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Studijńı obor: Pravděpodobnost, matematická statistika a ekonometrie
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published on financial portfolio optimization problem within stochastic program-
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losses according to risk managers preferences. However, their sensitivity is studied
less commonly, especially according to possible changes of input data or with re-
spect to the portfolio allocation. This thesis deals with sensitivity of two frequently
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Chapter 1

Introduction

The problem of portfolio optimization is a classical problem in theoretical and
computational finance, where by portfolio we mean a group of financial assets. Risk
measures were introduced in order to quantify the riskiness of a financial position and
to provide a criterion to determine whether the risk of a portfolio was acceptable or
not. A variety of different criteria for optimal portfolio selection has been proposed.

Since the seminar work of Markowitz (1952), the portfolio performance is mea-
sured in two distinct dimensions - the mean describing the expected return and the
risk which measures the uncertainty of the return. Another approach is based on
utility maximization, where the risk and the expected return are incorporated into
one function, called utility function. Such approach is not involved in this thesis.
The classical Markowitz model measures the risk by portfolio variance. Markowitz
developed a theory of portfolio selection on basis of the minimization of a quadratic
function (portfolio variance) subject to linear constraints (minimal acceptable port-
folio mean return and budget constraint) under some simplifying assumptions, for
details see [10].

Value at Risk (VaR) has become the standard measure that financial institutions
use or even have to use to quantify market and credit risk. Conditional Value at
Risk (CVaR) is often proposed as an alternative for VaR, that has many problem-
atic properties, for discussion see [13] and [34]. Above all, the lack of subadditivity
makes VaR a problematic criterion for portfolio optimization. VaR associated with
a combination of two assets can be greater then the sum of the risks of the indi-
vidual assets, which the portfolio diversification makes very difficult. On the other
hand, CVaR has superior properties in many respects, it is coherent, convex and it
can be expressed by a minimization formula, for details see [35], [36]. The marginal
behaviour of VaR and CVaR, if a new position is added to the portfolio, is studied
in [34] through their derivatives with respect to the portfolio allocation. First and
second order derivatives of VaR were published earlier in [15], where local behaviour
of VaR was studied. However, some assumptions for the derivatives are missing in
both articles. Therefore, our goal is to formulate these assumptions and to prove the
derivative formulas properly. We will try to extend so far introduced results and to
find Hessians of VaR and CVaR. If we know the Hessians, we will be able to discuss
convexity of these measures with respect to the portfolio allocation.

Portfolio risk can be measured by many different performance functionals, de-
pending on investor’s risk preferences and can be reflected by the choice of a suitable
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CHAPTER 1. INTRODUCTION 5

utility function or incorporated into constraints of a stochastic programming model.
In [13] risk measures commonly used in asset allocation problems are classified into
dispersion risk measures (variance, mean absolute deviation, Gini’s risk measure) and
safety risk measures (safety-first, Value at Risk, Conditional Value at Risk, MiniMax)
and a comparison of their properties on theoretical and empirical basis is proposed.
All of these risk criteria are theoretically valid. However, all of them are based on
one-period model, that does not take into account the sequence of the asset’s rates of
return, cashflows, sales and purchases of assets (portfolio revision) within an invest-
ment horizon. So many multiperiod stochastic programming models for risk manage-
ment have been proposed and the problem of dynamic (multi-period) risk measures
has gained much attention recently. A risk measure that is defined over a process
or time series rather than for an one-period future value (loss) is called the multi-
period or dynamic risk measure. One possible way how to define new dynamic risk
measure is an extension of one-period one. Conditional Drawdown at Risk (CDaR)
represents such extension of CVaR, for details about drawdown measures see [5], [6],
[21]. Another approach can be found in [31], [32], where a completely new dynamic
risk measure for income streams is introduced. The measure is based on the nonan-
ticipativity princip and is closely related to the expected value of perfect information
(EVPI) of stochastic programming problem, for details see [10], [37].

Stochastic programming is becoming more popular in finance, because every in-
vestment is uncertain with respect to the gain or loss that occur in the future. The
main sources of error in practical applications of stochastic programming come from
simulation, sampling, estimation and also from incomplete input information about
underlying probability distribution, which we does not usually know exactly. The
distribution plays a role of an abstract parameter which is estimated or approxi-
mated by another probability distribution, by parametric or nonparametric methods
or simulation techniques. Moreover, the goal is to get a sensible approximation of the
optimal solution and of the optimal value, not an approximation of the probability
distribution. For this purpose, methods of output analysis for stochastic programs
were introduced to investigate how the optimal value and the solution behave when
some changes in input of the stochastic programming model are made. We refer
to [9] for complex information about the methods of output analysis. Contamination
techniques represent one of such methods which can be also used in stress testing.
The output of all stress tests in finance is an estimate of loss that would be suffered
by the portfolio (or institution) if a particular, mostly extremal scenario is realized.
The contamination techniques provide a way to construct stress test estimates and
contamination bounds, which quantify the effect of considered input data change.
Practical use of the contamination techniques in stress testing for VaR and CVaR is
discussed in [11]. We will concentrate on application of contamination techniques to
the optimization problem with relative VaR objective function.

These are the main general assumptions of this thesis: all assets are infinitely
divisible, there are no transaction costs and taxes, all the assets in question are mar-
ketable, short sales are allowed, no investor can affect the returns of the respective
assets substantially. For a more realistic approach see [19]. This article shows how a
long-short portfolio optimization problem under concave transaction costs and non-
convex commision fee can be solved by a branch and bound algorithm, using the
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mean absolute deviation as the risk criterion.
This thesis is organized as follows: In Chapter 2 general definitions of the loss

function and the risk measure are proposed. Then we focuse on two frequently dis-
cussed risk measures - Value at Risk (VaR) and Conditional Value at Risk (CVaR).
Chapter 3 deals with the contamination techniques in stress testing for VaR and
CVaR with a special attention to relative VaR. Explicit contamination bounds for
the relative VaR optimization problem are expressed and the numerical study is in-
volved. In Chapter 4 sensitivity of VaR and CVaR is studied through their derivatives
with respect to the portfolio allocation. Assumptions for the derivatives are formu-
lated, Hessians introduced and convexity is discussed. Chapter 5 concentrates on
dynamic risk measures for multi-period investory models. A dynamic risk measure
based on nonanticipativity princip and drawdown risk measures are proposed. Chap-
ter 6 concludes this thesis. Chapter 7 - Appendix - contains models for financial
returns modelling, a methodology for correlation matrices stressing, a brief review of
RiskMetrics framework and some numerical results.



Chapter 2

Risk Measures for Random Losses

In this chapter we concentrate on one-period risk measures for random losses.
First, we propose a general definition of the loss random variable as a function of a
random future value and a decision. The risk measure is then defined as a probability
functional on a set of loss random variables (functions). Because the distribution of
the loss random variable depends on our (risk manager’s) decision, we can affect
the risk by the decision. We also define some required and relevant properties of
risk measures, such as convexity, consistency with stochastic dominance order and
coherence. Next, we focus on two frequently discussed risk measures - Value at Risk
(VaR) and Conditional Value at Risk (CVaR). The definitions and main properties of
these measures for general loss distributions are borrowed from [36]. Close relations
between VaR, CVaR and standard deviation can be found for normally distributed
loss random variables. In [35] is even shown that these risk measures are equivalent
in certain portfolio optimization problems.

This chapter is organized as follows: In Section 2.1 we propose basic definitions of
the loss random function, the risk measure and its general properties. In Section 2.2
Value at Risk for general loss distributions is defined and its basic properties and
disadvantages are summarized. In Section 2.3 we define Conditional Value at Risk
and introduce many of its relevant properties. In Section 2.4 Value at Risk and
Conditional Value at Risk are compared under the assumption that the losses are
normally distributed.

2.1 Basic Definitions and Assumptions

We define the loss function (random variable) Z = g(x, Y ) dependent on a
decision x ∈ X ⊂ Rn (weights of assets in our portfolio, portfolio allocation) and a
random future value Y (rate of interest, returns, yields), where Y T = (Y1, . . . , Ym) is
a real random vector with components defined on a probability space (Ω,A, P ) with
values in

(
E,B(E)

)
, where B(E) denotes the Borel σ-algebra generated by a metric

space E, in this case E ⊆ R. I = −Z can be seen as a random income variable
(function).

7



CHAPTER 2. RISK MEASURES FOR RANDOM LOSSES 8

For example

X = {x ∈ Rn :

n∑

i=1

xi = 1, 0 ≤ xi ≤ 0.5, i = 1, . . . , n},

g1(x, Y ) = x1f1(Y ) + · · ·+ xnfn(Y ),

g2(x, Y ) = x1Y1 + · · ·+ xnYn = x′Y, n = m.

Let ω ∈ Ω represent a realization of Y . If Y is a random vector with known distri-
bution P (independent on decision x), then Z = g(x, Y ) is a random variable with
distribution dependent on the decision x ∈ X. In later sections we will assume that:

1. g(x, ω) is (∀ω∈Ω continuous in x) and (∀x∈X measurable in ω),

2. EP

[
|g(x, Y )|

]
<∞, ∀x ∈ X.

Then we define the cummulative distribution function of Z as

ψ(x, P ; ξ) = P
(
g(x, Y ) ≤ ξ

)
, ∀x ∈ X

and its left limit in point ξ

ψ(x, P ; ξ−) = P
(
g(x, Y ) < ξ

)
, ∀x ∈ X.

In this chapter we simplify the notion ψ(x, P ; ξ) to ψ(x, ξ), because we suppose that
the distibution P of losses is known and it does not change. If the difference

ψ(x, ξ) − ψ(x, ξ−) = P
(
g(x, Y ) = ξ

)

is positive, then there is a probability atom in ξ and the distribution function ψ(x, ·)
has a ”jump” in the point ξ.

Formal definition of risk measure can be given as follows.

Definition 2.1.1. (Risk measure)
Let Z be a set of loss random variables, then the one-period risk measure is a prob-
ability functional ρ : Z → R which ”returns values according to investor’s (risk
manager’s) preferences”.

Multi-period risk measure can be defined for loss random processes in similar
manner. Thanks to our assumptions, the set of loss random variables is some subset
of the space L1(Ω,A, P ). By analogy to [13] we define some additional properties of
risk measures of random losses.

Definition 2.1.2. (Additional properties of risk measures)
We assume that Z is a set of loss random variables, Z,Z1, Z2 ∈ Z and ρ : Z → R is a
risk measure. Let I1 = −Z1, I2 = −Z2 be income random variables. We will say that

1. ρ(Z) is consistent with order relation ≻ if I1 ≻ I2 implies that ρ(−I1) ≤ ρ(−I2);
we consider the following order relations:

• First stochastic dominance order (FSD)
def⇔ E

[
u(I1)

]
≥ E

[
u(I2)

]
for every

non-decreasing function u for which these expectations are finite.
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• Second stochastic dominace order (SSD)
def⇔ E

[
u(I1)

]
≥ E

[
u(I2)

]
for every

non-decreasing concave function u for which these expectations are finite.

2. ρ(Z) is convex if for all loss random variables Z1, Z2 ∈ Z and for every λ ∈ [0, 1]
such that

(
λZ1 + (1 − λ)Z2

)
∈ Z

ρ(λZ1 + (1 − λ)Z2) ≤ λρ(Z1) + (1 − λ)ρ(Z2).

3. ρ(Z) is translation invariant if for every loss random variable Z ∈ Z and for
every real c such that Z + c ∈ Z, ρ(Z + c) = ρ(Z).

4. ρ(Z) is translation equivariant if for every loss random variable Z ∈ Z and for
every real c such that Z + c ∈ Z, ρ(Z + c) = ρ(Z) + c.

Consistency with second stochastic dominance order and convexity are the most
required and relevant properties of risk measures, which allow us to get efficient
portfolios by solving a mean-risk model.

Definition 2.1.3. (Axiomatic definition of coherent risk measures)
Let Z be a set of loss random variables and ρ : Z → R be a risk measure. We will
say that ρ(Z) is the coherent risk measure if it satisfies

1. sublinearity:

• subadditivity:
ρ(Z1 + Z2) ≤ ρ(Z1) + ρ(Z2), ∀Z1, Z2 ∈ Z : Z1 + Z2 ∈ Z,

• homogenity:
ρ(λZ1) = λρ(Z1) for λ ≥ 0, ∀Z1 ∈ Z : λZ1 ∈ Z,

2.
(
Z1 ≡ c (constant), Z1 ∈ Z

)
⇒
(
ρ(Z1) = c

)
,

3.
(
∀Z1, Z2 ∈ Z : Z1 ≺ Z2

)
⇒
(
ρ(Z1) ≤ ρ(Z2)

)
, where ≺ denotes first stochastic

dominance order.

2.2 Value at Risk

Value at Risk (VaR) has become the standard measure that financial instututions
use to quantify market and credit risk. VaR is defined as: Pobability of loss greater
than VaR is at most 1 − α for some α ∈ (0, 1).

Definition 2.2.1. (Value at Risk (VaR)) [36]
The Value at Risk V aRα(x) of the loss Z = g(x, Y ) associated with a decision x is
the value

V aRα(x) = min{ξ : ψ(x, ξ) ≥ α}, (2.1)

α ∈ (0, 1), usually α = 0.95 or α = 0.99.

We again simplify notion V aRα(x, P ) = min{ξ : ψ(x, P ; ξ) ≥ α}.
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Definition 2.2.2. (Quantile function, quantiles) [1]
Let F (x) = P (X < x) be a distribution function (left-continuous). Then we define
the quantile (fractile) function as

F−1(u) = inf{x : F (x) ≥ u}, 0 < u < 1.

The values F−1(u) are called quantiles (fractiles).

Minimum in definition (2.1) is always attained, because ψ(x, ξ) is nondecreasing
and right continous. We can compare this definition with the quantile function, that
returns the same values, but it is not exactly the same.

Definition 2.2.3. (”upper” VaR) [36]
The upper Value at Risk V aR+

α (x) of the loss Z = g(x, Y ) associated with a decision
x is the value

V aR+
α (x) = inf{ξ : ψ(x, ξ) > α}. (2.2)

Remark 2.2.4.
We can discuss the number of solutions ξ of the equation ψ(x, ξ) = α:

1. unique ⇔ ψ(x, ξ) is continous and strictly increasing in ξ,

2. no solution ⇔ ”vertical gap” ψ(x, ξ) in point ξ = V aRα(x), we denote

α−(x) = ψ(x, V aRα(x)−),

α+(x) = ψ(x, V aRα(x))

and it holds α− < α ≤ α+.

3. many solutions ⇔ ψ(x, ξ) is constant over some interval of ξ at level α, the
solution is then the interval
[V aRα(x), V aR+

α (x)) or [V aRα(x), V aR+
α (x)]

depending on whether there is or is not vertical gap of ψ(x, ξ) in V aR+
α (x).

The cases 2, 3 occur for discrete distributions and scenario models, where ψ(x, ξ)
is constant between jumps.

Remark 2.2.5. (Main disadvantages of VaR) [13], [34]
Main disadvantages of Value at Risk:

1. Unstability in behaviour of VaR, i.e. VaR is not continuous in α - previous
cases 2 and 3.

2. VaR is not coherent risk measure - it is not always subadditive, which disables
effective portfolio diversification; an example can be found in [39].

3. VaR can violate second stochastic dominace order.

4. There are many computational difficulties in portfolio optimization with VaR,
VaR is not convex risk measure.
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5. VaR does not take into account extreme events.

