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Abstract

Selected turbulent flows of He II, the superfluid phase of liquid *He, are inves-
tigated experimentally. The second sound attenuation technique is employed to
directly probe the tangle of quantized vortices, thin topological defects within the
superfluid, while relatively small particles made of solid hydrogen are dispersed in
He IT to visualize the overall flow of the liquid via the particle tracking velocime-
try. Considering the known particle-vortex interaction mechanisms, steady ther-
mal counterflow in a square channel is investigated. Significant inhomogeneity
of the vortex tangle density along the channel height (near the flow-generating
heater) is shown to develop. The means of energy transport in turbulent flows of
He II are found strikingly different from those taking place in turbulent flows of
viscous fluids. Moreover, individual particles in counterflow are observed to in-
termittently switch between two distinct motion regimes along their trajectories.
The regimes are identified and qualitatively described. Steady counterflow jets
in He II are realized and the spatial arrangement of the underlying vortex tangle
is explored. Finally, macroscopic vortex rings are thermally generated and ob-
served in He II. A method for tracking their propagation in the fluid is developed
and their dynamics is shown to be classical-like. The quantized vortex tangle
present in the rings and their turbulent wakes is found to be self-similar, highly
reproducible, but non-trivial to interpret.
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Preface

The phenomenon of fluid turbulence is ubiquitous in Nature. For example, turbu-
lent flows occur during some chemical reactions, they are essential for the mixing
of pollutants in the atmosphere, the weather and climate formation and even the
formation of the stars.

Instead of defining what is turbulence, it is preferred to describe it by the set of
properties it possesses [1]. Turbulent flows of classical viscous fluids are irregular,
rotational and to some extent chaotic; the instabilities tend to grow in time, due
to a nonlinearity embedded in the Navier-Stokes equation, the fluid’s equation
of motion. The resulting flow features an extremely large number of interacting
degrees of freedom and includes a wide range of length or time scales. Naturally,
such system imposes a challenge for theoretical description and experimental
observation. Large experimental facilities and computationally expensive tools
are employed to capture all the relevant scales, starting from the large scales at
which the energy is usually supplied, until the smallest scales, at which the same
energy is dissipated by viscosity.

A surprising order emerges when turbulence is described statistically. If we con-
sider steady, three-dimensional turbulence, an ordered flux of energy may estab-
lish between the scales. The process is known as the Richardson cascade [2] and
is observed in many turbulent flows. Eddies that correspond to the length scale
at which the energy is supplied are unstable and constantly break into smaller
ones, transferring the energy from larger to smaller scales, until the dissipative
scale is reached. In his statistical theory of homogeneous and isotropic turbu-
lence, Kolmogorov [3] argued that the breakup of turbulent eddies is dominated
by inertial forces and correctly predicted how the energy is distributed across the
scales.

In this work, we study turbulence in the superfluid phase of liquid *He, historically
denoted as He II, to distinguish it from the normal liquid phase called He I.
One can obtain He II only in a narrow range of temperatures, starting from the
absolute zero (0K or —273.15°C) up to ca. 2.2K. He II is one of the few known
quantum fluids, which differ from classical fluids (such as water or air) by the
emergence of macroscopic quantum-mechanical effects. A number of unusual and
fascinating phenomena is characteristic to He II. For instance, it supports the
existence of dissipation-free flows, which can be demonstrated by the ability of
the superfluid to flow through fine sinters or narrow cavities [4], impenetrable
to viscous fluids. Furthermore, the discovery of fountain and mechano-caloric
effects [5, 6] revealed that the pressure and temperature gradients in He II are



coupled together. This hints that the overall mechanism of heat transport is
unique to He II [7,8], having no direct analogue in classical physics.

Quantum coherence of individual helium atoms in the superfluid is usually de-
scribed by a complex order parameter ¥ (a,t), which is a function of space x
and time ¢ [9]. Feynman predicted that thin, line-like topological defects of the
order parameter may exist in He II [10], which was experimentally confirmed by
Vinen [11]. The defects—mnow called quantized vortices—significantly influence
the He IT hydrodynamics. With the onset of turbulence, the number and length
of quantized vortices grows, eventually forming a vortex tangle. Although the
internal structure of the tangle is not yet fully understood, there is evidence that
it may develop order and shares some aspects with classical turbulent eddies
described above; our aim is to discern these similarities and differences.

The thesis is based on experimental works carried out mostly in Prague and
partly in Grenoble. We employ two powerful experimental techniques, the flow
visualization, which is based on embedding small solid particles into the fluid
and analyzing their flow-induced motions [12], and the attenuation of the second
sound waves, i.e., propagative waves of temperature that are characteristic to
quantum fluids [13]. Starting from the known interaction between the visualized
particles and quantized vortices, we identify signatures of these interactions in the
analyzed data, in order to probe the presence and spatial abundance of quantized
vortices in turbulent flows of He II. We then focus on thermally activated turbu-
lent jets and macroscopic vortex rings. We probe these spatially inhomogeneous
structures by the second sound, in order to describe the spatial arrangement of the
underlying vortex tangle. And, in the case of the rings, we successfully combine
both experimental techniques to analyze their propagation in He II. Since it is
expected that large, coherent structures in He II behave quasi-classically [14], we
compare the dynamical properties of superfluid vortex rings with their classical
counterparts.

We organize the thesis as follows. In Chapter 1 we introduce the main concepts
related to superfluidity and turbulence in quantum fluids. Detailed description
of the employed experimental methods provides Chapter 2. Main scientific out-
comes of this work are presented and discussed at the same time in the following
chapters. We explore steady thermal counterflow in Chapter 3, counterflow jets
in Chapter 4 and macroscopic vortex rings in Chapter 5. Finally, in the following
Chapter we formulate our conclusions.

The presented results are partially published as research articles in Physical Re-
view B, Physical Review Fluids and the Journal of Fluid Mechanics. These
articles are reprinted as Attachments.



1  Superfluidity and quantum
turbulence

Basic physical principles related to the dynamics of superfluid *He are introduced
in this chapter. Fundamental properties of He II are summarized in §1.1. Quan-
tum turbulence, i.e., the turbulent state of He II, is described in §1.2, with the
focus primarily on thermally driven flows. The relation between quantum and
classical turbulence is discussed in §1.3.

1.1 Properties of superfluid *He

Phase diagram of ‘He, displayed in the left panel of Fig. 1.1, reveals existence of
a solid, gaseous and two liquid phases. We distinguish the normal liquid phase
(He I) and the superfluid phase (He II), which are separated by the second-order
phase transition (yellow line). It is often called the lambda transition, since the
temperature dependence of the specific heat resembles the Greek letter A drawn
across the transition temperature T), equal to ca. 2.17K (yellow point) at the
pressure of saturated vapours (red line).

The two-fluid model provides a useful macroscopic description of He II at finite
temperatures [15-17]. It postulates existence of two interpenetrating compo-
nents, which together constitute He II. The normal component represents the
gas of thermal excitations and it behaves as it were a viscous fluid; the normal
component also carries the entire entropy content of He II. On the other hand,
the superfluid component has zero entropy and viscosity, and it is related to the
quantum-mechanical ground state of *He atoms. Densities of both components,
pn and pg, steeply depend on temperature. We plot their relative density as the
function of temperature in the right panel of Fig. 1.1. At T), He II only consists
of the normal component. But, as the temperature decreases, the normal com-
ponent is gradually replaced by the superfluid one until ~ 1K, where He II is
almost entirely composed of the superfluid component. At lower temperatures,
a hydrodynamic description of the normal component is no longer adequate [9],
because the mean free path of thermal excitations gradually becomes comparable
to any large scale considered, such as the size of the container. Note that the
total density of He I, p = p, + ps ~ 145kg/m? is nearly temperature independent
between 1 K and T) [18].

The two-fluid framework introduces two independent velocity fields, denoted v,
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Figure 1.1: Left panel: phase diagram of *He. Red point: boiling point at
the atmospheric pressure (=~ 4.2K). Yellow dot-dashed line: lambda transition.
Yellow point: lambda point at the pressure of saturated vapours (= 2.17K).
Right panel: temperature dependence of the normal fluid fraction p,/p (red) and
the superfluid fraction ps/p (blue line). Data from Refs. [8,18].

and vy for the normal and superfluid component, respectively. The superfluid
velocity is coupled to the phase p of the macroscopic quantum order parameter
P ~ e as [14]

h

v, = —Vp, (1.1)

my
where h = h/2n is the reduced Planck constant and my, denotes the mass of
the “He atom. In consequence, the flow of the superfluid component is not only
inviscid, but also potential (V x vy = 0). The circulation of the superfluid
component, integrated along a closed path P, must be then quantized [9]:

FS:]{vs-dezh Vp - dl = nk, (1.2)
P my JP

where n is an integer and £ = h/my = 9.96 - 107¥m?/s is called the quantum of
circulation. Requirement on v to be singly-valued in every point in space implies
that T'y can be nonzero (n # 0) only in multiply connected regions,! that is, in the
presence of topological defects. We call these defects quantized vortices, as they
can be imagined as one-dimensional? vortex lines with the superfluid component
circulating around them.

In the simplest case of one straight vortex line, we obtain from Eq. (1.2) that
the superfluid velocity field in cylindrical coordinates is vs = nx/(2nr)e,,, where
r denotes the radial distance from the vortex and e, is a unit vector in the
azimuthal direction. Kinetic energy of such flow field, per unit length of the

!'Multiply connected is a region that supports existence of closed loops that cannot be
contracted to a single point within that region.

2Radius of the vortex core is of the order of 1 A [9], much smaller than any relevant hydro-
dynamic length scale.



vortex line, is equal to

v

2 2 A
E = /npsvszr dr = zﬂln (v) , (1.3)

T y
ay

where a, &~ 1 A is the radius of the vortex core and A, denotes either the size of
the fluid container or the characteristic distance between the quantized vortices
in the container [9]. Since the energy is proportional to n?, it is energetically
favourable for all vortices to be singly quantized (n = 1). The vortices are
further constrained by the Kelvin theorem [9]. Vortex lines must originate either
on the container walls or on the free surface of the liquid; they may also exist in
the form of closed vortex loops.

The presence of quantized vortices in He II provides a coupling mechanism be-
tween the normal and superfluid components. Origin of this interaction lies in the
scattering of quasiparticle excitations off vortex lines, which results in a macro-
scopic force called mutual friction. Since the force is proportional to (v, — v),
the friction couples together the otherwise independent velocity fields [9]. Note
that this force plays an important role in the dynamics of turbulent He II flows,
or during the formation of turbulent jets and vortex rings, discussed in §4 and §5
of this work.

