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Vedoućı diplomové práce: Dr. Rainre Heintzmann (Biological Nanoimaging re-
search group, Randall Division, King’s College London)
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rekonstrukci biologických preparát̊u.
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Preface

This work discusses a method for resolution improvement of the optical wide-field
epifluorescence microscope. Resolution improvement is achieved by an enlargement
of the area of detectable high spatial frequencies components in the Fourier trans-
form.

This thesis is divided into six sections:

1. The introduction section gives a short overview of optical microscopy, a concept
of the resolution, the Fourier theory of image formation and up-to-date high-
resolution fluorescence microscopy techniques.

2. The second section introduces a theoretical concept of the method. Simulated
data are used for the demonstration of individual steps of the image recon-
struction.

3. The third section gives a description of the experimental setup used for the
data acquisition of real samples.

4. The algorithm for the image reconstruction of acquired data is described step-
wise in the fourth section.

5. In the fifth section the results from the simulated data as well as from real
experimental samples are presented. A discussion of the results, possibilities
and limits of the method is also included in this section.

6. The final section gives an overall summary of the project.

The thesis is supplemented with an appendix giving relevant mathematical defini-
tions and theorems. There is also a description of some procedures used in the
reconstruction algorithm. There are several reconstructed images in the last part of
the appendix.

I participated on the presented project during a 9-month stay (October 2005 -
June 2006) and successive shorter stays in October 2007 and February 2008 in the
laboratory of the Biological Nanoimaging research group of the Randall Division,
King’s College London. I worked on the development of the reconstruction algorithm
and the construction of the experimental setup. Experimental data presented in this
thesis were acquired during my stay in London in February 2008.
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1 Introduction

1.1 Optical microscopy

The naked human eye can differentiate one point object from another if the points
are separated by a visual angle bigger than approximately 1.2 arc minute (equal
to a distance ca. 0.35 mm at 1 m). Exploration of the world on a scale below
this limit relies on the usage of instruments such as spectacles, magnifying glasses
or microscopes. The forerunner of the compound microscope was invented in late
16th century by Zacharias Janssen. Since then microscopy has undergone a long
evolution. One of the milestones in the development of optical microscopy was the
introduction of the Fourier theory into optics in the 19th century. The pioneering
works of Ernst Abbe [1] set a theoretical limit on the resolution of the microscope
and helped to master the design of optical glass. Even though almost 400 years of
sustained development is a long period of time, the number of scientific publications
in recent years show, that this process is still ongoing.

1.2 Image of a Point Source

A description of the image formation in a microscope requires us to take the wave
nature of light into account. In particular, we have to encounter diffraction effects.
This section makes a short introduction into the problematics. This work focuses
on fluorescence microscopy. Therefore, only incoherent imaging is discussed. A
comprehensive description of the image formation using the Fourier theory can be
found in [2].

An important characteristic of a microscope is an image of a point source. Let’s
assume we have a self-luminous, monochromatic point-like object (small volume of
excited fluorophores emitting on the wavelength λem). An objective lens of the
microscope can collect only a part of a spherical wave1 emerging from the object.
The objective transforms the wavefront into a truncated plane wave. The plane wave
is refocused again into an image plane and creates a blurry spot rather than a point
object. The distribution of the electric field ~E(~r) in the image plane, which is created
by interference of the focused beam, is called an Amplitude Point Spread Function
(APSF). An intensity of the image is proportional to the square of the amplitude of

the electric field I(~r) ∝
∣∣∣ ~E∣∣∣2. The profile of the intensity distribution in the image

plane is called the Point Spread Function (PSF). For an objective with a circular
pupil, it is referred to as the Airy pattern. In scalar theory it is given by [2]:

PSF (ρ) = I0

(
2
J1(αρ)

αρ

)2

, (1.1)

1For reasons of simplicity we ignore the detailed distribution of the field close to the fluorophores
(field of the oscillating dipole) and assume the wave to be perfectly spherical.

2
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(c) PSF (NA = 1.2)
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(d) OTF (NA = 0.3)
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(e) OTF (NA = 0.9)
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(f) OTF (NA = 1.2)

Figure 1.1: PSF (a - c) and corresponding OTF (d - e) for objectives with different
NA. The emission wavelength λem = 510 nm. Note the reciprocal relation between
the size of the PSF and the corresponding OTF. Spatial confinement of one leads to
the delocalization of the other.

where I0 is the normalizing constant, J1 is the Bessel function of the first kind of
order one, ρ is the distance from the center of the image and α depends on the
parameters of the setup and the wavelength of the emitted light λem:

α =
2π

λem

NA

NA is the numerical aperture of the objective:

NA = n sin ϑ (1.2)

where n is the refractive index of the immersion medium and ϑ is the half-angle of
the maximum cone of light that can enter the objective lens.

Eq.(1.1) holds for a low-NA scalar approximation. A high NA vectorial descrip-
tion of the PSF can be found in [3]. Simulated PSFs for an in-focus plane and
aberration-free objectives with various NA are shown in Fig. 1.1 (a-c). Both the
shape and size of the PSF determines the image of the observed sample as under
assumption of linearity of the system, any object might be decomposed into a set

3



(a) (b) (c)

Figure 1.2: Simulated 3D wide-field PSF and OTF for λem = 510 nm and a water
immersion objective NA = 1.2. An iso-intensity surface of the PSF on the (a) 90%
and (b) 1% of the maximum intensity. (c) A support of the OTF. Note the ’missing
cone’ along the axial direction (black arrow).

of arbitrary small areas (points). Each of this points can be imaged independently
creating the PSF in a particular position and with a particular intensity. The final
image is readily obtained by a sum of these individual images. (This operation is
mathematically described by a convolution. It is discussed in section 2.2.) Full 3D
simulation of the PSF is given in Fig. 1.2.

(a) Linear scale (b) Log scale

Figure 1.3: Axial slice of the PSF for objective NA = 1.2 and λem = 510 nm.
Intensity [a.u.] shown in pseudo - color (a) linear and (b) logarithmic scale. Axial
axis along vertical direction. Scale bar 500 nm.

The Fourier transform (see Appendix A, Eq.(A.4)) of the PSF is called the Optical

4



Transfer Function (OTF):

F {PSF (~r)} (~k) ≡ OTF (~k). (1.3)

There are three OTFs computed for objectives with different NA shown in Fig. 1.1(d-

(a) PSF (NA = 0.3) (b) PSF (NA = 0.9) (c) PSF (NA = 1.2)

(d) OTF (NA = 0.3) (e) OTF (NA = 0.9) (f) OTF (NA = 1.2)

Figure 1.4: Axial slices of the PSF for water immersion objectives with numerical
apertures (a) NA = 0.3, (b) NA = 0.9 and (c) NA = 1.2. λem = 510 nm. Intensity
[a.u.] shown in logarithmic scale on the right. Scale bar 3 µm. Corresponding OTF
displayed in (d-f). Images show the magnitude [a.u.] of the OTF in linear scale on
the right. The z-axis is along the vertical direction.

f). We observe that a localization of the PSF in real space (narrow peak) leads to a
delocalization of the OTF (broad peak) in Fourier space and vice versa. In general,
the OTF is always zero for high spatial frequencies of the Fourier transformation. In
other words the microscopy system acts as a low pass filter for spatial frequencies in
the Fourier transform. A full three-dimensional OTF is non-zero within a doughnut-
like region (support) as shown in Fig. 1.2(c). An absence of Fourier components
along the axial direction (kz axis) is the so called ’missing cone’ problem (see also
Fig. 5.13 on page 53). A comparison of the OTFs computed for objectives with
different NA is shown in Fig. 1.4(d-f).

5



(a) Two separated points (b) Raleigh limit (c) Sparrow limit

(d) Two separated points (e) Raleigh limit (f) Sparrow limit

Figure 1.5: Two point sources separated by the distance 2dRaleigh (a), dRaleigh (b),
and dSparrow (c) with corresponding intensity profiles (d-f). Simulated for a water
immersion objective NA = 1.2 and λem = 510 nm. Scale bar 200 nm.

1.3 Resolution in Microscopy

An image of two point-like self-luminous (mutually incoherent) objects in a focus
plane will be a sum of two corresponding PSFs. As they get close to each other, their
images blend and eventually join together into one elongated blurry spot (Fig. 1.5).
The resolution of a microscope is defined as the minimum distance of separation
between the two point objects in order to ’resolve’ them as two individual entities
in the image. As the ability to resolve two objects in the image depends on the
observer, there is the so called Rayleigh resolution limit which defines the resolution
in the lateral plane as the distance between the maximum of the Airy function (see
Eq.(1.1)) and its first minimum. This means that two points can just be resolved if
one point sits in the position of the first minimum of the Airy function of the second
point (Fig. 1.5(b)). For an aberration free system, the Rayleigh limit is determined
by the numerical aperture (NA) of the objective lens and by the wavelength of the
emitted light λem:

dRayleigh ≈ 0.61
λem

NA
. (1.4)

Separation of two points by dRayleigh still results in a dip of the intensity profile
(about 27% below the peak value) on the intersection between two maxima in the
image (Fig. 1.5(e)). These points can actually still be resolved as two individual

6



entities (see Fig. 1.5(b)). Another definition of resolution is the distance where the
dip in the intensity profile vanishes. This is the Sparrow resolution limit:

dSparrow ≈ 0.47
λem

NA
(1.5)

and is demonstrated in Fig. 1.5 (c and f).
There are technical limits on manufacturing of objectives and the highest nu-

merical aperture used in fluorescence microscopy imaging is around NA = 1.4 for
oil-immersion lenses. From Eq.(1.4) (or Eq.(1.5)) we see that even for high NA
objectives (NA>1.0) the minimum required distance in the lateral plane between
two point-like objects is at best roughly half the wavelength of the light emitted by
fluorophores (102−103nm). In the axial direction the required minimum distance is
about three times bigger (see Fig. 1.4). The distance in the range of visible light
wavelength (102−103nm) corresponds to the scale of the interior organelles of a cell
and hence it is difficult or impossible to image fine details of sub-cellular features
with a classical fluorescence microscope.

1.4 Resolution and High Frequencies of the Fourier Trans-
formation
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(a) Square Grid
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0   
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k [2π ]

(b) Fourier transform of the grid

Figure 1.6: Infinitely long square grid (a) and its Fourier transform (b). The Fourier
transform is represented by blue spikes. Red solid line represents the envelope of the
spikes.

As mentioned in section 1.2, a microscopy system acts as a low-pass filter for
spatial frequencies in the Fourier transform. This section gives a demonstration of
how the resolution in a microscopic image is linked to the high frequencies of the
Fourier transform of a sample structure.
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(d) N=14

Figure 1.7: Sum of the Fourier components (thick blue solid line) for increasing
number N in the sum Eq.(1.6). Each cosine function is plotted with the general
offset a0.

An infinitely long periodic square-grid g(x) with a period p = 1

g(x) =

{
1 x ∈

〈
−p

4
+ mp, p

4
+ mp

〉
; m ∈ Z

0 else

represents an idealized structure (Fig. 1.6(a)). This function can be approximated
(see Appendix A, Eq.(A.1)) by the sum of the harmonic functions (components):

g(x) ≈
N∑

n=−N

ane
iknx. (1.6)

where kn = 2πn and coefficients an we obtain from the Fourier transform of g(x)
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over a period p. For the grid g(x) we get (see Appendix A, Eq.(A.2)):

a0 =0.5

an =

{
1

|n|π |n| odd

0 |n| even
(1.7)

The Fourier transform of the grid g(x) (Fig. 1.7(b)) is a set of individual spikes
symmetrical (complex conjugated) with respect to a vertical axis. Each spike (in
general complex) represents a component in the Eq.(1.6) and carries information
about the frequency kn (position on the k-axis), the amplitude an (length of the
spike) and the phase (complex value).

In this example all coefficients an are real and an = a−n. A pair of components
for n and −n then represents a cosine function

a−ne
−knx + a+ne+knx = 2an cos(knx); a−n = a+n ≡ an (1.8)

with amplitude 2an and spatial frequency kn = 2πn. We can then rewrite Eq.(1.6)
as a sum of cosine functions:

g(x) = a0 +
N∑

n=1

2an cos(2πnx) (1.9)

In Fig. 1.7 we can observe how the sum Eq.(1.9) with increasing N converges
towards the original function g(x). A zero component (n = 0, a spike in a position
k = 0 in Fig. 1.6(b)) represents a general offset of the function. It is a constant
a0 = 0.5, k0 = 0. First two spikes close to the zero (in position k = ±2π in
Fig. 1.6(b)) represent a cosine function with spatial frequency k1 = 2π and amplitude
2a1 = 2

π
. This low-frequency cosine function caries basic information about the

periodicity of the function, but the approximation of the sharp edges of the grid is
very crude (Fig. 1.7(a)). Increasing number N in the sum Eq.(1.9) leads to adding
cosine functions with increasing spatial frequencies kn = n2π (Fig. 1.7(b-d)). We can
see that the edges of the original function become approximated nicely (except for
the area very close to the edge where the Fourier series exceeds the original function.
This is so called Gibbs phenomenon [4]). If we want to get a good approximation of
the sharp transitions (edges) or small details in the original function we have to add
in the sum Eq.(1.9) harmonic functions with high spatial frequencies kn.

