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Algebraické vlastnosti barevnosti graf̊u

Katedra aplikované matematiky
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V Praze dne

3





Contents

1 Graph coloring 9

2 Alon-Tarsi Theorem 13

3 The list chromatic number of the square of cycles 17

4 Application of Alon-Tarsi Theorem 22

5
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1 Graph coloring

The central topic of my bachelor thesis is graph coloring and its variant called
list coloring. In this thesis, we focus on vertex colorings. A vertex coloring
of a graph G(V,E) is a mapping c : V → S, such that c(vi) 6= c(vj) for every
(u, v) ∈ E. The set S is referred as the set of colors. A variant of vertex
coloring called list coloring was introduced by Erdős, Rubin and Taylor [3]
in 1979 and a similar notion was also independently analyzed by Vizing [7].
Instead of having a common set of colors for all vertices, every vertex has its
own set of available colors and it is then required that a vertex is asigned a
color from its set.

In this chapter, we introduce basic notions on graph coloring and list
coloring. In the next chapter, we present a theorem of Alon and Tarsi [2]
which relates the existence of a coloring to orientations of graphs through
algebra. In Chapters 3 and 4, we present two applications of the theorem of
Alon and Tarsi. The first one has been found by the author of the thesis and
the second one comes from a paper of Fleischner and Stiebitz [4]. Further
applications of the method can be found in one of the surveys [1, 6] in this
area.

The formal definition of a list coloring of a graph is the following:

Definition 1. Let G(V,E) be a graph and assume that each vertex v ∈ V (G)
is assigned a set Sv of available colors. A vertex coloring c of G from the
lists Sv is a mapping such that c(v) ∈ Sv for all v ∈ V and c(vi) 6= c(vj) for
every edge vivj of G. A graph G is k-list-colorable (k-choosable) if for every
choice of k-element lists Sv there exists a vertex coloring from the lists. The
least such integer k is the list-chromatic number (the choice number) of G
and is denoted by ch(G) of G.

First we look at the relation between the chromatic number of G and its
list-chromatic number and observe that:

ch(G) ≥ χ(G).

This inequality holds because if we choose Sv = {1, . . . , k} for every v ∈ V ,
we can obtain coloring of G with k colors. The inequality can be strict in
general. A graph in Figure 1 has chromatic number equal to 2 but its list
chromatic number is 3.
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{b,c} {a,c}{a,b}

{b,c} {a,c}{a,b}

Figure 1: A bipartite graph with ch(G) = 3. The list of sizes two witnessing
that the choice number is greater than two are given in the figure.

The question is, whether there is a relation between ch(G) and χ(G).
The corollary of the next proposition is that there is not, since we can obtain
graph G with arbitraly large ch(G) and with χ(G) = 2.

Proposition 1. The list chromatic number of the complete bipartite graphs
with parts of sizes

(

2k−1
k

)

is at least k.

Proof. We exhibit sets Sv assigning each vertex k − 1 colors such that there
is no coloring of the complete graph G = K(2k−1

k
) from these lists. Let S

be a set of 2k − 1 colors and assign the vertices lists in such a way that
every subset of k different colors from S is assigned to exactly one vertex
in every part of G. For contradiction assume that there exists a coloring c
of the considered complete bipartite graph from these lists. Let P1 be the
set of vertices of one part of G and S1 be the set of colors of all vertices
belonging to P1 assigned by the coloring c. From the definition of c it holds,
that S1∩Sv 6= ∅ for every v ∈ P1. The size of the smallest set S1 intersecting
all lists of the vertices of P1 is k. Otherwise there would exists Sv ⊆ S \ S1

for v ∈ P1, since |S \ S1| ≥ k. In the same way, we obtain that the vertices
of the other part P2 of G must be assigned at least k colors. Since there are
2k− 1 colors in total, there must exist a vertex of P1 and a vertex of P2 with
the same color. Since G is a complete bipartite graph, the coloring c cannot
then be proper.

As an example of techniques used in the area of list colory, let us state
and prove a list variant of the Five Color Theorem.

Theorem 1 (Thomassen [5] 1994). Every planar graph is 5-list-colorable.
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Figure 2: The base case of the induction in the proof of Proposition 2.

Figure 3: The case where the outer face of graph G constains a chord vw.

To prove Theorem 1, we established the next proposition. Recall, that
G is a plane triangulation if every face of G (including the outer face) is
bounded by a triangle.

Proposition 2. Let G be a plane triangulation and |V (G)| ≥ 3. Let C
denote the cycle obtained from the vertices v1, v2, . . . , vk of the outer face of
G. Assume an assigment L satisfying the conditions (*) stated below is given

i) There are v1, v2 that are neighbours on C and have already be colored.

ii) For every w 6= v1, v2 on the outer face of G, it holds that |L(w)| = 3.

iii) For every w in the inner face of G, the size of its list is equal to 5.

Proof. We prove this proposition by induction on the number of vertices of
G. For |V (G)| = 3, the situation is shown on figure 2. By (*) it holds that
|L(v)| = 3. Hence, we can color v because it has just two neighbours.

Now let |V (G)| > 3. First suppose that C contains a chord vw. The
chord vw divides the graph G into two subgraphs, G1 and G2 (Figure 3).
Since v1v2 is edge of G and v1v2 6= vw it belongs either to G1 or to G2.
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Figure 4: Graph G without a chord.