1.2 Quantum turbulence in He II

New quantized vortices nucleate intrinsically or extrinsically. Intrinsic nucleation
is opposed by a potential barrier related to a relatively large critical flow velocity,
of the order of 10m/s, which can be induced in He II, e.g., by a fast-moving
ion [19]. On the other hand, extrinsic nucleation from the already existing vortex
lines® requires considerably smaller velocities than the former one, of the order
of 1072m/s [9,19]. By the action of the flow, the vortex lines are subjected to
twisting and reconnections, which results in the generation of vortex loops that
diffuse and collide with the surrounding vortices. These processes eventually lead
to the growth of the overall line length in the volume of He IT and the formation
of a vortex tangle, the main ingredient of quantum turbulence.

In general, the term quantum turbulence is used to describe the turbulent state
of a quantum fluid. In He II, it accounts for the dynamics of the vortex tangle,
the flow of the normal and superfluid components and their mutual interaction.
Transition to turbulence may occur in the two components of He II indepen-
dently [9], which means, for example, that a turbulent vortex tangle can develop
alongside the laminar flow of the normal component.

Experimentally, turbulence in He II can be generated, e.g., by mechanical stir-
ring [20], by towing or oscillating a grid [21,22], by macroscopic or microscopic
electromechanical resonators [23,24] or thermally [25].

3First quantized vortices form in He II, e.g., by the Kibble-Zurek mechanism during the
superfluid transition [19].



The flow of He II driven by heat—called thermal counterflow—is unique to quan-
tum fluids and owes its existence to their two-fluid nature. Thermal counterflow
is typically obtained by the dissipation of heat at the closed end of a channel
fully submerged in the liquid and open to the bath at the opposite end. Applied
heating power P deposits entropy inside the channel with the rate dS/dt = P/T,
where T" denotes thermodynamic temperature. At the same time, the flow of the
normal component with an average velocity v, is established, and transports the
produced entropy into the bath with the rate equal to psv,A, where s denotes the
specific entropy of He II and A is the channel cross section. In the steady state,
the production and transport terms are equal, which allows to derive a relation

for the normal fluid velocity,
q

:ﬁ’

where we denote by ¢ = P/A the corresponding heat flux. The outflow of the
normal component from the channel is compensated by the inflow of the superfluid
one, so that the net mass flow rate remains zero (i.e., pyv, = —psvs). Therefore,
the two components of He II are found to flow, on average, in opposite directions,
and their relative velocity (called counterfow velocity) can be expressed as

Un

(1.4)

Pn q
ns — |Un — Us| = Up 1 — | = . 1.5
v |y — vs] =0 ( + ps> oosT (1.5)

Due to the outlined mechanism of heat transport, a temperature gradient VT
is established along the channel length. For small enough heat fluxes, i.e., for
small values of vy, the gradient is proportional to the applied heat flux (Landau
regime) [7]. However, above some critical ¢, the scaling changes to VI ~ ¢
(Gorter-Mellink regime) [26]. The latter regime can be explained by the onset of
quantum turbulence; the formation of a dense vortex tangle decreases efficiency of
the heat transport and the resulting heat conductivity of He II actually becomes
dependent on the applied heat flux [7].

A straightforward parameter used to characterize the vortex tangle is the vortex
line density (VLD) L, defined as the length of quantized vortex lines in a unit
volume. This quantity is associated with the length scale ¢ defined as

=7 (1.6)

which is usually interpreted as the mean distance between quantized vortices.

Experimentally determined scaling of VLD in steady channel counterflow can be
written as [27]

L= 72 (ns — UC)Q ) (1.7)

where v denotes an empirical parameter that depends on temperature and the
channel geometry, and its value is of the order of 10°s/m? [28]. We consistently
use values of y reported in Ref. [29], which are obtained from numerical simula-
tions [30] and are in a relatively good agreement with the experiments. Critical
velocity v, is of the order of 1 mm/s and its exact value depends on the channel
size and shape [31].



Different scaling of the vortex line density is observed in experiments where tur-
bulence is generated mechanically. In this case, it is thought that the normal and
superfluid components are locked into a single velocity field by the action of the
mutual friction, i.e., v, & v;, and it holds that [27,32]

L~ v*? (1.8)

where v denotes the flow velocity.

1.3 Relation to classical turbulence

Quantization of circulation is the key aspect that divides the classical and super-
fluid turbulence? on a fundamental level. In the classical case, the vortices are
allowed to exist in many sizes and strengths and vorticity is a continuous field. In
the superfluid case, the vortices are all alike and the turbulent state of the fluid is
characterized only by the spatial configuration of the vortex tangle. Despite this
difference, there are numerous situations when vortex lines organize themselves
into structures that allow He II to resemble a classical fluid [14].

We take He II under rotation for the famous example of such behaviour. When
the container of He II is spun with a constant velocity about its vertical axis,
the superfluid will eventually reach the state of a solid body rotation [33] with
angular frequency €2 equal to the driving frequency. The related macroscopic
vorticity, w = 2€) is mimicked in the superfluid component by the triangular
mesh of vortex lines, which stretch and align parallel to the axis of rotation with
the area density of w/k vortex lines; note that the triangular mesh is the lowest
energy configuration possible [10]. This phenomenon can be easily checked by
the direct visualization of the vortex line array. When we disperse small solid
particles in He II, they can decorate individual vortices, making them visible to
a camera [34], see §2.1 for more details on the technique.

The ability of the vortex tangle to display quasi-classical features is more gen-
eral [9,14]. Coherent, metastable vortex bundles were identified in numerical
simulations of superfluid turbulence [35] and experimentally, in a wide range of
the superfluid density fractions [36]. The vortex bundles are usually polarized,
i.e., they mimic larger eddies, which can break into smaller ones in the process
analogous to the Richardson cascade. The similarity with classical energy trans-
fer mechanisms is underlined by the emergence of the Kolmogorov energy spectra,
found in numerical simulations [35] as well as in experiments [20,37]. In the lat-
ter case, the shapes of the energy spectra acquired in He I and He II were found
indistinguishable.

The analogy between classical and quantum turbulence was recently extended
by Miiller et al. [38]. The authors studied the scale-dependent velocity circu-
lation in numerical simulations of superfluid turbulence. In the range of scales
larger than the intervortex distance, they observed the quasi-classical behaviour

4Term superfluid turbulence is equivalent to quantum turbulence in the zero temperature
limit, i.e., at the absence of the normal component.



of turbulence, including the effects of intermittency, which were studied via the
higher-order moments of circulation. On the other hand, when the circulation
was evaluated at length scales comparable to the intervortex distance, the analogy
was lost due to the discrete nature of the quantized vortex tangle.

Moreover, the lack of viscosity in superfluid turbulence requires another small-
scale mechanism of energy dissipation. It is thought that the energy is first
transferred from the intervortex scales to the Kelvin waves, helical perturbations
along the vortex lines [39]. The waves are excited by vortex reconnections and
subjected to mutual nonlinear interactions, which generate waves with gradually
larger wavelengths, creating a Kelvin wave cascade [40]. The energy is ultimately
dissipated into the bath by phonon emission [41], at scales much smaller than ¢.

The situation becomes more complex when we consider finite temperatures, where
both components of He II are present. Due to the mutual friction, the normal-
fluid vorticity and the vortex line density are correlated at scales larger than
¢ [42]. Robust locking of the normal and superfluid components is observed along
the energy cascade [43], from the energy-containing scale until the dissipation
scale, whose value depends on temperature, i.e., on the relative density of the
components. Processes that take place in the vicinity of the intervortex distance
are still debated in literature [39]. The main obstacle is to find suitable tools to
describe the continuous dynamics of classical eddies, alongside with the dynamics
of Kelvin waves, as both mechanisms are important in this spectral range. Fully-
coupled numerical models of quantum turbulence at finite temperatures are under
development [44].
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2 Methods of investigation

Two experimental methods employed for the investigation of He II flows are dis-
cussed. In §2.1 we introduce the particle tracking velocimetry in the context of
similar techniques and approaches towards the cryogenic flow visualization. The
second sound attenuation technique and the design of relevant acoustic sensors is
summarized in §2.2.

2.1 Particle tracking velocimetry

There is a relatively large number of flow visualization techniques developed by
date. Some of them offer a qualitative insight into the studied flow (e.g., the
visualization by smoke or ink), others provide quantitative information, usually
aimed to determine the underlying velocity field. However, only a few methods
are nowadays adapted to visualize the flows of quantum fluids, especially He II.
Despite of difficulties related to the optical access to low-temperature vessels, suc-
cessful realizations of the particle imaging velocimetry (PIV) and particle tracking
velocimetry (PTV) techniques in He II are reported in literature [12,45].

Both methods require small solid particles, which are dispersed in the liquid;
their motion, assumed to follow that of the fluid, is observed by a fast digital
camera. In PIV, there is no need to resolve individual particles. The obtained
images are analyzed by splitting them into small overlapping investigation areas.
Local displacement of the fluid and hence the velocity field is estimated from the
cross-correlation coefficients, computed between the areas in subsequent camera

frames [46]. Note that velocities are estimated in fixed points relative to the
camera field of view (FOV).

Various thermally-driven flows described in this work were investigated by PTV,
which is a Lagrangian technique. It aims to distinguish individual particles
captured by the camera and track their motion in time, that is, between the
frames [47]. Information provided by PTV hence consists of a time-dependent
velocity, measured along the trajectories of the detected particles.

Tracer particles

Both PIV and PTV techniques rely on the particles to accurately follow the
local flow field. We discuss this issue in simplified terms, aiming to roughly

11



determine what properties the particles should possess to be applicable for the
visualization of He II flows. The general question of particle motion in a fluid
is rather complex [48]; a more detailed analysis of Lagrangian particle dynamics
provides, e.g., Ref. [49].

In brief, we require that the particles scatter enough light to be visible by the
camera, but they are small enough to promptly respond to the flow of He II.
They should also be near to neutrally buoyant to stay long enough in the camera
FOV [45]. As we will see, the requirements on the size (we assume in the following
that the particles are spheres with radius a) and density p, are only partially met
by various particles, due to the low density and viscosity of He II.

Mismatch between p, and the fluid density, ps is responsible for the buoyancy
effects. When p, < py, the particles tend to float and when p, > py, the particles
sink. In a quiescent fluid, a nonzero buoyancy force results in some settling
velocity .., which can be expressed from the equality between the buoyancy
and Stokes drag forces:

_ 2d%g (pp — py)

Oy
where g = |g| = 9.81m/s? is the acceleration due to gravity and puy is the fluid
dynamic viscosity. Since the density of He IT is about 145 kg/m? [18], it is difficult
to obtain neutrally buoyant particles and one has to frequently consider the par-
ticle settling effects [45]. Note, however, that uy = |us| depends quadratically
on the particle radius a, which means that the settling effects are appreciably
reduced when the particles are small enough. In practical terms, it is acceptable
when the settling velocity is up to a few per cent of the typical velocity of the
investigated flow.

