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Abstract 

Many scientific disciplines rely on the construction and use of models: biomedical sciences are no 

exception. This PhD thesis addresses several aspects of the practice of scientific modeling. First, I 

discuss the nature of modeling as such, proposing a novel, complementary account of scientific 

modeling which I term the experimentation-driven modeling account and which drives the 

construction of mechanistic models in many fields of biological and biomedical research, such as cancer 

immunology. Second, I scrutinize an objection to the mechanistic account of explanation according to 

which the account fails to accommodate the common practice of idealizing difference-making factors. 

I argue that this objection ultimately fails because it is riddled with a number of conceptual 

inconsistencies. Third, I analyze the roles of similarity judgments in some fields of cancer research 

which employ a variety of mouse models to learn about the disease mechanisms, arguing that by 

appreciating the epistemic complexities it is possible to shed new light on more general philosophical 

debates regarding scientific representation. Fourth, mechanisms can also be studied using more 

theoretical apparatus in the form of simulations. I investigate an example of an agent-based model 

used to model the outbreak of SARS-CoV-2 and I present reasons for concluding that although these 

models rely on simplified assumptions, the best of these models can nevertheless be construed as 

models of actual mechanisms, delivering both mechanistic and difference-making evidence, and 

serving as tools for evaluating the effects of possible interventions. Finally, I discuss immunology more 

generally and present a conceptual model of how to think about the immune system. In light of the 

COVID-19 pandemic and such others as may arise in the future, an adequate understanding of the 

immune system is required, and philosophy can be of assistance in that regard. 
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Abstrakt 

Řada vědních oborů, včetně biomedicínských disciplín, vytváří a široce využívá vědecké modely. Hlavní 

náplní této disertační práce je analýza některých klíčových aspektů praxe vědeckého modelování. Za 

prvé představím nové, komplementární pojetí vědeckého modelování (modelování založené na 

experimentování): teprve na této bázi lze adekvátně zachytit praxi vytváření mechanistických modelů 

v řadě oblastí biologického a biomedicínského výzkumu, včetně nádorové imunologie. Za druhé 

kriticky prozkoumám jednu z hlavních námitek vůči mechanistickému pojetí vědeckého vysvětlení: 

jejím cílem je ukázat, že toto pojetí nedokáže uspokojivě zachytit idealizaci rozdílových faktorů, běžně 

přítomnou ve vědeckém vysvětlení. Vyústěním mé argumentace bude konstatování, že tato námitka 

zcela selhává vinou řady konceptuálních nesrovnalostí. Za třetí analyzuji různé role, které hrají úsudky 

o podobnostech v té sféře výzkumu rakoviny, v níž se mechanismy podílející se na rozvoji nádorového 

onemocnění zkoumají za pomoci různých myších modelů. Pokusím se ukázat, že docenění komplexity 

těchto úsudků může být významným a zcela původním vkladem do současných filosofických debat o 

povaze vědecké reprezentace.  Za čtvrté poukážu na fakt, že mechanismy lze efektivně zkoumat také 

prostřednictvím počítačových simulací. Konkrétně se zaměřím na tzv. modely založené na aktérech a 

jako příklad zvolím model epidemie SARS-CoV-2. Přestože se tyto modely opírají o několik 

zjednodušujících předpokladů, ty nejpokročilejší z nich lze chápat jako modely reálných mechanismů, 

poskytující jak mechanistickou evidenci, tak evidenci o rozdílových faktorech: a jak se rovněž pokusím 

ukázat, mohou se významně uplatnit při vyhodnocování dopadů různých protiepidemických opatření. 

V závěrečné části práce představím konceptuální model imunitního systému, jehož hlavní zamýšlenou 

funkcí je přispět ke komplexnímu porozumění povaze imunity. Zásadní význam tohoto úkolu 

v kontextu aktuální pandemie a možných budoucích ohrožení je naléhavou výzvou i pro současnou 

filosofii vědy. 

 

Klíčová slova: abstrakce, modely založené na aktérech, biomedicína, rakovina, COVID-19, idealizace, 

imunologie, mechanistické vysvětlení, molekulární biologie, myší modely, filosofie vědy, SARS-CoV-2, 

vědecké modely, vědecká reprezentace 
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Introduction: Models in biomedicine, methods in philosophy 

Many scientific disciplines rely on the construction and the use of models – and biomedical sciences 

are no exception. Scientific literature is notoriously loose when it comes to providing a precise 

clarification of some of the general concepts such as ‘model’. Given that the goals of a scientific paper 

can be achieved perfectly well without dwelling too much on making the meaning of these general 

terms more precise, the vagueness should be of no concern. However, since one of the goals of 

philosophical analysis lies in unpacking such general terms, it must proceed with more care. 

Furthermore, because modeling is such an essential tool, one may benefit from sharpening the key 

concepts pertaining to this practice. Indeed, philosophers have long been interested in questions 

concerning how to characterize the practice of modeling, what models are and how they work. These 

topics are also the central focus of this thesis. It should be noted that the existing range of topics 

related to modeling is too vast for any thesis to address and to provide an original contribution rather 

than a simple restatement or overview of existing views; therefore, a selection had to be made. 

Basic biomedical research is, to a large extent, oriented toward studying mechanisms. It is therefore 

only natural that much of the thesis addresses the question of modeling mechanisms (Chapter 1) or of 

mechanistic explanation (Chapter 2). To learn about disease mechanisms, biomedical researchers also 

often rely on the use of animal models such as mouse models (Chapter 3). Mechanisms, however, can 

also be studied using more theoretical apparatus in the form of simulations, as the case of agent-based 

modeling of the outbreak of SARS-CoV-2 illustrates (Chapter 4). Although I primarily discuss case 

studies related to cancer research and cancer immunology, in Chapter 5 I discuss immunology more 

generally and present a conceptual model of how to think about the immune system. In light of the 

current pandemic and possible future ones, an adequate understanding of the immune system is called 

for, and philosophy can be of assistance in that. 

More specifically, the following issues will be discussed. 

First, I will address the question of how to characterize the practice of modeling. According to the 

widely held view which I call the description-driven modeling account, scientific modeling consists of 

entertaining a set of model descriptions that specify a model, followed by a detailed investigation of 

the model and a comparison between the model and the target system. I will argue that this account 

does not adequately capture important aspects of the practice of mechanistic modeling found in many 

fields of laboratory research such as cancer immunology. By analyzing research practices concerning 

the development of mechanistic models of the process of cancer metastasis, I will propose a 

complementary account which I call the experimentation-driven modeling account. On this account, 

scientists investigate a set of experimental systems and then integrate the results obtained from 

experiments into a mechanistic model. While the experimentation-driven modeling account shares 

some key features with the description-driven modeling account, I will argue that the two are 

epistemically very different research approaches. 

Second, mechanistic models are often used to explain phenomena in the biomedical sciences. 

However, just like most other, if not all, kinds of models, mechanistic models too rely on the use of 

abstraction and idealization. According to a recent objection, the mechanistic account of explanation 

fails to account for the common practice of idealizing difference-making factors in models in fields such 

as molecular biology. I will revisit the debate and I will argue that the objection does not stand up to 

scrutiny (the work on this chapter gave rise to a paper which is currently under review). This is because 

it is riddled with a number of conceptual inconsistencies. By attempting to resolve the tensions, I will 

also draw several general lessons regarding the difficulties of applying abstraction and idealization in 

scientific practice. Finally, I will argue that more care is needed only when speaking of abstraction and 
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idealization in a context in which these concepts play an important role in an argument, such as that 

on mechanistic explanation. 

Third, biomedical research also heavily relies on the use of animal models in order to represent various 

phenomena such as the disease in question. I will focus on mouse models of cancer biology, and in 

particular cancer immunology, that are used to study tumorigenesis as well as to test cancer therapies 

in preclinical trials. More specifically, I will devote attention to the immunocompetent and 

immunodeficient transplantable models, genetically engineered models and humanized models which 

all exhibit numerous advantages as well as disadvantages. I will then disentangle three – often 

intertwined in practice but conceptually distinct – research modes: model selection, model 

extrapolation, and model creation. It will be argued that each of the modes exhibits reliance on 

different forms of similarity considerations. By appreciating the epistemic complexities, it will be 

possible to shed some new light on the more general philosophical debates regarding the similarity 

account of scientific representation. However, rather than to reinvigorate it, this chapter will clarify 

the specific conditions under which similarity may be crucial for both establishing and maintaining the 

representational relation between a model and its target. 

Fourth, the COVID-19 pandemic caused by SARS-CoV-2 has brought a lot of attention to the 

epidemiological modeling of the spread of infectious diseases. The outbreak of SARS-CoV-2 required 

fast-paced decision-making regarding mitigation measures. However, the evidence for the efficacy of 

non-pharmaceutical interventions such as imposed social distancing and school or workplace closures 

was scarce: few observational studies use quasi-experimental research designs, and conducting 

randomized controlled trials seems infeasible. To assess the modeling practice, I will present work 

done in collaboration with Mariusz Maziarz and published in the Journal of Evaluation in Clinical 

Practice and History and Philosophy of the Life Sciences. There, we have considered ‘AceMod’, an 

agent-based model (ABM) developed to model the outbreak in Australia. Two points will be argued 

for. For one thing, although ABMs rely on simplified assumptions, the best ABMs can nevertheless be 

construed as models of actual mechanisms, delivering both mechanistic and difference-making 

evidence and serving as tools for evaluating the effects of possible interventions. For another thing, 

however, there is always the risk that assumptions entertained in ABMs do not include all the key 

factors and make model predictions susceptible to the problem of confounding. Furthermore, 

considering that epidemiological ABMs account for not only biological determinants such as infectivity 

but also social interactions that differ across the globe, the quality of evidence from ABMs must be 

assessed on a case-by-case basis. In reaching policy decisions, ABMs should be understood as merely 

one piece of the puzzle subject to further re-evaluation with respect to value judgments. This is 

because alternative mitigation measures may disproportionately affect certain social groups. 

Therefore, the quality assessment aimed at identifying possible confounders that have been left out 

from a particular ABM should delineate the conflict of interest and the vested values related to the 

ABM and the mitigation measures that it supports. 

Fifth, biomedical researchers also propose conceptual frameworks, providing a perspective on the 

organization of a particular system. Oftentimes they call such a framework a model. Given that efforts 

like that are conceptual in nature, it is no wonder that philosophers of science have themselves 

proposed such models. In this chapter I will propose a model of the immune system based on a paper 

written with Gregor Greslehner and currently under review. In light of the COVID-19 pandemic, there 

is a pressing need to understand the immune system. We seek to address the mindset from which one 

views the immune system primarily as a system of defense, which naturally invites the talk of strong 

immunity reflected in certain areas of immunological research. We argue that although the talk of 

strong or weak immunity makes sense in a restricted way, such a construal of immunity generally 
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contributes to the distortion of the overall picture of what the immune system is, what it does, and 

why it sometimes fails. Instead, we argue for a wider perspective on immunity that is not limited to 

defense, and we propose a conceptual model to help us understand the immune system in terms of 

contextuality, regulation, and trade-offs. Thus, reflecting on COVID-19 also allows us to generalize 

important advances in the understanding of the immune system beyond the current pandemic and 

health crisis. 

The work on this thesis has required the use of various methods of inquiry. In addition to the careful 

examination of the relevant philosophical literature, I have benefited from pursuing several empirical 

methods to inform the conceptual analysis (see Zach 2019 for an overview of a variety of such 

methods). In particular, I have benefited from interviewing scientists and from conducting a participant 

observation of the research practices during my visit to the ImmunoConcept lab, a research facility 

located in Bordeaux specializing on research in immunology and cancer. 
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1. On the nature of scientific modeling: Modeling mechanisms in 

cancer immunology 

 

1.1. Introduction 

In the last several decades philosophers of science have made abundantly clear that much of scientific 

practice relies on modeling. Indeed, as Axel Gelfert claims, “models (…) are all around us, whether in 

the natural or social sciences, and any attempt to understand how science works had better account 

for, and make sense of, this basic fact about scientific practice” (Gelfert 2016, p. v). Philosophers have 

addressed many perplexing questions concerning scientific modeling. These include issues such as how 

models explain (Bokulich 2017) and represent (Frigg and Nguyen 2017) phenomena and how they 

allow for acquiring knowledge about the world in the first place (Frigg and Hartmann 2020; Frigg and 

Nguyen 2017; Fumagalli 2015; Salis 2016). The question that concerns us here takes us a step back to 

consider the nature of modeling itself. 

According to a widely held view, modeling is an indirect activity of scientific theorizing in which 

scientists first construct and then investigate a model, rather than the phenomenon itself. I call this 

view the description-driven modeling (DDM) account. In characterizing such modeling practice, some 

– most notably Weisberg (2007) and Godfrey-Smith (2006) – have distinguished it from a direct 

strategy of theorizing which they call abstract direct representation (ADR). DDM fits well with much of 

the scientific practice of modeling. Furthermore, it appears to capture an important sociological or 

professional dimension of modeling - scientists who are hired and work as modelers.  

However, in this chapter I will argue that DDM does not account for the development of mechanistic 

models in certain branches of biology. Drawing on the method of participant observation and an 

analysis of the scientific literature, the case of the development of mechanistic models of cancer 

metastasis, taken from laboratory research on cancer immunology, will be discussed in detail. 

Consequently, a novel account will be introduced – the experimentation-driven modeling (EDM) 

account – in order to allow for the practices pertaining to mechanistic model building in many fields of 

biological laboratory research, including cancer immunology. In EDM one derives a model from 

experiments, that is, one integrates piecemeal experimental results into a unified conceptual 

framework that is expressed in the form of a mechanistic model, most often in the form of a diagram. 

I argue that DDM and EDM are distinct modeling practices which nevertheless share several features. 

Although several differences will be discussed, arguably the most important of these is epistemic: EDM 

and DDM exhibit different research agendas with respect to modeling. Of note is the point that 

conflating the two modeling approaches amounts to obscuring important epistemic differences in 

scientific practices. It is also interesting that scientists involved in EDM are neither sociologically nor 

professionally recognized as modelers despite the fact that they propose various models. 

The structure of this chapter is as follows. Section 1.2. presents the key features of DDM that, according 

to some of its proponents, set it apart from other ways of theorizing. Section 1.3. provides a primer on 

cancer immunology and details some of the research practices involved in developing mechanistic 

models. Section 1.4. introduces and characterizes the EDM account and addresses, in considerable 

detail, the comparison with DDM and other practices. Section 1.5 elaborates on why EDM should be 

understood as a complementary account. 
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1.2. The description-driven modeling (DDM) account 

The issue of the nature of modeling practices has received relatively little attention compared to many 

other questions concerning models.1 Notwithstanding a few exceptions, a consensus about the key 

characteristics of the modeling process has emerged. The practice of modeling is said to be unified by 

the representational aspect of models (Giere 1988; Glennan 2017; Hughes 1997; Teller 2001). In 

Teller’s words, “in principle, anything can be a model, and (…) what makes a thing a model is the fact 

that it is regarded or used as a representation of something by the model users” (Teller 2001, p. 397). 

In particular, modeling is characterized as a practice in which scientists represent the target systems 

indirectly: they engage in an indirect theoretical investigation and draw surrogative inferences 

(Contessa 2007; Frigg and Nguyen 2017; Giere 1988; Godfrey-Smith 2006; Knuuttila 2017; Knuuttila 

and Loettgers 2017; Levy and Currie 2015; Mäki 2009, 2011; Morrison 2015; Morrison and Morgan 

1999; Parkkinen 2017; Salis 2016, 2019; Thomson‐Jones 2020; Weber 2014; Weisberg 2007, 2013). The 

indirectness of modeling will become clear as soon as we look closely at the stages of the modeling 

process. According to Weisberg (2007), there are roughly three such stages, which can be described as 

follows:  

1. Model construction. In the first stage, scientists construct a model by means of entertaining 

certain model descriptions.2 

2. Model analysis. In the second step, the properties and the dynamics of the model are 

investigated.  

3. Model comparison. Finally, the model is assessed by comparing the model outcomes with its 

target.3  

It must be noted, however, that according to Weisberg (2013, p. 74) the stages of modeling - while 

conceptually distinct – do not necessarily take place in this rigid order as they may happen together or 

iteratively. Still, it does seem safe to assume that in order for scientists to study a model, some version 

of a model must first be proposed. 

Similarly, Godfrey-Smith (2006) describes the modeling process as consisting of the specification and 

investigation of a hypothetical system, i.e., a model, followed by the consideration of resemblance 

relations between the hypothetical and the real-world systems (see also, e.g., Frigg 2010; Salis 2016). 

 
1 For instance, Morrison and Morgan (1999, pp. 12–13) noted that “we are given definitions of models, but 
remarkably few accounts of how they are constructed.” Since then, the situation has improved, although much 
has remained the same. This is because a large portion of the philosophy of modeling has focused on the 
nature of models, i.e., the ontological question, rather than on the nature of modeling as a practice. While 
some have explicitly drawn a distinction between the two, others have not. For instance, Weisberg (2007, p. 
208) admits that “there are many insightful discussions in the philosophical literature about the nature of 
models” but that “less has been written explicitly about the practice of theorizing.” On the other hand, Toon 
(2010) speaks of “the ontology of theoretical modelling,” and makes further remarks which may be viewed as 
collapsing the distinction, at least to some extent (see also, e.g., Thomson-Jones 2012).  
2 Model descriptions are taken to be assumptions, equations, parameters, pictures, empirical data, words or 

pieces of text or any such ‘thing’ that give rise to models or model systems, whatever the ontological status of 
these may be (Frigg and Nguyen 2017; Godfrey-Smith 2006; Mäki 2009; Thomasson 2020; Thomson-Jones 2010; 
Weisberg 2013). It should be noted that some authors have questioned some aspects of the distinction between 
model descriptions and models (Knuuttila 2017; Odenbaugh 2015). 
3 Note that this third step is optional. Although it is true that such comparison often takes place, sometimes 
models are constructed and investigated independently of any real-world phenomenon against which they 
could be compared (Mäki 2009; Thomson‐Jones 2020; Weisberg 2004, 2007, 2013).  
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Thus, scientists construct models as stand-ins for complex phenomena, and instead of investigating 

the target phenomena directly, they investigate them indirectly, that is, take a detour through the 

model. 

To illustrate this general schema, Weisberg (2007, 2013) introduces the Lotka-Volterra model of 

predator-prey dynamics.4 Because the activities of the fishing industry during World War I dropped off 

significantly, one would intuitively expect there to have been an abundance of fish after the war ended. 

However, once the war was over it turned out that there was a shortage of various kinds of fish in the 

Adriatic. Surprisingly, it was observed that the population of sharks and rays seemed to have increased, 

while the population of squid and cod had decreased. To understand why this was so, Lotka and 

Volterra, independently of one another, constructed a system of two coupled differential equations 

describing the hypothetical populations of predators and prey. In particular, the equations describe 

how the population dynamics are coupled. Following the construction and analysis of the model, 

Volterra figured out that whereas low levels of general biocide – which kills both predators and prey – 

would provide favorable circumstances for population growth in predators, high levels would 

contribute to population growth in prey. 

Seen in this way, Weisberg argues that Volterra first constructed a model using certain model 

descriptions expressed in the form of mathematical equations (i.e., model construction). He then 

analyzed the model by studying its dynamics (i.e., model analysis). Finally, the qualitative predications 

were matched against the available data (i.e., model comparison). 

I call this view the description-driven modeling (DDM) account because the modeling practice proceeds 

by entertaining certain model descriptions, on the basis of which a model is constructed and then 

investigated instead of investigating the target system directly.5 

This indirect strategy is not the only one that scientists have at their disposal. Both Weisberg (2007) 

and Godfrey-Smith (2006) speak of another approach to scientific theorizing, distinct from DDM, called 

abstract direct representation (ADR).6 In contrast to DDM, scientists engaged in ADR represent and 

analyze phenomena without the mediation of a model, i.e., they investigate the phenomenon directly. 

As Godfrey-Smith (2006, p. 734) puts it, “one approach is to immediately try to identify and describe 

the actual system’s parts and their workings. A distinct approach is to deliberately describe another 

system, a simpler hypothetical system, and try to understand that other system’s workings first.” 

An example of the ADR practice provided by Godfrey-Smith concerns a book by Leo Buss from 1987 

called The Evolution of Individuality, which is contrasted with the DDM approach exhibited by the 1995 

 
4 For a more detailed exposition see Weisberg (2013, pp. 10–13) and especially Knuuttila and Loettgers (2017) 
who offer a critical and more historically-oriented description. 
5 I believe that the term description-driven modeling can serve as an umbrella term for a number of modeling 
strategies already discussed in the literature. This includes, among others, both the theory-driven modeling 
strategy, in which modeling is regulated by general theories, and the phenomenological modeling strategy, in 
which semi-empirical results and concepts beyond the theory framework are used (see Portides 2011). It also 
includes autonomous modeling, where models are developed independently of a strongly empirically-
confirmed framework theory (see Reutlinger et al. 2018). In cases where data mining practices lead to the 
construction of network models (see Plutynski and Bertolaso 2018), much of data-driven modeling can be also 
viewed as an instance of DDM. The overall modeling process mirrors the steps characteristic of DDM: the 
construction of a network model followed by the analysis of the features of the network (and the comparison 
with the phenomenon). 
6 Note that while the great majority of authors think of modeling as an indirect activity to be distinguished from 
a direct, non-modeling way of doing science, there are a few authors who disagree and argue for a direct view 
of modeling (see Levy 2012, 2015; Toon 2012a). 
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book, The Major Transitions in Evolution, by Maynard-Smith and Száthmary. Both books address the 

question of the origin of multi-cellularity. However, whereas Maynard-Smith and Száthmary rely on 

the modeling approach, Buss’ work is model-free and consists of a detailed examination and careful 

analysis of “the actual relations between cellular reproduction and whole-organism reproduction in 

known organisms” (Godfrey-Smith 2006, p. 731). Godfrey-Smith argues that Buss’ arguments, while 

cautious and speculative at times, are based on the causal roles and the consequences of actual cellular 

machineries, their environmental circumstances, and the developmental sequences, rather than on a 

deliberate consideration of simplified or otherwise schematic organisms. Similarly, Weisberg (2007) 

discusses the work of Mendeleev as an illustration of ADR practice. According to Weisberg, by 

examining the properties of chemical elements, Mendeleev created a representational system that 

captured a pattern exhibited by the chemical elements. Thus, in contrast to indirectly representing the 

phenomenon by creating and studying a model, as Volterra did, Mendeleev’s approach was direct in 

that he represented trends in chemical reactivity rather than trends in a model system.7 

Although Weisberg and Godfrey-Smith are in agreement with regard to the general distinction 

between DDM and ADR,8 they diverge on some specific issues. Weisberg (2007, p. 228) admits that “it 

may be possible to take the equations that describe Volterra's model and treat them as approximate, 

direct representations of Adriatic predator and prey populations.” However, he further claims that the 

fact that “these transformations may be possible should not change our analysis of their theoretical 

practice” because “the contrast between modeling and ADR is about the practice, not the products of 

theorizing” (Weisberg 2007, p. 228). Godfrey-Smith (2006, p. 734) appears to be somewhat more 

liberal, warning us that “it would be a mistake to say that the distinction is always so easy to draw” 

and that there are “unresolved problems to tackle in this area.” At the same time, he suggests that 

there is a sociological dimension to modeling, something which will be addressed in more detail in 

Section 1.5. 

Thus, modeling – according to the DDM account – is an indirect strategy of scientific theorizing 

whereby scientists first construct a model by entertaining certain model descriptions and later devote 

much effort to its analysis.  

 

1.3. Cancer immunology 

Let us now turn to a brief overview and conceptual introduction to the field of cancer immunology, 

followed by a discussion of experimental practices involved in the study of the role of the myeloid-

derived suppressor cells in cancer metastasis. This case study provides important lessons which will 

prove crucial to the introduction of the novel account of scientific modeling expounded in Section 1.4. 

1.3.1. A primer on cancer immunology 

Cancer has been a major topic of biomedical research for well over a century, but only recently has it 

caught the attention of philosophers.9 The definition of cancer alone presents problems: it has been 

 
7 It should be noted that some authors have questioned Weisberg’s analysis of Mendeleev’s work, as well as 
the strict distinction between direct and indirect approaches (see Knuuttila and Loettgers 2017, p. 1012 for a 
discussion and a list of references). 
8 Both agree on the indirectness of modeling and the stages in which modeling happens. They are also keen to 
stress that although abstraction, idealization and other tools are part and parcel of the modeling process, they 
are not unique to modeling (see especially Weisberg 2007, pp. 228–229). 
9 See, for instance, the monographs by Bertolaso (2016), Laplane (2016), or Plutynski (2018). See also a recent 
entry in the Stanford Encyclopedia of Philosophy (Plutynski 2019). 
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variously defined as (i) a disease of cells, (ii) a developmental disease, or (iii) a disease of a tissue 

(Weinberg 2014). As Robert Weinberg, a prominent cancer biologist notes, gene-centric and cell-

autonomous views have been abandoned by the mainstream in favor of some sort of anti-

reductionistic picture according to which numerous factors beside the tumor cells themselves play an 

essential role in the process of tumorigenesis.  

Cancer immunosurveillance – the idea (developed by Paul Ehrlich and later elaborated by Sir Frank 

MacFarlane Burnet) that the immune system plays an active role in keeping most tumors in check by 

seeking them out and destroying them – has long been questioned to the point of having virtually been 

abandoned (Davies 2018 Chapter 8; see, e.g., Decker et al. 2017; Dobosz and Dzieciątkowski 2019; 

Pradeu 2019). The evidence against the immunosurveillance hypothesis has come from diverse 

sources. According to mid-20th century cutting edge science, tumor cells appeared phenotypically so 

similar to healthy cells that the immune system was believed to be tolerant of the tumors. The 

experimental evidence came from studies conducted on mouse models in which a state of 

immunodeficiency was experimentally induced by neonatal thymectomy (Dunn et al. 2002). Although 

the results were mixed, there appeared to be no difference in the incidence of chemically-induced 

tumors between the immunodeficient and the wild-type mice.10 The crucial experiments providing 

what seemed to be the decisive evidence took place in the 1960s and 1970s when Stutman (1974) 

used nude mice, a strain that is naturally missing thymus due to a mutation in a single gene. Here again, 

the chemical induction of tumors led to no observed difference in the tumor burden of both the 

immunodeficient and wild-type mouse. 

However, since then further evidence has been amassed and the idea of immunosurveillance has been 

reinvigorated. It has turned out that the immunodeficient mouse strains used in the above 

experiments were not as immunodeficient as initially thought (Dunn et al. 2002).11 In contrast, mice 

with mutated genes coding for RAG proteins do not develop a functional adaptive immune system, 

making them severely immunodeficient. Studies showed that RAG-deficient mice experience an 

increased tumor incidence even in tumors of non-viral origin; additionally, epidemiological evidence 

from transplant medicine provided support to the immunosurveillance hypothesis (Dunn et al. 2002). 

Some transplant patients later developed cancer. Transplant recipients take immunosuppressive drugs 

to prevent their immune system rejecting the donated organ. A careful examination of the available 

data showed that in these cases, the donors suffered from and were later proclaimed to have been 

cured from cancer years before donating their organs. To make sense of these and other findings, the 

notion of immunoediting (Dunn et al. 2002) proves extremely helpful. The process of immunoediting 

consists of three phases: (i) the elimination phase (i.e., immunosurveillance), during which the immune 

system destroys tumor cells; (ii) the equilibrium phase, in which variants of the tumor cells that are 

poorly immunogenic or that have acquired ways of subverting the immune system evade destruction; 

and (iii) the escape phase, which marks the point at which tumor cells are no longer being kept at bay. 

One of the reasons why tumor cells can evade immune destruction and later escape is that the specific 

environment in which tumor cells arise, called the tumor microenvironment, is generally 

 
10 To be more precise, there was a difference with respect to the incidence of tumors of viral origin. However, 
such an observation could be expected, given that the immunodeficiency resulting from removing the thymus 
leads to a decrease in the ability to control viral infections. The reasoning was as follows: had the immune 
system been implicated in controlling tumors, there should have been an observed increase in the incidence of 
tumors of non-viral origins too. 
11 The impression was that mice lacking thymus would have no functional T cells. It turned out that although 
limited in numbers, these mice have fully functional classical αβT cells, γδ T cells, and NKT cells, all of which 
play a role in immunosurveillance. 
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immunosuppressive (Weinberg 2014).12 By releasing various substances with immunosuppressive 

potential and by actively recruiting immune cells while inducing a suppressive phenotype in them, 

cancer cells create a milieu which allows them to escape surveillance. Thus, the immune system 

actually plays a paradoxical, dual role in cancer: it eliminates tumors but may also promote tumor 

growth.  

The immune system is implicated not only in tumorigenesis but also in the metastatic process. An 

intriguing observation regarding metastasis, the cause of death in 90% of all cancers, is its apparent 

tropism, i.e., a tumor arising in a particular tissue is likely to metastasize to a set of particular organs 

but not to others: for instance, it has been well established that breast cancer tends to metastasize 

into lungs, bone, brain and liver (Weinberg 2014). Noting this surprising phenomenon, Stephen Paget, 

a 19th century British surgeon and pathologist, proposed the “seed and soil” hypothesis, arguing that 

a tumor (the seed) can only grow if it lands on a fertile ground (the soil).13 

Current research indicates that the metastatic organs undergo changes before the arrival of cancer 

cells (Liu and Cao 2016). Thus, rather than being a passive recipient of the “seed”, the “soil” is actively 

being transformed in a complex dynamic process that gives rise to a pre-metastatic niche which 

ultimately leads to the establishment of a secondary tumor site (Liu and Cao 2016). One of the key 

players implicated in establishing a pre-metastatic niche are myeloid-derived suppressor cells (MDSCs), 

a heterogeneous population of immature cells of myeloid origin activated under pathological 

conditions (Gabrilovich and Nagaraj 2009).14 It is common to distinguish two broad sets of these cells 

based on different expression patterns, namely the monocytic and granulocytic MDSCs (M-MDSCs and 

G-MDSCs respectively), with the occasional mention of a third, early-stage population of MDSCs (Veglia 

et al. 2018).15 

 

1.3.2. Experimental inquiry into the role of myeloid-derived suppressor cells in cancer 

metastasis 

Inquiry into the role of MDSCs is an ongoing process with still many unknowns. Such research projects 

rely heavily upon studying experimental systems such as cell cultures and animal models and make use 

of a vast array of experimental assays. In what follows, I provide a brief – and in no way exhaustive – 

description of some of the common methods used in cancer immunology, based in part on the use of 

participant observation method in an immunology lab. In particular, much of the discussion concerns 

 
12 Philosophers have contributed to a key conceptual debate regarding the nature and boundaries of the tumor 
microenvironment (Laplane et al. 2018; Laplane, Duluc, et al. 2019). 
13 This has sparked a debate in the community and multiple competing theories have been proposed to 
account for the observed metastatic tropism (see Fidler 2003). According to some (e.g., Weinberg 2014), the 
seed-and-soil hypothesis is promising, even though it may fail to explain certain features of the metastasis such 
as the rarity of contralateral metastases (i.e. tumor cells disseminated from, for example, one breast should be 
naturally seeded to the other breast which should provide the most hospitable environment). 
14 As discussed by, for example, Veglia et al. (2018), MDSCs have been found to play a biological role not only in 
cancer but also in infectious diseases, autoimmunity disorders, obesity, and pregnancy. Although potency and 
the particular mechanisms by which the subsets of MDSCs mediate their immunosuppressive effects vary 
depending on the site (e.g., lymph node / tumor microenvironment), they do so in both an antigen-specific and 
nonspecific manner, and they suppress the adaptive as well as the innate immune system (Kumar et al. 2016; 
Nagaraj et al. 2010). 
15 As is often the case when defining new cell subpopulations, some have recently questioned whether current 
state-of-the-art knowledge warrants the talk of MDSCs as a category of cells distinct from monocytes and 
neutrophils of a particular phenotype (see Garner and de Visser 2020, BOX 4). 
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the project of Elena Rondeau, in which the goal is to provide the characterization of MDSCs in different 

organs and in different time points in metastatic breast cancer in order to gain insight into the exact 

role played in that context by MDSCs. Please note that this particular example should be understood 

as exemplifying the practice found across many different (biological and other) fields in which much of 

the focus is devoted to wet lab research, allowing us to draw general lessons and to formulate a 

philosophical account of the practices involved (see Section 1.4.).   

