
CHARLES UNIVERSITY IN PRAGUE 

FACULTY OF PHYSICAL EDUCATION AND 

SPORT 

DEPARTMENT OF PHYSIOTHERAPY 

Detection methods of foot shape and 

pressure distribution 

(Critical review) 

Diploma Thesis 

Author: Andreas Andreou 

Supervisor: PaedDr. Karel Jelen, Csc 

April 2008, Prague 



Declaration 

I declare that this diploma thesis is written by me with the help of the litterature which I 

refer to in the end. 

2 



Acknowledgement 

I would like to thank my supervisor PaedDr. Karel Jelen, Csc for the assistance and 

supervision during the realization of this work. I would also like to thank my family and my 

friends for their help and support during the writing ofthis thesis. 

3 



Abstract 

Title of thesis work: 

Detection methods of foot shape and pressure distribution- critical review. 

Objectives of thesis work: The objective of this thesis work is to analyze the aspects of foot 

shape and pressure distribution and to describe the various factors which are responsible for 

measuring foot shape and pressure distribution and tries to describe the different methods to 

measure the same. 

Method: The solution over the objective mentioned above is to review the existing available 

literature and knowledge about the related topíc, summarise it and come into a conclusion. 

Results: In this thesis work are described the foot shape and pressure distribution in static and 

dynamic loading. Also various factors wich affect the foot pressure are analysed and different 

kinds ofmethods ofhow to detect the foot shape and pressure distribution are recorded. 

Key words: foot, plantar pressure, gait, standing, detection methods. 
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1. Prefaee 

"The human foot is a masterpiece of engineering .and a. work. of .art" 

(Leonardo Da Vmci) 

The foot is one of the most weight- bearing and- shock absorbing structure in the human 

body. Biomechanical factors piay an important role on the etiology, treatment and prevention of 

many foot dis()rders--and gait distwbances. 

The sígnifi.cant dífferences -of foot shape and f-orce dístribution between índívíduals, 

indicates how unique is the human foot and that may ~ontain valnable informations about a 

patienť s gait and hislher foot structure. 

It would be very interesting if by anymeans somebody could encrypt these informations 

and use -them for earlier diagnos-is, prevention or -therapy. 
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2. Aim of diploma thesis 

The .aim oftbis r.esearch is to find methods ofhow to measure (.detect) the pressure under 

tbc fwt, dur;ing barefoot s~dlng an!i walklng ~ methods ofhow to ~v3luate the sbape of the 

foot. The research also analyses many aspects of foot shape and pressure distribution and factors 

which affeet it. Finally the resem-eh describes vmious faetors whieh are responsible for measuring 

foot shape and pressure distribution and tries to describe the different methods to measure the 

same. 
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3. Methodolo&Y 

For the achiev.ement of the goal mentioned above, review of the existing litterature through 

va,rious datát>ases M.d books was found to be tbe t>est solutiQn ln my case. The researcb took. 

place in first medical faculty tibrary in Prague, the library of faculty of physical education and 

sport in Pragoe Md through my persona! internet during the period 2007 to 2008. 

Keyword that were searced ínclude: foot, plantar pressure, gait, standing, detection 

methods, foot force, gait analysis, foot pressure, foot shape, biomechanics of foot, stress 

dis:tribution. 
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4. Gait cyele and its pbases 

Walking is the main form of anirnallocomotion on land, distinguished from running and 

crawling, G~t .1$ ~ ~ue.nce of foot movements by wbícb buman ls ~l:>le to t:ra.nsport it self. The 

word walking is derived from the Old English walkan which means (to roll). 

w~ is generally distinguished from running in that only one foot at a time leaves 

contact with the ground. 

Many events are happening at the same time, during walking and it can seem overw'helming. 

However, the pro.cess of walking ean be broken down into a series of steps which can g.o some 

distance in simplifying the process. 

The gait cycle of each leg is divided into the staaee phase aad tbe swing pbase. The 

stance phase is the period of time during which the foot is in contact with the ground. The swing 

phase i s the period of time in whieh the foot i s off the groood and swinging forward. In walking, 

the stance phase oomprises approximately 600.4 ·of the gait cycle and the swing phase about 40%. 

The proportion of swing to stance phase changes as the speed of walking or running iRcreases. 

As the speed is increased the percentage of time .spent in the stance phase decreases. 
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4.1. Duration of gait cycle 
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Figure 1. Gait cycle. Obtained from~ 

(http:/ /Viww.momentumsports.co.uk/media/images/GaitCycleDiag.jpg) 
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The above figure shows the steps of the gait cycle and the duration of each one. The 

duration of initial contact is 27% of the stance phase. The duration of the midstance (Ioading 

responce) is the 40% ofthe stance phase and the terminal stance and preswing is the 33% ofthe 

stance phase. 

4.2. Gait cycle 

The two main phases of gate mentioned above can be divided in four and three sub-phases 

respectively. 

The stance phase is divided to: 

• lnitial Contact 

• ~d-stance 

• Tennínal stance 

• Toe off 
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The swing pha.se is divided to: 

• lnitíal swing 

• Mid~swing 

• Terminal swing 

An important point to note is that in running an added sub-phase is present. Float phase. 

Du.ring float phase, neither foot is on the ground. 

4.2.1. Stance phase- Initial Cont~ct: 

• ls. the moment when the red foot just touches the ground 

• Is when the heel i s. the first bone of thee foot to touch the ground 

• Meanwhile,. the blue leg is at the end of tenninal stance 

• Shoulder is extended 

• Pelvis is rotated left 

• Hip is. flexed and extemally rotated 

• Knee is fully e.xtended 

• Ank.le is dorsi:flexed 

• F oot is supinated 

• Toes are slightly extended 

.I 
/ 

I 

l 
' 

Figure 2~ Stance phase, initial Contact. Obtained from: (Kaczmarska A. 2006) 
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4.2.2. Stanu pbase.. (Loading response) mid-stance: 

• The double stance period beginning 

• Body weight is transfered onto the red leg 

• Phase 2 is important for shock absorption, weight-bearing, and fotward 

progression 

• The blue leg is in the pre-swing phase 

• Shoulder is slightly ~xtended 

• Pelvis is rotated left 

• The hip js flexed and slíghtly extemally rotated 

• The knee is slightly flexed 

• The ankle is plantarflexing to neutral 

• F oot is neutral 

• Toes are neutral 

Figure 3. Stance phase, mid-stance 1. Obtaíned from: (Kaczmarska A. 2006) 
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4.2.3. Stance pbase.: (Loading response) Mid ... stance: 

• Single limb support interval 

• Begins with the lifting of the blue foot and continues until body weight is 

aligned ovet the red {supporting) foot. 

•• 
phase 

• 
• 
• 
• 
• 
~ 

• 

The red leg advances over the red foot The blue leg is in its mid-swing 

Shoulder is in neutral 

Pelvis is. in neutral rotation 

Hip is in neutral 

Knee is fully extended 

Ankle is relatively neutntl 

F oot i s pronated 

Toes are neutral 

Figure 4. Stance phase., mid~stance 2. Obtained from: {Ka~zmarska A. 2006) 
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4.2.4. Stance pbase. Terminal stance: 

• Begins when the red heel rises and continues until the heel of the blue foot 

hits the ground. 

• Body weight progresses beyond the red foot 

• Shoulder is slightly flexed 

• Pelvis is rotated left 

• Hip is extended and intemally rotated 

• Knee is fully extended 

• Ankle is dorsiflexed 

• F oot is slightly supinated 

• Toes are neutral 

Figure 5. Stance phase, terminal stance. Obtained from: (Kaczmarska A. 2006) 
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4.2.5. Stance phase. Toe off: 

• The second double stance interval in the gait cycle. 

• Begins with the initial contact of the blue foot and ends with red toe-off. 

• Transfer ofbody weight from ipsilateral to opposite limb takes place. 

• Shoulder is flexed 

• Pelvis is rotated right 

• ffip is fully extended and internally rotated 

• Knee is fully extended 

• Ankle is plantarflexed 

• Foot is fully supinated 

• Toes are fully extended 

Figure 6. Stance phase, toe off. Obtained from~ (Kaczmarska A. 2006) 
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4.2.6. Swing phase. Initial swing: 

• Begins when the red foot is lifted from the floor and ends when the red 

swinging foot is opposite the blue stance foot. 

• It is during this phase that a footdrop_gait is most apparent. 

• The blue leg is in mid-stance. 

• Shoulder is flexed 

• Spine is rotated left 

• Pelvis is rotated right 

• hip is slightly extended and intemally rotated 

• Knee is slightly flexed 

• Ankle is fully plantarflexed 

• F oot i s supinated 

• Toes are slightly flexed 

1 
Figure 7. Swing phase, initial swing. Obtained from: (Kaczmarska A. 2006) 
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4.2. 7. Swing phase. Mid-swing: 

• Starts at the end of the initial swing and continues until the red swinging 

limb is in front of the body 

• Advancement of the red leg 

• The blue leg is in late mid-stance . 

• Shoulder is neutral 

• Spine is neutral 

• Pelvis is neutral 

• Hip is neutral 

• Knee is tlexed 60-90° 

• Ankle is plantartlexed to neutral 

• F oot is neutral 

• Toes are slightly extended 

Figure 8. Swing phase, mid-swing. Obtained from: (Kaczmarska A. 2006) 
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4.2.8. Swing phase. Terminal swing: 

• Begins at the end ofmidswing and ends when the foot touches the floor. 

• Limb advancement is completed at the end of this phase. 