(2.1)

o0

Besides settling, one must consider the particle response to fast, turbulent varia-
tions of the flow field, which is affected by the particle inertia. Relaxation time
of a spherical, neutrally buoyant particle can be expressed as [45]

bix = s
3,Uf7

(2.2)

and it represents the time scale at which the particle equilibrates with the fluid
[50]. A typical value of t,, required to track He II flows is of the order of 1ms or
less, which limits the particle size to be 10um at most [50]. Moreover, we may
further require that the particle size is smaller than the mean distance between
the quantized vortices /.

The final limitation comes from the used imaging technique. Since the illumina-
tion of most particles relies on the Rayleigh scattering, it is required for the suffi-
cient scattering intensity that the particle radius is at least 5\, where A ~ 500 nm
is the wavelength of the employed light source. The smallest acceptable particle
radius is a &= A [45].

As we have already mentioned, the main challenge for finding suitable particles
is the low density of He II. For example, hollow glass spheres can be prepared to
be neutrally buoyant in He II, but their size is usually polydisperse and ranges
between 20 um to over 100 ym, which makes them unsuitable for accurate flow

12



visualization [50]. More promising particles are solid glass and polymer micro-
spheres. Despite their large density (ca. 1100 kg/m? [50]), it is possible to prepare
them with a narrow size distribution, with the mean radius of the order of a few
microns. The small size is here favourable, as it appreciably decreases the particle
settling velocity, making them usable for the PIV assessment of He I [51] and He 1T
flows [50,52,53]. A promising alternative to these particles represent fluorescent
nanospheres [54], which are even smaller (20 nm or 100 nm) and are made visible
to the camera by the laser-induced fluorescence.

A useful source of small and light enough particles are solidified gasses. The
production of such particles occurs in-situ, by injecting small amounts of various
gasses into the helium bath. Reported are particles made of solid neon [55] and
air [56], but the most promising materials seem to be hydrogen isotopes [50].
Indeed, injections of hydrogen (Hs) or deuterium (D3) gas, diluted with helium
to the volume ratio of ca. 1 : 100, result in micron-sized particles with a relatively
narrow size distribution (see below) and relaxation times of the order of 1 ms [50].

The density of solid hydrogen, pps ~ 88kg/m? and deuterium, pps ~ 200 kg/m3,
deduced from the parameters of their crystal structure [57], does not match that
of He II. Naturally, one may expect that it is possible to obtain neutrally buoyant
particles by preparing an adequate Ho—Do mixture [58,59]. However, it is likely
that the isotopic composition of the particles obtained from the mixture is not
uniform, due to a small difference in the melting temperatures of hydrogen and
deuterium (ca. 14K and 19K, respectively [60]). More promising are hence
particles made of solid deuterium hydride (HD), whose solid-phase density is
pup ~ 145kg/m?3 [57], i.e., practically equal to that of He II. Note that all
outlined hydrogen isotopologues are available in our laboratory and their response
to similar flows can be directly compared (see, e.g., Ref. [61] or §3.2 of this work).

Direct injections of hydrogen or deuterium mixtures into He II were found to
produce large irregular flakes [62]. Therefore, it is preferred to inject the gas
into He I and to cool down the experiment below the lambda point once there are
enough particles present in the experimental volume [60]. During the experiment,
the particles can be resuspended by injections of pure helium gas. Note that the
particles slowly coagulate and their overall quality decreases in time [60], which
practically limits the duration of a visualization experiment (to approximately
three days in our case). After this period, the cryostat needs to be warmed up
and evacuated before another cooldown.

Solidified particles are naturally polydisperse; their size distribution depends on
the composition and velocity of the injected gas. The size distribution of hydro-
gen or deuterium particles can be estimated from their settling velocities. For
instance, if we consider a deuterium particle that sinks in quiescent He II with
the mean vertical velocity equal to (u,),” it follows from Eq. (2.1) that its radius
is

S T (2.3)

29 (pp2 — p)

5We assume that the mean velocity is measured after the terminal settling velocity is reached
by the particle.
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Fig. 2.1 displays the typical size distribution of deuterium particles estimated by
the outlined method. The mean particle radius here is 3.7ym and 97 % of all
particles are smaller than 10 um.

0.25 T T T

0.2

0
0 10 20 30
Particle radius [pm]

Figure 2.1: Probability density function (PDF) of particle radii a, typically
achieved in our experimental set up. The particles are made of solid deuterium
and their size was estimated by measuring their settling velocity in quiescent
He II, see Eq. (2.3). Velocity measurements were carried out at (1.68 & 0.01) K,
at least 30s after the resuspension pulse of pure He gas. The present data set
comprises ca. 14.7 thousand trajectories.

Interaction with He II components

Particles embedded in the fluid are subject to simultaneous interactions with the
normal and superfluid components, respectively. If we consider small, spherical,
neutrally-buoyant particles, their equation of motion can be written as [63]

du 1 pn Dv,  ps Doy
— L= rn = , 2.4
I~ i “>+(p Dt+th> (24)

where the substantial derivatives are defined as

Dv, Owv, Dy, O,
Dt Ot Dt Ot

+ (vy - V) vy, + (vs - V) vs. (2.5)
The advection term on the right-hand side of Eq. (2.4) indicates that the particles
interact with the superfluid velocity field, and hence with the tangle of quantized
vortices. This interaction is peculiar, since in classical turbulence, it is known that
light particles (e.g., air bubbles) tend to concentrate in filamentary regions of a
relatively large vorticity [64], while heavy particles form clusters with a different
topology [64,65]. However, the particles of any density are attracted towards
the quantized vortices. This effect is neatly observed especially at relatively
low temperatures, when the viscous drag of the normal fluid is low enough [66].
Attractive force originates from radial pressure gradients in the vicinity of a vortex
line and the corresponding potential can be expressed, for the simple case of a
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single, rectilinear vortex, as [63]
2

Am2p3’

®(r)

(2.6)

When the normal-fluid flow is slow enough, it follows from Eq. (2.4) and (2.6)
that the attraction towards the quantized vortices becomes important and par-
ticles start to interact with the vortex tangle. Specific nature of near encounters
between the particles and vortex lines is investigated by numerical simulations,
reviewed in Ref. [67]. Here we discuss one possible outcome of such interaction,
that is, when a particle gets trapped on the vortex line.

Since the trapped particle displaces the fast-moving superfluid from the quantized
vortex, the process is energetically beneficial. It is hence possible to decorate
individual vortex lines, which is especially useful for the study of vortex recon-
nections [56,68]. Since the binding energy is not very large, the particles tend
to switch between the trapped and free states by the local action of the normal-
fluid viscous drag [69]. This behaviour is governed by the small-scale structure
of quantum turbulence and it was indeed shown that similar particle dynamics is
observed for different large-scale flows of He II [69].

We can hence say that the resulting particle dynamics carries information about
the quasi-classical, normal-fluid turbulence, but also about the vortex tangle.
Hidden signatures of particle-vortex interactions can be then used to investigate
the underlying dynamics of the vortex lines, which we discuss in the case of
thermal counterflow in §3.

Experimental setup

We employ the cryogenic visualization setup, described in detail in Ref. [60].
Here we summarize its main components. Liquid *He cryostat is the central part
of the apparatus. It consists of an inner helium vessel (ca. 60L capacity), an
intermediate nitrogen jacket, thermally anchored to the liquid nitrogen tank (ca.
30 L of liquid at 77 K) and the outer steel lining. Thermal insulation of the inner
vessel is achieved by high vacuum maintained between the individual layers of the
cryostat (ca. 5-107% torr, further improved by cryopumping), radiative shielding
by the nitrogen jacket and layers of superinsulation.

Experimental volume of the cryostat extends from its bottom. This volume has
a square cross section with 50.8 mm (2inch) sides and is 300 mm high. Optical
access to the volume is provided by five sets of windows with 25 mm inner diam-
eter. One set of windows is located at the base of the volume, remaining four are
mounted on its vertical sides, 100 mm above the bottom window.

In the current setup, sketched in Fig. 2.2, we use three optical ports to perform a
two-dimensional PTV. We use a solid-state green laser (Dantec RayPower 5000)
and a cylindrical lens to create a relatively thin (=~ 1 mm) laser sheet, crossing the
symmetry axis of the experimental volume. Most of the laser power (up to 1 W)
passes through the cryostat and is absorbed by a room-temperature screen. When
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the particles enter the plane illuminated by the laser sheet, the light scatters off
their surface, which makes the particles visible to a high-speed CMOS camera
(Vision Research Phantom V12.1) sharply focused to the illuminated plane. This
way, the particles can be followed as they move in the illuminated plane, accessing
their positions in two spatial dimensions and time.

High speed camera

152.4 Outer lining (300 K)
50.8 I—I_ _I—r— Nitrogen jacket (77 K)

CJ I _— Laser sheet
e ¥

—— Experimental volume (< 4.2 K)

Figure 2.2: Cross section of the experimental volume, in the plane located
100 mm above its bottom. Dimensions are in millimeters. Light blue: sapphire
and quartz windows. Green line: laser sheet, ca. 1 mm thin and 20 mm high, at
most. The positions of the laser source and the camera are also sketched (grey).

Stable temperature of the helium bath is maintained by pumping of its vapours.
The resulting temperature is given by the pressure of saturated vapours (Fig. 1.1).
Such temperature estimation is accurate especially in the superfluid phase, when
the fluid is practically isothermal due to the large thermal conductivity of He II.
Our pumping system consists of a Roots and rotary vane pumps, connected to the
pumping line of the cryostat via a PC-controlled butterfly valve (VAT Series 615).
The pressure inside the cryostat is probed by a Pfeiffer and MKS Instruments
pressure gauges with the resolution better than 0.1 torr. The position of the valve
(from fully closed to fully open) is continuously adjusted by a PID loop that aims
for setting a constant pressure inside the cryostat. As a result, we regularly access
temperatures between ca. 1.20 K and 2.17 K with the temperature stability of the
order of 1 mK.

Additional temperature monitoring is ensured by a pair of Cernox NTC ther-
mometers, read by a Lake Shore 336 temperature controller. One temperature
probe is located in the bath, above the experimental volume, while the other one
is usually mounted near the flow cell. Calibration of the probes in temperature
range from 1.23 K to 4.20 K was carried out in our laboratory, against the pressure
of saturated vapours (in this case the thermometers were kept next each other).

Image processing

Particle positions are acquired with the maximum resolution of 1280 x 800 px (ca.
1 Mpx), with the typical frame rate of several hundred to a few thousand Hz, up
to the maximum available rate of ca. 6.3kHz. Each movie consists typically of
a few thousand images, which are first saved into the camera memory, and later
downloaded to the data storage as a binary file. The camera receives software
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triggers that launch and stop the recording; the latter trigger is executed with a
large time precision and it is used to time-stamp the movie, which is useful for its
further analysis. The movies are usually recorded via a custom LabVIEW script.

Binary data received from the camera are exported to greyscale tiff images. The
images are black, with the particles appearing as small white areas. Example
of a composite image with an exceptionally high level of the background noise is
displayed in the top panel of Fig. 2.3. We first pre-process these images to remove
the static background, mask the visible objects and increase the contrast, see the
middle panel of the same figure.