Using cell cultures in experimental practice often involves some preparatory work, such as the use of 

a lentiviral vector in order to introduce the genes for the enzyme luciferase and the green fluorescent 

protein (GFP) in the 4T1 cell line, which is a standardized breast cancer cell line. Beyond that, various 

functional assays are conducted using co-culture experiments. These include studying the 

immunosuppressive effects of MDSCs on healthy T cells, or the migration behavior and changes in 

phenotype when co-culturing MDSCs and tumor cells. 

Animal models also play an essential role in studies of cancer metastasis. The BALB/c mouse strain 

serves as the recipient of the 4T1 cell line modified by the lentiviral vector, which results in a cohort of 

tumor-bearing mice models. Mice of the same strain also serve as controls and as a reservoir of healthy 

T cells that may be used in co-culture experiments. Organs are taken from both the tumor-bearing 

mice and the healthy controls and resected into tissue slices of approximately one cell layer (10-12 

μm). These tissue slices are then subjected to immunohistochemical investigation, the goal of which is 

to search for and locate both the MDSCs and the metastases in lungs. Specific antibodies are used to 

stain the MDSCs, thus allowing for visualization. This process is repeated at different stages of tumor 

development to provide further data, e.g., if there are any changes over time in the number, position, 

and type of MDSCs. 

Visualization methods are also crucial when conducting in vivo experiments. By day 11 after injecting 

the immunocompetent BALB/c mice with 4T1 breast cancer cells, the mice exhibit tumors of 

approximately 7-10 mm. They are then injected with luciferin, a substrate that binds the luciferase 

enzyme expressed by the 4T1 cells, resulting in bioluminescence. This allows for the localizing of tumor 

cells in a living animal; and by day 20, metastases start to appear. The mice are then killed and 

dissected, and their organs investigated using the same imaging technique, thus providing additional 

precision. Imaging methods allow for important observations, yet they fail to provide important insight 

into the mechanisms responsible for the observations. To that end, cells are collected from organs and 

subjected to further analysis using a variety of experimental instruments. Among the essential lab 

equipment is the flow cytometer. A sample of cells suspended in a fluid and often labeled with 

fluorescent markers is injected into the flow cytometer, and flowing one at a time, the cells pass 

through a laser. Scattered light is then detected and processed by a computer. In short, flow cytometry 

is a method that enables the detection and measurement of some physical and chemical properties of 

cells. Fluorescence-activated cell sorting (FACS), a feature of many of the flow cytometers, allows for 

the gathering of cells of a particular type for later analysis. For instance, the M-MDSCs and G-MDSCs 

can be detected and sorted on the basis of their expression of CD11b and CD45 markers and 

distinguished from one another by a difference in their level of expression of Ly6C and Ly6G markers.16 

Selected for their surface markers, these cells can then be subjected to a polymerase chain reaction 

(PCR) to analyze the gene expression patterns: taken from different organs at different times, these 

 
16 M-MDSCs are commonly characterized as CD11b+ Ly6G– Ly6Chigh cells, whereas G-MDSCs as CD11b+ Ly6G+ 
Ly6Clow. Note that this is valid only for mice cells because human cells do not express Gr1 – thus, no Ly6C or 
Ly6G epitopes. 
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cells are probed to reveal the set of factors that may be characteristic of them at different sites and at 

different times, such factors including, among others, cytokines and tissue-specific chemokines. 

Additionally, a lot of research makes use of a variety of excitatory and inhibitory studies (see Craver 

and Darden 2013 for an extended discussion). For instance, studies have focused on investigating the 

impact of depleting MDSCs on the formation of metastasis (Ouzounova et al. 2017). Likewise, knock-

out experiments are conducted with the same goal in mind: for instance, one can knock out a gene 

coding for a chemokine such as CXCR2 which has been implicated in recruiting MDSCs to the tumor 

site to see what the effect will be (Katoh et al. 2013). The results show a decrease in MDSC recruitment 

to the secondary site and a resulting decrease in metastatic tumor burden; conversely, transferring 

wild type MDSCs to CXCR2– mice leads to an increased metastatic burden (Katoh et al. 2013). 

Combining all these and other methods, scientists can begin to generate results which help them 

develop an overall picture of the metastatic process. 

 

1.4. Introducing the experimentation-driven modeling (EDM) account  

Having provided some background context and detailed some of the experimental methods used in 

cancer immunology research, we may now formulate some philosophical conclusions. Cancer 

immunologists seek to discover and understand the processes by which primary tumors metastasize. 

They provide accounts of phenomena which they often express by means of diagrams, which in turn 

are taken to represent mechanisms (see Figure 1.1). Indeed, the scientific literature is full of references 

to mechanisms and mechanistic models. Mechanisms and their models have been a hot topic in the 

philosophy of science literature for the past two decades. An ecumenical view has emerged regarding 

the minimal characterization of mechanisms, according to which “a mechanism for a phenomenon 

consists of entities and activities organized in such a way that they are responsible for the 

phenomenon” (Illari and Williamson 2012, p. 123). There are two points of note. First, what scientists 

often express by a diagram is a representation of a purported mechanism – a mechanistic model. 

Second, mechanistic models are models of phenomena.17 In our case, the target phenomenon is a 

complex process, namely the formation of a pre-metastatic niche.18 

It is important to note that the way in which cancer immunologists proceed in developing mechanistic 

models is to a great extent different from the modeling process described by the DDM account. In 

order to provide a more accurate description of modeling in various fields of biological research, 

another account must be proposed.  

 
17 Models of phenomena have long been distinguished from a set of interrelated notions such as data models 
or models of experiments (Bogen and Woodward 1988; Giere 2010; La Caze 2011; Leonelli 2019; Woodward 
2011). Whereas the former notion concerns models of the phenomena of interest, the latter pertains to finding 
patterns in the data and the use of statistical and other data processing methods. 
18 Note that here a model of a phenomenon accounts for a process rather than an entity. 
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Figure 1.1. An example of a mechanistic model expressed in the form of a diagram. Figure adopted 

from Wang et al. (2019). 

 

1.4.1. What is EDM? 

I argue that the process of building mechanistic models in fields such as cancer immunology can best 

be captured by what I call the experimentation-driven modeling (EDM) account.19 The EDM account is 

best defined as the practice of integrating piecemeal experimental results into a comprehensive 

conceptual framework which is expressed in the form of a mechanistic model.20 

In EDM, scientific investigation starts with choosing a set of experimental systems that are relatively 

easy to control and manipulate, an example of which is a cell culture or an animal model. A variety of 

the experiments described above are routinely conducted on these systems, leading to the production 

of experimental results which are taken to provide some (albeit limited) insight into the nature of the 

studied phenomenon. When sufficient experimental results have been produced, a more complete 

picture begins to form, ultimately giving rise to a mechanistic model introduced to account for, at least 

to some extent, the target phenomenon. This is a long and piecemeal process which often requires 

combining results from a multitude of studies, including those published by other teams. Once a 

 
19 The terms theory-driven models and experiment-driven models appear, for instance, in the work of Mitchell 
and Gronenborn (2017), who discuss modeling approaches in the context of research on protein structures. 
Although similar to some extent, the way I discuss modeling in this paper differs from their approach. For 
Mitchell and Gronenborn, whereas theory-driven modeling concerns the practice of predicting the protein 
structure by means of running computations from physical and chemical principles, experiment-driven 
modeling pertains to algorithmically inferring models from experimental data. However, the notions of DDM 
and EDM as presented here are more general: DDM covers not only theory-driven approaches but also theory-
independent approaches, and EDM also covers approaches that are much less, if at all, guided by any sort of 
algorithm and as such the derivation seems much less straightforward. 
20 Fagan (2016) outlines a similar position while discussing research on human embryonic stem cells. In the 
context of immunology, Baetu (2014) has claimed that the “big picture” of some pathway or mechanism of 
interest is often built up as a mosaic of scientific knowledge (see also Lemoine 2017 for similar remarks). 
Mitchell and Gronenborn (2017) have discussed a variety of both theoretical and experimental approaches to 
modeling the structure of proteins, the ways in which these approaches may be integrated and how they 
complement one another. 
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mechanistic model is proposed, an additional process of equal rigor is required to further validate the 

model experimentally and to figure out its possible limitations. This is because, despite the fact that 

the models are derived from experimental results, the experimental systems are in many ways artificial 

and are subject to generating results that provide distorted pictures of what is going on in the actual 

full-blown phenomenon. By way of example, let us consider a set of experiments done in the 1990s 

concerning research on graft rejection. It was known that the presence of specific CD8 T cells is crucial 

for rejecting grafts. Knocking out the perforin gene in mice – one of the mechanisms by which CD8 T 

cells kill cells – generated T cells which lack the ability to kill graft cells in vitro. However, there was no 

observed difference in rejecting skin grafts between the perforin-less and the wild type mice (Clark 

2007, p. 218). What works in vitro may work differently, or not at all, in vivo, and vice versa. 

Furthermore, because experimental results are often highly sensitive to a particular experimental 

context, it is not uncommon to find data that limit the extent to which the mechanistic model can be 

applied to account for what would intuitively be considered as one and the same phenomenon. Going 

back to cancer immunology, consider the following example. Ouzounova et al. (2017) report that 

whereas M-MDSCs switch on the epithelial-mesenchymal transition (EMT), thus facilitating the 

dissemination of tumor cells, G-MDSCs act to change the phenotype of disseminated cells through the 

process of mesenchymal-epithelial transition (MET), allowing for the establishment of a micro-

metastasis. In contrast, referring to the study of Toh et al. (2011), Condamine et al. (2015) state that 

G-MDSCs rather than M-MDSCs are responsible for initiating EMT. One of the many possible 

explanations for this discrepancy lies in the fact that while Ouzounova et al. studied the 4T1-induced 

breast cancer mouse model, Toh et al.’s findings concern a mouse model of spontaneous melanoma. 

Thus, model comparison in EDM may also not be completely straightforward. 

As previously noted, models produced by EDM are derived from experimental results. However, 

because EDM accounts for mechanistic modeling, one should be careful not to conflate EDM with 

models that have been referred to by a variety of terms such as descriptive, phenomenological, or 

black-box models, which merely summarize data without committing to underlying mechanisms 

(Craver 2006; Glennan 2017; Kaplan 2011). 

Finally, the steps in EDM can be thus rendered explicit:   

1. Analysis of experimental systems. Experimental systems are manipulated to generate 

experimental results.  

2. Model construction. Experimental results serve as building blocks in the construction of a 

mechanistic model which accounts for the studied phenomenon. 

3. Model comparison. To estimate the extent to which the model adequately accounts for its 

target, scientists often conduct further experiments in addition to changing the experimental 

context. 

 

1.4.2. On the differences between EDM, DDM, and ADR 

With these three steps now explicit, the comparison between DDM and EDM should become apparent. 

However, two caveats must be considered. 

First, the particular steps in which mechanistic models in cancer immunology are derived from 

experiments appear to differ from the steps in DDM. Recall that in DDM, the modeling process happens 

in roughly three stages: scientists first use model descriptions to construct a model as a stand-in for 

the target phenomenon (model construction); they then investigate the model to find out what it 
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implies (model analysis); and finally, they compare the model results with the target phenomenon 

(model comparison). Thus, one of the differences is that whereas DDM begins by constructing a model, 

followed by its analysis, EDM’s starting point is an experimental investigation which ultimately leads 

to model construction. However, as previously stated, Weisberg (2013, p. 74) notes that the stages of 

DDM do not necessarily occur in this rigid order as they may happen together or iteratively. Still, as 

argued, the order of steps does seem to be representative of much of the practice, setting it apart 

from EDM. 

Second, one may also wonder to what extent EDM and DDM are, in fact, distinct as clearly both can 

rely on experimental results. Recall that model descriptions that give rise to models as per the DDM 

approach can be not only assumptions but also empirical data, among other things. Clearly, then, the 

line between the two cannot be drawn on such terms. However, a closer inspection reveals an 

important difference not to be missed. First, EDM engages in the laborious processes of experimental 

data generation whereas DDM more often relies upon pre-existing data. Thus, the kinds of expertise 

required are often very different. Second – and more importantly – the crucial difference lies in the 

crux of the research practices involved in the two modeling approaches: while the crux of the work in 

DDM is the study of the model, in EDM the work is basically considered done once a model is proposed. 

In other words, DDM is best characterized by “playing around” with a given model, and although 

models also serve cognitive purposes in EDM, e.g., to provide a comprehensive picture of the 

mechanism, EDM does not “play around” with models. Conflating the two modeling approaches would 

thus obscure important epistemic differences in scientific practices. 

The proponents of DDM are very keen to stress the indirectness of the modeling practice, which sets 

it apart from other ways of doing science, such as ADR. The question remains to what extent EDM 

satisfies the requirement of indirectness, a crucial feature of modeling according to the proponents of 

the DDM account. Should it turn out that EDM lacks this key feature, perhaps it ought not to be 

considered a modeling practice but either an instance of ADR or yet another, significantly different 

way of doing science. I argue that there are good reasons for maintaining the claim that EDM does 

indeed possess the feature of indirectness. The fact remains that in EDM the mechanistic model is not 

the central focus of scientists as it is in DDM. Thus, the purported indirectness of modeling according 

to the EDM account cannot stem from the same source as in DDM. However, neither in EDM does one 

study the phenomenon directly: the focus of investigation is a set of experimental systems that are 

assumed to capture – often in a highly artificial way – some aspects of the phenomenon. Thus, in EDM 

scientists investigate the phenomenon indirectly via a detour through the investigation of a set of 

simpler systems. Therefore, EDM does exhibit the feature of indirectness. 

Perhaps it is less controversial to claim that a mechanistic model is the result of what I call the EDM 

practice here, than it is to claim that the practice is, in fact, a modeling practice. In describing the key 

features that distinguish modeling from ADR, Weisberg warns us about conflating the process leading 

up to the product with the product itself. The practices of DDM and ADR are to be  

“distinguished by the actions and intentions of theorists, not by the outcome of the 

process of theorizing. This means that to judge whether or not a particular theorist is a 

modeler, it will not be sufficient to determine whether or not her theory can be represented 

as a model or cluster of models. We will actually need to know something about how the 

theory was developed and how the modeler set about trying to represent the world” 

(Weisberg 2007).  

Weisberg further claims that  
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“modeling is distinguished from ADR by a theorist's construction and analysis of a 

model, which is used to analyze and represent a real-world phenomenon indirectly if at all. 

When a modeler wants to describe a real phenomenon, she begins by choosing a model, not 

a real phenomenon to analyze” (Weisberg 2007) 

and that in ADR 

“the theorist is analyzing a representation that is directly related to a real 

phenomenon, anything she discovers in her analysis of the representation is a discovery about 

the phenomenon itself, assuming that it was represented properly. There is no extra stage 

where the theorist must coordinate the model to a real phenomenon” (Weisberg 2007). 

However, as argued above, cancer immunologists ordinarily choose a set of experimental systems as 

the focus of investigation in order ultimately to learn something about the target phenomenon. They 

do not directly analyze the phenomenon. Rather, they intentionally pursue the indirect line of 

investigation and because research conducted on cell cultures and animal models does not 

straightforwardly translate to knowledge about the target phenomenon (see also below), there is an 

extra stage at which the scientist must coordinate her results with the real phenomenon. Thus, EDM 

differs from ADR. 

In addition to comparing EDM with DDM in terms of the intentions and steps by which these practices 

proceed, one can also turn the spotlight onto the role of assumptions in both kinds of approaches. In 

DDM, assumptions serve as a kind of model description and are said to be the building blocks of 

models: by entertaining certain assumptions, scientists construct models. Often this is put in the 

following terms: scientists write down model descriptions by means of which they create model 

systems (Frigg and Nguyen 2017; Godfrey-Smith 2006; Mäki 2009; Thomasson 2020; Thomson-Jones 

2010; Weisberg 2013). For instance, Volterra wrote down equations (i.e., the model descriptions) 

describing the relations between two hypothesized populations (i.e., the model system).  

In EDM, the role of assumptions is quite different. They neither define nor otherwise give rise to 

models. Instead of serving as building blocks for creating model systems, assumptions in EDM concern 

the representativeness of the experimental systems and the validity of experimental results with 

respect to the studied phenomenon.21 They also help in deciding which experimental systems to use 

in the study of a particular phenomenon. As noted above, much of cancer immunology research makes 

use of cancer cell lines such as the 4T1. Although these standardized cell lines originate from tumor 

biopsies, it is well known that once they have been adapted to cell culture conditions, they no longer 

behave like the tumors arising spontaneously in vivo. The genetic and/or epigenetic changes in these 

cells lead to cell immortalization, meaning that they can proliferate indefinitely. Cancer cell lines grow 

in an environment without the need for heterotypic interactions – a type of communication between 

different cell types which controls the proliferation of the other types of cells in the neighborhood – 

which sets them apart from the tumors originally found in cancer patients.22 The two-dimensional 

spatial arrangement of cell cultures and other features also introduce conditions not found in vivo.23 

 
21 See also Weber (2014) who argues that the role of assumptions in using model organisms concerns things 
such as the validity of the results and as such is different from the role of assumptions in mathematical 
modeling. 
22 To be more precise, some carcinoma cells in vivo develop to the state where they no longer depend on 
stromal support and can grow and proliferate independently (Weinberg 2014). 
23 Although many labs now routinely use three-dimensional cultures, known as organoids or spheroids, they 
comprise only a small part of cell culture research. 
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Recall the example of perforin-less CD8 T cells: under the in vitro conditions they lose their ability to 

reject grafts, yet they seem to do their job perfectly fine in vivo. 

The research is further complicated by a well-known feature of biological systems, namely redundancy. 

It is often the case that while the inhibition of a particular pathway may seem promising in one 

experimental context, it ultimately leads to disappointing results in another because a back-up 

pathway takes over. 

Some might wonder whether the key difference between EDM and DDM cannot be drawn along the 

ontological dimension. Philosophers have long distinguished physical or material models from 

theoretical or nonmaterial models (Frigg and Nguyen 2016; see, e.g., Toon 2010). Because EDM seems 

to concern material practices as opposed to the theoretical practices of DDM, perhaps EDM should be 

understood as an account of material modeling, whereas DDM could be an account of theoretical 

modeling. This view is mistaken for two reasons. Firstly, in EDM, material practices are involved mainly 

in step 1; step 2 is theoretical in that it concerns not the manipulation of material systems but the 

integration of piecemeal experimental results into a mechanistic model.24 Moreover, the mechanistic 

model is not a material entity in the straightforward sense; rather, it is a conceptual model expressed 

in the form of a diagram. Secondly, many material models are clear cases of DDM, e.g., the San 

Francisco Delta-Bay model (Weisberg 2013) and the Phillips-Newlyn machine, a material model of 

macroeconomics (Frigg and Nguyen 2018). These physical models are constructed as simplified 

versions of their target systems and are subsequently investigated in order to learn about the features 

of their respective targets.25 

It would also be wrong to draw a line between EDM and DDM in terms of exploratory versus 

hypothesis-driven research because there are plenty of examples of both the exploratory and the 

hypothesis-driven instances of DDM and the same can be said of EDM (Gelfert 2016, Chapter 4). In 

practice, there may also be instances in which the distinction may not be that sharp, and a researcher 

working on a project may also be moving back-and-forth between the two extremes. 

 
24 At this point it is worth noting the difference between the EDM account and some of the other accounts that 
discuss experimental modeling, such as the experimental modeling account of Weber (2014). Weber claims 
that experimental modeling “consists of constructing model systems that are composed of living organisms 
(sometimes, but not necessarily, genetically modified) and that are used as in vivo representations of biological 
processes in such a way that some processes are used as stand-ins for other processes” (Weber 2014, p. 787). 
This, then, differs from the EDM account in two important respects. First, Weber's experimental modeling 
basically concerns only the first step in EDM: it is the investigation of experimental systems. Second, when 
Weber speaks of constructing model systems, he means the construction of experimental systems; in EDM the 
construction of models pertains to constructing conceptual mechanistic models (step 2). 
25 Depending on the exact context of the research, it should also be noted that there might be cases in which it 
is not perfectly clear whether modeling should be thought of in terms of EDM or DDM. For example, in one of 
the previous footnotes the experimental modeling of the structure of proteins is discussed. Frigg and Nguyen 
(2016) discuss Kendrew’s model of myoglobin, a material model of a protein, along the lines of DDM. In their 
own words, although the “model was constructed on the basis of electron density data (…) it wasn’t simply a 
summary of these data, or a tool to communicate effectively the information the data contained. The model 
provided epistemic access to the tertiary structure of the molecule in a way that the electron density data 
alone could not” (Frigg and Nguyen 2016, p. 226). Frigg and Nguyen claim that some of the key insights 
regarding myoglobin came from studying its material model. Thus, at least in this case it seems natural to 
construe the work as consisting of constructing a model, later followed by its analysis – a picture that fits DDM. 
However, in other cases it might be more natural to think of the experimental modeling of proteins in terms of 
EDM (see Mitchell and Gronenborn 2017 for a discussion on modeling proteins). What this seems to highlight is 
the difference in research goals. One way or another, it is possible that the difficulty with classification may be 
more pertinent to models of entities than to models of mechanisms. 
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Finally, EDM is somewhat peculiar in that the process of mechanistic modeling builds on the use of 

other types of models, namely the animal models and cell cultures which are also sometimes referred 

to as models, a point also clearly articulated in Fagan (2016). Arguably, while in DDM scientists 

sometimes also proceed by constructing a model on the basis of another model, there does not appear 

to be such a built-in dependency as there is in EDM. This is because while all cases of EDM exhibit the 

modeling hierarchy, there are clear-cut examples of DDM in which the construction proceeds without 

the mediation of another model or theory.26 

 

1.4.3. Experimenting and modeling 

Because experimentation is part and parcel of the EDM account, one could gain the false impression 

that any instance of experimentation amounts to modeling. One can run an experiment or even a 

series of experiments without piecing the results together into a mechanistic model. It is only when 

there is an effort to understand the mechanism responsible for the phenomenon of interest by running 

a series of experiments, the results of which are ultimately accounted for by developing a model, that 

we can speak of EDM. Experimentation on its own should not be conflated with modeling; indeed, 

although for different reasons, this point has already been made in the existing literature (see, e.g., 

Weber 2014).  

That said, the philosophical literature brings forth a number of interesting analogies between modeling 

and experimenting on the basis of which it concludes that experimenting is modeling (see, e.g., Mäki 

2005).27 One important analogy suggested by Mäki pertains to his use of the notion of isolation, the 

act of removing influences deemed, at least provisionally, irrelevant to the task at hand.28 In the case 

of theoretical modeling, this means employing assumptions that neutralize the influence of disturbing 

factors, whereas in material modeling the experimental systems are isolated in a lab and sheltered 

from the causal influences of the outer world. Thus, both the theoretical and the material 

manipulations are viewed as isolations. However, as noted before, the simple fact that abstractions, 

idealizations – or, in this case, isolations – are typical of modeling does not warrant the conclusion that 

other practices that make use of isolations should therefore be equated with modeling. For present 

purposes, however, there is no need to take a firm stance on this issue: what matters is that the EDM 

account does not rest on equating experimenting with modeling. Rather, the EDM account views 

modeling as the practice of integrating results obtained from experiments conducted on a set of 

experimental systems – material models, if you will – into a mechanistic, that is to say, a conceptual 

model. None of this would require commitment to the claim that experimenting, per se, is modeling. 

 

 
26 For instance, think of autonomous models such as Schelling’s model of social segregation (Reutlinger et al. 
2018). 
27 Mäki is careful not to commit to the strong reading of this thesis, i.e., the claim that any modeling should 
count as experimenting, and vice versa. In his own words: “The equation models=experiments is not suggested 
to hold for all specifications of the two concepts, that of model and that of experiments. The equation rather 
boils down to two more specific claims: many theoretical models=experiments, and many material 
experiments=models” (Mäki 2005, p. 312). However, since he gives no specific examples of cases in which this 
analogy breaks down, I take the liberty of discussing this issue with respect to EDM. 
28 Mäki (2005) lists additional analogies. However, addressing them is beyond the scope of this paper.  
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1.4.4. EDM: The bottom line 

Before moving on, let us summarize the key aspects of EDM. It is the practice of integrating piecemeal 

experimental results into a comprehensive conceptual framework which is expressed in the form of a 

mechanistic model, often as a diagram. In EDM, scientists first choose a set of experimental systems 

that, albeit in a distorted fashion, are assumed to capture some of the salient features exhibited by the 

target phenomenon. By running experiments, scientists produce data. The results are then used to 

construct a mechanistic model. Rather than investigating or otherwise playing around with the model, 

scientists work with a set of laboratory experimental systems: the mechanistic model is then the end 

product of the modeling process. Finally, the extent to which the mechanistic model correctly accounts 

for the phenomenon of interest may be assessed on the basis of additional experimental verification.  

Because there is no direct investigation of the target phenomenon, EDM comprises an indirect analysis 

(akin to DDM, as opposed to ADR). Although EDM is not assumption-free, the role of assumptions 

concerns the representativeness of the experimental systems and the validity of results. In contrast to 

DDM, the assumptions do not give rise to models. The difference between EDM and DDM is not 

captured by either of the distinctions between material and non-material models, and exploratory and 

hypothesis-driven models, respectively. Crucially, EDM rests on model hierarchy: mechanistic models 

are constructed on the basis of investigating a set of experimental (model) systems. Finally, EDM does 

not equate experimenting with modeling. 

 

1.5. EDM as a complementary account of scientific modeling 

The EDM account of scientific modeling should be understood as complementing rather than replacing 

or modifying the widely held DDM account. This is because while the way in which DDM is 

characterized accounts for a large portion of research practice in various fields, it does not fit well with 

those practices employed in modeling mechanisms in many fields of biological research, such as cancer 

immunology. 

 

1.5.1. Between the normative and the descriptive approaches 

To fully defend EDM as a complementary account there are at least two problems which must be 

addressed. The first concerns the sociological dimension of modeling; the other pertains to the role of 

philosophical analysis. Let us address them in order. 

One may question the extent to which it is justified to speak of modeling in the context of mechanistic 

models based on laboratory research practices. After all, the practice of modeling seems to exhibit a 

sociological dimension in that “some scientists now are trained, hired, and assessed as modelers; that 

is their job description” and that “modelers have their own subculture within science, to some extent, 

and their own language” (Godfrey-Smith 2006, pp. 728–729). Indeed, seen in this way it would be 

difficult to maintain the claim that many cancer immunologists working in experimental labs engage 

in modeling, for the simple reason that they are not hired as modelers and they do not perceive 

themselves as such. 

There is no doubt that the sociological aspect sits well with the DDM account: it is likely that most, if 

not all scientists who work within the DDM framework are in fact hired and assessed as modelers. In 

contrast, scientists whose work is best captured by the EDM account are hardly ever hired as modelers. 

Nevertheless, there are other (epistemically) important features shared by EDM and DDM: when 
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building mechanistic models of phenomena, EDM scientists proceed indirectly: instead of directly 

analyzing the target phenomenon, they construct and investigate a set of simpler systems on the basis 

of which they construct conceptual mechanistic models. Thus, while the sociological dimension is a 

unique feature of DDM, it does not prevent us from construing the EDM practices as modeling 

practices. 

Scientific literature is notoriously loose when it comes to providing a precise clarification of some 

general concepts, such as a ‘model’. Given that the goals of a scientific paper can be achieved perfectly 

well without dwelling too much on making the meaning of these general terms more precise, the 

vagueness should be of no concern. However, since one of the goals of philosophical analysis lies in 

unpacking such general terms, it must proceed with more care. Roughly, two extreme views can be 

discerned in this context. Whilst philosophical analysis might espouse a strictly descriptive approach 

and consider anything referred to by the term ‘model’ as an instance of a model, constructed by some 

modeling practices, one can stipulate the meaning of a given term by providing a philosophical analysis 

of a set of presumably paradigmatic examples while excluding possible alternatives. This latter 

approach exhibits strong normative tendencies. The EDM account, much like that of DDM, is situated 

somewhere between these extremes. On the one hand, it takes seriously the notion of a mechanistic 

model; yet on the other hand, it has built-in boundaries specified by the key characteristics described 

in the previous section. Similarly, according to some of its proponents, the DDM account should be 

understood as providing an incomplete picture of modeling practice. 

Along those lines, Weisberg argues that “just as theorists offer incomplete, idealized models of their 

targets, so must philosophers. Theoretical practice is rich and multilayered, and the world is often 

uncooperative” (Weisberg 2013, p. 6), to which he further adds that “by developing philosophical 

accounts of modeling, we can start to get a handle on theoretical practice. But just as in a 

representation of any other complex phenomenon, philosophical analysis will necessarily be partial 

and incomplete. Thus the accounts developed in this book are themselves models of modeling” 

(Weisberg 2013, p. 6). The EDM account helps to partially complete the picture by providing another 

piece of the puzzle. 

 

1.6. Chapter summary 

Scientific modeling is an important tool in contemporary science. Philosophers of science have long 

discussed many aspects of the practice of modeling. My review of the description-driven modeling 

account, and my proposal of the experimentation-driven modeling account, demonstrate firstly, that 

DDM does not account for the practice of mechanistic modeling in laboratory fields such as cancer 

immunology; secondly, that EDM fits well with what is going on in cancer immunology research and 

beyond; and thirdly, that EDM should be understood as a complementary account which can coexist 

with DDM. 
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2. Modeling via abstraction and idealization: How not to criticize 

mechanistic explanation 

 

2.1. Introduction 

The world in which we live is immensely complex. Indeed, its complexity vastly exceeds our capacity 

to grasp it in its entirety with all the exact detail in place. Nevertheless, scientists do more than a decent 

job of keeping the complexity in check by constructing models of selected phenomena that help us to 

understand, explain, predict and control various aspects of the world. To achieve this, models must be 

simple enough to facilitate insight into the phenomena. In the literature of the past several decades, 

much has been said about the nature(s) and function(s) of models (see also Chapter 1).29 Many, though 

not all, authors prefer to speak of abstraction and idealization as examples of tools for introducing 

simplifications into models. Overall, models are commonly considered to be relatively poor in detail 

and often to provide distorted accounts of their target systems. 

Importantly, abstractions and idealizations have also been discussed in the context of specific 

philosophical debates such as that on the mechanistic account of explanation. In a recent paper, Alan 

Love and Marco Nathan (2015) have argued that the new mechanists’ preferred view of explanation 

cannot account for the common practice of idealizing difference-making factors in models in molecular 

biology.  

This chapter scrutinizes the analysis provided by Love and Nathan and argues against their conclusion 

that the mechanistic account of explanation is in trouble. More specifically, I will argue that their 

analysis paints a confusing picture for a number of reasons: it is interwoven with inconsistencies 

regarding (i) how they treat one and the same modeling assumption, (ii) how they apply their preferred 

definitions, and (iii) how they formulate the core objection. Moreover, the assumptions that they 

present as idealizations can – instead, and perhaps more naturally – be accounted for in terms of 

abstractions. In the process, I also draw several general conclusions for the debate on abstraction and 

idealization and its use. For one thing, it will be shown that philosophers developing accounts of these 

notions often disagree among themselves with respect to a number of issues, meaning that the notions 

might not be as clear cut as generally believed. Relatedly, while the distinction between abstraction 

and idealization is relatively easy to spell out, it proves extremely tricky to adequately apply it in 

scientific practice. This may, in part, be due to the fact that the various existing accounts have been 

developed in different disciplinary contexts; and applying the distinction originally developed in one 

context to another may not be a straightforward process, for it may overlook important differences in 

epistemic practices characteristic of the respective disciplines. Finally, the arguments laid out in this 

chapter should also serve as a cautionary note to those who have embraced the objection to the 

mechanists, not realizing the fundamental issues underlying such criticism. More generally, 

philosophers may need to pay special attention when using the concepts of abstraction and 

idealization before these concepts can do any real work in a philosophical argument. 