• Shoulder is extended 

• Spine is rotated right 

• Pelvis is rotated left 

• Hip is flexed and extemally rotated 

• Knee is :fully extended 

• Ankle is fully dorsiflexed 

• F oot i s neutral 

• Toes are slightly extended 

Figure 9. Swing phase, terminal swing. Obtained from: (Kaczmarska A. 2006) 

20 



4.3. Hip and torso movement during walking: 

I I IDLEWORM.COM/HOW/INDEX.SHTML MATIO T TOR fú 

Figure 10. Hip and torso movement during walking. Obtained from: 

(http://www.idleworm.com/how/anm/02w/walkl.shtml) 

ln the above figure is illustrated the orientation of the shoulders and hips. Again, as one is 

thrust forward, the other is thrust back. As one tilts up, the other tilts down. 

Another name for this is "Torque". lt is a fundamental principle of good posing. It should 

be an element of almost evecy figure drawing that you do. Michelangelo always used torque in 

his sculptures, creating dynamic poses, even in ones that were standing still. One hip takes the 

weight, while the other passively provides the balance. 
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4.4. Gait- basic principles: 

For initiation of gait the center of gravity (COG) shifts forward which leads to forward 

acceleration and as a result the step. 

To stop the gait the center o gravity (COG) comes back into the foot basis which leads to 

deccelaration. 

During walking, the COG is moving forward along inner side of the stance leg. 

Figure ll. Shifting of center of gravity during gait. Obtained from: (Winter 1995) 
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5. Anatomie regions of the foot 

The human foot is an amazingly complex piece ofbioengineering. With 26 bones, 55 joints 

and a complex system of ligaments, muscles and tendons. The numerous joints between these 

bones allow the foot to be both a rigid lever and a shock absorber. At initial heel contact, the foot 

has to endure forces often in excess of 3 times body weight! 

Figure 12. Bones ofthe foot. Obtained from: (http://images.3d4medical.co:m!Ihe-bones-of­

the-foot-73-image _ RM5057 .html) 

The foot includes the area from the ankle through the toes. In some animals, including 

humans, the weight is supported on the entire surface of the foot. Such animals are known as 

plantigrade. 

Like the hand, the human foot has five digits. However, it is less flexible and lacks an 

opposable digit (thumb) for grasping, as do the feet ofmost primates. 

The human foot consists of 26 bones, connected by tough bands of ligaments. Seven 

rounded tarsal bones (the intemal, middle, and extemal cuneiform bones, navicular, cuboid, talus, 

and calcaneus) lie below the ankle joint and form the instep. 
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Five metatarsal bones fonn the ball ofthe foot. There are 14 phalanges in the toes (two in 

the great toe and three in each of the others ). The f.oot bones form two perpendicular arches that 

nonnally meet the ground only at the heel and ball of the foot. These arches are found only in 

humans. The use of the stride, a form of walking in which one leg falls behind the vertical axis of 

the backbone, is also a singular aspect of the hurnan foot. The stride is thougbt to be an 

evolutionary advance from running, and is related to the unique structure of the human foot. 

The forefoot includes the five metatarsal bones, and the phalanges (the toes). The first 

metatarsal bone bears the most weight and plays the most important role in propulsion. It is the 

shortest and thicke.st. It also provides attachment for several tendons. The second, third, and 

fourth metatarsal bones are the most stable of the metatarsals. They are well protected and have 

only minor tendon attachments and are not subjected to strong pulling forces. 

Near the head of the first metatarsal, on the plantar surface of the foot, are two sesamoid 

bones (a small, oval-shaped bone which develops inside a tendon, where the tendon passes over a 

bony prominence) They are held in place by their tendons, and are also supported by ligaments. 

The midfoot includes five of the seven tarsal bones (the navicular, cuboid, and three 

cuneiform). The distal row contains the three cuneiforms and the cuboid. The midfoot meets the 

forefoot at the five tarsometatarsal (TMf) joints. There are multiple joints within the midfoot 

itself. Proximally, the three cuneiforms articulate with the navicular bone. 

The talus and the calcaneus make up the hindfoot. The calcaneus is the largest tarsal bone, 

and forms the heel. The talus rests on top of it, and forms the pivot of the ankle. (K.apandji 1974, 

Moore 1999, Netter 2001) 

5.1. Foot and Toe Movement 

Toe movements take place at the joints. These joints are capable of motion in two 

directions: plantar flexion or dorsiflexion. In addition, the joints permit abduction and adduction 

ofthetoes. 

The foot as a whole (excluding the toes) has two movements: invertion and evertion. All 

the joints of the hindfoot and midfoot from the subtalar contribute to these movements, wbich are 

complex and consist of several components. In addition, foot movements ordinarily are combined 

with ankle movements. (K.apandji 1974, Moore 1999, Netter 2001) 
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5.2. The Arches of the foot 

The foot has two important functions: weight bearing and propulsion. These functions 

require a high degree of stability. In addition, the foot must be flexible, so it can adapt to uneven 

surfaces. The multiple bones and joints of the foot give it flexibility, but these multiple bones 

must fonn an arch to support any weight. 

The foot has three arches. The mediallongitudinal arch is the highest and most important of 

the three arches. It is composed ofthe calcaneus, talus, navicular, cuneiforms, and the frrst three 

metatarsals. The laterallongitudinal arch is lower and tlatter than the medial arch. lt is composed 

of the calcaneus, cuboid, and the fourth and fifth metatarsals. The transverse arch is composed of 

the cuneiforms, the cuboid, and the five metatarsal bases. 

The arches of the foot are maintained not only by the shapes of the bones as well as by 

ligaments. In addition, musel es and tendons play an important role in supporting the arches. 

5.3. Muscles of the f()ot 

The muscles of the foot are classified as either intrinsic or extrinsic. The intrinsic muscles 

are located within the foot and cause movement of the toes. These muslces are flexors (plantar 

flexors ), extensors ( dorsiflexors ), abductors, and adductors of the toes. Several intrinsic muscles 

also help support the arches ofthe foot. 

The extrinsic muscles are located outside the foot, in the lower leg. The powerful 

gastrocnemius muscle {calf) is among them. They have long tendons that cross the ankle, to 

attach on the bones of the foot and assist in movement. The talus, however, has no tendon 

attachments. 
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Figure 13. Muscles ofthe foot. Obtained from: (http://images.3d4medical.com/Muscular-foot-

1 O-image_ RM567 .html) 

Figure 14. Muscles ofthe foot. Obtained from: (http://www.3d4medical.com/) 
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The propulsive function of the foot depends on the arrangement of the bones into two 

longitudinal arches that act as shock absorbers; these arches flatten slightly when weight is put 

upon them and recoil when it is removed In the standing position the weight of the body is 

mainly supported at the he.el and the heads of the metatarsal bones, just behind the toes. On 

walking, the weight is frrst applied at the heel and then along the lateral border of the foot, 

medially across the metatarsal heads to the ball of the foot as the heel leaves the ground, and the 

big toe gives the fmal push-off. In running, the heel never touches the ground and the weight is 

applied only through the distal ends of the longitudinal arches, which recoil and reinforce the 

propulsive thrust delivered by flexing the medial toes. The arches of the foot are maintained by 

the shape ofthe interlocking bones, by muscle action, and by -strong Iigaments. Ifthe ligaments 

become stretched and lax, part of the curvature will be lost, resulting in flat foot. 

The foot is normally at right angles to the leg in the standing position. It can be drawn 

upwards (dorsiflexed) or lowered (plantar flexed) by movement at the ankle joint, and the sole of 

the foot may be tumed inwards (inversi on) or outwards ( eversion); these movements involve the 

other bones ofthe foot swinging as a unit around the uppermost bone, the talus. (Kapandji 1974, 

Moore 1999, Netter 2001) 

27 



6. Plantar Pressure Distribution in Standing And Walking 

Some variables of plantar pressure pattem have been investigated to establish a possible 

relationship between foot type and foot loading pattem. In one of a few studies investigating the 

e:ffect of foot type on the plantar loading pattem during running, Sneyers et al.(1995) recorded 

plantar pressure distribution data in 24 (10 male and 14 female) athletes. The athletes were 

divided into pes planus, pes cavus and pes rectus groups. The height of the media! arch, the lower 

limb-heel alignment and the heel forefoot orientation assessed by static examination were used to 

divide participants into different groups. The authors reported that the plantar heel load was 

directed towards the anterior part ofthe calcaneus in the pes planus group compared to the 

normal group. A relatively lower load under the midfoot for pes cavus, and a relatively 

higher load under the forefoot in pes cavus compared with pes planus were reported, which 

are in agreement with the results of other studies. These fmdings generally support the proposed 

shift of load towards the forefoot in hlgh arched supinated feet. 

1 2 3 

I 

Figure 15. Normal pressure distribution during gait. Obtained from: (Winter, 1995) 
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In over-pronated feet, a medial shift of impulse and peak pressure under the heel has 

been reported, whereas the area of peak pressure under the metatarsal heads was found to be 

weakly related to foot type during walking. Other factors, including forefoot to rearfoot position, 

foot angle, step width and step speed, have been reported to be important. 

Based on the results of their study, Walker and Fan (1998) argued foot type is a strong 

determinant of the pressure pattern. They justified the findings with the fact that the variables 

used to measure foot type and pressure were related to 2 different parts of stance phase of 

walking. 

COP 

Neutral Foot 

Figure 16. Normal trajectory of center of pressure (COP) during gait. Obtained from: 

(http://www.pt.ntu.edu.tw/hmchai/BM03/BMClinic/Walk.htm) 

The role of shoes in altering the pattern of foot pressure and the site of peak pressure has 

been emphasised. Sneyers et al. (1995) found statistically significant differences in most ofthe 

peak pressure ratios and impulses in all measured areas of all different foot types in the 

barefoot compared with the shod condition. This was attributed to possible absorption of load by 

shoes. 