There is further demonstration of this phenomenon in Fig. 1.8. If we remove in the
sum Eq.(1.9) the low frequency cosine function (n = 1, k1 = 2π) and sum the remain-
ing components we observe that the approximation of the original function severely
deteriorates but information about the sharp edges is still present (see Fig. 1.8(a)).
We can determine the edges even after the removal of several low-frequency compo-
nents (Fig. 1.8(b)). This demonstrates that the high-frequency components of the
Fourier transform carry information about the details in the sample.
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Figure 1.8: Removal of low-frequency cosines components in Eq.(1.9) leads to dete-
rioration of the approximation of the original function but the information about the
edges is still contained. (a) Cosine function with k1 = 2π removed from the sum.
(b)First four low-frequency cosines (n = 1, 2, 3 and 4) removed. The sum of the
remaining components is plotted as a thick blue solid line.

A two-dimensional demonstration of the same phenomenon with a non-periodic
function is shown in Fig. 1.9. We can observe a loss of detail in the image if the
high frequency Fourier components are removed (Fig. 1.9(a-c) and corresponding
Fig. 1.9(e-g)). The removal of the low frequency components in Fig. 1.9(d) causes
the brightness and contrast of the image to deteriorate but the details in the structure
are still visible in Fig. 1.9(h).

The ability to resolve small structure under a microscopic observation is thus
closely related to the ability of a microscope to pass through high frequency compo-
nents of the Fourier transform of the observed structure.

1.5 Fluorescence Microscopy

Fluorescence microscopy is an invaluable tool in modern cell biology. It is a non-
invasive method of imaging the interior of living specimen with multicolor molecular
labels (fluorophores) of high specificity. As light in the visible spectral range is usu-
ally used for an excitation of the fluorophore, fluorescence microscopy is less harmful
for biological samples than high-resolution techniques such as electron microscopy.
Unfortunately, spatial resolution of a fluorescence microscope is subject to a funda-
mental limit caused by a diffraction [1] which limits the size of an observable object
in fluorescence microscopy.

In the last 15 years several methods have been proposed to bypass the diffraction
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 1.9: Image (a) is a full area (100%) of the Fourier Transform, in (b) maximum
spatial frequencies are reduced by 50%, in (c) by 90% and in the image (d) low
frequencies (5%) are removed. Corresponding Inverse Fourier Transforms in (e-g).
(Courtesy of Rainer Heintzmann)

limit in fluorescence microscopy imaging. From a technical point of view they can
be divided into two branches: scanning microscopy and wide-field (non-scanning)
microscopy.

1.5.1 Scanning fluorescence microscopy

In scanning fluorescence microscopy a beam of illumination light is focused into
a small spot and swept over a sample. The sample is divided into discrete array
(pixels) and a fluorescent signal from each pixel is collected as the focused beam
passes through it. The whole discrete (3D) array of recorded intensities creates
a microscopic image of the sample. The focused spot - a three-dimensional PSF
(Fig. 1.2(a,b)) - has a complex 3D shape elongated along the axial direction. En-
hancing the resolution in scanning microscopy then requires squeezing down the
volume of excited fluorophores in the scanning process (STED [5], 4Pi type A or in
combination with interference effect in the detection part 4Pi type C [6]) or rejecting
photons coming from areas distant from a geometrical focal point of the scanning
spot (confocal microscopy [7]).

Confocal microscopy is a popular method in biological research. The idea was
patented in 1957 by M. Minsky but it was not applicable until the 1970s when suit-
able light sources became available. In 1968 the use of a spinning disk with an array
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of pinholes for an illumination as well as for a ’confocal’ detection was proposed [8].
In 1971 a laser-illumination scanning confocal microscope was introduced [9]. A con-
focal microscope is one which has a pinhole inserted in a point optically conjugated
(confocal) with a geometrical point of focus of an objective. A confocal point is a
position of a point source image. In the approximation of geometrical optics it is the
point where rays of a diverging beam coming from the point source (fluorophore) are
brought into focus. This means that fluorescent photons generated by the scanning
spot in a close proximity to the geometrical focal point can pass through the pinhole
placed in the confocal point. Photons coming from distant areas (laterally and axi-
ally) from the geometrical focal point are effectively blocked by the pinhole as their
conjugated points are in different positions. This provides a true 3D sectioning in
thick samples as all the out-of focus haze is removed. Resolution improvement in a
lateral direction is minor and only occurs if operated with a pinhole that is signif-
icantly smaller than the Airy disk [10]. Such a small pinhole discards not only the
undesired out-of-focus light but also much of the light coming from the focal plane.
In weakly fluorescent biological samples this can be a strongly limiting factor.

4Pi microscopy employs two opposing objective lenses exciting a sample and
collecting fluorescence from both sides of the sample plane. Adding the second
opposing objective increases the numerical aperture of the system and two counter
propagating coherent beams focused into the same position interfere with each other
which sharpens the focused spot. This central spot is accompanied by two axially
shifted side-lobes (coming from interference). It leads to a replication artefacts in
the raw data. The side-lobes can be partially suppressed using a confocal detection
by one of the objective (4Pi type A) or the incoherent fluorescent light is collected
by both of the objectives and is allowed to interfere on the detector (4Pi type C).
Using a two-photon excitation can further decrease the relative strength of the side-
lobes. The rest of the side-lobes is removed computationally with a deconvolution
technique. A sevenfold improvement of the axial resolution (v 80 nm) over confocal
microscopy has been reported in [11].

STED (Stimulated Emission Depletion) microscopy is based on a stimulated emis-
sion depletion process using two synchronized ultra-fast pulse lasers. One pulse is
focused in a sample and excites fluorophores in a diffraction limited volume. The
second pulse in a doughnut shape with a ’hole’ in the center (also diffraction limited)
is delivered with a time delay within the fluorescence lifetime of the fluorophore. It
causes the depletion of the excited state through stimulated emission. The saturated
depletion confines fluorescence only to the center of the doughnut, where the deple-
tion pulse has zero intensity (hole). A lateral resolution down to 28 nm has been
reported in [12].

1.5.2 Wide-field fluorescence microscopy

Contrary to the scanning methods, wide-field microscopy is a technique where the
whole field of view of an objective is recorded in one camera shot or viewed by the
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eye of an observer. No scanning in the lateral plane is needed which speeds up data
acquisition and no fluorescence photons are discarded in the detection process which
makes wide-field methods more light efficient. This is an advantage especially in
microscopy imaging of sensitive and weakly fluorescent biological samples. There
are several techniques for resolution improvement of a wide-field microscope.

A wide-field counterpart of 4Pi microscopy is InM fluorescence microscopy [13].
A fluorescent sample is mounted between two opposing objectives which are focused
into the same focal plane within the sample. Each objective collect a fluorescent
signal from one side of the focal plane and creates a magnified image. These images
are superimposed on a single CCD camera. The optical pathway of the fluorescence
signal is adjusted to be equal for both objectives. This results in an interference of
the two beams from every single fluorophore with each other. The recorded inter-
ference pattern contains high resolution information about the axial position of the
fluorescent molecule. This method is called ’image interference microscopy’ (I2M).
If the sample is illuminated through both objectives, a high-resolution axial illumi-
nation pattern is created because of the interference of the two illuminating beams.
As incoherent light is used for the illumination the method is named ’incoherent
interference illumination microscopy’ (I3M). Combination of I2M and I3M at the
same time is referred to as ’incoherent interference illumination - image interference
microscopy’ (I5M). Axial resolution better than 100 nm has been reported [13].

The method described in this work is another wide-field microscopy method which
enhances the resolution in both axial and lateral directions. The resolution improve-
ment is achieved by restoring high spatial frequencies in the Fourier transform of
the observed structure that would normally lie out of the pass-band of a classical
wide-field microscope. The use of a spatially modulated illumination of the sam-
ple to obtain sectioning was proposed in 1997 [21] and in following years a number
of papers were published proposing the use of the method for resolution improve-
ment along a lateral as well as axial direction. In literature the method is referred
to by several names such as ’structured illumination microscopy’ (SIM) [23, 14]
(combination of SIM and I5M is referred to as I5S [15]), ’harmonic excitation light
microscopy’ (HELM) [16], ’laterally modulated excitation microscopy’ (LMEM) [17]
and ’patterned excitation microscopy’ (PEM) [24]. This final name is the one used
throughout this thesis.
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2 Patterned Excitation Microscopy - theoretical

background

2.1 Fluorophore emission

In a two-state system (omitting a triplet state), the flux of photons Ψem emitted
from the first excited singlet state of a fluorophore is given by [19, 20]:

Ψem = C
Ψex

1
στ

+ Ψex

, (2.1)

where σ and τ are the absorption cross section and the fluorescence lifetime of the
fluorophore, respectively. Ψex is a flux of excitation photons and C is a constant
independent on the photon flux. If the excitation photon flux is low: Ψex ¿ 1

στ
,

Eq.(2.1) gives a linear relationship between the excitation and emission:

Ψem = CστΨex. (2.2)

The intensity of light is directly proportional to the photon flux I ∝ Ψ and so we
can rewrite Eq.(2.2) in terms of intensities:

Iem = QIex, (2.3)

where Iem and Iex are the excitation and emission intensities, respectively. Q is a
constant independent on the intensity.

In the presence of a triplet state, the saturation behavior is slightly changed [24],
but it does not alter the essential characteristics of the fluorescence emission and the
relation Eq.(2.3) holds.

The linear relation Eq.(2.3) (low intensities of excitation light) is assumed in the
theory described below. A non-linear case (allowing higher resolution improvement)
is discussed in [24, 25].

This work discusses a resolution improvement along (one or several) lateral di-
rections. An extension to 3D has special aspects some of which are discussed in
section 5.

2.2 Linear system model

The aim of fluorescence microscopy imaging is to record the spatial distribution of
fluorophores in a sample.

We can define a local concentration of the fluorophores as

ρ(~r) =
∆NF (~r)

∆V
, (2.4)

where ∆NF is the number of fluorophores in a small volume ∆V . The mesoscopic
volume ∆V is small compared to the sample and the resolution limit of the micro-
scope, but large enough compared to the molecular scale of the fluorophore. In the
linear case of Eq.(2.3), we get a local fluorescence intensity:

14



Iem(~r) = Q∆NF (~r)Iex(~r),

and using Eq.(2.4):
Iem(~r) = Q∆V ρ(~r)Iex(~r). (2.5)

We can assume the volume ∆V to be a constant corresponding to the sampling.
Since we are only interested in a relative intensity we can leave out all multiplicative
constants in Eq.(2.5) and write:

Iem(~r) = ρ(~r) · Iex(~r). (2.6)

Light emitted by fluorescent molecules is mutually incoherent. Then we can ex-
press an image Im(~r) recorded by a microscope (diffraction limited, linear optical
system) as a spatial convolution of the fluorescent intensity emitted by the sam-
ple structure Iem(~r) with the intensity point spread function PSF (~r) of the optical
system:

Im(~r) = Iem(~r) ~ PSF (~r). (2.7)

The convolution operation is denoted by the symbol “~”. Eq.(2.7) assumes a spa-
tially invariant PSF .

Combining Eq.(2.6) and Eq.(2.7) yields:

Im(~r) = [ρ(~r) · Iex(~r)] ~ PSF (~r). (2.8)

In Fourier space (using convolution theorem (Appendix A.4) and Eq.(1.3)):

F {Im(~r)} (~k) ≡ ˜Im(~k) =
[
ρ̃(~k) ~ Ĩex(~k)

]
· OTF (~k). (2.9)

2.3 Optical Transfer Function

A wide-field OTF (~k) has a finite convex support (supp (OTF ) ≡
{
~k; OTF (~k) 6= 0

}
).

In Fourier space it means that in any direction ~σ =
~k

|~k| from the origin (~k =

0) there is a certain border (cut-off) frequency kcut(~σ) beyond which OTF (~k) =

0;
(∣∣∣~k∣∣∣> kcut(~σ)

)
. An illustration for a situation in a focal plane is in Fig. 1.1(d-f).

A 3D situation is shown in Fig. 1.2(c) and Fig. 1.4(d-f). For an aberration free opti-
cal system with a circular aperture in a focal plane kcut(~σ) is a constant determined
by the numerical aperture of the objective NA and the wavelength of emitted light
λem:

kcut = 2
2π

λem

NA. (2.10)

In 2D supp (OTF ) is a circle with kcut as a radius. In a 3D situation, the OTF
support creates an interesting doughnut-like object (Fig. 1.2(c)).