The structure of this chapter is as follow. Section 2.2. discusses abstraction and idealization and notes 

that while some papers present detailed accounts of these notions, other papers rely on a ready-made 

 
29 See, e.g., Frigg and Hartmann (2020) for a comprehensive review. Extended discussions can also be found in 
a number of monographs or book editions. (Bailer-Jones 2009; Cartwright 1983; Gelfert 2016; Giere 1988; 
Magnani and Bertolotti 2017; Morgan 2012; Morgan and Morrison 1999; Morrison 2015; Toon 2012a; 
Weisberg 2013) 
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distinction. Section 2.3. reviews the key parts of Love and Nathan’s analysis, including their case study 

on models of gene expression, which is followed by a detailed critical examination in Section 2.4. 

Section 2.5. provides concluding remarks. 

 

2.2. Abstraction and idealization 

The philosophical debates over the last several decades have made abundantly clear that much 

scientific practice relies upon the construction of models that, in some sense, are simplified versions 

of their target systems. Among the most frequently mentioned techniques for introducing simplifying 

assumptions into models are the practices of abstraction and idealization. It should be noted that these 

two, however, hardly present an exhaustive list of the forms of simplification. Indeed, many other 

notions are commonly discussed, some with partially overlapping or otherwise interconnected 

meanings. Furthermore, I should note that the term ‘assumption’ is somewhat ambiguous. As 

suggested in Chapter 1, assumptions may either be viewed as the building blocks of models (as in 

DDM), or they may concern the representativeness of the experimental systems and the validity of 

experimental results (as in EDM). However, throughout this chapter I will use the term ‘assumption’ 

indiscriminately to refer to any kind of an assumption involved in modeling. 

An important distinction concerns the nature of these assumptions on the one hand, and on the other 

hand, the roles these assumptions play. For instance, Demetris Portides states clearly that the 

“character [of idealization] and its epistemological implications” (Portides 2013, p. 253) are separate 

issues. Philosophers usually tend to focus exclusively on one or the other, perhaps somewhat more 

rarely on both (e.g., Potochnik 2017).30 This is, of course, a perfectly legitimate endeavor which reflects 

various interests.31 However, as should become clear in Section 2.4., what is at stake here is both the 

former issue, i.e. the character of abstraction and idealization, and the question of what implications 

it has for the latter, i.e. for the way in which these concepts figure in at least some explanatory 

practices in molecular biology. 

One set of papers that deals with the topic of abstraction and idealization often relies on a ready-made 

distinction. In the simplest terms, idealization is construed in terms of (deliberate) distortion, 

misrepresentation and/or falsehood and amounts to providing an inaccurate picture of the studied 

system, whereas abstraction concerns the omission of an (irrelevant) feature.32 

 
30 For example, when presenting the notions of Galilean idealization, minimalist idealization and multiple-
models idealization, Michael Weisberg claims that “despite the differences between minimalist idealization and 
Galilean idealization, minimalist idealizers could in principle produce an identical model to Galilean idealizers” 
and that “the most important differences between Galilean and minimalist idealization are the ways that they 
are justified. Even when they produce the same representations, they can be distinguished by the rationales 
they give for idealization” (Weisberg 2013, p. 102). Arguably, then, Weisberg’s Galilean and minimalist 
idealizations are (or at least can be) one and the same (kind of) assumption that is put to work in different 
ways.  
31 Much focus has been devoted to inquiring into those various functions. For instance, they may allow for 

making a model mathematically tractable (Jebeile 2017), although it should be noted that it is not necessarily 

the case that all assumptions are limited to mathematical modeling. Abstraction and idealization can also help 

in isolating difference-making factors by narrowing down the focus of a model (Mäki 1992; Strevens 2008; 

Weisberg 2013), and they play various roles in explanation (Batterman 2009; Bokulich 2011; Jebeile and 

Kennedy 2015; Kennedy 2012; Reiss 2012; Rice 2015; Rohwer and Rice 2013; Wayne 2011) or understanding 

(Elgin 2007, 2017; Potochnik 2015, 2017; Reutlinger et al. 2018; Rice 2016; Strevens 2017). 
32 Commenting on the available relevant literature, Margaret Morrison states that “most of [the literature] 
draws a distinction between idealization which is construed as the distortion of a particular property (e.g. 
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For instance, according to Roman Frigg and Stephan Hartmann, 

“Aristotelian idealization [i.e., abstraction] amounts to ‘stripping away’, in our 

imagination, all properties from a concrete object that we believe are not relevant to the 

problem at hand” (Frigg and Hartmann 2020). 

“Galilean idealizations [i.e., idealization] are ones that involve deliberate distortions” 

(Frigg and Hartmann 2020). 

Arnon Levy and William Bechtel claim that, 

“Broadly understood, idealization is the introduction into a theoretical model of 

simplifying falsehoods—assumptions that are known not to describe accurately the target 

phenomenon but that nevertheless expedite analysis and understanding. To say that a 

population of rabbits is infinitely large is an idealization, in this sense. Insofar as a model is 

abstract, it need not contain any falsehood or inaccuracy. Abstractions are poor in detail yet 

potentially true and accurate. Idealizations are by definition mismatched to reality” (Levy and 

Bechtel 2013, p. 243). 

While referring to Godfrey-Smith (2009), Alan Love and Marco Nathan state that abstraction concerns 

“the intentional omission of detail” and that “abstraction must be distinguished from idealization, the 

deliberate misrepresentation of detail in a model” (Love and Nathan 2015, p. 763). Similarly, in the 

words of Marta Halina, models “are abstract in the sense of omitting detail about the target system 

and idealized in the sense of distorting elements of that system” (Halina 2018, p. 219). 

Referring to Jones (2005), Mazviita Chirimuuta explains that “by ‘abstract’ [she means] a model which 

leaves out much biophysical detail, in other words ‘highly incomplete’; by ‘idealized’ [she means] a 

model which describes a system in an inaccurate or unrealistic way” (Chirimuuta 2014, p. 133). 

Finally, Worth Boone and Gualtiero Piccinini state that 

“mathematical and computational models are typically constructed not only by 

abstracting away from many details of the target system but also by replacing those details 

with simplifications and idealizations that distort or misrepresent the target system” (Boone 

and Piccinini 2016, p. 680). 

As hinted above, some of the authors who use the distinction explicitly draw on another set of papers 

which aims to provide a more nuanced characterization of the terms by clarifying in what precise sense 

idealizations may be thought of in terms of distortion, misrepresentation and falsehood, and 

abstraction in terms of omission of details (e.g., Godfrey-Smith 2009; M. R. Jones 2005; Levy 2018; 

Mäki 1992; Portides 2018; Potochnik 2017). Although there exists a consensus among the authors 

developing more nuanced accounts on some of the general features such as the need to distinguish 

between at least two meanings of the process of omitting certain features in a model – one of which 

may better be understood as an idealization rather than an abstraction – many other issues remain a 

matter of debate. For example, while some authors including Levy (2018) argue that idealization must 

be intentional, such requirement is explicitly denied in Jones (2005). Among many other things, 

philosophers also disagree on the question whether idealizations are best construed as concerning 

 
frictionless planes) and abstraction which involves the omission of properties (e.g. a body’s material in 
calculating its trajectory)” (Morrison 2011, p. 343). 
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individual claims (Levy 2018), or whether they should be thought of holistically, that is, as applicable 

to models as wholes (Rice 2018, 2019).33, 34 

Importantly, authors developing accounts of abstraction and idealization often characterize the 

notions against a backdrop of a specific disciplinary context, ranging from economics to various 

 
33 Another interesting issue concerns, for instance, the extent to which it is legitimate to construe abstraction in 
terms of omission-as-subtraction, a term coined by Portides (2018). On this view, according to Portides, 
abstraction amounts to stripping away – subtracting – features which presupposes that the modeler knows 
beforehand whether or not the modeled system in fact possesses the features in question. Portides claims that 
the omission-as-subtraction view is implicit in how abstraction is commonly understood, and he cites 
Cartwright’s work to illustrate the point. Cartwright states that abstraction “is not a matter of changing any 
particular features or properties, but rather of subtracting” (Cartwright 1989, p. 187) and that “abstraction in 
science works by subtracting all those factors which are only locally relevant to the effect” (Cartwright 1989, p. 
224). This interpretation is suggestive and is often motivated by a handful of examples. For instance, when 
modeling the movement of a ball by writing down the equations of motion, color is subtracted from the 
description since it is considered irrelevant to the task at hand (Cartwright 1989, p. 187). Similarly, Julie Jebeile 
states that “there is no point in specifying the Moon phase for describing the motion of a body, or, of including 
the presence of oxygen or the average temperature for describing the trajectory of planets” and that “the 
description, once cleared of the less relevant details, contains all the relevant representational aspects” 
(Jebeile 2017, p. 216). Although abstraction by subtracting features is indeed descriptive of cases in which 
enough knowledge has accumulated, i.e., where scientists are fairly familiar with many of the features of the 
studied system, it may be more adequate to characterize abstraction generally in terms of omission-as-
extraction, whereby certain features are ‘extracted’ from the system irrespective of what the other features 
may be (Portides 2018). This is because, although omission-as-subtraction may adequately capture what is 
going on in domains in which the concept was developed, the fact remains that such characterization fails as a 
general characterization of abstraction – a thing to note when applying it to fields other than those in which 
the notion was originally discussed (Portides presents an example from quantum mechanics to that effect). 
Indeed, in many areas including much of molecular biology the details are being filled in in a piecemeal fashion 
rather than crossed out from the outset. For instance, prior to figuring out the detailed workings of a signaling 
pathway, the exact molecular complexes involved in the pathway are usually not known (see Craver and 
Darden 2013). Additionally, and in parallel to explaining how models are built, the philosophical literature has 
also addressed the ontological question of what models are. Abstraction as subtraction naturally fits with some 
metaphysical debates: the process of subtracting features generates abstract objects and scientific models 
have been construed as such (Giere 1988; Glennan 2017; Mäki 2009; Psillos 2011; Teller 2001). Thus, some of 
the accounts could be interpreted as dealing with the question of ontology for which it is presumably well 
equipped (but see Frigg and Nguyen 2017; Thomson-Jones 2010; Toon 2012a for arguments against models as 
abstract objects). However, some (N. Jones 2018; Levy 2013) have explicitly warned against making 
connections between abstraction employed in the service of constructing scientific representations and 
abstract objects. 
34 In fact, there is a host of other issues that philosophers have addressed and that are directly relevant to 
elaborating the concepts further. Among these issues we find questions related to the nature and function(s) of 
abstraction and idealization, many of which remain a subject of controversy. For instance, consider the 
following questions: how exactly do abstraction and idealization relate to truth (M. R. Jones 2005; Levy 2018; 
Portides 2018; Teller 2012), to mathematics (Jebeile 2017), to fictions (Bokulich 2011; Suárez 2009), or to 
approximations (M. R. Jones 2005; Morrison 1998; Norton 2012; Portides 2007)? How should we adjust our 
views regarding the historical development of theories? More specifically, can we reinterpret certain theories 
or models from the past as if such theories were postulating simplifying assumptions even though these 
‘assumptions’ used to be taken at face value? Or should we refrain from such practice and instead consider 
only an intentional usage as possible instances of these assumptions? Are they eliminable, should they always 
be, and how are they justified (Batterman 2002, 2009; Batterman and Rice 2014; Bokulich 2017)? Are they best 
construed as concerning individual claims or rather holistically as pertaining to the models as wholes (M. R. 
Jones 2005; Levy 2018; Rice 2019)? Do they come in degrees? And if so, how can we estimate different degrees 
(M. R. Jones 2005; Levy 2018)? Should we think of them in terms of the processes by which models are built or 
as model products? All these issues, many of which remain unresolved, suggest that the topic of abstraction 
and idealization is, in fact, very complex. 



32 
 

domains of physics and of biology. Extrapolating the distinction from one disciplinary context and 

applying it in another may prove challenging (see Section 2.4.1.), for the range of practices in these 

disciplines may differ considerably. 

Naturally, some of the authors who develop accounts of abstraction and idealization then end up using 

them, or vice versa. For instance, Levy in Levy and Bechtel (2013) quoted above simply uses the 

distinction, referring to Jones (2005) and Godfrey-Smith (2009), while in his (2018) he develops a more 

nuanced account.35 

Finally, one may wonder whether a more thorough conceptual analysis of abstraction and idealization 

is required. In fact, two reasons may be offered for thinking it has both practical and otherwise 

important consequences (see also Levy 2018). Providing conceptual clarity with respect to the notions 

discussed here may prove useful for scientists who engage in various methodological debates in their 

community, including the arguments over the issues of the realisticness of assumptions in providing 

understanding of phenomena (Mäki 1992). The other reason, the one that concerns us here, is to avoid 

using arguments in philosophical discussions which are grounded in concepts that are ill-defined for 

the purposes at hand. Failing to clarify the key concepts may generate great misunderstandings and 

lead to cycles of fruitless debates, generating even more confusion. 

 

2.3. Love and Nathan on the mechanistic account of explanation in molecular biology 

In a recent paper, Alan Love and Marco Nathan (2015) present a case against the mechanistic account 

of explanation, arguing that the account fails as it is unable to account for what they see as the 

widespread practice of idealizing difference-making factors in scientific models, which, thus, brings us 

back to the debate on abstraction and idealization. In particular, they argue that "the intentional 

misrepresentation of causal relations, which are the source of explanatory power in a description of a 

mechanism’s components and activities, generates a significant—albeit neglected—problem for the 

mechanistic framework” (Love and Nathan 2015, p. 762).  

There are several key concepts to unpack first. The concept of a mechanism, so ubiquitous in the life 

sciences, has received considerable attention over the past two decades. Naturally, a number of views 

have been discussed in the literature that differ from each other in various ways,36 including in the 

criteria delimiting purported mechanisms. For instance, according to a highly influential account, 

“mechanisms are entities and activities organized such that they are productive of regular changes 

from start or set-up to finish or termination conditions” (Machamer et al. 2000, p. 3). However, for our 

purposes and in line with Love and Nathan’s stated intention, we may refer to the core conception37 

of a mechanism, according to which “a mechanism for a phenomenon consists of entities and activities 

organized in such a way that they are responsible for the phenomenon” (Illari and Williamson 2012, p. 

120). 

Similar treatment may be applied to the related notion of mechanistic explanation. While there are 

now many diverse accounts of mechanistic explanation,38 Love and Nathan remain uncommitted to 

 
35 Similarly, in Frigg and Hartmann (2020), Frigg presents the usual distinction, but in later work he also 
develops a more detailed account (Frigg in progress).   
36 See, e.g., Nicholson (2012), Levy (2013) and Andersen (2014a, 2014b) for excellent analysis and overview. 
37 Also known as the minimal conception, see Glennan (2017, p. 17). 
38 Kaplan introduces the model-to-mechanism mapping account (also abbreviated as the 3M account), 
according to which “a model of a target phenomenon explains that phenomenon to the extent that (a) the 
variables in the model correspond to identifiable components, activities, and organizational features of the 
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any particular account in order for their analysis to be as broad as possible. Instead of insisting on the 

technical details of this or that account, they focus on the core assumption and “treat mechanistic 

explanation as the claim that many areas of science explain by decomposing systems into their 

constituent parts, localizing their characteristic activities, and articulating how they are organized to 

produce a particular effect” (Love and Nathan 2015, p. 762). 

Central to their argument is the claim that  

“If the actual difference-making causes are idealized, they do not show how the 

mechanism actually works. The dilemma should now be apparent. A practice widely used in 

describing mechanisms—the deliberate misrepresentation of the productive continuity 

between difference makers—conflicts with the explicit goal of accurately representing causal 

relations, which is often taken as the hallmark of mechanistic explanation. The idealization of 

causal relations demonstrates that these models do not depict how the mechanism actually 

works. If actual difference makers are represented in such a way that they are not difference 

makers, according to what is already known about the mechanism, mechanistic explanations 

appear to fail according to their own criteria” (Love and Nathan 2015, p. 768). 

Elsewhere they claim that 

“The widespread use of irreducible abstractions challenges the ideal of descriptive 

completeness, but it is compatible with the goal of describing how mechanisms actually work; 

abstractions make the model more perspicuous. Idealizations, in contrast, provide a further 

layer of complexity as they overtly violate the actuality requirement. The introduction of 

deliberate misrepresentations in a model clashes directly with the claim that mechanistic 

representations should represent how systems (or their subcomponents) actually work” (Love 

and Nathan 2015, p. 770). 

And finally, 

“accounts of mechanistic explanation face a problem in accommodating the 

deliberate misrepresentation of causal relations among components and activities that play a 

difference-making role in producing the explanandum” (Love and Nathan 2015, p. 770). 

In their view – adopted in a brief form from Godfrey-Smith’s (2009) view – abstraction concerns “the 

intentional omission of detail”; furthermore, “abstraction must be distinguished from idealization, the 

deliberate misrepresentation of detail in a model” (Love and Nathan 2015, p. 763). Thus, Love and 

Nathan’s paper belongs to the set of papers that makes use of the distinction. 

Many mechanisms in molecular and cellular biology are ordinarily depicted by means of diagrammatic 

representation accompanied by a description. These often involve depicting entities by means of 

 
target mechanism that produces, maintains, or underlies the phenomenon, and (b) the (perhaps mathematical) 
dependencies posited among these (perhaps mathematical) variables in the model correspond to causal 
relations among the components of the target mechanism,” to which he further adds that the “3M aligns with 
the highly plausible assumption that the more accurate and detailed the model is for a target system or 
phenomenon the better it explains that phenomenon” (Kaplan 2011, p. 347). This particular account has been 
challenged by, for example, Chirimuuta (2014), who argues against the presumption that the more details the 
model provides the better it explains the target phenomenon (see also Batterman 2002 for an earlier argument 
in the same direction, albeit in a somewhat different context; see also Batterman and Rice 2014; Deulofeu et al. 
2019). However, it is not clear that Kaplan may be interpreted as subscribing to such a strong statement since 
elsewhere he states that abstractions and idealizations are a necessary part of scientific work and that they do 
not jeopardize the explanatory project (Kaplan 2011, p. 348; see also Kaplan and Craver 2011, pp. 609–610).   
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various geometrical shapes that are connected to each other by arrows standing for causal relations, 

accompanied by symbols such as ‘+’ or ‘-’ which suggest that a given causal relation is an activating or 

inhibiting process, respectively. All these shapes and symbols are intended to stand for certain entities 

and causal processes which purportedly occur inside (or outside) the cell. With respect to these 

geometrical shapes, any arrows and pluses or minuses that disregard the particular details and the 

ways in which the entities and causal relations are instantiated are to be considered an intentional 

omission of details, as abstractions. Other aspects of models in molecular biology are to be taken as 

instances of idealization, according to Love and Nathan.  

The authors present and discuss three assumptions employed in diagrammatic models of gene 

expression, all of which purportedly introduce important and intentional misrepresentations into the 

models. Remember that that these misrepresentations should be understood as instances of 

idealization and since they represent the difference-making factors in a distorted fashion, they cannot 

provide mechanistic explanations. 

Let us look in turn at the modeling assumptions discussed by Love and Nathan.  

1) Figure 2.1 depicts the process of gene expression which is initiated by a transcription factor 

binding to its binding site. However, as illustrated by Figure 2.2, the overall picture is actually 

much more complex. Instead of a single molecule, a transcription factor, attaching to its 

binding site, it is actually a functional molecular complex, which consists of various molecules, 

which does the binding. 

2) Both Figure 2.1 and Figure 2.2 “depict gene expression as triggered by a single transcription 

factor, or, more accurately, a single complex of molecules—call this functional unit p1. While 

p1 unquestionably plays a role in the process, it is not a difference maker by itself; its presence 

(or absence) makes virtually no difference to the outcome. This is because even if p1 was not 

there, another molecular complex of the same type (p2, p3, . . . , p546, . . .) would take its 

place” (Love and Nathan 2015, pp. 766–767). Furthermore, the functional units continuously 

bind and detach. Hence, they do not represent an individual binding event but rather a 

sequence of events that takes place in time and constantly changes. 

3) It is the concentration of a transcription factor in the system that fundamentally contributes 

to its difference-making role.39 Thus, the diagrams fail to represent aspects of the system that 

make the actual difference to the occurrence of the modeled phenomenon. More specifically, 

the key information is the concentration of a transcription factor relative to a repressor.40 

 

 
39 The causal role of concentrations is discussed in detail in Nathan (2014). 
40 A repressor is any molecule that binds DNA, resulting in either blocking the binding of RNA polymerase to its 
promoter region, or blocking its function, which, in effect, blocks the DNA transcription. 
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Figure 2.1. A simple schema of gene expression. Figure drawn by Filip Měšťánek, after Saurabh Sinha. 

 

 

Figure 2.2. A schema of gene expression which depicts the role of many different molecular 

components in the initiation of transcription. Figure drawn by Filip Měšťánek, after Levine and Tjian 

(2003). 

 

 

 

 

 

 

 

 

 

 

 

Love and Nathan are very explicit in stressing that each of the assumptions at hand is an idealization, 

a misrepresentation of an aspect of the system, and not an abstraction. 
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2.4. How not to criticize the mechanistic account of explanation in molecular biology 

In what follows it will be argued that Love and Nathan’s argument suffers from several issues. It 

paints a confusing picture because the authors are inconsistent with respect to what they argue 

against as well as to how they use the key concepts; and even if these problems are somehow 

presumed to be resolved, it still leaves the authors ‘empty handed’ as it does not provide much 

support to their intended conclusion. Consequently, their objection to the new mechanistic account 

of explanation does not stand up to scrutiny, hence, the new mechanists need not worry about this 

particular objection. 

There are two reasons – addressed in turn in Sections 2.4.1. and 2.4.2., respectively – for making the 

claim that Love and Nathan’s analysis paints a confusing picture, and each, even if resolved, fails to 

provide support to the effect that one would be justified in thinking that the mechanistic account of 

explanation is in trouble.  

 

2.4.1. Against confusing the distinction 

The first problem concerns the fact that despite their insistence on treating all the assumptions 

discussed in Section 2.3 as misrepresentations (i.e. idealizations), it turns out that they are 

inconsistent, for they treat one and the same assumption both as an abstraction and an idealization. 

With respect to the assumption (1) – the binding site binding a single molecule (Figure 2.1) rather than 

a complex of molecules (Figure 2.2) – Love and Nathan claim that “under normal circumstances, 

individual molecules do not act as difference makers, but complex functional units do. Thus, the 

diagram does not “merely leave things out” (abstraction) but “fictionalizes in the service of 

simplification” (idealization)” (Love and Nathan 2015, p. 766). Clearly, then, we are to think of the 

concept of a transcription factor as an idealization. However, one page earlier, with respect to the 

same assumption and the same concept of transcription factor, the authors claim that the “more 

specific description [i.e., Figure 2.2] of the apparatus for the regulation of eukaryotic gene expression 

exposes a variety of abstractions that were present in [Figure 2.1]” (Love and Nathan 2015, p. 765). 

Hence, we are left wondering whether the concept of a transcription factor is an idealization, or an 

abstraction after all. This is even more pressing when we take at face value the authors’ insistence on 

the claim that “abstraction must be distinguished from idealization” (Love and Nathan 2015, p. 763). 

Furthermore, the authors are also inconsistent with respect to their own proposed standards. With 

respect to the assumption (3) regarding the difference-making role of the concentration of a 

transcription factor, the authors claim that when “known difference makers are intentionally omitted 

from the representation” (Love and Nathan 2015, p. 767) we are to understand it as an act of 

idealization. This, however, is in direct contradiction with their previous definition of abstraction as 

“the intentional omission of detail” (Love and Nathan 2015, p. 763). Consequently, these contradictory 

suggestions make the conceptual analysis unclear. 

Let us assume, for the sake of argument, that the preceding problems are somehow resolved so that 

no inconsistencies arise. We may now consider the question of the extent to which the authors are 

justified in claiming that the assumptions are indeed idealizations. Love and Nathan define idealization 

as “the deliberate misrepresentation of detail in a model” (Love and Nathan 2015, p. 763) which they 

adopt from Godfrey-Smith (2009). However, there is no immediate way in which to assess whether or 

not all the assumptions would in fact count as idealizations in Godfrey-Smith’s view. One reason for 

that is that Godfrey-Smith developed his account in the context of certain kinds of models in 

evolutionary biology, which, arguably, are very different from the kinds of models used in molecular 
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biology. Indeed, one should be careful when applying a distinction developed originally in the context 

of a particular field to another field. Distinguishing abstraction from idealization, as it turns out, is also 

extremely problematic when the notions are applied to scientific practice. Both these points become 

clear as soon as one considers the vast literature devoted to making the conceptual distinction 

between abstraction and idealization, rather than relying merely on the first approximation. 

To illustrate, consider again the assumption (3) concerning the omission of concentrations from the 

model of gene transcription. How should such omission be interpreted? It depends. Discussing an 

example taken from physics, Martin Jones has the following to say: 

“If a model of a particular fluid flow represents the flow as irrotational when it is not, we can 

in one sense correctly say that the model omits the rotation involved in the flow. However, 

such a model omits a certain feature of the real system in a way which involves 

misrepresenting how things stand in that respect; on the proposal I am putting forward, 

however, abstractions involve omission without misrepresentation. Omission in this restricted 

sense is, so to speak, a matter of complete silence” (M. R. Jones 2005, p. 175). 

According to Jones’ view, we may be inclined to construe the assumption as one about which the 

model remains completely silent (i.e., an abstraction) rather than misrepresenting it. Similarly, 

Portides (2018) argues that in the process of model building, scientists abstract away from the 

complexities of the studied system by extracting certain features from it (omission-as-extraction in 

Portides’ terminology) that will serve as the focus of subsequent investigation. Those features which 

have been retained in a model may then be further modified in an important way, i.e., idealized. The 

omission of concentrations seems to fit naturally with the notion of abstraction, for this feature is 

completely missing from the model rather than being modified. Indeed, it is not the case, in contrast 

with many other cases of idealization, that the parameter of concentrations would be set to zero in 

this particular model: the model simply does not mention it at all. These remarks are further 

supported by Love and Nathan who admit that the “explicit descriptions associated with the 

diagrams (…) do not invoke concentrations” (Love and Nathan 2015, pp. 767–768). Thus, they 

unwittingly build a case for the assumption to count as an abstraction.  

In contrast, other philosophers such as Potochnik (2017) suggest that an omission, sometimes being 

a failure to explicitly reference a feature, may nonetheless count as an implicit idealization. According 

to her view, idealization concerns the representation of a target system as if it has a feature it does 

not, whereas abstraction consists of a straightforward omission which has no consequence for the 

representation.41 She then claims that 

“It is important to distinguish this sense of omission—ignoring without 

representational consequences—from omission in the sense of failing to explicitly reference. 

It is the former sense that is definitive of abstractions; many idealizations are also omissions in 

the latter sense” (Potochnik 2017, p. 55). 

In support of the proposed distinction, Potochnik provides the example of evolutionary game theory 

models that hardly ever explicitly state the assumption of the population size being infinite. This 

assumption allows the modeler to disregard the role of genetic drift. Thus, Potochnik argues, an 

apparent abstraction is sometimes discovered to be a covert idealization. Understood this way, we 

may side with Love and Nathan, since their claim that the “explicit descriptions associated with the 

 
41 Of course, one may ask for clarification of what it precisely means to be of no consequence to 
representation. Since the validity of Potochnik’s views are of little concern to us here, we may simply refer the 
reader to her original text.  
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diagrams (…) do not invoke concentrations” (Love and Nathan 2015, pp. 767–768) is in line with 

treating the omission of concentrations as an instance of covert idealization. Thus, much can be said 

about both attitudes towards the assumption of omitting concentrations. However, until this question 

is adequately settled, it may be unfair to proclaim that the mechanistic account should be rejected. 

What this shows is that there may be no general agreement among the philosophers writing on the 

topic of abstraction and idealization on whether a particular assumption should best be viewed as an 

instance of abstraction or idealization. This can, in part, be due to different epistemic commitments 

exhibited by different modeling practices in different disciplines such as physics, evolutionary biology 

and molecular biology. 

Consider further the assumption (2): gene expression depicted as being triggered by a continuous 

event of a single transcription factor binding to the appropriate site as opposed to many transcription 

factors of the same type and the event being discontinuous. According to Love and Nathan, we should 

interpret it as an idealization. However, some authors writing on the distinction between idealization 

and abstraction call for more caution when reaching such conclusions. Describing what is effectively 

the same type of example – the workings of ribosomes as they are usually depicted – Arnon Levy 

writes: 

“The ribosome in fact moves back and forth along the mRNA, attaches and detaches, 

constantly changing conformation. However, it is hard to tell whether standard depictions of 

this process are idealized or abstract (or both). Do they portray the ribosome as having a 

sequential, deterministic character, contra the realities of ribosomal action? Or are these 

abstractions that highlight certain functional states and activities of the ribosome while 

staying silent about others?” (Levy 2018). 

Thus, the assumption (2), too, presents a dilemma even for authors who specifically focus on 

developing a nuanced view of abstraction and idealization. 

Moreover, speaking of arrows as means of depicting causal relations in diagrammatic models in 

molecular biology, Love and Nathan claim that the “arrows simply stand in for causal relations, 

regardless of how they are instantiated” and that the “typical representation of biochemical 

components as distinguishable geometrical shapes and the exclusion of known components involves 

abstraction: the intentional omission of detail” (Love and Nathan 2015, p. 763).42 Causal arrows leave 

out the particular details regarding how the causal relations are instantiated. In some cases, however, 

this omission has important consequences for understanding the extent to which a reaction occurs, if 

at all. Consider a simple model of enzymatic regulation via negative feedback, in which a substrate is 

turned into a product which feeds back into the pathway and inhibits, thus regulates, the given 

pathway. Generally, two types of inhibition are recognized: competitive and non-competitive. Holding 

the concentrations and other conditions fixed, the rates of reaction differ between the two types of 

inhibitions. Therefore, depending on the particular research question, omitting such details results in 

withholding potentially crucial information regarding a difference-making factor. Yet, I concur with 

Love and Nathan that it feels natural to think of causal arrows which stand for any number of causal 

relations as abstractions. Perhaps the notion of vertical abstraction coined by Mäki (1992), which, 

 
42 It is rather illustrative of the conceptual difficulties that the authors speak of the geometrical shapes by 
which the entities are typically represented as abstractions. Whether or a not a particular reaction takes place 
is influenced by a variety of factors, including – importantly – the particular shapes of the reactants. Thus, 
although shapes are in fact key difference-making factors for a reaction to occur, they are clearly 
misrepresented by the diagrammatic sketches. Thus, shapes could potentially be re-interpreted as 
idealizations. 



39 
 

arguably, also happens to capture much of Levy and Bechtel’s (2013) discussion would help to clarify 

the matters.43  

Let us summarize the implications of the preceding paragraphs to Love and Nathan’s approach. The 

authors paint a confusing picture by being inconsistent in their use of abstraction and idealization. 

Arguably, philosophers who develop more nuanced accounts of these notions would give conflicting 

recommendations as to whether the particular assumptions should be interpreted one way or the 

other. Additional clues suggest that the assumptions could be understood as certain kinds of 

abstractions after all. Therefore, the arguments presented by Love and Nathan – hence the conclusion, 

too – should be taken with a grain of salt. However, another argument in favor of Love and Nathan’s 

approach must be considered before rejecting their analysis completely. 

 

2.4.2. Against confusing what the core objection is 

The second problem causing confusion concerns the core objection raised against the mechanistic 

account of explanation. Recall that the problem identified for the mechanistic account pertains to the 

purported practice of idealizing difference-making factors. In the words of Love and Nathan (2015, p. 

768), “if the actual difference-making causes are idealized, they do not show how the mechanism 

actually works.” Although passages like this can be found throughout the text (as evidenced in Section 

2.3.), on one place they make the following statement: “we would not expect features that play a 

central explanatory role to be abstracted away or distorted in a mechanistic description. Yet, in 

molecular biology, the causal relations responsible for the explanandum are deliberately 

misrepresented on a regular basis” (Love and Nathan 2015, p. 764). What are we to make of such 

remarks? On the one hand, we are told that the causal relations in molecular biology are deliberately 

misrepresented, i.e., idealized, which is why the mechanistic account purportedly fails. That is also why 

Love and Nathan spill a lot of ink on arguing that the assumptions employed in models in molecular 

biology are idealizations rather than abstractions (but see the discussion in previous section). On the 

other hand, though they neither show it, nor argue for it, they seem to casually suggest that 

abstractions, too, may present a problem for the mechanists. Thus, although they explicitly favor the 

problem of idealization as a reason for rejecting the mechanistic account, it is not clear whether the 

problem of abstraction would also be sufficient for them to reject the account. 