The following step is to detect particles in the individual frames and reconstruct
their trajectories. Several methods of detection and the subsequent particle
tracking are available; the performance of different algorithms depends on the
background noise or particle concentration [70]. Here we chose to employ the
MosaicSuite tracking software [71] implemented for the ImageJ and Fiji image
processing platforms. In short, individual particles are identified as bright spots
in the camera frames and their positions are refined with a sub-pixel resolution.
The particles are then linked across the frames into trajectories. In the end, the
process yields a list of trajectories that contains two-dimensional particle positions

x(t).

The trajectories are then post-processed: we linearly interpolate the missing po-
sitions and discard too short trajectories (typically less than 5 points). The
final result—individual particle trajectories—are plotted in the bottom panel of
Fig. 2.3.

Estimation of velocity and acceleration

The following step is to differentiate the trajectories in order to obtain the particle

velocity and acceleration. Perhaps the simplest method of velocity estimation is

that of central differences. Velocity w(t) can be computed from the particle
positions, x(t) as

x(t+717)—x(t—71)

u(t) = . 2.7

(v - (27)

Particle acceleration a(t) is obtained similarly, as the three-point estimate of the
second derivative:

a(t):w(t+r)—2az(t)+ac(t—7')' (2.8)

72

In the equations above, 7 denotes the sampling time, equal to the inverse of the
camera frame rate.

Numerical differentiation defined by Eq. (2.7) is obviously very simple to imple-
ment. However, one has to keep in mind that the resulting velocity (acceleration)
estimate is appreciably influenced by experimental noise, as it relies on the mea-
surement of two nearby particle positions. If we consider that the typical accuracy
of the tracking algorithm is A, ~ 0.1px = lum (reported in Ref. [71] for the
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Figure 2.3: Example of the outlined image processing routine. Visualized is
thermal counterflow (1.51 K, the normal fluid velocity ca. 5.2mm/s, particles
move up) in a 10 mm wide glass channel. Top panel: RMS image obtained from
2000 raw camera frames (camera frame rate is 500 Hz). Pixel intensities are
multiplied by 40 for the sake of clarity. Bright reflections on the sides are due
to vertical channel walls. Middle panel: RMS image obtained from the pre-
processed frames. Here we multiply the pixel intensities by 20. Bottom panel:
post-processed trajectories obtained from the tracking software. 466 tracks are
here detected, together containing ca. 16.7 thousand positions. Displayed are
only tracks longer than 20 points.
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signal-to-noise ratio of ca. 7.5), the absolute error of u can be estimated as A, =
= (A, + A,)/(27) and its relative error as §, = A,/(ur). Now, for the typical
camera frame rate of 1 kHz (7 = 1ms), requirement for §,, < 1% is met only when
u > A,/(0.017) = 100 mm/s. This means that velocities smaller than 100 mm/s
are estimated with the relative inaccuracy larger than 1%. Note that this inac-
curacy, in fact, grows with the frame rate, because by increasing the frame rate
the position difference that enters Eq. (2.7) decreases.

Another approach is to employ noise-suppressing estimators, which are based on
the convolution of the particle trajectory with a suitable kernel K (¢). If we restrict
the kernel to the finite support [—(7, 7], where [ is a free positive integer, we
can perform a discrete convolution with x(t) as follows:

t+81

[Kxz|(t)= > K-tz (2.9)

t'=t—pT

Here the vector notation simply means that individual position components are
identically processed. Note that, in practical terms, this equation tells us that K
is used to assign weigths to multiple subsequent positions, which are then linearly
combined.

In this work we specifically use the one-dimensional Gaussian kernel [72]; defined
as

Go(t) = Ny exp [— (tﬂ , (2.10)

aT

where « is a free positive parameter that defines the kernel width and Nj is a
normalization factor that depends on o and 3, ensuring that the weights assigned
by the kernel sum up to 1. GG is known as the Gaussian blur, and a convolution
of x(t) with Gy simply smoothens the trajectory, with the smoothing level given
by the value of a.

In order to obtain similarly smoothened velocities, we can differentiate the tra-
jectory and convolute it with Go. However, the same result is obtained directly
by convoluting x(t) with the first time derivative of the kernel,

Gi(t) = 5" = —NlofTGo(t), (2.11)

where N; is another normalization factor. By analogy, the particle acceleration
is estimated by taking the second time derivative of Gy, i.e.,

dt? aT

oty = LG _ [2 (t)Q _ 1] Go(t) + Na, (2.12)

where Ny, and Ny, are again constant prefactors. Following Ref. [72], we choose
such normalization constants that it follows, for a constant trajectory, zo(t) =
= o, a linearly increasing trajectory, x;(t) = ut and a quadratically increasing
trajectory, zo(t) = at?/2 that:

Gy xx9=0, Gz xxg =0,

G *xx1 = u, Gs * 19 = a.
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We call the functions Gy, G; and G5 position, velocity and acceleration estima-
tors, respectively. In Fig. 2.4 we plot these estimators for « = 5 and § = 15 as
an example.

Kernel value [arb. u.]

Time [arb. u.]

Figure 2.4: Example of estimators Gy, G and Gq, Eq. (2.10)—(2.12), for « =5
and [ = 15. The kernels are rescaled to [—1, 1] interval for the sake of clarity.

Performance of Gaussian estimators was systematically tested and a detailed
study is summarized in Ref. [73]. Therein, we compare Gy with the central
difference method by using a single synthetic trajectory, a real trajectory obtained
experimentally and a full statistical data set that contains tens of thousands
trajectories. Here, we will illustrate the most important features of GGy with the
testing set of particle trajectories, obtained in thermal counterflow (1.95K, the
normal fluid velocity 18.2 mm/s) in a 10 mm wide square glass channel. The mean
vertical displacement of the particles between frames is ca. 18 um, at the camera
frame rate of 500 Hz; from this we can estimate that particles move, on average,
with the velocity of ca. 8.9mm/s, in the direction of the normal fluid.

Significant advantage of Gaussian estimators lies in their ability to suppress the
noise amplification effects common for numerical differentiation. As we have al-
ready stated, the level of smoothing is tuned by the kernel width . We found
that a relatively narrow kernel (say, « = 3) is already efficient for an accurate
velocity estimation, considering the noise level commonly experienced in our ex-
periments. Although the noise reduction effect further increases with increasing
«, one has to be cautious, because the use of too wide kernels decreases the al-
gorithm’s ability to resolve sudden position changes, i.e., events of large particle
velocity, which are important features of quantum turbulence [74].

Taking the testing data, we find that the standard deviation of the particle vertical
velocity decreases as « increases, see the left panel of Fig. 2.5. In this example, the
velocities are computed from individual trajectories by using G, parametrized
by different values of o (between 0.1 and 7) and fixed 5 = 10. Constant width of
the kernel support ensures that the resulting set of velocities contains the same
number of points, equal to ca. 1.88 million in this case. Relative change in the
standard deviation is about 13 %, if one compares the largest and smallest vaues
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of a considered in this example.
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Figure 2.5: Effect of the Gaussian estimator parametrization on the standard
deviation of the particle velocity. Employed data set is obtained in thermal
counteflow (1.95K, the normal fluid velocity 18.2mm/s), see text for details.
Left panel: standard deviation as the function of the kernel width a. [ = 10
for all cases, each data set contains ca. 1.88 million velocity points. Right panel:
Standard deviation as the function of the kernel support width § (red squares,
left axis). Here, a = 4. Black dashed line, right axis: number of the resulting
velocity points.

Note that a = 0.1 is an extraordinary choice, made solely for the sake of the
following argument. Very narrow kernels are ineffective in the noise reduction,
since for @ < 1 the convolution with Gy becomes identity and convolution with
G1 becomes equivalent to Eq. (2.7). In practice, we set a@ > 1, to ensure that
Gaussian estimators operate as multi-point algorithms. For Fig. 2.5 it means that
the standard deviation obtained with o = 0.1 is equivalent to what one would
have obtained by taking the central difference scheme.

Moreover, we can associate each differentiation method to its time resolution,
quantified by the characteristic time scale 7,. It is quite straightforward to find
this time for central differences, where we set 7, = 27 because 27 is the time dif-

ference between the particle positions employed to estimate the particle velocity,
see Eq. (2.7).

Similarly, for Gaussian kernels, we can identify all raw positions along a tra-
jectory that significantly influence the resulting position, velocity or accelera-
tion estimate. Since Gy decays exponentially for late times (Fig. 2.4), we can
build up an analogy with the two-sigma rule for Gaussian peaks, which suggests
that contributions representing 95 % of the area below Gy fall into the interval
[—v2at,v/2at]. The characteristic time scale then becomes the width of this
interval, which means that 7, of Gaussian estimators can be defined as

7 = 2v/2ar. (2.13)
We note in passing that this definition is valid only for a > 1.
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Now, we focus on the effects resulting from the choice of the kernel support width,
B. Considering again the exponential decay of the kernels for late times, a finite
value of 3 (we always set 3 > /2a) is sufficient to obtain well-converged positions,
velocities and accelerations. The convergence can be studied on a small set of
trajectories, obtained by two kernels parametrized with (o, ) and (o, 8 + 1),
respectively. The smallest necessary [ can be then systematically selected, by
accepting some minimum level of differences between the estimates, say, 5 %.

However, a neat convergence of individual velocity points contrasts with the be-
haviour of the entire data set. This is illustrated in the right panel of Fig. 2.5,
where we plot again the velocity standard deviation, computed from velocity es-
timates obtained with fixed @ = 4 and with different values of . Although we
see a similar decrease of the standard deviation as in the left panel of the same
figure, here the effect is due to a selection bias, as the use of different support
widths alters the size of the resulting data set.

It follows from Eq. (2.9) that the convolution is defined only on a trajectory
having at least 23 + 1 subsequent positions. These trajectories are trimmed after
the convolution: from n raw positions one obtains n — 23 smoothened positions
(velocities, accelerations), while the tracks with less than 24+1 points are entirely
discarded. In other words, the use of too wide kernel supports systematically
prefers longer trajectories over short ones.

Due to the bias, the dependence of the velocity standard deviation on 3 correlates
with the size of the resulting data set, see the black dashed line in the right panel
of Fig. 2.5. In thermal counterflow, this effect is likely linked to a less frequent
occurrence of large velocity events on long trajectories, since these events may
cause the particle to leave the illuminated plane. It hence becomes beneficial to
choose the support width as small as possible, in order to ensure that the data
are adequately converged, but to preserve as much of statistical information as
possible.

2.2 Second sound attenuation

Second sound is one of the several propagative modes typical to quantum fluids. It
represents temperature (or entropy) waves, which are interpreted within the two-
fluid model as anti-phase oscillations of the normal and superfluid components
[13]. Similar in-phase oscillations, representing ordinary sound waves, are called
the first sound. In He II, the second sound can be transmitted by displacing
one fluid component relative to the other one. This can be achieved thermally,
by a periodical heat dissipation or mechanically, by oscillating a porous elastic
membrane, permeable only to the superfluid component.