Because of the multiplication of the Fourier transform of the structure with the
OTF in Eq.(2.9), an optical system acts as a low-pass filter for spatial frequencies in
Fourier space. All frequencies beyond kcut are effectively lost after the multiplication.
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2.4 Classical microscopy

0
0

1

x [m] 

in
te

ns
ity

 [a
.u

.]

(a) Real space

0
0

0.5

1

x [m] 

in
te

ns
ity

 [a
.u

.]

(b) Real space

0
0

0.5

1

k [m−1] 

am
pl

itu
de

 [a
.u

.]

(c) Fourier space

0
0

0.5

1

k [m−1] 

am
pl

itu
de

 [a
.u

.]

−2κ +2κ

(d) Fourier space

Figure 2.1: (a) Constant and (b) spatially modulated illumination intensity profile
with Fourier transforms (c) and (d), respectively.

In a classical wide-field fluorescence microscope an even illumination (excitation)
over the whole area of a sample is used:

Iex (~r) = const. ≡ I0.

Then in Fourier space
Ĩex(~k) = I0δ(~k) (2.11)

where δ(~k) is a Dirac’s delta distribution. This is demonstrated in Fig. 2.1(a and c).

Substituting Eq.(2.11) into Eq.(2.9):

˜Im(~k) =
[
ρ̃(~k) ~ I0δ(~k)

]
· OTF (~k)

and after performing the convolution:

˜Im(~k) = I0 · ρ̃(~k) · OTF (~k). (2.12)

As a wide-field OTF (~k) has a finite support (see section 2.3), the multiplication ρ̃·
OTF ≡ ρ̃0 in Eq.(2.12) leads to the loss (cut-off) of any spatial frequency information

of the ρ̃(~k) that is beyond the kcut. A one-dimensional illustration is in Fig. 2.2.
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(a) Classical Component (b) Multiplication with OTF

Figure 2.2: (a) Classical component in Fourier space. (b) After multiplication with
the OTF (black dashed line) all Fourier frequencies beyond kcut are lost.

2.5 Patterned Excitation Microscopy

2.5.1 Excitation of the sample with spatially modulated intensity

In Patterned Excitation Microscopy (PEM) a spatially modulated (pattern) intensity
Iex(~r) is used for an excitation of a fluorescent sample. This section will demonstrate
a principle of the method on an example where a harmonic excitation pattern with
a sinusoidal profile is imposed upon the sample. Modification of the pattern is
discussed in section 2.6.

We assume the intensity of excitation light in the in-focus plane to vary as:

Iex (~r) =
I0

2
(1 + cos(2~κ · ~r + φ0)) (2.13)

where I0
2
, 2~κ and φ0 are the amplitude, the spatial frequency and the initial phase

of the excitation pattern, respectively. The intensity profile of Eq.(2.13) is shown in
Fig. 2.1(b). The Fourier transformation of the Eq.(2.13) results in a sum of three
delta peaks. One is located in the origin and two are symmetrically shifted sideways
to the position of ±2~κ in Fourier space (Fig. 2.1 (d). Two-dimensional demonstration
is shown in Fig. 2.4).

Ĩex(~k) =
I0

2

[
δ(~k) +

1

2

(
eiφ0δ(~k + 2~κ) + e−iφ0δ(~k − 2~κ)

)]
. (2.14)

Convolution of ρ̃ and Ĩex (see Eq.(2.9)) leads to a sum of three identical copies of the
classical component mutually shifted in Fourier space into positions of the δ peaks
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(a) (b) (c)

(d) (e) (f)

Figure 2.3: Illustration of the PEM theory. (a) A classical component (red line).
(b) A classical component (red) with two side components (blue) located in ±2κ.
We detect a sum of all components (green). (c) The highest detectable Fourier fre-
quency after multiplication with the OTF (black dashed line) is kcut (for the sake of
simplicity, one side component was omitted). The side components (blue) are cut
asymmetrically with respect to their ’true zero frequency’. (d) Shift of the side com-
ponent (blue) to the the correct position of the ’true zero frequency’. (e) Shift of both
components. (Shifted OTFs in black dotted line.) (f) Recombination of all compo-
nents (red) with an weighted averaging. The maximal detectable Fourier frequency
is shifted to kcut + 2κ (compare with Fig. 2.2(b)). An enlarged area of detectable fre-
quencies leads to the resolution improvement of the reconstructed image (the inverse
Fourier transform of recombined components (red)).

(see Eq.(A.12) in Appendix A):

˜Im(~k) =
I0

2

[
ρ̃(~k) +

1

2

(
eiφ0 ρ̃(~k + 2~κ) + e−iφ0 ρ̃(~k − 2~κ)

)]
· OTF (~k). (2.15)

Note that each copy has a different complex amplitude determined by the initial
phase φ0. The situation is illustrated in Fig. 2.3(b, c).

The first term (a zero order component) in Eq.(2.15), corresponds to the classical
wide-field component shown in Fig. 2.3(a). The multiplication with the OTF leads
again to the cut-off of the high frequencies above kcut and thus the frequency content
is the same as in the classical case (Eq.(2.11)).
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2.4: Simulated data. Four orientations of the illumination pattern projected
on the sample (a) 0°, (b) 90° (c) 135° and (d) 225°. (e-h) Corresponding Fourier
transforms. Peaks in the Fourier transform pointed with white arrows.

We define a classical component ρ̃0(~k) as follows

OTF (~k) · ρ̃(~k) ≡ ρ̃0(~k). (2.16)

A convolution of ρ̃(~k) with the side-shifted delta peaks e±iφ0δ(~k ± 2~κ) results

in the displacement of ρ̃(~k) in Fourier space to the position ~k = ±2~κ (second and
third term in the Eq.(2.15)). This situation is illustrated in Fig. 2.3 (b). Moreover,
these side-shifted components are multiplied with a complex constant e∓iφ and finally
multiplied with the OTF (Fig. 2.3(b)). We define ±1 components by:

eiφ0 ρ̃(~k + 2~κ) · OTF (~k) ≡eiφ0 ρ̃−1(~k),

e−iφ0 ρ̃(~k − 2~κ) · OTF (~k) ≡e−iφ0 ρ̃+1(~k). (2.17)

Due to the symmetry property of the Fourier transform for real images (see Eq.A.6)
we get

ρ̃0(~k) = ρ̃0(−~k) and ρ̃+1(~k) = ρ̃−1(−~k).

Before a multiplication with the OTF these side-shifted components are exact
copies of the classical component ρ̃0 (ignoring a multiplicative constant) as shown
in Fig. 2.3 (b). The multiplication with the OTF in the Eq.(2.15) or Eq.(2.17)
leads to an asymmetrical cut-off of these side components with respect to their ’true
zero frequency’ (located in ±2~κ). On one side the cut-off is closer to the ’true
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zero frequency’ than in the case of the classical component ρ̃0. However, on the
opposite side the cut-off is actually pushed further which allows it to pass through
the frequencies which lie beyond the cut-off limit in the classical wide-field case. The
asymmetrical cut-off is shown in Fig. 2.3 (c).

If we separate the individual components ρ̃±1 in Eq.(2.15) we can align them in
Fourier space with the classical component ρ̃0, so that their ’true zero frequency’ is
placed back in the origin as demonstrated in Fig. 2.3(d-e). This requires translation
of the ρ̃±1 by ±2~κ and compensation for the complex amplitude e±iφ0 (see Eq.(2.17)).
Then we gain information about the Fourier frequencies beyond the original kcut (in
the direction of vector ±2~κ). The cut-off frequency border in the direction of the
vector ±2~κ then increases to

kfinal
cut = kcut + |2~κ| (2.18)

as illustrated in Fig. 2.3 (f).

2.5.2 Component separation

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2.5: Simulated data. Separation of the individual components for two orien-
tations of the illumination pattern (0° and 135°). (a, e) The Fourier transform of
the data with arrows pointing to the δ peaks. (b, f) component ρ̃−1, (c, g) component
ρ̃0 (d, h) component ρ̃+1 from Eq.(2.20).

In general, to separate M components we need to take N ≥ M images Imn, (n =
1..N) for different positions of the excitation pattern In

ex, (n = 1..N) with respect to
the sample. In case of the sinusoidal pattern Eq.(2.13), we have to acquire at least
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N ≥ 3 images to be able to separate M = 3 components (ρ̃0 and ρ̃±1). We can, for
example, shift the pattern by equal steps n p

N
, (n = 1..N), where p = 2π

2|~κ| is a spatial
period of the pattern. Then the excitation pattern can be expressed as follows

In
ex(~r) =

I0

2

[
1 + cos

(
2~κ · (~r + n

p

N
) + φ0

)]
; (n = 1..N) (2.19)

or in Fourier space:

Ĩn
ex(

~k) =
I0

2

[
δ(~k) +

1

2

(
e−i(2 2π

N
n+φ0)δ(~k + 2~κ) + e(2 2π

N
n+φ0)δ(~k − 2~κ)

)]
; (n = 1..N).

After the convolution in Eq.(2.9) we get modified Eq.(2.15):

˜Im
n
(~k) =

[
B0ρ̃0(~k) + B−1e

−i(2 2π
N

n+φ0)ρ̃−1(~k) + B+1e
i(2 2π

N
n+φ0)ρ̃+1(~k)

]
; (n = 1..N)

(2.20)
where Bm is a magnitude of the m-th component. This is a set of N linear equations
for M unknown components ρ̃m, (M ≤ N). In a vector notation:

~̃Im = A · ~̃ρ, (2.21)

where

~̃ρ =(B−1e
iφ0 ρ̃−1, B0ρ̃0, B+1e

−iφ0 ρ̃+1),

~̃Im =( ˜Im1, ˜Im2, ˜Im3), (2.22)

and A is N × M separation matrix:

Anm = exp

{
i2

2π

N
(n − 1)

[
(m − 1) − M − 1

2

]}
; (n = 1..N, m = 1..M). (2.23)

Separated components can be found by the inversion of Eq.(2.21):

~̃ρ = A−1 · ~̃Im. (2.24)

If the matrix Anm is not squared (M < N), a pseudo-inverse matrix approach is
used. There are three separated orders for two orientations of the excitation pattern
shown in Fig. 2.5.

2.5.3 Component alignment

Components ~̃ρ (Eq.(2.22)) separated in Eq.(2.24) need to be shifted to the appro-
priate position in Fourier space to align them with ρ̃0 (Fig. 2.3(e)) and be corrected
for the initial phase of the pattern φ0 (Eq.(2.17)). We define

ρ̃shift
−1 (~k) =ρ̃−1(~k − 2~κ),

ρ̃shift
0 (~k) =ρ̃0(~k),

ρ̃shift
+1 (~k) =ρ̃+1(~k + 2~κ). (2.25)
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Values of 2~κ and φ0 can (in principle) be determined from the parameters of the
pattern Eq.(2.13). In real experiment they are determined from the comparison of
the individual separated orders (see section 4.7).

2.5.4 Recombination of separated components

Separated (Eq.(2.24)) and shifted (Eq.(2.25)) components have to be recombined
to yield the final Fourier transform of the reconstructed image. Within the area
where the individual separated components ρ̃m(~k) overlap they must be combined

with appropriate weights wm(~k). A Wiener filter approach is used in order to reduce
noise artefacts:

W (~k) =

∑+1
m=−1 wm(~k)ρ̃comp

m (~k)

γ +
∑+1

m=−1 wm(~k)
(2.26)

where γ is the Wiener parameter and ρ̃comp
m is the separated component compensated

for the multiplication with the OTF in Eq.(2.16) and Eq.(2.17) and the magnitude
Bm in Eq.(2.20).

If we define a shifted OTF to the position of the m-th delta peak

OTFm(~k) = OTF (~k + m2~κ) (2.27)

then

ρ̃comp
m (~k) =

1∣∣∣OTFm(~k)
∣∣∣Bm

ρ̃shift
m (~k) (2.28)

If we want to alter the ’strength’ of the particular components we can, for example,
modify the magnitude Bm in Eq.(2.28).

2.5.5 Noise consideration in the weighted averaging

The weights wm(~k) in Eq.(2.26) can be computed as the inverse variance

wm =
1

σ2
m(~k)

(2.29)

of the ρ̃comp
m (~k). Poisson noise in real space makes noise independent on frequency

in the Fourier transform σ2(~k) = const. [32]. This can bee seen from the following
arguments. An intensity fluctuation in one pixel (in a position p) of the recorded
image in real space can be seen as an amplitude (A) fluctuation of the delta peak
Aδp(x) sitting in the position p. The Fourier transform of the delta peak

F {A(x)δp(x)} = A(p)eikp

is a complex plane wave (with an amplitude A) expanded all over Fourier space.
This means that a fluctuation in one pixel in real space results in a fluctuation over
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all pixels in Fourier space. The amplitude of the fluctuation A(p) in Fourier space
will be independent on the position k.

