).

After scalar multiplying by h1(x1, x2), h2(x1, x2), h3(x1, x2), respectively, we get

v(x) · h1(x1, x2) = α1(x)|h1(x1, x2)|2 = α1(x)4k(x1, x2)
2(

∂

∂x1

Φn(x1, x2))
2,

v(x) · h2(x1, x2) = α2(x)|h2(x1, x2)|2 = α2(x)4k(x1, x2)
2(

∂

∂x2

Φn(x1, x2))
2,

v(x) · h3(x1, x2) = α3(x)|h3(x1, x2)|2 = α3(x)4k(x1, x2)
2.

Now we can continue with estimating of
∫
Γn
|v| dS.

∫

Γn

|v| dS ≤
∫

Γn

|α1h1 +α2h2 +α3h3| dS ≤
∫

Γn

|v · h1|
2k| ∂

∂x1
Φn|

+
|v · h2|

2k| ∂
∂x2

Φn|
+
|v · h3|

2k
dS

≤
∫

Γn

(|v · n1|+ |v · n2|+ |v · n3|) dS

∥∥∥∥
1

2k

∥∥∥∥
L∞(Γn)

∥∥∥∥∥1 +
1

| ∂
∂x1

Φn|
+

1

| ∂
∂x2

Φn|

∥∥∥∥∥
L∞(Γn)

.
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Now we estimate the last two terms in the previous line.

∂

∂x1

Φn(x1, x2) =
1

4nα−1
cos(2nx1 − π

2
)[sin(2nx2 − π

2
) + 1],

∂

∂x2

Φn(x1, x2) =
1

4nα−1
[sin(2nx1 − π

2
) + 1] cos(2nx2 − π

2
).

Set Γn was constructed according to the form of the first of them, so we immediately
read ∥∥∥∥∥1 +

1

| ∂
∂x1

Φn|
+

1

| ∂
∂x2

Φn|

∥∥∥∥∥
L∞(Γn)

≤
∥∥∥∥∥1 +

2

| ∂
∂x1

Φn|

∥∥∥∥∥
L∞(Γn)

= 1 +
8nα−1

sin(ε)(1− cos(ε))
,

∥∥∥∥
1

2k

∥∥∥∥
L∞(Γn)

=

∥∥∥∥∥∥

√
( ∂

∂x1
Φn(·, ·))2 + ( ∂

∂x2
Φn(·, ·))2 + 1

2

∥∥∥∥∥∥
L∞(Γn)

≤
√

2n2(1−α) + 4

4
.

We still need to estimate the term
∫

Γn
(|v · n1| + |v · n2| + |v · n3|) dS. First

we will get estimates of terms
∫
Γ
|v · n1| dS,

∫
Γn
|v · n2| dS and

∫
Γn
|v · n3| dS. To

get estimates on these terms, we will integrate with respect to x1, x2 and x3 axes
stepwise over set

Υn := {(x1, x2, x3) | (x1, x2) ∈ T 2, 0 < x3 < Φn(x1, x2)}.

(i) integrating with respect to x1

We work only on the set

∆ := {(x1, x2, x3) | (x1, x2) ∈ (0,
π

n
)× (0,

π

n
), 0 < x3 < Φn(x1, x2)},

while the rest is done in the same way.

Figure 5: Graph of Φn for n = 4

We denote
V (x2) := max

{x1∈(0, π
n

)}
Φn(x1, x2).

For (x2, x3) ∈ (0, π
n
)× (0, V (x2)) we obtain

v(Lx2x3 , x2, x3)− v(Rx2x3 , x2, x3) =

∫ Lx2x3

Rx2x3

∂

∂x1

v(x1, x2, x3) dx1, (5.3)
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where
Lx2x3 := Φ−1

n (x3)1 <
π

2n
∧ Φ−1

n (x3)2 = x2,

and
Rx2x3 := Φ−1

n (x3)1 >
π

2n
∧ Φ−1

n (x3)2 = x2,

for better understanding see Figure 6.

0

x
3

x
1

V(x
2
)

x
2

x
3 x

2

L
x

2
x

3
R

x
2
x

3

Figure 6: Graph of Φn on (0, π
n
)×(0, π

n
) alias ∆

Scalar multiplication of (5.3) by the normal at the exact point n(Rx2x3 , x2)
gives,

v(Lx2x3 , x2, x3) · n(Rx2x3 , x2)− v(Rx2x3 , x2, x3) · n(Rx2x3 , x2)

=

∫ Lx2x3

Rx2x3

∂

∂x1

v(x1, x2) dx1 ·n(Rx2x3 , x2).