Let us assume, for the sake of argument, that this confusion, too, is somehow resolved and let us 

consider what happens if, contrary to Love and Nathan’s preferred analysis, we treat the assumptions 

as abstractions, and if we take at face value their proposal that abstractions present a good enough 

reason for rejecting the mechanistic account. How would this fare with respect to their own views, and 

in comparison with other existing views? 

Recall that Love and Nathan take issue with what they identify to be the hallmark of mechanistic 

explanation, namely the goal of accurately representing causal relations (Love and Nathan 2015, p. 

768). If causal relations are represented in an idealized – non-accurate – way, then that goal may not 

be achieved. But the authors argue that abstraction concerns “the intentional omission of detail” and 

 
43 Love and Nathan are very well aware of the fact that the appropriateness of the chosen level of description 
must be evaluated with respect to the particular issue at hand (research question, educational purpose etc.). 
They propose to address this using Weisberg’s (2013) multiple model idealization approach. Here we may 
suggest that the notion of vertical abstraction might serve the purpose better. However, it should also be noted 
that this particular problem could potentially be re-interpreted as an instance of generalization rather than 
abstraction, a distinction discussed by Levy (2018). 
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it “must be distinguished from idealization, the deliberate misrepresentation of detail in a model” 

(Love and Nathan 2015, p. 763). They say nothing to the effect that abstraction would interfere with 

the goal of accurate representation, i.e., how mechanisms actually work. Instead, they say precisely 

the opposite, namely that “the widespread use of irreducible abstractions challenges the ideal of 

descriptive completeness, but it is compatible with the goal of describing how mechanisms actually 

work; abstractions make the model more perspicuous” (Love and Nathan 2015, p. 770). However, since 

they explicitly refer to Godfrey-Smith’s (2009) analysis of the notions, one may legitimately ask 

whether Godfrey-Smith has anything to say on the matter. And he has the following to say: “an abstract 

description of a system leaves a lot out. But it is not intended to say things that are literally false” 

(Godfrey-Smith 2009, p. 48). Indeed, as shown in Section 2.2., this view is shared by many of those 

who use the conceptual distinction between abstraction and idealization as well as those who develop 

accounts of the distinction.44 Furthermore, although mechanists have identified research projects in 

which abstraction proceeds differently in different explanatory contexts – making a representation less 

abstract by progressively filling in more concrete details (Machamer et al. 2000), or overlooking more 

detailed descriptions in order to develop more abstract representations such as network models (Levy 

and Bechtel 2013) –, abstraction is generally construed as harmless with respect to the goal of accurate 

representation on these accounts. 

Thus, even if all the three assumptions are interpreted as abstractions, and even if Love and Nathan 

do in fact propose that abstractions should somehow, too, pose a problem for the mechanistic 

account, nothing they say provides support for their conclusion. Instead, most of the clues point in the 

other direction.  

 

2.4.3. Why should we care? 

One key point is that making the precise distinction would not be required if not much depended on 

it. That is not the case for Love and Nathan, however, who attempt to use the distinction to challenge 

the mechanistic framework. You will recall that central to their argument is the claim that “the 

intentional misrepresentation of causal relations, which are the source of explanatory power in a 

description of a mechanism’s components and activities, generates a significant—albeit neglected—

problem for the mechanistic framework” (Love and Nathan 2015, p. 762). More specifically, “if the 

actual difference-making causes are idealized, they do not show how the mechanism actually works” 

(Love and Nathan 2015, p. 768). However, as has been argued herein, the failure to adequately 

characterize abstraction and idealization invites trouble for the whole objection to the mechanistic 

account of explanation precisely because those notions are at the heart of the objection and are 

presupposed to be clearly defined when they are not. Indeed, unless a stronger foundation is provided, 

the objection has little traction.  

That said, we observe a number of authors expressing sympathies toward Love and Nathan’s analysis. 

Thus, it is worth noting that the detailed analysis of Love and Nathan’s approach provided herein may 

prove illuminating for those engaged in the debate on mechanisms who either explicitly embrace Love 

and Nathan’s views, or follow similar lines of argument. 

 
44 Note that in the previous section I briefly introduced the example of the negative feedback mechanism and I 
argued that the arrows representing a causal process may best be viewed as an instance of vertical abstraction. 
Although such an abstraction is found wanting in context in which a more detailed description is required in 
order to answer a specific research question, it nevertheless does not say things that are literally false; hence, it 
does not contradict the received view about abstraction.  
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For example, Collin Rice references Love and Nathan’s work to support his claim that “using 

idealizations that distort difference-making factors is pervasive in biological modelling—even within 

mechanistic modelling” (Rice 2019, p. 195). However, I believe I have demonstrated that we have 

reasons to think that this is something Love and Nathan have failed to show. Similarly, in discussing 

models of cancer, Anya Plutynski, referring to Love and Nathan, claims that “it is permissible in model 

building to deliberately represent the system falsely” (Plutynski 2017, p. 131). This is something Love 

and Nathan failed to prove, so if what Plutynski says is true, it is so for entirely independent reasons. 

Others (e.g., Halina 2018; van Eck and Mennes 2016) also seem to embrace the core message of Love 

and Nathan in various contexts.45 Arguably, this introduces a dangerous precedent which might 

escalate into a cycle of long-lasting debates, all built on sand. 

 

2.5. Chapter summary 

The vast literature on scientific modeling often invokes the concepts of abstraction and idealization. 

Roughly, two sets of papers may be distinguished: one that develops detailed accounts of the notions, 

the other that applies these concepts while often referring to the first set of papers. Alan Love and 

Marco Nathan have relied on these notions when arguing that the mechanistic account of explanation 

is deeply flawed as it fails to account for the common practice of idealizing difference-making factors. 

In this chapter I scrutinized the arguments and examples provided by Love and Nathan and I presented 

reasons for thinking that their analysis fails to provide support to their conclusion. In particular, I 

argued that their analysis paints a confusing picture because it is interwoven with inconsistencies 

regarding (i) how they treat one and the assumption, and (ii) how they apply their preferred definitions.  

Setting aside these inconsistencies by assuming none arise, I showed that the assumptions discussed 

by Love and Nathan are far from clear examples of idealization. Instead, they may very well be 

interpreted as abstractions. I further showed that philosophers who develop more nuanced accounts 

would give conflicting recommendations when applied to the particular assumptions discussed herein. 

In addition to the fact that philosophers disagree on a number of things regarding how precisely to 

characterize abstraction and idealization, they also develop these notions in a particular disciplinary 

context. Extrapolating the distinction from one disciplinary context and applying it in another proves 

challenging, for the range of practices in various disciplines differ considerably. 

Furthermore, I argued that Love and Nathan are unclear with respect to the core objection. While they 

have a beef with idealization not being accounted for in mechanistic explanation, they also seem to 

suggest that abstraction, too, may be problematic – something for which they do not present any 

arguments, however. I considered the implications of taking their suggestion at face value and I 

showed that it does not support their claim that the mechanistic account of explanation is flawed. 

Taken together, the analysis provided by Love and Nathan does not provide a sufficient reason for 

rejecting the mechanistic account. The arguments presented herein should also serve as a cautionary 

 
45 More precisely, van Eck and Mennes focus on the part where Love and Nathan discuss the use of the 
multiple-model approach. Halina concerns herself with the representational ideal of completeness. However, 
the specific details are of little concern to us; the issue at hand is only that these authors touch upon Love and 
Nathan approvingly without realizing the arguably more fundamental problems discussed herein. 
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note to those who have embraced the objection to the mechanists, not realizing the fundamental 

issues underlying such criticism.46 

It is worth noting that, notwithstanding the intrinsic difficulties of the accounts of abstraction and 

idealization, these notions may legitimately be invoked in those contexts that do not require a carefully 

argued analysis. The problem arises only in situations in which these concepts make an appearance in 

a philosophical debate that calls for careful analysis, such as that on mechanistic explanation. In other 

words, the concepts of abstraction and idealization concern an important philosophical dispute that 

should not be treated lightly if we wish to clarify many of the debates which invoke these notions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
46 However, one should also be wary of interpreting this chapter as a general defense of the mechanistic 
framework. Indeed, the rich philosophical literature on the mechanistic explanation has many interesting 
points to offer regarding the tenability of the framework in molecular biology (see, e.g., Skillings 2015). This 
chapter only meant to show that whatever the means of challenging the mechanistic account of explanation, 
arguments such as those found in Love and Nathan’s analysis are not a good way of accomplishing that goal. 
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3. Mouse models of cancer: On similarity and representation 

 

3.1. Introduction 

Much has been already written on many aspects of research which employs model organisms in order 

to investigate biological phenomena. Predominantly, the philosophical scholarship has focused on the 

criteria that guide the choice of model organism, and on the justificatory efforts concerning 

extrapolative inferences from a model organism to a target system.  

Similarly, the concept of similarity has attracted significant attention in the context of the debate on 

scientific representation, with some attention given to discussing the more specific sense of similarity 

found in a particular disciplinary context (see, e.g., Sterrett 2017 on the concept of a physically similar 

system). Focusing on cancer research, and particularly upon cancer immunology, the analysis provided 

in this chapter contributes to the study of both modeling and similarity by mapping the practices which 

make use of mouse models. In Chapter 1 I discussed mouse models as systems for generating 

experimental results that are later used in the construction of conceptual mechanistic models of 

biological phenomena such as the formation of metastasis. In this chapter, I will provide more details 

about the specifics of the use of mouse models, thus further elaborate on some of the practices that 

were presented so far only in a coarse-grained manner. 

More specifically, I will be concerned with various kinds of mouse models such as the 

immunocompetent and immunodeficient transplantable models, genetically engineered models and 

humanized models. Providing the rudimentary understanding of what is going on in such research, I 

will then distinguish three research modes: model selection, model creation, and model extrapolation. 

The selection of a mouse model is guided by the particular research question at hand, the similarity 

considerations, and a host of pragmatic and other factors. In model extrapolation, similarity 

considerations in one way or another are used to justify the extrapolative inferences of the pre-

established features of the models. In this sense, much like in model selection, it will be argued that 

the similarities play a passive role. In contrast, model creation amounts to actively introducing changes 

so that a model is made to be similar to a certain degree and in certain respects to the studied 

phenomenon.  

In general, while much has been written on the topic of model selection and model extrapolation, 

relatively little has been said about creating new animal models. Although the research modes are 

often intertwined in practice, they are both conceptually and temporally distinct, and as will be argued 

in some detail, the concept of similarity plays different epistemic roles in each of the modes.  

Clarifying these different roles will prove crucial in an argument concerning scientific representation. 

Most generally, scientific representation has been characterized in terms of one thing standing for 

another. Thus, a scientific model is a representation of its target system because the model stands for 

its target. The question, then, concerns the nature of the standing-for relation. What makes a model 

stand for its target? A number of different accounts have been proposed: structuralist accounts (e.g., 

French 2003); the DEKI account (Frigg and Nguyen 2020); a variety of inferentialist and pragmatist 

accounts (Bolinska 2013; Contessa 2007; Knuuttila 2011; Suárez 2004); and the similarity account 

(Giere 2004; Godfrey-Smith 2006; Mäki 2005; Weisberg 2013), according to which scientists use 

models to represent their targets by utilizing similarities in certain respects and to certain degrees 

between a model and its target. Regarding the similarity account, exploiting the relevant similarities is 

what enables us to learn about the phenomenon of interest by studying its model instead. Despite its 
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popularity in certain quarters, a wide range of objections have been leveled against the account. 

According to the objection addressed herein, one must distinguish between the concepts of 

representation and accurate representation, the latter – but not the former – possibly being grounded 

in the notion of similarity. 

The analysis provided in this chapter will show, however, that the objection holds only to the extent 

that one is limited to discussing the evaluative aspect of modeling – model extrapolation. In contrast, 

model selection and model creation illustrate that similarity judgments play a key role in both 

establishing and maintaining the representational relation between the model and its target 

phenomenon. 

Section 3.2. shall provide the scientific details, illustrating the complex nature of the cancer research 

(and particularly the cancer immunology research) in which mouse models, owing to the different ways 

in which they have been (and are still being) developed, exhibit both numerous advantages and 

limitations with respect to the particular research tasks and questions. Section 3.3. draws philosophical 

conclusions from the mapping of the field: it presents the three research modes and discusses the role 

of similarity considerations in each of the modes. Section 3.4. then applies this analysis to the debate 

on scientific representation. Section 3.5. provides a summary. 

 

3.2. Mouse models in cancer immunology: Transplantable, genetically engineered, and 

humanized 

Much has already been written about various aspects of the research that is distinguished by its use of 

model organisms.47 Some have gone to great length to distinguish model organisms from experimental 

organisms, the latter being a broader category and much less constrained by factors such as the 

institutionalization and standardization of the research characteristic of the former (Ankeny and 

Leonelli 2011, 2020). In what follows, the notion of mouse models will be used to refer to mice that 

are used to study disease mechanisms and for testing drugs. 

 

3.2.1. The field of cancer biology and cancer immunology 

At the turn of the twentieth century, oncology opted for a cytotoxic approach to treating malignancies, 

and until very recently the standard therapies available to patients consisted of radiation therapy, 

chemotherapy, and targeted therapies. The idea that the immune system could play a role in providing 

protection against tumors was long treated with suspicion by the scientific and medical communities. 

However, promising evidence had begun to be amassed and when the FDA approved the use of cancer 

immunotherapies, such as Sipuleucel-T for the treatment of prostate cancer in 2010 and ipilimumab 

for the treatment of melanoma in 2011, the field of cancer immunotherapy finally emerged and, to 

some extent, revolutionized cancer treatment (Farkona et al. 2016; Mellman et al. 2011).48 These 

therapies include cancer vaccines, adoptive cell transfer therapy, CAR T-cell therapy, oncolytic viruses, 

 
47 The question of whether animal models are models proper has recently been discussed. Levy and Currie 
(2015) have argued that animal models should be regarded as distinct from theoretical models, for the two 
exhibit different epistemic characteristics. Although Parkkinen (2017) concurs, he takes issue with the specific 
argument by which Levy and Currie reach their conclusion. For the purposes of this chapter the question can be 
put aside. 
48 Recall from Section 1.3.1. the fact, the role of the immune system in cancer is much more complex as it plays 
a paradoxical dual role: it has an anti-tumoral effect but it also promotes tumorigenesis.  
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and the checkpoint inhibitors for which a Nobel Prize in Medicine was awarded in 2018. Despite all 

this, success has not been absolute, as some patients do not benefit from the treatment, their numbers 

greatly varying depending upon both the cancer type and the specific immunotherapy in question. 

Thus, the prospects of a combination of multiple immunotherapies or a combination with more 

traditional therapies, including targeted therapies, are being investigated. 

The process of tumorigenesis includes constituents which can be cell autonomous / intrinsic (i.e. the 

effect of mutations and/or epigenetic changes on the cancer cell phenotype), and extrinsic (i.e. the 

tumor environment) (Weinberg 2014). While the former is accessible via studying cell cultures, 

investigation of the latter consists of aspects that require more complex model systems (Frese and 

Tuveson 2007). Indeed, much of our current knowledge of cancer biology, and of immunotherapies 

both in development and in clinical practice, has been gleaned from research conducted on cell 

cultures and laboratory mice (Mus musculus), which allow for in vitro and in vivo exploratory and 

hypothesis-driven experiments, respectively.  

As technology has advanced, so too have the mouse models: there are spontaneous tumor models, 

chemically induced models, virally induced models, immunocompetent and immunodeficient models, 

genetically engineered models, and humanized models. Different models have their own advantages 

and disadvantages which have a major impact both upon our understanding of the basic mechanisms 

and on our evaluations of therapies. The models are all said to be standardized, i.e., they consist of 

inbred strains of mice,49 and there are protocols about how to manipulate them. The next sections 

describe only some of the main types of model and the ways in which they have been manipulated, 

with most attention given to humanized models as these will figure most prominently in some of the 

arguments to follow. 

 

3.2.2. Transplantable mouse models 

Although certain strains of mice are naturally more prone to developing cancer spontaneously, they 

often develop only a subset of tumor types and grades (Frese and Tuveson 2007). Research in cancer 

biology has thus found more use for transplantable models which come in two types, to be discussed 

in turn: (i) immunocompetent models, and (ii) immunodeficient models. 

With the advent of syngeneic mice in the first half of the twentieth century, immunocompetent mouse 

models could be transplanted with tissues including tumors from other histocompatible mice, i.e., mice 

of the same strain, without such grafts being rejected. Such transplantation studies have led to many 

important insights including the confirmation of the role of the immune system in tumor surveillance 

exhibited by the fact that killed tumor cells can act as a vaccine, thus eliciting a potent response against 

a re-exposure to viable tumor cells of the same type (Budhu et al. 2014; Zitvogel et al. 2016). 

Although primary tumor samples can be transplanted, cancer research most commonly relies on 

injecting mice with cancer cell lines. These are standardized cell lines that originate from tumors 

derived from a specific background (i.e., the strain), and that, over the course of passaging under in 

vitro conditions, have acquired features that make them well adapted to cell cultures and that set them 

apart from their ancestors (Weinberg 2014). For instance, the 4T1 breast cancer cell line is derived 

from the BALB/c strain (Budhu et al. 2014): injecting 4T1 tumor cells into BALB/c mice then leads to an 

 
49 Inbreeding is thought to provide genetic homogeneity that limits the possibility of the results being 
confounded. However, as recently pointed out, the current practice of working with mouse strains is not 
entirely failproof as sub-strains exist and this fact needs to be better acknowledged by researchers (Enríquez 
2019). 
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aggressive growth, giving rise to a detectable tumor mass by day 11, and to a metastasis by day 20. 

Cancer cell lines have some undisputable advantages. They are easily obtained, maintained, 

manipulated, and modified for specific research purposes and they lead to highly predictable 

outcomes. Transplantation studies also differ by route of injection. Orthotopic transplantation refers 

to injecting tumor cells into the organ where the original cancer developed. While this may be 

physiologically more relevant, it may not always be feasible to perform such transplantation, for 

orthotopic transplantation of some tumor types would be too invasive. Therefore, some research is 

based on ectopic transplantation instead, i.e., tumor cells are injected into a region outside of its 

original site. 

Immunocompetent transplantable models have several advantages: they are cheap, they have a fully 

functional immune system, they allow for the rapid screening of drugs and for experiments to be 

conducted in a timely manner, and they lead to extremely predictable tumor growths. However, there 

are also several disadvantages that make them poorly realistic models in certain respects: the genetic 

homogeneity of cancer cell lines does not mirror the genetic heterogeneity found in spontaneous 

tumors, the tumors grow rapidly, lacking the features of multi-step tumorigenesis and the chronic 

inflammatory environment so characteristic of spontaneous tumors, and they do not recapitulate the 

tumor microenvironment. Furthermore, owing to their immunocompetence, they cannot be used to 

directly study human tumors as these would be rejected by the mouse model. 

Despite their limitations, immunocompetent mouse models have been among the most commonly 

used models in cancer immunology and they have contributed to several important discoveries, such 

as the identification of immune checkpoints and the use of checkpoint inhibitors (Leach et al. 1996), 

the immunogenic actions of some chemotherapeutic drugs,50 and the use of combination therapies 

(Sanmamed et al. 2016; Zitvogel et al. 2016). 

Cancer research has also relied upon immunodeficient xenograft mouse models. An early example of 

such a mouse was the discovery of a nude mouse, i.e., a mouse lacking fur and thymus due to a 

mutation in the Foxn1 gene. Much like the immunocompetent mouse, cancer research using 

immunodeficient mice mostly relies on cancer cell lines (but see below). 

In contrast to immunocompetent mice, immunodeficient mice can be engrafted with tumors from 

other mouse strains (allografts) or from other species such as humans (xenografts). Because 

immunodeficient mice do not reject xenografts, they can be used to study human tumors in vivo, which 

is why most of the current drugs used in oncology, including targeted therapies, have been explored 

in these mice (Sanmamed et al. 2016). Yet as regards targeted therapies, these mice have served poorly 

in predicting the outcomes of human clinical trials (Sanmamed et al. 2016). This is because the human 

tumor cells grow in an environment consisting of mouse stroma cells, which poses problems for 

translating the results to humans due to improper heterotypic signaling. Another problem concerns 

the common use of human cancer cell lines, which, much like the mouse cancer cell lines discussed 

above, do not recapitulate the phenotype of human tumors. Furthermore, the immunomodulatory 

effects of the drugs cannot be adequately studied in immunodeficient mice. Hence, the scope for 

testing immunotherapy is severely limited. 

 

 
50 For instance, certain chemotherapeutic drugs have more potent effects in transplantable immunocompetent 
models than in the immunodeficient nude (athymic) mice which lack mature T cells (Zitvogel et al. 2016). 
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3.2.3. Genetically engineered mouse models (GEMMs) 

Acquired knowledge of some of the tenets of oncogenesis and advances in genetic engineering have 

made it possible to create mouse models with the transgenic expression of oncogenes and inactivated 

tumor suppressor genes that give rise to spontaneous tumors. Thus, these genetically engineered 

mouse models (GEMMs) are not reliant upon cancer cell lines. Such mice have not only provided a 

platform for additional validation of the finding that chemotherapy works in part due to its 

immunogenic effect, but also for investigating tumor / immune system interactions by removing some 

of the essential immune-related genes such as those encoding perforin or IFN-γ and its receptor which 

accelerates tumorigenesis (Zitvogel et al. 2016). They have also served as preclinical systems upon 

which oncology treatments including immunotherapy have been tested (Sanmamed et al. 2016). 

We have seen that different transplantable models provide different advantages while also exhibiting 

some disadvantages. The same can be said of GEMMs. The fact that these are spontaneous models 

means that, in contrast with models reliant upon cancer cell lines, they maintain some of the features 

of tumorigenesis, plus a tumor microenvironment which displays suppressive characteristics, with T 

cells expressing multiple checkpoint molecules allowing for the testing of checkpoint inhibitors. 

However, GEMMs encounter major challenges owing to the specific ways in which these models are 

created. There is an array of technologies available for creating transgenic mice, impacting how the 

mouse is modified, where it is modified, and when it is modified. 

For instance, using recombinant DNA technology, GEMMs can be created by the direct injection of 

fertilized oocytes (germ cells), or by the use of the lentiviral transduction of embryonic stem cells. One 

problem is that both the expression levels and the cell tropism of the transgene may not completely 

reflect the expression levels and cell tropism of the endogenous gene. In other words, the transgene 

is often both overexpressed and expressed ectopically. This is because the promoter fragments in the 

transgene typically contain only the minimal sequence necessary for expression but not all the 

regulatory sites as in endogenous genes (Frese and Tuveson 2007). To avoid this problem, researchers 

may use tissue-specific promoters in order to limit the expression to cells of a particular tissue. Under 

these circumstances, all mammary epithelial cells, for instance, will express the Erbb2 transgene, which 

will simultaneously give rise to multiple neoplastic lesions (Zitvogel et al. 2016). Consequently, the 

immune system is overwhelmed, and the effects of a therapy may be confounded: Zitvogel and 

colleagues report that the MMTV-Erbb2-induced breast cancer exhibits no measurable immune 

system impact in response to chemotherapy; indeed, a good response to chemotherapy is observed 

even in RAG2 knock-out models, which conflicts with the clinical observation that favorable responses 

are associated with tumor infiltrating lymphocytes. Other problems concern the random site of the 

integration of the transgenes, which may result in chromosomal positional effects. It has also been 

possible to induce oncogenic mutations in adult mice in only a subset of cells which better mimics the 

features of human cancers (Sanmamed et al. 2016). As seen in transplantable models, different strains 

used in the developing GEMMs have different biological predispositions, meaning that the results 

obtained across the spectrum may differ accordingly (Frese and Tuveson 2007). Finally, GEMMs 

typically require longer follow up as tumors appear after several months and experiments take many 

additional months (cf. transplantable models). 

 

3.2.4. Humanized mouse models 

As noted above, both transplantable and genetically engineered mouse models have proven useful in 

both basic and preclinical research. However, many of these models exhibit an environment which is 
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only poorly representative of the condition in humans. Given that there is a growing need for animal 

models to serve as systems which could overcome some of the limits of the previously discussed 

models, and upon which in vivo studies of human cells and tissues could be conducted, some 

researchers are now investing in developing mouse-human chimeras, so-called humanized mouse 

models. Humanized mice can be defined as “immunodeficient mice engrafted with haematopoietic 

cells or tissues, or mice that transgenically express human genes” (Shultz et al. 2007, p. 118). Thus, 

humanized mice are a specific kind of transplantable model, and some such models also make use of 

the transgenic approach. In addition to studying cancer, including tumorigenesis, metastasis and 

cancer therapy, humanized mice have also contributed to advances in studies on human immunity, 

infectious diseases, and regenerative medicine (see Walsh et al. 2017 for an extended overview). 

Together with advances in engraftment techniques, three breakthroughs have made the development 

of humanized mice possible (Shultz et al. 2007). The first concerned the discovery of the autosomal 

recessive mutation of the PRKDC gene (protein kinase, DNA activated, catalytic polypeptide) in the 

CB17 mice, leading to a complete lack of mature B and T cells which then manifests in the form of 

severe combined immunodeficiency (SCID). However, the success of human-cell engraftment is limited 

both by the presence of an innate immune system, including natural killer (NK) cells, and by the 

spontaneous generation of B and T cells – known as leakiness – during the aging of the mouse. The 

latter issue is resolved by working with RAG1 and/or RAG2 deficient mice which never develop 

functional B or T cells. The second breakthrough was the development of immunodeficient non-obese 

diabetic mice (NOD mice). Soon thereafter researchers realized that the subsequent crossing of the 

scid mutation onto a NOD background (NOD-scid mice) led to a significant improvement in the 

engraftment of human peripheral blood mononuclear cells (PBMCs) compared with strains such as the 

C57BL/6-scid mouse. In part, this is because NOD mice have an impaired innate immunity.51 Finally, at 

the turn of the twenty-first century, the third breakthrough came about in the form of the targeted 

mutations at the interleukin-2 receptor subunit gamma (IL2RG) also known as the common gamma 

chain, which results in the impaired signaling of a number of cytokines and completely prevents NK-

cell development. Mice bearing this mutation allow for the greatly improved engraftment of human 

tissues.  

Multiple strains of mice bearing the IL2RG mutation have been developed. It is noteworthy that 

differences in the genetic backgrounds of mouse strains influence the extent to which human tissues 

are successfully engrafted (Shultz et al. 2012). 

There are also at least three ways of engrafting a functioning human immune system into 

immunodeficient mice bearing the above mutations. Additionally, each approach can proceed via a 

different route of injection, which often leads to different results. The simplest approach is to engraft 

into an immunodeficient mouse both human peripheral blood lymphocytes and tumors, ideally from 

the same donor, thereby creating an immuno-avatar (Sanmamed et al. 2016; Zitvogel et al. 2016). 

Owing to their human immune-tumor interface, immuno-avatars have been used to identify and 

screen antihuman CTLA-4 monoclonal antibodies and other immunomodulatory drugs that can 

activate human PBMCs. However, the use of immuno-avatars is constrained by the onset of severe 

human xenograft versus host disease (xGVHD) just a few weeks after the engraftment. Thus, unless 

the onset of xGVHD is delayed, such as by depleting CD4 positive cells from the PBMCs beforehand, 

the time window for experiments is rather limited (Sanmamed et al. 2016). 

 
51 The deficiency involves mouse macrophages and mouse complement respectively impairing the phagocytosis 
and lysis of human cells. 
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Another way to create humanized mice is to engraft human hematopoietic stem (and progenitor) cells 

(HSPCs). The quality of the engraftment depends upon many factors, including the particular recipient 

mouse strain (Shultz et al. 2012), or the site from which CD34+ HSPCs have been isolated, whether 

from cord blood, bone marrow, peripheral blood, or fetal liver (Sanmamed et al. 2016). 

Although this technique of humanizing mice represents an important stepping-stone towards 

addressing some of the limitations of previous models, several additional issues have emerged. To 

become mature T cells, the progenitors must undergo both negative and positive selection in the 

thymus. Because the human-derived T cells are trained on mouse thymus cells and later interact with 

human-derived antigen-presenting cells which express different sets of MHC molecules, the T cells do 

not perform well. Indeed, their functionality has been found to be limited, with minimal proliferative 

potential and the tendency to become anergic upon activation. Likewise, human-derived B cells 

originating in bone marrow fail to complete the maturation process in the spleen, and although they 

can produce IgM antibodies, they do not perform class switching (Morton et al. 2016). To overcome 

these problems, researchers have transplanted human fetal bone, fetal liver, and thymus tissue 

beneath the kidney capsule, thus creating the so-called BLT mouse, followed by the engraftment of 

HSPCs. As a result, these mice do form functional mature T and B cells. However, practical issues, such 

as the need to generate human organoids and to obtain enough primary tissue for large cohorts, limit 

the utility of these mice. Additionally, the key to a fully functioning immune system lies in a host of 

other factors, including species-specific cytokines, growth factors, and homing molecules (Sanmamed 

et al. 2016). Although it is possible to administer exogeneous human cytokines, it often leads to non-

physiological concentrations, causing unnatural behavior in the immune cells. Mice engrafted with 

human HSPCs also generate human NK cells but their ability to kill their targets is impaired, in part 

because mice do no express human MHC (i.e., HLA) molecules. Finally, unless exogenous interleukin-7 

and lymphotoxin receptor agonist are administered during crucial developmental steps, these mice 

also exhibit deficiencies in the development of (peripheral rather than mesenteric) lymph nodes and 

the structure of lymphoid tissues is poorly organized (Shultz et al. 2012). 

A natural move forward is to use transgenic technology, the third and last approach to creating 

humanized mice to be discussed here. Again, multiple technologies are employed, generating diverse 

results which also depend upon the particular mouse strain used. There are three main technological 

approaches to delivering human species-specific factors into the genome of mice to enhance human 

hematopoiesis and immune system development and function, as well as ways to inactivate mouse 

genes in a target-specific manner. These approaches include: (i) transgenic expression of cDNA 

constructs driven by tissue-specific or ubiquitous promoters; (ii) transgenic expression of bacterial 

artificial chromosomes (BACs); and (iii) knock‑in technology (Shultz et al. 2012) which currently 

includes the use of CRISPR-Cas9 technology.52 

 
52 Shultz and colleagues (2012) also provide more detailed discussion: the problem with (i) is that the method 
often results in the gene being expressed at non-physiological levels and without temporal control, which 
adversely affects the development and function of the human immune system in mice. In contrast, the use of 
(ii) leads to expression at physiological levels in an appropriate functional and developmental context. Note 
that if the mouse (homologous) genes are not silenced, they too will be expressed. Finally, with the increase in 
the availability of embryonic stem cells taken from the strains with a NOD background in which mouse genes 
have been knocked out, option (iii) generates mice in which the mouse gene is replaced by its human 
counterpart. Generally, the knock-in approach is defined as follows: “The introduction of a transgene into a 
precise location in the genome, rather than a random integration site. Knocking in uses the same technique of 
homologous recombination as a knockout strategy, but the targeting vector is designed to allow expression of 
the introduced transgene under the control of the regulatory elements of the targeted gene” (Shultz et al. 
2012, p. 790).   
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One alternative to the BLT mice discussed above is to construct mouse models that transgenically 

express a common HLA allele in their thymus and that are engrafted with HSPCs with the matching 

histocompatibility alleles, thus facilitating the maturing process of T cells by allowing for the selection 

process to take place as well as securing their functionality in the periphery. However, these efforts 

have been met with mixed success, further showing the complexity of the biology involved (Morton et 

al. 2016).  

