
Univerzita Karlova v Praze
Matematicko-fyzikálńı fakulta
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Abstrakt: V práci studujeme přesnost a časovou náročnost jednokrokových ex-
plicitńıch metod (Runge-Kutta, Bulirsch-Stoer) s adaptabilńım krokem v Rayleigh-
Plessetově rovnici, která popisuje vývoj poloměru plynné bubliny v kapalině se
změnami tlaku. Metody podceňuj́ı lokálńı chybu v mı́stech kolaps̊u bublin, avšak
globálńı chyba z̊ustáva v řádu použité tolerance. Bulirsch-Stoer metoda vykázala
nejmenš́ı časovou náročnost. V př́ıpadě Runge-Kutta metod záviśı výběr optimálńı
metody na použité toleranci. Při středńıch toleranćıch urychluje výpočet i použit́ı
regularizace, tj. zavedeni nové nezávislé proměnné mı́sto času. Časová náročnost
použité metody se měńı s r̊uznými použitými variantami rovnice (izotermická aproxi-
mace/adiabatická aproximace plynné složky obsahu bubliny, stlačitelná/nestačitelná
kapalina). Pri některých nastaveńıch vstupńıch parametr̊u v izotermické variantě
rovnice docháźı k pádu výpočtu (poloměr bubliny je nereálně malý). Tento pád
sa nedá odstranit použit́ım odlǐsného kritéria na toleranci numerické metody. Při
potřebě velkého množstv́ı výpočt̊u Rayleigh-Plessetovy rovnice navrhujeme proto
použ́ıvat regularizovaný tvar a Bulirsch-Stoerovu metodu.
Kĺıčová slova: Rayliegh–Plesset;Runge-Kutta ; numerické metody; bublina

Title: Suggestion of an optimal numerical method for solution of the Rayleigh-
Plesset equation with rebounding
Author: Peter Petŕık
Department: Mathematical Institute of Charles University
Supervisor: Prof. Ing. Marš́ık Frantǐsek, DrSc.
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Abstract: In the work we study stability and time effectivity of explicit one-
step methods (Runge-Kutta, Bulirsch-Stoer) with adaptible step size for Rayleigh-
Plesset equation, which describes the evolution of radius of bubble in the liquid
with changing pressure. Methods underestimate local error in places of collapses of
bubble, but global error stays in order of used tolerance. The Bulirsch-Stoer method
has the lowest time demands. In case of the the Runge-Kutta Methods selection of
optimal method depends on used tolerance. In case of middle tolerance level one
can accelerate computation by use of regularization (proposing new independent
variable instead of time). The efficiency of each numerical method depends on the
variant of the equation (adiabatic/isothermal approximation of the gas, the liquid
compressibility). In some settings of initial parameters of the equation computation
even falls (unreasonably small radius). In case of large amount of computation of the
Rayleigh-Plesset equation we suggest to use the regularized form with Bulirsch-Stoer
Method.
Keywords: Rayliegh–Plesset; Runge-Kutta ; numerical methods; bubble
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1 Introduction

In this paper, we use numerical methods (the explicit Runge-Kutta and the Bulirsch-
Stoer method) to solve the highly non-linear, ordinary differential the Rayleigh-
Plesset equation. Virtually all of the spherical bubble models are based on some
version of the Rayleigh-Plesset equation that defines the relation between the radius
of a spherical bubble, and the pressure in the the liquid far from the bubble.

Consider the following situation. A gas bubble is traveling with a the liquid in
a pump. When the bubble comes near the blade of the pump, the pressure in the
the liquid changes quickly, which causes the bubble to expand and then contract
violently, overshooting its equilibrium size. With the lowering of the radius in the
bubble, the pressure (and the temperature) inside increases, which causes collapse
or rebound of the bubble. This phenomenon is closely related to the problems of
cavitation, which can be defined as a ”breakdown 1 of a the liquid medium under
very low pressures2”[2, p.1].

Bubble collapses are frequently found in practice. Cavitation damage, cavita-
tion noise, sonochemistry, shock wave lithotripsy, ultrasonic imaging and sonolumi-
nescence are examples of technological and scientific applications, in which bubble
collapses play a central role.

Perhaps the most common engineering problem caused by cavitation is the ma-
terial damage. Cavitation damage refers to the phenomenon that can be described
as follows: ”Strong pressure variations in the the liquid are produced by the jet and
the shock emitted after the bubble collapses. The combined effect of several bubbles
undergoing this process is believed to cause erosion in nearby solids.”[7].

Figure 1.1: Photograph of pump damage caused by cavitation erosion[4]. Courtesy
of Sigma Lut́ın

1Creation of vapor cavities
2Below vapor pressure
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Large amount of computation of the Rayleigh-Plesset equation for various ini-
tial conditions is needed inside the numerical solver of 3-D Navier-Stokes equations
with turbulence for pump, which performance is simulated in SIGMA Research &
Development Institute, Ltd. The aim of the simulation is to predict the position
and extent of the material damage at blades. The damage is calculated from the
change of radius and pressure in the bubble during the first few collapses.