If we have multiple pixels (pi) in the image Im(pi) in real space, the fluctuations
of ˜Im(k) in Fourier space will add up individually

˜Im(k) =
∑
pi

A(pi)e
ikpi

As the independently fluctuating quantities are the amplitudes A(pi) (not pi) the

variance of the fluctuation will be independent on k. Thus σ2(~k) = const.
Then, for the compensated ρ̃comp

m (see Eq.(2.28))

σm =
σ∣∣∣OTFm(~k)

∣∣∣ Bm

(2.30)

and using the weights Eq.(2.29) we can rewrite Eq.(2.26) as follows

W (~k) =

∑+1
m=−1

∣∣∣OTFm(~k)
∣∣∣ Bmρ̃shift

m (~k)

γ +
∑+1

m=−1

(∣∣∣OTFm(~k)
∣∣∣ Bm

)2 . (2.31)

2.5.6 Apodization

Figure 2.6: Computed hgoal apodization function. Shown in linear scale.

The reconstructed Fourier transformation is obtained from W (~k) in Eq.(2.31). A

final apodization function hgoal(~k) is used to shape the reconstructed Fourier trans-
form and to reduce artefacts that can occur in a reconstructed image.

ρ̃final(~k) = W (~k) · hgoal(~k). (2.32)

According to [26] hgoal the function minimizing the second moment of the PSF
projected along any direction (in plane) is

hcos
goal(

~k) =

{
cos

(
π
2

|~k|
kfinal

cut

)
; |~k| ≤ kfinal

cut (~σ)

0; |~k| > kfinal
cut (~σ)

(2.33)
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where ~σ =
~k

|~k| . This apodization function is shown in Fig. 2.6 with the intensity

profile plotted in Fig. 2.7. Alternatively other apodization functions can be used:

hq
goal(

~k) =

{ (
1 − |~k|

kfinal
cut

)q

; |~k| ≤ kfinal
cut (~σ)

0; |~k| > kfinal
cut (~σ)

(2.34)

By choosing different values of parameter q we can alter the reconstructed Fourier
transform. A demonstration of different profiles of the apodization function is in
Fig. 2.7.
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cut k
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Figure 2.7: Profiles of the apodization function hgoal. The sinusoidal profile of hcos
goal

(Eq.(2.33)) is plotted as a blue solid line. The apodization functions hq
goal computed

according to Eq.(2.34) for q = 0.5 (red solid line), q = 1.2 (green dot-and-dash line)
and q = 2 (yellow dash line). The theoretical OTF computed for the reconstructed
kcut frequency is plotted with the black dotted line.
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(a) (b) (c) (d)

Figure 2.8: Enlargement of a support of the OTF. (a) The support of the classical
wide-field OTF. (b) Enlargement of the support along the kx axis results in a resolu-
tion improvement along the x direction. (b) Enlargement along the kx and ky axis.
(c) Enlargement in four directions results in an isotropic resolution improvement.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2.9: Detail of the simulated data. (a) The Fourier transform of a wide-field
image. (b) Reconstruction of the Fourier transform along one direction 0° (c) 90°
(d) Combination of reconstructions along directions 0°, 45°, 90° and 135°. Borders
of the reconstructed OTF support visualized with a white line. (d - h) Inverse Fourier
transforms of (a-d), respectively. (f) The resolution improvement along the direction
0° allows to resolve individual vertical lines, horizontal lines stay unresolved. (g)
Vertical lines unresolved, horizontal resolved. (h) The isotropic resolution improve-
ment.

2.5.7 Final reconstruction

The reconstructed image in real space ρfinal(~r) is obtained by the inverse Fourier

transform of ρ̃final(~k) (Eq.(2.32))

ρfinal(~r) = F−1
{

ρ̃final(~k)
}

(~r). (2.35)
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Since we have extended the region of detectable spatial frequencies in Fourier space
(Eq.(2.18) and Fig. 2.8), the resolution in the reconstructed image is enhanced (see
section 1.4).

(a) (b)

(c) (d)

Figure 2.10: Simulated data. (a) Simulation of a classical component. (c) The in-
verse Fourier transform of (a) represents an image from a classical wide-field micro-
scope. (b) Reconstructed Fourier transform with enlarged area of detectable Fourier
frequencies. (d) The inverse Fourier transform of (b) represents a reconstructed
image with an improved resolution. Scale bar 1 µm.

The resolution in the reconstructed image is improved along the direction collinear
with the direction of the excitation pattern vector ~κ only. To obtain an isotropic
extension of detectable frequencies, we need to take data for different orientations of
the excitation pattern (e.g.. 0°, 45°, 90°, 135°) as shown in Fig. 2.8. The effect of the
resolution improvement is demonstrated in Fig. 2.9. The whole reconstructed image
is shown in Fig. 2.10.

2.6 Excitation pattern

We assume a situation where a coherent monochromatic beam (wavelength λem)
hits a diffraction grating. Individual diffracted orders are focused on the back focal
plane (BFP) of an objective. Passing through the objective the diffracted orders
are transformed into planar waves. They propagate in a direction with a different

26



Figure 2.11: Generation of the excitation pattern. Three diffracted beams (-1, 0, +1)
are focused on the back focal plane (a) of the objective (b). They are transformed
into plane waves. In the area of the overlap they interfere. In the sample plane (c)
a harmonic interference pattern is created. The x-axis lies in the sample plane and
z-axis is along the optical axis.

angle with respect to the optical axis (see Fig. 2.11). The angle is determined by the
position of the focused beam in the BFP.

Let ~Em, (m = −1, 0, 1) be a real amplitude of the mth diffracted order and ~κm

and ϕm their wave vectors and phases, respectively (κ2
−1 = κ2

+1 = κ2
0 ≡ κ2, κ = 2π

λex
;

ϕ−1 +ϕ+1 = ϕ0). The polarisation is in the direction of the y-axis (perpendicular to
the plane of the figure).

We set the origin of a coordinate system to the intersection of a sample plane
and the optical axis (z direction). The x axis is collinear with the direction of the
displacement of the focused beams in the BFP (see Fig. 2.11). We selected only ±1
and 0 diffracted orders. Corresponding plane waves have spatial frequencies:

~κ−1 = (κx, 0, κz) ,

~κ0 = (0, 0, κ) ,

~κ+1 = (−κx, 0, κz) .

The electric field in the overlapping area of all three diffracted beams is given by:

~E (~r) = ~E−1e
i(~κ−1·~r+ϕ−1) + ~E0e

i(~κ0·~r+ϕ0) + ~E+1e
i(~κ+1·~r+ϕ+1). (2.36)
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The interference pattern is obtained as a square of the amplitude of the electric field:

Iex ∝ ~E · ~E;

Iex(~r) ∝
∣∣∣ ~E−1

∣∣∣2 +
∣∣∣ ~E0

∣∣∣2 +
∣∣∣ ~E+1

∣∣∣2 + 2 ~E−1 · ~E+1 cos (2κxx + ∆ϕ−1,1) +

+2 ~E0 cos ((κ − κz) z)
[
~E−1 cos (κxx + ∆ϕ−1,0) + ~E+1 cos (κxx + ∆ϕ0,1)

]
+

+2 ~E0 sin ((κ − κz) z)
[
~E−1 sin (κxx + ∆ϕ−1,0) − ~E+1 sin (κxx + ∆ϕ0,1)

]
,

(2.37)

where ∆ϕk,l = ϕk − ϕl.

With the assumption
∣∣∣ ~E−1

∣∣∣ =
∣∣∣ ~E+1

∣∣∣ ≡
∣∣∣ ~E∣∣∣ (same power of diffraction orders2)

and ϕ−1 = ϕ+1 ≡ ϕ we can simplify Eq.2.37:

Iex(~r) ∝
∣∣∣ ~E0

∣∣∣2 + 2
∣∣∣ ~E∣∣∣2 (1 + cos (2κxx)) +

+8 ~E0 · ~E cos (ϕ0 − ϕ) cos ((κ − κz) z) cos (κxx) .
(2.38)

and the Fourier transform:

Ĩex(~k) ∝
(∣∣∣ ~E0

∣∣∣2 + 2
∣∣∣ ~E∣∣∣2) δ[0,0,0](~k) +

∣∣∣ ~E∣∣∣2 (
δ[−2κx,0,0](~k) + δ[2κx,0,0](~k)

)
+

+2 ~E0 · ~E cos (ϕ0 − ϕ)
(
δ[−κx,0,±(κ−κz)](~k) + δ[κx,0,±(κ−κz)](~k)

)
,

(2.39)

where δ[α,β,γ](~k) = δ(kx − α, ky − β, kz − γ).

If we block the zero diffraction order
∣∣∣ ~E0

∣∣∣ = 0 we find a harmonic excitation

pattern with a sinusoidal profile in the focal plane (z = 0) (compare with Eq.(2.13)
on page 17)

Iex ∝ 2
∣∣∣ ~E∣∣∣2 (1 + cos (2κxx))

The Fourier transform

Ĩex(~k) ∝ 2
∣∣∣ ~E∣∣∣2 [

δ[0,0](~k) +
1

2

(
δ[−2κx,0](~k) + δ[2κx,0](~k)

)]
consists of three δ peaks in positions 0 and ±2κx on the kx axis.

If we allow the zero diffraction order to interfere, we find a modified excitation
pattern in the focal plane (z = 0). This consists of two cosine functions with different
spatial frequencies:

Iex(~r) ∝
∣∣∣ ~E0

∣∣∣2 + 2
∣∣∣ ~E∣∣∣2 (1 + cos (2κxx)) + (2.40)

+ 8 ~E0 · ~E cos (ϕ0 − ϕ) cos (κxx) .

2This assumption cannot be used for blazed gratings.
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The Fourier transform is

Ĩex(~k) ∝
(∣∣∣ ~E0

∣∣∣2 + 2
∣∣∣ ~E∣∣∣2) δ[0,0](~k) +

∣∣∣ ~E∣∣∣2 (
δ[−2κx,0](~k) + δ[2κx,0](~k)

)
+

+ 2 ~E0 · ~E cos (ϕ0 − ϕ)
(
δ[−κx,0](~k) + δ[κx,0](~k)

)
. (2.41)

It consist of five δ peaks in positions ±2κx, ±κx and 0 on the kx axis. The Fourier
transform of acquired data ˜Im

n
(Eq.(2.20)) contains M = 5 components (ρ̃0, ρ̃±1

and ρ̃±2) to separate:

˜Im
n
(~k) = B0ρ̃0(~k) + B−1e

−i(2 2π
N

n+φ0)ρ̃−1(~k) + B+1e
i(2 2π

N
n+φ0)ρ̃+1(~k)

+ B−2e
−i( 2π

N
n+

φ0
2 )ρ̃−2(~k) + B+2e

i( 2π
N

n+
φ0
2 )ρ̃+2(~k), (2.42)

where Bm is the amplitude of the separated components. We have to acquire N ≥
5 images with different translations (n p

N
, (n = 1..N), p = 2π

2|~κ|) of the excitation
pattern.

2.7 Concept of PEM in real space

(a) (b) (c)

Figure 2.12: Demonstration of the moiré fringes. Two high-frequency patterns (a)
- ’sample’, (b) - ’excitation pattern’ and their product (c) - ’detected image’ (a
low-frequency pattern).

The encoding of high spatial frequency information in the microscopic image
acquired with a patterned excitation can be explained in real space through the moiré
effect. A superposition (multiplication) of two periodic patterns P1 = cos(k1x) and
P2 = cos(k2x) with spatial frequencies k1 and k2, respectively gives rise to a structure
containing the sum and the difference of k1 and k2

P1P2 =
1

2
[cos ((k1 + k2)x) + cos ((k1 − k2)x)]
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This means that two high-frequency periodic patterns can produce a pattern with
low-frequency (moiré) fringes (k = k1 − k2). If, for example, k1 lies outside the OTF
support (k1 > kcut) then the structure of P1 cannot be resolved under a microscope.
However, the multiplication of P1 with a pattern P2 of spatial frequency k2 where
|k1 − k2| < kcut can be resolved. If the pattern P2 is known (excitation pattern) we
can reconstruct the unknown unresolvable pattern P1 (sample) from the recorded
(resolvable) image P1P2 (patterned excitation of the fluorescent sample).

A complicated structure of biological samples can be decomposed (by the Fourier
transform) into a sum (integral) of the sine and cosine functions (components) and
then the moiré effect holds for each individual component. The moiré effect is demon-
strated in Fig. 2.12.
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3 Experimental setup

Figure 3.1: Experimental setup. (a) Laser source, (b) shutter, (c) beam expander
with a pinhole, (d) spatial light modulator (SLM), (e) focusing lens, (f) half-wave
plate followed by (g) linear polarizer, (h) zero diffraction order block, (i) dichroic
beam-splitter, (j) back focal plane of the objective, (k) objective, (l) sample plane,
(m) emission filter, (n) tube lens, (o) CCD camera.

