
Univerzita Karlova v Praze

Matematicko-fyzikálńı fakulta

BAKALÁŘSKÁ PRÁCE

Peter Hladký

CoCoME in SOFA

Katedra softwarového inženýrstv́ı

Vedoućı bakalářské práce: Doc. Ing. Petr Tůma, Dr.

Studijńı program: Informatika

2008

Ďakujem vedúcemu bakalárskej práce Doc. Ing. Petrovi Tůmovi, Dr. za
poskytnutú pomoc a cenné konzultácie počas vypracovávania zadania.

Ďalej ďakujem RNDr. Petrovi Hnětynkovi, Ph.D. a Mgr. Michalovi Malohlavovi
za pomoc pri riešeńı problémov súvisiacich s komponentovým systémom
SOFA.

Taktiež ďakujem rodičom a bratovi za ich podporu, rady a trpezlivošt.

Prehlasujem, že som svoju bakalársku prácu naṕısal samostatne a výhradne
s použit́ım citovaných prameňov. Súhlaśım so zapožičiavańım práce a jej
uverejňovańım.

V Praze dne 27.5. 2008 Peter Hladký

2

Contents

1 Introduction 6

2 CoCoME 8
2.1 Introduction and System Overview 8
2.2 Reference Implementation 10
2.3 Implementation in Fractal 10

3 SOFA 12
3.1 Introduction . 12
3.2 SOFA Component Model . 13
3.3 Component Lifecycle . 14
3.4 Runtime Environment . 14

3.4.1 Deployment Docks and Deployment 14
3.4.2 Repository . 15

3.5 SOFA Development Tools 16

4 Hibernate 17
4.1 Introduction . 17
4.2 Entity Manager . 18
4.3 Annotations . 18
4.4 Configuration . 19

5 Implementation 20
5.1 Motivation . 20
5.2 Conversion from Fractal . 21

5.2.1 Basic Structure . 22
5.2.2 Classes and Dependencies in SOFA 22
5.2.3 Conversion Automation 23
5.2.4 SOFA Component Bindings 23

3

5.2.5 SOFA Component Bindings Generation 24
5.3 Shared Application Parts . 25
5.4 Simulator Component . 26
5.5 Shared Types in SOFA . 27

5.5.1 Component Division 28
5.5.2 Merging Interfaces 28
5.5.3 Class Skipping or Renaming 29
5.5.4 Separating Common Java Types 29

5.6 SOFA Class Path . 30
5.7 Assembly and Deployment 30
5.8 Store and StoreTester Components 31
5.9 Hibernate and SOFA . 32

5.9.1 Hibernate persistence.xml 32
5.9.2 Hibernate Libraries 32
5.9.3 Persistent Classes and SOFA Renaming 33

6 Measurements 35
6.1 Resource Usage . 35
6.2 Launching Componentized Application 35
6.3 Middleware . 36
6.4 Tests . 36
6.5 Test Results . 37
6.6 Behavioral Protocols and Tests 39

7 Conclusion 40
7.1 Implementation of CoCoME in SOFA 40
7.2 What Was Done . 41

8 CD Content 42

A List of Components 43
A.1 Interfaces . 43
A.2 Frames . 44
A.3 Architectures . 45

B Project Timeline 46

Literature 48

4

Název práce: CoCoME in SOFA
Autor: Peter Hladký
Katedra (ústav): Katedra softwarového inženýrstv́ı
Vedoućı bakalářské práce: Doc. Ing. Petr Tůma, Dr.
e-mail vedoućıho: Petr.Tuma@dsrg.mff.cuni.cz

Abstrakt: Využitie hardwarových zdrojov softwarom je možné modelovať a
tak predpovedať zmeny vo využit́ı zdrojov, ktoré spôsobia zmeny v imple-
mentácii softwaru. CoCoME modeluje reálny obchodný systém. Referenčná
implementácia CoCoME slúži ako benchmark pre modelovacie softwarové
technológie a zahrňuje modelovanie výkonu aplikácie. Ciělom práce je vytvorǐt
verziu CoCoME vhodnú na modelovanie výkonu a vyťaženosť hardwarových
zdrojov jednotlivými časťami aplikácie. Práca popisuje použité technológie
a postupy pri implementácii CoCoME v komponentovom modeli SOFA s
komponentami reflektujúcimi existujúcu SOFA CoCoME architektúru.

Kĺıčová slova: komponentový model, využitie hardware zdrojov, middleware

Title: CoCoME in SOFA
Author: Peter Hladký
Department: Department of Software Engineering
Supervisor: Doc. Ing. Petr Tůma, Dr.
Supervisor’s e-mail address: Petr.Tuma@dsrg.mff.cuni.cz

Abstract: Hardware resource usage of a software can be modeled and there-
fore it is possible to predict changes in resource usage, which will be caused
by changes in implementation of the software. CoCoME models a real trad-
ing system. The reference implementation of CoCoME serves as a bench-
mark for software modeling technologies, including performance modeling.
The goal of the thesis is to create a version of CoCoME suitable for per-
formance modeling with hardware resource usage by individual parts of the
application. The thesis describes technologies and procedures used to imple-
ment CoCoME in SOFA component model with components reflecting the
existing SOFA CoCoME architecture.

Keywords: component model, hardware resource usage, middleware

5

Chapter 1

Introduction

It is difficult to predict how will changes made in source code affect perfor-
mance of a software system. With a small software system it is possible to
launch and profile it or test it to inspect changes in performance. For a large
software system the whole runtime environment would have to be replicated
in order to inspect changes in performance. This would be very expensive as
a large system usually consists of many smaller parts running on multiple
machines.

Software modeling tools and methodologies evolved to provide proce-
dures how to assess changes in performance when changing parts of a soft-
ware system. This approach does not require any changes in the inspected
software and it does not require to fully replicate runtime environment,
therefore it is much cheaper and viable.

In some cases software modeling tools do not provide realistic results,
especially when modeling a system running on several machines by a mono-
lithic model running on one machine. Hardware effects such as caching,
swapping, network latency are difficult to model while parts of the applica-
tion running on same machine are affecting each other.

To better inspect performance of a monolithic application we can divide
the application into smaller parts called components. There are tools allow-
ing us to build an application consisting of multiple components and run it.
With components we are able to isolate, study and measure only parts of
the application we are interested in.

The goal of our work is to create a reasonably complex implementation of
a component application, which would be used in the process of developing
new application performance models that would take into account the impact

6

of complexities related to resource sharing.
Before describing in detail how CoCoME was ported to SOFA, the thesis

continues with describing the architecture of CoCoME and SOFA. CoCoME
servers as the model of a monolithic application and SOFA [4, 3, 5] as the
component model used to implement CoCoME as a component application.

7

Chapter 2

CoCoME

2.1 Introduction and System Overview

This section provides brief description of CoCoME - The Common Compo-
nent Modeling Example as mentioned in [7]. CoCoME models a real Trading

System which can be observed in a regular supermarket. It is fully defined
in [7], where individual parts are defined using UML diagrams, use cases
and properties of the trading system (number of stores, cash desks per store,
etc.). The trading system consists of the following parts:

Cash Desk (figure 2.1) operated by a cashier. The sale is started and
finished at each Cash Desk. It is possible to switch it into express checkout
mode, where each customer buys only a few goods and pays by cash to
speed up the payment. The cashier uses Bar Code Scanner to scan items to
be purchased by a customer. Cash Box displays the final price and handles
payments. A customer can pay either by a credit card or by cash. The
credit card payment is handled by Card Reader. Final receipt is produced
by Printer and express mode is displayed by Light Display. All the parts are
connected to Cash Desk PC which communicates with Bank.