Take absolute values of both sides, use Schwartz inequality with |n| = 1, and
integrate first over x3 ∈ (0, V (x2)) and secondly over x2 ∈ (0, π

n
). Using the

boundary conditions and definition of n2 (for better understanding see Figure
6) we can use Fubini’s theorem to get

∫ π
n

0

∫ V (x2)

0

|v(Lx2x3 , x2, x3) · n2(Lx2x3 , x2)| dx3dx2 ≤
∫

∆

| ∂

∂x1

v| dx .

For x2 ∈ (0, π
n
) arbitrary, fixed, using change of notation Lx2x3 = x1 and

substitution x3 = Φn(x1, x2) for x1 ∈ (0, π
2n

) yield

∫ V (x2)

0

|v(Lx2x3 , x2, x3) · n2(Lx2x3 , x2)| dx3

=

∫ π
2n

0

|v(x1, x2, Φn(x1, x2)) · n2(x1, x2)|| ∂

∂x1

Φn(x1, x2)| dx1 .

If we change scalar multiplication of (5.3) by n(Rx2x3 , x2) for multiplication of
(5.3) by n(Lx2x3 , x2), we get after similar calculation estimate
∫ π

n

0

∫ π
n

π
2n

|v(x1, x2, Φn(x1, x2))·n2(x1, x2)|| ∂

∂x1

Φn(x1, x2)| dx1dx2 ≤
∫

∆

| ∂

∂x1

v| dx .

26



Eventually we arrive at the following estimate,
∫∫

T 2

|v(x1, x2, Φn(x1, x2))·n2(x1, x2)|| ∂

∂x1

Φn(x1, x2)| dx1dx2 ≤ 2

∫

Υn

| ∂

∂x1

v| dx .

(ii) integrating with respect to x2

Repeating the whole procedure done above for x1 we arrive at
∫∫

T 2

|v(x1, x2, Φn(x1, x2))·n3(x1, x2)|| ∂

∂x2

Φn(x1, x2)| dx1dx2 ≤ 2

∫

Υn

| ∂

∂x2

v| dx .

(iii) integrating with respect to x3

Analogously to the 2-dimensional case we get the desirable results.

Eventually we get

∫

Γn

(|v · n1|+ |v · n2|+ |v · n3|) dS ≤ 2

∫

Υn

| ∂

∂x1

v| dx

∥∥∥∥∥
1

∂
∂x1

Φn

∥∥∥∥∥
L∞(Γn)

+ 2

∫

Υn

| ∂

∂x2

v| dx

∥∥∥∥∥
1

∂
∂x2

Φn

∥∥∥∥∥
L∞(Γn)

+ 3

∫

Υn

| ∂

∂x3

v| dx

≤ 3‖v‖1,p

(∫∫

T 2

Φn(x1, x2) dx1dx2

) 1
p′




∥∥∥∥∥
1

∂
∂x1

Φn

∥∥∥∥∥
L∞(Γn)

+

∥∥∥∥∥
1

∂
∂x2

Φn

∥∥∥∥∥
L∞(Γn)

+ 1




≤ 3‖v‖1,p

(
π2

8nα

) 1
p′

∥∥∥∥∥1 +
2

| ∂
∂x1

Φn|

∥∥∥∥∥
L∞(Γn)

.

Now if we put all so-far obtained estimates together we read out

∫

Γ

|v| dS ≤
∫

Γn

(|v · n1|+ |v · n2|+ |v · n3|) dS

∥∥∥∥
1

2k

∥∥∥∥
L∞(Γn)

∥∥∥∥∥1 +
2

| ∂
∂x1

Φn|

∥∥∥∥∥
L∞(Γn)

+ C‖v‖W 1,p(Ω)ε
1

p]′

≤ 3‖v‖1,p

(
π2

8nα

) 1
p′

∥∥∥∥
1

2k

∥∥∥∥
L∞(Γn)

∥∥∥∥∥1 +
2

| ∂
∂x1

Φn|

∥∥∥∥∥

2

L∞(Γn)

+ C‖v‖1,p ε
1

p]′

≤ C‖v‖1,p

(
1

n
α
p′

(
1 +

8nα−1

sin(ε)(1− cos(ε))

)2 √
2n2(1−α) + 4 + ε

1

p]′

)
.