Remark 2.2.6. (Computational methods for VaR)
There are many methods for VaR computation. These methods can be devided into
three main families as it is done in [26]:

1. parametric methods - RiskMetricsTM (see Section 7.3) and GARCH,

2. semi-parametric methods - extreme value theory, historical simulation and the
hybrid model,

3. nonparametric methods - conditional autoregressive value-at-risk(CAViaR), see [26],
quasi-maximum likelihood GARCH, nonparametric optimization models, see [33].

2.3 Conditional Value at Risk

2.3.1 Basic Definitions and Properties

Conditional Value at Risk (CVaR) is often proposed as an alternative for Value
at Risk, that is widely used in practise even thought it is not adequate risk measure,
see Remark 2.2.5. CVaR is defined as the conditional mean of losses on condition that
we are beyond VaR. The formal Definition 2.3.1 solves succesfully the problem if there
is a probability atom at V aRα(x) and so the interval [V aRα(x),∞) has probability
greater or equal to 1 − α. The ” α-tail” distribution is then ”1 − α” part of the
distribution function ψ(x, ξ) rescaled from [α, 1] onto [0, 1].

Definition 2.3.1. (Conditional Value at Risk (CVaR)) [36]
The Conditional Value at Risk CV aRα(x) associated with a decision x is the mean
of the loss function Z = g(x, Y ) in ”α-tail” distribution defined by

ψα(x, ξ) =

{ 0 for ξ < V aRα(x),

[ψ(x, ξ) − α]/[1 − α] for ξ ≥ V aRα(x).
(2.3)

Definition 2.3.2. (Upper and lower CVaR) [36]
The upper Conditional Value at Risk CV aR+

α (x) associated with a decision x we
define as

CV aR+
α (x) = E

[
g(x, Y )

∣
∣g(x, Y ) > V aRα(x)

]
. (2.4)

The lower Conditional Value at Risk CV aR−
α (x) associated with a decision x we

define as

CV aR−
α (x) = E

[
g(x, Y )

∣
∣g(x, Y ) ≥ V aRα(x)

]
. (2.5)

Remark 2.3.3.

1. CV aR−
α (x) is well defined because it always holds P{g(x, Y ) ≥ V aRα(x)} ≥

1 − α > 0.
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2. With CV aR+
α (x) there is no problem as far as P{g(x, Y ) > V aRα(x)} > 0. If

ψ(x, V aRα(x)) = 1, i.e. V aRα(x) is the greatest loss, which can occur, then
CV aR+

α (x) is ill-defined.

3. We can express distributions for ”upper” and ”lower” CVaR by analogy to the
definition (2.3) of the α-tail distribution as

ψ+
α (x, ξ) =

{
0 for ξ < V aRα(x),

[ψ(x, ξ) − α+]/[1 − α+] for ξ ≥ V aRα(x),

ψ−
α (x, ξ) =

{ 0 for ξ < V aRα(x),

[ψ(x, ξ) − α−]/[1 − α−] for ξ ≥ V aRα(x).

CV aR+
α (x) is sometimes called mean shortfall, CV aRα(x) expected shortfall and

E
[
g(x, Y ) − V aRα(x)

∣
∣g(x, Y ) > V aRα(x)

]
= CV aR+

α (x) − V aRα(X) mean excess
loss.

The following theorem shows how important is to take care of the correct defi-
nition of CVaR, especially in the case, when the distribution function ψ(x, ξ) is not
continuous.

Theorem 2.3.4. (Basic relations between CVaR’s) [36]

1. There is not probability atom in V aRα(x), then

CV aR−
α (x) = CV aRα(x) = CV aR+

α (x). (2.6)

2. There is a probability atom in V aRα(x), then we must differ 3 cases:

• α = ψ(x, V aRα(x)), then

CV aR−
α (x) < CV aRα(x) = CV aR+

α (x). (2.7)

• ψ(x, V aRα(x)) = 1, then

CV aR−
α (x) < CV aRα(x) (2.8)

and CV aR+
α (x) is ill defined.

• If α−(x) < α < α+(x) < 1, then

CV aR−
α (x) < CV aRα(x) < CV aR+

α (x). (2.9)
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2.3.2 CVaR as a Weighted Average

As a consequence of previous statements we obtain the following expression for
CVaR, which we apply to discrete - scenario model. These expressions can be used
as alternative definitions of CVaR.

Theorem 2.3.5. (CVaR as a weighted average) [36]
Let λα(x) be the probability of loss Z = V aRα(x) in ”α-tail” distribution, thus

λα(x) =
[
ψ(x, V aRα(x)) − α

]
/
[
1 − α

]
.

If ψ(x, V aRα(x)) < 1, then

CV aRα(x) =

= λα(x)V aRα(x) + [1 − λα(x)]CV aR+
α (x). (2.10)

If ψ(x, V aRα(x)) = 1, then

CV aRα(x) = V aRα(x). (2.11)

CVaR can be viewed as a weighted average of VaR and the mean of the worst
losses strictly exceeding VaR.

Consequence 2.3.6. (CVaR vs. VaR) [36]
CV aRα(x) ≥ V aRα(x).

Consequence 2.3.7. (CVaR for discrete-scenario models) [36]
Let the random vector Y be discrete distributed with the probability measure P con-
centrated in finitely many points, then distribution of the loss random variable Z =
g(x, Y ) for fixed x ∈ X is likewise concentrated in finitely many points z[1] < z[2] <
· · · < z[N ] with probabilities P

(
Z = z[k]

)
= p[k],

∑N
k=1 p

[k] = 1.
For α ∈ (0, 1) we can find such unique index kα, that it holds

kα−1∑

k=1

p[k] < α ≤
kα∑

k=1

p[k].

Then we have

V aRα(x) = z[kα] (2.12)

and if α > 1 − p[N ], then

V aRα(x) = CV aRα(x) = z[N ], (2.13)

else

CV aRα(x) =
1

1 − α

[
( kα∑

k=1

p[k] − α
)

z[kα] +
N∑

k=kα+1

p[k]z[k]

]

. (2.14)
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Proof.
Explanation of formula for CV aR+

α (x):

ψ+
α (x, ξ) =

{ 0 for ξ < V aRα(x),

[ψ(x, ξ) − α+]/[1 − α+] for ξ ≥ V aRα(x),

where

α+ =
kα∑

k=1

p[k], 1 − α+ =
N∑

k=kα+1

p[k],

for probabilities p[k]+ we obtain

{ 0 for z[k] ≤ V aRα(x),

p[k]/
∑N

k=kα+1 p
[k] for z[k] > V aRα(x).

Then

λα(x) =
1

1 − α

(
kα∑

k=1

p[k] − α
)
,

1 − λα(x) =
1

1 − α

(
N∑

k=kα+1

p[k]
)
,

CV aR+
α (x) =

∑N
k=kα+1 p

[k]z[k]

∑N
k=kα+1 p

[k]
.

And finally

CV aRα(x) =
1

1 − α

[
( kα∑

k=1

p[k] − α
)

z[kα] +
N∑

k=kα+1

p[k]z[k]

]

.

�

2.3.3 Minimization Formula for CVaR

Conditional Value at Risk can be expressed by a minimization formula which
represents the best computational advantage of CVaR over VaR and many other
measures. Under some additional assumptions it enables us to use linear program-
ming techniques to minimize CVaR and to prove many its useful properties such as
convexity and coherence.

First we define the auxiliary function

Fα(x, ξ) = ξ +
1

1 − α
E

[

[g(x, Y ) − ξ]+
]

,

(2.15)

where [t]+ = max{0, t}.
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Theorem 2.3.8. (Minimization formula for CVaR) [36]
As a function of ξ ∈ R, Fα(x, ξ) is finite and convex, hence continuous and has finite
one-sided derivatives in all ξ. It holds

CV aRα(x) = min
ξ∈R

Fα(x, ξ) (2.16)

and moreover arg minξ∈R
Fα(x, ξ) =

[
V aRα(x), V aR+

α (x)
]
which has to be a nonempty

closed bounded interval (perhaps reducing to a single point). In particular, one always
has

CV aRα(x) = Fα(x, V aRα(x)).

Proof. The basic properties of the auxiliary function Fα(x, ξ) follow from general
assumptions and from convexity of the function [g(x, Y ) − ξ]+ in ξ. Next, we find
explicit formula for right derivative of the auxiliary function Fα(x, ξ) in ξ.

F (x, ξ
′

) − F (x, ξ)

ξ′ − ξ
=

1 +
1

1 − α
E

[

[g(x, Y ) − ξ
′

]+ − [g(x, Y ) − ξ]+

ξ′ − ξ
︸ ︷︷ ︸

♣

]

If ξ
′

> ξ, then

♣
{ = −1 for g(x, Y ) > ξ

′

,
= 0 for g(x, Y ) ≤ ξ,

∈ (−1, 0) for ξ < g(x, Y ) ≤ ξ
′

.

Furthermore

P
(
g(x, Y ) > ξ

′)
= 1 − ψ(x, ξ

′

),

P
(
ξ < g(x, Y ) ≤ ξ

′)
= ψ(x, ξ

′

) − ψ(x, ξ),

whereas

ψ(x, ξ
′

) ց ψ(x, ξ), if ξ
′ ց ξ.

Interchanging limit and the mean E we obtain

lim
ξ′ցξ

E{♣} = E
{

lim
ξ′ցξ

♣
}

= −[1 − ψ(x, ξ)]

and finally, for the right derivative we have

∂+Fα

∂ξ
(x, ξ) =

ψ(x, ξ) − α

1 − α
. (2.17)

By analogy for left derivative of the auxiliary function it holds

∂−Fα

∂ξ
(x, ξ) =

ψ(x, ξ−) − α

1 − α
. (2.18)
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Convexity of Fα(x, ·) implies that one-sided derivatives are nondecreasing in ξ.
For the limits it holds

lim
ξ→∞

∂+Fα

∂ξ
(x, ξ) = lim

ξ→∞

∂−Fα

∂ξ
(x, ξ) = 1,

lim
ξ→−∞

∂+Fα

∂ξ
(x, ξ) = lim

ξ→−∞

∂−Fα

∂ξ
(x, ξ) =

= − α

1 − α
.

So the derivatives are finite, bounded and nondecreasing. Hence argminξ F (x, ξ)
is a closed bounded interval, and the points, where the minimum is attained, are
characterized by

∂−Fα

∂ξ
(x, ξ) ≤ 0 ≤ ∂+Fα

∂ξ
(x, ξ),

⇔
ψ(x, ξ−) ≤ α ≤ ψ(x, ξ).

This condition is satisfied for V aRα(x) like lower limit and V aR+
α (x) like upper limit

of the interval of argminξ F (x, ξ).

�

Consequence 2.3.9. [13]
CVaR is consistent with second stochastic dominance order (SSD) and translation
equivariant.

Consequence 2.3.10. (Stability of CVaR) [36]
CV aRα(x) behaves continuously with respect to the choise of α ∈ (0, 1).

Consequence 2.3.11. (Convexity of CVaR) [36]
If the loss function g(x, Y ) is convex in x, then CV aRα(x) is convex with respect to
x and Fα(x, ξ) is jointly convex in (x, ξ).

Consequence 2.3.12. (Coherence of CVaR) [36]
CV aR is a coherent risk measure. When the loss function g(x, Y ) is linear with
respect to x, not only CV aRα(x) is sublinear with respect to x, but furthermore it
satisfies

CV aRα(x) = c when g(x, Y ) ≡ c,

for some constant c ∈ R, and it obeys the monotocity rule that

CV aRα(x1) ≤ CV aRα(x2) when g(x1, Y ) ≤ g(x2, Y ),

for arbitrary x1, x2 ∈ X.

In [40] expected regret is defined for a treshold ζ ∈ R and a continuously distributed
loss function g(x, Y ) as

ERζ(x)
def.
= E

[
[g(x, Y ) − ζ ]+

]
. (2.19)
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There is also shown that CV aRα(x) and ERζ(x) efficient portfolios are equivalent,
i.e. a portfolio minimizes the expected regret for a treshold ζ just when a confidence
level α exists so that the portfolio minimizes the CV aRα. This result follows from
the relation

Fα(x, ξ) = ξ +
1

1 − α
ERξ(x).

The main computational advantages of CVaR are introduced in the following
theorems, where we assume that Fα(x, ξ) is convex with respect to (x, ξ).

Theorem 2.3.13. (Optimization shortcut) [36]

min
x∈X

CV aRα(x) = min
(x,ξ)∈X×R

Fα(x, ξ), (2.20)

where moreover

x∗ ∈ argminx∈XCV aRα(x),

ξ∗ ∈ argminξ∈RFα(x∗, ξ)

⇔
(x∗, ξ∗) ∈ argmin(x,ξ)∈X×RFα(x, ξ).

Theorem 2.3.14. (Risk-shaping with CVaR) [36]
The problem

min
x∈X

h(x)

s.t. (2.21)

CV aRαl
(x) ≤ ϑl, l = 1, . . . , L,

is equivalent to

min
(x,ξ1,...,ξL)∈X×RL

h(x)

s.t. (2.22)

Fαl
(x, ξl) ≤ ϑl, l = 1, . . . , L

for any selection of probability thresholds αl and loss tolerances ϑl, l = 1, . . . , L.
Indeed, (x∗, ξ∗1, . . . ξ

∗
L) solves the second problem (2.22) ⇔ x∗ solves the first prob-

lem (2.21).
Moreover, one then has CV aRαl

(x) ≤ ϑl for every l, and actually CV aRαl
(x) = ϑl

for each l such that Fαl
(x, ξl) = ϑl.

Example 2.3.15. We denote It the value of an index and Ptj the prices of instru-
ments (assets) j = 1, . . . , J at time t = 1, . . . , T . θ denotes the imaginary number of
units of the financial index at time T , ω is a given treshold. Then we get an example
of linear CVaR constraint in tracking of given financial index:

ξ +
1

(1 − α)T

T∑

t=1

[
[

θIt −
n∑

j=1

Ptjxj/θIt

]

− ξ

]+

≤ ω,
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where the loss function is defined as

g(x, Y ) = θIt −
J∑

j=1

Yjxj/θIt.

Numerical results are demonstrated in [36].

Remark 2.3.16. Let I = −Z = −g(x, Y ) be a random profit (income) variable, then

ψZ(z) = P (Z ≤ z) = P (−I ≤ z) = P (I ≥ −z) = 1 − ψI(−z) + P (I = −z)
and for the discussed risk measures it holds

−V aRα(x) = inf{i : P (I ≤ i) > 1 − α},
−V aR+

α (x) = inf{i : P (I ≤ i) ≥ 1 − α}, (2.23)

CV aRα(x) = max
a∈R

{

a− 1

1 − α
E

[

|I − a|−
]}

.

2.4 Parametric VaR and CVaR

Under the assumption that the loss function is normally distributed, there are close
relations between standard deviation, VaR and CVaR. These relations are introduced
in [35] and bring very interesting result in portfolio optimization problems.

Definition 2.4.1. (Absolute and Relative VaR) [10]
If we suppose that Y ∼ Nn(µ,Σ) and g(x, ω) = x′ω, then Z = g(x, Y ) ∼ N

(
µ(x), σ2(x)

)
,

where µ(x) = µ′x and σ2(x) = x′Σx. We can define the absolute Value at Risk as-
sociated with a decision x as

V aRabs
α (x) = µ(x) + uασ(x) (2.24)

and the relative Value at Risk associated with a decision x as

V aRrel
α (x) = uασ(x), (2.25)

where uα = φ−1(α), φ is the distribution function of the standard normal distribution.

The expression (2.24) represents the decomposition of VaR into two components:
expected loss and risk. We can also compute first and second order derivatives of
absolute VaR with respect to the portfolio allocation.