In summary, it appears that different hindfoot to midfoot and/or midfoot to forefoot 

orientations and alignments used to classify feet in different research studies could inadvertently 

produce spurious pressure patterns. Different shoe types, surfaces and speed of walking and 

running may account for variation ín fmdíngs. Furtbermore, relatively little is known about 

the effect of foot type on the plantar pressure distribution pattern, and the clinical 

importance of changes of plantar pressure pattern in different foot type needs to be more 

extensively investigated. 
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7. Factors Which Effect The Foot Pressure During Walking 

Physical activity is increasingly recognised as an important component of primary disease 

prevention. Overuse injuries are common sequelae of exercise and sporting activities in general, 

and of running in particular, frequently resulting in cessation of activity. It has been proposed that 

there is a link between foot shape, foot function and the occurrence of injury. As a means of 

treatment and prevention of further injury, orthoses and shoe inserts are widely prescribed in the 

belief that they can alter the pattern of lower extremity joints' alignment and movement. 

Although this is an assumption widely made in the treatment of many joint conditions, the 

manner through which this treatment could be effective is not clear. 

The effects of foot type on the occurrence of lower limb injury during sporting activities 

and different aspects ofbiomechanics are reviewed, and the effects of applying orthoses on in jury 

treatment and prevention and on various aspects of biomechanics of the lower limb joints are 

discussed. 

Further research is required, firstly to establish the casual effect of foot type and 

function on the risk of lower extremity overuse injury, and secondly to document the 

specific eft'ect of orthotic therapy on injury treatment and prevention. Specifically, more 

prospective studies are necessary to investigate the long term effect of orthotic intervention. 

Biomechanical abnormality has been widely considered as an important aetiological factor 

predisposing running athletes to overuse injuries. 

A difference in foot type, usually determined by the changes in the arch height of the foot, 

has been suggested to render athletes more prone to lower extremity overuse injuries. However, 

the mechanisms underlying the reported high incidence of running injuries associated with 

changes in arch height are not well established. The successful management of many sport­

related injuries by the use of orthoses, reported in some clinical studies, has been deemed to lend 

further support to the belief that abnormal foot positioning during the contact phase of running 

could influence the function ofthe lower limb. 

While this notion needs further scientific proof, the issue of effectiveness becomes more 

questionable by considering the following facts. Despite apparent relief of symptoms from 

overuse injuries through the application of orthoses, a considerable percentage of athletes 

(up to 40% in some studies) so treated gain little or no benefit. Indeed, increased symptoms 

and newly developed complaints have been reported during orthotic usage. This has been simply 
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attributed to a poorly fitted and/or badly fabricated orthosis or poor diagnosis. Additionally, 

orthotic application has been shown to provide little relief of symptoms in patients with cavoid 

feet. 

Figure 17. Foot pressure distribution. Obtained from: (http://www.biomedcentral.com/1471-

2318/5/8) 
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Gaining an improved understanding of the interactions of foot type, injury occurrence 

and orthotic prescription necessitates finding evidence-based scientific answers to the 

following key questions: 

• Is a specific foot type more prone to injury? 

• Is a specific in jury more common in the people with a specific foot type? 

• How could such trends be explained? 

• How is foot function related to foot structure? 

• Which aspects of foot structure are related to foot :function and gait? 

• What is the relationship between static foot shape and dynamic foot and lower limb 

function? 

• How valid are predictions of foot function based upon foot structure? 

• Could the use of an extemally applied device modify the movement and function ofthe 

foot? 

• Could such an intervention improve the foot function, and thus prevent or treat overuse 

injuries? 
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Figure 18. Pressure distribution by anatomical region between young ang old individuals. 

Obtained from: (http://www.biomedcentral.com/1471-2318/5/8) 

Following a comprehensive review of the literature, clear answers to these questions 

remain elusive - there is little consensus on the issue of the relationship between foot type and 

injury and, furthermore, on the effectiveness of orthotic intervention in injury prevention and 

treatment. There is a lack of well-conducted research in this area. Specifically, the crucial role of 

potential confounders has widely been undermined or neglected in many studies. 
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7.1. Effects of Foot Type on the Occurrence of Sport Injuries 

Higher risk of injury among physieally aetive people has been reported for both low 

arehed (flat or planus) and high arehed (hollow or eavus) feet. Theories explaining such a 

relationship have been developed by considering the interrelated effects of foot type, subtalar 

mobility, rear-foot alignment and talocalcaneaVtibiocalcaneal movement relationship. 

It is widely believed that a low arched foot tends to be more flexible and, thus, is subject to 

increased pronation (amount, timing and/or velocity) during the contact phase of walking and 

running. In contrast, a high arched foot is known to be more rigid and consequently exhibit 

increased supination. Thus, a flat or eavoid foot may theoretieally plaee the runner at a 

higher risk of injury. However, two successive prospective studies by Cowan et al. (1989, 

1993) on US Army trainees provided no convincing evidence that low arched feet were 

more prone to injury; rather, it was suggested that low arched feet provide protection 

against lower-limb injury. In both studies, a variety of measures of arch height were taken 

directly from photographs of feet while the volunteers were standing. 

In a recent retrospective study, Wen et al.(1997) found lower extremity alignment 

measures, including arch index (AI), heel valgus (HV) and leg length discrepancy, were not 

major risk factors for running injuries. The participants were a cohort of relatively low 

mileage runners suffering injuries to the back, hip, knee, lower leg, ankle and foot. Participants 

were examined to measure alignment using specific criteria. Using the same method of 

examination and the same criteria, a subsequent prospective study by the same investigators 

appeared to con:firm these findings. Overall, minor variations in lower limb alignment did not 

appear to be major risk factors for overuse injuries in these runners. Some minor associations 

were noted ( e.g. higher varus and tubercle sulcus angle of the knee being associated with shin 

injuries) but additionally the results showed that higher AI and HY might protect against knee 

and foot injuries, respectively. These studies, which may have had limited power, 

demonstrate the diffieulties of investigating the multi-factorial nature of running injuries. 

Consideration of the combined effect of intrinsic and extrinsic factors is required. Rather 

than demonstrating relationships, it is necessary to be able to show a causal correlation. 

A high arched cavoid foot is often suggested to be associated with a higher incidence of 

stress fracture. It is proposed that a greater amount of energy is transferred to the lower limb 

bones through the relatively stiff foot, which causes an increased risk of femoral and tibial stress 
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fractures. In contrast, Simkin et a1.(1989) suggested the greater energy absorption low arched feet 

compared with high arched feet explains the high incidence of stress fractures reported in the 

metatarsal bones of patients with low arched feet. 

Excessive pronation has been the aetiological variable most commonly link:ed to overuse 

injuries. However, the evidence supporting this contention may be injury specific. Viitasalo and 

Kvist, (1983) Gehlsen and Seger (1983) and Messier and Pittala (1988) found a greater range of 

rearfoot movement during running in athletes from a variety of sports with different lower 

limb complaints, including shin splints, plantar fasciitis and iliotibial band friction syndrome, 

than normal groups. 

Higher velocity of pronation has been considered as another determinant factor of abnormal 

foot biomechanics. It has been proposed that abnormal subtalar pronation, associated with fiat 

foot, results in an unstable foot at the time when a rigid lever is required at toe off, imposing a 

greater load on the body. Conversely, high arched foot configuration is supposed to cause 

hypomobility of the subtalar joint with a subsequent decrease in the ability to absorb the forces 

ímposed on the foot. 

However, maximal eversion motion has been reported to be independent of arch 

height. Nawoczenski et al. (1998) found similar magnitude of calcaneal eversion in both low 

rear foot and high rear foot groups, when 20 recreational runners were assigned to either low or 

high rear foot groups based on the lateral calcaneal inclination, lateral talometatarsal and 

anteroposterior talometatarsal angles measured on plain radiographs. These findings taken 

together suggested that a functional relationship between arch height and injuries does not 

exist through the influence of arch height on hindfoot eversion. However, such a relationship 

is supposed to exist through the influence of arch height on the amount of foot eversion that is 

transferred to internal rotation at the ankle joint complex. 

More recently, kinematic analysis of the subtalar joint has been employed to explain the 

relationship between arch height and injury by introducing the concept of'coupling behaviour' of 

the leg and rearfoot. Two important aspects of the subtalar joint have been described. Firstly, the 

subtalar joint attenuates the impact load of ground reaction force and, secondly, it has a unique 

role in the transfer of axial rotation of the leg to the pronation and supination of the foot during 

support phase of gait. Thus, supination and pronation of the foot produces rotation in the 

segments both proximal and distal to the subtalar joint. 

The function of the foot and the movement patterns of the Iower extremity are 

believed to be related to the orientation of the subtalar joint axis. An axis closer to the 
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vertical plane supposedly results in a greater proportion of abduction and adduction of the foot, 

whereas an axis closer to the transverse plane would permit greater inversion and eversion. The 

orientation of the subtalar joint axis inOuences not only the degree and direction of 

taloealeaneal joint motion, but also movements extrinsie to the joint. 

Nawoczenski et al. (1998) suggested the predominant rotation demonstrated by each foot 

group in their study to be determined by combined subtalar joint and talocrural joint axis 

orientation. This favours calcaneal inversion and eversion for the low rearfoot structure and tibial 

medial and lateral rotation for the high rearfoot structure. They further proposed that it is not 

necessarily a Jack of motion that aceounted for the associated musculoskeletal problems of 

the high arched foot; rather, a greater proportion of tibial axial rotation may cause 

problems. 