Thus it is necessary to find a stable and effective numerical method for computa-
tion of the Rayleigh-Plesset equation and a suitable physical model (consistent with
the experimental data gained from the tested pump (Fig. 1.1). A very fast bubble
collapse often causes failure of the computation for the non-compressible isothermal
model and the Runge-Kutta-Fehlberg-45 method (RKF453). Details of computation
of damage and simulation can be found in [4]. This work on finding the optimal
numerical method (in the sense of stability and speed) was motivated by the grant
number 101/07/1612 of the Czech Science Foundation entitled ”Influence of physical
properties of water to nucleation of bubbles and cavitation damage in pumps.”.

In this paper, we focused on the Runge-Kutta family of methods and the Bulirsch-
Stoer method, and tested them in terms of speed and stability. According to [9,
p.709]:

”The relatively simple Runge-Kutta and Bulirsch-Stoer routines we give
are adequate for most problems. Runge-Kutta succeeds virtually al-
ways; but it is not usually fastest, except when evaluating right side is
cheap and moderate accuracy (< 10−5) is required. However, predictor-
corrector methods are for many smooth problems computationally more
efficient than Runge-Kutta, but in recent years Bulirsch-Stoer has been
replacing predictor-corrector in many applications.”

The best method can be applied in the numerical solver used in Sigma to increase
the efficiency and speed of the computation.

There is a large number of different mathematical models that describe the dy-
namics of a single spherical bubble. From the simple ODEs (the Rayleigh-Plesset
equation) to the complex system of PDEs (the Navier-Stokes equations). There are
compared in various works, e.g. [7] or [1] , [2] , [3]. In chapter ”Remarks on Different
Models” we discuss the stability of the numerical methods with respect to differ-
ent variations of the Rayleigh-Plesset equation (isothermal (gas)-non compressible
(the liquid) model, isothermal-compressible model and adiabatic-non-compressible
model). It is not the goal of this paper to discuss the physical differences between
those models, or to choose the best model for the 3-D numerical solver of pump
used by SIGMA institute. In contrast, our objective is to find the optimal numeri-
cal method for solving these models. The selection of the best suitable model must
be made with respect to the experimental data. As shows the work of Goldsztein
[7], the models with exchange of heat energy (radiation, convection, . . . ) are better
than simple adiabatic/isothermal models.

3For use of abbreviations see B.1
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2 Tested Model

2.1 The Rayleigh-Plesset Equation

Used Rayleigh-Plesset equationdescribes spherical bubble from ideal the gas inside
incompressible viscous still the liquid (for the derivation see Appendix A), which
undergoes pressure changes in the infinity.

d2R

dt2
= − 1

R


3

2

(
dR

dt

)2

+
4µ

R

dR

dt
+

2σ

ρR
− pv + pg − p∞

ρ


 (2.1)

where pv = 2339Pa is the equilibrium pressure inside the bubble, pg is pressure
of the gas in the bubble, c = 1550ms−1 is the initial speed of light in the liquid,κ is
the polytropic coefficient, σ = 0, 0727Nm−1 is the surface tension, µ = 0, 001Pa · s
is the dynamic viscosity, ρ = 1000kg ·m3 is the initial density of the liquid

Total pressure in the bubble pB is thus given by:

pB = pv + pg (2.2)

We assume that the gas inside the bubble is ideal:

pg = pg0

(
R0

R

)3κ

(2.3)

where R0 is the starting radius of the bubble and κ = 1 (isothermal approximation)
is the polytropic coefficient .

Further:

pg0 = patm +
2σ

R0

− pv (2.4)

where patm = 101300Pa is the atmospheric pressure.
We used the initial radius R0 = 4 · 10−3 and initial change of the radius dR

dt
= 0

if not said elsewere. Bubble radius R was calculated to time tmax = 2, 7 · 10−2 (for
characteristic shape of solution see (Fig. 3.2))

2.2 Typical Pressure in the Infinity

The pressure in infinity is given by approximation of the typical pressure in the pump
from 3D numerical solver (comparison at (Fig. 2.1)) by the analytical function:

p∞ =
−54 arctan (5000(t− 0, 0120)) arctan(1000(t− 0, 0125))

(t− 0, 0125)
+ 58000; (2.5)
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Figure 2.1: Pressure in infinity

3 Evaluation

3.1 Reduction, Scaling, Regularization

The Rayleigh-Plesset equation is initial value problem; conditions of the equation
are specified at the start. In this paper we use only methods, which are explicit and
one-step.

According to work of Lastman and col. [8]: ”The eigenvalues of Jacobian matrix
of the right side Rayleigh-Plesset equation (2.1) are complex, with real and imaginary
parts approximately ±1013, and hence system is not stiff. However, near collapse
points small integration steps are required to maintain integration accuracy.”