Store (figure 2.2) consists of Cash Desk Line which models multiple cash
desks connected to Store Server. Store Server is connected to Store Client

which can be used by a store manager to view reports related to store oper-
ation or change prices of the goods. The Store Server includes Inventory of
all goods of the corresponding Store.

Enterprise (figure 2.3) is a set of Stores where Enterprise Server exists
and all Stores are connected to it. Enterprise Client can be used by a man-
ager to produce different reports related to stores in Enterprise.

8

Figure 2.1: The hardware components of a single Cash Desk [7].

Figure 2.2: An overview of entities in a store which are relevant for the
Trading System [7].

Figure 2.3: The enterprise consists of several stores, an enterprise server and
an enterprise client [7].

9

2.2 Reference Implementation

The CoCoME specification in [7] with UML diagrams, use cases and prop-
erties of the trading system was used to create a reference implementa-
tion of CoCoME. The implementation is monolithic application using Hi-
bernate [10] middleware and Derby database [6]. Hibernate is providing a
middle layer between a database which stores data and an application which
communicates with the database. As the implementation is monolithic it
does not provide necessary granularity to measure hardware usage and per-
formance of individual parts of the application. The application needed to
be divided into smaller parts called components and implemented in a com-
ponent model. The following section 2.3 describes implementation in Fractal
component model.

2.3 Implementation in Fractal

CoCoME in Fractal [1] is implementation of CoCoME in Fractal compo-
nent model. Several changes to the reference CoCoME implementation were
made to fit the Fractal component model. Only part of the reference im-
plementation of CoCoME was implemented in Fractal, omitting graphical
user interfaces and parts of the implementation using Hibernate [10] to com-
municate with database. The implementation in Fractal and changes to the
reference CoCoME implementation are described in detail in [1]. The di-
agram of the implementation of CoCoME in Fractal can be observed on
figure 2.4.

We started with implementation of CoCoME in Fractal as it was already
logically divided into components and changes were made to the reference
implementation to fit the hierarchical model. However, we faced several dif-
ficulties as some of the implementation details were related to the Fractal
component model. It is further discussed in the chapter 5 and section 5.2.

10

Figure 2.4: CoCoME architecture as it is used in the Fractal component
model [1].

11

Chapter 3

SOFA

3.1 Introduction

This chapter talks about main ideas behind component based development
and SOFA component model as published in [4, 3, 5]. Component based
development is a way of developing applications consisting of smaller parts
called components which are connected together by interfaces. A component
is usually viewed as a black-box software entity with well defined interface
and behavior. A component model is specified by the component rules and
features for component lifecycle, composition, etc.

There is a flat component model and a hierarchical component model.
The flat component model allows to build only applications composed from
components that are on the same level of hierarchy. This property is very
limiting as it does not allow to build a large component by nesting smaller
components inside. The hierarchical component model allows multiple levels
of hierarchy which means it is possible to build composite components which
are created by nesting other components inside.

SOFA - SOFtware Appliances project was developed mainly by Dis-
tributed Systems Research Group at Charles University in Prague, current
version is SOFA 2 (further referenced as SOFA). SOFA is a hierarchical
component model and it is better described in the following sections.

12

3.2 SOFA Component Model

SOFA provides an infrastructure to develop and run applications built from
components. Each component communicates with other components via re-

quired interfaces and provided interfaces which are specified by each compo-
nent.

Required interfaces define methods that are called by a component, but
they are implemented by different components. Provided interfaces imple-
ment methods of a component, but they are usually called by different com-
ponents. Component frame serves as a description of component’s required
and provided interfaces. Component architecture implements component’s
frame and provided interfaces.

SOFA is hierarchical component model which implies two types of archi-
tecture - primitive and composite. Primitive architecture is implementation
of component’s provided interfaces and includes the code of the implemen-
tation. Composite architecture is a composition of sub-components and it
does not include any implementation, its functionality is derived from its
sub-components.

A component is a set of classes and interfaces. In the case of primitive
component it includes at least one class with implementation. To describe
a component, ADL - Architecture Description Language is used and the
description is stored in an XML file. There are separate ADL descriptions
for interface, architecture and frame of a component.

Interface ADL description includes interface type name and signature of
a class with interface definition. Signature is fully qualified name of the class
with interface definition in Java namespace.

Architecture ADL description of a primitive component includes archi-
tecture name, frame type name associated with the architecture and fully
qualified name of the class with implementation in Java namespace. In the
case of a composite component, the ADL description includes architecture
name, frame type name associated with the architecture, list of subcompo-
nents and connections between subcomponents. Each subcomponent item
includes subcomponent name, frame type name and architecture type name.
Each connection item lists names of two subcomponents and name of one
interface through which they communicate.

Frame ADL description includes frame name and a list of provided and
required interfaces by a component. Each provided and required interface
item includes interface name and interface type name.

13

3.3 Component Lifecycle

Lifecycle of a SOFA component involves following stages: (i) component
development, (ii) application assembly, (iii) application deployment and ex-
ecution.

Component development involves writing description of a component ar-
chitecture and frame, writing code for provided interface and its implemen-
tation in the case of a primitive component.

Application assembly is done using frame ADL descriptions, where each
subcomponent in an architecture described by a frame is assigned to par-
ticular architecture. The process starts with a top-level architecture and
continues recursively until primitive architectures are found. The result is
an assembly ADL description stored in an XML file, which specifies how are
components assembled into final result.

Deployment and execution is the last step of the SOFA component lifecy-
cle. During the deployment it is specified, where will be particular component
of the application executed. Connectors between communicating components
are generated. The result of the deployment stage is a deployment plan that
serves for execution of an application.

3.4 Runtime Environment

SOFA component model is implemented in Java. The runtime environment
consists of a single repository and several deployment docks. The SOFA run-
time environment is called SOFAnode (figure 3.1).

3.4.1 Deployment Docks and Deployment

A deployment dock is used for launching components and it provides nec-
essary infrastructure for starting, stopping and updating components. De-

ployment is phase of an application development where a developer assigns
particular deployment dock in SOFAnode to each component. The assign-
ment is stored in a deployment plan and it is used when launching the appli-
cation, where each deployment dock is contacted and instructed to launch
components assigned to the dock. Code of the components is automatically
obtained by deployment docks from the SOFA repository.

14

Figure 3.1: SOFAnode example as illustrated in [3].

3.4.2 Repository

The repository stores component meta-data and component implementations.
It is accessed during development to store created components and during
runtime to load the components. All entities in the repository are versioned.
This allows to use different versions of the same component within one appli-
cation. With different versions of the same component the problem of class

name clashes can arise as described in detail in [8, 9].
Class name clashes [8, 9] occur when two different classes with the same

name have to be loaded into Java Virtual Machine. In Java, two classes
with the same name cannot coexist in Java Virtual Machine unless they are
loaded by different classloaders.

SOFA solves this problem by bytecode manipulation of compiled Java
classes. During the process of uploading classes to the SOFA repository, each
class is renamed to have unique class name and references to this class are
changed in the bytecode accordingly. A unique class name is created from the
original class name and version of the component, which is appended to the
class name. This mechanism allows to use different versions of a component
within one application.