In summary, despite significant progress in the understanding of the kinematics and 

kinetics of the foot and ankle complex, mechanisms causing overuse injuries in the lower 

extremities are stili poorly understood. The effect of foot type on the occurrence of lower limb 

ínjuries has not been the subject of weii controiled studíes and few, íf any, casual correlations 

have been demonstrated. Further studies are required to identify factors, determine causation and 

finally modify these factors with reexamination injury incidence. 

7.2. Effects ofFoot Type on the Ground Reaction Force 

Kinetic parameters have been investigated in an attempt to evaluate the effect of arch height 

on the ground reaction force in running. Nachbauer and Nigg (1992) found no effect of arch 

height on seleeted variables of the vertical ground reaetion foree, including total impact force. 

The finding was explained by considering the timing of the events occurring in the early contact 

phase of a running gait. It has been shown that the point of force application li es in the rear one­

third of the shoe at the moment of the maxima! vertical impact peak. The line of action of the 

resultant force suggests the transmission of the force through the heel pad, calcaneus and talus 

into the lower leg. However, the rigidity of these hind foot bones, opposed to those of mid and 

forefoot, may be not related to the height of the arch or to any other structural property of the 

medial arch. Thus, there may be no relationship between arch height and rigidity of the foot 

in the early support (stanee) phase of running. 
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Even if different foot types could impart variable loads on the body, it has been proposed 

that the neuromuscular control mechanisms of the runner could re-adjust the body reaction, thus 

minimising loading. These mechanisms act in such a way that the external impact force, 

regardless of the initial amount,. is adjusted to a tolerable magnitude. Such an explanation has 

been employed to explain slight changes in the vertical impact force when running shoes with 

different midsole hardnesses were compared, emphasising the adjusting role of neuromuscular 

mechanisms. 

A 

Ground reaction force 

Figure 19. Ground reaction forces to which the foot is exposed during standing and walking. 

Obtained from: (Van Deursen 2001) 

The direct articulation and coupling of the tibia/ fibula with talar motion relate rotation of 

the tibia to the inversionfeversion ofthe foot. 'Abnormal coupling' between the inversion/eversion 

movement of the foot and axial rotation of the leg is proposed as a contributing factor in lower 

extremity musculoskeletal injuries. It has been suggested that certain knee and shin injuries 

are associated with an abnormal relative rotation of the tibia with respect to the 

femur.Excessive tibíal intemal rotation is also believed to cause the foot to show abnormal 

movement pattems, specifically the amount, timing and velocity of pronation. 
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Nachbauer and Nigg (1992) compared selected ground reaction force variables in running 

for different conditions of arch height and arch flattening. Arch flattening was defmed by the 

difference between the minimal vertical marker-floor distance in the midstance phase ofrunning 

and the average vertical marker-floor distance while standing in the calibration frame. The arch 

height and arch flattening based on static and dynamic measurement of arch height were not 

found to be significantly related to each other. A significantly later initial medial force peak and 

lower anterior force peak in low arched and low flattening groups were reported, respectively. 

Neither arch height nor arch Oattening was thought to account for the observed variability 

in the ground reaction force. Using a different method of classifying foot types by footprint 

parameters, Hamill et al.(1989) reached the same conclusion. 

However, using a novel terminology, Freychat et al. (1996) reported a relationship 

between rearfoot and forefoot orientation of the foot, partially determined by the supinatory or 

pronatory position of the hindfoot, and ground reaction force parameters. The more the foot was 

'open', the more it was placed closer to the direction of running. They came to the conclusion 

that the specific spatial orientation ofthe rearfoot and forefoot can influence the 'open' and 

'closeď foot behaviour, making an open foot in fiat foot configuration (laterally rotated, everted 

forefoot) more flexible. Whereas a medially rotated forefoot (closed foot) was associated with a 

rigid and inverted foot. 

In a study of high and low arched feet, simultaneous measurement of amplitude and 

rate of impact loading at the ground and lumbar spine levels showed a lower magnitude of 

force in the high arched group in the spine, indicating a sound shock-absorbing capacity of 

high arched feet. There was no significant difference at the ground level between the 2 groups. 

These findings are contradictory to those of Simkin et al.(1989) who showed an impaired 

shock absorbing capacity of high arched feet, facilitating the transfer of shock wave to upper 

parts of the lower extremity. By assuming an association between initial pronation and an 

increased medial force component, individuals with high arched feet were found to have more 

unstable feet in the mediolateral plane at heel strike. A rapid intemal rotation of the tibia 

immediately after touchdown was reported to be more likely to occur in high arched feet. The 

presence ofthis instability during impact loading, referred to as transient medial instability, rather 

than an intrinsically impaired shock-absorbing capacity was thought to explain the results. 
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In summary, the data presented above indicate little apparent difference in the magnitude of 

the vertical component of ground reaction force between different foot types, and that any subtle 

differences that might exist are of dubious clinical relevance. In the lower extremity, the 

shock wave resulting from the vertical component of ground reaction force is largely influenced 

by the posíti on and orientation of joint axes, neuromuscular activity and muscle strength. 
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7.3. Effects of Foot Type on the Biomechanics of the Foot 

To establish a better understanding of the functional relationship between arch height and 

injury, some investigators have attempted to evaluate the influence of arch height on kinematic 

variables ofthe lower extremity. Clarke (1980) found a significant difference in the amount of 

pronation in an easy standing stance between high arched and low arched groups. It is 

suggested that runners with flat feet spend a greater amount of time in pronation during the 

support phase of running. Repetitive loading caused by running with excessive subtalar joint 

motion is believed to render individuals with a flatter arch more susceptíble to in jury. 

A greater range of motion in the subtalar joint has been measured in flat feet compared to 

high arched feet. Sobotnick(1985) suggested that high arched feet are inflexible, while flat 

feet tend to be hypermobile and susceptible to a large degree of pronation. However, in one 

study no difference was found in the rearfoot motion between low and high arched feet during 

running. Nigg et al. (1993) examined the influence of arch height on axial rotation of the tibia. 

They proposed that such an influence might be expected because arch height could be an 

indicator of the structure of the tarsus, which acts as the link between the foot and the tibia. 

Findings of this study suggested that arch height does not influence either maximal eversion 

movement or maximal leg rotation during running. Rather, the transfer of foot eversion to 

intemalleg rotation was found to increase signi:ficantly with increasing arch height. 

By measuring foot placement angle ( defmed as the angle of orientation of the foot relative 

to the direction oftravel) and AI, Kernozek and Ricard (1990) reported that individuals with 

normal arches exhibited less total rearfoot movement than those with either fiat or high 

arches. Foot placement angle also had a negative relationship with total rearfoot motion. As foot 

placement increased, total rearfoot motion tended to decrease. 

However, foot placement angle was found to be a better indicator of maximal pronation 

than arch type. As foot placement increased, maximal pronation decreased. Arch height was 

found not to be a significant predictor of maximal pronation. 

It is believed that when the measurement of calcaneal inversion/eversion of the combined 

subtalar/talocrural joint is combined with the measurement of tibial internallextemal rotation, a 

better insight to the kinematics of the subtalar joint is provided relative to single frontal plane 

analysis of each variable. In summary, it appears that any investigation in to the effect of foot 
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type on variables of foot and ankle kinematics must take into account the interrelated 

function of subtalar, talocrural and knee joints. 

7.4. Effects ofFoot Ortboses on Overuse lnjuries 

Although orthoses may not provide a definitive cure for running overuse injuries, they are 

frequently prescribed for injury prevention. Logically, therefore, an evidence base to support the 

contention that orthoses are effective should exist. However, little robust scientific evidence is 

available to support this notion. Providing scientific evidence of the actual effect of orthoses on 

structure and function of the foot has been central to some studies. Although orthoses are 

frequently prescribed in the belief that they correct the biomechanical dysfunction of specific 

joints of the lower extremity, research studies on the effect of orthoses on rearfoot motion have 

not shown dramatic changes in this parameter. 

To date, studies on the effect of orthoses on overuse injuries can be categorised into 2 key 

areas: the effects of foot orthoses on relieving symptoms of overuse injuries and effects on the 

biomechanical function oflower extremity joints. 

7.5. Effects of Foot Orthoses on Relieving Symptoms of Overuse Injuries 

Although the mechanisms by which orthoses are sometimes effective are not fully 

understood, a significant reduction in lower extremity symptoms has been reported. 

In a retrospective study ofthe effectiveness of shoe inserts in long-distance runners, Gross 

et al. (1991) found foot orthoses very effective in providing symptomatic relief of lower 

extremity complaints. The complaints for which orthoses were prescribed included a broad range 

of hip, knee, foot and ankle problems. Unfortunately, the type of orthoses used was not clearly 

indicated and details regarding presumed diagnosis and the presenting indication for orthotic 

usage were reported by study participants. By fmding that 90% of the runners continued to use 

the orthotic devices even after resolution of their symptoms, the authors concluded a high degree 

of overal! satisfaction. Results of treatment were independent of diagnosis or the runner's level of 

participation. Orthotic shoe inserts were most effective in the treatment of symptoms arising from 

biomechanical abnormalities, such as excessive pronation or leg length discrepancy. 
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In general, a satisfactory level of symptom relief from use of orthoses has been 

reported in overuse injuries. After wearing orthoses for 3 months, 81% of 43 patients with 

painful heels treated with a customised rigid plastic foot orthoses were reported to gain a 

complete symptom relief.A functional foot orthosis was found to effectively reduce pain by 80% 

in patients with plantar fasciitis. Orthotic devices have also been reported to hasten the duration 

of returning to full functioning in injured runners. 