∂V aRabs
α (x)

∂x
= µ+

Σx

(x′Σx)1/2
uα =

= µ+
Σx

x′Σx

(
V aRabs

α (x) − x′µ
)

=

[15]
= E

[
Y
∣
∣x′Y = V aRabs

α (x)
]
, (2.26)

∂2V aRabs
α (x)

∂x2
=

uα

(x′Σx)1/2

[

Σ − Σxx′Σ

x′Σx

]

=

[15]
=

uα

(x′Σx)1/2
VAR

[
Y
∣
∣x′Y = V aRabs

α (x)
]
. (2.27)

We express the derivatives of VaR under more general assumptions in Chapter 3.
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Theorem 2.4.2. [35]
Let α ≥ 0.5 and X =

{
x ∈ Rn :

∑n
j=1 xj = 1, xj ≥ 0 ∀j

}
, Xr = X∩

{
x : −µ(x) ≥ r

}
.

Under the assumption of Definition 2.4.1, if we solve any two of the following problems

minx∈Xr
V aRabs

α (x),

minx∈Xr
CV aRα(x),

minx∈Xr
σ2(x)

and the constraint −µ(x) ≥ r is active at both, then the solutions to those two prob-
lems are the same; a common portfolio x∗ is optimal by both criteria.

Example 2.4.3. [28]

Under the assumption Z ∼ N (0, σ2) we express the relation between VaR and
CVaR explicitly. Let

1 − α =

∫ ∞

V aRα

1√
2πσ

e
−z2

2σ2 dz,

V aRα(x) = uα · σ, (2.28)

CV aRα =
1

1 − α

∫ ∞

V aRα

z
1√
2πσ

e
−z2

2σ2 dz =
1

1 − α

σ√
2π
e−

V aR2
α

2σ2 .

Using substitution z = σa we obtain

CV aRα = Kασ, (2.29)

where

Kα =
1

1 − α

∫ ∞

uα

a
1√
2π
e

−a2

2 da =
1

1 − α

1√
2π
e−

u2
α
2 . (2.30)

From (2.28) and (2.29) we finally have

CV aRα =
Kα

uα
V aRα. (2.31)

The relation (2.31) enables us to extend RiskMetrics framework (see Section 7.3) for
CVaR measuring.

Table 2.1: Quantiles, constants.

α 0.90 0.95 0.99
uα 1.2815 1.6448 2.3263
Kα 1.7550 2.0627 2.6652

Kα/uα 1.3694 1.2540 1.1457



Chapter 3

Stress Testing for VaR and CVaR

Stress testing is one of general methods used in finance to estimate the loss that
would be suffered by portfolio (or institution) if a particular, mostly extremal scenario
is realized. Contamination techniques represent one of possible methods for stress test
estimates construction. We focus on contamination bounds which quantify the effect
of considered input data change on solution of the stochastic programming problem.
We refer to [9] for complex information about the methods of output analysis for
stochastic programs.

In this chapter we summarize and extend the application of the contamination
techniques for Value at Risk (VaR) and Conditional Value at Risk (CVaR) from [11].
We use the family of contaminated probability distributions of the random vector Y

Pλ = (1 − λ)P + λQ, λ ∈ [0, 1],

where Q is a fixed stress distribution and λ is a contamination parameter. We say
that the probability distribution P is contaminated by the probability distribution Q.
The contamination method does not require any specific properties of the probability
distributions P and Q. Such approach enables us to exploit the existing results of
parametric optimization.

This Chapter is organized as follows: In Section 3.1 the contamination techniques
for CVaR are described. In Section 3.2 we focus on the contamination techniques
for VaR with a special attention to relative VaR. Explicit contamination bounds for
optimization problem with the relative VaR objective function are introduced and the
numerical study is involved. Section 3.3 summarizes some useful results of parametric
optimization.

3.1 Stress Testing for CVaR

We extend our marking for the auxiliary objective function Fα(x, ξ, λ) := Fα(x, ξ, Pλ),
which is linear in λ and convex in ξ, for definition see (2.15). For its optimal value
for fixed x it holds

CV aRα(x, λ) := CV aRα(x, Pλ) = min
ξ∈R

Fα(x, ξ, Pλ). (3.1)

For λ = 0 we will speak about initial (unperturbed) problem with optimal solution
ξ∗(x, P ) ∈

[
V aRα(x, P ), V aR+

α (x, P )
]
, see Theorem 2.3.8.

20
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3.1.1 Contamination Bounds for CVaR

Applying the result (3.20) to (3.1) for a fixed vector x ∈ X we get

d

dλ
CV aRα(x, 0+) = min

ξ∈
[
V aRα(x,P ), V aR+

α (x,P )
]Fα(x, ξ, Q) − CV aRα(x, P ).

The contamination bounds for CV aRα(x, λ) follow from concavity of CV aRα(x, λ)
with respect to λ which is a consequence of linearity of Fα(x, ξ, Pλ) in λ, thus

(1 − λ)CV aRα(x, 0) + λCV aRα(x, 1) ≤
≤ CV aRα(x, λ) ≤

≤ CV aRα(x, 0) + λ
d

dλ
CV aRα(x, 0+), (3.2)

0 ≤ λ ≤ 1,

which can be rewritten as

(1 − λ)CV aRα(x, P ) + λCV aRα(x,Q) ≤
≤ CV aRα(x, Pλ) ≤

≤ (1 − λ)CV aRα(x, P ) + λFα

(
x, ξ∗(x, P ), Q

)
, (3.3)

0 ≤ λ ≤ 1,

where ξ∗(x, P ) denotes one of the optimal solution of the initial problem, i.e. (3.1)
for λ = 0.

3.1.2 Discrete-scenario CVaR

We use the results of Consequence 2.3.7. Let Q be a discrete probability distri-
bution of Y carried by M stress out-of-sample scenarios ωs, s = N + 1, . . . ,M with
probabilities ps, s = N + 1, . . . ,M (g(x, ωs) 6= g(x, ωt), ∀1≤s<t≤M). Then the upper
contamination bound has the form

Fα

(
x, ξ∗(x, P ), Pλ

)
, ∀λ ∈ [0, 1].

Specially, if Q is a degenerate probability distribution with only one scenario ω∗, we
can get easy the difference between the upper and the lower bound

λ
[

Fα

(
x, ξ∗(x, P ), Q

)
− CV aRα(x,Q)

]

=

= λ

[

ξ∗(x, P ) − g(x, ω∗) +
1

1 − α

[
g(x, ω∗) − ξ∗(x, P )

]+

]

. (3.4)

3.1.3 Optimization with the CVaR Objective Function

From Theorem 2.3.13

ϕC(P ) := min
x∈X

CV aRα(x, P ) = min
(x,ξ)∈R×X

Fα(x, ξ, P ), (3.5)
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where X ⊂ Rn is a compact, convex, nonempty set independent on P and Q, e.g.
X =

{
x ∈ Rn :

∑

i xi = 1, 0 ≤ xi ≤ 0.25 ∀i

}
. If g(·, ω) is convex for all ω ∈ Ω,

then from Theorem 2.3.11 Fα(x, ξ, P ) is convex in (x, ξ). Let
(
x∗C(P ), ξ∗C(P )

)
be an

optimal solution of the problem (3.5) and
(
x∗C(Q), ξ∗C(Q)

)
its optimal solution for Q,

then

(1 − λ)ϕC(P ) + λϕC(Q) ≤
≤ ϕC(Pλ) ≤ (3.6)

≤ min

{

(1 − λ)ϕC(P ) + λFα

(
ξ∗C(P ), x∗C(P ), Q

)
,

λϕC(Q) + (1 − λ)Fα

(
ξ∗C(Q), x∗C(Q), P

)
}

.

In [11] can be found a numerical experiment.

3.1.4 Mean-CVaR Optimization Problem

We solve a bi-criteria problem in which one minimizes CV aRα(x, P ) and simul-
taneously maximizes the expected return EP r(x, Y ) for r(x, ω) = −x′ω on X. Thus,
using knowledge from [10], either we can solve the parametrized objective function
problem

min
x∈X

CV aRα(x, P ) − ρx′EPY

for some value of parameter ρ > 0 or ”ε-constrained” problem with a treshold r for
the expected return objective function, i.e.

minCV aRα(x, P ) on the set X(P, r) =
{
x ∈ X : −x′EPY ≥ r

}
. (3.7)

Let ϕr(P ) denote the optimal value and X∗
r (P ) 6= ∅ be the bounded set of optimal

solutions of (3.7).

1. Under the assumption EPY = EQY = Ȳ the set of feasible solutions Xr(P ) =
{x ∈ X : −x′Ȳ ≥ r} does not depend on P, Q and Pλ. If we replace X
by Xr(P ) in the optimization problem (3.5), the contamination bounds have a
similar form as (3.6).

2. If EPY 6= EQY it is possible to get from (3.6) a raw estimate for the lower
bound

ϕr(Pλ) ≥ ϕC(Pλ) ≥ (1 − λ)ϕC(P ) + λϕC(Q). (3.8)

To get an upper bound we define the set X(P,Q, r) := X(P, r) ∩ X(Q, r) ⊂
X(Pλ, r), which does not depend on λ. If X(P,Q, r) 6= ∅, we set

Ur(λ) := min
x∈X(P,Q,r)

CV aRα(x, Pλ) ≥ ϕr(Pλ).

Ur(λ) is concave in λ, thus

ϕr(Pλ) ≤ Ur(λ) ≤ (1 − λ)Ur(0) + λFα

(
x̂r(P ), ξ̂r(P ), Q

)
, (3.9)
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where
(
x̂r(P ), ξ̂r(P )

)
is one of optimal solutions of

min
(x,ξ) ∈ R×X(P,Q,r)

Fα(x, ξ, P ).

It is necessary to remark, that the bounds (3.8) and (3.9) can be quite loose.

3.2 Stress Testing for VaR

Value at Risk can be seen as a solution of the stochastic program with one prob-
abilistic constraint, i.e.

V aRα(x, P ) := min ξ

s.t.

P
(
g(x, Y ) ≤ ξ

)
≥ α.

This expression enables us to use the stability results for problems of such form, but
we will not apply it here. Some general results are in [37]. In Sections 3.2.1 and 3.2.2
results from [11] are sumarized, in Section 3.2.3 new results are introduced.

3.2.1 Optimal Solution of the Minimization Formula

Let x ∈ X is fixed. We assume that the distribution function ψ(x, P ; ξ) is contin-
uous with a positive, continuous density p(x, P ; ξ) on a neighborhood of the unique
solution of the initial problem (3.1). The unique solution equals V aRα(x, P ), see
Theorem 2.3.8. For sensitivity study we can use the following general theorem.

Theorem 3.2.1. (About implicit function)[42]
Let p, n ∈ N, a ∈ Rn, b ∈ R, h(x1, . . . , xn, y) = h(x, y) is a function of (n + 1)
variables and

1. h(a, b) = 0,

2. h ∈ Cp(V ), where V := Ur(a, b) for some r > 0,

3. ∂h
∂y

(a, b) 6= 0 .

Then there exist δ > 0 and ∆ > 0 such that it holds

1. Uδ(a) × U∆(b) ⊂ V .

2. ∀x∈Uδ(a) ∃!y∈U∆(b) y := f(x) and h(x, y) = 0.

3. f ∈ Cp
(
Uδ(a)

)
.

The optimal solution of the contaminated problem (3.1) solves the equation

h(λ, ξ) :=
d

dξ
Fα(x, ξ, λ) =

ψ(x, Pλ; ξ) − α

1 − α
= 0, (3.10)

see proof of Theorem 2.3.8. We apply Theorem 3.2.1 to previous implicit function.
Filling the assumptions for ”point”

(
0, V aRα(x, P )

)
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1. h
(
0, V aRα(x, P )

)
= 0,

2. h ∈ C1(V ), where V := Ur

(
0, V aRα(x, P )

)
for some r > 0,

3.

∂h

∂ξ

(
0, V aRα(x, P )

)
=
p
(
x, P ;V aRα(x, P )

)

1 − α
> 0

we get δ > 0 and ∆ > 0 so that for any 0 ≤ λ < δ just one solution U∆(V aRα(x, P )) ∋
V aRα(x, Pλ) ∈ C1

(
[0, δ)

)
of the contaminated problem (3.1) exists and it fulfils (3.10).

Thanks to the assumptions it holds

V aRα(x, Pλ) = ψ−1(x, Pλ;α),

and for the derivative we have

∂

∂λ
V aRα(x, Pλ)

∣
∣
∣
∣
∣
λ=0+

= −ψ
(
x,Q;V aRα(x, P )

)
− α

p
(
x, P ;V aRα(x, P )

) .

For small λ > 0 we can use the following approximation of the VaR optimal value

min
x∈X

V aRα(x, Pλ) ∼= V aRα(x∗(0), P ) + λ · ∂V aRα(x, Pλ)/∂λ|λ=0+ .

3.2.2 Discrete-scenario VaR

Using Theorem 2.3.7 for a fixed x ∈ X and one additional stress scenario ω∗ we
can construct under some additional conditions a finite number of non-overlapping
intervals [0, λ1], (λ1, λ2], . . . (λI , 1] and study stability of V aRα(x, Pλ) separately on
each of them. (We consider degenerate intervals.)
Setting

z[1] < · · · < z[kω∗−1] ≤ g(x, ω∗) < z[kω∗ ] < · · · < z[N ]

with probabilities

(1 − λ)p[1], . . . , (1 − λ)p[kω∗−1], λ, (1 − λ)p[kω∗ ], . . . , (1 − λ)p[N ]

and with index kα,Pλ
∈ {1, . . . , N + 1} such that

kα,Pλ
−1

∑

k=1

(1 − λ)p[k] < α ≤
kα,Pλ∑

k=1

(1 − λ)p[k],

we get V aRα(x, Pλ) = z[kα,Pλ
]. Let the stress scenario satisfy z[kα,P ] < z[kω∗−1]. If

λ is sufficiently small, i.e.

0 ≤ λ ≤ 1 − α
∑kα,P

k=1 p
[k]

=: λ1

then V aRα(x, Pλ) = V aRα(x, P ) = z[kα,P ]. Thus we have got the first interval [0, λ1].
Similarly we can construct the intervals (λi, λi+1], where

λi = 1 − α
∑kα,P +i−1

k=1 p[k]
, i = 1, . . . , kω∗ − kα,P − 1,

on which V aRα(x, Pλ) = z[kα,P +i] ≤ g(x, ω∗) = V aRα(x,Q). Finally, for (λI , 1], I :=
kω∗ − kα,P , V aRα(x, Pλ) equals V aRα(x,Q).
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3.2.3 Optimization with the Relative VaR Objective Func-
tion

In this section we provide a way to construct contamination bounds for portfolio
optimization problem with the relative VaR objective function, where we consider
volatility and correlations shocks. A crucial question in using relative VaR is estima-
tion of asset returns correlations and volatilities. We can suppose that the volatilities
and the correlations are stressed to reflect a forecast that differs from their historical
estimates.

Under the assumptions α > 0.5, g(x, ω) = x′ω, X ⊂ Rn nonempty, convex poly-
hedral set, 0 /∈ X, Y ∼ Nn(µ,Σ) we can get ”relative VaR optimal” portfolio x∗rel(Σ)
(dependent on the covariance matrix Σ) by solving the following optimization prob-
lem

V aRrel
α

(
x∗rel(Σ),Nn(µ,Σ)

)
= min

x∈X
uα

√
x′Σx (3.11)

or the convex quadratic program

min
x∈X

x′Σx. (3.12)

We can rewrite the variance matrix as

Σ = DCD

(as it is done in [22]) with the diagonal matrix D of standard deviations of marginal
distributions and the correlation matrix C.