15

3.5 SOFA Development Tools

When using the SOFA development tools, every interface, architecture and
frame resides in a separate directory. Each directory includes ADL descrip-
tion stored in adl.xml file. Java source code is stored in the code directory
in case of interface and primitive architecture directories.

To develop an application in SOFA component model a developer needs
to run sofa-node.sh script to start the repository and other important
parts. Then the developer defines interfaces, frames and architectures by
cushion.sh tool which creates the basic directory structure and ADL files.
The developer then fills the ADL description of interfaces, frames and ar-
chitectures and creates implementation of each component which is stored
in the code directory. After all the components are described by ADL and
implemented, it is then compiled by the cushion.sh tool and uploaded to
the SOFA repository.

The cushion.sh tool is then used to create an assembly description and
deployment plan to deploy the application. The assembly description pro-
vides information about how is the final application composed from different
components. The deployment plan needs to be filled in manually by a devel-
oper to assign a deployment dock to each component, as described in earlier
section 3.4.1 and figure 3.1. After filling in the deployment plan the applica-
tion is ready to be deployed. During the process of deployment, connectors
are automatically generated between connected components.

The application is then ready to be launched. For every dock specified
in the deployment plan a deployment dock with the same name needs to
be started, this is done by sofa-dock.sh script. The application is then
launched by sofa-launch.sh script and stopped by sofa-shut.sh script, to
view all running applications sofa-ps.sh script is used.

The whole SOFA development lifecycle and SOFA development tools are
described in detail at the SOFA website [11].

16

Chapter 4

Hibernate

4.1 Introduction

This chapter gives a basic overview of the Hibernate system as discussed in
the Hibernate reference documentation [10]. Hibernate is object/relational
mapping tool. It is used to map Java objects to database tables. It uses its
own SQL-like language to query a database. One of the advantages is that
Hibernate is not tied to one particular database system. It is configured
within application, which database system will be used to store data. This
advantage gives an option to developer to change the underlying database
without changing the implementation.

Figure 4.1: A high-level view of the Hibernate architecture as illustrated in
Hibernate reference documentation [10].

17

CoCoME reference implementation uses Hibernate to create persistent
objects and to access Inventory in the Store Server part of the application.
A persistent object is an object which outlives the execution of the program
that created it. Persistent objects are used to store and work with data
queried from database. A persistent object represents database table and
instance of the object represents one row of the table.

The whole integration of the Hibernate system into the SOFA framework
caused a number of issues, which were problematic to resolve. The following
sections describe different parts of the Hibernate system that are necessary
for the implementation of CoCoME in SOFA. Details about individual issues
related to Hibernate and their solutions are discussed in the implementation
chapter 5.

4.2 Entity Manager

As described in the Hibernate documentation for EntityManager [10], the
EJB3 specification standardizes the basic APIs and the metadata needed
for any object/relational persistence mechanism. Hibernate EntityManager
implements the programming interfaces and lifecycle rules as defined by the
EJB3 persistence specification.

The EntityManager API is used to access a database in a particular unit
of work. It is used to create and remove persistent entity instances, to find
entities by their primary key identity, and to query over all entities.

4.3 Annotations

As described in the Hibernate documentation for Annotations [10], anno-
tations are used as meta-data to mark Java objects as persistent objects.
Meta-data are compiled into bytecode and read during runtime.

The @Entity annotation marks an object as a persistent object. The
@Id annotation marks object’s identification property and it serves as a
primary key to database table. The identification can be set by application
or can be generated by Hibernate using the @GeneratedValue annota-
tion. Other annotations can be used to define table specific properties with
@Table annotation, mapping specific properties with @ManyToOne and
@OneToMany annotations, etc.

18

4.4 Configuration

As described in the Hibernate documentation for EntityManager [10], the
configuration of entity manager reside in the persistence.xml file. There
can be more than one entity managers specified. Each entity manager (per-
sistence unit) specifies its name, properties and classes defining persistent
objects.

A name is used to identify particular entity manager in the application.
Properties are used to specify which database system will be used, access
to the database and URL where the database listens for queries. List of
persistent objects is specified by a list of classes defining these objects.

The persistence.xml file needs to be located in the META-INF di-
rectory in the Java class path. It is then packaged into persistence archive
and the information stored in persistence.xml is used during runtime. All
properly annotated classes included in the archive will be added to the con-
figuration of the entity manager.

The Persistence.createEntityManagerFactory() method is used to
create entity manager factory with given name of the entity manager. The
class path will be searched for META-INF/persistence.xml using the
ClassLoader.getResource(”META-INF/persistence.xml”) method.
The Persistence class will examine all the persistence providers available
in the class path and find the one which is responsible for creation of the
entity manager with given name. Persistence provider will then find the
entity manager that matches the name specified in the source command line
with the name specified in persistence.xml file. If no persistence.xml file
with a correct name of entity manager is found, PersistenceException is
raised.

19

Chapter 5

Implementation

5.1 Motivation

As described in chapter 2, CoCoME is model of a trading system. A trading
system usually consists of several parts of software and hardware. These
parts are connected together and they communicate with each other.

The reference implementation of CoCoME is monolithic application, so
every part of the modeled trading system runs on the same machine. There
is no possibility to run logical parts separately, except the database which
can run on a separate machine. The implementation therefore does not give
precise view of a real trading system.

In addition, the monolithic implementation of CoCoME does not pro-
vide necessary granularity to measure resource usage of individual parts of
the application. Every logical part of the implementation is influenced by
every other logical part as they all share the same hardware resources and
interact with each other. Therefore results of resource usage measurements
are difficult to clearly interpret.

The SOFA framework gives us an option to divide the monolithic im-
plementation of CoCoME into several components. Components then rep-
resent different parts of a trading system as it is seen in reality and can be
run within different deployment docks as described in chapter 3. Connection
between components is provided by the SOFA framework, which uses Java
RMI - Remote Method Invocation as it provides the necessary communica-
tion mechanisms.

The SOFA framework gives us an option to measure resource usage of a
single component. Deployment docks can be distributed and run on several

20

physical machines separating components which would otherwise influence
each other as it is in the monolithic implementation of CoCoME. This ap-
proach can give us a better understanding of resource usage and mutual
interactions of different parts of the original application.

The process of implementation of CoCoME in SOFA will consist of the
following steps. We need to define interfaces, architecture and frames, then
upload them to the SOFA repository. The next step is to implement all the
primitive components and upload them to the SOFA repository. To accom-
plish these steps, we need to solve technical issues introduced by functionality
which is difficult to express as components, namely object persistence.

We had several options how to implement the CoCoME model in the
SOFA component model. We could use the CoCoME specification, UML
diagrams, use cases and properties of the trading system defined in [7] and
implement CoCoME in SOFA from scratch. This would mean to write parts
of the application that were already written in the reference implementation
of CoCoME. The other option was to use the reference implementation of
CoCoME, divide source code into logical parts and adjust it to fit the SOFA
component model. We were also provided with limited implementation of
CoCoME in the Fractal component model. We chose to use the CoCoME
in Fractal [1] implementation to start with and the reasons are explained in
the following section 5.2.

5.2 Conversion from Fractal

The CoCoME in Fractal [1] implementation was chosen as the implemen-
tation to start with for several good reasons. Fractal is hierarchical com-
ponent model as SOFA and both component models are similar. CoCoME
implementation in Fractal was already logically divided into components
and described by Fractal ADL. It was also modified compared to the orig-
inal implementation to better fit the component model, see [1] for details.
However only cutout of the original CoCoME application was implemented
in the Fractal component model as described in chapter 2.3.