The generic problem of ODEs can always be reduced to system of first-order
differential equations. We use these reductions:

1. With (2.1) we use ”normal” reduction

dR

dt
= B (3.1)

2. We tried also non-dimensional form of the Rayleigh-Plesset equation from [2,
p.48], with same reduction (3.1), but with proposing new variables:

R =
R

R0

t =
t

τ

p =
P0

P
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with characteristic time scale τ = a ·
√

ρ
P

and characteristic pressure difference

P = 2 · patm The equation (2.1) then takes form:

dB

dt
= − 1

R

(
3

2

(
B

)2
+

We

R
+

B

R ·Re
− Th

pv − p∞
P

− P0

R
3κ

)
(3.2)

where Re =
R2

0ρ

4µτ
is Reynolds number, We = 2στ2

ρR3
0

is Weber number and Th =

Pτ2

ρR2
0

and P0 = pg0R0
3κ

τ2

ρR2
0

are pressure numbers

3. Motivated by work [8], we tried also regularization:

dt

ds
=

R2

R2
0

(3.3)

dR

dt
=

BR2

R2
0

(3.4)

dB

dt
=

R

R2
0

(
−3

2
(B)2 +

pv + pg − p∞
ρ

)
− 1

R2
0ρ

(4µB + 2σ) (3.5)

The results can be seen in Appendix C (Tab. C.4). Non-dimensional form
(3.2) produced negligible increase of number of evaluation of right side (nE) of
Rayleigh-Plesset equation (0,08%) and also negligible difference in global error.
On the other hand regularization increased speed of the calculation
(by 48%) with medium tolerance level (ε = 10−4), but with higher tolerance
(ε ∼ 10−8 and more), the difference between these 3 methods is minimal.
In the work of Lastman, Wentzell and Hindmarsch [8], they investigated the
impact of different regulariations and integrators with respect to the number
of nE (medium tolerance ε = 10−4) .The fastest regularization solved Rayleigh-
Plesset equation with nE = 870, fastest integrator EPISODE (based on the
variable- step multistep formulas) of non-regularized equation with nE = 1768
steps.

3.2 Used Tolerance Criterium

We use this general criterium for accepting next step:

ε > max
(

ErrR

R
,
ErrB

B

)
(3.6)

or in case of the embedded methods (and the euler’s method):

ε >
(

ErrR

R

)
(3.7)

where ErrR and ErrB are estimated errors of R and B respectively.
We investigated difference between use of (3.6) and (3.7). The result is that (after

successful computation) the difference is time and accuracy is minimal (negligible).
The reason is that ErrR

R
>> ErrB

B
is the most cases (because R → 0 in case of

collapse). The opposite situation occurs only when B
.
= 0, but that means that R

is not changing and hence it does not have impact on accuracy. However, use of
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criterium (3.6) causes failure of the Euler’s methods and in some cases also others
methods, because the condition ε > ErrB

B
cannot be fulfilled. In general case, there

is possibility that change of B is very radical in some part of the computation (e.g.
radical change of the pressure in the infinity - see (Fig. 2.1) at point t = 0, 120s)
and then use of (3.7) can lead to wrong solutions. Hence it is suitable to use
(3.6, and after failure of the computation try (3.7) with increased attention. Other
possibility is to use different criterium for accepting current step (see [9, p. 881]),
e.g. based on current step size h (however in the point of collapse in our settings,
h ∼ 10−14 and R ∼ 10−7, hence criterium (3.6) is better). There is also the possibility
proposed by Schampine [11] to use criterium with relative to largest value of R during
computation, but we need to use method for bubbles with different initial radiuses
and hence with different largest values (range depends on pressure in the infinity
and used range of the bubbles), so it should be necessary set a rather stringent
tolerance to avoid non-physical solutions (e.g. R < 0). With our settings (3.6) and
ε ≥ 10−4, the situation R < 0 never occurred, but integration is successful only with
small range of initial radius of the bubble (see chapter ”Different models”). When
the failure of computation with (3.7) occurred (e.g. R0 = 10−4), we tried to put
some criterium with absolute value abs:

ε > max
(

ErrR

R
,
ErrB

B
, abs

)
(3.8)

but the failure of the computation also occurred with error message :”R < 0” or
”step lowered below 10−30” (not reliable in double precision), depended on value of
abs

3.3 Global Error and Local Error

Because the Rayleigh-Plesset equation has no analytical solution, we cannot compare
calculated estimated local error (and global error) of used methods directly.

In the work of Alehossein and Qin [5], they compared error estimate and speed
of the Euler, central, modified Euler and the RKF method to simple singular dif-
ferential equation with solution y = tan(x). The Euler method produces the largest
error and the RKF45 method produces the smallest error. They also showed, that
constant step methods are not suitable for this problem. In simple run of the
RKF45 , the change of step is in order of 1010!

We used different approach to determine the real error of methods. Imagine that
we accepted step R (criterium (3.6) was fulfilled) with size h. For estimating real
local error we take 50 steps of rkv8 with step h

50
(from exactly same local starting

point as method used) and thus get approximate solution R50 in same time as R.
Then we approximate local real tolerance by

εloc =

(
abs(R50 −R)

R

)
(3.9)

then we can look on ration θ = εloc

ε
. More the ratio is close to 1, the better estimation

of local error method has. We calculated max of this ratio during whole calculation
θmax and mean (with weight h) θ. Further, we use variable real tolerance εreal = θ ·ε,
because different methods use parameter ε in different ways (e.g. safety factors, . . . ).