Correlations stressing

Using a positive semidefinite correlation matrix Ĉ, we get the contaminated cor-
relation matrix as C(λ) = (1−λ)C+λĈ, λ ∈ [0, 1]. We may exploit stability results
valid for quadratic programming, see [3], to the perturbed problem

ϕV (λ) = min
x∈X

x′DC(λ)Dx, λ ∈ [0, 1]. (3.13)

The optimal value ϕV (λ) is concave and continuous in λ, the optimal solution of (3.13)
x∗(λ) is continuous in the range of λ where C(λ) is positive definite and using the
result (3.20) we get

ϕ′
V (0+) = min

x∈X∗(0)
x′DĈDx− ϕV (0),

ϕ′
V (1−) = min

x∈X∗(1)
x′DCDx− ϕV (1). (3.14)

where X∗(λ) = arg minx∈X x
′DC(λ)Dx, λ = 0, 1. Now we can construct contami-

nation bounds for (3.13) as

(1 − λ)ϕV (0) + λϕV (1) ≤
≤ ϕV (λ) ≤

≤ min

{

ϕV (0) + λϕ′
V (0+), ϕV (1) + (1 − λ)ϕ′

V (1−)

}

,

λ ∈ [0, 1]
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which can be rewritten using (3.14) as

(1 − λ)ϕV (0) + λϕV (1) ≤
≤ ϕV (λ) ≤ (3.15)

≤ min

{

(1 − λ)ϕV (0) + λx∗(0)′DĈDx∗(0),

λϕV (1) + (1 − λ)x∗(1)′DCDx∗(1)

}

,

λ ∈ [0, 1].

where x∗(λ) ∈ X∗(λ), λ = 0, 1. When we apply the increasing function uα

√· to the
bounds (3.15), we can get ”rough” contamination bounds for (3.11):

uα

√

(1 − λ)ϕV (0) + λϕV (1) ≤
≤ V aRrel

α

(

x∗rel(λ),Nn

(
µ,DC(λ)D

))

≤ (3.16)

≤ min

{

uα

√

(1 − λ)ϕV (0) + λx∗(0)′DĈDx∗(0),

uα

√

λϕV (1) + (1 − λ)x∗(1)′DCDx∗(1)

}

,

λ ∈ [0, 1].

Volatility stressing

We consider a stress test scenario of volatility shocks. For this purpose we con-
struct a diagonal matrix ∆ in which the elements are equal to the increments by which
historical estimates of standard deviations differ from those desired in the stress test
scenario. The covarince matrix Σ̂ that should be used for stressing is given by

Σ̂ = (D + ∆)C(D + ∆).

Using this modified covariance matrix, we can get the contaminated covariance matrix
as Σ(λ) = (1 − λ)Σ + λΣ̂, λ ∈ [0, 1]. We can express contamination bounds for the
contaminated problem

φV (λ) = min
x∈X

x′Σ(λ)x, λ ∈ [0, 1] (3.17)

with concave optimal value function, analogously to (3.13), as

(1 − λ)φV (0) + λφV (1) ≤
≤ φV (λ) ≤

≤ min

{

φV (0) + λφ′
V (0+), φV (1) + (1 − λ)φ′

V (1−)

}

,

λ ∈ [0, 1].
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For the optimal value of the relative VaR optimization problem (3.11) with the con-
taminated covarince matrix Σ(λ) we get

uα

√

(1 − λ)φV (0) + λφV (1) ≤
≤ V aRrel

α

(

x∗rel(λ),Nn

(
µ,Σ(λ)

))

≤ (3.18)

≤ min

{

uα

√

(1 − λ)φV (0) + λx∗(0)′Σ̂x∗(0),

uα

√

λφV (1) + (1 − λ)x∗(1)′Σx∗(1)

}

,

λ ∈ [0, 1],

where x∗(λ) are some solutions of (3.17) for λ = 0, 1.
Of course, it is possible to use another method to construct the stressing covariance

matrix Σ̂ than above. Contamination bounds has then the identical form as (3.18).

3.2.4 Numerical Example

In this subsection the practical implementation of stress testing techniques is
demonstrated. We compute the contamination bounds (3.15) for the quadratic pro-
gram (3.13) and then we use them to estimate the ”rough” contamination bounds (3.16)
for the relative VaR optimization problem with correlation shocks.

We use monthly prices and dividends from 6.2.1996 to 6.2.2006 to estimate the
correlation matrix C, the matrix D of marginal standard deviations and means (see
Table 3.6) of log-returns of 22 american corporate shares. We have got 120 obser-
vations of the monthly log-returns for each of the following companies: Advanced
Micro Devices Inc. (AMD), Alcoa Inc. (AA), American Electric Power Co. Inc.
(AEP), Advanced Micro Devices Inc. (AMD), Avon Products Inc. (AVP), American
Express Co. (AXP), Boeing Co. (BA), Bank of America Corp. (DE) (BAC), Cater-
pillar Inc. (CAT), Colgate-Palmolive Co. (CL), Cisco Systems Inc. (CSCO), Dell
Inc. (DELL), General Dynamics Corp. (GD), Harrah’s Entertainment Inc. (HET),
Hewlett-Packard Co. (HPQ), International Business Machines Corp. (IBM), Intel
Corp. (INTC), Lockheed Martin Corp. (LMT), Microsoft Corp. (MSFT), Northrop
Grumman Corp. (NOC), Oracle Corp. (ORCL), Texas Instruments Inc. (TXN),
Unisys Corp. (UIS).

Statistical tests (Kolmogorov-Smirnov) and histograms do not reject normality of
the log-returns (Kendall hypothesis) on level 0.95. X =

{
x ∈ R22 :

∑22
i=1 xi = 1, 0 ≤

xi ≤ 0.25, ∀i=1,...,22

}
is taken as the set of feasible solution for our optimization prob-

lems, we do not involve the constraint on return. The relative VaR level equals 0.95,
i.e. α = 0.95.

A methodology for correlation matrices stressing is introduced in Section 7.2.
Using it we create the stressing correlation matrix Ĉ, where we suppose that the cor-
relations between assets of companies from the same sector and industry will increase,
while the others will not change significantly. We have got the following ”groups” of
companies:

• Technology (sector) - Application Software (industry), companies: MSFT, ORCL
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[coefficient of increase θ = 0.4, for details see Section 7.2], correlation before
and after stressing are entered in Table 3.1,

• Technology - Diversified Computer Systems: HPQ, IBM [0.2], Table 3.1,

• Consumer Goods - Personal Products: AVP, CL [0.2], Table 3.1,

• Technology - Semiconductor/Broad Line: AMD, INTC, TXN [0.1], Table 3.2,

• Industrial Goods - Aerospace/Defense-Major Diversified: BA, GD, LMT, NOC
[0.15], Table 3.3.

The whole correlation matrices C, Ĉ and statistical tests can be found in Section 7.5.
As you can see from Table 3.4 and Figure 3.1., although the gaps between bounds

are not too wide, behaviour of the relative VaR optimal value is very unstable. Even,
if a little change in correlations between the log-returns occurs, change in the optimal
value will be relatively large.

Figure 3.1: Contamination bounds for the relative VaR optimization problem
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Table 3.1: Correlation estimates and stressing correlations.

Correlation estimates Stressing correlations
ORCL ORCL

MSFT 0.3335 0.6950

IBM IBM
HPQ 0.5137 0.6589

CL CL
AVP 0.5768 0.7069

Table 3.2: Submatrix of the correlation matrix and the stressing correlation matrix.

Correlation estimates Stressing correlations
AMD INTC TXN AMD INTC TXN

AMD 1.0000 0.5937 0.5354 1.0000 0.6537 0.6033
INTC 0.5937 1.0000 0.7104 0.6537 1.0000 0.7541
TXN 0.5354 0.7104 1.0000 0.6033 0.7541 1.0000

Table 3.3: Submatrix of the correlation matrix and the stressing correlation matrix.

Correlation estimates Stressing correlations
BA GD LMT NOC BA GD LMT NOC

BA 1.0000 0.3234 0.2499 0.3003 1.0000 0.4358 0.3767 0.4194
GD 0.3234 1.0000 0.4703 0.4537 0.4358 1.0000 0.5658 0.5528

LMT 0.2499 0.4703 1.0000 0.6272 0.3767 0.5658 1.0000 0.6959
NOC 0.3003 0.4537 0.6272 1.0000 0.4194 0.5528 0.6959 1.0000

Table 3.4: Contamination bounds and relative VaR.

λ 0 0.1 0.2 0.3 0.4 0.5
Lower contamination bound 0.0772 0.0775 0.0777 0.0780 0.0783 0.0786

Relative VaR 0.0772 0.0775 0.0778 0.0780 0.0784 0.0787
Upper contamination bound 0.0772 0.0775 0.0778 0.0781 0.0785 0.0788

λ 0.6 0.7 0.8 0.9 1.0 -
Lower contamination bound 0.0789 0.0792 0.0795 0.0798 0.0801 -

Relative VaR 0.0790 0.0793 0.0795 0.0798 0.0801 -
Upper contamination bound 0.0790 0.0793 0.0796 0.0798 0.0801 -
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Table 3.5: Portfolio weigts.

λ 0 1 λ 0 1
AA 0 0 GD 0.0368 0.0405
AEP 0.2500 0.2500 HET 0.0536 0.0659
AMD 0 0 HPQ 0.0313 0.0295
AVP 0 0 IBM 0.0138 0.0033
AXP 0 0 INTC 0.0097 0.0118
BA 0 0 LMT 0.1416 0.1437

BAC 0.1647 0.1749 MSFT 0.0627 0.0626
CAT 0 0 NOC 0.0358 0.0192
CL 0.1519 0.1583 ORCL 0.0620 0.0403

CSCO 0 0. TXN 0 0
DELL 0 0 UIS 0 0

Table 3.6: Monthly mean logarithmic returns and standard deviations.

Mean log-return Standard deviation
AA 0.0083 0.1015
AEP 0.0031 0.0666
AMD 0.0117 0.2082
AVP 0.0104 0.1104
AXP 0.0126 0.0774
BA 0.0058 0.0902

BAC 0.0099 0.0777
CAT 0.0138 0.0873
CL 0.0103 0.0790

CSCO 0.0103 0.1324
DELL 0.0276 0.1402
GD 0.0135 0.0710
HET 0.0087 0.0968
HPQ 0.0046 0.1227
IBM 0.0085 0.0945
INTC 0.0090 0.1392
LMT 0.0062 0.0864
MSFT 0.0135 0.1124
NOC 0.0083 0.0875
ORCL 0.0096 0.1582
TXN 0.0137 0.1430
UIS 0.0004 0.1682
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3.3 Appendix

3.3.1 Bounds and Worst Case Analysis

The worst case analysis is an additional approach of output analysis for stochastic
programming with respect to the input probability distribution which we does not
know exactly, see [9]. Therefore we use some empirical approximations of it.

If we assume that P belongs to a family P of probability distributions, we can
construct minmin and minmax bounds for the optimal value ϕ(P ) = minx∈X G(x, P )
as

min
x∈X

inf
P∈P

G(x, P ) ≤ ϕ(P ) ≤ min
x∈X

sup
P∈P

G(x, P ).

3.3.2 Parametric Programming

The aim of this section is to summarize some results of parametric programming
from [3] and [9] which are useful for the contamination techniques. We assume that

1. Λ is a non-empty convex subset of Rs,

2. X is a non-empty convex subset of Rn,

3. G(x, λ) is a real-valued function defined on Rs × Rn and G(x, ·) is for each
x ∈ Rn affine-linear function on Rs, i.e. for all x ∈ X there exists an a ∈ Rs

and b ∈ R such that G(x, λ) = aλ+ b, λ ∈ Λ.

The basic parametric problem considered in this section has the form

ϕ(λ) := min
x∈X

G(x, λ), λ ∈ Λ,

where ϕ(λ) : Λ → R ∪ {−∞} is the extreme value function. We also define the
optimal set mapping ψ, the convexity set GG,X of the function G with respect to X ,
and fin ϕ by

ψ(λ) :=
{
x ∈ X : G(x, λ) = ϕ(λ)

}
,

GG,X :=
{
λ ∈ R

s : G(·, λ) is convex on X
}
,

fin ϕ :=
{
λ ∈ Λ : ϕ(λ) > −∞

}
.

Theorem 3.3.1. [3]
Under previous assumptions

1. ϕ(λ) is concave and fin ϕ is a convex subset of Λ.

2. GG,X is a closed convex subset of Rs.

3. If GG,X is non-empty then the functions G(·, λ) are strictly convex on X either
for all λ ∈ ri GG,X or for no λ ∈ GG,X , where ri C denotes the relative interior1

of a convex set C.

1A point x ∈ Rs belongs to the relative interior of the convex set C if x is an interior point of
C relative to the affine space generated by C, i.e. there exists a neighborhood of x such that its
intersection with the affine space generated by C is included in C. The affine space generated by C

is the space of points in Rs of the form tx + (1 − t)y, where x, y ∈ C and t ∈ R.
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4. If G(x, λ) is in addition continuous on X ×Λ, then the mapping ψ is closed on
Λ.

Let Λ ⊂ R. We denote G(u, λ) = G(u, Pλ) the objective function for the contam-
inated distribution and by

ϕ(λ) := min
u∈U

G(u, λ), λ ∈ [0, 1] (3.19)

the optimal value function. Suppose that we have nonempty, compact sets of optimal
solutions U∗(P ),U∗(Q) of the initial problem ((3.19) for λ = 0) and the completely
contaminated problem ((3.19) for λ = 1). If G(u, λ) is a linear function in λ and
convex in u, then the optimal value ϕ(λ) is a finite concave function on [0, 1], right
continuous at 0 and left continuous at 1. For the directional derivatives of the optimal
value function it holds

ϕ′(0+) =
d

dλ
ϕ(λ)

∣
∣
∣
λ=0+

= min
u∈U∗(P )

G(u,Q) − ϕ(0),

ϕ′(1−) =
d

dλ
ϕ(λ)

∣
∣
∣
λ=1−

= min
u∈U∗(Q)

G(u, P ) − ϕ(1). (3.20)



Chapter 4

Sensitivity Analysis of VaR and
CVaR

The main objective of this chapter is to study sensitivity of the measures Value
at Risk and Conditional Value at Risk through their derivatives with respect to the
portfolio allocation. These derivatives are introduced in articles [15], [34], however
their proofs are not always obvious or some assumptions are missing.

This Chapter is organized as follows: In Section 4.1 basic assumptions and notion
are introduced. In Sections 4.2, 4.3, the goal is to specify the conditions under which
it is possible to get explicit expressions for the first and second order derivatives
and we prove these expressions properly. In Section 4.4 we extend so far introduced
results and find Hessians of CVaR and VaR, which allow us to discuss convexity of
these measures. Section 4.5 contains needful statements from mathematical analysis.