A basic conversion script from Fractal implementation of CoCoME to
SOFA framework was provided. As the conversion process is not fully auto-
mated, we had to do the following steps manually: fill the created directory
structure with additional classes and resolve class dependencies, create com-
ponent bindings, resolve issues related to properties of the Fractal component
model. All these steps are discussed in detail in the following subsections.

21

5.2.1 Basic Structure

To create components of the CoCoME implementation in SOFA framework,
we needed to create the basic directory structure for every interface, architec-
ture and frame. We used the conversion script that was part of the CoCoME
in Fractal implementation. The conversion script created the directory struc-
ture, filled it with ADL description files and basic Java source code with
interface definitions and architecture implementations. Java namespace was
changed in classes and directory structure holding source code was created
automatically according to the new namespace.

Functionality of the conversion script is very limited as it does not handle
dependencies between Java classes defining types and interface definitions
and architecture implementations. We had to resolve the dependencies man-
ually by checking all the interfaces and architectures as it is described in the
following subsection 5.2.2.

5.2.2 Classes and Dependencies in SOFA

For every interface, architecture and frame there needs to be a separate
directory. Interface directories and primitive architecture directories also in-
clude code directory, which holds the Java source code. To compile the
application in the SOFA framework, cushion.sh script is provided. The
cushion.sh script compiles all interfaces at first and then it compiles prim-
itive architectures. Classes from provided and required interfaces specified
in ADL description are found in code directories of the interfaces and used
during architecture compilation. So the classes used by interfaces in the
architecture do not need to be in the architecture code directory.

We resolved the class dependencies that were not handled during con-
version process by the following approach. We tried to compile an interface
which resulted in a number of Java compiler errors saying which classes were
missing. We found all the needed classes in the implementation of CoCoME
in Fractal, changed namespaces and copied the classes into code directory
of the interface. After resolving dependency issues of all interfaces, most of
the dependency issues of architectures were also resolved. After the previ-
ous process was finished, we just needed to find classes used only by the
individual architectures.

The Eclipse IDE provides refactoring tools, which we could use. We would
have to find the missing classes as described in the previous paragraph. We
could then copy the missing classes to the right code directory. And finally

22

rename the classes to match the right namespace. However, the refactoring
tools in Eclipse would not help much as it can be used only to work with
the whole source code package or a single class and not with a selection of
multiple classes from different source code packages.

The following subsection 5.2.3 suggests, how could be the conversion
script further developed to automate the process of conversion.

5.2.3 Conversion Automation

The conversion script could be further developed to automate the process
of finding all the class dependencies, changing namespaces of classes and
copying them to right code directories. However, it would have to be quite
sophisticated as dependencies of an architecture are resolved by an ADL
file where a list of provided and required interfaces is stored. The code
directories of the interfaces are inspected during compilation and needed
classes are used to resolve dependencies.

To automate the conversion, the script could try to compile every in-
terface by itself. Then it could process the Java compiler error output and
create a list of missing symbols. Then it could try to find a class for every
symbol and use it for implementation of CoCoME in SOFA. However, this
approach cannot be used in the case of architectures.

In order to resolve dependencies of an architecture, the coversion script
would have to call cushion.sh tool for compilation. The reason is that
cushion.sh inspects the architecture ADL file and uses classes of required
and provided interfaces during the architecture compilation. If the conver-
sion script would just use a Java compiler as in the previous paragraph,
it would copy classes that are already used by architecture interfaces to
code directory of the architecture. This would cause class duplicities in the
SOFA framework, which are discovered and reported by cushion.sh when
uploading the compiled components to the SOFA repository.

After we resolved all the class dependency issues, we needed to create
bindings between components so they can communicate. The process is dis-
cussed in the following subsection 5.2.4.

5.2.4 SOFA Component Bindings

In order to create bindings between application components so they are able
to call interface methods of other components, the component architecture

23

has to implement the setRequired() method of the SOFAClient interface.
The setRequired() method is called during initialization of the component
and assigns required interfaces to the local interface variables in the archi-
tecture implementation. These variables are then used to call methods on
required interfaces, which are provided by a different application component.

We needed to manually define all the setRequired() methods in all
components that were using interfaces of other application components. To
accomplish this task, every component was checked for a list of required in-
terfaces. The list is stored in the ADL file of the component frame. Then for
every required interface a variable was defined and assigned in the setRe-
quired() method. The code was then checked for method calls of required
interfaces in order to see if every required interface is properly assigned.

In the implementation of CoCoME in Fractal, some required interface
variables were assigned to references to object instances rather to provided
interfaces of the object. This is not possible in SOFA framework unless all
the Java source code related to the object is within the code directory of
the component using its interface. In such a case, there is no way, how to
separate two components where one providing the interface is part of the one
requiring the interface. This is not wanted as objects providing the interface
are logically different components, therefore we changed all the references
from object instances to interface references.

The described process in this section is very error prone as every com-
ponent needs to be checked for required interfaces, proper variables need to
be created and assigned in the setRequired() method and the component
architecture implementation needs to be checked for every method call of
every required interface. Therefore we suggest partial generation of SOFA
bindings in the following subsection 5.2.5.

5.2.5 SOFA Component Bindings Generation

To further automate the process of porting CoCoME to the SOFA frame-
work, we suggest partial generation of SOFA component bindings. The gen-
eration tool would check every component frame for a list of required in-
terfaces and location of the architecture implementation. In the architecture
implementation, the setRequired() method would be partially defined list-
ing all the required interfaces.

The generation tool could then give a choice to developer whether to au-
tomatically generate variables for every required interface and assign them

24

properly in the setRequired() method or let the developer do it manu-
ally. The rest of the Java source code could be automatically checked for
references of object instances which implement the required interfaces and
changed to variables with references to required interfaces assigned in the
setRequired() method.

The whole process would require developer’s cooperation, but we be-
lieve it would speed up the process of porting and reduce number of errors
produced when going through the same process manually.

5.3 Shared Application Parts

The Fractal component model allows to define a shared component, which
can be shared by multiple components. In the implementation of CoCoME
in Fractal, the Simulator component is an example of shared component.
SOFA component model does not support this feature, so we needed to
resolve this issue in the implementation of CoCoME in SOFA.

The Simulator component simulates the CoCoME Use Case 1 - Pro-
cess Sale of CoCoME specification [7] and it does not specify an interface.
Instances of other components register at the Simulator by calling its reg-
ister methods. Every reference to an instance is then added to an array of
the registered objects. The Simulator then works with the arrays to choose
instances and calls their methods.

This is not possible in SOFA for a number of reasons. Firstly, the class
and all related classes of the object Simulator would have to reside in
every component which uses its register methods to register itself within
the Simulator, because the Simulator does not specify interface for these
register methods. That would result in copying major part of the application
in every component code directory as every component which Simulator
works with, would have to be present in the particular component code
directory. This is unwanted state, because it would result in most of the
application source code being part of every component.

We needed to adjust the Simulator component in a way such that it
does not have to be part of other primitive components. It is discussed in
detail in the following section 5.4.