Assume that v1v2 ∈ E(G1). Using the induction , we can properly color G1.
Such a coloring assign any colors to vertices v and w so then we can use
induction also to the graph G2. After we simply connect G1 and G2 back
together and we obtain a coloring of G.

If the outerface C of G contains no chord, let u1, u2, . . . , um be the neigh-
bours of vk in inner face of G (figure 4). Obviously v1, v2, . . ., vk−1, u1, u2,
. . ., um is the outer face of the graph obtained from G by removing vk. Let
l, k denote the colors from the L(vk) such that c(v1) 6= l, k. If we remove
these colors from the lists of the vertices u1, u2, . . . , um there still remains
three colors in their lists and thus for every vertex v belonging to the outer
face of G − vk, it holds that |L(v)| = 3. The lists of other vertices are un-
changed thus we can apply the induction on the graph G− vk. Now we have
to color vk using the coloring obtained by induction. It is easy since the
vertices u1, . . . um and v1 have surely colors different from l, k. The vertex
vk−1 used at most one of the color l and k to be assigned to vk and thus one
color of these two can be assigned to vk.

Finally we have to show that Proposition 2 implies Theorem 1. For every
planar graph G, we can obtain a triangulation GT by adding egdes to G and
obiously any coloring of GT is alse a proper coloring of G. Let v1, v2, . . . , vk be
the outer face of G. Precolor v1 and v2, remove arbitraly two colors from the
lists of v3, . . . , vk and apply the Proposition 2. The statement of Theorem 1
now follows.
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2 Alon-Tarsi Theorem

In this chapter, we explain how the bounds on the list chromatic number
of graphs can be obtained using an algebraic approach. Before we start the
exposition, some notation needs to be introduced. An Eulerian subgraph H
of a directed graph G is a subdigraph where deg+(v) = deg−(v) for each
vertex in H. We do not require H to be connected. Also notice that H can
be understood as a union of directed cycles since every vertex of H has the
same in-degree and out-degree. If such a subgraph of H has an even number
of edges, we call it even, otherwise it is odd. Finally EE(D) denotes the
number of even Eulerian subgraphs of G and EO(D) denotes the number of
odd Eulerian subgraphs of G.

Using this notation, we can formulate the theorem of Alon and Tarsi [2]:

Theorem 2 (Alon and Tarsi). Let G = (V,E) be a graph and D one of its
orientations. For each v ∈ V , let S(v) be a set of d+

D(v) + 1 distinct colors
where d+

D(v) is the outdegree of v in D. If EE(D) 6= EO(D) then there is a
proper vertex-coloring c such that c(v) ∈ S(v) for all v ∈ V .

Before proving Theorem 2 we establish a simple algebraic lemma.

Lemma 1. Let P = P (x1, x2, . . . , xn) be a polynomial in n variables over
the ring of integers Z. Suppose that for 1 ≤ i ≤ n − 1 the degree of P as a
polynomial in xi is at most di and let Si ∈ Z be a set of di+1 distinct integers.
If P (x1, x2, . . . xn) = 0 for all n-tuples (x1, . . . , xn) ∈ S1 ×S2 × . . .×Sn, then
P ≡ 0, i.e., P (x1, . . . , xn) = 0 for all (x1, . . . , xn) ∈ Z

n.

Proof. We apply induction on n. For n = 1 P is a polynomial in x1 which
has degree at most d1. Since any polynomial P of degree d1 has at most d1

different roots, if P (x1) = 0 for all x1 ∈ S, then P is identicaly equal to zero,
i.e., P ≡ 0.

Assume now that the lemma holds for n− 1. For n > 1 we can write the
polynomial as the following sum

dn
∑

i=0

Pi(x1, . . . , xn−1)x
i
n.

Fix on an arbitraty n−tuple (x1, . . . , xn−1) ∈ S1 × . . . × Sn−1 and define

P ′(xn) =
dn
∑

i=0

Pi(x1, . . . , xn−1)x
i
n
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Since P ′(xn) equals to zero for at least dn + 1 choices of xn, P ′ ≡ 0. Hence
Pi(x1, . . . , xn−1) = 0 for this particular choice of x1, . . . , xn−1 for all i =
0, . . . , dn. Since the choice of the tuple was arbitrary, Pi(x1, . . . , xn−1) = 0
for all (x1, . . . , xn−1) ∈ S1 × . . . × Sn. By induction hypothesis is Pi ≡ 0 for
i = 1, . . . , n, which implies that P ≡ 0.

We next define graph polynomials. The graph polynomial fG(x1, . . . , xn)
of an undirected graph G = (V,E) with vertices V = v1, . . . , vn is

fG(x1, x2, . . . , xn) =
∏

(xi − xj)

where the product ranges over all i < j, (vi, vj) ∈ E. Let us describe a
connection between graph polynomials and graph orientations. In order to
present this connection we assign every arc (xi, xj) weight w(e), where w(e) =
xi if i < j and w(e) = −xi otherwise. The weight of an orientation D of G
is then defined as

w(D) =
∏

e∈E(D)

w(e).

Finally the relation between graph polynomials and graph orientations is
captured by an equality

fG(x1, . . . , xn) =
∑

D

w(D)

where D ranges over all orientations of G. Hence every monomial of the
polynomial fg(x1, . . . , xn) corresponds to exactly one orientation of G. To
prove the equality above proceed by induction on the number of edges of the
graph. The equality is obvious for a one-edge graph. If fG−e(x1, . . . , xn) =
∑

D w(D) where the sum ranges over orientations of G − e and e = (xi, xj),
then

fG(x1, . . . , xn) = xifG−e(x1, . . . , xn) − xjfG−e(x1, . . . , xn) =
∑

D

w(D)

where D ranges over all orientations of G.
Let DE(d1, . . . , dn) denote the set of orientations of G with even number

of edges oriented vi to vj with i > j such that deg+
Dvi = di for each vi ∈ V (G).