Results show that real tolerance εreal varies during the integration (see
(Fig. 3.1)). There are 4 places, when the tolerance is above desired level. First is
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when the pressure is changing rapidly (see (2.5)), others 3 are places of the bubble
collapses. However, Rayleigh-Plesset equation is not stiff and these local peaks above
tolerance level do not devalue global solution. Actual height and location of peaks
varies greatly with starting values of the integration and method used. Hence we
use in next consideration only mean value of these local errors εloc.

Figure 3.1: Comparison of εloc of various methods (εreal ∼ 10−6)
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For estimating global error we calculated solution with rkv8, with ε = 10−15

and minimum step hmin = 10−7 (see (Fig. 3.2)). We determined the time position
t3ex = 0, 026776868134125772 of third collapse of bubble and then we compared this
number with position t3 of same collapse calculated by other used methods. The
difference λ = abs(t3ex − t3) we took as indicator of global error.

The ratio of global error and real tolerance ω = pλ

pεreal
and/or the ratio

$ = λ
εreal

behave as constant, independently on used method and tolerance (see

appendix C, (Tab. C.1)-(Tab. C.3))). Mean values of these variables are: ω =
1, 10 ± 0, 02 and $ = 0, 9 ± 0, 2. This can be caused by non-stiffness of Rayleigh-
Plesset equation , and it can be useful in the predictions of the global error in the
applications.

3.4 Speed

We used variable nE,number of evaluations of right side of the Rayleigh-Plesset
equation , as indicator of speed of the given numerical method. As the global error
has same magnitude as the real tolerance, the good indicator of effective method
is the graph of nE on dependence of order of used real tolerance (or global error).
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We will refer to this comparison as effectiveness of the method. The results can be
found in appendix C, and are plotted on (Fig. 3.3) and (Fig. 3.4). There are two
conclusions that arose:

1. Effectiveness of the classical methods and the embedded methods (see ap-
pendix B) is dependent on used tolerance. As it can be seen on (Fig. 3.4),
RK4 is the most effective method from the classical methods (RK4, RKB6,
RKV8) to the order λ ∼ 10−4, but it is the least effective from the order
λ ≤ 10−6. Same behavior shows also the embedded methods (RKF45 and
RKF78) on (Fig. 3.3), but the breaking point is at λ ∼ 10−8 . To sum it up,
the optimal method must be chosen with the respect of the used tolerance. A
high order method for a high tolerance and a low order method for a lower
tolerances.

2. Effectiveness depends on approximating of new size of next step
on current local error and current step. Look on the methods RK4,
RKF45 and B-S at (Fig. 3.3). All three methods has approximately same
order, but the method of choosing new step varies. The most simple system
of choosing new step by the classical methods is still better than constant step
size (e.g. the RK4 with constant step size should have step size h ∼ 10−14

to integrate successfully, and thus nE ∼ 1011!), but with the respect to the
embedded method or the Bulirsch-Stoer method it is not enough. The saving
from optimal choosing of a new step in the B-S method is greater than fact
, that it uses the Modified Midpoint method with the order 3 (in range λ ∈
(10−3, 10−12).

Figure 3.2: ”Exact” solution
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Figure 3.3: Evaluations of function vs order of global error
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Figure 3.4: Zoom of (Fig. 3.3)
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4 Remarks on Different Models

4.1 Equations

In this chapter we will discuss briefly impact of different models on the stability and
speed of the numerical methods. We will compare these three methods:

1. a model proposed by equation (2.1), non-compressible liquid, isothermal κ = 1
(see previous chapters)

2. Rayleigh-Plesset equation compressible the liquid, details in [4], other param-
eters same as in the first model

d2R

dt2
= − 1

R

(3

2

(
dR

dt

)2

+
4µ

R

dR

dt
+

2σ

ρR

(
1−

(
R0

R

)3κ−1
)

+

+
R

ρc

d

dt
(pg − p∞)− pv + pg − p∞

ρ

)
(4.1)

3. model proposed by the equation (2.1), non-compressible liquid, but the adia-
batic approximation with κ = 1, 4

4.2 Results

We used RKF45. The results can be found in Appendix C, (Tab. C.5). As we
mentioned before, in use of the isothermal model, the failure of computation happens
with the initial radiuses more that critical value R0critical ' 10−3, see (Fig. 4.1). By
the failure of the computation we consider decrease of time step below reliability of
the double precision.

We remind, that this value depends on used pressure in the infinity! With some
other pressure in the infinity, the method can hold for whole range of physical
reasonable radiuses. Other example of the failure of the method in literature is
in work of Qin and Alehossein [5]. The solution for successive calculation can be
to increase accuracy of the computing (from double to even higher) or use some
scalingreduction. However, the output would not be physically acceptable, because
the radius of the bubble cannot decrease to impossible values (in scale of 10−10 or
less).