Presence of the quantized vortex tangle in He IT couples the normal and superfluid
components via the force of mutual friction, already introduced in §1.1. As
this force tends to diminish differences between the velocity fields of the two
components, the amplitude of a second sound wave that propagates through the
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vortex tangle decreases. The corresponding attenuation coefficient is [75]

Bt 11 in2 (0] de, (2.14)

5L:4702 Vv

where B is the mutual friction coefficient, x denotes the circulation quantum
and ¢y is the second sound velocity (B and ¢y are temperature dependent, and
their values are tabulated [18]). Term to the right from the multiplication sign
denotes the vortex line density projected into the direction of the second sound
propagation: we integrate along the vortex line elements d¢ present in the volume
V; ¢(¢) denotes the angle between the given line element and the second sound
wave vector. For an isotropic vortex tangle, usually taken as the first order
estimate of the tangle geometry, all values of ¢ are equally likely and it holds
that (sin?(p)) = 2/3 [13]. Therefore, for the isotropic tangle, the integral in
Eq. (2.14) can be replaced by 2LV/3, where L is the vortex line density.

The most common attenuation method, employed also in the current work, is
based on the second sound resonance, realized in semi-open resonant cavities.
Resonant (standing) wave of second sound is generated and detected by a pair
of transducers facing each other. Quantity that reflects the vortex line density
present in the cavity is the resonance amplitude A, evaluated with respect to
the amplitude Ay obtained in quiescent helium. Under the assumption of tangle
isotropy, an approximate relation for the vortex line density is [13]

6TEAO A()
Lo (A - 1) , (2.15)

where A denotes the half-width of the resonance peak measured in a quiescent
fluid. Note that, in He II, this method is influenced by the presence of remnant
vortices (and remnant VLD Lg), which limits the sensitivity of this method.
Typically, Lg = 10° m~2 [13], which corresponds to the mean intervortex spacing
of Imm, see Eq. (1.6).

Membrane sensors

Design of our sensors is similar to that used in the previous experiments conducted
in Prague [13,28,32]. The sensors rely on an oscillating porous membrane, which
displaces the normal component of He II and is fully penetrable to the superfluid
one. As the normal component is set into motion and the superfluid compo-
nent remains still, the relative motion of two components is established, which
eventually results in the propagation of the second sound waves.

A standing second sound wave is obtained by a pair of transducers, mounted on
the opposite sides of a custom 3D-printed channel with the square cross section
of 10 mm sides, see Fig. 2.6. The membrane (red) is coated from one side by a
thin layer of gold and put in electrical contact with the brass sensor body. The
membrane faces the open volume of the channel via a hole with 8 mm diameter.
From the opposite side of the membrane a flat brass electrode presses against it
(adequate force is applied by a loaded spring), forming a parallel-plate capacitor
with the typical capacity of ca. 100 pF at low temperature.
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Figure 2.6: Scheme of the channel cross section with the second sound sensors
assembled. Employed materials are colour-coded.

Both membranes are held at the bias voltage of 100V relative to ground, in order
to couple them to the near-ground electrodes. To transmit a second sound wave
we supply one of the electrodes with a sine wave signal of the given frequency and
amplitude. The latter is typically 7V RMS, too low to generate additional tur-
bulence in the channel. Transmitted signal is detected by the second electrode,
read by a SR-830 lock-in amplifier, providing in-phase (A,) and quadrature (A,)
components of the received signal.

Typical frequency sweep across the resonance frequency is shown in the left panel
of Fig. 2.7. Acquired data (colour points) resemble a Lorentzian peak, which is
phase-shifted by n/2 for the quadrature component. Indeed, direct fitting of either
signal component (grey lines) allows to estimate the resonance frequency, peak
amplitude and peak half-width. Alternatively, we can use both signal components
to fit the data with a circle [77] in (A,, A,) space, as shown in the right panel of
Fig. 2.7. In this case, we can only determine the peak amplitude, equal to the
circle diameter.

Note that it is possible to utilize multiple harmonic modes in the channel. Their
respective resonance frequencies are equidistant, with the increment equal to the
fundamental mode frequency, fy. Since the fundamental mode spans half of its
wavelength across the channel, we can estimate the effective width of the resonant
cavity as w = co/2fy. From the first 10 harmonic modes acquired at 1.65 K we
can estimate for the present set up w = (10.3 & 0.3) mm, which is slightly larger
than the channel width (10 mm).

Time constant of the lock-in amplifier is set to at least 100 ms when performing
frequency sweeps. This value limits the sampling rate of the signal, which means
that the acquisition of resonance curves similar to that in Fig. 2.7 is rather a

6We observe that the second sound amplitude grows linearly with the amplitude of the
input signal. If turbulence were generated by the second sound wave, we would observe that
the sound amplitude plateaus with the driving voltage, see Ref. [76] for a recent example of this
phenomenon.
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Figure 2.7: Example of the acquired second sound resonance. Left panel: fre-
quency sweep across the 4" harmonic mode, measured at 1.65K. Resonance
frequency of 3609 Hz is subtracted from the data. Points: measured in-phase
(blue) and quadrature (red) components. Grey lines: phase-resolved Lorentzian
fits. Right panel: same data (black points) plotted in (A,, A,) space. Grey line:
circle fit.

lengthy process. However, only the signal measured at the resonance frequency
is necessary to estimate the vortex line density from Eq. (2.15). Hence, for a
time-resolved acquisition, we set the lock-in time constant to 30 ms and we con-
tinuously adjust the frequency of the input signal by a software PID loop to
ensure that the resonance condition is fulfilled at all times. We then acquire the
corresponding amplitude A(t) from the in-phase channel of the lock-in, with the
average sampling rate of ca. 15 Hz.

Miniature sensors

Finite size of the resonant cavity imposes a limit on the spatial resolution of the
second sound attenuation technique. In the former case of the membrane sensors,
the effective cavity volume can be estimated as the volume of a cylinder with 8 mm
diameter, equal to the diameter of the membrane exposed to the channel, and
height w = 10.3mm. We obtain ¥V ~ 520mm?. In relation to Eq. (2.14), we
can identify this value with the volume of the region where quantized vortices
contribute to the second sound attenuation.

Downscaling of the sensors is necessary to improve the spatial resolution of the
technique, which is especially useful when the investigated vortex tangle is in-
homogeneous. Suitable miniature sensors are developed by the group of P.-E.
Roche in Grenoble, and their performance was already demonstrated in a num-
ber of experimental works [75,78]. We employ one of these sensors to probe the
vortex tangles above counterflow jets, summarized in §4.

Miniature sensor, depicted in Fig. 2.8, resembles a pair of small tweezers. It
consists of two thin arms cut from a silicon wafer, ca. 20mm long and 1 mm
thick, placed w = (2.505 £ 0.002) mm apart. Small resistive heater is fabricated
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at the end of one arm, facing a similarly-sized thermometer. Sensitive areas of
both components are smaller than 1 mm?, which means that the cavity volume
is less than ¥V = 2.5 mm?, i.e., at least 200-times less than the volume probed by
the membrane sensors.

Figure 2.8: Photography of the second sound tweezers similar to those used in
the present work. Sensitive area of the sensor, i.e., the heater—thermometer pair,
is located in the top right corner of the image. Author: Philippe-E. Roche/CNRS,
licensed under CC BY-NC-ND 4.0.

AC signal sent to the heater leads to a periodic heat dissipation at double fre-
quency and a temperature wave (i.e., second sound) is transmitted towards the
thermometer, which detects second sound waves in the form of periodical changes
of its resistance. Since we polarize the thermometer by a small constant current
(ca. 30pA), we detect voltage oscillations, read by a NF Corporation LI5640
lock-in amplifier.

The acquired signal is analogous to that displayed in Fig. 2.7. We access its
in-phase and quadrature components, which again display Lorentzian resonance
peaks. A wide frequency sweep, obtained in quiescent He IT at 1.65 K, is displayed
in Fig. 2.9 as an example. VLD measurements presented in §4 as based on the
amplitude of the peak highlighted by the green colour. Note that equidistant
positions of individual resonance peaks are neatly apparent from this figure (the
corresponding frequency increment between the peaks was used to estimate the
cavity size w).
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Figure 2.9: Amplitude of the second sound, /A2 + A2, detected by miniature

tweezers at 1.65 K in quiescent He II. Green line: resonance peak employed for
VLD measurements summarized in §4.
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3 Particle-vortex interactions
in channel counterflow

Steady thermal counterflow in a semi-closed channel is investigated by flow visu-
alization. We specifically study the motions of small solid particles with the aim
to clarify how the particles interact with the quantized vortex tangle [29,67], to
understand the underlying vortex tangle dynamics. This chapter mainly follows
the line of scientific enquiry published in Refs. [61,79-81]. After a short intro-
duction to the key aspects of channel counterflow provided in §3.1, we first study
in §3.2 the roles of solid boundaries in the development of quantum turbulence in
thermal counterflow. Non-classical energy transfer mechanisms are investigated
in §3.3 and finally, in §3.4, we report on a peculiar bimodal regime of the particle
motion that occurs exclusively in turbulent counterflow.

3.1 Introduction

The two-fluid model of He II, introduced already in §1.1, postulates two weakly
interacting velocity fields attributed to the normal and superfluid components
and denoted v, and wvg, respectively. In thermal counterflow the components
flow, on average, in opposite directions and the characteristic velocity of the flow
becomes the counterflow velocity v,s = |v, — vs|. The corresponding Reynolds
number of thermal counterflow can be then defined as [31]

_ punsD

Re , 3.1
- @)

where p denotes the He II density, D is the channel hydraulic diameter and
indicates the dynamic viscosity of the normal component. Following Ref. [31],
thermal counterflow becomes turbulent above Re ~ 2300 in the channel employed
for experimental works presented below and depicted in Fig. 3.1. Here, we focus
on fully developed turbulence, whose main ingedient is the tangle of quantized
vortex lines. The corresponding vortex line density L scales with the square of
Uns, according to Eq. (1.7).

Particle-vortex interactions, whose main physical mechanisms are outlined in §2.1,
typically lead towards the existence of events of large particle velocity. Statisti-
cal fingerprint of such processes is observed in the form of heavy-tailed velocity
distributions [25], clearly identified in both thermally and mechanically driven
quantum turbulence [69]. It is the distribution shape that distinguishes quantum
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Figure 3.1: Photography (left) and scheme (right) of the counterflow channel
employed for the experiments summarized in this chapter. Mounting supports
and pillars are made of brass and coated with black paint. Centering frame is
made of an epoxy composite. Dimensions are given in millimeters.

turbulence from classical one [74,82], since in classical turbulence the expected
particle velocity distribution is almost Gaussian [83].