Fig. 3.1 illustrates the experimental setup. The whole beam path was enclosed
in tubes in order to avoid the air drafts.

3.1 Objective

An objective (Leica, Germany; 63×, 1.2NA, water immersion) was used for both
illumination and detection (an epifluorescence setup). The z-position of the objec-
tive could be controlled by a piezo-driven focusing device (PIFOC P-725, Physik
Instrumente, Germany; resolution 0.75 nm).
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3.2 Illumination

A solid state laser was used as a coherent light source (mQ Lasersysteme, Germany;
λex = 473 nm, nominal output power 50 mW). The laser beam was expanded by
a beam expander consisting of two positive lenses (focal lengths f1 = 25 mm and
f2 = 500 mm). A pinhole (10 µm) was inserted in the common focal plane of the
two lenses to clean the beam. The beam was reflected on a high resolution spatial
light modulator (SLM) (HOLOEYE HEO 1080 P, Holoeye Photonics, Germany;
1920 × 1080 pixels, 8 µm pixel pitch). A system based on reflective liquid crystal
micro-displays. This device was used as a phase diffraction grating. A periodic
pattern consisting of parallel stripes (a grid) with a desired grating period, position
and orientation was displayed on the SLM. Separated diffracted orders were focused
with a lens (focal length f = 1 m) onto the back focal plane (BFP) of the objective.
The zero diffraction order could be blocked with a black screen before the BFP. The
polarisation was rotated by a half-wave plate to be collinear with the stripes of the
diffraction grating. The half-wave plate was followed by a linear polarizer (rotated
independently) to further ’clean up’ the polarisation. (It was important as we needed
to achieve a maximal modulation of the excitation pattern.) After passing through
the objective lens the diffracted orders focused on the BFP were again transformed
into individual plane waves. They passed through the sample plane under different
angles with respect to the optical axis (see Fig. 2.11) and they created an interference
pattern in the region of overlap. As the interference pattern in the sample plane is
actually an image of the grid displayed on the SLM (selection of the ±1 and 0
diffraction orders represents a filtering of spatial frequencies in the Fourier plane -
compare with Fig. 1.7(a, b)) where the lateral position and the orientation of the grid
displayed on the SLM determines the position and the orientation of the pattern in
the image plane. The advantage of using the SLM instead of a physical grating is that
no translation or rotation of the SLM device is required. Moreover, by optimising
gray values of the displayed grid we can enhance the optical power guided into the
diffracted orders. The characterization of the SLM device was carried out by Liisa
Hirvonen.

3.3 Detection

Emitted light was collected by the objective and the tube lens (Leica, Germany;
magnification 1×). A long pass filter was inserted into the detection path (λem >
510 nm) and the image was recorded on a CCD camera (Imager Intense, La Vision,
Germany; 12 bit, 1376 × 1040 pixels, 6.45 µm pixel-size).

3.4 Sampling

We used a diffraction grating (600 lines/mm) for the calibration of the magnification.
From a magnified image of the grating we computed one pixel in the CCD camera
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corresponds to 83.3 nm in the sample plane. The objective used in our setup (1.2 NA,
water immersion) is capable of detecting spatial frequencies (in the focal plane) of
up to kcut

.
= 15/λem (see Eq.(2.10)). To fulfill the Nyquist limit for λem > 510 nm,

the minimal required sampling is

∆ =
1

2

2π

kcut

=
λem

4NA
= 107 nm. (3.1)

With the pixel-size of 83.3 nm, the recorded image was slightly oversampled.
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4 Reconstruction Algorithm Description

The reconstruction algorithm follows the theory described in section 2.5. The pro-
gram was written in MATLAB (The MathWorks, USA) using the image processing
toolbox DIPimage [33] (TU Delft, Netherlands).

Transformation between the metric system and the pixel units (~r[m] → ~r[pixels]

in real space and k[m−1] → ~k[pixels] in Fourier space) in the image is computed with
the transformation matrices R, K:

R =
M

CCDpixelsize

(
1 0
0 1

)
, K =

CCDpixelsize

M

(
Sx

2π
0

0 Sy

2π

)
; (4.1)

~r[pixels] = R · ~r[m] and ~k[pixels] = K · ~k[m−1], (4.2)

where CCDpixelsize is the pixel-size of the CCD camera, M is the magnification of
the system and Sx × Sy is the size of the image (in pixels).

4.1 Loading Images

Fourier transforms of the recorded images for different orientations and positions of
the pattern are loaded into an array structure. The DIPimage structure “imar”
allows to treat the individual images as elements of a vector (see Eq.(2.21)).

4.2 PSF Simulation

The PSF is computed from the parameters of the objective and the camera using the
program “ksimPSF” written by Rainer Heintzmann. The program is based on the
vectorial high-NA theory [31], [30]. The OTF is obtained as the Fourier transform
of the PSF .

An experimental PSF can be used as an option. We took an image of fluorescent
beads (diameter 100 nm) and selected one individual bead. The image of the bead
can be optionally made symmetric by a radial averaging.

4.3 Intensity Offset Subtraction

The global offset is subtracted from raw data. The offset is estimated from a dark
image taken with the same setting of the camera (integration time) as the measured
images but with closed laser shutters.

4.4 Image Alignment and Brightness Correction

During the acquisition of the images a lateral drift of the sample can be present.
Time between the acquisition of the images for different orientations of the grating
can be considerably long and vibration or translation of the sample stage results in
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a slight shift of the sample. This can severely deteriorate the results. Therefore,
precise alignment of the acquired images is vital. The algorithm for alignment is
based on a cross-correlation method. Sharp borders of the recorded images might
cause difficulties in the cross-correlation based estimation of the drift. The edges
of all images are therefore dimmed down using a window function (a Hann window
with a flat central area).

4.4.1 Alignment for images with different orientations of the grating

We compute a sum of images over all positions (n = 1..N) of the excitation pattern
for one orientation αi of the pattern:

Imαi
SUM =

N∑
n=1

Imαi
n . (4.3)

The drift of the sample between the different pattern orientations αj is estimated
from the position of the peak in the cross-correlations of Imαi

SUM and Im
αj

SUM.

4.4.2 Alignment for images with different position of the grating within
one orientation

The drift of the sample between the individual shifts of the pattern (within one
orientation) is a difficult task and it is hard to compensate for. The cross-correlation
method cannot be used directly due to the projected pattern. Images must be
processed with various Fourier filters prior to the drift estimation. Tests on the
simulated data revealed that this correction is not always successful and must be
used with care.

4.4.3 Brightness correction

Correction for the fluctuation of the fluorescent light intensity (e.g. due to the
instability of the laser source or the polarisation of the fluorophores in the sample)
between the individual orientations of the pattern αj; j = 1..D is also estimated
from the Im

αj

SUM (Eq.(4.3)). A large bright area Ω is determined in the average
image over the orientations of the pattern

ImAVG
SUM =

1

D

D∑
j=1

Im
αj

SUM

using the DIPimage function “threshold” (Isodata algorithm). The individual images
Imαj

n for different orientations of the pattern are corrected such that Im
αj

SUM = ImAVG
SUM

over the area Ω. Correction for the intensity fluctuation between the individual
positions of the pattern (within one pattern orientation) is described in section 4.5.
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4.5 Separation Matrix Optimization

(a) (b) (c)

Figure 4.1: Simulated data. Demonstration of the separation matrix correction for
data taken with the modified excitation pattern Eq.(2.40). A random error in the
precise translation of the excitation pattern was introduced in the simulation. The
maximum inaccuracy of the translation was about 2% of the precise value 2π/N (see
Eq.2.20). (a) The Fourier transform of raw data. Five components to separate are
present in the figure. White arrows heading right point at -2, -1 and +1 components.
The arrow heading left point at +2 component. (b) Separated +2 component without
the correction of the separation matrix. -2, -1 and +1 components are mixed in the
+2 component. (c) +2 component after the correction of the separation matrix.

The separation matrix and its inversion are computed according to Eq.(2.23).
Imprecision and imperfection of the experimental setup, namely:

� imprecise shift of the grating

� fluctuation of the excitation light intensity between individual images

� bleaching of the pattern into the sample

have large influence on the quality of separation. To a certain extent, this hardware
inaccuracy can be corrected computationally by optimising the matrix A in Eq.(2.24).

If the steps of the pattern shift are not precise (steps in Eq.(2.19) are not exactly
p
N

) and (or) if the intensity of the excitation light significantly fluctuates, the compo-
nents mix together. We can observe several unwanted peaks in each of the separated
components (see Fig. 4.1). This generates artefacts in the reconstructed image. To
achieve better separation we can iteratively optimize the separation matrix A by
varying the phase ∆φ and (or) the intensity ∆I of individual elements:

A′
nm = (1 + ∆Im) exp

{
i
2π

N
(n − 1)

[
(m − 1) − M − 1

2
+ ∆φm

]}
, (4.4)
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with (n = 1..N, m = 1..M). By adjusting the phase ∆φ and (or) the intensity
∆I, we are try to minimize the ’similarity’ between the two separated (non-shifted)
components such that there is no mixing of one in another. This means in a cross-
correlation between two separated components

c
(0)
ij (~k) =

˚

k−space

d~k′ ρ̃i(~k
′)ρ̃j(~k

′ + ~k) ≡ {ρ̃i ? ρ̃j} (~k)

we want to minimize the magnitude of the central pixel (~k = 0) for i 6= j:

c
(0)
ij (0) =

{(
A′−1 · ~̃Im

)
i
?

(
A′−1 · ~̃Im

)
j

}
(0)

=

˚

k−space

d~k′

(
N∑

p=1

A′−1
ip

˜Imp(~k
′)

)  N∑
q=1

A′−1
jq

˜Imq(~k′)

 , (4.5)

where we used Eq.(2.24). Lines above variables denotes the complex conjugation
and the integration is over the whole Fourier transform of the image. Additionally,
we can do a similar operation with the shifted components ρ̃shift

i from Eq.(2.25).
Perfectly separated components should have a maximum amplitude of the complex
value

c
(2~κ)
ij (0) =

{
ρ̃shift

i ? ρ̃shift
j

}
(0) (4.6)

for neighboring orders i = j± 1, as they should contain the same information within
the region of overlap.

Minimizing c
(0)
ij (0) and maximizing c

(2~κ)
ij (0) requires separation and a cross-correlation

in every step of the iterative optimization. This can be very time consuming espe-
cially for large images. The method can be significantly sped up [28]. Rewriting
Eq.(4.5)

c
(0)
ij (0) =

N∑
p=1

N∑
q=1

A′−1
ip A′−1

jq

˚

k−space

d~k′ ˜Imp(~k
′) ˜Imq(~k′),

=
N∑

p=1

N∑
q=1

A′−1
ip A′−1

jq D(0)
pq , (4.7)

where D
(0)
pq =

˝
k−space

d~k′ ˜Imp(~k
′) ˜Imq(~k′) is the value of the center pixel (~k = 0) of the

cross-correlation between the Fourier transforms of the acquired images. Eq.(4.7)
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can be rearranged

c
(0)
ij (0) =

N∑
p=1

N∑
q=1

A′−1
ip A′−1

jq D(0)
pq

=
N∑

p=1

N∑
q=1

A′−1
ip D(0)

pq

(
A′−1

qj

)T

(4.8)

=A′−1 · D(0) ·
(
A′−1

)+

.

Symbol + denotes the Hermitian conjugation. Similarly the cross-correlation be-
tween the shifted components:

c
(2~κ)
ij (0) = A′−1 · D(2~κ) ·

(
A′−1

)+

, (4.9)

where D
(2~κ)
pq =

˝
k−space

d~k′ ˜Imp(~k
′) ˜Imq(~k′ − (q − p)2~κ).

Correlation matrices D(0) and D(2~κ) do not change during the iterative procedure.
They have to be computed only once in the beginning and the iterative procedure is
much faster then. The computation for the correlation matrix D(2~κ) can be further
sped up by restricting the images only to the area of the mutual overlap of the
separated components.

Correction for bleaching of the pattern into the sample is difficult. The procedure
described above can slightly compensate for this imperfection of the acquired images
but the result is usually severely deteriorated with residual pattern and artefacts. An
analysis of artefacts in the structured illumination methods although in a different
context can be found in [29].

4.6 Separation of Components

Components ~̃ρ are obtained according to Eq.(2.24) using the corrected (section 4.5)

matrix A and the corrected (section 4.4) Fourier-transformed images ~̃Im.

4.7 Mutual Shift Determination Between the Separated Com-
ponents

The mutual shift of the separated components (which corresponds to the spatial
frequency of the pattern 2~κ) is estimated with sub-pixel precision using the func-
tion“findshift” (see Appendix B). Input values are the separated zero order compo-
nent ρ̃0 and one of the side-shifted components ρ̃±1. If more components are present
(e.g. if we do not block the zero diffracted order - see Eq.(2.40)), we can determine

the mutual shift in several ways. We can estimate the shift ~Pm (m = 1..M−1
2

) of each
side component
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1. independently for the neighboring components

2. from the first component only (shift ~P1). We estimate the shift of the second
(or higher m-th) component as the integer multiplication of the value for the

first component ~Pm = m~P1.