25

5.4 Simulator Component

To resolve the problem of shared Simulator component (further referenced
as simulator) in the SOFA framework, we extracted the component and used
it as a separate component. We defined and implemented interface, archi-
tecture and frame of the component. In the interface ADL, we specified the
provided interface which consisted of the register methods for components
to register their interfaces within the simulator. These register methods were
implemented in the architecture and after a register method was called by
other component, reference to the component’s interface was added to an
array of the simulator. The simulator interface code directory needed to
include classes of all the interfaces that simulator worked with in order to
correctly compile. It is because SOFA resolves interface dependencies only
for architectures, where the list of required interfaces is provided in the frame
ADL.

Even if the compilation was successful, there was a problem which was
disclosed during upload to the SOFA repository. When cushion.sh script
performs upload, jar code bundles are created from the compiled classes
of a component and uploaded to the SOFA repository. During the process
of adding classes of a component to the jar code bundle, it is checked for
duplicate classes. This checking caused a problem when we tried to upload
components which communicated with the simulator. The reason was the
simulator used variables to hold references to interfaces of components that
registered within the simulator. Classes defining these interfaces needed to
be present in the code directory of simulator, so it could be compiled. When
a component that required the simulator interface to register was being up-
loaded, classes in the simulator interface code directory were used. And
because class with provided interface of the component was also in the sim-
ulator code directory a duplicity was detected and exception was raised by
the cushion.sh tool.

In order to resolve this problem, we needed to adjust the Simulator
component again. The component in the final version does not provide any
interfaces. In the frame of the component, we specified to require all the inter-
faces it was working with. The binding between the simulator and other com-
ponents was created by defining the setRequired() method which added
reference to every required interface into the simulator arrays and therefore
the simulator was able to call methods of the needed components. To con-
nect the simulator with other components we needed to specify the bindings

26

also in the top-level architecture of the CashDesk component.
After all these changes made to the Simulator component, we were able

to compile and upload most of the components which were using it to the
SOFA repository. We experienced similar issues related to duplicate classes
with object types shared by multiple interfaces. We address the problem and
possible solutions in the following section 5.5.

5.5 Shared Types in SOFA

It is common for an application to share types that are used within different
classes of the application. For example there are two interfaces that use
the same common type. Imagine a part of source code that implements
both interfaces. It becomes a problem when this part of source code forms
a component and this component is about to be uploaded to the SOFA
repository. The class duplicity is caused by the common type, because it is
being added to the code bundle multiple times, as more than one interface
is using it. Figure 5.1 illustrates the described situation.

Shared Object Shared Object

«interface»
Interface1

«interface»
Interface2

Implementation

Figure 5.1: Component implementing two interfaces using shared object.

It is partly a design question, whether to have a component implement-
ing multiple interfaces or multiple components each implementing one inter-
face. The CashDeskBus component in the implementation of CoCoME in
Fractal is good example of a component implementing multiple interfaces.
It provides communication bus between smaller back-end components and
CashDeskApplication component as it can be observed in figure 2.4. If
there are multiple interfaces using same types, classes defining these types
are also included in code directories of these interfaces, otherwise it would

27

not be possible to compile them. If these interfaces are implemented by
the same component the upload to the SOFA repository fails. It is because
during the code bundle creation, multiple classes with the same name are
detected and class duplicity exception is raised. We suggest several solutions
in the following subsections.

5.5.1 Component Division

The problem with duplicate classes can be resolved by multiple approaches.
The component implementing multiple interfaces can be divided into smaller
components each implementing one interface. However this would result in
enormous fragmentation of the application and in many cases this is not
necessary. Other disadvantage by this approach is that it leaves no choice
for a developer as everything would have to be divided in small components
each implementing just one interface. Figure 5.2 illustrates the described
approach.

Shared Object

«interface»
Interface1

«interface»
Interface2

Shared Object

Implementation2Implementation1

Figure 5.2: Component division.

5.5.2 Merging Interfaces

Another approach resolving the situation would be merging multiple inter-
faces into one large interface, which would then be implemented by the same
component. This approach could result in duplicities of code if different com-
ponents would implement different parts of the large interface. The reason
is that besides the large interface other parts would be defined as interfaces
with different names and then implemented. And therefore same parts of

28

code would be in different code directories. This would mean correcting the
same code in multiple places if errors are found. Figure 5.3 illustrates the
described approach.

Shared Object

Implementation

«interface»
Merged Interface

Figure 5.3: Merging interfaces.

5.5.3 Class Skipping or Renaming

SOFA could resolve the problem by skipping the duplicate classes during the
code bundle creation. It would have to be checked whether the two duplicate
classes are the same or they only share same name. In the latter case, this
approach would probably result in an error that would be difficult to find
as different class would be used as originally intended.

Renaming one of the duplicate class would also resolve the problem, so
the classes would be the same, but with different names. The name would
also have to be changed in the code as all the object types are named after
the name of the class. The renaming can be done in Eclipse easily. However
it would again mean duplicate code with different class name and it would
be difficult to fix errors in the application.

5.5.4 Separating Common Java Types

Probably the best approach is to have a possibility to specify where common
Java types can be stored and let the SOFA know and use it. The present
version of SOFA does not support this approach directly. It can be achieved
indirectly by editing SOFA development tools.

29

We used the last approach to solve the problem temporarily, until this
issue is resolved in the SOFA framework. The following section 5.6 fully
describes how issues with class path are resolved.

5.6 SOFA Class Path

Many applications use methods implemented by external libraries. SOFA
does not directly give an option to developer to specify paths where ad-
ditional libraries can be found. There are again several approaches how to
solve this issue.

The additional libraries can be copied to directory for Java Runtime En-
vironment Extensions, which is /usr/lib/jvm/java-6-sun/jre/lib/ext in
our case. The libraries are then visible to Java Virtual Machine and therefore
to every running application. This was our initial approach. However, the
content of the extension directory affects all other Java applications running
on the same machine. If there are multiple applications developed using dif-
ferent libraries or different versions of the same libraries it is better to tie
the libraries with the particular application.

We tried to change the environment variable CLASSPATH which spec-
ifies the default user class path. So we set CLASSPATH variable to direc-
tory with all the needed libraries. This did not have any effect, because as
we later found out the SOFA development tools set their own class path
variables. It is possible to adjust the SOFA development tools to use addi-
tional class paths to find all the necessary libraries and classes. We needed
to edit several scripts which are used in order to run the development tools.
After these adjustments, we were able to move all the necessary libraries
associated with the application to directory which is then inspected by the
SOFA development tools. It would be helpful if SOFA could provide some
way of environment configuration, so developers can easily set all the class
paths they need for extra libraries and code either for the whole application
or individual components.

5.7 Assembly and Deployment

We adjusted the class path of SOFA development tools and moved all the
external libraries and classes of shared types outside the directory structure
of components. We were then able to successfully assemble the application

30

from components and create a deployment plan. We specified name of a
deployment dock for each component and successfully deployed the appli-
cation. During the deployment process, connectors were automatically gen-
erated and stored in the SOFA repository. Connectors are used to link all
component interfaces and provide communication between them.

When we finally tried to launch the application it resulted in ClassCir-
cularityError exception which occurs in case the default ClassLoader is
overridden. The exception is related to SOFA inner structures, we reported
the issue to SOFA framework developers and it was later resolved.

Meanwhile, we decided to implement Store and StoreTester compo-
nents. The Store component communicates with database using the Hiber-
nate system [10]. The implementation of CoCoME in Fractal omitted com-
ponents involving communication with database. So the following sections
describe in detail how to integrate Hibernate [10] into the SOFA framework.