We see that C is independent of n.
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2. step:

We will again proceed analogously to 2-dimensional case. Using Taylor expansion
at 0 and ε ∈ (0, 1

2
) we have estimates

1− cos(ε) ≥ ε2(6− ε2)

12
≥ ε2

3
and sin(ε) ≥ ε

2
.

For each n ∈ N we choose ε = f(n), where f is a nonnegative function such that
limn→∞ f(n) = 0. We calculate f(n) by comparing the decay of

1

n
α
p′

(
1 +

48nα−1

f(n)3

)2 √
2n2(1−α) + 4 and f(n)

1

p]′ .

We will distinguish two cases with regard to α:

(i) case α ∈ [1,∞):

In this case, we have 2 ≤
√

2n2(1−α) + 4 ≤ C(α) < ∞, which means that this
term has no influence on the decay, so we can omit it. We can also omit any
constant that has no influence on the decay. We have

nα−1

f(n)3
≥ 1 for n ∈ N,

too. Altogether it means that we need to calculate f(n) from

n2(α−1)

f(n)6n
α
p′

= f(n)
1

p]′ ⇒ f(n) =
1

n
p]′ (2p−α(p+1))

p(1+6p]′ )

,

where f(n) decays to 0 if and only if α < 2p
p+1

.

(ii) case α ∈ (0, 1):

In this case we have n1−α <
√

2n2(1−α) + 4 < C(α)n1−α. We also have

nα−1

f(n)3
= 1 ⇔ f(n) = n

α−1
3 ⇒ n(1−α)

n
α
p′

= n
α−1

3p]′ ⇒ α =
p(4p] − 1)

p(4p] − 1) + 3p](p− 1)
.

Above f(n) decays to 0 because α < 1.

We easily deduce that for α ≥ p(4p]−1)
p(4p]−1)+3p](p−1)

one has nα−1

f(n)3
≥ 1 and we need

to calculate f(n) from

n(α−1)

f(n)6n
α
p′

= f(n)
1

p]′ ⇒ f(n) =
1

n
p]′ (p−α)

p(1+6p]′ )

,

where f(n) always decays to 0 because α < 1 < p.

Furthermore for α < p(4p]−1)
p(4p]−1)+3p](p−1)

is nα−1

f(n)3
≤ 1 and we need to calculate

f(n) from
n(1−α)

n
α
p′

= f(n)
1

p]′ ⇒ f(n) =
1

n
p]′ (α(2p−1)−p)

p

,

where f(n) decays to 0 if and only if α > p
2p−1

.
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Now we calculate the desired K from C and the constants omitted during the
previous calculations. We see that K is independent of n and α.

3. step:

To get above estimates for v ∈ W 1,p(Ωn) we will use the approximation Theorem
3.22 from Adams and Fournier [1].

Theorem 3.22 from [1]: Let V ∈ C0,1 and v ∈ W 1,p(V ) for p ∈ [1,∞). Then
there exists {vk} ⊂ C∞(V ) such that vk → u in W 1,p(V ) strongly.

Direct using of Theorem 3.22 from [1] for V = Ωn, which satisfies assumption
Ωn ∈ C0,1, gives us desired estimates for v ∈ W 1,p(Ωn).

6 General functions Φ

In this Section we will consider the case α = 1 for as much as general function
Φ > 0. We consider a family of domains

Ωε = {(x1, x2, x3) | (x1, x2) ∈ T 2,−1 < x3 < Φε(x1, x2)},

and the limit domain Ω = {(x1, x2, x3) | (x1, x2) ∈ T 2, −1 < x3 < 0}, together
with the upper boundary Γ := {(x1, x2, x3) | (x1, x2) ∈ T 2, x3 = 0}. Moreover we
set

Φε(x1, x2) := εΦ(
x1

ε
,
x2

ε
), (x1, x2) ∈ T 2 for ε ∈ (0,∞),

and T 2 = ([0, 1]|{0,1})2.
Next we consider a function v ∈ W 1,2(Ωε) for some ε ∈ (0,∞) satisfying the

impermeability boundary condition in form

∫

Ωε

v · ∇ϕ dx = 0, ϕ ∈ C1(R3). (6.1)

Proposition 6.1. There exists K ∈ (0,∞) independent of ε such that for any
ε ∈ (0,∞) and any arbitrarily chosen function v ∈ W 1,2(Ωε) satisfying (6.1), it
holds true ∫

Γ

|v|2 dS ≤ εK‖∇v‖2
L2(Ωε)