In the reality, according to [3, p.107]: ” A collapsing bubble becomes unstable
to nonspherical disturbances, and essentially shatters into many smaller bubbles in
the first collapse and rebound.”

Moreover, in the work of Qin and col. [6] there are some other variations of
model, which includes also conduction and radiation. These advanced models fits
better to their experimental results as isothermal or adiabatic approximation.

As it is seen of (Fig. 4.2), the different models gives the different predictions of
radius of the bubbles. Difference between model (4.1) and (2.1) is almost negligible,
but adiabatic model (κ = 1, 4) gives kvantitativeli different results. Hence it is
needed to find suitable model for our typical pressure (2.5) and compare it with the
experimental data from the tested pump.

From the point of the numerical analysis, the speed of method depends on min-
imum step. So it highly depends on used physical model. The adiabatic model
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allows increase the temperature in the bubble, which creates higher pressure with
comparison of the isothermal model near collapsing point (based on simple use of
the ideal gas equation). This decreases minimum step size and thus increases speed
of the numerical method by more than 50% (see (Tab. C.5)). Moreover, in the case
of smaller radiuses (when ration of rmax

R0
is higher), the adiabatic model does not

failure at all (but as it is visible from (Tab. C.5), the smallest step is below the
border of reliability of double presicion).

Figure 4.1: Failure of isothermal model for R0 = 10−5
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Figure 4.2: Comparison of models for R0 = 4 · 10−3
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5 Conclusion

We analyzed the effectiveness and stabity of various numerical methods based on
explicit one-step methods (Runge-Kutta , embedded Runge-Kutta , Bulirsch-Stoer)
for solving Rayleigh-Plesset equation. The Bulirsch-Stoer method performed best,
with the smallest amount of evaluation of right side and with stable solution. The
embedded methods are also acceptable, but the choosing of order of the embedded
method should be done in respect with the desired accuracy.

In case on medium tolerances ε < 10−8, the regularization (proposing new vari-
able and put time as dependent variable) of the Rayleigh-Plesset equation can be
used to decrease number of evaluation of right side nE. With higher tolerances
regularization does not increase performance.

Global error relates with used tolerance and they are in comparable order. The
investigated methods underestimates local error at collapsing points. However,
global error in due to the non-stiffness of equation acceptable and solution is stable.

A physical model greatly influences speed of calculation. The isothermal model
failures (radius of bubble is physically unacceptable) in case of the specific condi-
tions and hence should be replaced by more suitable model based on varies of the
temperature inside the bubble.

Next investigation should be aimed to improve of the physical model, which
would give the realistic predictions for whole range of initial radiuses of the bubbles.

In the field of the numerical analysis, we did not compared the implicit numer-
ical methods, multi-step methods and predictor-corrector methods. Especially in
predictor-corrector methods there is possibility of increasing the speed of the calcu-
lation.

16



Bibliography

[1] Ch. E. Brennen: Cavitation and Bubble Dynamics, Oxford Un. Press, 1995.

[2] J.-P. Franc, J.-M. Michel: Hydrodynamics of Pumps, Kluwer Academic Pub-
lishers, 2004.

[3] Ch. E. Brennen: Fundamentals of Cavitation, Oxford Un. Press, 1994.
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A Derivation of the
Reyleigh-Plesset Equation

”From a historical viewpoint, the the liquid motion induced by a spherical cavity
in a infinite medium under uniform pressure at infinity seems to have been first
considered by Besant in 1859. It was solved for a non-viscous the liquid by Reyleigh
(1917) to interpret the phenomenon of cavitation erosion. Plesset considered the
general case of bubble evolution for a viscous and non-compressible the liquid.” [2,
p.35]

The idea is to use the Navier-Stokes equations to derive the Rayleigh-Plesset
equation , thus find function of the radius of a bubble R(t), where t is the time, in
the liquid. We will follow Brennen [1, p. 47-50].

Figure A.1: Scheme

Main assumptions are following:

- bubble is spherical with fixed centre and not in-
teracting with other bubbles

- uniform pressure variation in infinite p∞
- constant temperature
- the liquid is incompressible (ρ - constant den-

sity) and Newtonian (µ - constant dynamic vis-
cosity)

- gravity is neglected
- air content in bubble is constant and pressure is

uniform
- there is no mass transfer through bubble border

The law of mass conservation requires:

u(r, t) =
R2

r2

dR

dt
(A.1)

where u is the the liquid particle velocity.
The Navier-Stokes equation for motion in the r direction gives:

−1

ρ

∂p

∂r
=

∂u

∂t
+ u

∂u

∂r
− ν

[
1

r2

∂

∂r

(
r2∂u

∂r

)
− 2u

r2

]
(A.2)

where ν is the kinematic viscosity
Substitution of (A.1) to (A.2) leads to

−1

ρ

∂p

∂r
=

2R

r2

(
dR

dt

)2

+
R2

r2

d2R

dt2
− 2R4

r5

(
dR

dt

)2

(A.3)