However, non-classical tails are not always present and nearly Gaussian velocity
distributions arise also in quantum turbulence [22]. In order to understand these
phenomena, we need to define two fundamental length scales. The probed scale,
sp indicates what is the experimental resolution, i.e., the smallest length associ-
ated with the particles employed for visualization. Since the particle positions
are sampled with a finite frequency, s, can be defined as

Sp = UabsTp, (3.2)

where u,1,s Tepresents the mean particle velocity and 7, denotes the time scale at
which the velocity is calculated.” When the velocity is estimated by the central
difference method, Eq. (2.7), 7, is equal to the time difference between considered
particle positions. For Gaussian estimators, 7, is equal to the characteristic time
scale of the employed kernel, defined by Eq. (2.13).

The second length scale is called the quantum scale, s, and it is equal to the
mean intervortex distance ¢, Eq. (1.6):
1 1
Sq=0=—=~= : 3.3
! VL Ui (3:3)
Note that the right-hand side is obtained by using Eq. (1.7) and neglecting the
small offset v.. Now, these length scales can be combined into a non-dimensional
ratio

S UabsTp
R = L= = YUnsUabsT;

b
Sq ]./\/E

7 Another factor that limits the experimental resolution is the particle size. In most experi-
ments though, the particle size is smaller than s, defined by Eq. (3.2).

(3.4)
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The ratio can be understood also in terms of time scales. In particular, if we define
T, as the characteristic time scale of the experiment, we can compare it to the
time needed by the particle to travel between two quantized vortices. This time,
T4, can be defined with the intervortex distance and the mean particle velocity
as Tq = {/Uabs. It can be then shown that the time ratio 7,/7, is algebraically
equivalent to R defined by Eq. (3.4).

Strong correlation between R and the occurrence of heavy tails in the velocity
distributions is reported in Ref. [74]. The tails are visible for R < 1, when
the particles probe scales smaller than the intervortex distance. As the scale
ratio increases, the tails become less apparent and, as R ~ 1, the tails disappear
completely [31,74], the corresponding velocity distribution becomes Gaussian-like
and the particles behave as they were probing flows of a classical fluid.

It is now useful to mention that a single visualization data set allows to probe a
broad range of scales. The approach, introduced in Ref. [74], consists of removing
camera frames from the acquired data sets, see Fig. 3.2. The outlined procedure
effectively decreases the camera frame rate, i.e., increases 7, and by consequence
increases also s, and R. Therefore, a single data set can be employed to investi-
gate a range of scales, which is typically limited by the actual frame rate of the
camera and the data set size.

DL T OM T ONTTOUS

Maximum frame rate
Minimum distance beween patrticle positions

Minimum frame rate
Maximum distance beween particle positions

Figure 3.2: Illustration of probing large length scales. Particle positions (blue
points) are acquired at the maximum frame rate (left panel). By removing camera
frames, the particles gradually probe larger length scales (panels from left to
right). Red lines indicate the vortex lines (their motion is neglected for clarity).
Adapted from [74].

The parameter that quantifies whether the distribution is heavy-tailed or not is
its flatness, i.e., the fourth central moment normalized by the standard deviation.
When R < 1 and the distribution displays non-classical tails, its flatness is sig-
nificantly larger then 3, which is exactly the value corresponding to the Gaussian
distribution. As we begin to increase the probed scale, the flatness decreases until
it reaches the value of 3 at R &~ 1, and remains near this value for R > 1. The
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behaviour at large length scales is experimentally tested for R up to ca. 70 for
grid turbulence in He II [22].

3.2 Role of flow boundaries

Extensive studies of wall-bounded turbulence in classical fluids indicate that solid
boundaries have a significant role in the development of turbulent flows [84]. Sim-
ilar effects have been observed in quantum turbulence. For example, numerical
simulations of turbulent counterflow [85,86] reveal that quantized vortices pref-
erentially concentrate near the channel walls. Other experimental [27,87] and
numerical [88] investigations point towards the existence of superfluid boundary
layers that are characterized by dense vortex tangles.

Consistent observations of wall-bounded thermal counterflow were carried out
in Prague. La Mantia [89] visualized counterflow in the vicinity of a solid wall
parallel to the heat flux direction. He found that the vortex tangle is indeed
inhomogeneous across the channel cross section, which implies that the channel
geometry has a significant impact on the development and the resulting steady
state of quantum turbulence [31].

In the present work we investigate flows in the proximity of another boundary,
which is the closed channel end equipped with the heater. Since the heater
represents an equally rough boundary as the channel wall, some modulation of
the vortex line density should be expected along the channel height [90]. This
concept represents the quantum analogue of the entry length, which is defined for
channel flows of classical fluids as the length needed for turbulence to develop.
The latter depends mainly on the channel geometry and is of the order of 25
diameters for pipe flows [87]. Recent numerical results suggest that this length is
substantially larger in thermal counterflow [91].

Series of visualization experiments were performed in the counterflow channel of
25 mm square cross section, sketched in Fig. 3.1. Motions of solid deuterium and
deuterium hydride particles were studied in the 13 mm wide and 8 mm high field
of view, located ca. 1mm above the channel heater and centred between the
vertical walls of the channel. We compare the obtained data with reference data
sets, obtained in the same channel, but in the bulk, i.e., as far away as possible
from the channel boundaries. In this case, we use solid hydrogen and deuterium
particles. Experimental conditions of individual data sets are summarized in
Tab. 3.1.

The smallest probed time scale, linked to the employed camera frame rate, ranges
from 2ms to 2.5ms. Considering that the mean velocity of the particles, calcu-
lated here by the central difference method, is comparable to vy [31], we can say
that the smallest probed scale is of the order of 2ms - 5mm/s = 10um, which
is at least one order of magnitude smaller than the corresponding quantum scale
(Tab. 3.1).

To fully appreciate the scale dependence of particle-vortex interactions, we inves-
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Table 3.1: Experimental conditions of individual data sets. Displayed symbols
are used in Figs. 3.3 —3.5. BH, BD: data sets measured in the bulk; D1-D4: near-
heater data sets, Dy particles; HD1-HD4a: near-heater data sets, HD particles.
T: thermodynamic temperature; ¢: applied heat flux; v,s: counterflow velocity;
Re: Reynolds number, Eq. (3.1) for D = 25mm; s,: quantum scale, Eq. (3.3); ¢
correction factor, Eq. (3.5), see text for details.

T K] ¢ [W/m?] vy [mm/s] Re/10® sq [um] ¢

m BH 1.77 612 6.8 19.0 70 1
o BD 1.77 608 6.7 18.8 70 0.5
o D1 1.24 23 2.2 4.0 674 20
O D2 1.40 54 2.2 5.2 409 10
D3 1.75 235 2.7 7.6 177 10
o D4 1.95 234 1.9 5.1 183 6
A HD1 1.24 20 1.9 3.5 770 40
HD2a  1.40 25 1.0 2.5 868 40
A  HD2b 1.40 48 2.0 4.7 455 20
O HD2c 1.40 65 2.6 6.3 338 10
VvV HD4a 1.95 200 1.7 4.3 214 10

tigate the particle motions in a broad range of length scales, as outlined above,
keeping at least 10° points in individual data sets. As a result, our data are fit to
probe both quantum and classical features of thermal counterflow. We focus on
the horizontal velocity component, as the vertical one is influenced by the mean
flow.

We start by plotting the scale-resolved velocity flatness of bulk data (BH, BD)
and near-heater data (D1 to D4) in the left panel of Fig. 3.3. Data sets BH
and BD neatly follow the expected physical description outlined above, i.e., the
corresponding flatnesses are larger than 3 for R < 1 and reach the Gaussian
value at R ~ 1. However, a different picture is offered by the near-heater data.
Although the scale-resolved flatness decreases towards 3, the convergence towards
Gaussianity occurs at a smaller length scale than expected.

If we consider that the near-Gaussian shape of the velocity distributions should
occur only for R > 1, we come to the conclusion that, in the heater proximity,
the estimation of the quantum length scale provided by Eq. (3.3) is incorrect. We
can hence introduce the effective length scale ratio

Reff == CR, (35)

where the correction factor ¢ accounts for this discrepancy. Experimentally ob-
tained values of ¢ are summarized in Tab. 3.1 and the flatness, now plotted as
the function of Reg, is displayed in the right panel of Fig. 3.3.

Two observations can be made at this point. First, we note that ¢ = 0.5 for the
data set BD, while ¢ = 1 for BH. This indicates that the particle inertia cannot
be neglected, as solid deuterium particles seem to effectively experience a less
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dense tangle than hydrogen ones. The effect of particle inertia is discussed in
more detail below. Second, we find that ¢ ranges between 6 and 20 for data sets
D1-D4. In other words, there is evidence that the actual intervortex distance in
the heater proximity is c-times smaller than in the bulk, at the same temperature
and applied heat flux. The corresponding increase of the vortex line density (see
Eq. 1.6) near the hater is remarkable, especially when we take into account that
deuterium particles likely underestimate its actual value.

Moreover, it seems that the correction factor is temperature dependent. For a
roughly constant counterflow velocity we observe that ¢ decreases with temper-
ature, from 20 at 1.24 K (data set D1) to ca. 6 at 1.95K (D4). We believe this
dependence is related to the temperature dependence of v [29], which instead
increases with temperature. As a result, for a constant R.g, the increase of « is
compensated by the decrease of c.
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Figure 3.3: Scale-dependent velocity flatness for Dy particles. Left panel: flat-
ness as the function of R. Right panel: flatness as the function of R.q. Note the
log-linear scale.

Effect of particle inertia mentioned above can be investigated by employing par-
ticles made of different materials. Left panel of Fig. 3.4 shows again the velocity
flatness as the function of R. Now we plot pairs of data sets (highlighted by the
same colour) obtained in similar conditions, i.e., similar temperature and heat
flux, but with different particle materials: solid hydrogen (Hs), deuterium (D)
and deuterium hydride (HD). Their density is equal to ca. 88kg/m? for Hy,
145 kg/m? for HD and 200 kg/m? for Dy [57]. Following Ref. [25], we can express
the acceleration of a particle p in a fluid f as

du,  1+C Duy (3.6)
dt pp/ps+C Dt ’ '

where C' is the added mass coefficient, p, and ps denote the particle and fluid
densities and Duy/Dt represents the substantial derivative of the fluid velocity.
For spherical particles (C' = 1/2) accelerating in He II (p; ~ 145kg/m® [18])
we obtain that HD particles accelerate 1.25-times more and hydrogen particles
accelerate 1.70-times more than deuterium ones.
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Analogous trends are apparent in the correction factor values (Tab. 3.1). Of
course, the effect of the heater proximity is the most prominent, which means
that ¢ > 1 for D and HD data sets. However, by comparing data sets D1,
D2, D4 with HD1, HD2b and HD4a we find that ¢ values for HD particles are
about 2-times larger than the corresponding values for Dy particles, which means
that less-accelerating deuterium particles effectively experience less dense vortex
tangles. This is also consistent with the results obtained from data sets BD
and BH, where the ratio of correction factors is even closer to that of particle
accelerations.
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Figure 3.4: Scale-dependent velocity flatness for Dy and HD particles. Same
colours highlight data sets obtained in similar experimental conditions. Left panel:
flatness as the function of R. Right panel: flatness as the function of R.g. Note
the log-linear scale.