Similarly DO(d1, . . . , dn) denotes the set of such orientations of G with odd
number of edges oriented from vi to vj with i > j.

The arguments of the last paragraph yield:
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Lemma 2. For every graph G the following equation holds

fG(x1, . . . , xn) =
∑

d1,...,dn≥0

(|DE(d1, . . . , dn)| − |DO(d1, . . . , dn)|)
n

∏

i=1

xdi

i .

The next lemma describes a relation between the number of Eulerian
subgraphs of G and the number of orientations of G with prescribed out-
degrees.

Lemma 3. Let G be an undirected graph and d1, . . . , dn integers. For every
orientation D ∈ DE(d1, . . . , dn) ∪ DO(d1, . . . , dn), it holds that

||DE(d1, . . . , dn) − |DO(d1, . . . , dn)|| = |EE(D) − EO(D)|.

Proof. We assume D ∈ DO(d1, . . . , dn). The arguments readily translate
to the case D ∈ DE(d1, . . . , dn). For any orientation D′, such that D′ ∈
DE(d1, . . . , dn) ∪ DO(d1, . . . , dn), let D ⊕ D′ denote the set of all oriented
edges with different orientation in D and D′. Since the outdegree of any
vertex v in D is equal to its outdegree in D′, the number of outgoing edges
from v in D with different orientation in D′ has to be equal to the number
of incoming edges to v in D that have different orientation in D′. This
implies that D ⊕ D′ is an Eulerian subgraph of D. Moreover, if D′ is odd,
then D ⊕ D′ is an even Eulerian subgraph and if D′ is even, then D ⊕
D′ is odd. Thus the mapping D′ → D ⊕ D′ is bijection between D′ ∈
DE(d1, . . . , dn)∪DO(d1, . . . , dn) and the set of all Eulerian subgraphs of D.
All even orientations are mapped to odd Eulerian subgraphs and all odd
orientations are mapped to even Eulerian subgraphs. Hence

||DE(d1, . . . , dn)| − |DO(d1, . . . , dn)|| = |EE(D) − EO(D)|

If we combine Lemmas 2 and 3, we obtain by replacing the coefficients of
the monomials the following equation:

fG(d1, . . . , dn) =
∑

d1,...,dn≥0

(|EE(D)| − |EO(D)|)
n

∏

i=1

xdi

i .

This equation is formally stated in the next lemma.

15



Lemma 4. Let D be an orientation of an undirected graph G = (V,E)
on a set V = {v1, . . . , vn} of n vertices. For 1 ≤ i ≤ n, let di = d+

D(vi)
be the outdegree of vi in D. The absolute value of the coefficient of the
monomial

∏n

i=1 xdi

i in the standard representation of fG = fG(x1, . . . , xn) as
a linear combination of monomials is |EE(D) − EO(D)|. In particular, if
EE(D) 6= EO(D) then this coefficient is not zero.

We are now ready to prove Theorem 2.

Proof of Theorem 2. Let V = {v1, . . . , vn} and di = d+
D(vi). It is possible to

assume that the lists Si of colors are subsets of integers of cardinality di + 1.
We want to show that there exists a proper vertex coloring c : V → Z. If
fG(x1, . . . , xn) is the graph polynomial of G, the non-existence of a proper
coloring is equivalent to the following statement

fG(x1, . . . , xn) = 0 for every n-tuple (x1, . . . , xn) ∈ S1 × S2 × . . . × Sn

Let Qi(xi), 1 ≤ i ≤ n, be the polynomial

Qi(xi) =
∏

s∈Si

(xi − s) = xdi+1
i −

di
∑

j=0

qijx
j
i .

Clearly, if xi ∈ Si, then Qi(xi) = 0, i.e., the following holds for all xi ∈ Si

xdi+1
i =

di
∑

j=0

qijx
j
i . (2.1)

Our aim is to get rid of the powers of xi with order higher than di in
the expansion of fG in order to apply Lemma 1. It can be easily achieved
by substituting (2.1) for xdi+1

i in each occurence of xf
i where f > di with

∑di

j=0 qijx
j
i . By repeated applications until such powers of xi exist, we obtain

a polynomial f ′
G. Note that the degree of xi in f ′

G is at most di for all
1 ≤ i ≤ n. In addition, for every tuple (x1, . . . , xn) ∈ S1 × . . .× Sn the value
of fG(x1, . . . , xn) is equal to f ′

G(x1, . . . , xn) since f ′
G was obtained from fG by

substituting (2.1), and equation that holds for all xi ∈ Si. In particular, it
holds that f ′

G(x1, . . . , xn) = 0 for every (x1, . . . , xn) ∈ S1 × . . .× Sn. Lemma
1 now yields that f ′

G ≡ 0.
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By Lemma 4, the coefficient of
∏n

x=1 xdi

i in fG is nonzero, because we
assume that EE(D) 6= EO(D). Finally we should prove, that the coefficient
of this monomial cannot be affected by substitutions we have performed.