To ensure that a fully functioning human system is in fact established in the immunodeficient mouse 

host, researchers have also introduced into these mice human transgenes coding for some of the key 

cytokines such as THPO and GM-CSF, using the various transgenic techniques outlined above. Although 

this has led to a significant improvement in the development of the cells of myeloid origin in particular, 

adverse events have also been observed (Shultz et al. 2012). Still, such a procedure has recently been 

utilized by knocking in human genes coding for M-CSF, GM-CSF, IL-3 and thrombopoietin, thus creating 

the MITRG mice (Rongvaux et al. 2014). The same group also created the MISTRG mice using the 

bacterial artificial chromosome (BAC) transgene which codes for human SIRPα which binds the CD47 

molecule expressed on human cells, the interaction of which results in suppressing phagocytosis. Along 

with functional B and T cells, these mice also reconstituted functional NK and myeloid cells. 

The last mouse model to be described – the patient-derived xenograft mouse model (PDX) and its 

humanized version – builds on much of the previous discussion and while the model improves on some 

of the limits of other models, some challenges remain, and novel ones arise. In contrast with other 

xenograft models which most commonly rely on working with cancer cell lines, PDX models53 are 

immunodeficient mice that become host to freshly resected tumor samples obtained from patients 

(Decker et al. 2017; Sanmamed et al. 2016). Because the PDX mice are generated by the surgical 

transplantation of human tumor samples, many of the features of the tumor microenvironment are 

kept intact, which allows for immunotherapies to be tested (but see below). To increase mouse 

cohorts, researchers take advantage of serial passaging, i.e., the expansion of tumor-bearing mouse 

cohorts by transplanting the engrafted human tumor from the P0 generation to the next. However, 

with the increase in mouse cohorts the original tumor sample is diluted and eventually lost, limiting 

the capacity to investigate the effects of immunotherapies. The fact that PDX models depend on tumor 

samples rather than on the easily obtainable and maintained repertoires of cancer cell lines presents 

an obstacle due to the relative scarcity of tumor material, resulting in fewer mouse cohorts. 

Furthermore, some tumor samples are difficult – even impossible – to obtain owing to the extremely 

invasive surgical procedure required for accessing the tumor. Working with tumor samples is, in some 

respects, also more challenging than working with cell lines. PDX models also suffer from many of the 

same problems as other common xenograft models, such as the particular transplantation method 

(ectopic as opposed to orthotopic), and the lack of a fully functional immune system, which puts 

constraints on the adequate investigation of the tumor-immune system interaction and, therefore, of 

immunotherapies.  

To overcome the latter problem, efforts have been made to create humanized PDX models – also called 

immune-PDX models, or iPDX for short (Sanmamed et al. 2016), and particularly by transplanting the 

HSPCs and tumor sample from the same donor in order to limit the confounding resulting from the 

tumor being rejected due to the tumor-HSPCs histological incompatibility (Morton et al. 2016). 

However, the iPDX’s greatest advantage is also its greatest disadvantage, for the tissue available for 

 
53 Note that although PDX models are also sometimes referred to as mouse avatars, some researchers (see, 
e.g., Figure 1 in Sanmamed et al. 2016) reserve the term for other types of mouse models such as the mice 
humanized by PBMCs engraftment, i.e., the immuno-avatar discussed previously. The non-humanized version 
of PDX models has recently been the topic of an extended philosophical analysis (Green et al. 2021). 
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conducting studies is scarce and, in contrast with PDX, iPDX are confined to biopsy samples as serial 

passaging is not desirable in these settings. A related issue concerns the use of these models in the 

context of personalized and precision oncology: they should allow for patient-specific drug testing in 

real-time but since creating models, followed by the research, takes time which the patients may not 

have, temporal challenges arise (see Green et al. 2021). Although the iPDX mouse models provide an 

improvement over the PDX in that the former is equipped with the human immune system, the 

immune system’s functionality remains limited unless many other previously discussed modifications 

are introduced, such as the introduction of human adhesion molecules for more adequate trafficking 

patterns. 

 

3.2.5. Future challenges 

Despite the clear success of the current models, much still remains to be done. Two issues pulling in 

somewhat different directions can be identified. First, while the models in use are appropriate for 

addressing many questions of interest, they need to further evolve so as to correct the remaining 

deficiencies and thereby improve the engraftment and function of the human immune system (Shultz 

et al. 2012; Zitvogel et al. 2016). For instance, it has been established that the microbiome plays a 

major immunomodulatory role and influences the effectiveness of immunotherapies such as 

checkpoint blockade. However, the mouse models harbor their own microbiome, thus possibly 

confounding the results of preclinical testing. Zitvogel and colleagues suggests that the gut microbiome 

should be humanized, ideally in a patient-specific way, to improve the iPDX models. The second 

research direction also calls for an improvement but with a twist: Decker and colleagues note that 

experiments take place in the sterile environment of labs, meaning that the genetic and environmental 

variability found in normal populations is lost and the exposure to normal commensals is limited, all of 

which obfuscates the complexities and the variability of the multifactorial neoplastic disease (Decker 

et al. 2017). Thus, the way ahead may incorporate large, outbred cohorts into cancer research. 

 

3.3. Introducing similarity: model selection, model extrapolation, model creation 

Having provided some exposition of the mouse models in cancer biology and cancer immunology, we 

now move on to considering the role that similarity considerations play in working with these models. 

Three research modes will be identified and distinguished from one another: model selection, model 

extrapolation and model creation. Although these research modes are often more or less intertwined 

in practice, they can be conceptually disentangled and analyzed. Indeed, arguably the philosophical 

literature has been focused on discussing one or another. Moreover, whereas much has been written 

on the topic of model selection and model extrapolation, relatively little has been said about creating 

new animal models.54 By focusing separately on each mode we can better flesh out the diverse roles 

played by similarity considerations. 

 

 
54 In fact, some authors have explicitly denied that model organisms are being created. For instance, with 
respect to model organisms, Weisberg (2013, p. 16, italics added for emphasis) claims that “although they are 
not constructed, like the San Francisco Bay model, they are concrete systems that resemble concrete targets”. 
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3.3.1. Model selection 

The selection of mouse models is driven by several considerations: (i) the research question at hand, 

or what I term ‘adequacy-to-research-question’,55 (ii) the pragmatic and situational constraints, and 

(iii) the relevant similarity considerations.56 Depending on the question, scientists may use one model 

over another. For instance, if the aim is to test immunotherapies, researchers will want to rely on 

mouse models in which the particular immunotherapy can be tested. As we have seen, 

immunodeficient transplantable models using cancer cell lines would be an inappropriate choice for 

that particular task. 

Model selection is also constrained by many other factors beyond adequacy-to-research-question. 

Recently, Dietrich et al. (2020) have provided an extensive discussion of what characterizes a good or 

useful organism for a given research interest, identifying over 20 criteria clustered into several 

categories, often interrelated but also in tension and traded off against one another (see Table 3.1). 

 

Table 3.1. Criteria for organismal choice. Adopted from Dietrich et al. (2020). 

Cluster Criteria 

(A) Access (1)  Ease of Supply 
 (2)  Phenomenal Access 
 (3)  Ethical Considerations 

(B) Tractability (4)  Standardization 
 (5)  Viability and Durability 
 (6)  Responsiveness 
 (7)  Availability of Methods and Techniques 
 (8)  Researcher Risks 

(C) Resourcing (9)  Previous use 
 (10)  Epistemic Resources 
 (11)  Training Requirements 
 (12)  Informational Resources 

(D) Economies (13)  Institutional Support 
 (14)  Financial Considerations 
 (15)  Community Support 
 (16)  Affective and Cultural Attributes 

(E) Promise (17)  Commercial and Other Applications 
 (18)  Comparative Potential 
 (19)  Translational Potential 
 (20)  Novelty 

 

Most, if not all of these criteria, are also applicable to the specific context of mouse models in cancer 

biology and immunology. Thus, these criteria guide not only the choice of model organism in general 

(e.g., the choice between zebrafish and rodents), but also the very particular selection of mouse 

models (e.g., between transplantable and genetically engineered). For example, consider the criterion 

of phenomenal access: transplantable immunodeficient mouse models allow neither for investigation 

 
55 To some extent, this should be reminiscent of the “identification of targets of modeling” discussed by Huber 
and Keuck (2013). The concept of adequacy-to-research-question is also akin to Parker’s (2020) notion of 
adequacy-for-purpose as well as to Bolinska’s (2016) accuracy-for-a-purpose. 
56 Note that the order in which these considerations will be discussed does not necessarily reflect some rigid 
order in which scientists actually reach conclusions. Actually, these points are usually interdependent.  
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of the role of the immune system in surveilling tumors, nor for testing immunomodulatory drugs such 

as checkpoint inhibitors. Likewise, the fact that engrafting PBMCs brings about the onset of xGVHD 

within a few weeks, thus limiting the time window for testing checkpoint blockers, showcases other 

practical and epistemic constraints captured by the phenomenal access and viability and durability 

criteria. The ease of supply of standard immunocompetent mice allows for running experiments and 

screening drugs on large enough cohorts, which generally presents more difficulties to various kinds 

of humanized models. Although humanized mice are said to provide better translational potential, 

they also put pressure on financial considerations as they are significantly more expensive, which 

means that many laboratories cannot afford them, and so institutional support is limited. Although the 

criterion of previous use, that is, for example, how to feed the mouse or how it reacts to the laboratory 

environment, does not present a significant difference between humanized and other mouse models, 

the training requirements and informational resources concerning the specificity of these models as 

opposed to other types of models does present a difference, such as what the limits of particular 

humanized models are. In the context of cancer mouse models, and particularly cancer immunology 

mouse models, standardization concerns not only the inbred mouse strains57 but also the particular 

method applied to them: the type of transplantation of tumor (ectopic or orthotopic) or PBMCs/HSPCs 

(intravenous or otherwise) etc., all of which affect the experimental data. Humanized models also 

present novelty and can be considered as emerging models. Thus, selecting the right model for the 

given task at hand can be quite challenging.58  

One important criterion, thus far denied explicit consideration but nevertheless underlying many of 

the above criteria, is similarity or resemblance judgment. The crucial role of similarity considerations 

in model selection is widely acknowledged across both the philosophical and scientific communities.59 

Dietrich and colleagues are quite clear when writing that “most commonly, organisms are chosen 

because of their physiological or genetic resemblance to humans, the presence of similar mechanisms 

in both species, or due to high rates of incidence of a given disease of interest” (Dietrich et al. 2020, p. 

8). The same can be said with respect to choosing a particular mouse model, given the specific research 

question. In other words, the mouse model is chosen for its presumed similarity in relevant respects 

to the particular aspect of the cancer being studied. To select a mouse model for investigating one’s 

research project is to use the mouse as a representation of a particular phenomenon (or one of its 

aspects). Although no intrinsic feature of mouse models dictates which model will be used for 

representational purposes - because other factors influence model selection (see above) - the intrinsic 

features do have an important epistemic role in choosing a model with which to work.  

As noted above, the intrinsic features of the model that inform the selection process are features that 

are considered to be relevantly similar to the features of the target, given the research question at 

 
57 Complicating the matter even further, Enríquez (2019) recently argued that unknown to many, standard 
strains often form sub-strains which differ from each other by, for example, certain metabolic features. 
58 The philosophical literature has described a number of such cases in detail, including the use of rabbits in the 
study of atherosclerosis in humans (Parkkinen et al. 2017), the use of rodents in research on alcoholism 
(Ankeny et al. 2014 arguing that both the organism and its environment - its ‘situatedness’ - must be taken into 
account), and the use of an inferior mouse model for human Down syndrome when a complete genetic mouse 
model is available (Hardesty 2018). 
59 Some historians of science couch their descriptions of historical episodes along the same lines. Consider, for 
instance, the words of Frederic Holmes, who thus describes the work of Marcello Malpighi, the 17th century 
Italian physician, and the rise to prominence of frogs as experimental models:  although “frogs had simpler 
lungs than mammals”, because they “looked similar, were similarly placed, and were similarly connected to 
blood vessels and trachea, there was no reason to doubt that their basic structure and functions corresponded 
to those of the lungs in ‘higher’ animals” (Holmes 1993, p. 315, italics added for emphasis). See also Ankeny 
and Leonelli (2011) for discussion of this case. 
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hand. Consequently, it would be wrong to think that a single model that exhibits relevant similarities 

for answering a particular question is also suited to answering another question. As Shultz and 

colleagues put it 

“Any one specific model will not be optimal for addressing the myriad of questions that 

might be considered, and it is important not only to choose the appropriate model system for 

the specific question at hand, but also to be innovative in formulating questions and 

experimental designs to provide valid data that can be properly interpreted using the 

individual models” (Shultz et al. 2012, p. 787). 

The same can be said with respect to choosing a particular humanized mouse model from the available 

repertoire, given that different engrafting methods provide different settings as shown in Section 3.2. 

To again put it in the words of Shultz and colleagues: “Depending on the question, the investigator will 

need to choose the appropriate human immune system-engrafted mouse for their studies” (Shultz et 

al. 2012, p. 787). 

On a related note, it is taken for granted that any model will exhibit countless dissimilarities with 

respect to the target, but as long as these dissimilarities are considered to be irrelevant to the task at 

hand, they are deemed of no significant importance.60 Of course this says nothing about the likely 

possibility that it may later turn out that seemingly irrelevant traits are in fact relevant. For instance, 

although it was long assumed that chemotherapies have a purely detrimental effect on the immune 

system, which was thought to play no role in cancer surveillance, it turned out that some 

chemotherapies have an additional anti-tumor effect by being immunogenic. Recall that some 

genetically engineered models overexpress oncogenes in a manner that overwhelms the immune 

system, with chemotherapy showing no benefit over RAG2 knockout (immunodeficient) mice. This 

example shows that even the discovery that a model has limitations may not result in abandoning the 

model. As long as the model still captures at least to some degree some relevant aspects of the 

phenomenon, researchers may decide to continue using the model, especially if factors such as ease 

of access can be traded in for similarity considerations. Genetically engineered models can still serve 

as extremely useful sources of information, even if some specific models may confound some specific 

results. Moreover, even when there is a is readily available model that is more similar in relevant 

respects than another model, such as a PDX model’s superiority over a simple immunodeficient 

transplantable model for the study of human cancer, it is not necessarily prioritized over a model that 

exhibits similarity to a lesser degree, as other considerations are factored in when deciding, such as 

the particular research question and the pragmatic and other constraints (see table 3.1). So, although 

the degree of similarity might be traded for other virtues such as ease of supply, similarity 

considerations do inform the process of model selection in important ways, for if a model turns out to 

completely miss on any relevant similarity, it will be abandoned no matter what the other benefits 

may be.  

Finally, the practice of considering similarities in the process of model selection can be viewed as 

passive in the sense that the similarities entering the decision-making process of choosing a mouse 

model are pre-established rather than actively introduced, that is, the similarities in question had been 

explored and established prior to the point at which a researcher selected the model with which to 

work. 

 
60 However, some biomedical research is motivated precisely by studying dissimilarities using negative models, 
which are interesting because they do not exhibit the disease in question, with finding out why not offering 
possible insights or solutions to the disease found in humans (Dietrich et al. 2020; Green et al. 2018). 
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3.3.2. Model extrapolation 

Arguably, philosophical literature has paid the most attention to the issue of extrapolation, also known 

as external validity, that is, the process of making inferences from an animal model to the target. The 

aim of such scholarly work is to either provide an explicit description of the ways in which these 

inferences are justified in practice, or to suggest criteria for improving the justificatory efforts. The 

problem of extrapolation or external validity can be summed up as follows: “Evaluating external 

validity (…) requires evaluating whether the complex of relevant mechanisms in the target population 

is sufficiently similar to that in the study population” (Parkkinen et al. 2018, p. 17). This concerns both 

basic and translational research. For example, using findings obtained from pre-clinical studies to 

project the efficacy and safety of a potential anticancer drug in human trials is known to suffer from 

high rates of failure: it is estimated that around 85-89% of potential anticancer drugs ultimately fail to 

gain approval (Sanmamed et al. 2016). More importantly, there are well documented cases in which 

experiments conducted on animal models showed promise but had tragic consequences in first-in-

human trials (Lemoine 2017; see also Parkkinen and Williamson 2020). 

While philosophers appear to be in agreement with respect to the general claim that the success of 

extrapolation depends upon some sort of similarity between the surrogate and its target, they disagree 

on the particular manner in which the justification proceeds.61 Indeed, several such accounts have 

been proposed: enumerative induction, comparative process tracing (Steel 2008), phylogenetic 

inference (Bolker 2009; Levy and Currie 2015; Weisberg 2013), robustness reasoning (Parkkinen and 

Williamson 2020),62 theoretical chimeras (Lemoine 2017), and experimental manipulation (Maugeri 

and Blasimme 2011; Piotrowska 2013). These different accounts have been developed against the 

backdrop of different research projects. Thus, it is possible that while a particular account of 

extrapolation may reasonably well capture what is going on in a particular context, it may fail in 

another: for instance, the view that model extrapolation generally proceeds via phylogenetic inference 

has been challenged, using the example of engineering models in biomedical research (Maugeri and 

Blasimme 2011; Parkkinen 2017). 

Although all mouse models discussed here have provided useful insight into cancer biology and 

generated key pre-clinical data - think of the checkpoint blockers tested in transplantable models - 

researchers are also well aware of their limits. For instance, Budhu and colleagues write:  

“It is widely accepted that mouse models are able to provide useful pre-clinical and 

mechanistic information about novel immunotherapies and cancer therapies. However, an 

argument that is very often brought up is that animal studies are uninformative because they 

are not predictive of results in humans. Inadequacies in experimental designs may account for 

some of these failures. As tumor biologists select models to evaluate an immunotherapy or ask 

a specific question, it is vital to insure that the proposed models recapitulate and mimic the 

human disease as closely as possible, ensuring that pathology, metastatic potential, stage of 

disease, extent of tumor burden, hormone responsiveness and immune suppression are 

adequately and faithfully recapitulated in the animal models corresponding to each studied 

 
61 However, note that although the “translational potential of experimental organisms can (…) stem from 
similarities”, it can also stem from “differences to human physiology” (Dietrich et al. 2020, p. 8). 
62 See Parkkinen and Williamson (2020) for an assessment of the four approaches mentioned above. See also 
Baetu (2016) and Ankeny and Leonelli (2020, p. 56) for a criticism of phylogenetic and other traditional 
approaches. 
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cancer type. It is also important to take into account the predictability and limits of each model 

when translating mouse experimental data into clinic” (Budhu et al. 2014, p. 50). 

In part, the relative scarcity of translational successes may be explained by an overreliance on models 

that recapitulate only poorly the key features of cancer. For example, as discussed in Section 3.2.2., 

the problem with transplantable immunodeficient mouse models is that the human cancer cell lines, 

much like their mouse counterparts, do not recapitulate the phenotype of human tumors, and they 

grow in an environment consisting of mouse stroma cells which poses problems for translating the 

results to humans due to improper heterotypic signaling. In the words of Morton and colleagues, 

“Both cultured cells and mouse xenografts grow in an environment highly dissimilar to 

that of their originating tumor, frequently resulting in promising treatments that are ultimately 

clinically ineffective. The development of highly immunodeficient mouse strains into which 

human immune systems can be engrafted can help bridge this gap” (Morton et al. 2016, p. 

6153). 

Thus, it is believed that the development of humanized mouse models which are made to be more 

similar to the intended target may help cross the translational gap.63  

There is an apparent connection between model selection and model extrapolation. When selecting a 

mouse model in the translational context, one often does so by considering the likelihood that the 

findings will prove relevant to the target. Both model selection and model extrapolation rely on pre-

existing features and pre-established similarities. More specifically, in model extrapolation it is the 

consequences of the pre-established similarities that are the central focus. In this restricted sense, 

model selection and model extrapolation are ‘static’ as both draw on pre-established features.64 

Nevertheless, model selection and extrapolation are conceptually and epistemically distinct for at least 

two reasons. First, model selection takes place prior to conducting research whereas model 

extrapolation concerns the practice of projecting the obtained results onto the target. Second, the act 

of selecting a mouse model for studying a given phenomenon differs from the act of justifying the 

extrapolation from the mouse to the target phenomenon. The fact that scientists consider certain 

relevant mouse features to be similar to those of the phenomenon does not imply that the purported 

similarities in fact hold, and even if they do, they may still fail to support the extrapolative inferences, 

for the similarities may prove to be shallow, or their effect may be masked by other causally relevant 

aspects present in the mouse and not in humans or vice versa. This point can be rendered more explicit 

by distinguishing between presumed representational accuracy concerning the similarities guiding 

model selection and predictive accuracy which pertains to the assessment of the extrapolative 

inferences, i.e., the extent to which the obtained results in question mimic the features of the target 

system.65 

 

3.3.3. Model creation 

Manipulation is at the heart of creating mouse models. Taking mice from the wilderness and into the 

laboratory environment, as used to be the case, and breeding genetically homogenous cohorts (mouse 

 
63 Piotrowska (2013) proposes several criteria (heuristics) which, taken together, should guide scientific 
judgment regarding the extent to which the humanized mice are similar enough to the modeled disease to 
justify the extrapolative inferences. 
64 See also Ankeny and Leonelli (2020, p. 56), who speak of most philosophical accounts of animal model 
extrapolation as static, in contrast to what is usually going on in research-related processes. 
65 I am indebted to Sara Green for sharpening my thinking here. 
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strains) essentially amounted to creating various (syngeneic) mouse models. The development of cell 

lines and their subsequent use in transplantation studies led to the creation of immunocompetent 

transplantable models. Similarly, exploiting naturally occurring mutations which gave rise to 

immunodeficient mice have cleared the way for creating mouse models capable of hosting xenografts. 

Advances in genetic engineering have enabled the creation of new and specific mouse models. In fact, 

the creation of specific knock-out mice, for instance, and their comparison with their wild type 

counterparts, forms part of the contemporary research routine. The process of creating humanized 

mouse models is a combination of many of these general methods. 

In contrast with model selection and model extrapolation, model creation is a process of introducing 

targeted changes that give rise to new mouse variants rather than working with what is given. Rather 

than making use of pre-established features, creating models amounts to actively adding new, 

removing old, or modifying existing features. Thus, model creation may better be characterized as an 

active process rather than something passive. Such a processual nature has been emphasized before 

in the philosophical literature, such as in (Ankeny and Leonelli 2020; Atanasova 2015; Huber and Keuck 

2013; Lemoine 2017; Maugeri and Blasimme 2011; Parkkinen 2017; Piotrowska 2013).  

As noted above and notwithstanding the differences, there are also connections between model 

creation and the two other research modes. The process of creating a specific model does not happen 

in a vacuum; it is guided by the particular research task one is trying to address. Thus, model creation, 

much like model selection, ought to be characterized in terms of adequacy-to-research-question. 

Indeed, as Shultz and colleagues write, “experiments using humanized mice, or any animal model 

system, need to be designed to address a mechanistic question rather than attempting to fully 

recapitulate the human biological process or pathology” (Shultz et al. 2012, p. 796). Among other 

things, Section 3.2. demonstrated that there are “different technological approaches for the 

engraftment of a functional human immune system in these immunodeficient mouse models, each 

with distinct advantages and caveats” (Shultz et al. 2012, p. 787). Recall, for instance, that one option 

is to engraft PBMCs, which results in the early onset of xGVHD. If the research task requires a longer 

follow up, then human-PBMCs-bearing mice would not be the ideal model to create, given the 

alternatives.  

It should be noted that, in practice, model creation is often clearly connected with model extrapolation 

(see, e.g., Atanasova 2015), since often one of the reasons for introducing human elements into mice, 

i.e., humanizing them, is to provide a more secure basis for extrapolating results onto humans 

(Maugeri and Blasimme 2011; Parkkinen 2017; Piotrowska 2013). That said, the process of 

humanization – model creation – is nevertheless conceptually distinct from model extrapolation 

because while the former simply concerns the intention of creating a model suited for a particular 

research task (i.e., it pertains to representational accuracy), the latter introduces the next step, namely 

the evaluation of the extent to which the newly created model succeeds in achieving the given research 

goal (i.e., it pertains to predictive accuracy).  

 

3.4. Friends and foes of the similarity account of scientific representation 

The concept of similarity has been discussed widely in the philosophical literature, with some authors 

defending some version of the similarity account of scientific representation (Giere 1988; Glennan 

2017; Godfrey-Smith 2006; Khosrowi 2020; Mäki 2005; Teller 2001; Weisberg 2013), whereas others 

elaborate the concept in a specific disciplinary context (e.g., Sterrett 2017 who dicusses the concept 
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of physically similar systems). Ultimately, the analysis presented in this chapter attempts to shed some 

light on both the general discussion on representation and a specific disciplinary context. 

In one form or another, the idea that a resemblance or a similarity relation would ground 

representation stretches far back into the past. In the context of the philosophy of science, the 

brightest spotlight was shone upon the similarity account by Ronald Giere, whose seminal work (Giere 

1988) has served as a reference point since its publication. In the succinct words of Godfrey-Smith 

(2006, p. 726), “models are used to represent the world, via resemblance relations between the model 

and real-world target systems.” However, resemblance or similarity is said to always come with “at 

least an implicit specification of relevant respects and degrees” (Giere 1988, p. 81).  

Despite its general acceptance and intuitive appeal, many philosophers working on scientific 

representation have challenged the account.66 Arguably, one of the strongest arguments against the 

similarity account – and the only one that I address herein – is that representation is conceptually 

distinct from the notion of accurate, successful, or otherwise faithful representation. Frigg and Nguyen 

have argued that “representation is a wider concept than accurate representation and that 

representation cannot be analyzed in terms of accurate representation” (Frigg and Nguyen 2017, p. 

54); Suárez emphasizes that “the puzzles regarding the notion of representation are prior to and 

independent of the issue of accuracy“ (Suárez 2010, p. 93); others voice much the same sentiment (see 

especially Contessa 2007, p. 55 and 62; Kennedy 2012, p. 326). Crucially, similarity is explicitly taken to 

be an evaluative criterion of accuracy by at least some, if not all, of these authors. Indeed, as Frigg and 

Nguyen ([2017], p. 62) claim, “rather than being the relation that grounds representation, similarity 

should be considered as setting a standard of accuracy.”  

A distinction between representation and accurate representation is also maintained by some of those 

who are sympathetic towards the similarity account of representation. For example, Mäki takes 

representation as possessing “two major aspects: the representative aspect and the resemblance 

aspect” (Mäki 2005, p. 304). However, he further claims that “whether something is a representative 

of what it represents, whether it is a model as representative, is often revealed by whether it gives rise 

to questions or issues of resemblance” (Mäki 2005, p. 305). Finally, he adds that “considerations of 

resemblance presuppose that a system is employed as a representative, but on the other hand those 

considerations may serve as a criterion that helps identify a system as having the status of a 

representative” (Mäki 2005, p. 305). Thus, resemblance or similarity cannot in any straightforward way 

be kept separate from the notion of representation. Instead, there appears to be a reciprocal relation 

between similarity considerations and the establishment of a representational relation, i.e., something 

standing for something else. Mäki’s account seems to fit well with what is going on in the research that 

makes use of mouse models. For instance, commenting on the advantages of humanized mice, Morton 

and colleagues state that: 

 
66 Within philosophy there is a long tradition of treating resemblance/similarity accounts with a high level of 
suspicion (e.g., Goodman 1976). Many of the contemporary objections have roots in Goodman (1976). It has 
been argued that the concept of similarity exhibits logical properties different from those of the concept of 
representation: whereas similarity is reflexive, symmetric and transitive, representation is neither (Frigg 2006; 
Frigg and Nguyen 2017; Suárez 2003, 2004). Furthermore, similarity is neither necessary nor sufficient for 
representation (Frigg and Nguyen 2017; Suárez 2003; Toon 2012a). Knuuttila (2005, 2011) argued that the 
similarity account inadequately views representation as a two-place relation between a model and its target, 
leaving out the crucial role of the scientist who does the representing. As much as these objections deserve full 
scrutiny, addressing them is beyond the scope of this chapter. Others have attempted to provide some 
answers, such as (Callender and Cohen 2006; Chakravartty 2010; Khosrowi 2020; Poznic 2016; Weisberg 2013). 
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“Humanized mice (HM) allow researchers to examine xenograft growth in the context 

of a human immune system and resultant tumor microenvironment, and recent studies have 

highlighted the increased similarities in attendant tumor structure, metastasis, and signaling 

to those features in cancer patients. This setting also facilitates the examination of 

investigational cancer therapies, including new immunotherapies” (Morton et al. 2016, p. 

6153, italics added for emphasis). 

“Many model systems either cannot propagate the disease in question or provide a 

foreign milieu, not representative of the conditions in humans. To address these challenges, 

chimeric systems designed to incorporate relevant human genes or tissues into a disease 

model organism have been developed” (Morton et al. 2016, p. 6153, italics added for 

emphasis). 

“These ‘humanized mice’ aim at harboring an immune environment capable of more 

accurately reflecting that present in human diseases” (Morton et al. 2016, p. 6153, italics 

added for emphasis). 

I concur with both Mäki and the critics: similarity is intertwined with representation, and it is a criterion 

of accuracy. The apparent discrepancy is dissolved as soon as one considers the different epistemic 

roles of similarity considerations in the above three research modes.  

In model selection, similarity considerations greatly influence whether a mouse model is chosen, i.e., 

whether the model is used as a representation. It is not necessarily the case that the more similar the 

model is to its target, the more likely it will be used, since model selection is also determined by a host 

of other factors. However, should the researchers reach the conclusion that effectively no relevant 

similarities arise, the model will be abandoned and no longer used as a representation (unless, of 

course, one studies the model as a negative model). In model creation, similarity considerations 

concern the targeted changes to be introduced into the model for it to serve as a representation. 

Therefore, in both model selection and model creation, similarity considerations play a major role in 

establishing and maintaining a representational relation. Consequently, the strict dichotomy between 

the notions of representation and accurate representation does not hold. However, this argument 

holds only for as long as one adopts an intentional approach toward representation, that is, for 

something to count as a representation it must be used as such. Many authors writing on scientific 

representation think that representation must, at least partially, be viewed in terms of the intentions 

of the scientists who make use of models to represent their targets (Giere 2010; Knuuttila 2011; Suárez 

2010; Vorms 2011). If scientists no longer use certain mouse cohorts, these cohorts no longer count as 

representations.67  

In contrast, in model extrapolation the similarity considerations pertain to the justification of the 

extrapolative inferences. Similarity in this sense concerns the evaluation of the accuracy of the results 

 
67 A seemingly radical answer to the problem of what constitutes a (scientific) representation is given by 
Callender and Cohen (2006), who argue that establishing a representational relation comes down to the act of 
stipulation: anything can serve as a representation of anything, provided that one so stipulates. However, they 
are careful to note that while some representational vehicles will be useful, others will not, and they further 
claim that “the questions about the utility of these representational vehicles are questions about the 
pragmatics of things that are representational vehicles, not questions about their representational status per 
se” (Callender and Cohen 2006, p. 75). Although many aspects of their account have been extensively criticized 
(Boesch 2017; Frigg and Nguyen 2017, pp. 55–57, 2020, pp. 23–30; Gelfert 2016, pp. 30–33; Morrison 2015, pp. 
125–129; Toon 2012b, pp. 252–253), the fact that stipulation may play some part in establishing a 
representational relation remains largely undisputed. The argument of this section is that such stipulation is 
influenced by similarity considerations in selecting and in creating mouse models. 
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obtained by studying a given mouse model extrapolated to humans, i.e., predictive accuracy. Thus, if 

we were to consider this specific sense of similarity in isolation from the other research modes, it 

would suggest that similarity was merely an evaluative account rather than an account of 

representation. It is, however, also worth noting that model extrapolation presupposes that a model 

has been used as a representation of its target, which brings us back to the consideration of model 

selection or model creation, both of which are influenced by similarity considerations. 

  

3.5. Chapter summary 

The repertoire of mouse models used in cancer research and cancer immunology is vast. Given that 

there are different kinds of mouse models developed by numerous and diverse techniques, it should 

come as no surprise that each model has its own set of advantages and disadvantages. This chapter 

has analyzed the role(s) of similarity considerations in different research modes. The selection of a 

mouse model is guided by the research question at hand, a host of pragmatic and other factors, and, 

importantly, by similarity considerations. In model extrapolation, similarity concerns the evaluation of 

a mouse model and thus the justification of extrapolative inferences. Finally, in model creation, 

similarities pertain to the intention to actively introduce changes into mouse cohorts so that relevant 

similarities arise.  