4.1 Assumptions and Marking

In this chapter we denote Value at Risk of the loss random variable Z as V aRα(Z)
and Conditional Value at Risk as CV aRα(Z). We assume that (Z1, Y2) is a continu-
ously distributed random loss vector on

(
R2,B(R2), P1 ⊗ P2

)
with density f(z1, y2),

where Z1 denotes random loss of a portfolio without an asset with random loss Y2,
and L is an open interval, 0 ∈ L. For the density of the loss random variable
Z(x2) := Z1 + x2Y2, x2 ∈ L, it holds

fZ(x2)(z) =

{
∫∞

−∞
f(z − x2y2, y2) dy2 if

∫∞

−∞
f(z − x2y2, y2) dy2 <∞,

0 otherwise.
(4.1)

Then the conditional density is defined by

fY2|Z(x2)(y2|z) =

{ f(z−x2y2,y)
fZ(x2)(z)

if fZ(x2)(z) > 0,

0 if fZ(x2)(z) = 0,

(4.2)

33
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Specially, fZ1(z1) denotes the marginal density of Z1, i.e.

fZ1(z1) =

{
∫∞

−∞
f(z1, y2) dy2 if

∫∞

−∞
f(z1, y2) dy2 <∞,

0 otherwise
(4.3)

and the conditional density is defined by

fY2|Z1
(y2|z1) =

{ f(z1,y2)
fZ1

(z1)
if fZ1(z1) > 0

0 if fZ1(z1) = 0,

(4.4)

We denote (A1) the assumptions of Theorem 4.5.1 about interchanging of derivative
and integral, i.e. if h(t, x) satisfies

1. h(t, ·) is measurable on (X,A) for all t ∈ I,

2. it exists a set N ⊆ X with µ(N) = 0 such that ∀t∈I ∀x∈X\N the derivative
d
dt
h(t, x) exists and is finite,

3. it exists g(x) ∈ L1(µ) such that ∀t∈I ∀x∈X\N

∣
∣ d
dt
h(t, x)

∣
∣ ≤ g(x),

4. ∃t0∈I h(t0, ·) ∈ L1(µ).

The symbol (F) means ”according to Fubini’s theorem 4.5.3”.

4.2 First Order Derivatives of VaR and CVaR

In this section we assume that E[Z1] <∞ and E[Y2] <∞.

Theorem 4.2.1. (First order derivative of VaR)
If h1(x, y) =

∫∞

V aRα

(
Z(x)
)
−xy

f(z, y) dz fills the assumptions (A1), then

d V aRα

(
Z(x2)

)

dx2
= E

[

Y2

∣
∣
∣Z(x2) = V aRα

(
Z(x2)

)]

. (4.5)

Specially

d V aRα

(
Z(x2)

)

dx2

∣
∣
∣
∣
∣
x2=0

= E

[

Y2

∣
∣
∣Z1 = V aRα

(
Z1

)]

. (4.6)

Proof.

P

[

Z(x2) > V aRα

(
Z(x2)

)]

= 1 − α, (4.7)

P

[

Z1 + x2Y2 > V aRα

(
Z(x2)

)] (F )
=

(F )
=

∫ ∞

−∞

[
∫ ∞

V aRα

(
Z(x2)

)
−x2y2

f(z1, y2) dz1

]

dy2, (4.8)
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From (4.7) and (4.8)

0 =
d

dx2

∫ ∞

−∞

[
=: h1(x2,y2)

︷ ︸︸ ︷∫ ∞

V aRα

(
Z(x2)

)
−x2y2

f(z1, y2) dz1

]

dy2 =

=

∫ ∞

−∞

[

d

dx2

∫ ∞

V aRα

(
Z(x2)

)
−x2y2

f(z1, y2) dz1

]

dy2 = (4.9)

= −
∫ ∞

−∞

[

d V aRα

(
Z(x2)

)

dx2
− y2

]

· f
(

V aRα

(
Z(x2)

)
− x2y2, y2

)

dy2.

Combining (4.1) and (4.2), if for x2 ∈ R it holds

∫ ∞

−∞

f
(

V aRα

(
Z(x2)

)
− x2y2, y2

)

dy2 = fZ(x2)

(

V aRα

(
Z(x2)

))

> 0,

then

d V aRα

(
Z(x2)

)

dx2
=

∫∞

−∞
y2f
(

V aRα

(
Z(x2)

)
− x2y2, y2

)

dy2

∫∞

−∞
f
(

V aRα

(
Z(x2)

)
− x2y2, y2

)

dy2

=

=

∫ ∞

−∞

y2 ·
f
(

V aRα

(
Z(x2)

)
− x2y2, y2

)

fZ(x2)

(

V aRα

(
Z(x2)

)) dy2 =

(4.10)

=

∫ ∞

−∞

y2fY2|Z(x2)

(

y2|V aRα

(
Z(x2)

))

dy2 =

= E

[

Y2

∣
∣
∣Z(x2) = V aRα

(
Z(x2)

)]

. (4.11)

If
∫ ∞

−∞

f
(

V aRα

(
Z(x2)

)
− x2y2, y2

)

dy2 = fZ(x2)

(

V aRα

(
Z(x2)

))

= 0,

then from (4.2)

fY2|Z(x2)

(

y2|V aRα

(
Z(x2)

))

= 0 ⇒

⇒ d V aRα

(
Z(x2)

)

dx2

= E

[

Y2

∣
∣
∣Z(x2) = V aRα

(
Z(x2)

)]

= 0.
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Specially, if
∫∞

−∞
f
(

V aRα

(
Z1

)
, y2

)

dy2 > 0, then

d V aRα

(
Z(x2)

)

dx2

∣
∣
∣
∣
∣
x2=0

=

∫∞

−∞
y2f
(

V aRα

(
Z1

)
, y2

)

dy2

∫∞

−∞
f
(

V aRα

(
Z1

)
, y2

)

dy2

,

=

∫ ∞

−∞

y2 ·
f
(

V aRα

(
Z1

)
, y2

)

fZ1

(

V aRα

(
Z1

)) dy2 = (4.12)

=

∫ ∞

−∞

y2fY2|Z1

(

y2|V aRα

(
Z1

))

dy2,

= E

[

Y2

∣
∣
∣Z1 = V aRα

(
Z1

)]

and, if
∫∞

−∞
f
(

V aRα

(
Z1

)
, y2

)

dy2 = 0, then

d V aRα

(
Z(x2)

)

dx2

∣
∣
∣
∣
∣
x2=0

= 0.

Theorem 4.2.2. (First order derivative of CVaR)
If h1(x, y) =

∫∞

V aRα

(
Z(x)
)
−xy

f(z, y) dz

and h2(x, y) =
∫∞

V aRα

(
Z(x)
)
−xy

(z + xy)f(z, y) dz satisfy (A1), then

d CV aRα

(
Z(x2)

)

dx2

= E

[

Y2

∣
∣
∣Z(x2) > V aRα

(
Z(x2)

)]

. (4.13)

Specially

d CV aRα

(
Z(x2)

)

dx2

∣
∣
∣
∣
∣
x2=0

= E

[

Y2

∣
∣
∣Z1 > V aRα

(
Z1

)]

. (4.14)

Proof.

CV aRα

(
Z(x2)

)
= E

[

Z1 + x2Y2

∣
∣
∣Z1 + x2Y2 > V aRα

(
Z(x2)

)]

=

=
E

[

(Z1 + x2Y2)I{
Z1+x2Y2>V aRα

(
Z(x2)

)}
]

P

[

Z1 + x2Y2 > V aRα

(
Z(x2)

)]
(F )
=

(F )
=

1

1 − α

∫ ∞

−∞

[
∫ ∞

V aRα

(
Z(x2)

)
−x2y2

(z1 + x2y2)f(z1, y2) dz1

]

dy2,

(4.15)

Hence

(1 − α) · d CV aRα

(
Z(x2)

)

dx2

=
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=
d

dx2

∫ ∞

−∞

[
=: h2(x2,y2)

︷ ︸︸ ︷∫ ∞

V aRα

(
Z(x2)

)
−x2y2

(z1 + x2y2)f(z1, y2) dz1

]

dy2 =

=

∫ ∞

−∞

[

d

dx2

∫ ∞

V aRα

(
Z(x2)

)
−x2y2

(z1 + x2y2)f(z1, y2) dz1

]

dy2 =

=

∫ ∞

−∞

[
♠

︷ ︸︸ ︷

d

dx2

(∫ ∞

V aRα

(
Z(x2)

)
−x2y2

z1f(z1, y2) dz1

)

+

+
d

dx2

(

x2y2

∫ ∞

V aRα

(
Z(x2)

)
−x2y2

f(z1, y2) dz1

)

︸ ︷︷ ︸

♣

]

dy2 (4.16)

♠ = −
[

d V aRα

(
Z(x2)

)

dx2
− y2

]
(

V aRα

(
Z(x2)

)
− x2y2

)

×

× f
(

V aRα

(
Z(x2)

)
− x2y2, y2

)

,

♣ = y2

∫ ∞

V aRα

(
Z(x2)

)
−x2y2

f(z1, y2) dz1 −

− x2y2

[

d V aRα

(
Z(x2)

)

dx2

− y2

]

f
(

V aRα

(
Z(x2)

)
− x2y2, y2

)

.

Using ♠, ♣ and (4.9) we get

d CV aRα

(
Z(x2)

)

dx2
=

1

1 − α

∫ ∞

−∞

[
∫ ∞

V aRα

(
Z(x2)

)
−x2y2

y2f(z1, y2) dz1

]

dy2

(4.17)

and finally

d CV aRα

(
Z(x2)

)

dx2
= E

[

Y2

∣
∣
∣Z(x2) > V aRα

(
Z(x2)

)]

.

Specially

d CV aRα

(
Z(x2)

)

dx2

∣
∣
∣
∣
∣
x2=0

=
1

1 − α

∫ ∞

−∞

[
∫ ∞

V aRα(Z1)

y2f(z1, y2) dz1

]

dy2,

= E

[

Y2

∣
∣
∣Z1 > V aRα(Z1)

]

.

�
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4.3 Second Order Derivatives of VaR and CVaR

In this section we assume that E[Z2
1 ] <∞ and E[Y 2

2 ] <∞.

Theorem 4.3.1. (Second order derivative of CVaR)
If h2(x, y) =

∫∞

V aRα

(
Z(x)
)
−xy

(z+xy)f(z, y) dz and h3(x, y) =
∫∞

V aRα

(
Z(x)
)
−xy

yf(z, y) dz

satisfy (A1), then

d2 CV aRα

(
Z(x2)

)

dx2
2

=
fZ(x2)

(

V aRα

(
Z(x2)

))

1 − α
×

× VAR

[

Y2

∣
∣
∣Z(x2) = V aRα

(
Z(x2)

)]

. (4.18)

Specially

d2 CV aRα

(
Z(x2)

)

dx2
2

∣
∣
∣
∣
∣
x2=0

=
fZ1

(

V aRα

(
Z1

))

1 − α
VAR

[

Y2

∣
∣
∣Z1 = V aRα

(
Z1

)]

.

(4.19)

Proof. From (4.17)

d2 CV aRα

(
Z(x2)

)

dx2
2

=

=
1

1 − α

∫ ∞

−∞

d

dx2

[
=: h3(x2,y2)

︷ ︸︸ ︷∫ ∞

V aRα

(
Z(x2)

)
−x2y2

y2f(z1, y2) dz1

]

︸ ︷︷ ︸

♠

dy2 = (4.20)

♠ = −
(

d V aRα

(
Z(x2)

)

dx2
− y2

)

f
(

V aRα

(
Z(x2)

)
− x2y2, y2

)

.

Using ♠ and (4.2) for (4.20) we get

=
1

1 − α

[

− d V aRα

(
Z(x2)

)

dx2

∫ ∞

−∞

y2f
(

V aRα

(
Z(x2)

)
− x2y2, y2

)

dy2 +

+

∫ ∞

−∞

y2
2 f
(

V aRα

(
Z(x2)

)
− x2y2, y2

)

dy2

]

= (4.21)

=
1

1 − α

∫ ∞

−∞

f
(

V aRα

(
Z(x2)

)
− x2y2, y2

)

dy2 ×

×
[

− d V aRα

(
Z(x2)

)

dx2

∫ ∞

−∞

y2

f
(

V aRα

(
Z(x2)

)
− x2y2, y2

)

∫∞

−∞
f
(

V aRα

(
Z(x2)

)
− x2y2, y2

)

dy2

dy2 +

+

∫ ∞

−∞

y2
2

f
(

V aRα

(
Z(x2)

)
− x2y2, y2

)

∫∞

−∞
f
(

V aRα

(
Z(x2)

)
− x2y2, y2

)

dy2

dy2

]

. (4.22)
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From (4.10) and (4.22)

d2 CV aRα

(
Z(x2)

)

dx2
2

=

=

∫∞

−∞
f
(

V aRα

(
Z(x2)

)
− x2y2, y2

)

dy2

1 − α
×

×
[

E

[

Y 2
2

∣
∣
∣Z(x2) = V aRα

(
Z(x2)

)]

−
(

E

[

Y2

∣
∣
∣Z(x2) = V aRα

(
Z(x2)

)]
)2]

=

=
fZ(x2)

(

V aRα

(
Z(x2)

))

1 − α
VAR

[

Y2

∣
∣
∣Z(x2) = V aRα

(
Z(x2)

)]

.

Specially

d2 CV aRα

(
Z(x2)

)

dx2
2

∣
∣
∣
∣
∣
x2=0

=

=

∫∞

−∞
f
(

V aRα

(
Z1

)
, y2

)

dy2

1 − α
×

×
[

E

[

Y 2
2

∣
∣
∣Z1 = V aRα

(
Z1

)]

−
(

E

[

Y2

∣
∣
∣Z1 = V aRα

(
Z1

)]
)2]

=

=
fZ1

(

V aRα

(
Z1

))

1 − α
VAR

[

Y2

∣
∣
∣Z1 = V aRα

(
Z1

)]

.

�

Theorem 4.3.2. (Second order derivative of VaR)
If h2(x, y) =

∫∞

V aRα

(
Z(x)
)
−xy

(z + xy)f(z, y) dz

and h3(x, y) =
∫∞

V aRα

(
Z(x)
)
−xy

yf(z, y) dz satisfy (A1) and if CV aRα(Z1 + x2Y2) =

h4(α, x2) as a function of α and x2 is three times continuously differentiable, i.e.
h4(α, x2) ∈ C3

(
(0, 1) × I

)
, then

d2 V aRα

(
Z(x2)

)

dx2
2

=

= −
[

d VAR
[
Y2

∣
∣Z(x2) = z

]

dz
+ VAR

[
Y2

∣
∣Z(x2) = z

]d ln fZ(x2)(z)

dz

]∣
∣
∣
∣
∣
z=V aRα

(
Z(x2)

)
.

(4.23)



CHAPTER 4. SENSITIVITY ANALYSIS OF VAR AND CVAR 40

Specially

d2 V aRα

(
Z(x2)

)

dx2
2

∣
∣
∣
∣
∣
x2=0

=

= −
[

d VAR
[
Y2

∣
∣Z1 = z1

]

dz1
+ VAR

[
Y2

∣
∣Z1 = z1

]d ln fZ1(z1)

dz1

]∣
∣
∣
∣
∣
z1=V aRα

(
Z1

)
.

(4.24)

Lemma 4.3.3.
If Z is a continuously distributed loss random variable, then

1.

CV aRα(Z) =
1

1 − α

∫ 1

α

z dFZ =

(subst.)
=

[
z = V aRs(Z)
s = P(Z ≤ z) = F (z)

]

=

=
1

1 − α

∫ 1

α

V aRs(Z) ds. (4.25)

2.

V aRα(Z) = F−1
Z (α)

d F−1
Z (α)

dα
=

1

fZ(F−1
Z (α))

, i.e.

d V aRα(Z)

dα
=

1

fZ(V aRα(Z))
(4.26)

Proof of Theorem 4.3.2
From (4.25)

V aRα

(
Z(x2)

)
=

d
[

− (1 − α)CV aRα

(
Z(x2)

)]

dα
,

−d2V aRα(Z)

dx2
2

=
d2

dx2
2

[

d
[
(1 − α)CV aRα

(
Z(x2)

)]

dα

]

, (4.27)

If it is possible to interchange the order of partial derivatives in (4.27), i.e. if
CV aRα(Z1 + x2Y2) = f(α, x2) ∈ C3

(
(0, 1) × I

)
, see Theorem 4.5.2, then

d

dα

[

d2
[
(1 − α)CV aRα

(
Z(x2)

)]

dx2
2

]

=
d2

dx2
2

[

d
[
(1 − α)CV aRα

(
Z(x2)

)]

dα

]

(4.28)
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and from (4.18) and (4.28)

−d2V aRα

(
Z(x2)

)

dx2
2

=

=
d

dα

[

fZ(x2)

(

V aRα

(
Z(x2)

))

VAR

[

Y2

∣
∣
∣Z(x2) = V aRα

(
Z(x2)

)]
]

=
d fZ(x2)

(

V aRα

(
Z(x2)

))

dα
︸ ︷︷ ︸

♠

·VAR

[

Y2

∣
∣
∣Z(x2) = V aRα

(
Z(x2)

)]

+

+ fZ(x2)

(

V aRα

(
Z(x2)

))

·
d VAR

[

Y2

∣
∣
∣Z(x2) = V aRα

(
Z(x2)

)]

dα
︸ ︷︷ ︸

♣

.