, (6.2)

if the following conditions on Φ are satisfied

(i) Φ ∈ C(T 2),

(ii) ∃{Φk} of Lipschitz functions and ∃{Mk} of open subsets of T 2 such that

0 < Φk ≤ Φk+1 ≤ Φ, Φk = Φ on Mk,

|T 2 \Mk| → 0 as k →∞,

(iii) ∇Φ ·w 6≡ 0 a.e. on T 2 for |w| = 1.
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Corollary 6.2. Let conditions (i)-(iii) on Φ from Proposition 6.1 are satisfied.
Then for an arbitrarily chosen family of functions {uε}, uε ∈ W 1,2(Ωε) satisfying
(6.1),

‖∇uε‖L2(Ωε) ≤ K < ∞ uniformly for ε ∈ (0,∞),

and uε → u weakly in W 1,2(Ω), condition (1.2) is always satisfied in the limit, in
other words u = 0 a.e. on Γ.

Remark 6.3. We see that Proposition 6.1 holds under very mild hypotheses on
Φ. Conditions (i)-(iii) on Φ seem maybe strange at first sight, but they are quite
natural. Our intention is to have (6.2) for domains where Korn’s inequality does
not hold, for example domains whose boundary contains cusps etc. (for better
understanding see Figure 7). Conditions (i) and (ii) only state that the normal
to the boundary has sense at a.a. points and we can always ”cut off” the non-
Lipschitz part of the boundary. (ii) also guarantees existence of ∇Φ at a.a. points
of T 2. (i) and (ii) are always easily verified for Φ Lipschitz with constant sequence
and empty sets. Condition (iii) guarantees that Φ is not constant at any direction,
which is a very reasonable condition also used in Bucur et al. [3], Bucur and
Feireisl [4] or Dı́az et al. [5].

Φ

Φk

0 1

Figure 7: Graph of Φ and {Φk} for cusp

Remark 6.4. Using boundary condition in the form (6.1) is not accidental. Al-
though results obtained in this work are independent of particular equations, the
motivation was to get justification of the no-slip boundary condition for the incom-
pressible flows governed by the Navier-Stokes equations in impermeable containers.
Incompressibility of the flow gives us a divergenceless motion and together with
impermeability of the boundary we obtain equivalent condition (6.1) in the case
of Lipschitz domains. Because we are now interested in the non-Lipschitz case,
somehow locally Lipschitz, prescribing condition (6.1) seems very natural. This
condition also contains the constraint of free divergence in the container. With
regard to the Remark 2.1 we should use in (6.1) ϕ, such that their support does
not contain the bottom part of the boundary. We omit this to make notation easier.

Proof of Corollary 6.2. Corollary results immediately from Proposition 6.1.

Proof of Proposition 6.1. Without loss of generality we can suppose that 1
ε

is a
positive integer. For n1, n2 ∈ [0, 1

ε
) ∩ N we introduce sets

Cn1,n2 :={(x1, x2, x3) : (x1, x2)∈(n1ε, n1ε+ε)×(n2ε, n2ε+ε),−ε < x3 < Φε(x1, x2)}.
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We observe that ⋃
n1,n2

Cn1,n2 ⊆ Ωε,

and moreover we have
∫

Γ

|v|2 dS =
∑
n1,n2

∫

Cn1,n2

|v|2 dS and
∑
n1,n2

εK‖∇v‖2
L2(Cn1,n2 ) ≤ εK‖∇v‖2

L2(Ωε)
,

where the underlined set always denotes its intersection with plane {x3 = 0},
otherwise intersection with Γ. This means that it is enough to prove

∫

Cn1,n2

|v|2 dS ≤ εK‖∇v‖2
L2(Cn1,n2 ),

for all n1, n2 ∈ [0, 1
ε
) ∩ N with the same K. Fortunately, since every set Cn1,n2 can

be expressed through shift as an image of the set C0,0, it is enough to prove:
Let

V := {(x1, x2, x3) : (x1, x2) ∈ (0, ε)2,−ε < x3 < Φε(x1, x2)}.

If assumptions from Theorem 6.1 are satisfied, then there exists K ∈ (0,∞) such
that for any ε ∈ (0,∞),

∫

V

|v|2 dS ≤ εK‖∇v‖2
L2(V ).

Now we introduce the scaling x ≈ x
ε
. We define a mapping

Hε : R3 → R3, Hε(x1, x2, x3) = (
1

ε
x1,

1

ε
x2,

1

ε
x3).