Despite these positive findings, orthoses have been shown to provide little symptom 

relief in other athletes. Gross et al. (1991) reported that 24.5% of study participants made 

slight or no improvement, and 13.5% experienced increased severity of symptoms or 

developed new complaints during the period of orthotic usage. This was attributed to poorly fitted 

orthoses or poor diagnosis. Furthermore, orthotic application has been reported to have little 

success in relieving symptoms in patients with cavoid feet. 

7.6. Effects of Foot Orthoses on Biomechanics of the Lower Extremity Joints 

The effect of different foot orthoses has been investigated through kinematics, kinetics and 

pressure pattem of the foot. 

7. 7. Lower Limb Kinematics 

In the area of research into the effects of orthotic prescription on foot biomechanics, the 

effect of an orthotic intervention on lower limb kinematics has drawn the most attention. The 

source of excessive motion of the rearfoot that results in the use of an orthosis has been an 

extensive area of study. Factors such as running shoes with soft midsoles and accommodative 

surfaces have been proposed to induce greater pronation than norma!. 

Orthoses have been reported to modify selected variables of lower limb kinematic 

behaviour during the stance phase of walking and running. Such interventions have been 

used to bring pronation in an injured foot doser to that of the normally aligned foot. Nigg and 

Morlock (1987) reported a reduction in maximum pronation or calcaneal eversion by using 

an orthosis. This fmding was in agreement with those of previous studies. 

Maximum pronation velocity, time to maximal pronation and total rearfoot motion have all 

been reported to be reduced by an orthosis. 
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McCulloch et a1.(1993) examined the interactive effect of foot orthotics and 2 walking 

speeds on the angular changes at the rearfoot, ankle and knee, and temporal events during stance 

phase of walking. They measured a significant reduction in the degree of pronation 

throughout stance phase of walking, as well as an increase in the duration of stance time as 

measured from heel strike to heel rise when study participants wore fu.nctional orthoses. The 

orthotic application did not significantly reduce the velocity of pronation during the first 20% of 

stance. 

In an attempt to examine the effects of semirigid foot orthoses on 3-dimensionallower limb 

kinematics, Nawoczenski et al.(l998) recorded the pattem of changes of the variables on 20 

recreational runners presenting with distinct structural foot characteristics. The runners were 

classified into low or high rearfoot profile groups, based on radiograph measurements. A 

significant orthotic effect was shown for rotations occurring from heel contact to peak tibial 

internal rotation, as well as in the coupling relationship between tibial axial rotation and 

calcaneal inversion/eversion. A similar mean reduction (2°) in tibial interna! rotation was 

seen in botb groups. Wearing an orthosis produced no significant change in the frontal 

plane rotations for either group. 

The authors concluded that the maximum effect of orthotics was related to the 

changes in tibial axial rotation and was only seen in the first 50% of stance. 

Medially posted, custom-made soft orthoses were shown to change transverse and fronta! 

plane movements of the foot and ankle during treadmill walking and running in a group of 

patients with patellofemoral pain syndrome. All patients exhibited forefoot varus >6° and/or 

calcaneal valgus >6°. No differences were found in sagittal plane movements. The frontal 

and transverse planes rotation of the talocrural/subtalar joint were reduced 1 to 3° with 

orthotic application. The orthosis was reported to reduce knee motion in the frontal plane 

during the contact and midstance phases of walking. 

However, the motion was increased during the contact and midstance phases of running. It 

was concluded that these results indicate orthotic intervention is effective in changing the 

pattem of transverse and frontal plane motion of the foot and knee. 

In comparison, rigid, medially posted orthoses were reported to significantly reduce kinetic 

and kinematic variables, including maximum calcaneal eversion angle, total rearfoot movement, 

maximum calcaneal angular velocity and maximum eversion angle, in a group of individuals with 

pronated calcaneus (a minimum of 5° calcaneal eversion) while standing. Providing a decreased 

43 



pronation angle in standing and during the loading response phase of the gait was suggested as 

the main mechanism through which an orthosis could relieve clinical symptoms. 

To evaluate the immediate effeet of orthotic treatment for flexible fiat foot, Leung et 

al.(1998) recorded changes of kinetic and 2-D kinematic variables in 8 individuals in shod and 

unshod conditions. A force platform and motion analysis system with 2 video cameras was used 

to collect data on kinetics and kinematics, respectively. 

Relatively little change in the collected force data was found, whereas the changes in 

displacement data with the modified University of California Biomechanics Laboratory 

(UCBL) shoe insert were significant. The results found to indicate the effectiveness of the 

orthosis on aligning the orientation and movements of the subtalar, ankle and knee joints, thus 

reducing the degree and duration of abnormal pronation. lt could potentially decrease strain on 

the plantar ligaments and reduce abnormal tibial rotation. 

7.8. Ground Reaction Force 

In the evaluation of the effects of orthoses on ground reaction force variables, most 

investigators ha ve concentrated on the vertical component (impact force) of the ground reaction 

force. Changes in impact force with different ground surfaces, shoe materials and design have 

been widely investigated. Nigg and Morlock (1987) reported that changes in shoe heel tlare 

did not alter the magnitude of impact force peaks in a group of 14 male runners. By 

comparing the effect of wearing shoes with different midsole hardness, De Wit et al.(1995) 

reported that harder material produced a smaller vertical impact force that occurred with a higher 

loading rate. A significantly larger and faster initial inversion was found when the volunteers ran 

in shoes with a hard midsole. Nigg et al. (1988) compared the changes of vertical force peak, 

time of occurrence of vertical force peak, and maximum vertical loading rate in a group of heel 

striker runners when wearing running shoes with conventional insoles to those when using shoes 

with 4 different viscoelastic insoles. No difference was found in variables describing the 

vertical impact forces, and kinematic and kinetic variables of the lower extremities were not 

influenced. In a study of ground surface materials with different impact absorbency, Dixon et al. 

demonstrated maintenance of similar peak impact forces for different surfaces. This fmding was 

explained by individua! kinematic adjustments to variable surfaces between individuals, 

suggesting that responses to different surfaces are individua!. 
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Because of the fact that the technical process of capture and processing of shearing 

force (horizontal component of ground reaction force) measurements has not been developed 

sufficiently, no information is available about the changes of shear with the use of different 

sorts of orthoses. 

Compression 

Shear 

Strain = ~1 -~o 
Lo 

L0 = unloaded 
L1 = under compression 

Strain = 9 = _!!_ 
h 

Figure 21. Calculation ofstrain. Obtained from: (Van Deursen 2001) 

7.9. Foot Pressure Pattern 

Little has been done in the area of research into the changes of foot loading pattem in 

orthotic management of overuse injuries. A 30 to 40% reduction was reported in plantar 

pressure under the first metatarsal head and medial heel in patients with a custom-made 

orthosis. The patients had a pronated foot type and underwent an in-shoe measurement to 

compare the total contact area under the foot between each patient with and without the orthotic 

device. The results were concluded to show the effects of the custom-made foot orthosis to 

increase total contact area (redistribute force) and, thus, to be able to reduce plantar pressures. 
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However, it has been now widely accepted that in order to provide a better understanding of 

the effect of orthoses on the foot loading pattem, it is essential to distinguish between the effect 

of an orthosis by itself and the interactive effect of shoe-orthosis on the foot function. Thus, 

every orthotic intervention should be evaluated at 2 different levels: between the foot and 

the orthosis and between the orthosis and the shoe. 

Investigation into the absolute effect of orthoses is currently difficult because of the 

problem of simultaneously attaching measurement insole and the orthosis. lndeed, the 

examination of the effects in the 2 levels at once needs further technical development, which 

seems far more inaccessible at present. 
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8. Detection methods of foot shape and pressure distribution 

8.1. Mechanical devices 

Devices to record the force or stress beneath the foot have existed since 1882 when Beely 

had subjects step on plaster-filled sacks, theorizing that the magnitude of pressure was 

proportional to the depth of the impression. This method and others like it tended to record the 

shape of the foot and not necessarily the pedal forces.2-4 Another early method of recording 

stress was based on the deformation of pliable projections protruding from the underside of a mat 

upon which the subject walks or stands. This stress makes the projections collapse; the area ofthe 

mat in contact with the surface beneath increases, and produces a darkened area. The intensity of 

the inked area is proportional to the applied pressure. A pressure image is produced by an ink.ed 

matthat 

leaves a single peak pressure picture on the paper below the sole imprint. 

The disadvantages of this method are twofold: one is the inability to provide any 

pressure versus time data, and the other is that the image reaches a maximum intensity 

after whicb no furtber increase in pressure can be detected. 

The first mechanical device was Morton's kinetograph. The projections on this device 

consisted of longitudinal ridges that pressed an inked ribbon onto 

a piece of paper and left a series of parallellines that widened with increasing force. 

Elftman used the principle of collapsing projections, but provided pressure-time data. His 

device consisted of a black rubber mat with pyramida! projections on the bottom that laid upon a 

glass plate. A white fluid filled the spaces between the pyramids and provided contrast when the 

pyramids spread. The image was recorded from below with a 16mm movie camera at 72 frames 

per second. This deformable projection principle is widely used today in the commercially 

available Harris mat. It has the advantages of being portable and providing better resolution than 

the previous devices, and is relatively inexpensive. 
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8.2. Capacitance transducers 

A capacitance transducer oonsists of two conductive plates or elements separated by a 

flexible dielectric. As the pressure is applied to the device, the distance between plates decrease, 

the capacitance then increases, and its resistance to altemating current decreases. 