(4.29)

From (4.26)

♠ =
d fZ(x2)(z)

dz

∣
∣
∣
∣
∣
z=V aRα

(
Z(x2)

)
· 1

fZ(x2)

(

V aRα

(
Z(x2)

)) =

=
d ln fZ(x2)(z)

dz

∣
∣
∣
∣
∣
z=V aRα

(
Z(x2)

)
.

♣ =
d VAR

[
Y2

∣
∣Z(x2) = z

]

dz

∣
∣
∣
∣
∣
z=V aRα

(
Z(x2)

)
· d V aRα

(
Z(x2)

)

dα
=

=
d VAR

[
Y2

∣
∣Z(x2) = z

]

dz

∣
∣
∣
∣
∣
z=V aRα

(
Z(x2)

)
· 1

fZ(x2)

(

V aRα

(
Z(x2)

)) .

Now we can express from (4.29) the second order derivative of VaR (4.23).
Specially

−d2V aRα

(
Z(x2)

)

dx2
2

∣
∣
∣
∣
∣
x2=0

=

=
d

dα

[

fZ1

(

V aRα

(
Z1

))

VAR

[

Y2

∣
∣
∣Z1 = V aRα

(
Z1

)]
]

=
d fZ1

(

V aRα

(
Z1

))

dα
︸ ︷︷ ︸

♠
0

·VAR

[

Y2

∣
∣
∣Z1 = V aRα

(
Z1

)]

+

+ fZ1

(

V aRα

(
Z1

))

·
d VAR

[

Y2

∣
∣
∣Z1 = V aRα

(
Z1

)]

dα
︸ ︷︷ ︸

♣
0

. (4.30)
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From (4.26)

♠0
=

d fZ1(z1)

dz1

∣
∣
∣
∣
∣
z1=V aRα

(
Z1

)
· 1

fZ1

(

V aRα

(
Z1

)) =

=
d ln fZ1(z1)

dz1

∣
∣
∣
∣
∣
z1=V aRα

(
Z1

)

♣0
=

d VAR
[
Y2

∣
∣Z1 = z1

]

dz1

∣
∣
∣
∣
∣
z1=V aRα

(
Z1

)
· d V aRα

(
Z1

)

dα
=

=
d VAR

[
Y2

∣
∣Z1 = z1

]

dz1

∣
∣
∣
∣
∣
z1=V aRα

(
Z1

)
· 1

fZ1

(

V aRα

(
Z1

)) .

�

Some conditions for partial derivatives interchanging are also introduced in [17] (The-
orem 195).

Interpretation of (4.5), (4.13) as marginal risk contributions in credit risk and
proofs (not so exact as previous and without many assumptions) of these formulas
and of the second order derivatives (4.18), (4.23) for incomes (profits) I = −Z can
be found in [34].

4.4 Hessian of CVaR and VaR

Below we show that under certain assumptions it is possible to find Hessians of
VaR and CVaR with respect to the portfolio allocation vector.

Let I = {1, . . . , n} and I(i, j) = I \ {i, j}, ∀i, j ∈ I, i 6= j (the case i = j is
introduced in previous section) be index sets, the random future values have finite
second order moments, i.e. E[Y 2

k ] < ∞, ∀k ∈ I, the portfolio allocations belong to
open intervals, i.e. xk ∈ Lk ⊂ R, 0 ∈ Lk, ∀k ∈ I, Lk be an open interval. We denote
x

T = (x1, . . . , xn) the decision vector and

Z(x) =
∑

i∈I

xiYi,

ZI(i,j) =
∑

k∈I(i,j)

xkYk for fixed xk ∈ Lk, k ∈ I(i, j),

Z(xi, xj) = ZI(i,j) + xiYi + xjYj

the bilinear loss random functions. Let (ZI(i,j), Yi, Yj) be continuously distributed
random vector on

(
R3,B(R3), PI(i,j) ⊗ Pi ⊗ Pj

)
with the density f(z, yi, yj). Then

fZ(xi,xj)(z) =

{

∫∞

−∞

∫∞

−∞
f(z − xiyi − xjyj, yi, yj) dyidyj

if
∫∞

−∞

∫∞

−∞
f(z − xiyi − xjyj, yi, yj) dyidyj <∞,

0
otherwise,

(4.31)
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fYi|Z(xi,xj)(yi|z) =

{
∫
∞

−∞
f(z−xiyi−xjyj ,yi,yj) dyj

fZ(xi,xj)(z)
if fZ(xi,xj)(z) > 0,

0 if fZ(xi,xj)(z) = 0,

(4.32)

Because the prepositions and their proofs are analogous to the previous ones, we
will proceed more quickly, denote steps and assumptions.

(A)

If h4(xi, yi, yj) =
∫∞

V aRα

(
Z(xi,xj)

)
−xiyi−xjyj

f
(

V aRα

(
Z(xi, xj)

)
− xiyi − xjyj, yi, yj

)

dz

satisfies the assumptions (A1) for fixed xj , then

∫ ∞

−∞

∫ ∞

−∞

[

∂ V aRα

(
Z(xi, xj)

)

∂xi

− yi

]

·

·f
(

V aRα

(
Z(xi, xj)

)
− xiyi − xjyj, yi, yj

)

dyidyj = 0. (4.33)

(B)

Under previous assumptions and if
∫∞

−∞

∫∞

−∞
f
(

V aRα

(
Z(xi, xj)

)
−xiyi−xjyj, yi, yj

)

dyidyj >

0, then

∂ V aRα

(
Z(xi, xj)

)

∂xi
=

=

∫ ∞

−∞

yi

∫∞

−∞
f
(

V aRα

(
Z(xi, xj)

)
− xiyi − xjyj, yi, yj

)

dyj

∫∞

−∞

∫∞

−∞
f
(

V aRα

(
Z(xi, xj)

)
− xiyi − xjyj, yi, yj

)

dyidyj

dyi =

=

∫ ∞

−∞

yifYi|Z(xi,xj)

(

yi|V aRα

(
Z(xi, xj)

))

dyi = (4.34)

= E

[

Yi

∣
∣
∣Z(xi, xj) = V aRα

(
Z(xi, xj)

)]

. (4.35)

(C)
Under previous assumptions and if h5(xi, yi, yj) =

∫∞

V aRα

(
Z(xi,xj)

)
−xiyi−xjyj

(
z+ xiyi +

xjyj

)
· f
(
z, yi, yj

)
dz satisfies (A1) for fixed xj , then

∂ CV aRα

(
Z(xi, xj)

)

∂xi
=

1

1 − α

∫ ∞

−∞

∫ ∞

−∞

∂

∂xi

h(xi,yi,yj)
︷ ︸︸ ︷[
∫ ∞

V aRα

(
Z(xi,xj)

)
−xiyi−xjyj

(
z + xiyi + xjyj

)
· f
(
z, yi, yj

)
dz

]

dyidyj =

=
1

1 − α

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

V aRα

(
Z(xi,xj)

)
−xiyi−xjyj

yi · f
(
z, yi, yj

)
dzdyidyj =

= E

[

Yi

∣
∣
∣Z(xi, xj) > V aRα

(
Z(xi, xj)

)]

.

(4.36)
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(D)

Under previous assumptions and if h(xj , yi, yj) =
∫∞

V aRα

(
Z(xi,xj)

)
−xiyi−xjyj

yi·f
(

z, yi, yj

)

dz

satisfies (A1) for fixed xi, then from (4.36)

(1 − α) · ∂
2 CV aRα

(
Z(xi, xj)

)

∂xj∂xi
=

=

∫ ∞

−∞

∫ ∞

−∞

∂

∂xj

h(xj ,yi,yj)
︷ ︸︸ ︷[
∫ ∞

V aRα

(
Z(xi,xj)

)
−xiyi−xjyj

yi · f
(
z, yi, yj

)
dz

]

dyidyj

=

∫ ∞

−∞

∫ ∞

−∞

yi

[

−∂ V aRα

(
Z(xi, xj)

)

∂xj
+ yj

]

·

· f
(

V aRα

(
Z(xi, xj)

)
− xiyi − xjyj, yi, yj

)

dyidyj =

= fZ(xi,xj)

(

V aRα

(
Z(xi, xj)

))

·
[

E

[

YiYj

∣
∣
∣Z(xi, xj) = V aRα

(
Z(xi, xj)

)]

−

− E

[

Yi

∣
∣
∣Z(xi, xj) = V aRα

(
Z(xi, xj)

)]

· E

[

Yj

∣
∣
∣Z(xi, xj) = V aRα

(
Z(xi, xj)

)]
]

=

= fZ(xi,xj)

(

V aRα

(
Z(xi, xj)

))

· COV

[

Yi, Yj

∣
∣
∣Z(xi, xj) = V aRα

(
Z(xi, xj)

)]

.

(4.37)

(E)
If the previous assumptions hold for every i, j ∈ I, then from (4.37) we can obtain
the Hessian of CVaR

HCV aR(x) =

{

∂2 CV aRα

(
Z(x)

)

∂xj∂xi

}

i,j∈{1...n}

=
fZ(x)

(

V aRα

(
Z(x)

))

1 − α
·
{

COV

[

Yi, Yj

∣
∣
∣Z(x) = V aRα

(
Z(x)

)]
}

i,j∈{1...n}

.

(4.38)

HCV aR(x) is positive semidefinite that implies convexity of CV aRα

(
Z(x)

)
in x.

(F)
Under previous assumptions and if CV aRα

(
Z(x2, x3)

)
∈ C3

(
(0, 1) × I2 × I3

)
, then

from Lemma 4.3.3 and (4.37) it holds

∂2 V aRα

(
Z(xi, xj)

)

∂xj∂xi
= −

[

d COV
[
Yi, Yj

∣
∣Z(xi, xj) = z

]

dz
+

+COV
[
Yi, Yj

∣
∣Z(xi, xj) = z

]d ln fZ(xi,xj)(z)

dz

]∣
∣
∣
∣
∣
z=V aRα

(
Z(xi,xj)

)
. (4.39)
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(G)
If the previous assumptions hold for every i, j ∈ I, using result (4.39), the Hessian
of VaR equals

HV aR(x) =

{

−
[

d COV
[
Yi, Yj

∣
∣Z(x) = z

]

dz
+

+ COV
[
Yi, Yj

∣
∣Z(x) = z

]d ln fZ(x)(z)

dz

]∣
∣
∣
∣
∣
z=V aRα

(
Z(x)
)

}

i,j∈{1...n}

.

(4.40)

In [15] some conditions which ensure convexity of VaR in each decision variable are
introduced. However, this conditions does not imply joint convexity in the decision
vector x and we are not able to find any general conditions which would ensure
convexity of VaR with respect to the whole decision vector.

4.5 Appendix

Theorem 4.5.1. (Interchanging of derivative and integral) [25]
Let (X,A, µ) be a space with a measure, I ⊆ R an open interval and f : I × X → R

a function with following properties:

1. f(t, ·) is measurable on (X,A) for all t ∈ I,

2. it exists a set N ⊆ X with µ(N) = 0 such that ∀t∈I ∀x∈X\N the derivative
d
dt
f(t, x) exists and is finite,

3. it exists g(x) ∈ L1(µ) such that ∀t∈I ∀x∈X\N

∣
∣ d
dt
f(t, x)

∣
∣ ≤ g(x),

4. ∃t0∈I f(t0, ·) ∈ L1(µ).

Then f(t, ·) ∈ L1(µ), ∀t∈I , the function F : t →
∫

X
f(t, x) dµ(x) is differentiable on

I and it holds

F ′(t) =

∫

X

d

dt
f(t, x) dµ(x), t ∈ I.

Theorem 4.5.2. (Interchanging of partial derivatives) [42]
Let the function f be in class Ck(G) (k ≥ 2), where G ⊂ Rn is an open set and
x ∈ G. Then the value

∂kf

∂xik . . . ∂xi1

(x) = fik,...,i1(x)

does not depend on order of the indices i1, . . . , ik ∈ {1, . . . , n}.
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Theorem 4.5.3. (Fubini) [25]
Let (Ω1,A1, µ1) and (Ω2,A2, µ2) be spaces with σ-finite measures, f be A1 × A2-
measurable function on Ω1 × Ω2. If

∫

Ω1×Ω2
f(ω1, ω2)d(µ1 × µ2)(ω1, ω2) <∞, then

∫

Ω1×Ω2

f(ω1, ω2)d(µ1 × µ2)(ω1, ω2) =

=

∫

Ω2

(∫

Ω1

f(ω1, ω2)dµ1(ω1)

)

dµ2(ω2) =

=

∫

Ω1

(∫

Ω2

f(ω1, ω2)dµ2(ω2)

)

dµ1(ω1).



Chapter 5

Dynamic Risk Measures

A risk measure that is defined over a process or a time series is called the multi-
period or dynamic risk measure. The problem of dynamic risk measures has gained
much attention recently and is discussed in many monographs and scientific papers,
i.a. in [2], [6], [38]. We focus on risk measures for discrete time decision model with
a given finite time horizon.

This chapter is organized as follows: In Section 5.1 we define the dynamic risk
measure for income streams which is introduced in [31], summarize its basic properties
and incorporate it into multistage stochastic programming problem for a scenario
tree of income streams. In Section 5.2 we concentrate on applications of drawdown
functional in portfolio optimization, we describe some drawdown measures and its
properties.

5.1 A Risk Measure for Income Processes

In this section we introduce the dynamic risk measure from [31] and [32] which is
based on nonanticipativity princip and is closely related to expected value of perfect
information (EVPI) of stochastic programming problems, for details see [10] or [37].
The basic idea follows.

[31]: ”The risk is not only a function of the random distribution of the random
income, but also a function of the available information about it. Risk is viewed as
the cost for uncertainty and lack of information and is measured in money units, in
the same units as the value.” The amount of information is discribed by appropriate
σ−algebra (filtration of a stochastic process).

5.1.1 Nonanticipativity

Basic principles of anticipativity and non-anticipativity can be simply demon-
strated within framework of one-period prediction problem, for more appropriate
explanation see [10]. We would like to predict some random future value Y . We
suppose that the prediction error is measured by the expected quadratic deviation
and we solve two problems:

47
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• Optimal non-anticipative prediction problem

min
value a

E[(Y − a)2],

where the optimal solution is the expectation a = E(Y ) and the optimal value
is var(Y ).

• Clairvoyant’s optimal anticipative prediction problem

min
function a(Y )

E[(Y − a(Y ))2],

where the solution is a(Y ) = Y and the optimal value is 0.

Thus, the variance (which is occasionally used as a risk measure) gets a new inter-
pretation as the difference between the optimal value of the non-anticipative problem
and the anticipative problem. Definition of new dynamic risk measure is based on
this idea.