Clarifying these research modes and the role(s) of similarity considerations in the specific disciplinary 

context of mouse models of cancer also helps to shed some light on the debate on similarity in scientific 

representation. In particular, I have argued that whereas in model extrapolation the role of similarity 

suggests that a conceptual distinction between representation and accurate representation can be 

maintained by construing the latter in terms of predictive accuracy, it holds for neither model selection 

nor model creation. This is because in the two latter research modes, similarity considerations play a 

key role in the process of establishing and maintaining a representational relation. 
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4. Modeling epidemics and policy decision making: Analyzing an 

agent-based model of the SARS-CoV-2 epidemic 

 

Because this chapter is based on joint work with Mariusz Maziarz, I will change the narrative by using 

the pronoun ‘we’. 

 

4.1. Introduction 

In the aftermath of the outbreak of the novel coronavirus, governments around the globe have 

introduced non-pharmaceutical public health interventions aimed at slowing down the spread of the 

resultant pandemic. These measures range from relatively mild requirements like wearing face masks, 

washing hands, or avoiding close contacts to school closures and imposed isolation that are likely to 

have a detrimental and unpredictable influence on social and economic life (Wilder-Smith and 

Freedman 2020). Despite their significant impact, the introduction of many of these measures was not 

supported with high-quality evidence. First, conducting RCT would not be feasible for both ethical and 

practical constraints. Second, significant differences between the coronaviruses that caused the SARS 

and MERS outbreaks and SARS-CoV-2 (such as the likely airborne transmission (Lewis 2020) and 

asymptomatic infectiousness of the latter (Bai et al. 2020; Li et al. 2020)) undermine extrapolation 

from the data gathered during these previous epidemics. Finally, the current pandemic has not lasted 

long enough to gather observational data in the amount and quality sufficient for the assessment of 

the efficacy of alternative public health interventions, since the first reports were published just weeks 

after the first measures were introduced (Pan et al. 2020). 

One of the many ways to address the issue concerning the impracticality of conducting RCTs and 

observational studies in the context of an ongoing pandemic is through scientific modeling, in 

particular epidemiological modeling. Here, we focus on the so-called agent-based modeling (ABM) 

approach, which differs from more traditional epidemiological modeling in several ways.  

ABMs are a form of computational modeling strategy where agents are treated as entities interacting 

with each other and their environment in a locally-defined fashion described by a set of rules. The 

overall dynamics of the system are then computed, allowing for the simulation of complex patterns 

and an understanding of how these patterns arise (Railsback and Grimm 2012; Wilensky and Rand 

2015). ABMs are used in many scientific contexts, including modeling the spread of infectious diseases, 

and have proven successful in informing policy decisions before. For instance, Eisinger and Thulke 

(2008) modified and then applied a previously-developed ABM of the spread of rabies, generating a 

rule-based model that represented specific spatial and behavioral characteristics of the fox population: 

e.g., fox families represented as moving within home ranges and young foxes engaging in long-distance 

migratory behavior (Railsback and Grimm 2012). Whereas the classical differential equation models 

predicted that vaccinating at least 70% of the fox population would eliminate rabies, the ABM indicated 

that a successful vaccination strategy could do with much less than 70% of the population being 

immunized once the spatial arrangements of fox hosts were explicitly considered, saving millions of 

Euros as a result. Moreover, the ABM also suggested that the classical strategy would fail more often 

than not, and it was successfully applied to deal with the rabies problem. However, despite the 

promising record of using ABMs in effective epidemiological interventions, its use in informing 

proposed measures against the novel coronavirus epidemic has raised criticism (Ferguson et al. 2020; 

Squazzoni et al. 2020; Sridhar and Majumder 2020). 
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Unfortunately, for the assessment of healthcare interventions based on this type of epidemiological 

models, standard evidence hierarchies exclude agent-based models altogether and include theoretical 

or mechanistic inferences at the lowest level of the hierarchy. For example, the Oxford Centre for 

Evidence-Based Medicine (OCEBM Levels of Evidence 2009) and the National Institute for Health and 

Care Excellence (NICE guidelines) (National Institute for Health and Care Excellence 2014) include 

theoretical and mechanistic reasoning but agent-based models fall beyond their scope. This can be 

explained by the novelty of agent-based modeling and the limited trust of the evidence-based 

medicine (EBM) movement in theoretical and, to some extent, also mechanistic reasoning, which, 

despite being used implicitly to assess the possibility of confounding and the quality of results (Rocca 

2018), is downgraded or rejected as either subjective or fallacious (Worrall 2010). However, such a 

view has been challenged by a group of philosophers advocating for improving the practices of 

evidence assessment in medicine by putting more weight on mechanistic reasoning in causal inference 

(Clarke et al. 2013; Parkkinen et al. 2018; Williamson 2019). The position of the EBM+ program (Clarke 

et al. 2013; Parkkinen et al. 2018; Williamson 2019) is encapsulated by the normative reading of the 

Russo-Williamson Thesis (Russo and Williamson 2007) which states that causal claims should be based 

on both difference-making and mechanistic evidence.  

The causal claims supported by agent-based models have been interpreted inconsonantly: either as 

being in line with the potential outcome approach (POA) (Marshall and Galea 2015) as delivering 

theory-driven understanding (Hernan 2015), or as providing mechanistic evidence (Clarke et al. 2014). 

Below, we show that all of these apparently inconsistent interpretations are correct, because the best 

contemporary ABMs bear a resemblance to the actual mechanisms and therefore allow for the 

counterfactual assessment of intervention efficacy in the target while also delivering an understanding 

of the phenomenon of interest. Our argument proceeds by discussing as a case study an ABM of SARS-

CoV-2 epidemic in Australia (Section 4.2.). We argue that the best ABMs represent actual mechanisms 

despite the presence of various simplifications (Section 4.3.). Finally, we consider the limitations of 

using ABMs as evidence for policy decisions (Section 4.4.). 

 

4.2. Modeling the SARS-CoV-2 epidemic 

Apart from the compartmental SIR (Susceptible, Infectious, Recovered) framework and its derivatives 

(Acuna-Zegarra et al. 2020; Giordano et al. 2020; Kissler et al. 2020; Neher et al. 2020; Peng et al. 2020; 

Yang et al. 2020) and regression analysis (Fu et al. 2020; Tobías 2020), most advanced models of the 

spread of the novel coronavirus are transformed versions of agent-based influenza pandemic models 

(Chang et al. 2020; Ferguson et al. 2020). Such models have been used as evidence for introducing 

(sometimes severe) public health measures (Adam 2020), with the recent change in British policy being 

the prime example. In this section, we illustrate this approach to modeling the SARS-CoV-2 pandemic 

with an agent-based model of the epidemic in Australia (Chang et al. 2020) based on ACEMod 

(Australian Census-based Epidemic Model). Developed as a “framework for studying influenza 

pandemics in Australia” (Cliff et al. 2018, p. 412), ACEMod is an influenza spread model that addresses 

the need for simulating interventions responding to the outbreaks of future respiratory diseases. While 

the 2009 swine flu pandemic was the motivation for constructing ACEMod, the model was not 

intended to accurately represent the outbreak of the H1N1 strain, but rather as a generalized 

framework for studying how an infectious disease spreads through the social interactions of 

Australians. ACEMod utilizes census data to ascribe realistic spatial and social characteristics to almost 

20 million agents inhabiting the model world. These agents are divided into different social groups of 

varying characteristics, with households differentiated proportionally according to statistical data on 

the prevalence of different types of families (singles, single parents, and couples with or without 
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children). These features are ascribed to agents stochastically in a way that replicates the aggregate 

structure of statistical data. During the daytime, children and students meet in classrooms and at 

schools, adults go to work, and pensioners stay at home. During the nighttime, the agents encounter 

contacts at households and in their neighborhoods (e.g., at supermarkets, theaters).  

The disease can be contracted by an agent in the event of meeting an infected individual in one of 

these settings. The probability that an agent i contracts the disease in a given step t depends on the 

number of sick individuals met in that step and the contagiousness of the disease, scaled by Ƙ. The 

modelers assume that the infectivity of the disease decreases linearly over time. Asymptomatic cases 

are assumed to be 50% less infectious than symptomatic ones, and the flu lasts 5 days within the 

model. After this period, recovered agents cannot infect others. Additionally, those who experience 

symptoms do so after an incubation period lasting approximately three days. The influenza epidemic 

is started by agents coming to Australia via international airports and seeded into communities living 

near the airports at random.  

In order to represent an epidemic of a particular strain of influenza using ACEMod, the model requires 

calibration. Modelers can proceed with this step in two ways, depending on the accessibility of data. 

In the case of well-studied influenza strains, their infectivity and the ratios of transmission in different 

contexts are well-recognized, and parameter values can be chosen on the basis of empirical studies. 

However, if these data are missing, then parameter values have to be calibrated using statistical 

procedures such as simplex or genetic algorithms to maximize the fit of the model to a benchmark. 

After constructing and calibrating ACEMod, modelers run simulations to obtain the estimates of 

prevalence, incidence, and attack rates, and choose the most common outcome (due to stochasticity, 

different runs of the model may lead to obtaining slightly different results). 

Chang et al. (2020) have used a significantly amended version of ACEMod to address the question of 

the effectiveness of non-pharmaceutical interventions aimed at suppressing the SARS-CoV-2 epidemic 

in Australia. The selection of models constructed to control a novel and possibly deadly strain of the 

seasonal flu in this case is primarily the result of the rapid demand for evidence informing decisions 

regarding public health measures, which may raise doubts about the justification and soundness of 

their conclusions. For example, one can ask whether the efficacy claims assess healthcare interventions 

against the novel coronavirus epidemic or an artificial pathogen existing only within the model world 

that shares some features of influenza and others of SARS-CoV-2. To address this criticism (considered 

in depth below), we discuss the changes introduced to the model and argue that the process of model 

calibration and validation suggests that the model represents the actual mechanism of the SARS-CoV-

2 epidemic.  

ABMs such as ACEMod can be seen as consisting of two parts: the rules specifying the behavior of 

agents and the creation of the model society, as well as the assumptions characterizing the infectivity 

of the pathogen causing the epidemic. Given that ACEMod is based on 2016 census data and a major 

change in social behaviors is unlikely to have occurred since then, the model accurately represents the 

social interactions of present-day Australians. Hence, the former part of the model has been left mostly 

unchanged, beyond increasing the number of agents to over 24 million to adjust for the growing 

population. In addition to introducing a social structure sufficiently resembling the contact network of 

the present population, obtaining accurate predictions of epidemic development and policy 

assessment requires inputting data on transmission likelihoods that are true for the pathogen causing 

the modeled epidemic (Cauchemez et al. 2011). Most changes in the model are concerned with the 

assumptions specifying the infectivity of the disease. Even though several features of influenza 

epidemics are similar to the epidemic caused by the novel coronavirus, they differ with respect to 

infectivity and attack rates, mortality rates, the average duration of disease, the reproductive number 
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R0, and the distribution of asymptomatic cases. Therefore, these parameters in the model required 

recalibration.  

The transmission probabilities remained mainly as specified in the influenza model. In order to account 

for the differences in the incubation period and disease length, Chang et al. set the time from 

contraction to the appearance of symptoms to 5 days on average and the duration of the disease to 

12 days. Infectivity increases exponentially the day after an agent gets infected and then decreases 

linearly until the end of infection, so cases are most infectious at the start of symptoms. The length of 

the generation period was calibrated to 6.4 days in order to reflect this difference in the model. 

Additionally, the likelihood of contracting SARS-CoV-2 but staying asymptomatic was set to be age-

dependent, and equaled 1/3 for adults while minors were set to be five times less likely to suffer from 

symptoms than adults. While this assumption is in agreement with the empirical findings that children 

represent a minor fraction of symptomatic cases, the calibration aimed at reproducing aggregate 

epidemic curves and may diverge from the actual chances of developing symptoms.  

Within the ACEMod framework, the reproductive number R0 is not one of the assumptions inputted 

into the model. Rather, its estimate results from a simulation of the scenario described by the rules 

and assumptions, some of which are stochastic. The assumptions considered and, particularly, the 

parameter denoting contagiousness of the disease (Ƙ) have been calibrated such that R0 stays within 

the limit of (2.0-2.5), i.e., in agreement with empirical estimates of the reproductive number at the 

beginning of the SARS-CoV-2 outbreak (Lai et al. 2020; Liu et al. 2020). The set of parameter values 

that result in the estimate of R0=2.27 create the epidemic dynamics reproducing the beginnings of the 

outbreak in a few countries experiencing the disease prior to Australia (China, Italy, Spain), where the 

growth rate of cumulative incidence equaled roughly 0.2. In addition to reproducing the empirical data 

for the beginning of the epidemic, the recalibrated ACEMod allows for simulating what the future of 

the epidemic in Australia may look like. As the modelers admit, the Baseline scenario, which is based 

on the assumption that agents do not change their behavior in response to the epidemic, is unlikely 

given the widespread self-imposed isolation in other countries. However, it allows for counterfactual 

comparisons of the different possible (sets of) interventions relative to the Baseline scenario. In order 

to assess the efficacy of particular healthcare policies, Chang et al. modify relevant rules and 

assumptions to describe the spread of SARS-CoV-2 under case isolation, school closure, three levels of 

compliance with social distancing, and with a few combinations of the three policies. For instance, in 

order to assess the effect of school closure (including primary and secondary schools, colleges, and 

universities), the parameter denoting the chance of meeting an infected agent in schools is set to zero, 

which describes the situation when both students and teachers stay at home (and hence cannot 

contract the virus). These counterfactual scenarios represent the effects of interventions on the model 

world. All interventions are modeled as taking place after the number of cases exceeds 1000. The 

comparison of most common outcomes (given the stochasticity of the assumptions and rules, they are 

indeterministic) including interventions with the baseline scenario allows for putting forward 

counterfactual causal claims that describe the effects of interventions on peak incidence and 

prevalence and the development of the epidemic in time. The conclusions accurately describe the 

effects of interventions within the model as long as no coding error occurs. However, the reliance of 

the model on simplifications generates a question as to whether the assessment of intervention 

efficacy holds for the novel coronavirus epidemic in Australia. 
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4.3. ABMs as models of actual mechanisms 

Before proceeding to our argument, let us first make several general remarks about modeling. These 

remarks should prove essential in clarifying the main issues that are often raised with regard to using 

simplified models, particularly in the context of policy decision-making. First of all, ABMs are instances 

of mechanistic models, for they clearly fit the general, also called the minimal, characterization of what 

a mechanism is: a set of entities whose activities and interactions are organized such that they are 

responsible for the phenomenon (Glennan 2017; Glennan and Illari 2018; Illari and Williamson 2012). 

This definition is broad enough to conceptually unify the debates on biological and social mechanisms 

under a single notion of a mechanism. Furthermore, such definition leaves open the possibility of 

integrating biological and social aspects into a mixed-mechanism model (Kelly et al. 2014). 

It should also be noted that much like any other kind of model, ABMs serve as simplified 

representations of their target phenomena. As the ACEMod case clearly shows, modelers introduce 

various simplifications by which they purport to adequately capture the core dynamics of the modeled 

phenomenon. In this process, they first abstract away from the complexities of the real system by 

’extracting’ certain features that they believe to be of crucial importance and that will then be the 

focus of modeling, whereas other features that may or may not have a causal influence are disregarded 

in these early stages. Modeling is an iterative process during which the merits of the model’s 

assumptions are continuously being evaluated, and if required, the assumptions are refined and 

additional assumptions added. More importantly, some of those extracted features are distorted to 

the extent that, if taken literally, they would misrepresent the actual state of things. However, 

introducing such distortions is often made in full awareness, with the ultimate goal of finding out 

whether the consequences they have for the behavior of the system make a difference, and to what 

degree. Philosophers often refer to the former (i.e., the set of properties retained in a model) as an 

abstraction, while the latter (i.e., the distortions of the system’s features) is called an idealization (see 

Chapter 2). 

However, abstractions and idealizations do not exhaust the conceptual toolbox available to modelers. 

A popular way to attempt to model a given system realistically is to introduce various approximations. 

Although there are noteworthy differences between approximations and idealizations, we cannot 

afford to go into any detail here. In summary, models often effectively disregard, distort and otherwise 

simplify possibly important details. In light of this, many wonder whether we can gain insight into the 

modeled phenomenon at all, and if so then how. 

Although the SARS-CoV-2 ABM is fairly detailed and precise, it cannot do without some of the 

simplifications discussed above. Consider some of the following assumptions introduced in the model. 

On the one hand, the basic features of the social life of the majority of the population are extracted 

and considered in the model: e.g., the inclusion of day and night regimes with their respective 

differences in social behavior allows for modeling a more realistic scenario than in simpler models. On 

the other hand, the infectivity of symptomatic and asymptomatic cases is considered to be constant 

for all members of the two groups of agents, albeit it differs between the groups. In reality, we expect 

that infectivity varies, which is further supported by extreme cases of super-spreaders who infect a 

large number of people and thus may seed new local outbreaks, which could arguably impact the 

predictions (Frieden and Lee 2020; Lloyd-Smith et al. 2005; Wong et al. 2015). Other parameter values 

also have a wide distribution but are treated as constant, often by calculating the mean value. The 

ABM also does not consider the potential impact of ethnic differences (Delgado et al. 2002; Everhart 

et al. 2000; Lazarus et al. 2002; Redelings et al. 2007; Smith and Clatworthy 2010) in the population 

with respect to different lifestyles, socioeconomical status and immune host responses, all of which 

could affect the dynamics of the spread. 
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Furthermore, some other assumptions exceed our current understanding of the epidemic and SARS-

CoV-2’s transmission mechanism. For example, one of the assumptions of the ACEMod model is the 

linear reduction of infectivity over time. Unfortunately, empirical results (Zou et al. 2020) suggest only 

that infectivity reduces over time, but do not indicate the linearity of this process. Additionally, ACEMod 

and its SARS-CoV-2 version put agents into working groups of 20 agents, despite the heterogeneity of 

their working conditions. Considering the differentiation of work duties (from healthcare workers and 

shop assistants to writers with virtually no social interaction), the chance of meeting an infected person 

at work is actually job-specific and therefore the model simplifies the reality. 

Consequently, we concur with Andersen’s claim that “no mechanism model can include all the actual, 

much less the potential, causal relationships in which such a mechanism may engage in a system” 

(Andersen 2012, p. 995). This pessimistic view on simplified models has inspired the method known as 

exploratory modeling (Bankes 1993). In cases when the values of parameters and assumptions 

inputted into the model cannot be established with certainty, researchers can simulate multiple 

possible worlds to discover the dependencies that are stable across the set of different models. In 

cases when only a fraction of assumptions are uncertain, researchers conduct sensitivity analyses to 

check if changes in the values of the parameters lead to changes in their conclusions (Wu et al. 2013). 

The results that remain unchanged despite minor adjustments to assumptions are considered to be 

robust (Weisberg 2006). This, in turn, leads to choosing those interventions that are most effective 

across different sets of parameter values, known as robust decision-making (Bankes 1993). 

Others prefer to think in terms of the distinction between how-actually and how-possibly modeling, 

referring to models that describe an actual mechanism or a possible mechanism, respectively 

(Machamer et al. 2000). There are two general ways to unpack the concept of a how-possibly model. 

First, we may want to say that a model serves as a hypothesis to be confirmed or disconfirmed as new 

evidence emerges. In this sense, a how-possibly model will eventually either turn into a how-actually 

model, should the evidence confirm it, or be discarded if the evidence is contrary to the model’s 

conclusions. The other general notion of a how-possibly model invites a different attitude. Rather than 

being in the position of having little data to establish whether or not the model does, in fact, represent 

the actual mechanism, we may interpret the model as representing something other than the 

potentially actual mechanism. On this view, claims about possible mechanisms do not attempt to pick 

out actual states, nor do they attempt to explain how a phenomenon actually occurs. Instead, they 

refer to conceivable states, and ask whether the hypothesized mechanism could, in principle, produce 

the phenomenon in question if certain assumptions are satisfied. 

Here we argue that, notwithstanding the simplifications introduced in the discussed influenza and 

SARS-CoV-2 ABMs, the epidemiologists are, in fact, providing representations of actual mechanisms of 

the spread of the viruses. This can be supported by exploiting the relevant similarities (Giere 2004, 

2010) between the SARS-CoV-2 ABM and the actual outbreak. The respects in which an ABM can be 

judged similar to its target concern the features retained in that model, while the degree(s) of similarity 

concern the extent to which the model’s features match those of the phenomenon. A good example 

is calibrating the incubation period to 5 days, based on existing studies according to which “the mean 

incubation period was reported as 5.2 days, 95% CI [4.1, 7.0], while being distributed around a mean 

of ~5 days within the range of 2–14 days with 95% CI” (Chang et al. 2020, p. 8). 

To elaborate this further, we may draw on Glennan (2005) who introduced a useful conceptual 

distinction between what he calls behavioral adequacy and mechanical adequacy. According to 

Glennan, a model represents an actual mechanism if it reproduces the aggregate behavior of the 

phenomenon, and truthfully describes its parts and interactions. Concerning the behavioral adequacy, 

one should be asking if “the model predict[s] (quantitatively or qualitatively) the overall behavior of 
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the mechanism” (Glennan 2005, p. 457). By calibrating the model to data from the beginning of the 

epidemic, Chang et al. (2020) showed that it reproduces the benchmark variables (R0 and attack rate).  

Two remarks are in order here. First, one may oppose the claim that what is being represented is the 

actual mechanism by arguing that the mechanism underlying the beginning of the outbreak and the 

fully-fledged epidemic are distinct. Changes in social behavior or genetic mutations could undermine 

the behavioral adequacy of the model. Second, it is possible (at least in principle) that the model 

represents a false mechanism, but is calibrated to the relevant benchmark such that it reproduces it. 

For example, there is no data confirming (or disproving) the assumption that children are 

asymptomatic five times more often than adults. As the modelers admit, this assumption was made 

not only to account for the lower attack rate among minors, but also to make the model adequate to 

aggregate-level data. This approach to calibration resembles the estimation of statistical parameters 

(a.k.a. curve fitting) and is considered dubious. The main line of criticism highlights that it is in principle 

possible to construct a model that represents a possible mechanism and, using calibration, adjust 

parameter values so that it reproduces the represented phenomenon, i.e., obtains behavioral 

adequacy despite being false. However, while this criticism is indeed justified regarding models of 

mechanisms that are epistemically inaccessible in other ways (such as mechanisms in the social 

sciences (Maziarz 2020)), it is not so in the case of epidemiological mechanisms whose transmission 

mechanism can be studied empirically and compared to the mechanism represented by the model.  

This can establish that the mechanism represented by the model is similar (in relevant aspects and to 

relevant degrees) to the mechanism that generates the outbreak, i.e., achieves mechanical adequacy 

in Glennan’s terminology. Applying the list of Glennan’s (2005, p. 457) criteria for mechanical adequacy 

justifies the claim that the mechanism represented by Chang et al. (2020) resembles the actual 

mechanism. First, according to our best contemporary understanding of the spread of the novel 

coronavirus, the model identifies all of the components of the mechanism. This would change if further 

studies identified other significant transmission routes, e.g., the fecal-oral route. Second, the model 

represents the entities of the mechanism in a localized way, given that it retains the spatial distribution 

of inhabitation in Australia. Additionally, the model simulates the development of an epidemic in time. 

This asserts that the “spatial and temporal organization of the mechanism” is accurately represented. 

Third, given that the number and place of social interactions are crucial for modeling the spread of 

contagious diseases, the model accurately captures relevant properties of the agents inhabiting the 

model world. Fourth, the calibration to census data asserts that the model provides “quantitatively 

accurate descriptions of the interactions and activities of each component,” at least on average for 

groups of agents. Finally, our background knowledge suggests that there is no other mechanism 

(different from the spread of the pathogen through human interactions) that could be responsible for 

the epidemic of SARS-CoV-2. 

Given that ACEMod fulfills Glennan’s criteria for behavioral and mechanical adequacy, considering our 

current understanding of the novel coronavirus, we can conclude that Chang et al.’s (2020) model 

represents the actual mechanism of the spread of the disease in Australia. Given this, the claims 

assessing the efficacy of the mitigation measures under consideration are likely to be accurate not only 

within the model but also about its target. We claim this with several caveats in mind to be discussed 

in the next section. 

It is also important to note that the ABM integrates the biological aspects, expressed by the parameter 

of infectivity, and the social aspects such as daily interaction regimes. As a result, the ABM should be 

construed as an instance of a model of a mixed mechanism, a concept elaborated by Kelly et al. (2014). 

Due to exposure patterns, population-level phenomena such as infectious disease epidemics are 

crucially dependent on human behavior and social practices. In cases like the current pandemic, 
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effective interventions may best be aimed at the societal level and therefore mechanistic models that 

integrate social factors, human behavior and biological aspects (something that the ABM discussed 

here attempts to do) are arguably best suited for providing understanding and suggesting policy 

decisions. 

 

4.4. Discussion and recommendations 

Our study defends using ABMs for informing decisions regarding mitigation and suppression measures 

by arguing that its best epidemiological models represent actual mechanisms. Provided that the 

model’s assumptions are calibrated and checked against the background empirical data - that is, the 

components, their activities, and spatiotemporal organization resemble (in relevant aspects and to a 

certain degree) the actual state of things - iterative runs of the simulations can indeed provide 

understanding and inform policy decisions. This is because the model delivers both difference-making 

and mechanistic evidence by satisfying the criteria of behavioral and mechanical adequacy, 

respectively.  

In contrast to our claim, epidemiological SIR models and ABMs have been criticized for over-simplifying 

target phenomena and hence lacking relevance for policy decisions. For instance, Eubank et al. 

criticized the Imperial College London model (Ferguson et al. 2020) for its “reliance on a simplified 

picture of social interactions [that] limits its extensibility to counterfactuals. The general nature of 

conclusions based on such model can be expected to be similar to those of a simple compartmental 

model” (Eubank et al. 2020, pp. 5–6). Similarly, Squazzoni et al. suggested that even though ACEMod 

is better calibrated than other epidemiological ABMs, “these [models] do not capture network effects 

nor people’s reactive responses as the population states simply change via stochastic (randomized) 

processes determined by parameters (although the parameters derive from data)” (Squazzoni et al. 

2020, p. 2.6). In our view, these highly-advanced epidemiological models, while being simplified 

representations of reality, account for relevant aspects of social interactions and crucial aspects of the 

novel coronavirus epidemic (e.g., contagiousness), therefore allowing them to be put forward as 

evidence for policy-relevant claims.  

We claim this despite that a straightforward comparison of model predictions to the actual epidemic 

curve (e.g., the number of total cases) in Australia shows the two to be mismatched. The number of 

COVID-19 cases is smaller than predicted by an order of magnitude. However, such a direct comparison 

is not warranted because the countermeasures implemented by the National Cabinet and the state 

governments differ from the mitigation and suppression interventions considered by Chang et al 

(2020). That is, the a posteriori behavioral adequacy of the model cannot be directly assessed based 

on the predictions because the scenarios implemented into the model differ from the actual course of 

events. In particular, first restrictions on international travel were imposed on March 1st, when just 29 

COVID-19 cases were observed (“Worldometer” 2020), followed by the 14-day quarantine for 

incomers (Pannett 2020) on March 15th (300 cases) (“Worldometer” 2020) that virtually stopped the 

import of new cases to Australia, the closure of borders for nonresidents (Worthington and Snape 

2020), and a social distancing rule requiring 4 sq. meters for each person in enclosed space on March  

20th (928 cases) (“Worldometer” 2020). Two days later (1 609 cases) (“Worldometer” 2020) some 

states closed non-essential businesses (Knaus et al. 2020), and on March 30th (4 460 cases) 

(“Worldometer” 2020) they forbade gatherings of more than two people and advised people to stay 

at home with some exceptions (“National Cabinet Statement” 2020). The last two interventions are 

more severe than the measures considered by the modelers and are a plausible explanation of the 

overestimation of the number of cases. Given this, we can claim that the model had been behaviorally 
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adequate to the mechanism governing the beginning of the epidemic in Australia and it would have 

produced accurate predictions had the interventions been introduced in line with the measures 

simulated by Chang et al. (2020). However, inaccurate predictions are what should be expected in the 

case of the so-called fat-tail processes, where outcomes strongly depend on the initial conditions. One 

should expect that, over time, the assumptions and calibrated parameters will be more accurate and 

ABMs will produce predictions not only qualitatively but also quantitatively accurate. The usefulness 

of epidemiological ABMs for decision-makers results from delivering an understanding of the spread 

of the virus and allowing for comparisons among alternative mitigation measures. For instance, one of 

the qualitative predictions of the model is the limited efficacy of school closures, which remained open 

in Australia (Karp and Davey 2020) and which had limited influence on the severity of the epidemic, 

considering that just one cluster was located at a school (“Coronavirus update for Victoria” 2020). 

We believe that, considering the diversity in the number and patterns of social interactions across 

countries, the quality of evidence from ABMs should be assessed on the case-by-case basis. To do so, 

one can employ the approach of Parkinnen et al. (2018, p. 79) developed initially to evaluate the quality 

of evidence for biological mechanisms. In that case, one should consider (1) the quality of the method 

(i.e., consider the empirical adequacy of the assumptions in light of contemporary empirical results), 

(2) the implementation of the method (i.e., assess how the epidemiological ABM is programmed, 

calibrated, and simulated), and (3) the stability of the results (i.e., how sensitive the results are to 

changes in the assumptions). ACEMod (Chang et al. 2020) fulfills these criteria (provisionally accepting 

the existing empirical results but keeping in mind that they may change as the pandemic develops in 

time and new results become published).  

Epidemiological models usually do not account for the harms of non-pharmaceutical interventions. 

Severe mitigation measures such as imposed social distancing and business closures are likely to 

hamper economic and social life. All models are partial representations of reality and, given that the 

primary purpose of an epidemiological model is to address the efficacy of health care interventions, 

they isolate away certain factors and effects of interventions (economic and social) and are more 

accurate in predicting the spread of the disease under alternative conditions. Other models 

(Bodenstein et al. 2020; Dignum et al. 2020) trade off epidemiological accuracy for accounting for social 

and economic effects, and may be more relevant for assessing the harms of mitigation measures.   

Additionally, ABMs, much like the compartmental models, are dependent on the assumptions of the 

modelers (Sridhar and Majumder 2020). Our claim that ACEMod calibrated for SARS-CoV-2 bears 

similarity to the actual mechanism of the epidemic, depends on the accuracy of the empirical results 

used as an input for this model. We need to repeatedly acknowledge the provisional nature of these 

empirical results, given the novelty of the pathogen. If the parameter values in ACEMod were 

miscalibrated, then the assessments of intervention efficacy could be wrong. This implies that 

problems arise when the features of the virus change due to mutations and when people change their 

behavior in a significant and unpredictable way since “the efficacy of implementation depends on 

people’s reactions, [the stability of] pre-existing social norms, and structural societal constraints” 

(Squazzoni et al. 2020). Furthermore, the effects of epidemiological agent-based modeling are highly 

dependent on social structure and carefully calibrated to social and economic characteristics. 

Therefore, the epidemiological ABMs are geographically-localized and their conclusions should not be 

extrapolated beyond their target systems (Broadbent and Smart 2020), unless the models and their 

predictions are calibrated to particular settings. Finally, while ACEMod is well-documented in the two 

publications discussed throughout our paper, neither its code nor detailed documentation regarding 

its use is published (this unfortunately also applies to some other ABMs of the SARS-CoV-2 epidemic). 
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Given these limitations, the models should be carefully checked for coding errors and other possible 

flaws before applying their implications in the policy context. 

Finally, an additional concern which builds on much of the previous discussion must be addressed. The 

EBM movement assesses the quality of evidence on the basis of considering the risk of bias or 

confounding, i.e., the situation where a variable left out from the model accounts for estimated 

correlations and is the actual causal factor (La Caze 2009). The methods that are less likely to lead to 

spurious correlations are considered more trustworthy. This approach prioritizes randomized 

controlled trials over observational studies and cohort over case-control design. Considering the 

crucial role of epidemiological ABMs in planning mitigation and suppression measures during the SARS-

CoV-2 pandemic, the question of the quality of evidence delivered by such models needs to be 

assessed with regard to the problem of confounding. 