3. from the second component only (shift ~P2) from the cross-correlation of the
zero and the second component. We set the position of the first component as
a half of it: ~P1 = 1

2
~P2.

By default, we use the second option but in some situation the others can be used
(e.g.. misalignment of the experimental setup such as if the illumination pattern is
tilted with respect to the focal plane).

4.8 Correction for the Initial Phase of the Pattern

The initial phase φ0 (see Eq.(2.16) and Eq.(2.17)) is estimated as the phase of the

complex value c
(2~κ)
ij (0) for neighboring components i = j + 1 (see Eq.(4.6)). The

ideally separated components

ρ̃shift
0 (~k) =

∣∣∣ρ̃shift
0 (~k)

∣∣∣ eiθ0(~k)

ρ̃shift
+1 (~k) =

∣∣∣ρ̃shift
+1 (~k)

∣∣∣ ei(θ+1(~k)+φ0)

contain exactly the same information about the phase of the Fourier transform within
the area of the overlap:

eiθ0(~k) = eiθ+1(~k).

Then
c
(2~κ)
01 (0) =

∣∣∣ρ̃shift
0

∣∣∣ ∣∣∣ρ̃shift
1

∣∣∣ e−iφ0

and the initial phase

φ0 = arctan
=

(
c
(2~κ)
01 (0)

)
<

(
c
(2~κ)
01 (0)

)
where < and = denotes the real and imaginary part of c

(2~κ)
01 (0), respectively.

4.9 Shift of the Components

The separated components are shifted back by the estimated value ~P such as their
’true’ zero frequency is placed back to the origin and are corrected for the initial phase
φ0. If the recorded image were sampled correctly, the cut-off frequency border of the
OTF is close to the edge of the ˜Im. Therefore a resamplig by zero padding in the
Fourier transform is needed to obtain space for the shift of the separated components.
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We can slightly oversample the final image for smoother visual appearance of the
reconstructed image.

The shift of the components by the value ~P (with the sub-pixel precision) is
achieved through the multiplication by a phase gradient in reciprocal (in this case
real) space (see Appendix A Eq.(A.7)).

4.10 Weighted Recombination of the Shifted Components

The shifted and φ0 - corrected components are combined together with a pixel-wise
weighting. A Wiener filter approach (Eq.(2.26)) is used to reduce artefacts which
stem from noise [14].

All separated components are treated in individual non-resampled images through-
out the reconstruction. Even the weights are computed with respect to these ’un-
processed’ images. The final shifting my multiplication is the very last step, even
after apodization. This reduces artefacts in the reconstructed image [14].

4.11 Apodization Function

An apodization function (2D - in plane) is generated according to Eq.(2.33) or

Eq.(2.34). The value of |~k|
kfinal

cut

(~σ) in Eq.(2.33) and Eq.(2.34) is estimated from the

relative distance of the point ~k from the border of the footprint of the reconstructed
support (Euclidean distance transform).

4.12 Final Result

The final reconstructed image is computed as the inverse Fourier transformation of
ρ̃final (see Eq.(2.35)).
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5 Results and Discussion

5.1 Simulations

The algorithm for image reconstruction was optimized and tested on the simulated
data. All data presented in this section are simulations for the water immersion
objective (NA = 1.2, n = 1.33) and for the emission wavelength λem = 510 nm to
be consistent with our experimental setup (see section 3). We used ideal simulated
data (noise free, no drift, no brightness changes between the individual images, a
precise shift of the pattern) as well as simulated data with additionally introduced
imprecision.

We used a simulated image of beads (dots in random positions in the image)
to quantify the resolution improvement. We measured the intensity profile FWHM
(Full Width at Half Maximum) of the selected beads in the reconstructed and wide-
field image. Every image of the bead was radially averaged, normalized to one at
the maximum and fitted with a Gaussian curve

g(x) = exp

(
− x2

2σ2

)
(5.1)

The FWHM was computed from the parameter σ:

FWHM = 2σ
√

2 ln 2 (5.2)

5.1.1 Effect of the apodization function

Apodization Function hcos
goal h0.5

goal h1.2
goal h2.0

goal WF Theo

FWHM [nm] 101 ± 1 90 ± 1 111 ± 1 135 ± 2 238 ± 7 239

Table 5.1: FWHM of the average intensity profile of the reconstructed simulated
beads. The excitation pattern with a grating period of 271 nm was used. Four differ-
ent apodization functions were used. WF - measured classical wide-field image from
the simulated data. Theo - the theoretical wide-field image.

The effect of the apodization function on the profile of the reconstructed image
is demonstrated in Fig. 5.1. We simulated noise-free data for an excitation pattern
with a grating period of 271 nm. This corresponds to the position of the δ peak
in a distance of 78% of the kcut border (Eq.(2.10)) and therefore results in 1.78×
enlargement of the OTF support along every orientation of the excitation pattern.

Images of simulated beads were reconstructed using the apodization function hcos
goal

with a cosine profile computed according to Eq.(2.33) and the apodization functions
hq

goal computed from Eq.(2.34) for parameters q = 0.5, 1.2 and 2.0. Profiles of such
apodization functions are shown in Fig. 2.7 on page 24.

Five individual beads were selected in every reconstructed image and their in-
tensity was normalized to 1 at their maximum. We measured the FWHM of the
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Figure 5.1: Reconstruction of simulated (ideal) data. Average profiles (made radially
symmetric) of reconstructed beads for different hgoal apodization functions. The pro-
files are stretched from 0 to 1. An excitation pattern with a grating period of 271 nm
was used. The use of the apodization function with a cosine shape hcos

goal (Eq.(2.33))
results in the bead profile plotted with the red solid line (FWHM = (101±1) nm). Use
of the apodization functions hq

goal computed according to Eq.(2.34) for q = 0.5 results
in the profile plotted with the blue dashed line (FWHM = (90 ± 1) nm), q = 1.2 in
a green dotted line (FWHM = (111 ± 1) nm) and q = 2 in a cyan dot-and-dash line
(FWHM = (136 ± 2) nm). The profile from a wide-field image is plotted with the
yellow dashed line (FWHM = (238 ± 7) nm) and the theoretical profile is in a black
dot line (FWHM = 239 nm).

intensity profile (Eq.(5.2)). As the reconstruction of the noise-free simulated data
exhibits very narrow distribution of the bead size, five selected beads was a suffi-
cient set for the measurement. Average intensity profiles for different apodization
functions used in the reconstruction are shown in Fig. 5.1 and the computed average
FWHMs are in Table 5.1. The error was estimated as a standard deviation from the
set of the measured individual FWHMs.

Fig. 5.1 shows that the apodization function can significantly change the shape
of the reconstructed profile of the beads. Use of the apodization function hcos

goal with
the sinusoidal profile (Eq.(2.33)) and hq

goal (Eq.(2.34)) for q < 1.2 results in ringing
artefacts (see Fig. 5.1(a) the red, green and blue lines). On the other hand, use of the
apodization function hq

goal for q > 1 sacrifices the high Fourier frequencies and leads
to the broadening of the profile (Fig. 5.1(a) the cyan line). The ringing artefacts can
be also reduced by an appropriate value of the Wiener parameter γ in the weighted
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averaging (see Eq.(2.31) on page 23).
It is difficult to compare the FWHM of the reconstructed profile with the FWHM

of the classical wide-field image profile. The excitation patter with the grating period
271 nm allows to reconstruct 1.78 times higher Fourier frequencies. However, the
use of the sinusoidal apodization function hcos

goal results in the ca. 2.4 times smaller
FWHM of the reconstructed profile if compared with the classical wide-field profile
(see Table 5.1). This effect is due to the enhancement of high Fourier frequencies.
The apodization function hq

goal for q = 2 resembles the classical OTF (see Fig. 2.7)
and indeed, the FWHM of the reconstructed bead is 1.76 times smaller (Table 5.1)
if 1.78 times higher Fourier frequencies were reconstructed.

5.1.2 Effect of the grating period of the excitation pattern
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Figure 5.2: Reconstruction of the simulated data. (a) Intensity profiles (stretched
form 0 to 1) of radially averaged beads from the reconstructed image. The data were
simulated for a grating period of the pattern 213 nm (blue), 233 nm (green), 271 nm
(red), 320 nm (cyan) and 476 nm (magenta). The radially averaged profile of the
wide-field image of the bead is plotted with the yellow dashed line, the theoretical PSF
in the black dotted line. (b) The linear relationship between the measured FWHMs
of the reconstructed bead profile and the grating period of the excitation pattern.

The dependence of the reconstructed bead size (FWHM of the radially averaged
profile) on the grating period of the excitation pattern is demonstrated in Fig. 5.2.
We used five different values of the grating period. The measured FWHM are shown
in Table 5.2. The FWHM of the reconstructed image is linearly dependent on the
grating period (Fig. 5.2(b)) as the maximal detected frequency, and thus the exten-
sion of the OTF support is linearly proportional to it.
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grating period [nm] 213 233 271 320 476 WF
2 |~κ| /kcut [%] 99 91 78 66 45 -
FWHM [nm] 94 ± 1 97 ± 1 101 ± 1 107 ± 2 121 ± 1 238 ± 7

Table 5.2: FWHM of the average intensity profile of the reconstructed simulated
beads. Five excitation patterns of different spatial frequencies were used in simu-
lations. The apodization function with a sinusoidal profile hcos

goal was used in the
reconstruction. 2~κ/kcut - the relative position of the δ peak in the image with respect
to the cut-off border. WF - the measured classical wide-field image from the simulated
data.

(a) (b) (c)

Figure 5.3: Reconstruction of the simulated data. A detail of the reconstructed
image of simulated fluorescent beads. (a) The classical wide-field image. (b, c) The
reconstructed images for data with a grating-period (b) 476 nm and (c) 213 nm of
the excitation pattern. Arrows point at two beads separated by ca. 150 nm. Scale bar
500 nm.

There is a detail of the reconstructed image of the simulated fluorescent beads
shown in Fig. 5.3. The reconstructed image was oversampled by a factor of 2.4. In
the wide-field image Fig. 5.3(a), the individual beads are unresolved. We can barely
resolve the two individual beads spaced close together (approximately 150 nm) in the
reconstructed image (Fig. 5.3(b)) for the data with the grating period of 476 nm of
the excitation pattern (1.45 times enlargement of the OTF support). However, if the
pattern with the grating period of 213 nm was used (1.99 times enlargement of the
OTF support), the beads are clearly resolved as two individual objects (Fig. 5.3(c)).

5.1.3 Effect of the Wiener parameter in noisy data

We made reconstruction for data with four different levels of the Poisson noise (a
maximum 100, 500, 1000 and 5000 of the detected photons in one pixel). We used
an excitation pattern with a 271 nm grating-period. Typical artefacts in the dark
areas of the reconstructed images are shown in Fig. 5.4. No Wiener filter approach
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5.4: Reconstruction of the simulated data. A detail of the reconstructed im-
age of the simulated fluorescent beads for different Noise levels. No Wiener filter
used (γ = 0) in (see Eq.(2.26)). (a-d) A detail of raw data with a Poisson Noise
with maximum detected photons in 1 pixel (a) 100 photons, (b) 500 photons, (c)
1000 photons and (d) 5000 photons. (e-h) The reconstructed images from the data
above (a different area and a scale shown). The residual artefacts are visible in the
reconstruction of the noisy images. Scale bar 500 nm.

was used for the reconstruction (γ = 0 in Eq.(2.26)).

(a) (b) (c) (d)

Figure 5.5: Reconstruction of the simulated data. A detail of the reconstructed image
of the simulated fluorescent beads. Poisson noise with a maximum of 100 expected
photons was added. Different parameters of the Wiener filter (see Eq.(2.26)) were
used for the reconstruction. (a) No Wiener filter used (γ = 0). (b) γ = 10−4 (c)
γ = 10−2 (d) γ = 10−1. Scale bar 500 nm.

The artefacts which stem from the noise can be reduced if a Wiener filter is used
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in the weighted averaging (Eq.(2.31)). A demonstration of the artefacts reduction is
in Fig. 5.5. Simulated data with a 271 nm grating period of the pattern and Poisson
noise with 100 expected photons in one pixel were reconstructed for different values
of the Wiener parameter γ in Eq.(2.31). The hcos

goal apodization function was used.
The reduction of the artefacts in the dark area is evident. However, we have to
sacrifice the resolution as shown in Fig. 5.6 and in Table 5.3.
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Figure 5.6: Reconstruction of the simulated data. Poisson noise with 100 expected
photons in one pixel used in the simulations. The hcos

goal apodization function was
used. (a) Intensity profiles (stretched form 0 to 1) of the radially averaged simulated
beads. Different Wiener parameters γ in Eq.(2.26) were used in the reconstruction.
The profile for γ = 0 is plotted with the blue line, γ = 10−6 in the green line, γ = 10−4

in the red line (the blue, green and red line are almost indistinguishable from each
other). γ = 10−2 in the cyan line and γ = 10−1 in the magenta line. The profile of
the wide-field image is plotted with the yellow dashed line and the theoretical profile
(PSF) in the black dotted line. (b) FWHM of the reconstructed beads as a function
of Wiener parameters γ used in the reconstruction. The fit with an exponential curve
is plotted with the red solid line.