Capacitance transducers may consist of a single layer of compressible material sandwiched 

between two conductive layers, or they may contain several capacitors in parallel by stacking 

several altemating layers of plates and dielectrics. This type of 

device is inexpensive, stable, and produces fairly linear response, bot tends to be thick, 

which makes it less adaptable for use in shoe transducers. 

In 1978 Nicol and Hennig were the first who developed a flexible matrix of capacitance 

transducers using a 48 x 24 cm foam-rubber mat with 16 conductive strips on either side. The 

strips were oriented orthogonally to form 256 transducers, 1 at each intersection of strips. The 

entire array could be scanned in about S ms. 

8.3. Piezoelectric transducers 

A piezoelectric transducer functions on the principle that certain crystalline structures are 

piezoelectrically active and function as a bundle of dipoles, with positive charges grouped at one 

side and negative charges at the other. When mechanical stress is applied to the material, 

separation of charge occurs proportional to the magnitude and orientation of the stress. 

The advantages of this transducer are that smaller loads are produced under the foot 

and that output is linear and exhibits no hysteresis. Its disadvantages are that it is 

extremely sensitive to temperature changes. Also, the voltage decays with time, so the device 

is not suitable for static data collection. 

There are many problems inherent in piezoelectric devices, problems which have 

discouraged clinical use of piezoelectric transducers. 

Hennacy and Gunthe developed in 1978 the first piezoelectric transducer system. They 

used commercially available crystals (Vernitron PTZ-54) to build a 

piezoelectric pressure sensor that was easily calibrated, inexpensive, and capable of recording 

static and dynamic pressures. 
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8.4. Magneto resistor sensors 

The magneto resistor uses a semiconductor theresistance of which varies with the strength 

of the magnetic field in which it is placed. The device was developed by Tappin to measure shear 

forces on the sole ofthe foot. The transducer is constructed using two stainless steel disks 16 mm 

in diameter. The upper disk is grooved and attached to the subjecťs foot. 

The lower disk had a corresponding ridge which fit into the groove ofthe upper disk and 

allowed sliding translation between the two disks along one axis only. A magneto resistor is 

mounted flush with the floor of the groove, and a magnet is attached to the ridge. When 

assembled, the magnet and resistor would slide relative to each other. The disks are held together 

with silicone rubber, which allow translation of the disks relative to each other and provide a 

recentering force. The electrical signal produced is proportional to the movement of the magnet, 

which is in turn proportional to the applied shear force. 

8.5. Foot Imprinter 

The set includes the imprint mat, paper, ink, and roller. This kind of method produces 

weight-bearing imprint of the foot, thereby measuring pressure disbursement and arch shape. 

Figure 22. Foot Imprinter. Obtained from:(http://www.mmarmedical.com/images/Apex­

Imprint.gif) 
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This method is a simple tool for the measurement and modification of plantar pressure 

points. Gives clear picture of the plantar pressure points. It is an excellent educational tool to 

motivate the patient for the better progression ofthe therapy. 

The advantage of this method is tha it is simple, yet effective, and with minimal cost. 

The foot imprinter displays weight distribution on the plantar surface of the foot. It can 

easily be used in dynamic gait analysis, static weight bearing and non-weight bearing positions. 

The examiner applies ink on the underside of the mat and places a blunk paper underneath 

the mat. Then the patient steps on the mat and his/her footprint is printed on the paper. No ink 

comes in contact with patient or operator. 

8.6. Podoscope 

Podoscope is a diagnostic device which is used for evaluation of foot problems. The 

evaluation is direct. Measurement of foot size, heel position, toes posíti on, position, shape of the 

arches and overloaded points under the foot are easily diagnosed. Integrated lamp. 

Advantage of this method is tha it is simple, yet effective, and with minima) cost. 

Figure 23. Podoscope. Obtained from: (http://www.ingcorporation.czlimg/news/P4285808.jpg) 

The podoscope is a device designed to assess the interaction of the foot and supporting 

surface. A patient stands on the transparent glass plate of the podoscope's and the image of his 

feet shows through mirror to the person who is doing the measurements. 
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8.7. Foot scanning methods 

The foot scanning method record a 2-D scan ofthe bottom outline shape ofthe foot. 

/ 

Figure 24. Foot scanning. Obtained from: (http://www.shoemaster.co.uk/solutions/ecofoot.jpg) 

Laser scanning technology has vastly improved the process of fitting foot orthotics. 

Advantages of scanning far outweigh traditional casting methods. Foot scanning is more 

accurate tban casting, leaving little room for error or interpretation. Foot scanning is faster 

and cleaner. A complete scan takes only few minutes. Furthermore, it is easy for the foot care 

professional to learn how to scan feet. 

8.8. In-shoe dynamic pressure measuring system 

The foot platform analysis system enables professionals to perform dynamic pressure 

profiling in order to evaluate shoe-to-ground interaction related to the diabetic foot for example, 

pronation, foot arch and weight-bearing capabilities and assess impact effects in bipedal 

locomotion activities of both feet, either exclusively, or in relation to each other. The platform 

detects body motion (foot-knee-hip) to effectively profile any abnormalities. In addition, densely 

packed sensors in the platform analysis system offer the user high resolution images and a 

modular architecture. 
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TACTILUS"' INSOLE SYSTEM HARDWARE 
(COURTESY OF SENSOR PROOUCTS LLC 2005) 

Figure 25. In-shoe pressure measuring system. Obtained from: 

(http:/ /ww 1.prweb.com/prfiles/2005/02/24/2124 71/Footlnsolewithcaption.jpg) 

The insole systems are advantageous in their hasíc design by assessing foot-to~shoe 

interaction. The foot insole is comprised a thin and highly durable substrate material and ranges 

in síze. The insole sensor collects precíse data for determining pedal pressure points and 

assessing athletic plantar implants in activities ranging from standing and walking to running, 

jumping, skiing and skating. This kind of system works at speeds up to 500 Hz. 

Both the foot platform and insole analysis systems possess robust sensors which can endure 

thousands ofuses with consistent repeatability, and are highly resistant to electromagnetic noise, 

temperature, and humidity fluctuations. With special software provides isobar and region-of­

interest viewing, graphical displays of data in bar charts, line scans and histograms, statistical 

analysis of average/mínímumlmaximum pressures, total force over any selected area, analysís 

view of all nine major foot zones, pressure versus time and more. 
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8.9. Pressure transducers in shoe sole 

These transducers record the heel and toe strike activity as the subject walks. This system 

uses two force sensitive resistors (FSR). Typically one FSR is attached to the sole of a shoe at the 

heel and the other FSR is attached at the toes. The FSRs indicate the precise pressure placed on 

the heel and on the toe as the subject walks. This system comes equipped with a 7.6-meter cable 

and is designed for direct connection to the receiver module. 

Figure 26. Pressure transducers in shoe sole. Obtained from: 

(http://www. biopac.com/Productlmages/ss28.gif) 

8.10. Plantar pressure platform 

The distribution of barefoot plantar pressure is measured using the pressure platform in the 

figure below. This pressure plate, placed on the walkway level with the floor, contains an array of 

6,080 high quality capacitance sensors. Each sensor has a surface area of 0.25 cm2 and can 

record pressure from O to 127 N/cm2 during posture or comfortable cadence locomotion. The 

data is collected at approximately 50 samples per second and analyzed on a Pentium 

microcomputer. 
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Figure 27. Plantar pressure platform. Obtained from: (http://www.novel.de/productinfo/systems­

emed.htm) 

Using the special software, peak. pressure, pressure time integral, and maximum force are 

quantified for different regions of the foot. In addition, a custom-developed program is used to 

calculate certain parameters ofinterest, including the Center ofPressure Excursion Index (CPEI), 

peak. pressure, foot angle, and the temporal sequence of loading for the three phases of stance. 

The primary value of a platform-based pressure distribution analysis is to objectively 

document dynamic barefoot function ( e.g. excessive pronation) and aberrant pressure distribution 

during gait. 

The measurement method is based on calibrated capacitive sensors. These systems are able 

to record dynamic as well as static measurements. The dynamic measurement is the most 

important since it determines loading during the actual roll-over processes, quantified parameters 

such as length and width changes ofthe foot, the Varus or Valgus position, the contact area ofthe 

foot~ the ftmction of the toes, joints and ligaments as well as other parameters. 

The sensitivity of the sensors in some platforms is adjustable and the sensor can be 

calibrated to convert output into pressure units, such as PSI or mmHG. 

These platforms vary in the dimensions. The small ones evaluate only one step each time 

but there also others that have the ability tou evaluaty a whole gait cycle which is a very 

important because we get additional data about the examining person. 
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Figure 28. Screen shot ofEMED data showing the vertical force component ofthe ground 

reaction forces. Obtained from: 

(http://podiatry .temple.edu/gaitlab/facilities/images/emed _ screen.gif) 

8 .. 11 .. Pedobarograph 

The study of Biomechanics comprises the processes involved in the movement of living 

beings. The use offorce plates supply precise information on the magnitude and behaviour ofthe 

forces involved in these processes. It is designed to measure the three orthogonal components of 

the resultant force acting on the platfo~ and the three components of the generated moment in 

the same orthogonal co-ordinate system. 

z 

Figure 29. Co-ordinates of force plate measurements. Obtained from: 

(http://www.soe.uoguelph.ca/webfiles/cwse/Images/People/girls--on-pedo.gif) 

55 



As a pedobarograph the instrument is. us.ed as a gait analysis tool that measures the pressure 

distnoution on the bottom of the foot through all stages of the gait cycle. The optical 

pedobarograph in the Biomedical Engineering lab uses digital video capture technology to record 

the pressure variations on the sole of the foot. The subject walks across the force plate fitted with 

an illuminated glass plate. As the foot hits the device, the glass surface deflects due to the force, 

causíng the horizontal light beams to reflect downwards and be read by the video camera. The 

amount of light reflected is proportional to the pressure caused by the foot striking the plate. 