As noted above, epidemiological ABMs have been criticized for simplifying social interactions and not 

accounting for changes in behavior in response to the pandemic and measures themselves (Squazzoni 

et al. 2020). Much like other scientific practices, theoretical modeling consists of a careful selection of 

factors that are considered relevant for the task at hand. Thus, by extracting certain features of the 

studied phenomenon, which, in many cases, are then further modified in various ways (Portides 2018), 

modelers can indirectly investigate the behavior of a system by first investigating their model (see also 

Chapter 1 and Chapter 2). In the process, however, it might be the case that some difference-making 

factors have been overlooked or otherwise misrepresented in a way that puts the utility of the model 

in question. Introducing such simplifications can result in findings that may be affected by a 

confounding factor that is not accounted for in the model (Strevens 2008, p. 288). 

Consider, for instance, the attempt to assess the relative accuracy of assumptions in the SARS-CoV-2 

version of the ACEMod model. The question remains whether some of the extracted factors, presumed 

to be key difference-makers, do, in fact, make a difference and whether they do so in accord with the 

assumptions. Chang et al. (2020) accounted for, among other things, age-dependent attack rates, a 

range of reproductive numbers, age-stratified and social context-dependent transmission rates, 

household clusters and other social mixing contexts, symptomatic-asymptomatic distinction, and long 

and varying incubation periods. However, the question whether all the key difference-making factors 

have been included in the model remains to be addressed.  

For example, the modelers assumed temporal homogeneity of interactions among agents populating 

ACEMod. ACEMod predicts that SARS-CoV-2 spreads more quickly in urban areas because social 

contacts are more frequent in such settings. However, as shown elsewhere (Nation et al. 2010) these 

social interactions are less intensive in terms of duration than social interactions in rural areas, which 

suggests that the spread may be equally rapid or even faster in rural areas, depending on the strength 

of the confounder’s influence. This is because the duration of exposure is a plausible moderator for 

the risk of contracting SARS-CoV-2, as stated by, e.g., ECDC (Adlhoch et al. 2020). The failure to properly 

account for the duration of exposure can have detrimental effects on the accuracy of predictions.  

There are many potential confounding factors like the one just discussed that are not included in the 

model. Given the utmost importance of providing reliable predictions and accurate assessment of 

public health (non-pharmaceutical) interventions, further research is needed to assess the risk of 

confounding and quality of evidence delivered by epidemiological ABMs. This task can be divided into 

two intertwined questions. First, it needs to be established that all the key difference-making factors 

are accurately included in the model (i.e., no confounding factor is left out from the model). Second, 

all factors included in the model should be shown to make a difference (approximately) in accord with 

the rules and assumptions of the model so that the ABM does not include spurious determinants and 
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does not misrepresent the actual factors in a way that would lead to false predictions. Such analysis 

allows for addressing the question if the causal structure represented by an ABM resembles the actual 

causal structure and, in effect, assessing the quality and reliability of evidence. However, considering 

that epidemiological ABMs account for not only biological determinants such as infectivity but also 

social interactions that differ across the globe, the quality of evidence from ABMs must be assessed 

on a case-by-case basis. In reaching policy decisions, ABMs should be understood as merely one piece 

of the puzzle subject to further re-evaluation with respect to value judgments. This is because 

alternative mitigation measures may disproportionately affect certain social groups. Therefore, the 

quality assessment aimed at identifying possible confounders that have been left out of a particular 

ABM should delineate the conflict of interest and vested values related to the ABM and the mitigation 

measures that it supports. 

 

4.5. Chapter summary 

In summary, we have argued that, despite the criticism raised against models being the appropriate 

vehicle for informing policies, the SARS-CoV-2 ABM is suitable for this purpose because the mechanism 

described by the model sufficiently resembles the mechanism at work in the real world. Thus, our best 

contemporary epidemiological ABMs represent the actual mechanism of the spread of the virus. 

Unfortunately, such models have often been left out from methodological discussions and are not 

explicitly listed by evidence hierarchies. While the need for appraising mechanistic reasoning in 

medicine is also voiced by the EBM movement (Anjum et al. 2020), there is no broadly-accepted view 

on how to amalgamate evidence of different types. Further research is needed to assess the risk of 

bias and confounding in the epidemiological models that deliver both difference-making and 

mechanistic evidence. However, considering the current situation and pressing need for rapid and 

accurate decisions regarding mitigation measures, policymakers should take to heart the advice that 

“if no randomized trial has been carried out […], we must follow the trail to the next best external 

evidence and work from there” (Sackett et al. 2000, p. 74). In the current situation, accurately 

calibrated epidemiological ABMs are the best existing evidence. 
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5. A conceptual model of the immune system: Understanding 

immunity in times of COVID-19 and beyond 

 

Because this chapter is based on joint work with Gregor Greslehner, I will continue using the pronoun 

‘we’ as in the previous chapter. 

 

5.1. Introduction 

In their reflections on the COVID-19 pandemic, philosophers have shed light on a number of different 

aspects. We shall focus on a central aspect that has not yet received much attention: immunology. 

Philosophy of immunology has only recently started to grow as a small field within philosophy of 

science (see Pradeu 2019; Swiatczak and Tauber 2020). Immunology can be an overwhelmingly 

complicated science, even for experts who have worked in the field for decades. However, the basic 

principles and underlying theoretical concepts are also a domain for philosophical reflections that 

benefit immunology, philosophy, and the consideration of how a wider audience of non-

immunologists think about immunology. 

The COVID-19 pandemic caused by the spread of SARS-CoV-2 naturally invites talk of a host defense 

against a foreign invader, a pathogen, giving rise to the idea that the stronger the defense against the 

pathogen (the foreign ‘non-self’), the better for the host (the ‘self’). This idea is further illustrated by 

the benefits of boosting one’s immunity by vaccination, or the communication coming from some 

health agencies such as the CDC (2021) stating that immunocompromised individuals possess 

weakened immunity, which is a risk factor. However, we shall argue that such a construal of immunity 

contributes to the distortion of the overall picture of what the immune system is, what it does, and 

why it sometimes fails. 

Many features of COVID-19 painfully remind us of several issues concerning the immune system and 

raise important questions, including some which extend beyond COVID-19. These issues and questions 

include, but are not limited to: the contextuality of the immune response; the trade-off between 

fighting off an infection (immunity) and in so doing causing collateral damage (immunopathology); the 

two defense strategies, i.e., clearing the pathogen (resistance) and decreasing the susceptibility of the 

host to tissue damage (disease tolerance); the importance of immune regulation; and questions going 

well beyond the narrow conception of immunity as a defense system. 

In this chapter, we propose a conceptual model of the immune system consisting of three features: 

contextuality, regulation, and trade-offs. This tripartite view allows us to take a broader perspective 

on many of aspects of COVID-19 and achieve a better understanding of the immune system in general. 

Using this model, we also want to draw attention to misleading metaphors originating from the idea 

that the immune system is primarily a defense system to fight pathogens.  

War-like metaphors, such as defending the ‘self’ against pathogenic invaders, continue to shape how 

many scientists and physicians think about the immune system and how immunology is being 

communicated to the wider public.68 Since metaphors have their uses and abuses, it is important to 

 
68 Even the best textbooks (e.g., Murphy and Weaver 2017) focus narrowly on defense at the expense of other 
immune functions, thus introducing a biased mindset in future generations of biomedical researchers and 
physicians. 
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see how they guide one’s intuitions and how we think about the immune system. Using our model 

framework, we provide a non-exhaustive categorization of what the otherwise ill-defined notions of 

‘strong’ or ‘weak’ immunity might mean, and we argue that some of the (outdated or questionable) 

distinctions and metaphors of self, danger, defense, and strength of the immune system or response, 

have led to misconceptions, limiting our understanding of the immune system. 

As a result, we suggest that we need to move away from viewing the immune system narrowly as a 

defense system, and to drop related notions that prevent us from achieving adequate understanding. 

The conceptual clarification of these matters showcases the use of philosophy of science in the quest 

for a better understanding of the immune system. 

Before moving on, it is worth noting that the use of the term ‘model’ does not correspond to either of 

the modeling practices discussed in Chapter 1. However, this does not mean that such use results in a 

blatant confusion of terms, for the topic of Chapter 1 was focused on the modeling process, rather 

than the product. Moreover, the product of the modeling process in Chapter 1 concerned mechanistic 

models while in this instance it pertains to a conceptual account of a whole system, rather than a 

particular mechanism underlying a biological phenomenon. Still, the use of ‘model’ herein is quite 

loose and akin to, for example, the equilibrium model of immunity proposed by Gérard Eberl (2016). 

 

5.2. Rethinking immunity: what does the immune system recognize and respond to and 

what does it do? 

The guiding principle that the immune system distinguishes between ‘self’ and ‘non-self’ has been 

dominant since Sir Frank Macfarlane Burnet (Burnet 1969; Tauber and Podolsky 1994). According to 

this view, anything belonging to an organism’s self would be tolerated, whereas anything foreign 

would be recognized as non-self and removed or attacked. This basic idea has helped to explain various 

immunological phenomena, while many other problems and limitations have grown ever more 

apparent (Pradeu 2012; Tauber 2017). For example, it remained unclear how the immune system 

would be able to make this distinction. A major breakthrough came with Charles Janeway’s and Ruslan 

Medzhitov’s insight regarding the interplay of adaptive and innate immunity and the discovery of 

pattern-recognition receptors (Medzhitov and Janeway 2002). Suddenly it seemed as if everything that 

was foreign or pathogenic and needed to be attacked was wearing a molecular pattern or “barcode” 

(Aderem 2003). However, the idea of unique molecular patterns specific to pathogens which the 

immune system could recognize, so-called pathogen-associated molecular patterns (PAMPs), had to 

be relinquished, as the very same molecular patterns can be present and recognized in non-

pathological contexts. Accordingly, they have been renamed “microbe-associated molecular patterns” 

(MAMPs) (Ausubel 2005; Koropatnick et al. 2004). The same molecular patterns can or will not induce 

an immune response in different contexts and the mapping between self/non-self and to what the 

immune system does or does not respond does not fully match. 

An important though somewhat controversial modification was Polly Matzinger’s “danger theory” 

(Matzinger 1994, 2002). Rather than reacting to anything foreign, the immune system would respond 

to anything ‘dangerous’. But how to define ‘danger’? And can it be linked to any specific molecular 

patterns? All these approaches try to link immunological recognition and response to molecular 

patterns associated with pathogens or danger. Applying metaphors and anthropomorphic concepts to 

describe certain molecules or microbes as being ‘foreign’, ‘dangerous’, or ‘damage-associated’ is 
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misleading as these concepts still fail to explain several phenomena.69 To fill the explanatory gap, in 

their “discontinuity theory” Pradeu et al. suggest considering changes in the dynamics of such patterns 

(Pradeu et al. 2013; Pradeu and Vivier 2016). Greslehner explores the possibility that the immune 

system observes and responds to (microbial) functions rather than structures (Greslehner 2020). There 

is as yet no new uniformly accepted ‘general theory of immunity’ but theoretical progress continues 

to advance our understanding of how the immune system operates both on different levels and 

together with many other physiological systems (Eberl and Pradeu 2018). 

At the same time, it is important to emphasize that the immune system executes many other functions 

in addition to host defense. The immune system is responsible for and involved with tissue repair, the 

clearance of damaged or dead cells and debris, developmental processes, the maintenance of 

homeostasis, and many more (Laurent et al. 2017; Pradeu 2019; Rankin and Artis 2018; Tauber 2017). 

Some of these immune functions are, in fact, carried out by non-immune cells, including microbes, 

thus leading to the “co-immunity” (Chiu et al. 2017) of a host together with its microbiota. In a similar 

vein, there has been a growth in the popularity of pursuing a systems biology approach (Davis 2020) 

and considering “the whole body as the system in systems immunology” (Poon and Farber 2020). 

Taken together, one should not consider ‘the immune system’ as a single defensive entity, but rather 

take seriously the ‘system’ in ‘immune system’.  

There have been a number of theoretical changes which have broadened our view of immunity and of 

the role of immune systems in health and disease in general (Tauber 2017). Many puzzles remain, but 

the last decade or so has seen enormous conceptual change in immunology. Thinking about the 

immune system in binary terms - like self/non-self, pathogenic/commensal - does not hold up 

anymore. These are fuzzy notions without clear-cut borders, often tied to metaphorical language. 

In the following section we discuss this by highlighting three important features of the immune system, 

thereby presenting our conceptual model of the immune system. 

 

5.3. Contextuality, regulation, and trade-offs 

To better understand the nature of the immune system in general terms and to avoid 

misunderstandings, we propose thinking in terms of contextuality, regulation, and the trade-offs 

affecting immune responses. 

 

5.3.1. Contextuality of the immune response 

Rather than the immune system being activated only occasionally when facing threats, the immune 

system is in fact constantly interacting with its environment,70 with the outcome of these interactions 

being context-dependent through and through. Furthermore, it is important to point out that such 

contextuality comes in many layers. 

On the most general level, the contextuality of an immune response concerns the particular function 

at play, whether that be defense, tissue repair, the maintenance of homeostasis, the clearance of 

 
69 E.g. certain molecules, such as lipopolysaccharide, which can be found on the surface of both pathogens and 
commensals (Steimle et al. 2016); or flagellin, which may or may not trigger an immune response, depending 
on context (Park et al. 2019); and general puzzles concerning allergies and autoimmune diseases. 
70 This is perhaps most vividly illustrated by those mucosal surfaces which constantly interact with the 
microbiome but it also holds true for systemic immunity (Eberl 2016).  
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debris, including senescent cells, or a role in development. Which of these functions is triggered 

depends on the particular situation, driven by the integration of various signals and immune mediators 

such as cytokines. 

One and the same thing can and often does fulfill different general functions, depending on what is 

going on. For instance, the triggering of Toll-like receptors (TLRs), a group of immune sensors 

specialized in recognizing microbial patterns, often leads to an inflammatory response under 

pathological conditions. However, TLR signaling is also crucial for maintaining intestinal epithelial 

homeostasis (Rakoff-Nahoum et al. 2004), a type of phenomenon called physiological inflammation 

(Sansonetti and Medzhitov 2009). Similarly, IFN-β, a type I interferon (IFN-I), is produced by epithelial 

cells and specialized subsets of immune cells early in a response to a viral infection. The infected cells 

start producing IFN-Is, the actions of which then interfere with viral replication in many ways. In 

addition to its presence in increased concentration during infection, IFN-β is also constitutively 

expressed at low levels and contributes to tissue homeostasis (Stefan et al. 2020). 

Similarly, many immune cells enact various general functions, depending on the context. As with many 

other (if not all) immune cells, macrophages exhibit cellular plasticity, i.e., they change their phenotype 

depending on the particular context. The classically activated M1 macrophage phenotype leads to the 

triggering of an inflammatory response, whereas the alternatively activated M2 macrophage 

phenotype promotes tissue remodeling, among many other things (Biswas and Mantovani 2010). 

Contextuality also pertains to the specifics of a given immune function. For instance, defense is often 

thought of in terms of resistance, i.e., the clearance of pathogens. However, an organism may instead 

prioritize another defense strategy called ‘disease tolerance’ (Medzhitov et al. 2012), a concept 

originating in the field of plant immunity. Whereas the resistance strategy is defined by reducing the 

pathogen burden, the consequence of which is always some degree of immunopathology, the 

tolerance strategy amounts to reducing the negative impact of pathogen-induced damage and 

immunopathology by decreasing the susceptibility of the host to tissue damage. Far from being a strict 

matter of an either-or strategy, resistance and tolerance may be located on a spectrum and, moreover, 

are pathogen-specific. For example, fatigue-induced anorexia, a kind of sickness behavior associated 

with infection, increases the tolerance to infection by Salmonella typhimurium while it decreases 

resistance to infection by Listeria monocytogenes in Drosophila melanogaster (Ayres and Schneider 

2009). Morbidity and mortality in an infection may be due to a failure in resistance. However, if a 

comparable pathogen burden is found in hosts with different morbidity or mortality profiles despite 

the evidence of effective resistance, the pathology may result from a failure in tolerance (Medzhitov 

et al. 2012). Some studies have shown that there may be no significant difference in viral load in 

symptomatic versus asymptomatic cases of COVID-19 (Lee et al. 2020), meaning that the course of 

disease may, at least to some degree, reflect individual differences in susceptibility to tissue damage 

(Ayres 2020).71 

Furthermore, although some microbes may exclusively be considered as pathogenic in humans, e.g., 

SARS-CoV-2, a large number of microbes are pathogenic only under certain conditions. In fact, 

pathogenicity is a complex and dynamic relation between the host and the microbe (Méthot and Alizon 

2014). Only within the last few decades has the importance of the microbiome started to be fully 

appreciated in health and disease (Turnbaugh et al. 2007), offering additional “holobiont” or 

“superorganism” perspectives in immunology (Eberl 2010). Many viruses also exhibit interesting 

 
71 Similarly, Medzhitov et al. (2012) have proposed that the concept of tolerance may apply to phenomena such 
as the “Typhoid Mary”, i.e., cases where a carrier remains healthy (asymptomatic) perhaps due to having a high 
level of tolerance to the particular pathogen. 
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contextual features, even though they have been predominantly associated with purely pathogenic or 

otherwise detrimental effects on the host. When we think of viruses, one immediately thinks of 

pathogens causing diseases which scourge humanity. However, viruses are also an oft-neglected, key 

part of the microbiome, ignored for a number of reasons which include not only methodological 

difficulties but also our biased perception owing to biomedical microbiology mostly being driven by a 

desire to understand pathogens. They not only play a role as pathogens; in the study of good health, 

the human virome is also a central factor which has until recently remained largely unexplored, 

remaining viral “dark matter” (Liang and Bushman 2021). Pradeu (2016) provides an intriguing 

overview, showing that while many viruses have become indispensable to host development, others 

confer protection against disease: for example, although many of the herpesviruses put individuals at 

risk of developing diseases, in their latent form several of the herpesviruses also provide protection 

against some bacterial infections such as by Listeria monocytogenes or Yersinia pestis, in an antigen 

non-specific way by upregulating the basal activation state of innate immunity (Barton et al. 2007). 

Furthermore, a virus may cause no clinical disease in a given species while in another it may induce 

severe disease. Because virulence is a function of traits that are intrinsic not only to the virus but also 

to the host, viruses that jump species may give rise to differences in clinical manifestation which most 

likely reflect the differences in host tolerance, provided that no evolution of the virus has occurred 

(Medzhitov et al. 2012). Owing to many of their features, including their innate immune system 

characteristic of the dampened activation of the inflammasome complex, bat species do not develop 

clinical disease despite harboring many viruses (Irving et al. 2021).72 SARS-CoV-2 probably originated 

in bats, and although an evolutionary shift from its ancestor is likely, the resulting zoonosis is most 

likely due to the differences in the hosts’ features including the mechanisms of disease tolerance. 

The type of immune response to a microbe – such as type 1, type 2, or type 3 – is influenced by the 

lifestyle of the microbe. Roughly, type 1 immune response is aimed at intracellular pathogens, type 2 

at extracellular parasites, and type 3 at extracellular bacteria and fungi. There are well-documented 

feedback mechanisms that ensure that the activation of one type of response inhibits the activation of 

another type of response, constantly balancing each other out, according to Eberl’s equilibrium model 

of immunity (Eberl 2016). We shall return to this point when discussing the importance of regulation. 

It is not uncommon for the type of response directed against a microbe to change during the course 

of an infection.  

Another ‘contextuality layer’ concerns the nature of the immune system itself. The immune system, 

far from being monolithic, consists of a vast network of interacting parts that can be carved up in 

multiple ways, most commonly into the humoral and cellular arms of the immune system, the barrier, 

innate and adaptive arms, or into the mucosal and systemic immune system.73 As seen above, the 

 
72 Note that there are some differences between bat species. Furthermore, there are some rare examples of 
viruses that do cause severe disease in bat species.  
73 Although these categories do reflect the natural order of things to some extent, any such division is, 
however, always somewhat sketchy at best. For example, one of the defining features of the adaptive immune 
response is the development of immunological memory. However, it turns out that the innate arm also exhibits 
a memory phenotype, known as trained immunity (Netea et al. 2020). The humoral/cellular distinction is also 
fuzzy since in many cases there is no clear-cut difference between purely humoral and cell-mediated 
responses. Similarly, although the mucosal system can be characterized by a set of specialized lymphoid 
tissues, a specific circulating pattern, and a specific environment, the mucosal/systemic divide, according to 
which the influence of one upon the other may be severely limited, is also not as straightforward as sometimes 
believed. For instance, the phenomenon of oral tolerance pertains to the induction of a tolerogenic rather than 
an effector response toward harmless antigens at mucosal surfaces and can have systemic effects (Weiner 
2000). Thus, many of these differences are, to some extent, a matter of degree rather than a matter of kind. 
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immune system can also be carved into different effector modules, i.e., types of responses, which are 

collections of humoral and cell-mediated mechanisms and span both the innate and adaptive arms. 

The contextuality of the immune system and its environment has consequences for what attitude we 

ought to adopt toward terms such as ‘strong’, and ‘weak’, or ‘weakened immune systems’. Casting our 

minds back to the diverse functions of the immune system, what would the concept of strong immunity 

mean in the context of homeostasis? Very little. Or consider the question of tissue repair. A ‘strong 

immunity’ in that particular context would probably amount to excessive tissue repair, giving rise to 

fibrosis (Medzhitov et al. 2012). 

When thinking about the function of defense one often encounters the distinction between an 

immunocompetent and an immunocompromised individual. Providing a definition of an 

immunocompetent individual proves difficult and is hardly ever the subject of debate. Instead, an 

implicit reliance upon a negative definition – an individual who exhibits no (known) deficiency or is not 

immunosuppressed – seems to be the rule. However, the different outcomes of an immune response 

across individuals also result from various polymorphisms such as in the human leukocyte antigen 

(HLA) loci; these polymorphisms are not defects. Moreover, immunocompetence is also not something 

‘static’ or ‘given’ because it evolves over time, most notably during development and aging. 

Intriguingly, the temporal changes in the workings of the innate and adaptive immune system, with 

consequences for its functions, also relate to circadian rhythms, i.e., they oscillate between day and 

night regimes (Druzd et al. 2017; Keller et al. 2009). 

Yet immunocompromised individuals are characterized by the presence of some sort of 

immunodeficiency or by being in an immunosuppressed state. Since immunosuppression will be 

brought up in the next section, we shall leave discussion until then. Immunocompromised individuals 

have been intuitively considered as individuals with ‘weak immunity’. However, closer inspection will 

reveal substantial problems with such an intuition. 

With respect to immunodeficiency, it is customary to distinguish between primary or inherited 

immunodeficiency, and secondary or acquired immunodeficiency. An example of a primary 

immunodeficiency is a mutation in the gene encoding the transcription factor FoxP3 which plays a 

prominent role in the development and functioning of regulatory T cells. As a result, the suppressive 

function normally displayed by these cells is impaired and an autoimmune disease called IPEX (immune 

dysregulation, polyendocrinopathy, enteropathy, X-linked) develops (Rich et al. 2019). On the other 

hand, secondary immunodeficiencies, which are quite common, may arise from various causes. A 

secondary immunodeficiency may be due to an infection by, for example, HIV, which unless treated, 

normally leads to the acquired immunodeficiency syndrome (AIDS). Alternatively, it may be due to 

surgery. For example, a thymectomy or splenectomy, i.e., the removal of the thymus or the spleen, 

respectively, impairs some of the functions of the immune system. More specifically, a neonatal 

thymectomy prevents the development of mature T cells whereas a thymectomy in adulthood has 

little impact, since the pool of naïve T cells forms early on, and the thymus deteriorates with age, 

beginning soon after puberty. Perhaps less dramatically, the removal of the spleen confers a lifelong 

susceptibility to devastating infection by encapsulated bacteria such as S. pnemoniae, which requires 

that the affected individuals take antibiotics prophylactically and are vaccinated against pneumococcal 

infection. Individuals without a functional spleen lack the mononuclear phagocytes normally found 

within the spleen which clear this organism from the blood. However, such individuals are fully 

competent in launching a response against many other pathogens including many viruses, just like 

immunocompetent individuals. 
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Clearly, then, as the examples of neonatal thymectomy and splenectomy illustrate, it makes little sense 

to think in terms of there being a scale on which one may move between weakness and strength: it is 

simply either there, or missing. This is because the removal of these organs and the resulting deficiency 

in the development of particular cell populations or the impaired function of blood filtration, 

respectively, is not a ‘thing’ that can somehow be manipulated to be made ‘stronger’, since the thing 

to be made stronger is missing. Other times, it may be intuitive to think in terms of such a continuum 

between strong and weak, since, for instance, nutrition can be progressively improved in some sense. 

Malnutrition – another example of a secondary immunodeficiency – is known to affect cell-mediated 

immunity and is a major risk factor for many infectious diseases. Thus, intuitively we would believe 

that the better the nutrition the ‘stronger’ the immune protective effect. However, in contrast to this 

general belief, in certain specific circumstances deficiency may actually confer some additional level of 

protection. In particular, iron, though required in many immune-related pathways, happens to be 

essential for many bacteria, fungi and protozoa: it turns out that a certain degree of iron deficiency 

defined using ferritin and transferrin saturation in African children reduces the growth rate of the 

causative agent of malaria (Muriuki et al. 2019). Thus, the assumption that a good diet is always 

associated with increased protection turns out to be wrong in at least some, albeit very specific, cases. 

Still, this example illustrates yet again the crucial importance of contextual thinking. 

There are at least two additional reasons to think that, in general, immunodeficiencies cannot be 

equated with an immune system being ‘weaker’ than that of an immunocompetent individual.74 First 

of all, it is wrong to think that an immunodeficiency necessarily confers a system-wide defect. It is true 

that some defects (such as IPEX) prove fatal and others, such as a variety of severe combined 

immunodeficiencies (SCID), leave the host extremely susceptible to a wide range of conditions. 

However, other defects make the host overtly susceptible only to specific infections, while some may 

not even clinically manifest themselves. Some immunodeficiencies, such as the relatively common 

deficiency of IgA production, does not leave most of the individuals overly susceptible to infection, 

possibly owing to the compensation by IgM secretion (Yel 2010). Perhaps more strikingly, patients 

suffering from SCID were found to lack all innate lymphoid cell (ILC) subsets. After receiving 

hematopoietic stem cell transplantation and restoring T and B cell function, the ILC count was still 

considerably lower. However, the low count of ILCs was not associated with any particular 

susceptibility to disease even after decades of follow-up, suggesting that ILCs may exhibit some degree 

of redundancy (Vély et al. 2016). 

The fact that a great many immunodeficiencies do not manifest themselves in a clinically relevant 

manner may be explained by the fact that the immune system, as with many other biological systems, 

is adaptive and notorious for exhibiting biological redundancy, meaning that, in many instances, should 

one pathway or one ‘player’ fail, another may step in and take over. Such redundancy thus gives rise 

to the phenomenon of robustness, that is, that the immune system is, on average, capable of 

functioning adequately even if some parts exhibit certain defects.75 

 
74 Note that this claim goes directly against public statements by distinguished institutions such as CDC (2021) 
which suggest that immunocompromised people possess a ‘weakened’ immune system. It is true that being 
immunocompromised is generally undesirable but the claim that defects somehow make one’s immune system 
weaker is misguided, as we argue in the main text. 
75 What it means for a system to be robust, and what it means for it to exhibit redundancy, are complex 
questions since these concepts are applied to a wide range of phenomena. For instance, drawing on Kitano 
(2004), Truchetet and Pradeu (2018) define robustness as the maintenance of specific functionalities of a given 
system against internal and external perturbations. Truchetet and Pradeu also analyze robustness in 
pathological conditions, distinguishing robustness as dysfunction, when robustness is ‘hijacked’ in conditions 
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The second reason why one ought to avoid equating immunodeficiencies with ‘weakness’ is that 

although an immunodeficiency does indeed refer to a defect, that defect may result in an unwanted 

response that is ‘too strong’, i.e., one that is not kept in check. Recall the systemic autoimmune disease 

IPEX, a rare immunopathological condition in which the crucial suppressive function of regulatory T 

cells is impaired due to a mutated gene. Consequently, the affected individual suffers from a host of 

conditions including lymphoproliferation, thyroiditis, insulin-dependent diabetes mellitus, 

enteropathy, and other immune disorders (Rich et al. 2019). Thus, both primary and secondary 

immunodeficiencies cannot simply be understood as conditions related to the simplified notions of 

weakness or strength. 

In summary, there are several important lessons to draw from a consideration of the contextual nature 

of the immune system. The immune system should not be seen as monolithic, i.e., one thing that 

performs in the same way across the whole spectrum of conditions. Rather, the immune system may 

better be considered in relative terms, in which the particular immune response depends upon a great 

many factors and changes accordingly. In one context, the immune response may display as effective 

and beneficial, whilst in another context, the response is inefficient and detrimental. To further see 

why it is so, we must consider the crucial role played by the adequate regulation of an immune 

response, to which we turn next. 

 

5.3.2. Regulation of the immune response 

During the course of an (inflammatory) immune response, the various mediators involved trigger a 

cascade of events leading to a build-up of molecules and cells in various tissues which further amplify 

the response by recruiting more and more immune mediators. As is the case with any such cascade, 

however, there must be a way to keep it from spiraling out of control. A vast array of feedback 

mechanisms serves that very purpose. In other words, any immune function must be finely tuned and 

tightly regulated by both internal and external signals. 

Regulation takes place on multiple levels of organization. For instance, the complement system 

pathways are regulated by the presence of a set of proteases in the plasma or molecules constitutively 

expressed on cell surfaces. Co-stimulatory molecules provide an additional check on the activation of 

many types of immune cells by ensuring that an immune response is triggered in an appropriate 

context. Indeed, possibly unwanted responses are prevented by these mechanisms. The proper 

trafficking pattern is regulated by specific adhesion molecules and chemokines and their receptors. 

Cytokines are another major player in the regulatory processes as they influence cell responsiveness, 

proliferation, and differentiation. A specialized subset of regulatory T cells is necessary for the correct 

functioning of the immune system. In fact, recent studies have shown that many, if not all, types of 

immune cells exhibit both an effector and a regulatory phenotype (Alhabbab et al. 2019; Mantovani et 

al. 2011; Murray and Wynn 2011; Vivier et al. 2008). 

Malfunction of the immune regulatory mechanisms – immune dysregulation – is at the heart of many 

pathologies. Rather than triggering an inflammatory response, in many cases the appropriate response 

is that of immunological tolerance, a concept that is different from the disease tolerance introduced 

above. It is easy to see how undesirable might be an inflammatory response against harmless food 

 
such as AIDS and some types of cancer, and dysfunctional robustness, when a system should be robust but is 
not, in cases such as tissue repair. 
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metabolites: just think of food allergies.76 In another case, pregnancy, a response directed against the 

embryo would result in miscarriage via the process of immunological rejection; and to cite but one 

more, a response against commensal microbiota leads to inflammation of the gut. In all these and 

numerous other cases, the immune response must be anti-inflammatory. Note that tolerance against 

‘non-self‘ is desirable here, not a malfunction. In yet other cases such as cancer, the induction of 

immunological tolerance by the tumor microenvironment is detrimental to the host. 

The following example illustrates how regulation is also connected to the contextual nature of the type 

of an immune response. Experiments with mouse models of infection by the protozoan parasite 

Leishmania major showed what the adverse consequences of inappropriate cross-regulation may be. 

To clear the infection, a type 1 response, which includes the activation of TH1 cells (which subsequently 

increase the activation level of macrophages) is required. Interestingly, while some mouse strains such 

as the C57BL/6 mice produce such a response, others such as the BALB/c mice trigger a type 2 response 

instead, with the differentiation of CD4 T cells into TH2 cells which are unable to activate macrophages. 

Consequently, the mouse fails to clear the parasite and dies (Julia et al. 2000).  

Several cues suggest that an improper cross-regulation – combined with certain kinetics of the 

responses – may also arise in some cases of COVID-19, where an increase in type 2 effectors has been 

observed in severe COVID-19, in contrast to a burst of type 1 and type 3 responses followed by their 

subsequent progressive reduction in moderate COVID-19 (Lucas et al. 2020).  

