 and provide a good introdiction to Alon-Tarsi theorem and melated conerpts. Despine these inacenaries, the firsi wo sections of the thesis are casy to follow T.

In the statement of Lemmat $1, \quad 1 \leq i \leq n-1$ shonded be $-1 \times i \cdot n$.

 The purpose in the rest of the thesis. 'These two sertions are woll orgamized and writere The purpose of the first two sections is to moroduce the matn lools. Whith ate Let me comment on the five sections separately, and then condude by some proof of a result of Floishner and Simbit h, which is auther application of the
Alon-Tarsi theorem.

 Whertations related to list coloring. In the next section, he states and prove's In the first section, the anthor smmarizes basic terminology and some simple
 Oponent: Vít Jelinck
Vavrhovaná znátukat: 1-2 Autor práce: Jan Bulánek
Nazer prace: Algebrate vé vastmosti barevonsti grafit Posmdek qponenta bakalárské práce
here is nice and original, the presentation should be improved. First of all, the term 'square of cycle' should be defined explicitly, since there are several different notions of graph products, and the term 'square of a graph' is ambiguous. It should also be specified which orientation of the underlying graph is considered.

To make the presentation even more confusing, the author does not specify which result he is about to prove in this section. He should mention explicitly before the beginning of the proof that he is only going to deal with the case when the length of the cycle is a multiple of three, and that in the remaining cases, it is possible to apply simpler, elementary methods to deduce that the list-chromatic number is equal to the chromatic number. Instead, the author never mentions the elementary cases at all.

Another flaw that complicates the understanding of the text is the lack of precision in the definitions. For instance, in Definition 2 the author says that o_{n}^{0} is 'the number of sequences of length n containing an odd number of ones that end with one' but in fact, it later turns out from the context that o_{n}^{0} only counts the sequences without two consecutive zeros. Similarly, N_{e} is defined as the number of Eulerian subgraphs of G with even number of arcs, but it later becomes clear that N_{e} is meant to only count the graphs with less than $\ell_{0} \operatorname{arcs}$. Essentially, the reader needs to reverse-engineer the proper definitions from equations (3.1) and (3.2). To make matters worse, there is apparently a ' +1 ' term missing from equation (3.1), and on line 6 of the next paragraph, the phrase ' σ stands for an even sequence...' should read ' $\sigma 0$ stands for an even sequence...'.
Apart from the above-mentioned errors, there seems to be a mathematical flaw in the argument: when the author encodes Eulerian subgraphs from the set \mathcal{S} by 01 -sequences, he fails to take into account the fact that a sequence whose all terms are equal to 1 does not encode a Eulerian subgraph from \mathcal{S}. Fortunately, this oversight may be easily fixed and does not cause any substantial gap in the argument.
Despite these flaws in the presentation, I would like to stress that the mathematical arguments involved in the proof of the result are nontrivial and the obtained result is nice.
The last section of the thesis presents the statement and proof of a theorem of Fleischner and Stiebitz, which is an elegant application the Alon-Tarsi method. Even though the result is somewhat technical, the author has managed to present it in a clear manner.

To summarize, the thesis shows that the author has a very good understanding of the topic and the ability to come up with original ideas. The mathematical arguments presented in the thesis are elegant and mostly correct. I also appreciate the author's brave decision to write the thesis in English.

On the other hand, the presentation of the work could be improved. Apart of the specific flaws pointed out above, the text has numerous spelling errors, which should have been detected by a spell-checker (or by better proof-reading).