We get sets

Hε(V ) = {(x1, x2, x3) : (x1, x2) ∈ T 2,−1 < x3 < Φ(x1, x2)},

Hε(V ) = Hε(V ).

Immediately we see that ∇H−1
ε = εI implying | det∇H−1

ε | = ε3, moreover

∇(v ◦H−1
ε ) = ∇v(H−1

ε ) · ∇H−1
ε ,

therefore |∇(v ◦H−1
ε )|2 = ε2|∇v(H−1

ε )|2. Using substitution in the right part of
our inequality we get

εK‖∇v‖2
L2(V ) = εK

∫

V

|∇v|2 dx = εK

∫

Hε(V )

|∇v(H−1
ε )|2| det∇H−1

ε | dx

= ε4K

∫

Hε(V )

|∇(v ◦H−1
ε )|2

ε2
dx = ε2K

∫

Hε(V )

|∇(v ◦H−1
ε )|2 dx .
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Using the definition of the surface integral of the first type in the left part of our
inequality with parametrization ϕε : {(x1, x2) ∈ (0, ε)2} → V , [x1, x2] 7→ [x1, x2, 0]
we obtain,

∫

V

|v|2 dS =

∫∫

{(x1,x2)∈(0,ε)2}
|v ◦ ϕε(x1, x2)|2‖ ∂

∂x1

ϕε × ∂

∂x2

ϕε‖ dx1dx2

=

∫∫

{(x1,x2)∈(0,ε)2}
|v ◦H−1

ε ◦Hε ◦ ϕε(x1, x2)|2 dx1dx2

=

∫∫

{(x1,x2)∈(0,ε)2}
|(v◦H−1

ε )◦(Hε◦ϕε)(x1, x2)|2‖ ∂

∂x1

(Hε◦ϕε)× ∂

∂x2

(Hε◦ϕε)‖ε2 dx1dx2

= ε2

∫

Hε(V )

|v ◦H−1
ε |2 dS .

Eventually we get the inequality

∫

Hε(V )

|v ◦H−1
ε |2 dS ≤ K

∫

Hε(V )

|∇(v ◦H−1
ε )|2 dx .

Thanks to the fact that Hε ∈ C∞(R3,R3) and Hε(V ) = Ω1, Hε(V ) = Γ, it
is enough to prove the Proposition 6.1 only in the case ε = 1. We prove the
following:

There exists K ∈ (0,∞) such that for any arbitrarily chosen function v ∈
W 1,2(Ω1), satisfying boundary condition in form

∫

Ω1

v · ∇ϕ dx = 0, ϕ ∈ C1(R3), (6.3)

it holds true ∫

Γ

|v|2 dS ≤ K‖∇v‖2
L2(Ω1),

if the following conditions on Φ are satisfied

(i) Φ ∈ C(T 2),

(ii) ∃{Φk} of Lipschitz functions and ∃{Mk} of open subsets of T 2 such that

0 < Φk ≤ Φk+1 ≤ Φ, Φk = Φ on Mk,

|T 2 \Mk| → 0 as k →∞,

(iii) ∇Φ ·w 6≡ 0 a.e. on T 2 for |w| = 1.
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We prove the above statement by contradiction. Let there exists a family of
functions {vn} ⊂ W 1,2(Ω1) such that

∫

Γ

|vn|2 dS > n‖∇vn‖2
L2(Ω1),

satisfying (6.3).
In other words there exists a family of functions {vn} ⊂ W 1,2(Ω1) such that

∫

Γ

|vn|2 dS = 1 and
1

n
> ‖∇vn‖2

L2(Ω1),

satisfying (6.3). Let us use condition (ii). Choose subsequence of {Φk}(do not
change labeling) such that

|T 2 \Mk| ≤ 1

2k
.

We define sets

Uk := {(x1, x2, x3) : (x1, x2) ∈ T 2,−1 < x3 < Φk(x1, x2)}.
Then for all k ∈ N, it holds Uk ⊂ Ω1 and Uk = Γ and Uk are Lipschitz domains.
Obviously Uk ↗ Ω1 as k →∞.

Let us choose k ∈ N arbitrary, fixed. Then for all n ∈ N it holds true
∫

Uk

|vn|2 dS = 1 and
1

n
> ‖∇vn‖2

L2(Uk).