While some dysregulation may be transient, e.g., due to a lack of those nutrients required primarily to 

maintain the function of a specific cell population (secondary immunodeficiency), dysregulation may 

also be persistent, such as on account of a mutation in a molecular regulator of inflammation which 

gives rise to autoinflammatory diseases characteristic of inflammation even in the absence of infection. 

Some forms of dysregulation may have recurrent clinical manifestation, whereas some others can 

remain hidden until showing in a particular clinical context. The latter has been found in COVID-19: 

some of the patients developing severe COVID-19 harbor antibodies against their own IFNs, in 

particular IFN-α2 and IFN-ω (Bastard et al. 2020). As discussed above, type I interferons are important 

early in an anti-viral response. However, the presence of autoantibodies against IFNs found 

predominantly in subsets of male patients with severe COVID-19 leads to the limited availability of IFNs 

and results in a delayed response and an improper recruitment of other immune cells. Combined with 

the fact that SARS-CoV-2, much like its predecessor SARS-CoV-1, appears to be a poor inducer of type 

I and type III IFNs responses (Blanco-Melo et al. 2020), possibly owing to the evasion strategy exhibited 

by SARS-CoV-2, using the papain-like protease SCoV2-PLpro (Shin et al. 2020), the autoantibodies 

against type I IFNs contribute to an imbalanced host response. Furthermore, a greater variety of other 

autoantibodies against immunomodulatory proteins have been found in patients with COVID-19 

compared with uninfected controls, with the analysis suggesting the existence of both pre-existing and 

newly induced autoantibodies following the infection (E. Y. Wang et al. 2020). 

Functional autoantibodies can be a sign of autoimmunity which may give rise to an autoimmune 

disease in which the immune system responds ‘too strongly’ against ‘self’ antigens, breaking the 

mechanisms of immunological tolerance. However, the outcome of such a response may result in a 

defective – perhaps ‘too weak’ – response in another context. This is what has been observed in COVID-

19, but examples abound. For instance, autoantibodies targeting neutrophils cause neutropenia, i.e., 

 
76 Note that food allergy is an immunological phenomenon, to be distinguished from food intolerance. While 
the former is an immune-mediated phenomenon, a type of a hyperresponsitivity, the latter pertains to a defect 
in metabolism, most commonly caused by a non-functional enzyme. Intolerance, in this sense, is to be 
associated neither with a failure of immunological tolerance nor a failure of disease tolerance. 
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the depletion of neutrophils, which leaves the individual particularly susceptible to infection by 

pyogenic bacteria; one of the therapeutic approaches is the removal of the spleen, which plays a major 

role in clearances. 

Beyond the dysregulation caused by autoantibodies, there is another kind of dysregulation which 

appears to play a role in COVID-19 and beyond. It is now well established that the elderly exhibit low-

grade chronic inflammation, which, although it does not appear to cause clinical problems, does 

contribute to disease. In general, the very young as well as the old are more susceptible to infections. 

However, this simple fact is not meaningfully captured by the concept of a ‘weaker immunity’. Rather, 

the aging organism exhibits an immunosenescent phenotype of the innate immune system, 

characteristic of the condition of inflammaging which contributes to dysregulation by creating a 

constitutive pro-inflammatory environment (Shaw et al. 2010). As a result, some of the responses of 

the aging organism are improperly enhanced – hence dysregulated – which, together with other age-

related changes such as the shift in the relative numbers of some immune cell subsets and their 

phenotypes may, at least in part, explain why age is a major risk factor in COVID-19 (Schultze and 

Aschenbrenner 2021).77 

To see what an overly active immune response can accomplish, consider an extreme case of an 

inflammatory response going haywire – a cytokine storm – also heavily debated in the context of 

COVID-19. While some studies maintain that conceiving of COVID-19 as an instance of a cytokine storm 

may be a mischaracterization (Remy et al. 2020), others note that “no single definition of cytokine 

storm or the cytokine release syndrome is widely accepted, and there is disagreement about how these 

disorders differ from an appropriate inflammatory response” (Fajgenbaum and June 2020, p. 2255). 

One way or another, there appears to be agreement on one fundamental aspect of COVID-19: put 

eloquently, “the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has 

reminded us of the critical role of an effective host immune response and the devastating effect of 

immune dysregulation” (Fajgenbaum and June 2020, p. 2255). 

The crucial regulatory aspect of the immune response suggests that a physiologically adequate 

response must be neither too strong, nor too weak, but just about right (Sakaguchi 2006). What ‘right’ 

means here depends not only on the proper regulation of the response but also on the specific kind of 

response which must be adjusted to the particular task, i.e., the contextual nature of what is going on. 

A response that is too vigorous results in much tissue damage. A response that is too permissive may 

not clear the pathogen, which may then establish a chronic infection, such as by SARS-CoV-2 (Kemp et 

al. 2021). 

The importance of the regulatory processes can also be illustrated with reference to the maintenance 

of homeostasis, tissue repair, and disease tolerance. Mice with impaired TLR signaling cannot control 

homeostasis (or the development and maturation) of intestinal epithelium; such failure leads to 

chronic inflammation of the gut and the associated tissue damage as seen in inflammatory bowel 

diseases (Rakoff-Nahoum et al. 2004). Regulatory T cells have been shown to play an important role in 

promoting muscle repair and reducing inflammation upon injury in mice; depleting these cells leads to 

a disorganized tissue structure (Burzyn et al. 2013; Truchetet and Pradeu 2018). Similarly, just as a 

dysregulated immune response leads to pathology, disease tolerance must also be controlled if a 

 
77 Interestingly, evidence of the sustained immune dysregulation of several cell subsets has been found in both 
hospitalized and non-hospitalized infected individuals. Moreover, some of these changes were found to 
increase in time in non-hospitalized patients. The lasting effects on subsequent infections or inflammatory 
diseases are yet to be determined (Files et al. 2021). 
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pathology is to be avoided, e.g., fibrosis resulting from an excessive – dysregulated – tissue repair 

(Medzhitov et al. 2012). 

Although the immune system appears sophisticated and effective, it nevertheless does not always get 

things ‘right’ (from our human perspective), needing to be nudged in the right direction. Drugs with 

immunomodulatory effects serve precisely this purpose. In cases in which an immune response is ‘too 

weak’, it is possible to artificially stimulate or boost it, i.e., not just make it ‘stronger’ but to specifically 

intervene and trigger it or facilitate certain responses. For instance, cancer patients may now benefit 

from a variety of immunotherapies, including immune checkpoint inhibitors (Ribas and Wolchok 2018). 

Tumors often induce an immunosuppressive environment through a number of different mechanisms, 

including making use of normal regulatory mechanisms such as the expression of the CTLA-4 molecule 

on activated tumor-specific T cells. This molecule can be targeted by the drug ipilimumab, allowing 

these T cells to overcome their normal physiological limits and contribute to tumor elimination. 

However, such manipulation of the immune system comes at costly side-effects that must be 

addressed, such as the onset of autoimmune diseases in a subset of patients. The immune system also 

often fails to respond against purified proteins. Rather, because such proteins are usually poorly 

immunogenic they often induce a state of immunological tolerance. In many contexts this is usually 

beneficial. However, it presents an obstacle in the design of vaccines based on the use of purified 

proteins, including vaccines based on the toxoid design like the tetanus toxoid, or the subunit vaccines. 

To overcome these difficulties, scientists have developed a number of adjuvants – substances that 

increase reactivity, most notably by stimulating innate sensor pathways. Although many adjuvants are 

routinely used in experimental research, only a few are approved for clinical use in humans. The 

problem is that most adjuvants cause dangerously excessive inflammation. Thus, boosting an immune 

response must always be kept within strict limits. 

Consider also the case of disease tolerance. As Medzhitov et al. (2012) argue, boosting an immune 

response when the problem is a failure of tolerance may prove ineffective or even detrimental, 

whereas boosting tolerance may provide health benefits by limiting tissue damage caused either by 

the pathogen directly or by the immune response to the microbe. However, here again it is important 

to stress that any such action must be carefully regulated. Although some tolerance mechanisms 

appear to be at work at the basal level, others are inducible and work at the expense of normal tissue 

function. Thus, much like the mechanisms of resistance, tolerance also comes at a cost. Furthermore, 

tolerance mechanisms also require tight control; otherwise, they result in pathology, as illustrated by 

the above example of fibrosis. 

In other cases, it is desirable to attenuate an immune response rather than boost it. Transplant patients 

take immunosuppressive drugs in order for the transplanted organ not be rejected. Dexamethasone, 

a synthetic chemical similar to cortisol with potent immunosuppressive effects, has found its use in 

the treatment of some autoimmune diseases and it has also shown clinical benefit in patients with 

COVID-19 who require oxygen therapy or mechanical ventilation (The RECOVERY Collaborative Group 

2021). However, to see how complex things get, consider again the case of IFNs. As we saw, part of 

the problem in some severe cases of COVID-19 may be a delayed anti-viral response due to the 

presence of autoantibodies against subsets of IFNs (e.g., IFN-α2). Since administering exogenous IFN-

α is considered unlikely to provide benefit (Bastard et al. 2020), some are testing a treatment with IFN-

β (Bastard et al. 2021), the motivation being that IFNs may enhance the immune response in non-

specific ways. In fact, IFN-β is used in the treatment of diseases of viral origin (Guarda et al. 2011). 

However, IFN-β has also been found to reduce a response rather than to enhance it, and as such it has 

proven useful in treating patients with multiple sclerosis, owing to its effect on the reduction of IL-1 

production, thereby limiting a powerful mediator of inflammation (Guarda et al. 2011). 
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Chemotherapy provides another interesting example. While it is true that chemotherapy is generally 

associated with an increased risk of infection due to its immunosuppressive effect and as such it is 

often categorized as a secondary immunodeficiency, it has also been found that certain 

chemotherapeutic drugs such as anthracyclines work, in part, by increasing the immunogenicity of the 

tumor cells, thus increasing the anti-tumor responses (Alizadeh and Larmonier 2014). Consequently, 

chemotherapy may be said to result in general suppression by lowering the count of immune cells, 

while at the same time it may boost a specific immune response, provided that enough antigen-specific 

T cells survive the therapy. 

It should also be noted that the idea of modulation presupposes that there is something to be 

modulated. In the above cases, this assumption was implicit. Given that the immune system is not 

monolithic, but rather consists of a large number of diverse molecules, cell populations, and several 

kinds of specialized organs, it may not always be the case that there is something to be modulated. 

Indeed, consider again the removal of the thymus at an early age which prevents the development of 

mature T cells: there is nothing left to modulate. 

 

5.3.3. Trade-offs 

Given the complexity of the biological systems and the discussion in the two previous sections, it 

should come as no surprise that the workings of the immune system exhibit numerous trade-offs on 

multiple levels of organization. 

There are trade-offs between a beneficial function under some conditions and a detrimental effect 

under other conditions. For instance, recall the debate on cell plasticity: the M2 phenotype of 

macrophages is crucial in the process of tissue repair but its presence in cancer is generally associated 

with pro-tumoral effects (Biswas and Mantovani 2010; see also Truchetet and Pradeu 2018). Similarly, 

following liver damage, the transient induction and accumulation of senescent cells help to resolve 

fibrosis (Krizhanovsky et al. 2008). However, senescent cells need to be cleared by the immune system 

since their prolonged existence is considered detrimental. In the aging organism such detrimental 

effects become apparent as these cells accumulate, owing either to a decrease in the clearance 

capabilities of the immune system or to an increase in the generation of such cells which exceeds the 

capacity of the immune system to clear them (Rodier and Campisi 2011). 

Turning to the function of defense, it is important to realize that there is a trade-off between resisting 

an infection, i.e., the clearance of pathogens, and the tissue damage arising from the immune 

response, i.e., the immunopathology. A ‘strong’ response, in this sense, may be associated with the 

vigorous clearance of pathogens while giving rise to a cytokine storm, an immune-mediated life-

threatening condition.78 Yet another important kind of trade-off is made with respect to evolutionary 

fitness. The host has to find a balanced immune response and allocate the resources and energy, as 

any immune response comes at a cost (Lochmiller and Deerenberg 2000). On the flip-side of this coin 

we find the trade-offs with respect to parasite virulence (Alizon et al. 2009). 

Some trade-offs can also be viewed in terms of something being incompatible with something else. 

For instance, Medzhitov et al. (2012) note that a response against microbe A can be incompatible with 

tolerating microbe B, giving rise to the phenomenon of negative preconditioning. They also note that 

 
78 Some authors argue that the trade-off between resistance and immunopathology can be resolved, to some 
extent, by tolerance mechanisms. Since these limit tissue damage, they allow for a prolonged duration of the 
immune response (Medzhitov et al. 2012). 
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coinfection, e.g., a viral infection of the respiratory tract followed by a respiratory bacterial infection, 

often results in severe morbidity and mortality which is usually thought to be the consequence of 

compromised immunity. Indeed, Eberl (2016) proposes that the cross-regulation of types of responses 

may be the problem, i.e., viral infection induces a type 1 response which inhibits the type 3 responses 

crucial for clearing extracellular bacterial infections. However, as Medzhitov et al. suggest, it is also 

possible that the inducible tolerance to the particular viral infection is incompatible with tolerance to 

the respiratory bacterial infection which may be why that kind of coinfection is dangerous. 

Similarly, while some disease tolerance mechanisms are constitutive, others are inducible and come 

at a cost: they work at the expense of normal tissue function. Thus, there is a trade-off of the 

incompatibility kind between normal tissue function and an increased tolerance to tissue damage. 

Various trade-offs also arise when therapeutically manipulating the immune responses. Recall the use 

of ipilimumab in cancer treatment and its known side effect - the onset of severe autoimmunity in 

some cases. In order to avoid transplant rejection, patients receiving transplants are put on non-

specific immunosuppressive drugs for life, which, however, leave them more susceptible to infection 

and cancer. 

Finally, the idea that one’s particular genotype can influence the susceptibility of an individual is also 

well established. However, the same genes that confer protection can also make the individual 

susceptible to other conditions. For example, using genome-wide association studies, the genetic 

variation in human leukocyte antigen (HLA) molecules has been established as one of the strongest 

predictors of HIV-1 control (Pereyra et al. 2010). While the HLA-B*27 allele, by virtue of its mechanistic 

function, has been found to increase resistance to HIV-1, it also leaves the host at greatly increased 

risk of developing ankylosing spondylitis, an autoimmune disease (Murphy and Weaver 2017). Trade-

offs like these can be found anywhere you look.  

 

5.4. The uses and abuses of metaphors 

Metaphors abound in immunology, from prominent war metaphors of defense driven by the discovery 

of microbial pathogens, through the idea of an immunological ‘self’, to slogans about ‘strengthening’ 

or ‘boosting’ one’s immune system. The use of metaphors has been deeply rooted in immunology 

throughout its history, not just as communication devices with a wider audience, but shaping the very 

way scientists think, understand, and build theories in immunology (Institute of Medicine 2006; Löwy 

1996). In particular, theoretical metaphors of an immunological ‘self’ have become prominent and 

criticized (Pradeu 2012; Tauber 1994). The claim that science is soaked in metaphorical language is 

scarcely contested. Rather, “in science, metaphor is widely considered an essential tool for 

understanding” (Ball 2011). Metaphorical language is often used to understand and communicate 

complex phenomena that are not completely understood by referring to other, more familiar 

concepts: “The essence of metaphor is understanding and experiencing one kind of thing in terms of 

another” (Lakoff and Johnson 1980, p. 5, original italics). 

It has been proposed that, in science, metaphors serve at least three functions which are often 

interrelated in various ways (Bradie 1999; see also Kampourakis 2020). Metaphors have a heuristic 

function which helps scientists explore new phenomena by referring to other, already understood 

phenomena. Such a function is also achieved by drawing on a variety of analogies, a practice which has 

been documented in empirical studies of how immunologists reason (Dunbar 2002). 
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Metaphors also have an indispensable theoretical function, i.e., they facilitate the understanding and 

explanation of phenomena. For instance, the self/non-self framework was put forth as an explanation 

of the basis of immune response. Notwithstanding their undisputable usefulness, it has also been well 

recognized that metaphors can also obscure understanding and lead one astray. As Philip Ball has put 

it: 

“Books of life, junk DNA, DNA barcodes: all these images can and have distorted the picture, 

not least because scientists themselves sometimes forget that they are metaphors. And when 

the science moves on — when we discover that the genome is nothing like a book or blueprint 

— the metaphors tend, nonetheless, to stick. The more vivid the image, the more dangerously 

seductive and resistant to change it is” (Ball 2011). 

As we sought to show in Section 5.2., the self/non-self framework and the idea of the immune system 

as a defense system may be a victim of this kind of seductiveness. 

Finally, metaphors have a rhetorical function: they play an important role in science education and 

communication. More importantly, rather than being merely instruments of getting a point across to 

a larger audience, “metaphors have profound influences on how we conceptualize and act with respect 

to important societal issues” (Thibodeau and Boroditsky 2011).  

Putting all this together, let us assess the idea that there is such a thing as a strong or weak immune 

system or response. As we have argued, the immune system is not monolithic but rather a complex 

system composed of many parts, and involved in many functions, the outcome of which is context-

dependent and exhibits trade-offs. 

There does seem to be a perfectly legitimate descriptive sense in speaking of immune response when 

defined as pertaining to a quantitative measurement of certain immune features: e.g., assays allowing 

measurements of cytokine production, the number of cells, the titers of neutralizing antibodies as a 

proxy for protective immunity, binding affinities, and so on. Overall, however, the talk of a strong/weak 

immune system or response mischaracterizes the workings of the immune system. The following list 

derives from the discussion in previous sections and is in no way exhaustive. 

(i) Normative connotation. Strong defense or the idea of boosting immunity may be viewed 

as desirable, but in many cases it may lead to pathology or come at a cost (think of a 

cytokine storm or checkpoint inhibitors). 

(ii) Paradoxical connotation. Immunodeficiency invites the intuition that the issue is one of a 

weak response. However, the same immunodeficiency could also concern an issue of a 

strong response (think of IPEX) and it is not clear which notion should apply. 

(iii) Not applicable because not amendable to change. Thinking in terms of a continuum 

between strong and weak immunity and the idea of boosting immunity is sometimes 

invalid (think of neonatal thymectomy). 

(iv) Lack of meaning conveyed. Many phenomena and functions of immunity cannot be 

meaningfully captured by these notions (think of homeostasis). 

(v) Failure to account for what the immune system is, what it does and why it sometimes fails. 

Rather than being in a steady state until an occasional threat emerges, the immune system 

is constantly active in maintaining various functions, including functions other than 

defense. All immune-related phenomena require a contextual understanding; otherwise, 

one would fail to understand why a phenomenon may be desirable but also detrimental 

(think of immunological tolerance or the trade-off between immunity and 

immunopathology). The notions of strong/weak immunity also give the false impression 

that the immune system can be described along this (one) dimension. 
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While stressing that the immune system is more than a defense system, defense remains one of its 

functions, and an important one at that. In immunology, however, defense and war metaphors have 

biased our perspective exclusively toward defense at the expense of paying attention to the numerous 

other roles that the immune system plays. Similarly, thinking in terms of a strong or weak immune 

system involves all kinds of misleading intuitions, as shown above. These intuitions have been 

perpetuated in certain areas of research, in science education (especially textbooks), and in public 

communication. One of the most difficult aspects of the COVID-19 pandemic has been the 

communication of science as well as the gaps in our understanding of the immune system (Nature 

Reviews Immunology Editorial 2021). Metaphors can guide our intuitions, but then “immunology is 

where intuition goes to die” (Young 2020). This clearly impacts how we estimate risks, behave, and 

what interventions we consider in attempting to improve our health - including the idea of “boosting 

the immune system” (Cassa Macedo et al. 2019). 

Moreover, this line of thought can also be dangerous, such as when it provides us with a false sense of 

security. Of particular danger is the message that healthy people with a ‘strong’ immune system who 

lack pre-existing conditions are not affected. Equally, the idea of a ‘weak’ immune system is also 

mistaken. Therefore, being part of a risk group (e.g., due to some forms of compromised immunity to 

a disease such as COVID-19) generally does not depend on the ‘weakness’ of one’s immune system. 

Also, things like proper vitamin intake or reduced stress levels are generally beneficial, but for reasons 

other than the weak/strong dichotomy. The popular idea that vitamins work by boosting one’s 

immunity is false: for instance, vitamin D is thought to work by helping to balance an immune response, 

inhibiting certain responses and providing an anti-inflammatory response (Jain et al. 2020). Similarly, 

stress – often perceived as weakening the immune system – is rather an array of complex phenomena 

with multiple antagonistic effects (Dhabhar 2014).  

In summary, we argue that the notions of strong and weak immunity would best be dropped and 

replaced by a more nuanced view based on the model of the immune system which takes into account 

the features of contextuality, regulation and trade-offs. Furthermore, the notions of 

strength/weakness invite too narrow a focus on defense as the only role of the immune system, at the 

expense of neglecting many other, equally vital immune functions. Finally, these notions miss out on 

the crucial importance of the immune system in maintaining balance and thereby preventing 

pathology. 

 

5.5. Chapter summary 

Several areas of contemporary research in immunology show that the immune system does much 

more than defend the host (i.e., self) against non-self. Metaphors are crucial to scientific endeavor and 

communication but they also sometimes mislead. Thinking in terms of defense invites notions such as 

strong or weak defense, while not adequately accounting for what the immune system is, what it does, 

and why it sometimes fails. Although there is a limited sense in which the notion of strong/weak or 

boosted/attenuated immunity makes perfect sense, in general it cannot account for the nature of most 

immunological phenomena. Instead, we propose a conceptual model, focusing on contextuality, 

regulation, and trade-offs, which give due credit to the complexity of the immune system. A better 

understanding of the immune system will allow us both to address open questions concerning COVID-

19 and its long-lasting effects, and to prepare us for future pandemics. 

Philosophy of science can help us here by clarifying immunological concepts, assessing assumptions 

and methods, formulating new concepts, models or theories (some of which suggest new experiments 
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or therapeutic targets), and by opening a dialogue not only between the sciences but also between 

the sciences and society (Laplane, Mantovani, et al. 2019).  
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Concluding remarks and future challenges 

Scientific modeling is an important tool in contemporary science including biomedical research. A 

better understanding of modeling is therefore of crucial importance to any theory of science. In this 

PhD thesis I have provided an original contribution to several debates concerning the nature and use 

of scientific modeling.  

I have proposed a novel account of scientific modeling – the experimentation-driven modeling account 

(EDM) – according to which scientists integrate piecemeal experimental results into a unified 

conceptual framework that is expressed in the form of a mechanistic model, most often in the form of 

a diagram. Although I outlined the EDM account against the backdrop of the research project focused 

on studying the role of myeloid-derived suppressor cells in the formation of the pre-metastatic niche, 

the account applies generally to such laboratory research which aims to construct mechanistic models 

of biological phenomena. As argued, there are epistemic similarities as well as important differences 

between the EDM account and what I call the description-driven modeling account (DDM). As we have 

seen, scientists involved in EDM are neither sociologically nor professionally recognized as modelers 

despite the fact that they propose various mechanistic models. Instead, the sociological dimension of 

modeling appears to exclusively apply to DDM. Therefore, the analysis provided in Chapter 1 may 

prove insightful when it comes to building interdisciplinary bridges between research approaches that 

are usually considered to be more formal and those that characterize wet labs. In other words, one 

could argue that by illuminating the two modeling accounts, such analysis may facilitate a mutual 

understanding between researchers trained in either tradition. Often, researchers involved in 

interdisciplinary groups – still rather rare – draw on an implicit understanding of the respective 

approaches; something that has been made more explicit herein. Thus, even those involved in 

interdisciplinary groups may benefit from such analysis. However, more work remains to be done. For 

instance, the future challenge pertains to providing an explicit consideration of the precise way in 

which experimental results are integrated in the process of model construction.  

I have also discussed the issue of mechanistic models which provide mechanistic explanations of 

biological phenomena such as the models in molecular biology accounting for gene expression. In 

particular, I addressed an objection due to Alan Love and Marco Nathan raised against the mechanistic 

account of explanation according to which the account fails to accommodate the common practice of 

idealizing difference-making factors. I scrutinized the arguments and examples provided by Love and 

Nathan and I presented reasons for thinking that their analysis fails to provide support to their 

conclusion since their analysis paints a confusing picture as it is interwoven with conceptual 

inconsistencies. In Chapter 2 I predominantly focused on showing that one of the reasons for a 

thorough conceptual clarification is to avoid using arguments in philosophical discussions which are 

grounded in concepts that are ill-defined for the purposes at hand; failing to clarify such key concepts 

may generate great misunderstandings and lead to cycles of fruitless debates, generating even more 

confusion. Another reason for the endeavor of clarifying concepts concerns a more direct contribution 

to some of the methodological debates within scientific communities such as those over the issue of 

the realisticness of assumptions in providing understanding of phenomena; a problem also reflected 

in Chapter 4 regarding the use of assumptions in agent-based modeling of an epidemic. Throughout 

Chapter 2 I raised concerns about the development and subsequent use of the notions of abstraction 

and idealization in the context of a particular field and their direct application to a different field. This 

is because the respective fields may differ from each other to the extent that they exhibit significantly 

different epistemic practices. Indeed, I illustrated this point using the example of developing an 

account of abstraction and idealization in the context of certain kinds of models in evolutionary 

biology, which, arguably, are very different from the kinds of models used in molecular biology. In part, 
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this brings us back to the discussion in Chapter 1, namely the two approaches to modeling, with 

evolutionary models and molecular biology models exemplifying the DDM and EDM style, respectively. 

Thus, in the future work it may be worth to further explore different epistemic practices and thus shed 

some new light on the debate on abstraction and idealization, thereby illuminating the methodological 

debates within sciences over and above the purely philosophical ones. 

When introducing the EDM account in Chapter 1 in order to provide an account of mechanistic model 

building in laboratory biomedical research I briefly discussed the use of animal models (mouse models 

in particular) and cell cultures. However, a more elaborate discussion of these experimental systems 

had to wait until Chapter 3 in which I analyzed the kinds of similarity judgments considered by cancer 

biologists and cancer immunologists. I argued that when choosing between existing mouse models, a 

variety of criteria ranging from the research question at hand and pragmatic and other factors in 

addition to similarity judgments enter the decision-making process. When extrapolating results 

obtained from a mouse model to a human, similarity judgments concern the evaluative aspect, i.e., 

the predictive accuracy of the mouse model, and thus the justification of extrapolative inferences. 

Finally, when creating a new mouse model, similarities pertain to the intention to actively introduce 

changes into mouse cohorts so that relevant similarities arise. The discussion in Chapter 3 helps to 

shed some light on the debate on similarity in scientific representation. In particular, I argued that 

whereas in model extrapolation the role of similarity suggests that a conceptual distinction between 

representation and accurate representation can be maintained by construing the latter in terms of 

predictive accuracy, it holds for neither model selection nor model creation. This is because in the two 

latter research modes, similarity considerations play a key role in the process of establishing and 

maintaining a representational relation. 

While Chapter 3 expanded on EDM, Chapter 4 did the same with regard to DDM, drawing on joint work 

with Mariusz Maziarz. The COVID-19 pandemic has put a spotlight on the methodology of formal 

modeling and the use of assumptions, somewhat reminiscent of the discussion in Chapter 2. Rather 

than focusing on the most commonly used compartmental models, Chapter 4 analyzed agent-based 

modeling (ABMs). With the increase in computational power over the past several decades, ABMs 

present a relatively novel way to simulate the behavior of complex systems. ABMs consist of entities – 

namely agents – that interact both with each other and their environment according to a defined set 

of rules. Using assumptions and empirical data as inputs, scientists construct various ABMs to study 

the behavior of the model system. Thus, ABMs are an instance of the DDM practice. I discussed an 

example of an ABM, the SARS-CoV-2 version of the ACEMod, and I noted that such ABMs allow us to 

compare the baseline scenario (simulation of the epidemic with no changes to agents’ behavior) with 

effects produced by alternative suppression measures. In so doing, ABMs allow us to assess 

counterfactual causal claims, thereby providing evidence for policy making. As any other model, 

ACEMod also relies on various simplifying assumptions. Notwithstanding these simplifications, I argued 

that the process of model calibration and validation suggests that the model in question represents 

the actual mechanism of the SARS-CoV-2 epidemic. Thus, provided that the model assumptions are 

calibrated and checked against the background empirical data - that is, the components, their 

activities, and spatiotemporal organization resemble (in relevant aspects and to a certain degree) the 

actual state of things - iterative runs of the simulations can indeed provide understanding and inform 

policy decisions. That being said, I also noted that further research is needed to assess the risk of bias 

in the epidemiological ABMs that deliver both difference-making and mechanistic evidence. This is 

because there still is a risk that the assumptions employed in the ABM in question do not include all 

the key factors, and that they make model predictions susceptible to the problem of confounding. 

Moreover, in reaching policy decisions, ABMs should be understood as merely one piece of the puzzle 

subject to further re-evaluation with respect to value judgments. This is because alternative mitigation 
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measures may disproportionately affect certain social groups. In light of the pandemic which has 

affected the life of almost everyone on the planet and which has caused great suffering, assessing the 

modeling practice while drawing on philosophy is an important endeavor. 

As noted in the introduction, scientific literature is notoriously loose when it comes to providing a 

precise clarification of some of the general concepts such as ‘model’ or ‘modeling’. The aim of Chapter 

1 was to provide such clarification. Yet in Chapter 5 I used the term ‘model’ loosely to refer to the 

conceptual framework regarding the understanding of the immune system that I proposed based on a 

joint work with Gregor Greslehner. However, this is in line with the usual goal of a scientific paper 

which usually consists in addressing a scientific problem rather than the meaning of a general term 

that is largely unrelated to the issue at hand. The analysis provided in Chapter 5 should have 

demonstrated several things. Firstly, thinking in terms of defense invites notions such as strong or 

weak defense, neither of which adequately accounts for what the immune system is, what it does, and 

why it sometimes fails. Although there is a limited sense in which the notion of strong/weak or 

boosted/attenuated immunity makes perfect sense, in general it cannot account for the nature of most 

immunological phenomena. Instead, such thinking involves all kinds of misleading intuitions. Secondly, 

the proposed conceptual model that is intended to replace the misguided thinking discussed above 

turns the spotlight onto three crucial features of the immune response: contextuality, regulation, and 

trade-offs. A better understanding of the immune system will allow us both to address open questions 

concerning COVID-19 and its long-lasting effects, and to prepare us for future pandemics. Moreover, 

philosophy of science can help us here by clarifying immunological concepts, assessing assumptions 

and methods, formulating new concepts, models or theories (some of which suggest new experiments 

or therapeutic targets), and by opening a dialogue not only between the sciences but also between 

the sciences and society. Given the ever-increasing importance of science communication, this may 

possibly prove to be an important contribution to a burning issue surrounding the society since 

inadequate understanding often leads to inadequate behavior responses which affects both the 

individual engaged in such behavior and the society at large. 

In summary, the topic of scientific modeling continues to be a fruitful object of philosophical reflection, 

with many issues still waiting to be resolved. In this PhD thesis I have taken it upon myself to shed new 

light on some of the most pressing issues including those that have a broader impact on society. 
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List of abbreviations 

ABM  = agent-based model 

ADR  = abstract direct representation 

AIDS  = acquired immunodeficiency syndrome 

DDM  = description-driven modeling 

EBM  = evidence-based medicine 

EDM  = experimentation-driven modeling 

GEMM  = genetically engineered mouse model 

HIV  = human immunodeficiency virus 

HLA  = human leukocyte antigen 

HPSC  = hematopoietic stem and progenitor cell 

IFN  = interferon 

ILC  = innate lymphoid cell 

IPEX  = immune dysregulation, polyendocrinopathy, enteropathy, X-linked 

MDSC  = myeloid-derived suppressor cell 

PBMC  = peripheral blood mononuclear cell 

PDX  = patient-derived xenograft 

SCID  = severe combined immunodeficiency 

TLR  = toll-like receptor 

xGVHD  = xenograft versus host disease 

 