The degree of every monomial of fG is equal in the number of edges
of G. If we substitute (2.1) for xdi+1

i to any monomial of fG we obtain di

monomials with strictly smaller degree. But such new monomials cannot
affect coefficient of

∏n

x=1 xdi

i because they have different degree. Thus the
coefficient of

∏n

x=1 xdi

i in f ′
G is the same as in fG. In particular, it is non-zero.

Since we have obtained contradiction there exists a proper coloring c : V → Z

such thatc(vi) ∈ Si.

3 The list chormatic number of the square of

cycles

In this chapter, we will prove that the list chromatic number of the square of
a cycle is equal to its chromatic number. Let us start with some definitions.
Recall that C2

ℓ0
denotes the square of the cycle of length ℓ0.

We state an easy observation on Eulerian digraphs.

Proposition 3. Let G be and Eulerian digraph and H one of its subgraph.
If H is Eulerian, then G−H i.e. the digraph obtained by removing the edges
of H, is also Eulerian .

Proof. Since G is Eulerian, the in-degree and out-degree of each vertex of
G is the same. This also holds for H. Hence, there is the same number of
ingoing and outgoing arcs removed at each vertex of G and thus the in-degree
and the out-degree of each vertex are the same in G−H. Therefore, G−H
is Eulerian.

A direct corollary of Proposition 3 is the following.

Proposition 4. Every subgraph of C2
ℓ0

obtained by substracting an Eulerian
subgraph from C2

ℓ0
is Eulerian.

Proposition 3 yields a correspondence between Eulerian subgraphs of C2
ℓ0

with few and with a lot of edges. Let S denotes the set of Eulerian subgraphs
of C2

ℓ0
with less than ℓ0 edges, M are subgraphs with exactly ℓ0 edges and

finally L is the set of subgraphs with more than ℓ0 edges. It is easy to prove
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v1
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v9
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v11

v12

Figure 5: solid : jump by one, dashed : jump by two

that the mapping ϕ : L −→ S given by ϕ(G) = C2
ℓ0
− G is bijection. Since

C2
ℓ0

has an even number of edges, the bijection ϕ brings an even subgraph
to an even subgraph and odd subgraph to odd subgraph. In particulary, the
numbers of odd subgraphs in S and in L are equal. The same holds for even
subgraphs.

Proposition 5. Every non-empty Eulerian digraph contains at least one
cycle.

Proof. Consider a longest oriented path in G. Let v1, v2, . . . , vk be this path
(clearly k > 2). Since G is Eulerian, vk has another neighbour, say w. By
the choice of the path, w is one of the vertices vi (i ∈ 1, 2, . . . , k − 1). Then
vi, vi+1, . . . , vk is a cycle.

Proposition 6. Every subgraph H of C2
ℓ0

contained in S is a single oriented
cycle.

Proof. If the vertices of C2
ℓ0

are numbered from 1 to ℓ0 then the arcs of C2
ℓ0

”jump” by one or two (figure 5). Hence the length of the shortest cycle in
C2

ℓ0
is ⌈ℓ0/2⌉. Assume the opposite, that H contains two cycles. If we remove

one of these cycles (which is also Eulerian subgraph of C2
ℓ0

), we obtain again
Eulerian subgraph of C2

ℓ0
(Proposition 4). But such graph would have less

than ⌈ℓ0/2⌉ edges and it is impossible while every Eulerian graph contains
at least one cycle and the shortest length of cycle is ⌈ℓ0/2⌉.

18



Claim 1. There are exactly two Eulerian subgraphs H of C2
ℓ0

with ℓ0 edges.
In particular |M| = 2.

Proof. Using the notation from figure 5 one such graph is obviously cycle
v1, v2, v3, . . . , vℓ0 . The other subgraph is the cycle v1, v3, . . ., vℓ0 , v2, . . . , vℓ0−1

if ℓ0 is odd and the union of two cycles v1, v3, . . . , vℓ0−1 and v2, v4, . . . , vℓ0 if
ℓ0 is even. In order to show that there are no other subgraphs we distinguish
two cases based on the parity of ℓ0. If ℓ0 is odd there is exactly one cycle. We
prove this analogously to Proposition 6. Assume that H contains two cycles.
While the smallest cycle’s length is ⌈ℓ0/2⌉, if we remove this cycle forms H,
we obtain a graph with less than ⌈ℓ0/2⌉ arcs which is contradiction. This
implies that any vertex has no more than one incoming and one outgoing arc
and because H has ℓ0 arcs it contains all vertices. We now prove that every
subgraph H of C2

ℓ0
constains either all arcs of Cℓ0 or no arcs of Cℓ0 . Otherwise

H contains a path vi, vi+1, vi+3 or a path vi, vi+2, vi+3. In the former case,
deg+

vi+2
has to be equal to 0 which contradicts that all vertices have non-zero

degrees in H. In the latter case, there cannot be any arc leaving from vi+1

and we again obtain a contradiction.
Assume now that ℓ0 is even. If H is connected, i.e., H is a single cycle,

we argue as in the case where ℓ0 is odd that H is the cycle v1, v2, . . . , vℓ0 .
Otherwise, H is comprised of two cycles of length ℓ0/2 each. Such cycles
must be formed by ”jump-by-two”-edges. If they had a common vertex,
they would be identical. Hence they are disjoint and consequently H must
be the union of the cycles v1, v3, . . . and v2, v4, . . ..