Thanks to the fact that Uk is Lipschitz we can use following Poincaré-type inequal-
ity. There exists C1 ∈ (0,∞) depending only on Uk such that

‖u‖L2(Uk) ≤ C1(‖∇u‖L2(Uk) + ‖u‖L2(Uk)),

for more details see Poincaré [9].
Applying inequality on the family {vn} we get for all n ∈ N,

‖vn‖W 1,2(Uk) ≤ C2 < ∞.

By reflexivity of W 1,2(Uk) we can find a subsequence of {vn} (we do not change
labeling) that weakly converges to some v ∈ W 1,2(Uk). From lower semi-continuity
of the norm we have ‖∇v‖L2(Uk) = 0 in other words ∇v ≡ 0 a.e. in Uk ⇒
v ≡ C ∈ R3 constant. From compactness of the trace operator (see Theorem 1.23
from Roub́ıček [10]) we have

∫

Uk

|v|2 dS = 1 ⇒ v ≡ Ck 6= 0. (6.4)

We reach the desired contradiction from the boundary condition (6.3) and condi-
tion (iii) od Φ.

∫

Ω1

vn · ∇ϕ dx = 0, ϕ ∈ C1(R3) and Uk ⊂ Ω1 ⇒
∫

Uk

vn · ∇ϕ dx = 0, ϕ ∈ C1(R3), supp ϕ ⊂ (Ω1 \ Uk)
c.
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From weak convergence
∫

Uk

v · ∇ϕ dx = 0, ϕ ∈ C1(R3), supp ϕ ⊂ (Ω1 \ Uk)
c.

Using Green’s formula for Uk gives us
∫

∂Uk

(v · n)ϕ dS = 0, ϕ ∈ C1(R3), supp ϕ ⊂ (Ω1 \ Uk)
c.

This gives us
v · n = 0 a.e. on Γk,

where

Γk := {(x1, x2, x3) | (x1, x2) ∈ Mk, x3 = Φk(x1, x2) = Φ(x1, x2)}.

From condition (ii) imposed on Φ it is obvious that ∇Φ = ∇Φk at a.a. points of
Mk. Since normal vector n to the upper part of the boundary of Ω1 is given as

n(x1, x2) =

(
− ∂

∂x1

Φ(x1, x2),− ∂

∂x2

Φ(x1, x2), 1

)
at a.a. (x1, x2) ∈ T 2,

we know that

Ck ·
(
− ∂

∂x1

Φ(x1, x2),− ∂

∂x2

Φ(x1, x2), 1

)
= 0 at a.a. (x1, x2) ∈ Mk.

We will use abbreviate form

Ck · (−∇φ, 1) = 0 a.e. on Mk.

We know that Ck = (c1, c2, c3) 6= 0. From Ck · (−∇φ, 1) = 0 a.e. on Mk we get

c3 = c1
∂

∂x1

Φ + c2
∂

∂x2

Φ a.e. on Mk. (6.5)

Let us define

wk :=
1√

c2
1 + c2

2

(c1, c2).

We will distinguish two cases with regard to c3.

(i) If c3 = 0 then from Ck 6= 0 we have c1 6= 0 or c2 6= 0. So we have ∇Φ ·wk ≡ 0
a.e. on Mk, where |wk| = 1 and definition of wk is correct.

(ii) If c3 6= 0 then from (6.5) is again c1 6= 0 or c2 6= 0. So we have

∇Φ ·wk ≡ c3√
c2
1 + c2

2

a.e. on Mk,

where |wk| = 1 and definition of wk is again correct. Since c3√
c21+c22

6= 0 we

see that derivative of Φ in direction wk is non-zero constant, in other words
Φ has linear growth in direction wk.
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Both cases leads to contradiction for sufficiently large k. From now on k is not
fixed.

(i) From condition (ii) and (iii) on Φ there exists k0 ∈ N, such that for all k ≥ k0

it holds ∇Φk ·w 6≡ 0 a.e. on Mk for any |w| = 1. We immediately see that
for k ≥ k0 we have contradiction with case (i).

(ii) Since Φ is defined on T 2, otherwise is periodic, it can not have a linear
growth in any direction w, |w| = 1. From condition (ii) there exists k1 ∈ N,
such that for all k ≥ k1 it holds that Φk do not have a linear growth in any
direction w, |w| = 1. Again we immediately see contradiction for k ≥ k1

with case (ii).

Eventually for k ≥ max{k0, k1} there is always contradiction for Φk, which guar-
antees contradiction for Φ.
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Basel, 1997.
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