5.8 Store and StoreTester Components

We came across various SOFA limitations during the effort of implementa-
tion CoCoME in SOFA. We were not able to resolve all the SOFA limitations,
so we were not able to continue in the implementation process. Therefore we
decided to try to implement smaller part of the original CoCoME implemen-
tation which communicates with database. This part was not implemented
in the Fractal version of CoCoME. We think it is beneficial for future SOFA
application developers as we provide detailed approach how to integrate
Hibernate [10] into the SOFA framework.

We used structure prepared by the conversion script from implementation
of CoCoME in Fractal. The implementation of Store was used from the
reference CoCoME implementation. It needed to be adjusted so it can run
independently from the rest of the application. We created two components,
Store and StoreTester. The Store component implements interface to query
a database. And the StoreTester component implements methods to call the
Store interface.

Hibernate middleware is used by the components to communicate with an
underlying database, which is the Derby database [6] in our case. Therefore
we needed to integrate Hibernate configuration with our components and
SOFA framework. We needed to resolve several issues, which are described
in the next section 5.9.

31

5.9 Hibernate and SOFA

The reference implementation of CoCoME uses Hibernate [10] in order to
communicate with a database. The Hibernate documentation [10] instructs,
there needs to be a META-INF directory with persistence.xml file in
the class path of the application so it can be added to the jar code bundle
and loaded during runtime. SOFA implements its own ClassLoader and
we needed to find a way how to make SOFA framework use the persis-
tence.xml file.

5.9.1 Hibernate persistence.xml

We tried number of approaches, starting with adding the META-INF folder
to every code directory of the SOFA application. Cushion upload then cre-
ated code bundles including the META-INF folder. However, launching
the application revealed that the persistence.xml could not be accessed
by SOFA tools used to launch the application. So we added the META-INF
into the SOFA class path by editing SOFA development scripts. This did
not resolve the problem either, so we decided to better locate the problem.
We added debug messages to source code of ejb3-persistence, the EJB3
Persistence Library to better understand the problem.

After some time trying all sorts of other approaches, we found out the
right way by recompiling Hibernate Entity Manager. We put the META-
INF directory with persistence.xml file into the Hibernate Entity Man-
ager build/classes directory. This way the META-INF directory became
part of the Hibernate Entity Manager jar. The jar was then moved to the
class path of the SOFA application and the persistence.xml file became
accessible.

5.9.2 Hibernate Libraries

Hibernate is depending on a number of other libraries, which either have
to be included in a Java Runtime Environment Extensions directory (in
our case /usr/lib/jvm/java-6-sun/jre/lib/ext) or in a class path of a
SOFA application. So we moved all the needed libraries to class path of
our SOFA application, which included cglib, the Code Generation Library
and asm, the Java Bytecode Manipulation Library. The problem is that the
set of libraries used by SOFA itself include asm library of different version.

32

Hibernate uses the older version of asm library, where SOFA uses the newer
version of the asm library. When we tried to run our SOFA application it
resulted in a number of compiler errors regarding the asm library. We tried
to resolve the issue by using only the newer version of the asm library within
Hibernate. However, the newer version of the library did not include all the
classes of the older version. So when Hibernate was trying to use some of the
missing classes, it resulted in a number of compiler errors. We later found
out the cglib library was distributed also as cglib-nodep library with the
older asm library included within. When we used the cglib-nodep library,
the problem was resolved as no dependency issues arose.

Our application uses the Derby database [6] as a back-end database with
cooperation with Hibernate. In order to use Derby database, we had to copy
all the database libraries into the class path of our SOFA application.

5.9.3 Persistent Classes and SOFA Renaming

To use Hibernate, persistence.xml file also includes a list of persistent
classes used by an application. So we listed all the persistent classes in
persistence.xml file. We then compiled the application and uploaded the
generated code bundles with the cushion.sh tool to the SOFA repository.
When we were trying to launch the application we came across several excep-
tions telling us the persistent classes could not be found. This situation was
caused by the SOFA class renaming mechanism to avoid class name clashes
as described in section 3.4.2. All the references to classes were changed in
the bytecode including persistent classes. We ended up with bytecode with
references to the renamed classes and persistence.xml file with original
names of the classes.

We needed to be able to access the renamed classes. We could change
the persistence.xml and use generated names of the persistent classes by
SOFA development tools. The generated names are found in the internal
structures of the SOFA repository in renamed.jar of a component. This is
not very useful solution as the persistence.xml would have to be edited
and entity manager recompiled every time version and name of a persistent
class is regenerated.

To circumvent this issue, we used addAnnotatedClass() method to
add all persistent classes to the entity manager configuration directly in the
source code. This way the class names were automatically changed in the
bytecode to the right names and references that pointed to these classes.

33

As we were trying to launch the application, we found out that class
name used as a type for declaration of a generic type, like Collection is not
covered by SOFA class renaming mechanisms. The place in the bytecode
with class reference is not changed and it uses the original class name.

So the only solution, when persistent classes are not renamed, but can
be accessed during compilation and runtime of the application was to lo-
cate and move all persistent classes outside the SOFA application directory
structure. Class path to directory with persistent classes was set in the class
path of SOFA development tools. This way we were able to compile the
application and upload the generated code bundles to the SOFA repository.
The persistent classes were not renamed as they were outside the component
directories.

We were able to successfully assemble, deploy and launch the Store and
StoreTester components. The Store component was able to use Hiber-
nate [10] and successfully communicate with the Derby database [6]. We
were able to perform several tests with this implementation regarding re-
source usage.

34

Chapter 6

Measurements

6.1 Resource Usage

A componentized application gives us more ways to study its performance
and hardware resource usage than a monolithic application. We have a pos-
sibility to limit our interest only to several components of the application.
SOFA component model gives us these possibilities, but it is not trivial to
find out the right way how to study and observe a component. With run-
time of componentized applications we have to face the overhead created
by middleware, which provides necessary communication layer for the com-
ponents. We need to address a number of questions. How much does the
middleware influence the measurements and how can we measure the effects
of middleware?

We have to set a base for measurements. We can do so by measuring
how are hardware resources consumed by middleware before the component
starts to execute anything. In the case we are not able to produce precise
results, we can at least observe the correlations. Using correlations, we can
predict how will behavior of a particular part of application change when
number of method invocations on that part increase or decrease.

6.2 Launching Componentized Application

SOFA framework can launch componentized application in different ways.
All the components can either share and run in the same dock or different
docks can be used for different components. Then all the docks can run on

35

the same physical machine or different docks can run on multiple machines.
When trying to measure hardware usage of a component, all these possibil-
ities should be taken into account as all of them imply different results.

Components running in one dock do not need to use Java Remote Method
Invocation mechanism and therefore less resources are consumed. However
as the components run in one dock, they run on one physical machine. This
means each component influences every other component in the dock as they
share same hardware resources.

If components are run in different docks they need to use Java Remote
Method Invocation to call methods on each other’s provided interfaces. The
advantage is that a single component can be running in one dock and mea-
sured in isolation. This can be taken even further and run component that is
subject to study on a dedicated machine. This way we have confidence that
behavior of such a component is not influenced by consumption of hardware
resources by other components. The disadvantage is the middleware layer,
which is used to provide communication between components and therefore
creating overhead.

6.3 Middleware

It is necessary to identify whether middleware creates a bottleneck when run-
ning componentized application. If the component runs on an isolated ma-
chine, networking also influences hardware usage and therefore measurement
results. Because hardware usage is many times related to number of parallel
threads running within the application. The number of parallel threads is
determined by number of parallel components communicating with the com-
ponent or parallel invocations of provided interface. If networking is slowing
the number of events that cause method invocations, less resources will be
used and the measurements will be also biased by this fact.