Figure 30. Pedobarograph. Obtained from: (http://www.amtiweb.com/images/OR6-

WPgrey.JPG) 

8.12. Optic pedobarograph 

A video pedobarograph system for providing a real time, qualitative display of dynamic 

relative pressure measurements includes a plurality of force sensors, a substantially rigid support 

structure and video pedobarograph electronics. The force sensors generate dynamic relative 

pressure signals and are positioned within a force sensor matrix structure. The substantially rigid 

support structure includes a substantially planer surface to which the sensor matrix structure is 

fixedly secured. The video pedobarograph electronics include a video sync stripper and control 

logic. The video sync stripper strips a video sync signal from a composite video signal received 

by the video pedobarograph electronics. The control logic maps the dynamic relative pressure 

signals to the composite video in response to the video sync signal to generate a mapped 

composite video signal providing a qualitative display of the dynamíc relative pressure sígnals 
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within a predetermined portion of an overal! video image generated from the mapped composite 

video signal. 

Figure 31. Optic pedobarograph. Obtained from: (http://www.amtiweb.com/images/OR6-

GTgrey.GIF) 

The optical pedobarograpb has proven to be very helpful in studying foot pressure 

abnórmalities in a variety of clinical conditions and especially in diabetes mellitus and 

rheurnatoid arthritis. Studies using this device have provided a very good insight into the 

etiopathogenesís and natural history of foot disorders. It has also allowed the conductíon of 

intervention trials which assess the efficacy of new treatment. The main advantages of the 

pedobarograph include accuracy, reliability and high spatial resolution. Its drawbacks are its size 

and that it can only measure pressures between the foot-floor interface. 

Other specific uses include, stability analysis, neurological analysis, prosthetics fitting, 

athletic perfonnance, shoe design, tire testing, force, power and work studies. 
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8.13. 3aD foot scanner 

This kind of method used for foot shape remodelling might be also portable. It has laser 

projectors and video cameras mounted on the system. When the scatUler is operated, laser lines 

make a cross section of the surface of the foot. The entire foot shape, including the sole, can be 

measured by taking pictures from under the foot as the subject stands on a glass surface. As the 

laser lines scan the foot, the projected cross section images will be recorded by the cameras, and 

the 3·D foot shape can be measured. 

Figure 32. 3-D foot scanner. Obtained from: (http://www.iwl.jp/mainlinfoot_std.html) 

By itself, raw measurement data is just a collection of points. Human anatomical 

information needs to be added for this collection to be handled as human data. For this reason, the 

human body's anatomicallandmarks must be measured at the same time. The device extracts the 

points marked by a special marker as anatomicallandmarks. Furthermore, it cross-checks against 

the foot shape database and automatically labels what kind of anatomicallandmarks those points 

are. 
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Figure 33. Surface model ofthe foot. Obtained from: (http://www.iwl.jp/main/infoot_std.html) 

Based on the location data of these landmarks, some foot measurements will be 

automatically calculated. There is a significant difference between the datft. obtained by thís 

measurement system and manual measurement by an expert anthropometrist. However, the 

difference in the results is smaller than 2.0[mm]. 

Also, by using a special software, a homologous shape model of the foot is automatically 

calculated based on anatomicallandmarks. As a result, it will be easier to process shape 

information in addition to measurements. The result can be used for comparison of individua! 

differences, designing of shoe lasts, and statistical analysis. 

Figure 34. Polygon mesh ofthe ťoot. Obtained from: (http://www.iwl.jp/mft.in/infoocstd.html) 
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8.14. 3-D Footmodeller 

With the 3-D Footmodeller feet, plaster casts or lasts can be digitised in 3-D. Because the 

elastic foil encloses the object perfect, it makes a 100% copy of the object, which is digitised. 

F eet of patients can be scanned standing up or sitting down. The scanner scans the feet up to 

3,5cm with an accuracy of O,Smm. Within 10 seconds the measurement is made and because of 

iťs shape and weight, it is very mobile. The scan data is compatible with the lnsole~Kíng Cad 

software, therefore it can be adjusted for designing insoles. 

Figure 3S. 3-D Footmodeller. Obtained from: (http://www.insole-king.com/insole­

king/02-IK -Scan.htm) 

8.15. Stereophotogrammetry 

Stereophotogrammetry is the science of dimensional analysis of photographs using 

stereoscopic methods and equipment. It is a standard procedure used by land surveyors in the 

preparation of topographic maps :from aerial photographs. The technique, which is noninvasive, 

has been u sed in a number of applications in medicine, orthopaedics, and oral surgery. 

lf aplied on the surface of the foot it gives us a very nice topographic map of the foot. It 

can be used to evaluate especialy the arches ofthe foot. 
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Figure 36. Stereoph.otogrammetry of the foot. Obtained from: 

(http://www.pubmedcentraLnih.gov/picrender.fcgi?artid=l 000663&blobtype=pdf) 

8 .. 16 .. 3-D Fin.ite Element Modeling of tbe Human Foot 

In order to pro vide a supplement to the experimental inadequacy, many researchers had 

tumed t{) the C{)mputational methods in search of m{)re dinical information. C{)mputational 

modeling, such as the fmite element (FE) method has been used increasingly in many 

biomechanical investigations with great success due to its capability of modeling structures with 

irregular geometry and complex material properties, and the ease of simulating complícated 

boundary and loading conditions in both static and dynamic analyses. The FE method can be an 

adjunct to experimental approach to predict th.e load distribution between the foot and different 

supports, which offer additional information such as the interna! stress and strain of the ankle­

foot complex. 

The FE analyses could allow efficíent para.metric evaluations for the outcomes of the shape 

modifications and other design parameters of footwear without the prerequisite of fabricated 

footwear and replicatíng patíent trials. 

Existing FE models ofthe foot or footwear in the literature (Bandak, 2001; Barani, 2005; 

Camacho. 2002; Chen, 2003; Chu, 1995; Gefen, 2000; Giddings, 2000; Goske, 2005; Jacob, 

1999; Lemmon, 1997; Lewis, 2003; Nakamura, 1981; Shiang, 1997; Syngellakis, 2000; Verdejo, 

2004) were developed under certain simplifications and assumptions such as a simplified or 

partial foot shape, assumptions of linear material properties, infmitesimal deformation and linear 

boundary conditions without considering friction and slip. Although several3D foot models were 
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developed recently to study the biomechanical behaviour of the human foot and anlde, a 

geometrically detailed and material realistic 3D FE model of the human foot and ankle 

specialized for footwear or orthotic design has not been reported. 

Figure 37. Surface model and frnite element meshes ofthe encapsulated soft tissue and bony 

structures ofthe foot. Obtained from: (Camacho 2002) 

8.17. 3-D Motion capture system 

Gait analysis is the major application of motion capture in clinical medicine. Motion 

tracking or motion capture started as a photogrametric analysis tool in biomechanics research in 

the 1970s and 1980s, and expanded into education, training, sports and recently computer 

animation for cinema and video games as the technology matured. The examined person wears 

markers near each joint to identify the motion by the positions or angles between the markers. 

Acoustic, inertial, led, magnetic or reflective markers, or combinations of any of these, are 

tracked; optimally at least two times the rate of the desired motion, to submillimeter positions. 

The motion capture computer software records the positions, angles, velocities, accelerations and 

impulses, providing an accurate digital representation of the motion. 
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Figure 38. Motion data acquisition. Obtained from: 

(http:/ /vrlab.epfl.ch/researchfimages _ research/LO _lorna _ mocap.jpg) 

Passive optical system use markers coated with a Retroreflective material to reflect light 

back that is generated near the cameras lens. The camera's threshold can be adjusted so only the 

bright reflective markers will be sampled, ignoring skin and fabric. 

ln biomechanics, sports and training, real time data can provide the necessary information 

to diagnose problems or suggest ways to irnprove performance, requiring motion capture 

technology to capture motions up to 140 miles per hour for a golf swing. 

Optical systems utilize data captured from image sensors to triangulate the 3D position of a 

subject between one or more cameras calibrated to provide overlapping projections. Data 

acquisition is traditionally implemented using special markers attachedthe examined person. 

These systems produce data with 3 degrees of freedom for each marker, and rotational 

information must be inferred from the relative orientation of three or more markers, for instance 

shoulder, elbow and wrist markers providing the angle ofthe elbow. 

The centroid of the marker is estimated as a position within the 2 dimensional irnage that is 

captured. The grayscale value of each pixel can be used to provide sub-pixel accuracy. 

An object with markers attached at known positions is used to calibrate the cameras and 

obtain their positions and the lens distortion of each camera is measured. Providing two 

calibrated cameras see a marker, a 3-dimensional fix can be obtained. Typically a system will 

consist of around 6 to 24 cameras. Systems of over three hundred cameras exist to try to reduce 

marker swap. 

Vendors have constraint software to reduce problems from marker swapping since all 

markers appear identical. Unlike active marker systems and magnetic systems, passive systems 
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do not require the user to wear wires or electronic equipment rather hundreds of rubber balls with 

reflective tape, which needs to be replaced periodically. The markers are usually attached directly 

to the skin, or they are velcroed to a performer wearing a full body spandexllycra suit designed 

specifically for motion capture. This type of system can capture large numbers of markers at 

frame rates as high as 2000fps. 
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9. General discussion 

Measurement of foot pressure distribution (FPD) is clinically useful because it can identify 

anatomical foot deformities , guide the diagnosis and treatment of gait disorders and falls, as well 

lead to strategies for preventing pressure ulcers in diabetes. Age-related anatomical and 

physiological changes in foot bone and ligament structure affect FPD during gait . Gait analysis 

of healthy elderly people has revealed decreased stride length, reduced step force and increased 

variability in gait parameters. These fmdings indicated that unsteadiness during walking is 

increased in the community-dwelling elderly people, posing a risk for falls. Age is independently 

associated with lower pressure under the heel, midfoot, and hallux in the multivariate analysis. 