Integrating (A.3), under assumption p = p∞ at r = r∞, and substituting (r = R)
leads to the equation on the bubble surface :

pr=R − p∞
ρ

= R
d2R

dt2
+

3

2

(
dR

dt

)2

(A.4)

Consider a control volume consisting of a small and infinitely thin lamina containing
a segment of interface between the bubble and the the liquid. The forces acting on
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this segment of lamina are the inner bubble pressure pB, the normal stress σrr , and
the surface tension σ. The equilibrium force equation in the radial r direction can
be written as:

pB + σrr − 2σ

R
= 0 (A.5)

The value of the normal radial stress at the boundary r = R is σrr = −(p)r=R+2µ∂u
∂r

(µ is dynamic viscosity) and thus net force is

pB − (p)r=R − 4µ

R
− 2σ

R
= 0 (A.6)

Substituting (A.6) into (A.4) finally leads to Rayleigh-Plesset equation.

pB(t)− p∞(t)

ρ
= R

d2R

dt2
+

3

2

(
dR

dt

)2

+
4µ

R

dR

dt
+

2σ

ρR
(A.7)

More detailed computation can be found e.g. in [5, appendix A].

B Used Numerical Methods

B.1 the Runge-Kutta Methods

Structure and derivation of the Runge-Kutta methods can be found on literature,
e.g. [9], [10]. In our paper, we use coefficients for Butcher array from web site [12].
Coefficients {aij},{bi} and {ci} from Butcher array fully characterizes the Runge-
Kutta method:

yn+1 = yn + h

(
s∑

k=1

biKi

)
(B.1)

Ki = f


tn + cih, yn + h

i−1∑

j=1

aijKj


 (B.2)

where yn is the calculated solution of differential equation with right side f with
exact solution y(t) and s detonates number of stages of the method
Paraphrasing [10, p. 508-512]: Runge-Kutta methods maintain the structure of
one-step method, and increase their accuracy at the price on an increase of func-
tional evaluations at each time level, thus satisfying linearity.After assumption that
ci =

∑s
k=1 aiji = 1, ..., s, the sufficient condition for consistency of Runge-Kutta is

that
∑s

k=1 bi = 1. For one-step method, consistency implies stability and, it turn
convergence. An explicit s-stage method cannot have order p greater than s, but
this is an upper bound that is realized only for s ≤ 4. Moreover, order of method in
the scalar case does not necessary coincide with that in vector case(system of ODE).

1. Classical

Error is calculated by technique of step doubling. Idea is to calculate approx-
imate solution with one step h and with two steps h

2
, (uh,u2∗h/2) respectively.

Then the error is

ε =
uh − u2∗h/2

(2p − 1)

Detailed explanation and derivation can be found e.g. in [9, p. 715].

In error is higher than tolerance tol, we reduce the stepsize to half, if error is
less that tol

(2p−1)
, we double stepsize.
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2. Embedded

The embedded methods calculates its error with less computational time that
step doubling. We use tho different Runge-Kutta methods with s-stages of
order p and p + 1, with same set of values Ki. We approximates error ErrR
by difference of approximate solutions of these two methods.

For choosing best next step, we use the method proposed in [9], which stands
on order p of used method. In general case we set new value of step (but we
restrict change by save factors 4 at top (if 4 < hnew

h
then hnew = 4h) and by

factor 0, 1 at down.):

hnew = 0, 8h

(
tol

err

)p

B.2 the Bulirsch-Stoer Method

The idea is to consider approximate solution or the modified midpoint method as
itself being an analytic function of stepsize h. We do the calculation with various
values of h(sequence h,h/2,h/4,h/8,. . . ) to the same point. Then we do polynomial
extrapolation(also rational extrapolation can be used, see [9, p.725]) to h = 0 and
determine error as error of the extrapolation. When the error is below our tolerance,
we stop dividing interval and begin next step (in our case we stop at 8 times division).
Next idea is to use a method whose error function is strictly even, allowing the
rational function or polynomial approximation to be in terms of the variable h2

instead of just h.
The best strategy now known is due to Deuflhard, described in [9, p. 727], which

is based on evaluating work per h unit and choosing step with minimum work.
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B.3 List of the Methods (Abbreviations)

Table B.1: List of used methods

Classical
abbreviation full name order # stages

Euler Euler’s Method 1 2
Mod. Mid. Modified Midpoint Method 3 5

rk4 Runge-Kutta 4 4 4
rkn5 Nystrom’s Runge-Kutta Method 5 12
rkb6 Butcher’s Runge-Kutta Method 6 7
rkv8 Verner’s Runge-Kutta Method 8 11

Embedded
abbreviation full name order # stages

rkf34 Fehlberg’s 34 Runge-Kutta Method 3 5
rkf45 Fehlberg’s 45 Runge-Kutta Method 4 6
rkf56 Fehlberg’s 56 Runge-Kutta Method 5 8
rkf78 Fehlberg’s 78 Runge-Kutta Method 7 13

rkpd45 Prince-Dormand’s 45 R.-K. Method 4 7
rkv56 Verner’s 56 Runge-Kutta Method 5 8
rkv67 Verner’s 67 Runge-Kutta Method 6 10
rkv78 Verner’s 78 Runge-Kutta Method 7 13
rkv89 Verner’s 89 Runge-Kutta Method 8 16