6.4 Tests

We were able to execute tests measuring memory usage by the Store and
StoreTester components. We were interested in memory usage related to
number of running threads. We needed to implement a thread that would
collect statistics of used memory and a thread that would query database.

36

We implemented UsedMemoryThread class to measure memory us-
age during runtime of the application and take samples every second. It
uses Runtime Java class, which provides totalMemory() and freeMem-
ory() methods. The QueryThread uses queryProducts() method to
query database in a loop for products of certain Store of the Trading System.

The startTest() method starts the UsedMemoryThread thread and
specified number of QueryThread threads. Every test runs for a minute
and then the number of threads increases.

We believe the memory used by the application will increase in a linear
trend related to a number of threads executed, if sufficient amount of memory
is provided. It is because every thread allocates the same amount of memory
for products retrieved from database by the queryProducts() method.

In the case the amount of memory becomes insufficient, the linear trend
changes slowly approaching the upper bound. It is because as soon as the
amount of used memory crosses certain boundary, the Java garbage collec-
tor is invoked more often to lower the amount of used memory under the
boundary. Because of higher number of threads running, more memory is
consumed and as soon as the garbage collector frees portion of the memory,
it is used by a running thread. Following section 6.5 includes the test results
with diagrams.

6.5 Test Results

The tests were run with default Java settings, which means 64 MB of memory
was dedicated to our application in our case.

Test in figure 6.1 started with 10 threads, increasing the number of
threads by 10 every minute and taking samples of the amount of used mem-
ory every second.

Test in figure 6.2 started with 50 threads, increasing the number of
threads by 50 every minute and taking samples of the amount of used mem-
ory every second.

We repeated the test twice measuring how many times is the Java garbage
collector invoked in order to prove our results are stable. These tests should
be viewed as a proof of concept, how a component resource usage can be
measured when running in componentized application. These tests should
be further developed to provide more accurate and more detailed results.

37

10 20 30 40 50 60 70 80 90 100

5.
0e

+
06

1.
0e

+
07

1.
5e

+
07

2.
0e

+
07

2.
5e

+
07

Memory Usage

Number of Running Threads

U
se

d
M

em
or

y
in

 B
yt

es

Figure 6.1: Memory usage test increasing number of threads by 10.

50 100 150 200 250 300 350 400 450

1e
+

07
2e

+
07

3e
+

07
4e

+
07

5e
+

07
6e

+
07

Memory Usage

Number of Running Threads

U
se

d
M

em
or

y
in

 B
yt

es

Figure 6.2: Memory usage test increasing number of threads by 50.

38

6.6 Behavioral Protocols and Tests

In the implementation of CoCoME in Fractal, every component comes with
behavior specification, which is described by a behavior protocol as described
in [1]. A behavior protocol specifies the behavior and properties of a compo-
nent. It includes specification how are individual methods of the component
invoked (e.g. order of method invocation). The behavior specification can be
then verified against component code.

The behavior specification is included in the ADL file of every compo-
nent frame. It can be used in the future work to design more advanced
tests as it provides enough information how are methods of components
invoked. Individual test can be prepared for every component from its be-
havior specification and then it can be launched to measure resource usage
of the component. This approach is more straight forward as the tests would
otherwise have to be designed from scratch.

39

Chapter 7

Conclusion

7.1 Implementation of CoCoME in SOFA

Implementation of CoCoME in SOFA is the largest application that was
tried to be run in the SOFA framework. Our work shows it is not trivial to
convert a monolithic application into a componentized application, as it is
not clear which parts should form a component. It is difficult to divide a
monolithic application into smaller parts so that they are easily connected
together.

We were finally able to launch the implementation of CoCoME in SOFA
after the last issue related to inner parts of SOFA framework was resolved by
SOFA developers. Because we were dealing with number of technical issues
regarding the SOFA framework, we were not able to implement parts of the
application that were cutout from the CoCoME in Fractal implementation.
However, we provide solutions to number of technical issues discovered dur-
ing the implementation process, which would remain otherwise hidden. Most
of the issues were discovered by the needs of the CoCoME application and it
was not related to the way CoCoME was implemented in SOFA. We believe
these issues would be discovered by any other application of comparable size
to CoCoME application.

CoCoME in SOFA implementation is built from about 30 components,
which means about 90 directories with definitions and implementations of
interfaces, frames and architectures. All of these need to be configured and
manually checked by a developer as there is no support for the application
development within SOFA framework apart from the cushion.sh tool.

The cushion.sh tool helps a lot with creation of the basic directory

40

structure and ADL files. However, it does not provide any way to check if
the ADL files are correctly filled in. This could be done automatically by
going through all the ADL files and checking if all paths to classes with
implementation are correct and if source code is present. If there is an er-
ror found, the developer can be informed by a message indicating which
component needs to be checked.

7.2 What Was Done

The implementation of CoCoME in SOFA is not fully finished due to various
technical issues. But we believe we resolved most of the issues during our
effort and it will be valuable for any future application developments in the
SOFA framework. We provide a list of what was done:

• Complete CoCoME architecture definition in the SOFA format.

• Skeleton implementation of all the CoCoME components.

• Simulator component creation and implementation.

• Store and StoreTester components implementation.

• Investigation of class sharing issues and temporary resolution.

• Investigation of libraries integration issues and temporary resolution.

• Hibernate system integration with SOFA framework.

• Investigation of persistence classes and class renaming issue and tem-
porary resolution.

• Launching the implementation of CoCoME in SOFA.

• Launching basic memory usage test with Store and StoreTester com-
ponents using Hibernate and Derby database.

• Suggestions how to solve remaining technical issues.

41

Chapter 8

CD Content

CD with CoCoME in SOFA implementation and CoCoME Store in SOFA
implementation is included in the end of the thesis. It also includes cited
articles and documentation used during implementation and writing of the
thesis.

The articles and documentation are included in the Articles and Docu-
mentation directory. The CoCoME in SOFA implementation is included in
cocome.original directory. The CoCoME Store in SOFA implementation
is included in cocome.store directory. Each of these directories also include
sofa directory with the SOFA repository and doc directory with documen-
tation. The cocome directory includes cocome-impl directory with the
original monolithic implementation of CoCoME, fractal directory with the
implementation of CoCoME in Fractal, sofa directory including the conver-
sion script used to convert CoCoME in Fractal to SOFA.

The manual with instruction how to launch both implementations is
included in the readme.txt file. The thesis is included in the CoCoME in
SOFA.pdf file.