γ 0 10−6 10−4 10−2 10−1 WF
FWHM 116 ± 10 116 ± 10 118 ± 7 136 ± 4 164 ± 3 238 ± 26

Table 5.3: FWHM of the average intensity profile of the reconstructed simulated
beads. Five different Wiener parameters γ in Eq.(2.26) used in the reconstruction.
The hcos

goal apodization function was used. WF - the classical wide-field profile.

The Wiener parameter γ > 10−4 significantly widen the profile of the recon-
structed beads (Fig. 5.6). We found the use of the apodization function hcos

goal with
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the Wiener parameter set to γ = 10−4 as optimal combination in the reconstruction.

5.2 Real samples

5.2.1 Data acquisition

Data were acquired on the setup described in section 3 on page 31, Fig. 3.1. Four ori-
entations of the pattern (0°, 45°, 90° and 135°) were projected on the sample. Three
or five images (depending on the pattern) with different shift of the pattern (an inte-
ger number of pixels on the SLM) were recorded for every orientation of the grating.
Synchronization between the shutter, SLM, half-wave plate, polarizer, PIFOC and
the CCD camera was controlled with a software written by Liisa Hirvonen.

Adjustment of the objective (with the correction collar) to the right thickness of
the cover slip was of great importance. An incorrect setting gives rise to the aberra-
tions and largely deteriorates the contrast of the pattern in the recorded images.

5.2.2 Fluorescent beads
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Figure 5.7: A comparison of the experimental (100 nm fluorescent beads) and the
simulated data. (a) Profiles (stretched from 0 to 1) of the radially averaged images
of fluorescent beads. The experimental data plotted with the solid lines, the simulated
data plotted with the dashed lines and the wide-field experimental profiles in the dotted
lines. The excitation pattern with grating period of 271 nm (red lines), 320 nm (cyan
lines) and 389 nm (blue lines). The theoretical wide-field profile plotted with the
black dotted line. (b) The comparison of the measured FWHM (black circles) with
the simulated data (blue boxes).
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grating period [nm] 271 320 389
FWHMexp 115 ± 10 137 ± 6 147 ± 10
FWHMsim 101 ± 1 107 ± 2 114 ± 1
FWHMWF

exp 315 ± 12 366 ± 36 382 ± 20

FWHMWF
sim 236 ± 4 238 ± 8 232 ± 0

Table 5.4: A comparison between experimental and simulated reconstructed data.
FWHMexp is for the reconstructed images, FWHMsim for the simulated images,
FWHMWF

exp for the classical wide-field profile of experimental data, FWHMWF
sim

for the classical wide-field profile of simulated data. The theoretical value of
FWHMWF = 238 nm.

(a) (b)

(c) (d)

Figure 5.8: Experimental data. Reconstructed images of 100 nm fluorescent beads
(detail). (a) The classical wide-field image. (b) The reconstructed image for data
acquired with a grating period of 320 nm of the excitation pattern. (c) and (d) show
a detail of the wide-field and the reconstructed image, respectively. Arrows point at
two beads separated approximately 250 nm. Scale bar (a, c) 1 µm, (b, d) 500 nm.

We used fluorescent beads (L-5655) with 100 nm in diameter as a test sample. We
put a drop of water suspension of the beads on the cover slip (#1.5 - the measured
thickness of the coverslip 170 µm) a let it dry. This makes a flat (2D) sample.
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The correction collar of the objective was adjusted to compensate for the spherical
aberration. We set the correction collar such as we got an akin out-of-focus image
of one individual bead while moving the plane of focus above and below the bead.

We reconstructed images for three different grating-periods of the excitation pat-
tern (271 nm, 320 nm and 389 nm). The FWHM on 10 selected individual beads was
estimated as described in section 5.1. The comparison of the experimental values
with simulated data is shown in Fig. 5.7 and Table 5.4.

A detail of the reconstructed data for the pattern with a grating-period 320 nm is
shown in Fig. 5.8. A wide-field image of the object is produced as a sum of acquired
data for all different positions of the excitation pattern. For equal steps between the
individual different positions of the pattern (within one orientation of the pattern),
the sum yields a true wide-field image (see Eq.(2.20)).

N∑
n=1

˜Im
n
(~k) =

N∑
n=1

[
B0ρ̃0(~k) +

1

2

(
B−1e

−i(2 2π
N

n+φ0)ρ̃−1(~k) + B+1e
i(2 2π

N
n+φ0)ρ̃+1(~k)

)]
=NB0ρ̃0(~k) (5.3)

A direct comparison of the experimental data with the simulations shows that the
experimental setup produces suboptimal results in a wide-field regime (see Fig. 5.7
and Table 5.4). The FWHM of the wide-field profile of the reconstructed experi-
mental data is 1.3 to 1.6 times bigger than in the simulations. This might be due to
the presence of aberrations in the imaging setup. The differences of the wide-field
profiles in the images for different grating periods might be caused by a different
setting of the correction collar. The data for the different grating periods were not
taken in one single day and the setup was slightly re-aligned in the mean time.

The resolution improvement in the reconstructed images of fluorescent beads is
obvious from Fig. 5.8 where we can clearly resolve the individual beads.

5.2.3 Biological Samples

The method was tested on biological samples as well. We used COS cells grown
on the cover-slip stained with Alexa488 phalloidin to visualize the actin filaments
and Arabidopsis cells labeled for microtubules and a gamma tubulin. The cells
were embedded in ProLong® Gold anti-fade reagent (Invitrogen, USA). We acquired
images with a rather long integration time (500 ms/image) to obtain good signal-to-
noise ratio. The modified excitation pattern Eq.(2.40) with four different orientations
(0°, 45°, 90° and 145°) was used. We took five images with different positions of the
pattern (the lateral translation of the grid displayed on the SLM by an integer
number of pixels) for every orientation. This yields 20 images required for the full
reconstruction of the image.

Raw data for four different orientations of the excitation pattern are shown in
Fig. 5.9(a-d). Corresponding Fourier transforms are shown in Fig. 5.9(e-h). Separa-
ted components for two orientations of the excitation pattern are shown in Fig. 5.10.

49



(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5.9: Experimental data. Four orientations of the illumination pattern pro-
jected on the sample (a) 0°, (b) 90° (c) 135° and (d) 225°. Scale bar 2 µm. (e-h)
Corresponding Fourier transforms in logarithmic scale. Five peaks are present be-
cause the modified excitation pattern Eq.(2.40) was used. White arrows point at ±2
and ±1 peaks in the Fourier transform.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5.10: Experimental data. Separation of individual components for two orien-
tations of the illumination pattern (0° and 135°). All images shown in logarithmic
scale. (a, e) The Fourier transform of the data with arrows pointing to the δ peaks.
(b, f) The separated components ρ̃0, (c, g) ρ̃+1 (d, h) ρ̃+2.
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(a) (b)

(c) (d)

Figure 5.11: Experimental data. (a) The Fourier transform of the wide-field im-
age. Cut-off frequency border is marked with a white line. (c) The inverse Fourier
transform of (a) represents an image from a classical wide-field microscope. (c) The
reconstructed Fourier transform with an enlarged area of detectable Fourier frequen-
cies. (d) The inverse Fourier transform of (c) represents the reconstructed image
with an improved resolution. Scale bar 1 µm.

The reconstructed image is shown in Fig. 5.11. Other reconstructed experimental
data can be found in Appendix C.

We can observe that the out-of focus haze is suppressed in the reconstructed im-
ages of biological samples (see e.g.. Fig. C.2, C.3 or C.4 in Appendix C). This can
be explained if we look at the full 3D situation of the OTF support enlargement in
Fig. 5.12 and 5.13. The full 3D OTF support is enlarged along the lateral direction
(kx and ky). At the same time the laterally translated 3D OTFs are filling the ’miss-
ing cone’ area of the classical OTF. We get information about the spatial frequencies
along the axial direction and so we get a sectioning in the reconstructed image.

The ability to fill the missing cone area depends on the parameters of the excita-
tion pattern. If the harmonic pattern Eq.(2.13) is used, we have three components
to separate. Three situations for different grating periods of the excitation patten
are shown in Fig. 5.13(b-d). Note that in the case of the double resolution improve-
ment (the frequency of the excitation pattern lies on the border of the OTF support:
2 |~κ| = kcut) there is no filling of the missing cone area Fig. 5.13(d) and no section-
ing is achieved in the reconstructed image. If we want to fill the missing cone, we
have to sacrifice the lateral resolution and use the pattern with the lower frequency
Fig. 5.13(b and c).

If we use the modified excitation pattern (see Eq.(2.40)), we get five components

51



(a) (b) (c)

Figure 5.12: A full 3D support of the OTF. (a) A classical wide-field OTF support.
Note a “missing cone” along the axial direction (black arrow). (b) Full 3D combi-
nation of the three translated OTFs along the kx direction (0°). This represents a
reconstruction with the excitation patter of 2 |~κ| = 0.5kcut. (c) 3D combination of
the shifted OTFs along four directions (0°, 90°, 135° and 225°.). Note the filling of
the ’missing cone’ area.

to separate (Eq.(2.41)) and it leads to the filling of the missing cone even in the case
of the resolution doubling Fig. 5.13(e).

The full 3D reconstruction with the modified pattern Eq.(2.40) leads to seven
components to separate (see Eq.(2.39)). In 3D Fourier space, they are in positions
(see Eq.(2.39))

k0 =[0, 0, 0]

k1,±1 =[κx, 0, ±(κ − κz)]

k−1,±1 =[−κx, 0, ±(κ − κz)]

k±2 =[±2κx, 0, 0]

and the reconstruction leads to the further resolution improvement along the z-axis
(see Fig. 5.13(f)).

The ability of the method to achieve sectioning holds even if we make the re-
construction only in the focal plane. A two-dimensional in-focus wide-field image of
the three-dimensional structure is a projection of the of the 3D structure ρ(x, y, z)
convolved with the 3D point spread function PSF(x, y, z) into the in-focus plane:

Im(x, y) =

ˆ
dzIm(x, y, z). (5.4)

The two-dimensional Fourier transform yields:¨
dxdyIm(x, y)e−i(kxx+kyy) =

ˆ
dz

¨
dxdyIm(x, y, z)e−i(kxx+kyy)

which is the projection of the individual 2D Fourier transforms in every plane along
the z-direction. This means that this 2D Fourier transform indeed contain encoded
information about the frequencies in full 3D Fourier space. Even 2D manipulation
with the separated components within the in-focus plane can still fill in the missing
cone area in the reconstructed Fourier transform.
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(a) (b) (c)

(d) (e) (f)

Figure 5.13: An axial slice of the support of the 3D OTF. (a) A wide-field OTF
with a ’missing cone’ along the kz axis (black stripes). kcut is a cut-off frequency
along the kx axis. (b-d) Three separated components (±1 component in blue) for the
excitation pattern with a spatial frequency (b) 2 |~κ| = 0.5kcut, (c) 2 |~κ| = 0.75kcut,
(d) 2 |~κ| = kcut (resolution doubling). (d) The use of the modified excitation pattern
Eq.(2.40) yields five separated components. The missing cone area is filled even in
the case of the resolution doubling. (d) Full three-dimensional reconstruction with
the modified pattern yields seven separated components and leads to further resolution
enhancement along the axial direction.

5.2.4 Limits of the method

The linear relationship in Eq.(2.3) set a limit to the enlargement of the OTF support
in the lateral plane. The experimental setup is in epi-fluorescence configuration and
the objective is used both for the illumination of the sample and the acquisition of the
fluorescent images. As the objective is incapable of detecting the spatial frequencies
above the kcut limit (Eq.(2.10)), it is not possible to generate an excitation pattern
with a spatial frequency ~κ above this limit (|~κ| ≤ kcut). In other words, δ peaks in
the Fourier transform of the excitation pattern cannot lie outside the support of the
wide-field OTF (see Fig. 2.3(c)). The cut-off frequency border in the lateral plane
can be extended twice in the limiting case where the δ peaks are located on the edge
of the OTF support (the spatial frequency of the excitation pattern is the maximal
possible that pass through the objective 2 |~κ| = kcut). An illustration is shown in
Fig. 5.14.
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(a) (b) (c)

Figure 5.14: Maximal extension of the cut-off frequency border. (a) The support of
the classical wide-field OTF. (b) The maximal enlargement of the OTF support along
the kx direction for the excitation pattern Eq.(2.13). The axial slice of this situation
in 3D Fourier space is in Fig. 5.13(d). (b) The maximal enlargement of the OTF
support along the kx direction for the modified excitation pattern Eq.(2.40). The axial
slice in the 3D Fourier space is shown in Fig. 5.13(e). The position of the δ peaks
is marked with black crosses.
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Figure 5.15: (a) A non-linear relationship between the illumination (a blue solid line)
and the fluorescence emission (a red dashed line). An excitation pattern according
to Eq.2.13 with spatial frequency 2κ. (b) The Fourier transform of the red dashed
line contains higher harmonics. It is a set of δ peaks located in the integer multiples
of the basic spatial frequency 2κ of the excitation pattern.