Finally, we now focus on the effect of the heat flux. In Fig. 3.5 we compare scale-
resolved flatnesses for data sets HD2a—HD2c, which differ only by the applied heat
flux. From the obtained correction factors, which systematically decrease as vy
increases, we conclude that, as v, increases, the particles experience gradually less
dense vortex tangles. As it is reported in Ref. [92], the ratio between the viscous
drag force from the normal component and the pressure gradient force from the
superfluid component increases as the heat flux increases. In consequence, the
particles are less likely to become trapped in the vortex tangle at higher v,
which explains the observed dependence.

In conclusion, there is a clear experimental evidence suggesting that the tangle of
quantized vortices is significantly denser in the heater proximity than in the bulk.
Enhancement of the vorticity generation near this boundary can be estimated,
at lest qualitatively, by the scale-resolved measures of the velocity distribution
flatness, keeping in mind the underlying effects of the particle inertia and the
applied heat flux, which can slightly modulate experimental observations.

We can partly explain this outcome by considering the presence of vortex pinning
centres that are present on any solid surface submerged in He II [88], combined
with the presence of a solid boundary. While the pinning centres are relevant
for the superfluid component, the boundary likely affects the flow of the normal
component. Following Ref. [93], we can say that the normal component is slower
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Figure 3.5: Scale-dependent velocity flatness for HD particles, obtained at dif-

ferent heat fluxes. Left panel: flatness as the function of R. Right panel: flatness
as the function of R.s. Note the log-linear scale.

in the proximity of channel walls than in the bulk, as it is constrained by the
no-slip boundary condition valid for viscous fluids. If we assume at the same
time that heat is homogeneously transported across the channel,® we find that
quantized vortices tend to concentrate in regions defined by a relatively small
local fluid velocity, i.e., in the proximity of channel walls.

3.3 Flight-crash events

Turbulent energy is usually supplied at larger length scales than those at which
it is dissipated by the action of viscosity. Consequently, in a steady three-
dimensional turbulence a one-directional flux of energy between scales is estab-
lished, famously breaking the time reversal symmetry. Neat signature of this time
irreversibility is the occurrence of flight-crash events, which were first identified
in classical turbulence [95,96]. It was observed that the particles, suspended in a
turbulent flow, tend to loose their energy more quickly than they gain it, at all
scales.

Here we study this phenomenon in quantum turbulence, where the energy dissi-
pation processes substantially differ from classical ones, thanks to the presence of
the quantized vortex tangle. Numerical simulations performed in the zero tem-
perature limit found that the energy contained in the tangle dissipates via the
phonon emission, vortex reconnections and exciatation of the Kelvin waves [97].
At temperatures above 1K, these processes are combined with the viscous dissi-
pation in the normal component.

We investigate two kinds of turbulent flows. We consider a steady counterflow,

8Inhomogeneous distribution of heat across the channel leads to the occurrence of tem-
perature gradients. Recent experimental measurements [94] report that these gradients can
be observed in thermal counterflow solely for heat fluxes of the order of 1kW/m?, which are
significantly larger than those considered in the present work.
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Table 3.2: Experimental conditions of the considered data sets. CF1-CF3: ther-
mal counterflow; OG1-OG3: oscillating grids. 7" thermodynamic temperature;

q: applied heat flux; u,ps: mean particle velocity; s,: quantum scale, estimated
from Eq. (1.7) for data sets CF1-CF3; for sets OG1-OG3, see Ref. [22].

T K] ¢ [W/m?] s [mm/s] sq [um)]

CF1  1.50 193 3.1 35
CF2 1.50 349 4.6 31
CF3 1.76 616 3.0 27
OGl 1.95 - 224 )
0G2 1.7 - 20.0 )
OG3 1.50 - 20.9 >

visualized in our square channel (Fig. 3.1) in a 13 mm wide and 8 mm high field
of view located sufficiently away from the channel walls. We employ solid HD
particles for this task. The second flow type considered is turbulence generated
by a pair of grids oscillating in phase with 3 Hz frequency and 10 mm amplitude.
The flow is probed by solid deuterium particles in the same field of view, located
between the grids, see Ref. [22] for more details. Keep in mind that thermally
and mechanically generated flows of He II are fundamentally different [27]. In
counterflow, two macroscopic velocity fields are observed, while in mechanically
driven flows the normal and superfluid components share a single velocity field
on scales substantially larger than the mean intervortex distance.

Six large data sets were acquired and their experimental conditions are sum-
marized in Tab. 3.2. The counterflow sets are denoted as CF1-CF3, while the
oscillating grid data are labelled OG1-OG3. Note that the latter cases are char-
acterized by relatively dense tangles and large particle velocities, which implies
that only length scales larger than the mean intervortex distance are probed, see
Ref. [22] for the estimation of the quantum scale.

The signature of time irreversibility in the Lagrangian framework is studied by
calculating longitudinal velocity increments, introduced in Ref. [98]. Increment
du(r) is computed as the projection of the velocity difference onto the direc-
tion of the corresponding position difference, see Fig. 3.6; 7 now represents the
time lag between the velocities and positions considered. Flight-crash events are
neatly imprinted in this scalar quantity, since its statistical distribution becomes
negatively skewed when the particles experience such events. We can therefore
introduce two characteristic parameters, dimensional skewness Skg, defined as
the third central moment of du(7), and non-dimensional skewness Sk, defined as

Sky  ([du(r) = dup (1))

k = =
5 duy(7)3 duy(7)? ’

(3.7)

where du,, (7) is the mean increment and du,(7) indicates its standard deviation.

For each data set we calculate du(7) for a range of time lags 7 such that the
resulting statistical set of longitudinal increments has at least 10° samples. The
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Figure 3.6: Longitudinal velocity increment (green) is obtained by projecting
the velocity difference into the direction of the corresponding position difference

(red). Adapted from [98].

length scale, at which the flow is probed, can be then defined as s, = uansT,
where wu,ps is the mean particle velocity and the non-dimensional length scale
ratio R = s,/s4 is then taken as the control parameter.?

The skewness of du(7) is plotted as the function of R in Fig. 3.7, for CF (lines) and
OG data (points). Black dashed line denotes an analogous dependence obtained
from the numerical simulation of classical turbulence at a Taylor-based Reynolds
number R, = 280 [98]. Striking difference between the classical and quantum
turbulence is evident, especially for R < 1, i.e., at scales smaller than the quantum
scale. For large enough scales, the overlap with the classical data is somehow
better. Especially, we can note that OG data display a qualitatively similar
behaviour, i.e., the obtained values of Sk are negative and increase with the
probed scale.

Partial similarity of the classical turbulence and the grid turbulence in He II is
studied in the left panel of Fig. 3.8, where the absolute values of dimensional
skewness Skq are plotted as the function of R. We find that experimental data
from OG data sets follow |Skq| ~ R at large length scales, which is consistent with
the classical result reported in [98]. On the other hand, |Skq| values obtained for
CF data are a few orders of magnitude smaller than their classical counterparts.
Additionally, these values do not seem to appreciably depend on the probed scale,
but instead they remain close to zero in the full range of investigated scales.
This behaviour significantly differs from what is observed for OG data, which is
particularly apparent from the right panel of Fig. 3.8.

In order to understand the experimental outcomes one must first take into account
that the small-scale particle dynamics is influenced mainly by the interactions that
take place between a particle and individual quantized vortices [69]. However, this
concept is puzzling on the first look, especially if we consider recent numerical
investigations of the quantized vortex reconnections [99,100], which show that
they are, in fact, time irreversible, since the reconnecting vortices were found to
approach more slowly than they separate. On the other hand, these processes

9This definition is equivalent to the time ratio ¢ introduced in our original publication [80].
Employed time scales were defined for the sake of consistency with Ref. [98]. Here, we prefer
to be consistent with §3.2 of the present work.
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Figure 3.7: Skewness of the longitudinal velocity increment distributions as the
function of the length scale ratio R. Colour lines and points: experimental data.
Black dashed line: classical data from Ref. [98], see the main text for details.
Note the log-linear scale.
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Figure 3.8: Dependence of the dimensional skewness. Left panel: log-log plot of
its absolute value as function of the length scale ratio R. Right panel: dimensional
skewness plotted in the log-linear scale with emphasis on counterflow data sets.

take place only in a limited range of length scales, which are larger than the size
of the vortex core (approximately 1A for He IT), but smaller than the typical
particle size (ca. lum). In other words, the time reversal symmetry breaking
processes within the vortex tangle cannot be probed by micron-sized particles,
which explains why the lack of the flight-crash events is observed at small scales.
This argument is supported by the direct visualization of vortex reconnections
via similarly sized solid hydrogen particles [101], which were found to be time
reversible.

If the probed scale falls behind the quantum scale, the particles experience a
collective behaviour of the vortex tangle alongside with viscous effects taking
place in the normal fluid, which have been found to behave quasi-classicaly [69].
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This is consistent with the presence of negatively skewed distributions of du(7)
for grid turbulence in He II. The lack of similar effects in thermal counterflow
is, however, not clear and requires further attention. At this point we can only
speculate that the difference might be related to the fact that, in steady thermal
counterflow, quantized vortices are polarized in planes perpendicular to the heat
flux direction [7], while in the mechanically generated grid turbulence the vortex
tangle is expected to be essentially isotropic.

3.4 Bimodal particle dynamics

Where do particles go in channel counterflow? Answering this simple question
is in fact quite challenging, considering that both components of He II interact
with the particles and influence their motion. In consequence, several motion
regimes are distinguished by date, depending on the channel geometry, the bath
temperature and the applied heat flux. Generally speaking, at relatively small
heat fluxes, we find particles moving in the direction of the normal component
(i.e., moving up in the standard experimental setting) as well as in the direction
of the superfluid [31,102]. As the heat flux increases, the number of particles
moving up increases as well and, for relatively large heat fluxes, the particles
only move in the normal fluid direction and their trajectories gradually become
less straight [31].

The mean velocity of the particles moving in the normal fluid direction is reported
to be either close to the normal fluid velocity v, [102,103], or close to vy, /2 [53,103].
The latter is usually observed in a relatively fast counterflow, i.e., for relatively
large heat fluxes and dense vortex tangles, see Eq. (1.7). Decrease in the particle
velocity from v, to v,/2 is likely associated with frequent interactions between
the particles and quantized vortices [104].