42

Appendix A

List of Components

A.1 Interfaces

sofa2.BankIf

tradingsystem.AccountSaleEventHandlerIf

tradingsystem.CashDeskConnectorIf

cashdesk.CardReaderControllerIf

cashdesk.CardReaderEventDispatcherIf

cashdesk.CardReaderEventHandlerIf

cashdesk.CashBoxControllerIf

cashdesk.CashBoxEventDispatcherIf

cashdesk.CashBoxEventHandlerIf

cashdesk.CashDeskAppEventDispatcherIf

cashdesk.CashDeskAppEventHandlerIf

cashdesk.CashDeskApplicationIf

cashdesk.CashDeskGUIIf

cashdeskline.CashDeskEventDispatcherIf

cashdesk.GUIEventHandlerIf

cashdesk.LightDisplayEventHandlerIf

cashdesk.PrinterEventHandlerIf

cashdesk.ScannerControllerIf

cashdesk.ScannerEventDispatcherIf

cashdeskline.CoordinatorEventDispatcherIf

cashdeskline.CoordinatorEventHandlerIf

inventory.MoveGoodsIf

inventory.ProductDispatcherIf

43

shared_data.EnterpriseQueryIf

shared_data.PersistenceIf

shared_data.StoreQueryIf

reportingapplication.ReportingIf

storeapplication.StoreIf

A.2 Frames

Application.BankFrame

sofa2.ApplicationFrame

Application.SimulatorFrame

CashDeskLine.CashDeskLineBusFrame

CashDeskLine.CoordinatorFrame

TradingSystem.CashDeskLineFrame

Application.TradingSystemFrame

Inventory.EnterpriseServerFrame

EnterpriseServer.ProductDispatcherFrame

TradingSystem.InventoryFrame

Inventory.StoreServerFrame

StoreServer.StoreApplicationFrame

StoreApplication.StoreGUIFrame

StoreApplication.StoreLogicFrame

CashDesk.CardReaderControllerFrame

CashDesk.CashBoxControllerFrame

CashDesk.CashDeskApplicationFrame

CashDesk.CashDeskBusFrame

CashDesk.CashDeskGUIFrame

cashdesk.CashDeskFrame

CashDesk.LightDisplayControllerFrame

CashDesk.PrinterControllerFrame

CashDesk.ScannerControllerFrame

Data.EnterpriseFrame

shared_data.DataFrame

Data.PersistenceFrame

Data.StoreFrame

shared_reportingapplication.ReportingApplicationFrame

ReportingApplication.ReportingGUIFrame

ReportingApplication.ReportingLogicFrame

44

A.3 Architectures

sofa2.ApplicationArch

Application.BankArch

Application.SimulatorArch

Application.TradingSystemArch

TradingSystem.CashDeskLineArch

CashDeskLine.CashDeskLineBusArch

CashDeskLine.CoordinatorArch

TradingSystem.InventoryArch

Inventory.EnterpriseServerArch

EnterpriseServer.ProductDispatcherArch

Inventory.StoreServerArch

StoreServer.StoreApplicationArch

StoreApplication.StoreGUIArch

StoreApplication.StoreLogicArch

cashdesk.CashDeskArch

CashDesk.CardReaderControllerArch

CashDesk.CashBoxControllerArch

CashDesk.CashDeskApplicationArch

CashDesk.CashDeskBusArch

CashDesk.CashDeskGUIArch

CashDesk.LightDisplayControllerArch

CashDesk.PrinterControllerArch

CashDesk.ScannerControllerArch

shared_data.DataArch

Data.EnterpriseArch

Data.PersistenceArch

Data.StoreArch

shared_reportingapplication.ReportingApplicationArch

ReportingApplication.ReportingGUIArch

ReportingApplication.ReportingLogicArch

45

Appendix B

Project Timeline

• 5.3. - 6.3.
Studying articles.

• 11.3. - 13.3.
Analyzing CoCoME.

• 17.3. - 19.3.
Studying SOFA framework.

• 25.3. - 26.3.
Converting the CoCoME in Fractal implementation to SOFA frame-
work.

• 31.3. - 2.4.
Proceeding in the conversion process and implementing setRequired()
methods.

• 7.4. - 9.4.
Proceeding in the conversion process solving issues with Simulator part
of the application.

• 14.4. - 16.4
Duplicate classes issue in SOFA framework reported, it is not possible
to launch the CoCoME in SOFA implementation until the issue is
fixed in SOFA framework. Starting to work on Store and StoreTester
implementation.

46

• 21.4. - 23.4.
Proceeding with the implementation of Store and StoreTester, solving
issues with Hibernate libraries while integrating it into SOFA frame-
work.

• 28.4. - 30.4
Proceeding with the implementation of Store and StoreTester, solving
issues with Hibernate persistence.xml while integrating it into SOFA
framework.

• 5.5 - 6.5.
Proceeding with the implementation of Store and StoreTester, solving
issues with Hibernate persistent classes caused by renaming process
of SOFA framework. Duplicate classes issue circumvented. Connector
generation issue in SOFA framework reported, not able to launch Co-
CoME in SOFA implementation until the issue is fixed.

• 7.5.
Writing bachelor thesis.

• 12.5. - 14.5.
Writing bachelor thesis.

• 23.5. - 24.5.
Implementing Store and StoreTester memory usage test and conduct-
ing measurements. Connector generation issue in SOFA framework
fixed and implementation of CoCoME in SOFA successfully launched.

• 25.5 - 26.5.
Finishing bachelor thesis and preparing for presentation of the results
to the Distributed Systems Research Group.

47

Bibliography

[1] Bulej, L., Bures, T., Thierry Coupaye, Decky, M., Jezek, P., Parizek,
P., Plasil, F., Poch, T., Nicolas Rivierre, Sery, O., Tuma, P.: CoCoME

in Fractal, Chapter in The Common Component Modeling Example:
Comparing Software Component Models, Springer-Verlag, LNCS, Apr
2008

[2] Bures, T., Decky, M., Hnetynka, P., Kofron, J., Parizek, P., Plasil, F.,
Poch, T., Sery, O., Tuma, P.: CoCoME in SOFA, Chapter in The Com-
mon Component Modeling Example: Comparing Software Component
Models, Springer-Verlag, LNCS, Apr 2008

[3] Bures, T., Hnetynka, P., Plasil, F.: Runtime Concepts of Hierarchical

Software Components, In International Journal of Computer & Infor-
mation Science, Vol. 8, No. S, ISSN 1525-9293, pp. 454-463, Sep 2007

[4] Bures, T., Hnetynka, P., Plasil, F.: SOFA 2.0: Balancing Advanced Fea-

tures in a Hierarchical Component Model, Proceedings of SERA 2006,
Seattle, USA, IEEE CS, ISBN 0-7695-2656-X, pp. 40-48, Aug 2006

[5] Bures, T., Hnetynka, P., Plasil, F., Klesnil, J., Kmoch, O., Kohan, T.,
Kotrc, P.: Runtime Support for Advanced Component Concepts, Pro-
ceedings of SERA 2007, Busan, Korea, IEEE CS, ISBN 0-7695-2867-8,
pp. 337-345, Aug 2007

[6] Derby Database (http://db.apache.org/derby/)

[7] Sebastian Herold, Holger Klus, Yannick Welsch, Andreas Rausch, Ralf
Reussner, Klaus Krogmann, Heiko Koziolek, Raffaela Mirandola, Ben-
jamin Hummel, Michael Meisinger, Christian Pfaller: CoCoME - The

Common Component Modeling Example

48

[8] Hnetynka, P., Tuma, P.: Fighting Class Name Clashes in Java Compo-

nent Systems, Proceedings of JMLC 2003, Klagenfurt, Austria, Copy-
right (C) Springer-Verlag, Berlin, LNCS2789, ISSN-0302-9743, pp. 106-
109, Aug 2003

[9] Hnetynka, P., Tuma, P.: Managing Class Names in Java Component

Systems with Dynamic Update, Tech. Report No. 2003/2, Dep. of SW
Engineering, Charles University, Prague, Feb 2003

[10] JBoss (Red Hat Middleware): Hibernate. (http://www.hibernate.org)

[11] Objectweb: SOFA (http://sofa.objectweb.org)

49