Bulirsch-Stoer
abbreviation full name order # stages

B-S Bulirsch-Stoer Method 3 3-10

where order stands for order of accepted approximate solution, # stages for number
of evaluations of right side to get approximate solution and error estimate. In case
of the B-S method order in table is order of the used Modified Midpoint method
and number of stages varies during calculation (depends on number of division of
interval h)

C Numerical Data

nE - number of evaluations of right side of Rayleigh-Plesset equation (2.1), nP -
number of accepted steps by method, nO - number of rejected steps by method,ε-
used tolerance, θ- mean value of ration of estimated local error and real, θmax-
maximum value of same ration, εreal = ε · θ, pεreal

= −LOG(εreal)
LOG(10)

, λ- global error
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Table C.1: Output Data Classical

name nE nP nO ε θ θmax εreal pεreal
λ pλ

pλ

pεreal

euler 27804 4633 4635 1,0E-04 1,55 9,2 1,6E-04 3,8 2,8E-04 3,5 0,9
mod mid 7685 1345 192 1,0E-04 1,03 8,7 1,0E-04 4,0 4,4E-06 5,4 1,3
mod mid 158425 29247 2438 1,0E-08 1,31 9,3 1,3E-08 7,9 7,2E-08 7,1 0,9

rk4 6996 417 166 1,0E-04 1,10 16,3 1,1E-04 4,0 1,6E-05 4,8 1,2
rk4 14748 939 290 1,0E-06 1,20 15,6 1,2E-06 5,9 1,3E-06 5,9 1,0
rk4 34620 2321 564 1,0E-08 1,19 16,0 1,2E-08 7,9 1,7E-08 7,8 1,0
rk4 139536 9323 2305 1,0E-11 0,89 2,0 8,9E-12 11,1 2,2E-11 10,6 1,0

rkn5 7902 295 144 1,0E-04 0,83 14,6 8,3E-05 4,1 5,0E-05 4,3 1,1
rkn5 13878 602 169 1,0E-06 0,95 10,5 9,5E-07 6,0 1,5E-06 5,8 1,0
rkn5 26604 1233 245 1,0E-08 1,16 15,0 1,2E-08 7,9 4,1E-08 7,4 0,9
rkb6 9135 282 153 1,0E-04 1,96 51,6 2,0E-04 3,7 4,4E-05 4,4 1,2
rkb6 12747 450 157 1,0E-06 3,72 55,3 3,7E-06 5,4 1,7E-06 5,8 1,1
rkb6 21945 864 181 1,0E-08 5,39 58,7 5,4E-08 7,3 2,1E-08 7,7 1,1
rkb6 56574 2326 368 1,0E-11 0,89 2,0 8,9E-12 11,1 3,9E-11 10,4 0,9
rkb6 75810 3123 487 1,0E-12 0,89 2,0 8,9E-13 12,1 3,0E-12 11,5 1,0

rkbv8 10560 190 130 1,0E-04 5,75 284,9 5,8E-04 3,2 3,6E-05 4,4 1,4
rkbv8 14586 286 156 1,0E-06 2,52 236,1 2,5E-06 5,6 4,1E-07 6,4 1,1
rkbv8 18777 423 146 1,0E-08 4,56 251,0 4,6E-08 7,3 2,3E-08 7,6 1,0
rkbv8 33165 835 170 1,0E-11 0,89 2,0 8,9E-12 11,1 3,3E-11 10,5 0,9
rkbv8 42570 1106 184 1,0E-12 0,89 2,0 8,9E-13 12,1 2,6E-12 11,6 1,0

Table C.2: Output Data Embedded
name nE nP nO ε θ θmax εreal pεreal

λ pλ
pλ

pεreal

rkf34 4325 569 296 1,0E-04 2,23 37,4 2,2E-04 3,7 2,5E-07 6,6 1,8
rkf34 19620 3881 43 1,0E-08 0,17 3,0 1,7E-09 8,8 4,5E-10 9,3 1,1
rkf45 1848 221 87 1,0E-03 0,56 2,0 5,6E-04 3,3 2,2E-04 3,6 1,1
rkf45 3408 390 178 1,0E-04 0,60 38,4 6,0E-05 4,2 1,3E-06 5,9 1,4
rkf45 4626 542 229 1,0E-05 0,44 10,1 4,4E-06 5,4 8,4E-07 6,1 1,1
rkf45 7338 1178 45 1,0E-07 0,56 2,5 5,6E-08 7,3 4,9E-09 8,3 1,1
rkf45 11496 1869 47 1,0E-08 0,46 1,8 4,6E-09 8,3 7,7E-10 9,1 1,1
rkf45 18030 2960 45 1,0E-09 0,44 1,9 4,4E-10 9,4 2,3E-10 9,6 1,0
rkf45 28350 4686 39 1,0E-10 0,42 2,0 4,2E-11 10,4 4,5E-11 10,3 1,0
rkf45 44814 7425 44 1,0E-11 0,41 1,8 4,1E-12 11,4 7,0E-12 11,2 1,0
rkf45 70860 11763 47 1,0E-12 0,41 1,5 4,1E-13 12,4 3,7E-13 12,4 1,0