By the bijection ϕ between S and L it is enough to analyze the number
of of even and odd subgraphs of C2

ℓ0
in S. By Proposition 6, any subgraph

contained in S is an oriented cycle. Such a cycle can be identified with a
cyclic sequence of length ℓ0 of zeroes and ones with no two consequentive
zeroes as follows: the i − th position is equal to 1 if the vertex vi is not an
isolated vertex of the considered subgraph of C2

ℓ0
.

This allows us to reformulate the problem to counting sequences with odd
and even number of ones.

In the final part of proof, we show how to count the number of such
sequences. Defina odd sequences as the sequences with odd number ones
and even sequences are the sequences with even nubmer of ones. We also
find a formula for transforming number of sequences to number of graphs.

We start with a few definitions.
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Definition 2. Let o1
n denote the number of sequences of length n containing

an odd number of ones that end with one. Similarly, let o0
n be the number

of sequences with an odd number of ones that end with 0. Analogously, we
define e1

n and e0
n for sequences with even number of ones.

It is easy to infer the following recurent formulas:

o1
n = e1

n−1 + e0
n−1

o0
n = o1

n−1

e1
n = o1

n−1 + o0
n−1

e0
n = e1

n−1

The following equation exhibit the correspondence between the number
of the sequences and the number Ne of Eulerian subgraphs of G with even
and odd number of arcs. The number of even Eulerian subgraphs of G where
|V (G)| = n is

Ne = e1
n + e0

n − o0
n−2 (3.1)

Analogously for the odd subgraphs of G

No = o1
n + o0

n − e0
n−2 (3.2)

First, we prove the equation 3.2. It is not possible sum o1
n and o0

n, because
these sequences are not cyclic and we can obtain illegal subgraphs of G (every
cyclic sequence corresponds to exactly one Eulerian subgraph of G), since it
could contain two consecutive zeros. Note that this problem is caused by
sequences starting with 01 and ending with 0. But such sequences of length
n can be written as 01σ0, where σ stands for an even sequence of length n−2
ending with zero. Hence, the number of such sequences is e0

n−2. Analogously,
we derive that the number of even subgraphs of G is equal to e1

n+e0
n−o0

n−2+1,
where the added one stands for empty graph.

In the following lemma we show that the numbers of odd and even Eule-
rian subgraphs of G differ and so we can use Alon-Tarsi theorem.

Lemma 5. The number of odd sequences of length n and even sequences of
length n differs for n = 3 ∗ k.

Proof. First we prove that the following equations hold:

o1
n = e1

n − 1
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o0
n = e0

n

for n divisible by three.
Let us have a brief look at th values of o1

n, o0
n, e1

n and e0
n for n = 1, . . . , 6.

o1
n : 1, 1, 1, 3, 4, 6

o0
n : 0, 1, 1, 1, 3, 4

e1
n : 0, 1, 2, 2, 4, 7

e0
n : 1, 0, 1, 2, 2, 4

If n=3 or n=6, the claimed equations are true. Assume the equations in
question hold for n let us prove them for n+3. We infer the following from
the induction:

o1
n+1 = e1

n + e0
n = o1

n + 1 + o0
n ∧ e1

n+1 = o1
n + o0

n ⇒ o1
n+1 = e1

n+1 + 1

By applying the recurence formula once more, we obtain

o0
n+1 = e0

n+1 − 1

and by yet another application of the recurence formula, we get

o1
n+2 = e1

n+2

o0
n+2 = e0

n+2 + 1

and then
o1

n+3 = e1
n+3 − 1

o0
n+3 = e0

n+3

This finishes the proof of the equations.
Recall, that the number of odd Eulerian subgraphs of G is equal to

o1
n + o1

n − e0
n−2.

After substituting for o1
n and o1

n using equations from previous paragraph we
obtain

o1
n + o0

n − e0
n−2 = e1

n − 1 + e0
n − (o0

n−2 + 1) = e1
n + e0

n − o0
n−2 + 1 − 3.

This can readily be interpreted as

No = Ne − 3

which finishes the proof.
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The result is that we have found one such orientation D of G, that num-
ber of even Eulerian subgraphs is not equal to the number of odd Eulerian
subgraph, which is enough to state, that there exists proper coloring. More-
over, because the largest out-degree is 2, we know, that the size of lists is
3.

4 Application of Alon-Tarsi Theorem

In this chapter, we present as an application of Alon-Tarsi Theorem the
following result of Fleischner and Stiebitz [4] which answers a problem posed
by Erdős at the Julius Petersen Graph Theory Conference in 1990.

Theorem 3. Let n be a positive integer, and let G be a 4-regular graph on
3n vertices. Assume that G has a decomposition into a Hamilton cycle and
n pairwise vertex disjoint triangles. Then χ(G) = 3.

Before proving this theorem, we introduce some notation which was not
explained yet. Let D be a digraph. If E is a subset of the edge-set E(D)
such that the digraph (V (D), E) is Eulerian, then E is called an Eulerian set
of arcs. Moreover, we use the following notation

ε(D) := {E ⊆ E(D), E is an Eulerian set of arcs in D},

εe(D) := {E ⊆ E(D), |E| is even}, and

εo(D) := {E ⊆ E(D), |E| is odd}.

The cardinalities of these three sets are denoted by e(D), ee(D) and eo(D),
respectively.