Foot pressure studies during walking have focused on specific pathology and deformity specific 

anatomical areas, exercise and younger subjects. Knowledge of the plantar FPD map during 

normal walking in healthy elderly people is lacking. It is not known if distribution of plantar 

pressure, force, and load across several anatomical regions of the foot during walking is different 

between young and old. 

The human foot plays an important role in both load support and shock absorption during 

walk:ing. Shoes and insoles have been designed to protect the foot and facilitate proper foot 

functions for daily activities. An important determinant for a functional and comfortable foot 

support is how well it fits with the plantar foot shape. The foot shapes corresponding to different 

weight-bearing conditions are believed to be unique and can provide a more comprehensive 

description of the foot-insole interaction. lt is important to understand the foot shape and its 

change under weight bearing and to determine which foot shape would best be adopted as the 

deciding factor in designing the support shape. 

Previous studies on the anthropometrics of foot shape used varied protocols and 

measurement devices. Most approaches directly measure the foot length, breadth, height, and 

girth dimensions using sliding caliper, cloth tape, fiat ruler, etc. These measurements may vary 

because of inconsistencies in positioning and the orientation of scales. 

Benninghoff(1949) stated that the navicular bone was depressed, on average, 6.5 mm when 

bearing weight; the foot arch prolonged up to 19 mm within the second ray and 8 mm within the 

fifth ray upon weight bearing. 

Carlsoo and Wetzenstein(l968) mentioned a quite different finding: that weight bearing 

caused no significant change in foot length and foot height. The different results found by these 
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researchers may be dueto an inconsistency in measuring positions, so that the actual foot joint 

orientation and amount of load undertak.en were different. 

Kayano (1986) used a surface-mounted electronic arch gauge to monitor the medial arch of 

the foot during normal walking. It was found that the medial arch length changed at different 

phases of gait. The degree of change in the length of the arch ranged :from 3.7 to 9.5 mm. A 

similar method was used by Umeki (1991), who investigated the factors that influenced the 

length of the medial arch of the foot in normal adults under various passive motions and loads on 

the foot. It was found that the medial arch was lengthened and the foot was abducted when a 

verticalload was added to it. Shortening was observed when the first metatarsophalangeal joint 

was manually dorsi-flexed. The results indicated that the medial arch length would change with 

weight bearing and foot positioning. The use of skin-mounted measurement techniques may limit 

the accuracy of measuring the kinematics estimates of motion. This kind of error becomes 

considerable, as the foot shape alteration is relatively small. 

Borchers et al. (1995) used a commerciallight-striping laser digitizer to scan a foot in a 

non-weight-bearing condition and a 95-percent body-weight-bearing condition. 

This kind of foot digitizing method avoided the error caused by skin displacement and 

tissue distortion. These shape variations gave the researchers ideas about the shape difference 

between a non-weight-bearing foot and a weight-bearing foot. Quantitative analyses and 

descriptions of these alterations are stilllimited. 

Firstly, in clinical evaluation, foot type classi:fication methods are based principally on 

morphology. It has been assumed that a given structural foot type will display certain functional 

characteristics and these, in turn, will be related to pathomechanics of the foot and the lower 

extremity. This kind of model assumes that function and kinematics can be assigned to a foot 

mainly based on its morphology. Ibis is a fundamental but questionable assumption. One other 

model tak.es account of normal joint alignment and some functional components of foot 

mechanics. This classi:fication is based on quanti:fication of the fronta! plane components of 

pronation. The focus of this approach is on neutral and resting ( static) calcaneal stance posíti on, 

subtalar joint range of motion and subtalar joint neutral position. Common to both is an attempt 

to predict dynamic foot function by using static measurements. However, recent reports have 

seriously questioned the reliability of clinical measurement of the criteria for de:finition of a 

normal foot and the validity of static measurements to predict dynamic foot functional 

behaviour. 

66 



Investigators have tried to evaluate the effect of foot type on the occurrence of injury 

during sporting activities. Ilahi and Kohl (1998) reviewed the English language literature from 

1966 to 1997 to explore the scientific rationale for the clinical assumption that lower limb 

malalignment is a contributing factor in lower limb overuse injuries. They concluded that the 

literature generally did not support the clinical belief that decreased longitudinal arch andlor 

varus tibiofemoral alignment has a detrimental effect on the occurrence of injury. Results were 

frequently conflicting with dissimilar methodology, including outcome measures being 

considered as the principal reason for the diverse findings. 

Factors other than intrinsic biomechanical abnormalities may also have a major role in the 

aetiology of sport injuries. These include extrinsic factors such as improper training techniques 

and weekly mileage, poor equipment, inappropriate shoes, unsuitable terrain, and other intrinsic 

factors such as bone geometry, previous injuries and years of running experience. The role of 

these factors (potential confounders) is frequently not tak.en into account in studies that have 

attempted to address the relationship between foot type and the occurrence of injury. Indeed, the 

multifactorial nature of running injuries makes it difficult to draw clear and sound conclusions on 

the specific aetiological factors contributing to a particular injury. Many injuries will be self­

limiting and need no specific treatment. However, orthotic intervention may be appropriate in 

those injuries resulting from identifiable abnormal biomechanics. 

The term 'foot orthosis' covers a wide spectrum of externally applied devices, ranging from 

simple arch supports to custom-made dynamic ankle-foot drop foot splints. The goal of orthotic 

prescription is variable, depending on specific need. However, functional orthoses are usually 

prescribed in an attempt to alter foot function with the expectation that they will guide the foot 

through the weight bearing stance phase of gait to promote overall biomechanical efficiency. 

Their use is somewhat empirical and frequently based on assumptions and insufficient clinical 

assessment. 

Gait analysis systems, including motion-capturing devices, force platforms and foot 

pressure measurement systems, are sometimes employed to investigate the effect of foot type and 

orthotic application on foot biomechanics. These complex systems frequently use different 

calibration methods, and data collection, analysis and reduction strategies, complicating across­

study comparisons. In routine clinical practice it is often common to use skin markers on the 

body to represent different segments during movement analysis. However, the validity of 

demonstrating movement of any skeletal segment by marker placement on skin has been always a 

matter of concern among clinicians and researchers. So called 'skin movement artefacts' introduce 
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errors as a result of the relative movement between skin and underlying bone. However, a 

comparison between rotation measured with skin-mounted and bone-inserted markers showed 

that tibiocalcaneal rotation was generally well reproduced with external markers. Because of the 

invasive nature of bone markers, the study was limited to a small group and subsequently the 

study is of limited generalisability. Other noninvasive methods need to be employed in a larger 

population to investigate the difference between skeletal and soft tissue body segments. 

Using bone-inserted markers, Stacoff et al. (2000) investigated the movement pattem of 

calcaneus and tibia during the stance phase of running in volunteers wearing shoes with and 

without orthoses. The results of the study were reported to indicate that tibiocalcaneal movement 

patterns were not substantially altered by medially placed foot orthoses, either anteriorly beneath 

the medial arch or posteriorly under the calcaneus. Differences between the volunteers were 

found to be significantly larger than between the orthotic conditions. Although all volunteers 

used the same running shoe and orthoses, both bone and shoe movements were interestingly 

found to be typical for each participant, indicating a participant-specific and unsystematic effect 

of orthotic intervention. The comparison of eversion velocities measured with skeletal and shoe 

markers showed a significant difference, emphasising a relative movement between the shoe and 

the foot. 

The effect of shoes in altering the pattern of foot and ankle movement, and the lower 

extremity as a whole, is usually underestimated. In attempting to attenuate shock during walking 

and running, shoes may promote excessive movement. Shoe medial and lateral counter instability 

resulting from fracture or breakdown at midsole-counter interface could also produce an 

excessive range of motion. The common experimental practice of putting surface markers on 

shoes to represent the foot in different gait analysis techniques may introduce a further source of 

error, potentially complicating the comparison ofthe results from different studies. 

Orthotic intervention is believed to influence the pattern of lower extremity movement 

through a combination of mechanical control and biofeedback. It has been speculated that 

orthoses placed under the midfoot and forefoot may increase the afferent feedback from 

cutaneous receptors, which may lead to reduced eversion due to muscular contraction of inverting 

muscles. More recently, the new concept of 'minimising muscle activity' has been proposed to 

explain the effect of applying shoe inserts and orthoses in sporting activities. 
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1 O. Conclusion 

The human foot is a highly complex structure, with 26 major bones and more than 30 

synovial joints. The foot plays a very important role in both load support and shock absorption 

during walking.1bis complexity of the foot is also regognisable, by the fact that there are so 

many different kinds of approaches for the analyzing of the foot shape and pressure distribution. 

Some of these methods are so complicated, expensive and time consuming to work with that are 

used only for research purposes. Because of the complexity of the foot most of these methods are 

analyzing only sorne aspects and lacking some others, so the good understanding of the foot 

biomechanics and kinematics is limited up to a point. 

Of course with the rappid progress oftecbnology, new methods have been developed and 

scientist are able to have a more sferical view of the human foot and better understanding of it. 
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Figure 15. Normal pressure distribution during gait. Obtained from: (Winter, DA, Human 
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