5.1.2 A Multi-period Measure

Let the planning horizon be the endpoint τ of an interval [0, τ ] which is further
covered by nonoverlapping time intervals (periods) indexed by t = 1, . . . , T . Suppose
that I1, I2, . . . , IT is a stream of random income variables on some probability space
(Ω,F , P ) with finite expectations E[It] <∞, t = 1, . . . , T . Let F = (Ft, t = 1, . . . , T )
be a filtration such that It is Ft−measurable (It is a Ft-adapted process), F0 := (∅,Ω).
We would like to maximize the expected consumption minus the expected shortfall
costs. We denote

• at . . . amount to be consumed during the period t (main decision variable); at

is Ft−1 measurable, because the decision about at must be made at the end of
the time period t− 1,

• r . . . fixed (technical) interest rate,

• ct = (1 + r)−t . . . net present value (NPV),

• qt = q0(1 + r)−t ≥ 0 . . . shortfall costs,

• d = d0(1 + r)−T ≥ 0 . . . discount factor for final surplus,

• d0 and q0 . . . constants satisfying d0 ≤ 1 ≤ q0,

• St = [St−1 + It − at]
+ . . . surplus carried from the period t to t+ 1, S0 = 0,

• Mt = [St−1 + It − at]
− . . . shortfall at the end of the period t.

Non-anticipative problem can be written as

UF(I1, I2, . . . , IT ) = max E

[ T∑

t=1

(ctat − qtMt) + dST

]

(5.1)

s.t. at is Ft−1 − measurable for t = 1, . . . , T
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and claivoyant’s problem (where we are given complete information FT ) as

UFT
(I1, I2, . . . , IT ) = max E

[ T∑

t=1

(ctat − qtMt) + dST

]

(5.2)

s.t. at is FT − measurable for t = 1, . . . , T,

that can be reduced to (at = It)

UFT
(I1, I2, . . . , IT ) =

T∑

t=1

ctE(It). (5.3)

The dynamic risk measure is then defined as the difference between the optimal
value of the non-anticipative problem and the anticipative problem, i.e.

R(I1, I2, . . . , IT ) = UFT
(I1, I2, . . . , IT ) − UF(I1, I2, . . . , IT ). (5.4)

Because of this definition minimization of the risk measure R is equivalent to maxi-
mization of the expected utility UF. According to [32], the dual problem to (5.1) has
the following form

min E

T∑

t=1

λtIt

s.t. (5.5)

Et−1λt = ct, t = 1, . . . , T,

λt ≤ qt, t = 1, . . . , T,

λT ≥ d,

λt ≥ Eλt+1, t = 1, . . . , T − 1.

Multiplier process {λt} is a submartingale. Under our assumptions the problem (5.1)
and its dual form (5.5) has the same finite optimal value. Basic principles of duality
in stochastic programming can be found in [37].

Theorem 5.1.1. (Properties of the expected utility and the dynamic risk measure)
[31]

1. UF is monotonic, i.e. UF(I
(1)
1 , . . . , I

(1)
T ) ≤ UF(I

(2)
1 , . . . , I

(2)
T ), where {I(1)

T }, {I(2)
T }

are two Ft−adapted processes such that I
(1)
t ≤ I

(2)
t , t = 1, . . . , T ,

2. (I
(1)
t |Ft−1) ≺SSD (I

(2)
t |Ft−1), t = 1, . . . , T ⇒ UF(I

(1)
1 , . . . , I

(1)
T ) ≤ UF(I

(2)
1 , . . . , I

(2)
T ),

3. R is convex, i.e. for two streams (I
(1)
1 , . . . , I

(1)
T ), (I

(2)
1 , . . . , I

(2)
T ) with finite ex-

pectations and every λ ∈ (0, 1) it holds

R(λ(I
(1)
1 , . . . , I

(1)
T ) + (1 − λ)(I

(2)
1 , . . . , I

(2)
T )) ≤

≤ λR(I
(1)
1 , . . . , I

(1)
T ) + (1 − λ)R(I

(2)
1 , . . . , I

(2)
T ).
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5.1.3 Mean - Dynamic Risk Model

In [31] a mean-dynamic risk model for random income streams
(
Ij
t , t = 1, . . . , T

)
, j =

1, . . . , n is introduced. Its objective is to get a fixed mix portfolio with random income
stream

(
It(x) =

∑n
j=1 xjI

j
t , t = 1, . . . , T

)
, which maximizes the expected net present

value µ(x) =
∑n

i=1 xi

∑T
t=1 ctE(I i

t ) and minimizes the risk measure R
(
I1(x), . . . , IT (x)

)

defined in (5.4). Thus, we solve the following optimization problem for some value of
the parameter m.

min R
(
I1(x), . . . , IT (x)

)

s.t. µ(x) = m,

∑n
i=1 xi = 1,

xi ≥ 0, i = 1, . . . , n,

which can be rewritten as

min E

[

∑T
t=1

(

ct

(
∑n

i=1 xiI
j
t − at

)

+ qtMt

)

− dST

]

s.t. St −Mt = St−1 +
∑n

i=1 xjI
i
t − at, t = 1, . . . , T,

∑n
i=1 xi

∑T
t=1 ctE(I i

t ) = m,

∑n
i=1 xi = 1,

xi ≥ 0, i = 1, . . . , n,

St ≥ 0, Mt ≥ 0, t = 1, . . . , T.

Multistage stochastic programming model for a scenario tree of income streams
can be formulated as follows. Let the nodes of the tree are numbered 0, 1, 2, . . . , K,
with 0 being the root, K = {1, 2, . . . , K} be set of the nodes without the root. We
suppose that the decisions about consumption are made at the non-terminal nodes,
the portfolio is mixed at the root and is fixed during our horizon. Let tk denote the
time stage of the node k ∈ K and k− its predecessor. Let Kt ⊂ K, t = 1, . . . , T
be disjoint sets of numbers of the nodes at the layer t, thus for a node k it holds
k ∈ Kt(k). The terminal nodes we denote KT = {K0, . . . , K}. For probabilities of



CHAPTER 5. DYNAMIC RISK MEASURES 51

nodes pk, k = 1, . . . , K it holds
∑

k∈Kt
pk = 1.

min
∑

k∈K pkct(k)

(
∑n

i=1 xiI
i
k − ak−

)

+
∑

k∈K pkqt(k)Mk −
∑

k∈KT
pkdSk

s.t. Sk + ak− −Mk =
∑n

i=1 xiI
i
k, t(k) = 1, k ∈ K,

Sk − Sk− + ak− −Mk =
∑n

i=1 xiI
i
k, t(k) > 1, k ∈ K,

∑n
i=1 xi

∑

k∈K pkct(k)I
i
k = m,

Mk ≥ 0, Sk ≥ 0, k ∈ K,

xi ≥ 0, i = 1, . . . , n.

A crucial question is how to generate the input for the previous decision model. Some
methods for scenario generation are described in [10], [16].

5.2 Drawdown Measures

In this section we focuse on applications of drawdown functional in portfolio op-
timization. This topic is discussed i.a. in [6], [5], [21]. The drawdown measures are
usually applied to a sample path or fan scenario trees of uncompounted portfolio rate
of returns, not to random loss variables or processes.

We suppose that the considered time interval [0, τ ] is divided into T ∈ N nonover-
lapping periods (intervals) indexed by t = 1, . . . , T . The portfolio absolute draw-
down is defined as the drop of the current portfolio value comparing to its maximum
achieved in the past up to current moment.

Definition 5.2.1. (Drawdown function) [5]
Denote by w = (wt, t = 1, . . . , T ) the sample path of uncompounded cumulative
portfolio rate of return, where

wt =

N∑

i=1

(
t∑

j=1

rijxij

)

, t = 1, . . . , T, (5.6)

rij is the logaritmic rate of return of i-th instrument in j-th period, xij is the instru-
ment weight,

∑n
i=1 xij = 1, j = 1, . . . , T .

The portfolio absolute drawdown at the end of period t is defined as

ADt = max
1≤k≤t

wk − wt. (5.7)

We have got the absolute drawdown function (time series) AD(w) = (ADt, t =
1, . . . , T ), or simply AD.

The portfolio weights may be constant through time (in portfolio optimization
problems without revisions). We can argue for using logaritmic returns instead of
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rates of return in the previous definition as follows. Let Wt denote portfolio wealth
at the end of period t, i.e. Wt = P0 · (1 + Rt), t = 1, . . . , T , where P0 is an initial
wealth and Rt the portfolio return for the time horizon t. Then the portfolio relative
drawdown is defined as

RDt =
max1≤k≤tWk

Wt

, t = 1, . . . , T.

It is easy to see, that RDt > 1 just when portfolio wealth decreases and RDt = 1
just when portfolio wealth does not decrease. Sometimes the relative drawdown is
defined as R̃Dt = max1≤k≤tWk/Wt − 1, t = 1, . . . , T . For logarithm of the relative
drawdowns it holds

lnRDt = max
1≤k≤t

lnWk − lnWt =

= max
1≤k≤t

ln(1 +Rk) − ln(1 +Rt).

By using the relation ln(1 + Rk) = rt, where rt is the logarithmic return, and the
multiplicative effect for logaritmic returns, see Subsection 7.1.1, we get the absolute
drawdown, i.e. lnRDt = ADt, t = 1, . . . T . It is necessary to remark that the
logaritmic returns for small values do not differ from corresponding rates of return
too much. Basic properties of the absolute drawdown function do not change if we
use rates of return in its definition.

Figure 5.1 illustrates an example of monthly time series of cumulative rate of
return and corresponding drawdown function of Northrop Grumman Corp. When
the uncompounted cumulative rate of return decreases (achieves its local minimum),
the absolute drawdown function increases (achieves its local maximum).

Remark 5.2.2. (Properties of the absolute drawdown function) [6]
Let AD(w) be the absolute drawdown function of an uncompounded cumulative port-
folio rate of return w, then

1. ADt ≥ 0, t = 1, . . . , T (nonnegativity of the absolute drawdown function).

2. ADt =
[
ADt−1−

∑n
i=1 ritxit

]+
, t = 1, . . . , T , where we set AD0 = 0 (recursion).

3. AD(w+const) = AD(w), AD(λw) = λAD(w), ∀λ≥0 (insensitivity to constant
shift and positive homogenity).

4. AD(λw1 + (1− λ)w2) ≤ λAD(w1) + (1 − λ)AD(w2), λ ∈ [0, 1], where w1, w2

are uncompounded cumulative portfolio rates of return (convexity).

Definition 5.2.3. (Nonparametric drawdown risk measures) [5]
The Maximum Drawdown (MaxDD) on the interval [0, τ ] is the maximum of the
drawdown function, i.e.

MaxDD
(
AD(w)

)
= max

0≤t≤T
ADt.

The Average Drawdown (AvDD) is defined as

AvDD
(
AD(w)

)
=

1

T

T∑

t=1

ADt.
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Figure 5.1: Time series of cumulative rate of return and corresponding absolute
drawdown function (Northrop Grumman Corp., 2.2.2004-1.2.2006, monthly).
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The Maximum Drawdown is based on the worst case in the sample path, so it
may be too conservative to minimize it while the Average Drawdown may mask
large drawdowns. This leads us to introduce Conditional Drawdown at Risk (CDaR)
which combines CVaR and drawdown approaches. CDaR is defined as the mean
of the worst (1 − α) · 100% absolute drawdowns. Conditional Drawdown at Risk
represents a dynamic extension of Conditional Value at Risk, however, the absolute
drawdowns are viewed, in fact, as independent realizations (with equal probability
1/T ) of some discrete drawdown loss random variable dependent on decisions, even
though they rather form a time series. In [6] CDaR is defined using the expression
of CVaR as a weighted average of VaR and the mean of the losses strictly exceeding
VaR under previous assumptions, see Subsection 2.3.2.

Definition 5.2.4. (Conditional Drawdown at Risk (CDaR)) [6]
Let AD(w) be an absolute drawdown function, α ∈ (0, 1),

ΠAD(ξ) =
1

T

T∑

t=1

I(ADt ≤ ξ), ξ ∈ R,

Π−1
AD

(α) =

{ min{ξ : ΠAD(ξ) ≥ α} for α ∈ (0, 1]

0 for α = 0,

Ξα =
{
ADt : ADt > Π−1

AD
(α)
}
, α ∈ [0, 1],
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where I(·) is an indikator. Then the Conditional Drawdown at Risk (CDaR) is
defined as

CDaRα

(
AD(w)

)
=

(

ΠAD

(
Π−1

AD
(α)
)
− α

1 − α

)

Π−1
AD

(α) +
1

(1 − α)T

∑

ADt∈Ξα

ADt.

(5.8)

The properties of CVaR showed in the Subsection 2.3.3 enables us to extend the
minimization formula for CDaR which is useful in practical implementation.

Theorem 5.2.5. (Minimization formula for CDaR) [21]
Given an absolute drawdown function AD(w), computation of the Conditional Draw-
down at Risk of the absolute drawdown function AD(w) can be reduced to the following
programming procedure

CDaRα

(
AD(w)

)
= min

y∈R

{

y +
1

(1 − α)T

T∑

t=1

[
ADt − y

]+
}

, (5.9)

for some α ∈ (0, 1),
leading to a single optimal value equal to Π−1

AD
(α) if ΠAD

(
Π−1

AD
(α)
)
> α,

and to a closed bounded interval with the left endpoint Π−1
AD

(α) if ΠAD

(
Π−1

AD
(α)
)

= α.

The optimization problem (5.9) can be rewritten using (5.6) and (5.7) as

CDaRα

(
AD(w)

)
= min

y∈R

{

y +
1

(1 − α)T

T∑

t=1

[

max
1≤k≤t

[ n∑

i=1

( k∑

j=1

rijxij

)]

−

−
n∑

i=1

( t∑

j=1

rijxij

)

− y

]+}

.

Basic properties of CDaR follow from basic properties of CVaR and from Theo-
rem 5.2.2.

Theorem 5.2.6. (Properties of CDaR) [6]
Let AD(w),AD1,AD2 be absolute drawdown functions, α ∈ (0, 1), then

1. CDaRα

(
AD(w)

)
≥ 0, t = 1, . . . , T (nonnegativity).

2. CDaRα

(
AD(w) + const

)
= CDaRα

(
AD(w)

)
+ const (constant translation).

3. CDaRα

(
λAD(w)

)
= λCDaRα

(
AD(w)

)
, ∀λ≥0 (positive homogenity).

4. CDaRα

(
λAD1 + (1 − λ)AD2

)
≤ λCDaRα

(
AD1

)
+ (1 − λ)CDaRα

(
AD2

)
,

λ ∈ [0, 1] (convexity).

Remark 5.2.7. [6]
CDaR includes the Average Drawdown and the Maximal Drawdown as its limiting
cases, i.e.

CDaRα(AD)
α→0+→ AvDD(AD),

CDaRα(AD)
α→1−→ MaxDD(AD).
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Multi-scenario Conditional Drawdown at Risk (MCDaR) is defined for fan sce-
nario tree ADS = (ADs, s = 1, . . . , S) (in [6] called ”drawdown surface”), where
ADs = (ADs

t , t = 1, . . . , T ) is a drawdown function and s denotes one of S scenarios
with probability ps,

∑S
s=1 ps = 1. MCDaR can be defined as the mean of the worst

(1 − α) · 100% absolute drawdowns on the drawdown surface.

Definition 5.2.8. (Multi-scenario Conditional Drawdown at Risk) [6]
Let ADS be a drawdown surface, α ∈ (0, 1),

ΠADS(ξ) =
1

T

T∑

t=1

S∑

s=1

psI(AD
s
t ≤ ξ), ξ ∈ R,

Π−1
ADS

(α) =

{ min{ξ : ΠADS(ξ) ≥ α} for α ∈ (0, 1]

0 for α = 0,

Ξα =
{

ADs
t : ADs

t > Π−1
ADS

(α)
}

, α ∈ [0, 1],

where I(·) is an indikator. Then the Multi-scenario Conditional Drawdown at Risk
(MCDaR) is defined as

MCDaRα

(
ADS

)
=

(

ΠADS

(
Π−1

ADS
(α)
)
− α

1 − α

)

Π−1
ADS

(α) +
1

(1 − α)T

∑

ADs
t∈Ξα

psAD
s
t .