The set of the outgoing arcs from a vertex v in the graph G is denoted
by E+

G(v) and the set of the incoming arcs by E−
G(v). Finally EG(v) is the

union of the sets E+
G(v) and E−

G(v).
We now present notation related to Eulerian subdigraphs of Eulerian

digraphs. If D is a digraph, a1, . . . , ap, b1, . . . , bq are some of its arcs and
x1, . . . , xr, y1, . . . , ys are some of its vertices, then

ε := ε(D, a1, . . . , ap, b1, . . . , bq, x1, . . . xr, y1, . . . , ys)
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denotes the set of Eulerian sets of arcs E such that a1, . . . , ap ∈ E, b1, . . . , bq /∈
E, EG(xi) ⊆ E , i = 1, . . . , r and EG(yi)∩E = ∅, i = 1, . . . , s. Furthermore,
set

e(D, a1, . . . , ap, b1, . . . , bq, x1, . . . xr, y1, . . . , ys) := |ε|.

Finally, the set ER is defined as the set of the arcs xy such that yx ∈ E, i.e.
ER is the set of the arcs E with their orientations reversed.

As the next step towards the proof of the result of Fleischner and Stiebitz,
we establish three lemmas.

Lemma 6. Let D be an Eulerian digraph with m ≥ 1 arcs. If ϕ is a mapping
defined as ϕ(E) := E(D) \ E, then the following statements hold:

1. The mapping ϕ is a bijection from ε(D) onto itself without a fixed point.
In particular, e(D) ≡ 0 mod 2.

2. For a1, . . . , ap, b1, . . . , bq ∈ E(D) and x1, . . . , xr, y1, . . . , ys ∈ V (D), the
mapping ϕ is also a bijection from

ε(D, a1, . . . , ap, b1, . . . , bq, x1, . . . xr, y1, . . . , ys) onto

ε(D, a1, . . . , ap, b1, . . . , bq, x1, . . . xr, y1, . . . , ys).

Consequently,

e(D, a1, . . . , ap, b1, . . . , bq, x1, . . . xr, y1, . . . , ys)

= e(D, a1, . . . , ap, b1, . . . , bq, x1, . . . xr, y1, . . . , ys).

3. If m is odd, then ϕ is a bijection from εo(D) onto εe(D), and εo(D) =
εe(D).

4. If m is even, then ϕ is bijection from εo(D) onto itself and εe(D) onto
itself, and εo(D) ≡ εe(D) ≡ 0 mod 2.

5. If m is even and e(D) ≡ 2 mod 4, then εo(D) 6= εe(D).

Proof. 1. The mapping ϕ is a bijection from ε(D) to ε(D) by Proposition
4. Clearly, the bijection has no fixed point. Since ϕ−1 = ϕ, ϕ couples
Eulerian sets of arcs of D. Hence e(D) is even.

2. The claim follows from the definition of the set ε(D, a1, . . . , ys)
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3. If m is odd, then ϕ maps odd-size Eulerian sets of arcs to even-size
ones by its definition.

4. As in the previous case, ϕ is a bijection from εe(D) onto itself. Since ϕ
has no fixed point and ϕ−1 = ϕ, ee(D) is even. Similarly we can argue
in the odd case.

5. Since e(D) ≡ 2 mod 4, eo(D) and ee(D) are both even by the previous
claim, the numbers ee(D) and eo(D) cannot be congruent modulo 4.
In particular, they are different.

Lemma 7. Let D be an Eulerian digraph and C a (directed) cycle of length
m in D. Set D1 to be a digraph (D−C)∪(C)R. Let the mapping ϕC is defined
as ϕC(E) := (E \ E(C)) ∪ (E(C) \ E)R for an eulerian arc set E ∈ ε(D).
Then the following statements hold:

1. D1 is an Eulerian digraph.

2. The mapping ϕC is a bijection from ε(D) onto ε(D1). In particular,
e(D) = e(D1).

3. If m is odd, then ϕC is a bijection from εo(D) onto εe(D1). Symet-
rically, it is also a bijection from εe(D) onto εo(D). Consequently,
eo(D) − ee(D) = ee(D1) − eo(D1).

4. If m is even, then ϕC is a bijection from εo(D) onto εo(D1) and it
is also a bijection from εe(D) onto εe(D1). Hence, eo(D) − ee(D) =
eo(D1) − ee(D1).

Proof. 1. We observe that every vertex v in D1 has the same in-degree and
out-degree as in D. If v is not contained in C, then the in-degree and
the out-degree are clearly preserved. If v is contained in C, then one
arc incoming to v is changed to an outgoing arc and one arc outgoing
from v is changed to an incoming arc. Hence, the in-degree and the
out-degree of v are unchanged, and thus D1 is Eulerian.

2. Let us fix a set E ∈ ε(D). D′ denotes the Eulerian subgraph of D
consisting of the edges E and D′

1 denotes the Eulerian subgraph of D
with the edge set ϕC(E). We first prove that D′

1 is also an Eulerian
digraph. We distinguish two cases based on whether a vertex x of D
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is in C or not. The latter case is easier to analyze, since it is enough
to realize that the set ED′(x) is unchanged. Because D′ is an Eulerian
digraph, it holds that deg+

D′

1

(x) = deg−
D′

1

(x). If x belongs to C, then

we further distinguish three subcases. If ED′(x) ∩ E(C) = ∅, then
ED′

1
(x) contains in addition the two arcs of CR incident with x. Hence,

deg+
D′

1

(x) = deg−
D′

1

(x). If |ED′(x) ∩ E(C)| = 2, then the two arcs of C

are removed from ED′(x) to get ED′

1
and thus deg+

D′

1

(x) = deg−
D′

1

(x).