rkpd45 4123 396 193 1,0E-04 0,30 30,3 3,0E-05 4,5 1,5E-05 4,8 1,1
rkf56 4208 373 153 1,0E-04 0,28 1,5 2,8E-05 4,6 3,7E-06 5,4 1,2
rkf56 8816 1071 31 1,0E-08 0,37 1,3 3,7E-09 8,4 4,0E-09 8,4 1,0
rkv56 4864 416 192 1,0E-04 0,23 1,4 2,3E-05 4,6 8,2E-07 6,1 1,3
rkv67 5220 353 169 1,0E-04 0,46 2,0 4,6E-05 4,3 3,0E-06 5,5 1,3
rkf78 5278 273 133 1,0E-04 0,84 18,3 8,4E-05 4,1 2,3E-06 5,6 1,4
rkf78 7657 373 216 1,0E-06 2,47 34,7 2,5E-06 5,6 5,2E-07 6,3 1,1
rkf78 10049 508 265 1,0E-08 0,21 1,3 2,1E-09 8,7 5,2E-10 9,3 1,1
rkf78 15561 826 371 1,0E-10 0,23 2,0 2,3E-11 10,6 6,5E-12 11,2 1,1
rkf78 18148 1369 27 1,0E-12 0,30 1,1 3,0E-13 12,5 3,7E-13 12,4 1,0
rkv78 5564 290 138 1,0E-04 0,23 1,9 2,3E-05 4,6 1,4E-06 5,8 1,3
rkv89 8128 339 169 1,0E-04 0,10 3,6 9,6E-06 5,0 1,4E-06 5,9 1,2
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Table C.3: Output Data Bulirsch-Stoer
name nE nP nO ε θ θmax εreal pεreal

λ pλ
pλ

pεreal

B-S 5280 474 186 8,0E-03 4,2E-03 0,0 3,4E-05 4,5 4,2E-05 4,4 1,0
B-S 12936 1078 539 1,0E-03 1,1E-03 0,0 1,1E-06 6,0 1,3E-07 6,9 1,2
B-S 18016 1500 752 1,0E-04 6,5E-03 0,1 6,5E-07 6,2 2,2E-07 6,7 1,1
B-S 35240 2930 1475 5,0E-05 8,3E-05 0,0 4,1E-09 8,4 2,0E-10 9,7 1,2
B-S 60144 5004 2514 1,0E-05 1,2E-05 0,0 1,2E-10 9,9 3,6E-12 11,4 1,2
B-S 75832 6306 3173 5,0E-06 8,2E-06 0,0 4,1E-11 10,4 6,4E-12 11,2 1,1
B-S 278128 23165 11601 1,0E-07 6,3E-07 0,0 6,3E-14 13,2 6,4E-14 13,2 1,0

Table C.4: Output Data Scaling and Regularizing
name nE nP nO ε θ λ

rkf45 (3.1) 3408 390 178 1,0E-04 0,60 1,3E-06
rkf45 (3.2) 3492 400 182 1,0E-04 0,41 3,1E-06
rkf45 (3.5) 1806 265 36 1,0E-04 0,87 3,0E-06
rkf45 (3.1) 11496 1869 47 1,0E-08 0,46 7,7E-10
rkf45 (3.2) 11520 1874 46 1,0E-08 0,47 6,9E-10
rkf45 (3.5) 10944 1780 44 1,0E-08 0,52 6,0E-09
rkf45 (3.1) 70860 11763 47 1,0E-12 0,41 3,7E-13
rkf45 (3.2) 70866 11767 44 1,0E-12 0,41 3,7E-13
rkf45 (3.5) 76872 12773 39 1,0E-12 0,53 4,1E-12

Table C.5: Different models
name R0 nE ε hmin

rmax

RO
method

rkf45 0,004 7657 1,00E-06 3,71E-14 3,7 1(non-comp.+isot.)
rkf45 0,004 2756 1,00E-06 5,66E-07 3,3 3(non-comp.+adiab.)
rkf45 0,004 7722 1,00E-06 3,79E-14 3,7 2(comp.+isot.)
rkf45 0,003 10699 1,00E-06 1,68E-18 4,2 1(non-comp.+isot.)
rkf45 0,003 3978 1,00E-06 1,98E-07 3,7 3(non-comp.+adiab.)
rkf45 0,003 10647 1,00E-06 1,56E-18 4,2 2(comp.+isot.)
rkf45 0,00005 52284 1,00E-04 1,00E-30 460,9 1(non-comp.+isot.)
rkf45 0,00005 62190 1,00E-04 2,31E-25 460,1 3(non-comp.+adiab.)

where rmax is maximum radius of bubble during whole computation
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