Further resolution improvement is possible if the linear relation Eq.(2.3) is broken
[26, 25]. An introduction of the nonlinear relationship between the excitation and
the fluorescence emission results in the generation of higher harmonics components
in the Fourier transform (see Fig. 5.15). δ peaks are located even in the region above
the cut-off frequency kcut of the wide-field OTF. The convolution with the Fourier
transform of the sample ρ̃ results in a set of multiple copies of the ρ̃ in Fourier
space (Fig. 5.16). All this components can be separated and shifted back as in the
linear case (section 2.5.3). A theoretically unlimited resolution is possible with such
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Figure 5.16: A non-linear relationship between the illumination and the fluorescence
emission leads to multiple copies of a classical component in the Fourier transform.

a modification of the method. In the real experiment, the resolution is limited by a
signal-to-noise ratio in the separated components.

5.2.5 Acquisition speed

A challenging task is to make a reconstruction of living biological samples. The
basic requirement for the successful reconstruction is that the sample does not move
during the data acquisition. The algorithm can correct for the lateral drift of the
whole sample but an internal movement within the structure of the sample makes a
faithful reconstruction impossible. For the reconstruction with an isotropic enlarge-
ment of the OTF support, we acquire data with four orientations of the excitation
pattern (Fig. 2.8(d)). For every orientation, three (or five for modified pattern
Eq.(2.40)) images with different translation of the pattern are required. This yields
12 (or 20) images needed for the reconstruction of one image. The integration time
100 ms/image, then gives 1.2 s (or 2 s) acquisition time per a data-set used for the
reconstruction. In reality, this time is even longer as the rotation of the half-wave
plate and the linear polarizer (see section 3) is required between the change of the
pattern orientation. During the acquisition time (ca 5 s for the 100 ms exposure),
the sample must stay perfectly still. This might set a limit for the reconstruction
of quickly moving samples. The acquisition time can be shorten by reducing the
number of the pattern orientation (e.g. three 0°, 120° and 240°) and by use of a
powerful laser source.

Time required for the computation of the reconstructed image depends on the
parameters of the computer. For our machine (AMD Athlon 64 Processor 3700+ at
2.21GHz with 1GB of RAM), the reconstruction of an image 512 × 512 pixels takes
less than 10 minutes.
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6 Conclusion

The theoretical predictions of the resolution improvement in the focal of the wide-
field microscope using a spatially modulated excitation of the fluorescent sample
was confirmed using simulated and experimental data. We developed the algorithm
for the image reconstruction and we tested it using simulated at various noise lev-
els including a noise free simulation. We also tested the ability of the algorithm
to compensate for imperfections such as the drift of the sample, brightness fluctu-
ation or imprecise translation of the excitation pattern. The size (FWHM) of the
reconstructed simulated fluorescent beads was linearly dependent on the enlarge-
ment of the OTF support. The actual value of the FWHM depends on the shape
of the apodization function and on the parameter of the Wiener filter used in the
reconstruction.

The method was also applied to the reconstruction of real samples. The data
were acquired on the experimental setup which we constructed in the laboratory
of the Biological Nanoimaging research group in Randall Division in London. A
comparison of the test-samples (100 nm fluorescent beads) with the simulated data
reveals that the experimental setup produces suboptimal results in the wide-field
regime. However, the behavior of the resolution improvement in the experimental
data is consistent with the simulations. We achieved a nearly isotropic 1.78 times
enlargement of the maximal detectable spatial frequency in the lateral plane. The
resolution improvement is clearly visible in the comparison of the wide-field and the
reconstructed image. The reconstructed images of biological samples also demon-
strate the ability of the method to remove the out-of-focus haze in the image.

PEM is a relatively inexpensive method with a great potential in the biological
science. The linear case discussed in this thesis, allows to achieved up to 2 times
enlargement of the maximal detectable spatial frequency in the lateral plane. In a
non-linear case further discussed in section 5.2.4, the resolution is limited only by a
signal-to-noise ratio of the acquired data.
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Appendix

A Mathematical Properties of the Fourier Trans-

formation and Dirac Delta Distribution

A.1 Fourier Series

Fourier series decomposes a periodic function into a sum of complex exponentials. If
g(x) denotes a function of a real variable x, periodic with a period p (g(x+p) = g(x))

for all real numbers x and
´ + p

2

− p
2

dx |g(x)|2 < ∞ then [4]:

lim
N→∞

N∑
n=−N

ane
iknx = g(x) (A.1)

where kn = n2π
p

and the coefficients an can be found by

an =
1

p

ˆ a+p

a

dxg(x)e−iknx (A.2)

We call Eq.(A.2) the Fourier transformation of the function g(x) over a period p.
The sum

SN =
N∑

n=−N

aneiknx (A.3)

is called a partial sum which is an approximation of the function g(x).

A.2 Fourier Transformation

Fourier transform is a mathematical operation which transforms one function defined
in real space into another define in the space of spatial frequencies. The transformed
function is called the spatial frequency (~k) domain representation of the original
function. If g(~r) is a function (in general, complex valued) defined over Rn, the
Fourier transform (here represented by F {g}) is by definition:

F {g} (~k) =

ˆ
Rn

d~r g(~r)e−i~k·~r (A.4)

The inverse Fourier transform of the function g̃(~k) from frequency domain into space
domain is:

F−1 {g̃} (~r) =

ˆ
Rn

d~k g̃(~k)ei~k·~r (A.5)

While a variety of sets of sufficient conditions for the existence of Eq.(A.4) or
Eq.(A.5) are possible, the most common set is the following [2]:
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1. g(~r) must be absolutely integrable over the Rn

2. g(~r) must have only a finite number of discontinuities and a finite number of
maxima and minima in any finite area in Rn

3. g(~r) must have no infinite discontinuities

In general, any one of these conditions can be weakened at the price of strengthening
others.

If the function g is real, the Fourier transform is ’hermitian’ symmetrical with
respect to the origin:

g̃(~k) = g̃(−~k). (A.6)

Where dash above variables denotes the complex conjugation.

A.3 Shift Theorem

A translation in the space domain introduces a linear phase shift in the frequency
domain:

F
{

g(~r − ~P )
}

= e−i~k·~PF {g} (~k) (A.7)

Proof:

F
{

g(~r − ~P )
}

=

ˆ
Rn

d~r g(~r − ~P )e−i~k·~r

=

ˆ
Rn

d~r′g(~r′)e−i~k·(~r′+~P)

= e−i~k·~PF {g} (~k) ¤

A.4 Convolution Theorem

A convolution (denoted with symbol ~) of two functions g(~r) and h(~r) is defined:

[g(~r) ~ h(~r)] (~ξ) =

ˆ
Rn

d~r g(~r)h(~r − ~ξ). (A.8)

Fourier transform of the convolution of two functions in one domain is entirely equiv-
alent to the multiplication of their individual transforms in the other domain (con-
volution theorem):

F {g ~ h} = F {g}F {h} . (A.9)
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Proof:

F {g ~ h} = F
{ˆ

Rn

d~r g(~r)h(~r − ~ξ)

}
=

ˆ
Rn

d~r g(~r)F
{

h(~r − ~ξ)
}

=

ˆ
Rn

d~r g(~r)e−i~r·~ξF {h(~r)} = F {g(~r)}F {h(~r)} ¤

A.5 Shifting property of the Dirac δ distribution

Dirac δ distribution is a mathematical object defined by the following characteristics

ˆ
Rn

d~rδ(~r)f(~r) = f(0) (A.10)

where f(~r) is a suitable test function. It can be viewed as a limit of the sequence of
functions

δ(~r) = lim
a→0

1

a(π)n/2
e−

|~r|2

a2 (A.11)

We define δ~ρ(~r) ≡ δ(~r − ~ρ) Dirac distribution shifted to the point ~ρ. If we compute
a convolution (Eq.(A.8)) of δ~ρ(~r) with f(~r) we get (using Eq.(A.10)):

δ~ρ(~r) ~ f(~r) =

ˆ
Rn

d~r f(~r)δ~ρ(~r − ~ξ)

=

ˆ
Rn

d~r f(~r)δ(~r − [~ξ − ~ρ])

=f(~ξ − ~ρ) (A.12)

which is the original function shifted by the amount ~ρ. We call this the shifting
property of the Dirac δ distribution.
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B Auxiliary functions

B.1 “findshift”

This function determines a relative shift ~P of two input (real or complex) images
I1 and I2. The shift is calculated from the position of the peak in the image of the
absolute value of a weighted cross-correlation function X:

Xw(~x) =

˝
d~ξ w(~ξ)I1(~ξ)w(~ξ + ~x)I∗

2 (~x + ~ξ)˝
d~ξ w(~ξ)w(~ξ + ~x)

(B.1)

where w(~ξ) is the weight for every pixel. A rough guess of the shift is inserted as
an input parameter in case that there are more than one principal peaks. This can
happen if the separation of the components is imperfect or a noise level is too high
and the similarity between two images is suppressed.

A cross-correlation function Eq.(B.1) is used for real images. For complex val-

ued images, such as separated components in Fourier space ρ̃m(~k) =
∣∣∣ρ̃m(~k)

∣∣∣ eiθm(~k),

where|ρ̃m| is an absolute value of the ρ̃m(~k) and eiθk(~k) is a phase map of the compo-
nents, a weighted cross-correlation function can be optionally computed from phase
information only.

Xphase
w (~x) =

˝
d~ξ w(~ξ)eiθ1(~ξ)w(~ξ + ~x)e−iθ2(~ξ+~x)

˝
d~ξ w(~ξ)w(~ξ + ~x)

. (B.2)

For an optimal signal-to-noise ratio, the (real) weights w(~ξ) =
∣∣∣OTF (~ξ)

∣∣∣ can be

used.
The position of the peak ~P (with sub-pixel precision) in the absolute value of the

cross-correlation function Xw is determined in a certain area around the estimated
location. It is found by a function “findRelMax” (Appendix B.2). The value ~P is

used for the shift of one of the image I1(~ξ − ~P ) in Eq.(B.1) or Eq.(B.2) and the
cross-correlation is computed again. The value of the central pixel ~x = 0 of the
cross-correlation

Xw(0) =

˝
d~ξ w(~ξ)I1(~ξ − ~P )w(~ξ)I∗

2 (~ξ)˝
d~ξ w(~ξ)w(~ξ)

is maximized by an iterative procedure varying the shift ~P with sub-pixel precision.

B.2 “findRelMax”

Estimates the position ~P of the peak in the input (real) image I(~r) with sub-pixel
precision. The peak is searched in a certain area around the estimated position (a
rough guess).
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The sub-pixel precision is achieved by computing a center of masses of a ’Hat’
of the peak. The ’Hat’ is obtained by removing the values that are below a thresh-
old value (a fraction of the maximal value of the detected peak) from I(~r) and by
subtracting the threshold value.

~P =

´
d~r ~rHat(~r)´
d~r Hat(~r)

.
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C Image Gallery

(a) (b)

Figure C.1: COS cells, actin filaments. (a) Wide-field image. (b) Reconstructed
image (modified excitation pattern with a grating period of 271 nm). Scale bar 1 µm.
Samples kindly provided by Elizabeth Ehler.
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(a) (b)

(c) (d)

Figure C.2: COS cells, actin filaments. (a) Wide-field image. (b) Reconstructed
image (modified excitation pattern with a grating period of 271 nm). (c, d) A detail
of the images above. Scale bar 1 µm. Samples kindly provided by Elizabeth Ehler.

63



(a) (b)

(c) (d)

Figure C.3: Arabidopsis cells labeled for microtubules and a gamma tubulin. (a)
Wide-field image. (b) Reconstructed image (modified excitation pattern with a grating
period of 320 nm). (c, d) A detail of the images above. Scale bar 1 µm. Samples
kindly provided by Jiř́ı Hašek.
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(a) (b)

(c) (d)

Figure C.4: Arabidopsis cells labeled for microtubules and gamma tubulin. (a) Wide-
field image. (b) Reconstructed image (modified excitation pattern with a grating
period of 320 nm). (c, d) A detail of the images above. Scale bar 1 µm. Samples
kindly provided by Jiř́ı Hašek.
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