Finally assume that |ED′(x) ∩ E(C)| = 1. Let e1, e2 ∈ E(C) be the
edges incident with x. We can assume that e1 ∈ D′ and e2 /∈ D′ by
symetry. By the definition of ϕC , e1 is removed from D′ and eR

2 is added
to D′

1. Since one of these edges is incoming to x in D′ and the another
one is outgoing from x in D′, the mapping ϕC does not change the sizes
of the sets E+

D′(x) and E−
D′(x). This implies that deg+

D′

1

(x) = deg−
D′

1

(x).

Observe that the mapping ϕC from ε(D1) is the inverse mapping for
ϕC . Hence, ϕC is a bijection between ε(D) and ε(D1).

3. Assume that the cardinality of the intersection E ∩ E(C) is odd, then
the cardinality of E(C) \ E is even since the length of C is odd. In
particular, the parity of the size of the set E \ E(C) is different from
the parity of |E|. Hence, |E| 6≡ |ϕC(E)| mod 2. We obtain that ϕC(E)
is a bijection from εe(D) onto εo(D1) and also from εo(D) onto εe(D1).
This implies that eo(D) − ee(D) = ee(D1) − eo(D1).

4. The proof of this claim proceed alongs the lines of the proof of the
previous claim.

Recall that if D1 and D2 are two digraphs on the same vertex set, then
D1 − D2 is the digraph containing the arcs of D1 that are not present in D2

with the same orientation.

Lemma 8. Let D1 and D2 be Eulerian orientations of the Eulerian graph
G. Set D0 := D1 − D2 = (D2 − D1)

R, and D3 := D1 ∩ D2. D0 and D3 are
Eulerian digraphs.

Proof. We first prove that D3 is an Eulerian digraph. Both orientations are
Eulerian, thus |E+

D1
(v)| = |E+

D2
(v)| = deg(v)/2 for any vertex v of G. The

number of outgoing arcs from v in D1 with different orientation than in D2
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Figure 6: The graph D from the proof of Lemma 9.

is equal to the number of incoming arcs to v in D1 with different orientation
in D2. Thus the number of incoming arcs to v in D3 is equal to the number
of outgoing arcs from v in D3. It follows that D3 is Eulerian.

Obviously D1 − D2 = D1 − D3. Lemma4 implies that D0 is an Eulerian
digraph. Observe that if D1 and D2 are orientations of the same graph, then
D1 − D2 = (D2 − D1)

R.

Now we are ready to prove the following lemma, which yields Theorem 3
as argued further.

Lemma 9. Let D be an Eulerian digraph. Assume that D has a decompo-
sition into a (directed) Hamilton cycle and n ≥ 0 pairwise vertex disjoint
(directed) triangles. Then e(D) ≡ 2 mod 4.

Proof of Theorem 3 using Lemma 9. Lemma 6.5 implies that eo(D) 6= ee(D).
Since D is Eulerian and every two triangles are pairwise disjoint, the out-
degree of every vertex is at most 2 and thus we infer from Alon-Tarsi Theorem
χl ≤ 3.

Proof of Lemma 9. We prove this lemma by the induction on n. For n = 0
it holds e(D) = 2 since there are exactly two Eulerian subgraphs of D, an
empty graph and D itself.

Let n ≥ 1 and T be one of the triangles with vertices x1, x2 and x3 and
arcs a1, a2 and a3 (see Figure 6).
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Figure 7: The graph Di from the proof of Lemma 9.

Set

e∗(D) := e(D, a1, a2, a3) + e(D, a1, a2, a3), +e(D, a1, a2, a3)

+e(D, a1, a2, a3) + e(D, a1, a2, a3) + e(D, a1, a2, a3).

Consequently,

e(D) = e(D, a1, a2, a3) + e(D, a1, a2, a3) + e∗(D).

Obviously, we can apply the induction on e(D, a1, a2, a3) since it contains
n − 1 triangles and a Hamilton cycle. In addition, since T is a directed
cycle, say x1x3x2, if we add it to any Eulerian subgraph D′ of the graph
D − T , then we obtain an Eulerian graph and if we add T to any non-
Eulerian graph, the resulting graph will also be non-Eulerian, which implies
that e(D, a1, a2, a3) = e(D, a1, a2, a3) ≡ 2 mod 4. This implies

e(D) ≡ e∗(D) mod 4.

Therefore it is enough to show that e∗(D) mod 4 ≡ 2 mod 4. We now
construct three digraphs D′

1, D′
2 and D′

3 to which the induction can be used.
For i = 1, 2, 3, let x+

i be the succesor of xi on C and x−
i the predeccesor of

xi on C (see Figure 7). Finally, bi denotes arc x−
i xi and ci denotes arc xix

+
i .

By Lemma 2, reversing the orientation of C does not change e(D). Hence,
we assume that C is oriented from x1 to x2, from x2 to x3 and from x3 to x1

as in Figure 6. The cycle Ci denotes the cycle containing arc ai and a part
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Figure 8: The graph D′
i from the proof of Lemma 9.

of C in such a way that all Ci are arc disjoint. If we reverse the orientation
of the cycle Ci in D, we obtain the graph Di (Figure 7).

In the following, (i, j, k) is one of the triples (1, 2, 3), (2, 3, 1) and (3, 1, 2)
and we illustrate the proof for (i, j, k) = (1, 2, 3) in the figures.