(5.10)

MCDaR has similar properties as CDaR, the minimization formula can be ex-
tended for MCDaR, for details see [6]. There is also solved a real-life portfolio opti-
mization problem using drawdown measures. A numerical comparison of CDaR and
CVaR approaches in portfolio optimization can be found in [21].

Risk profile χ (discrete version), defined by

1. χ(αl) ≥ 0, αl ∈ (0, 1), l = 1, . . . , L,

2.
∑L

l=1 χ(αl) = 1,

enables us to assign specific weights for αl−CDaRs with predetermined confidence
levels and to create a convex combination of them. The mixed CDaR is then defined
as

CDaRχ(x) =
L∑

l=1

χ(αl)CDaRαl
(x).

A portfolio manager can express his/her risk preferences by shaping the risk profile.
This approach is similar to risk shaping with CVaR, see theorem 2.3.14.



Chapter 6

Conclusion

In this thesis we have focused on sensitivity and dynamics of risk measures of
random losses. First, basic properties, advantages and disadvantages of two frequently
discussed risk measures Value at Risk (VaR) and Conditional Value at Risk (CVaR)
have been summarized. Then we have applied contamination techniques in stress
testing for VaR and CVaR and for optimization problems with these risk criteria.
Using the contamination techniques we have derived computable bounds which can
provide a deeper insight into behaviour of these risk measures. We have focused on
portfolio optimization problem with the relative VaR objective function, where we
have considered correlation and volatility shocks. The correlation shocks have been
involved in the numerical study, where we have supposed that the correlations between
assets of companies in the same industry and sector will increase. It has turned
out that the contamination bounds are relatively close to the optimal value of the
relative VaR optimization problem. However, the optimal value increases significantly
with increasing correlations which reflects unstability of relative VaR with respect to
correlation matrix estimation. A heuristic algorithm for stressing of large correlation
matrices has been introduced. Next, we have studied sensitivity of VaR and CVaR
through their derivatives with respect to the portfolio allocation. Assumptions under
which it is possible to get close expressions for first and second order derivatives have
been found. As a new result we have derived Hessians of VaR and CVaR which enables
us to discuss their convexity with respect to the whole portfolio allocation vector.
Convexity of CVaR has been confirmed, however, no conditions that would ensure
convexity of VaR have been found. A challenge for future research is to find some
simpler sufficient conditions which imply the assumptions for the derivative formulas.
The last chapter has dealt with dynamic risk measures for multi-period discrete time
decision models for a finite time horizon. A risk measure for income streams has been
introduced and into multi-period mean-risk model for a scenario tree incorporated.
Another approach how to define new dynamic risk measure is an extension of an one-
period measure. Such extension of CVaR Conditional Drawdown at Risk (CDaR)
represents. We have summarized basic properties of absolute drawdown function
and some drawdown measures. However, many interesting topics, such as dual risk
measures or general deviation risk measures, have had to be skipped.
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Appendix

7.1 Modelling of Returns

7.1.1 Returns

This section uses knowledge from [10] and [41]. If we denote Pit price of the
underlying asset i (security) at time t, we can define the rate of return by the relation

Rit :=
Pit+1 − Pit

Pit
.

Taking into account the multiplicative effect and an analogy with the force of interest,
we can define another measure rit as a logaritmic rate of return (logaritmic return)
by

1 +Rit =
Pit+1

Pit

=: exp(rit).

If we define logarithmic prices pit := lnPit, we can rewrite previous relation as

rit = ln(1 +Rit) = pit+1 − pit.

Note that for small values of rit it does not differ from Rit too much (which follows
from Taylor expansion).
The rate of return RT

i for the time horizon T is then defined as

1 +RT
i =

T∏

t=1

(1 +Rit) = exp

(
T∑

t=1

rit

)

=
PiT

Pi0
.

If Dit is a dividend paid for the time interval [t, t+ 1], then

Rit :=
Pit+1 +Dit − Pit

Pit
=
Dit

Pit
+
Pit+1 − Pit

Pit
,

where Dit/Pit represents the divident (coupon) yield.
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7.1.2 Diffusion Processes and Returns

Definition 7.1.1. (Wiener process)
A stochastic process

(
Wt, t ≥ 0

)
is a Wiener process (a standard Brownian motion)

if it satisfies

1. W0 = 0 a.s.,

2. Wt has independent increments, i.e. Wt2 −Wt1 and Wt4 −Wt3 are independent
r.v. for all 0 ≤ t1 < t2 < t3 < t4 <∞,

3. L(Wt −Ws) = N (0, |t− s|) for all s, t ≥ 0,

4. the process Wt has continuous trajectories.

Remark 7.1.2.
i) EWt = 0, ∀t ≥ 0,
ii) Wiener process can be written in the form (useful for simulation)

dWt = ε
√
dt,

where ε ∼ N (0, 1)

Definition 7.1.3. (Generalized Wiener process)
The generalized Wiener process

(
Xt, t ≥ 0

)
with the drift rate µ and the rate of

variance change σ2 satisfies the following conditions

1. X0 = 0 a.s.,

2. the process Xt has independent increments, i.e. Xt2 − Xt1 and Xt4 − Xt3 are
independent r.v. for all 0 ≤ t1 < t2 < t3 < t4 <∞,

3. L(Xt −Xs) = N (|t− s|µ, |t− s|σ2) for all s, t ≥ 0,

4. the process Xt has continuous trajectories.

Remark 7.1.4.
The generalized Wiener proces may be written in continuous or discrete form

dXt = µ dt+ σ dWt,

Xt −X0 = µt+ σε
√
t.

Definition 7.1.5. (Ito’s Process)

dXt = µ(Xt, t)dt+ σ(Xt, t)dWt.

Under the random walk hypothesis the logaritmic prices follow the model

pt+1 − pt = µ+ εt+1, t = 0, 1, . . . ,

where µ is a drift and εt’s are uncorrelated (or even independent) r.v. with Eεt = 0
and varεt = σ2. Then for the prices Pt we have

Pt+1 = Pte
µ+εt+1, t = 0, 1, . . . .
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More appropriate model suppose that the rates of return follow generalized Wiener
process (we will present only discrete versions of processes), i.e.

Pt+∆t − Pt

Pt

= µ∆t+ σε
√

∆t,

where L(ε) = N (0, 1). It can be also written in the form

Pt+∆t − Pt = µPt∆t+ σPtε
√

∆t, (7.1)

which is called geometric Brownian motion. Using Itô’s lemma, see [10], we get

pt+∆t − pt = (µ− 1

2
σ2)∆t+ σε

√
∆t. (7.2)

It holds L(pt+∆t − pt) = N
(
(µ− 1/2σ2)∆t, σ2∆t

)

and L(Pt+∆t/Pt) = LN
(
(µ − 1/2σ2)∆t, σ2∆t

)
, where LN (·, ·) denotes log-normal

distribution.

Parameters Estimation

Assume that we have T +1 observations of stock prices Pt at equally spaced time
intervals ∆. Let rt, t = 1, . . . , T denote corresponding logaritmic returns, that follow
the model (7.2), thus they are normally distributed and uncorrelated. Let r and sr

denote sample mean and standart deviation of rt’s. Then the estimates of µ and σ
are

σ̂ =
sr√
∆
,

µ̂ =
r

∆
+
σ̂2

2
=

r

∆
+

s2
r

2∆
.

Jump Diffusion Models

The stochastic diffusion models based on Brownian motion fails to explain some
characteristics of asset returns. In [41] a simple jump diffusion model is proposed.
The returns implied by the model are leptokurtotic and assymetric with respect to
zero. Let Pt follow the model

dPt

Pt
= µdt+ σdWt + d

(
nt∑

i=1

(Ji − 1)

)

,

where (Wt, t ≥ 0) is a Wiener process, (nt, t ≥ 0) is a Poisson process with rate λt and
{Ji}nt

i=1 is a sequence of independent and identically distributed nonnegative random
variables such that X = ln J has a double exponencial distribution; Wt, nt and
Ji, ∀i, t are independent. The model consist of two parts - the geometric Brownian
motion and a jump Poisson process. We may use the discrete-time approximation

Pt+∆t − Pt

Pt
≈ µ∆t+ σε

√
∆t+

nt+∆t∑

i=nt+1

Xi,
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where Xi = ln Ji. For ∆t small enough

Pt+∆t − Pt

Pt

≈ µ∆t+ σε
√

∆t+ I ×X,

where X is a double exponencial variable and I is a Bernoulli random variable with
P (I = 1) = λ∆t and P (I = 0) = 1 − λ∆t.

7.1.3 Stable Distributions

Distributions of financial returns have heavier tails, a higher peak than a normal
distribution (i.e. they are leptokurtotic) and are typically right skewed. They are
sometimes supposed to be stable distributed. In this section we summarize briefly
basic facts about the stable distribution, whose density and distribution function does
not have close form with the expception of some special cases. They are characterized
by the characteristic function

ΦX(t) = E(expitX) =

= exp

{

− γα|t|α
(

1 − iβ sign(t)tg
πa

2

)

+ iδt

}

, if α 6= 1, (7.3)

= exp

{

− γ|t|
(

1 − iβ
2

π
sign(t)lnt

)

+ iδt

}

, if α = 1, (7.4)

Formal definitions can be found in [14], [18]. Stable distributions are represented
by four parameters, therefore they are denoted by Sα(δ, β, γ), where

• α ∈ (0, 2] . . . index of stability - if it is small, the distribution has a high peak
and heavy tails,

• β ∈ [−1, 1] . . . skewness parameter - if β > 0 (β < 0), the distribution is
skewed to the right (left),

• γ > 0 . . . scale parameter, which generalizes the notion of standard deviation,
variation γα is generalized variance,

• δ ∈ R . . . , or location parameter.

If we set

• α = 2 and β = 0, we get normal (Gaussian) distribution,

• δ = 0 and γ = 1/
√

2, we get standard stable distribution,

• β = 1 (−1), we get stable distribution totally skewed to the right (left).

Financial models assume that α ∈ (1, 2], because for stable distributed random vari-
able it holds: p−th absolute moment E[|X|p] is finite just when p > α. Then it is
possible to discuss expected value E[X].

In [4] some methods of parameters estimation are summarized: Method of Mo-
ments, Quantile Estimation Method, Regression-type Method, for details see [20],
Maximum Likelihood Method.
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Figure 5.1: Densities of stable distributions
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7.2 How to Increase Correlations

In this section the heuristic algorithm from [12] for systematic adjustment (in-
creasing) of correlations of chosen assets is extended. It is guaranteed that the new
correlation matrix is positive (semi-)definite. We believe that the following algorithm
is applicable to very large correlation matrices, because it is noniterative and it does
not need to compute eigenvalues of the new matrix to verify its positive semidefinity.

We consider n assets and their random (logaritmic) returns Ri, i = 1, . . . , n
with the correlation matrix C = (ρi,j)i,j=1,...,n, that we want to stress. Let Ik ⊂
{1, . . . , n}, card(Ik) = mk, k = 1, . . . , K be nonempty disjoint sets of assets. We
want to increase the correlation within the set Ik, ∀k so as the correlation between
assets in the set and out of it does not increase significantly.

1. Define new random variables

R̂i =

{
(1 − θk)Ri + θkR

Avg
k if i ∈ Ik, k = 1, . . . , K,

Ri otherwise,
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where RAvg
k denotes ”average” of random variables in Ik, i.e.

RAvg
k =

1

mk

∑

i∈Ik

Ri.

Parameters θk ∈ [0, 1], k = 1, . . . , K specify the proportion of increase in the
set k. We can express new random variables in matrix notation by R̂ = A · R,
where

RT = (R1, . . . , Rn),

R̂T = (R̂1, . . . , R̂n),

Aij =

{ 1 − θk + θk/mk if i = j, i ∈ Ik,

1 if i = j, i /∈ ⋃K
k=1 Ik,

θk/mk if i 6= j, i, j ∈ Ik,
0 otherwise.

2. We get the covariance matrix of R̂ ’s, i.e. Σ̂ = A · C · A′, which we need to
normalize using the matrix Ŝ = (Ŝij)i,j=1,...,n defined by

Ŝij =

{

1/
√

Σ̂ij if i = j,

0 otherwise.

3. Finally, we compute the new correlation matrix

Ĉ = ŜΣ̂Ŝ.

7.3 RiskMetrics

Volatility is an important term in risk management, where its modeling provides
simple approach to calculating VaR. A special feature of stock volatility is that it is
not directly observable, see [41]. We assume that

• pt = ln(Pt), rt = pt − pt−1,

• Ft−1 is the information set available at time t− 1,

• L(rt|Ft−1) = N (µt, σ
2
t ),

• µt = 0 ⇒ rt = at follows an IGARCH(1,1) process without a drift α0 = 0:

rt = σtεt, εt is a Gaussian white noise process,

σ2
t = ασ2

t−1 + (1 − α)r2
t−1, α ∈ (0, 1),

(

often α ∈ (0.9, 1)
)

.

We denote rt[k] = rt+1 + · · · + rt+k k−horizon log return from time t + 1 to t + k,
L(rt[k] | Ft) = N (0, σ2

t [k]), where

σ2
t [k] = Var(rt[k] | Ft)

εt i.i.d.
=

k∑

i=1

Var(at+i | Ft) =
k∑

i=1

E(σ2
t+i | Ft). (7.5)
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Using rt−1 = σt−1εt−1 we obtain from (7.5)

σ2
t = σ2

t−1 + (1 − α)σ2
t−1(ε

2
t−1 − 1), ∀ t,

σ2
t+i = σ2

t+i−1 + (1 − α)σ2
t+i−1(ε

2
t+i−1 − 1) , i = 2, . . . , k,

E(σ2
t+i | Ft) = E(σ2

t+i−1 | Ft) for i = 2, . . . , k, (7.6)

if E(ε2
t+i−1−1 | Ft) = 0 for i = 2, . . . , k. From (7.5) and (7.6) we have the conditional

variance of rt[k]

σ2
t [k] = kσ2

t+1. (7.7)

Thus, for k−period VaR it holds: V aR(k) = uα

√
kσt+1 =

√
kV aR. It is easy to

extend this model for CVaR measuring thanks to the relation between parametric
VaR and CVaR showed in Section 2.4.
Multiple Positions under RiskMetricks model: If

ρij =
Cov(rit, rjt)

√

Var(rit)Var(rjt)
, i, j = 1, . . . , m,

is the correlation coefficient between returns of i−th and j−th asset and VaRi is VaR
of i−th asset, then

VaR =

√
√
√
√

m∑

i=1

VaR2
i + 2

m∑

i<j

ρijVaRiVaRj .

7.4 Software

Table 7.1: Used software.

Software Version Using
Matlab 5.0 optimization, graphs drawing
SPSS 12.0 estimation, statistical testing
MikTex 2.2 typesetting
TeXnicCenter beta typesetting

7.5 Numerical results

Normality tests and correlation matrices used in the numerical study in Subsec-
tion 3.2.4 are proposed. Source codes and numerical results can be found on enclosed
CD.
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[9] Dupačová J. (2001). Output Analysis for Approximated Stochastic Programs.
Published in Stochastic Optimization: Algorithms and Applications (S. Uryasev
and P.M. Pardalos, Editors), pp. 1-29. Kluwer Academic Publishers, Nether-
lands.
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