First we define a digraph D′
i to be a digraph obtained from Di by split-

ting off the arcs bj, ak, aj and bR
k (Figure 8). The new vertices produced by

splitting the arcs are x′
i, x

′
j and x′

k as given in the figure. The obtained graph
has n − 1 triangles and contains the Hamilton cycle. By the induction we
get that

e(D′
1) ≡ e(D′

2) ≡ e(D′
3) ≡ 2 mod 4, (4.1)

which in turn implies

e(D′
1) + e(D′

2) + e(D′
3) ≡ 2 mod 4.

Obviously, every Eulerian arc set E ∈ ε(D′
i) contains either both arcs ak or

aj or none of them, as the degree of x′
i is two. For every triple (i, j, k) ∈

{(1, 2, 3), (2, 3, 1), (3, 1, 2)}, it holds that

e(D′
i) = e(D′

i, a
R
i , aj, ak) + e(D′

i, a
R
i , aj, ak) +

e(D′
i, a

R
i , aj, ak) + e(D′

i, a
R
i , aj, ak). (4.2)

To find the relations between e(D′
i) and e(D) we start with proving the

following equation

e(D′
i, a

R
i , aj, ak) = e(D, ai, aj, ak). (4.3)
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Set ε′ := ε(D′
i, a

R
i , aj, ak) and ε = ε(D, ai, aj, ak). Now we prove that

there exists a bijection between ε and ε′ which yields the equation 4.3. First
we observe that

ε′ = ε(D′
i, a

R
i , aj, ak) = ε(D′

i, c
R
j , aR

i , bR
k , ck, bj, aj, ak).

It is easy to see that this equation holds since we just add necessary arcs
to keep the in-degrees and out-degrees of xj and xk equal. By the same
reason the following equation is true

ε = ε(D, ai, aj, ak) = ε(D, cj, ai, bk, ck, bj, aj, ak).

We next show that the following holds

ε′ = ε(D′
i, c

R
j , aR

i , bR
k , ck, bj, aj, ak) = ε(Di, c

R
j , aR

i , bR
k , ck, bj, aj, ak).

The question is whether every set of arcs which is Eulerian for D′
i is Eulerian

for Di. For splitted vertices it holds simply from definition of ε. For other
vertices the in-degree and out-degree is obviously same in Di and D′

i.
Let us have a mapping ϕCi

defined as ϕCi
(E) := (E\E(Ci))∪(E(Ci)\E)R

for every E ∈ ε(D). By Lemma 7 the mapping ϕCi
is a bijection from ε(D)

onto ε(Di). From the definition of ϕCi
Eulerian sets E in ε that avoid an arc

a ∈ E(Ci) are mapped to sets containing aR and vice versa. The presence
of arcs a 6∈ E(Ci) in E is not affected by the mapping ϕCi

. Thus ϕCi
is

mapping from ε to ε′. Again, mapping ϕCi
from ε′ is the inverse mapping

for ϕCi
. Thus ϕCi

is a bijection and the equation (4.3) holds.
It directly follows by Lemma 6.2 and (4.3) that

e(D′
i, a

R
i , aj, ak) = e(D, ai, aj, ak). (4.4)

Before we state the next equation, let us assign D′ := D − T where T is
the triangle x1x2x3. Then it holds that

e(D′
i, a

R
i , aj, ak) = e(D′, xj, xk) = e(D′, xi, xj, xk) + e(D′, xi, xj, xk). (4.5)

Set ε′ := ε(D′
i, a

R
i , aj, ak) and ε := e(D′, xj, xk). Similarly as in (4.3) we

obtain

ε′ = ε(D′
i, c

R
j , ai, ck, bj, aj, ak, bR

k ) = ε(Di, c
R
j , ai, ck, bj, aj, ak, bR

k ),
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and consequently

ε = ε(D′, bj, cj, bk, ck) = ε(D, aj, ak, bj, cj, bk, ck).

The last equation follows from the definition of D′. In the same way as in
the proof of the equation (4.3), we get e(D′

i, a
R
i , aj, ak) = e(D′, xj, xk), since

there exists a bijection from ε onto ε′. Because the degree of xi is two, the
second equality in (4.5) holds an thus the equation (4.5) is proved.

We infer from (4.3) using Lemma 6.2 that

e(D′
i, a

R
i , aj, ak) = e(D′, xj, xk) = e(D′, xi, xj, xk) + e(D′, xi, xj, xk). (4.6)

Set
m := e(D1) + e(D2) + e(D3),

and

m′ :=
∑

(i,j,k)∈{(1,2,3),(2,3,1),(3,1,2)} e(D′, xi, xj, xk) + e(D′, xi, xj, xk) +

e(D′, xi, xj, xk) + e(D′, xi, xj, xk).

if we combine (4.2)-(4.6), we obtain m = e∗(D) + m′. Notice that each
triple (i, j, k) in m′ stands for one digraph Di. Using Lemma 6.2 twice and
rearranging the terms we conclude

m′ := 2 ·
∑

(i,j,k)∈{(1,2,3),(2,3,1),(3,1,2)}

e(D′, xi, xj, xk) + e(D′, xi, xj, xk)

and finally

m′ := 4 · (e(D′, x1, x2, x3) + e(D′, x1, x2, x3) + e(D′, x1, x2, x3)).

Hence, m′ ≡ 0 mod 4 which is equivalent to m ≡ e∗(D) mod 4. We now
infer from (4.1) that e(D) ≡ 2 mod 4 which implies the assertion e(D) ≡ 2
mod 4 of the lemma.
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