Observation of all the above regimes within a single set up is reported in Ref. [105].
The authors specifically measured the PDFs of the particle vertical velocity and
they identified three qualitatively distinct regimes: (i) bimodal distributions with
the maximums located near vs and v, for the smallest heat fluxes, (ii) bimodal
distributions with the maximums near v,/2 and v, for intermediate heat fluxes
and (iii) unimodal distributions with a single peak near v, /2 for the largest heat
fluxes.

Here we focus on the second case, which was investigated in our 25 mm square
channel (Fig. 3.1) for the counterflow velocities exceeding 10 mm/s. Three large
data sets, labelled B1-B3, with more than one million samples each are ana-
lyzed, see Tab. 3.3 for details. Particle velocities are obtained by the Gaussian
convolution with the corresponding time scale equal to ca. 57, where 7 is the
sampling time (the camera frame rate f = 1/7 is 250 Hz or 800 Hz). While the
horizontal velocity distributions display one peak located near zero, the PDFs of
the vertical component clearly show two nearby peaks, see Fig. 3.9. We fit the
former distributions by a simple Gaussian, and the latter ones with a sum of two
Gaussians, plotted in the same figure by colour lines. For the vertical velocity
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PDFs we therefore obtain two central velocities, denoted v, and vy, see Tab. 3.3.
Note in passing that the fits describe only the central parts of the PDFs; heavy
tails are not captured by the fits and will be discussed later.

Table 3.3: Experimental conditions. 7" thermodynamic temperature; P: ap-
plied heating power; f: camera frame rate; vy, vy central velocities obtained
from the vertical velocity distributions; v,: estimated normal fluid velocity; vys:
counterflow velocity; R: length scale ratio. See text for details.

(] V2 Un Uns
T[] P[W] f[He] mm/s] [mm/s] [mm/s|] [mm/s]
B1 1.39 1.22 800 9.7 22.1 24.6 26.5 2.0
B2 1.36 0.61 800 5.4 13.6 16.2 173 0.8
B3 1.52 1.23 250 4.2 10.3 12.8 14.7 2.3
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Figure 3.9: PDFs of the particle velocity (black points) and the corresponding
Gaussian fits (colour lines). Left, middle and right columns: data sets B1, B2
and B3, respectively. Note the log-linear scale.

If we compare the central velocities with the normal fluid velocity, calculated
from Eq. (1.4), we find only a partial agreement, that is, the calculated value of
v, is only approximately equal to vy; a similar outcome is obtained for 2v;. The
discrepancy can be explained by heat leaks from the channel to the experimental
volume of the cryostat. As thermal counterflow is expected to occur also outside
of the visualization cell, the effective area over which the dissipated heat spreads
is a priori unknown, but we can assume that the value is close to the cross section
of the experimental volume, (51 mm)? in our case. Here, we introduce a novel
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technique for the estimation of v, based solely on the observed particle dynamics,
that is, central velocities v; and wvs.

Due to the density mismatch between solid deuterium (employed as the source of
particles) and liquid helium, their settling cannot be neglected and modifies the
central velocities. The effect can be accounted for by introducing a slip velocity
vg. Based on Ref. [105], we can write v; = v,/2 + vg and v = v, + vg. It then
follows that

2u; = vy + Vg, (3.8)

which is neatly verified by our data.!'® Linear fit of Eq. (3.8) yields vg =
= —2.5mm/s. If we set this value equal to the terminal velocity of a spherical
deuterium particle settling in He II, we can employ Eq. (2.3) to estimate the cor-
responding particle size. For 1.4 K, we obtain that the particle radius is ca. 5um,
which agrees well with the typical size of particles employed in our experiments
(see Fig. 2.1 for the typical size distribution).

Equation (3.8) and relations leading to this equation allow us to estimate the
normal fluid velocity as v, = vy — vgq. We can now calculate the counterflow
velocity as vys = (p/ps) vn and estimate the ratio R of the probed and quantum
length scales. To estimate the probed scale we use the effective time scale of the
Gaussian kernel, which yields s, /~ Suaps7. The quantum scale is estimated from
Eq. (3.3) and the resulting values of vy, v, and R are summarized in Tab. 3.3.

The key observation of this experiment is displayed in the left panel of Fig. 3.10,
where we plot vertical positions of several particles as the function of time. The
particles intermittently switch between two different velocities, which can be rec-
ognized by two distinct slopes. Time evolution of the velocity and acceleration
of the highlighted trajectory is shown in the right panel of Fig. 3.10. We can see
that the regimes can be now distinguished as intervals of a relatively constant
velocity separated by brief events of large acceleration or deceleration. When we
plot these data in the velocity-acceleration space, we obtain a trajectory shaped
like a repeating loop, displayed by white points in Fig. 3.11.

Owing to the specific trajectory shape, we suggest a separation scheme that splits
the velocity-acceleration space into four subspaces called slow (S), fast (F), accel-
eration (A) and deceleration (D), indicated in Fig. 3.11 by red lines. The curves
that split the space are: (i) a hyperbola with the focus in [vy, 0] and semi-axes of
lengths 20 (vy) and 20(a,), (ii) a hyperbola with the focus in [v, 0] and semi-axes
of lengths 20(v9) and 20(a,) and (iii) a segment between points [vy — 20(v2), 0]
and [vy + 20(vy),0]. Central velocities vy, vo and the corresponding standard de-
viations o(vy), o(vq) are obtained from the Gaussian fits of the PDFs (Fig. 3.9),
while the standard deviation of the particle vertical acceleration o(a,) is directly
calculated from the data. The mean acceleration is found to be practically zero,
for all considered cases.

The scheme allows us to split individual trajectories into segments correspond-
ing to one of the four motion regimes (S, F, A, D). Lengths of the segments,
defined as the position difference between their first and last points, are found

0The dependence is plotted as Fig. 5 in Ref. [81], reproduced here as Attachment 4.
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Figure 3.10: Left panel: several exemplary trajectories from the data set B2.
Right panel: vertical velocity and acceleration of the highlighted trajectory as the
function of time.

to be comparable to the intervortex distance for A and D segments; however,
much broader length distributions are observed for the segments of type S and
F'. Relatively common are lengths that exceed the intervortex distance, indicat-
ing that the particles can travel long distances without changing their motion
type. The vortex tangle, experienced by the particles, appears spatially inhomo-
geneous, which is a feature observed also in numerical simulations of quantum
turbulence [106].

Note that a similar separation scheme was introduced already in Ref. [105]. The
authors split their data solely on the basis of the vertical particle velocity into
two groups, denoted G1 and G2 and loosely corresponding to the respective
motion regimes S and F. The distributions of the horizontal particle velocity are
reported to be heavy-tailed for the G1 data and nearly Gaussian for the G2 data.
Based on this observation, the authors claim that particles from the G2 group
only interact with the normal component of He II. Our data suggest a different
physical picture, though. When we plot the horizontal velocity distributions of
particles that belong to the S and F regimes, see Fig. 3.12, we find that non-
classical tails are apparent in both cases, indicating that interactions with the
vortex tangle cannot be neglected for neither of the motion regimes.

The discrepancy between our experimental results and those reported in Ref. [105]
is likely due to differently sized data sets. While our sets B1-B3 contain 1.4,
8.6 and 1.1 million velocity points, respectively, the conclusions formulated in
Ref. [105] are based on data sets that contain at least one order of magnitude
less points than ours.!’ It is then not surprising that relatively small data sets
failed to resolve the tails, which reflect the occurrence of extreme yet relatively
rare events.

One may note that the tails in Fig. 3.12 are well-visible only for data sets B1 and
B2. For B3, we find instead that both motion regimes display nearly Gaussian

HSize of the data sets reported in Ref. [105] can be estimated from the published PDFs,
whose areas are normalized by the total number of considered data points.
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Figure 3.11: Velocity-acceleration space for the data set B2. Colour map in
the background: bivariate PDF of the velocity-acceleration pairs. White points:
trajectory from Fig. 3.10. Red lines: individual separation curves that split the
space into four motion types, see text for details.

distributions. Such outcome is consistent with the velocity distribution shown in
the top right panel of Fig. 3.9, which lacks the tails as well. The estimated length
scale ratio, ca. 2.3, is the largest one considered and this data set is visualized
with the smallest camera frame rate. It is likely that these factors combined led
to a quasi-classical particle dynamics, usually observed for larger values of R.

Nevertheless, our results strongly suggest that the particle-vortex interactions
are fairly ubiquitous in thermal counterflow. It now seems that a more promising
approach towards the investigation of turbulence in the normal component offer
metastable He; molecules that can be generated in He II by femtosecond laser
pulses [107]. Clouds of these molecules, which can be made visible by the laser-
induced fluorescence, interact solely with the normal component of He II.

Furthermore, we argue that the strength of these interactions differs between
the motion regimes. The trajectories of particles moving with the normal fluid
velocity are found straighter than slower ones [31,103], which suggests that erratic
trajectories can be related to frequent interactions of the particles with the vortex
tangle. Here we quantify the shape of individual trajectory segments by the
velocity orientation angle, ¥ introduced in Ref. [102] and defined as

¥ = arctan <ﬁ> ) (3.9)

Uy

where u,, u, are the Cartesian components of the particle velocity vector u. Note
that 9 can be defined in the full angular range, from —n to n. In this notation,
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the division by the standard deviation. Black dashed line: normal (Gaussian)
distribution. Note the log-linear scale.

the normal fluid direction corresponds to 9 = /2.

We plot PDFs of the orientation angle in the left panel of Fig. 3.13, for all data
sets (colour points). The distributions sharply peak near n/2, which indicates
a strong preferential orientation of the particle velocity vector in the direction
of the normal fluid. For the sake of comparison, we plot a similar distribution,
obtained at 1.39 K with the heater switched off (black line). In this case, the
detected particle motion is only due to the decaying flow caused by resuspension
pulses'? and the particles do not display any preferred direction of motion. Small
equidistant peaks are artefacts common for visualization experiments, discussed
in our original publication [81].

Nonzero width of the 9 distributions obtained in thermal counterflow accounts
for the deviations from straight tracks. To resolve the contributions from the
respective motion regimes, we use the outlined separation scheme. In the right
panel of Fig. 3.13 we plot the distributions of ¥ for S, F, A and D segments,
respectively; their standard deviations are displayed in the inset. We find that
the particles follow the most erratic trajectories when they are found in the regime
S, the straightest ones are instead observed for the fastest regime F. This likely
means that fast particles experience relatively weak interactions with the vortices,
e.g., via the pressure gradient forces (Eq. 2.6), while slow particles are subjected to
strong interactions originating from nearby vortices, perhaps those that currently
trap the particles in question.

As we have shown, the presence of the particle-vortex interactions leads to specific
motion patterns in the direction parallel to the heat flux. However, we remind
that non-classical velocity distributions are observed as well in the horizontal
direction. It is hence sound to assume that more complex motion patterns might

12We regularly inject pure He gas into He II to resuspend the particles back to the camera
FOV.
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regime. Data from the data set B2. Inset: standard deviation of ¥ for each
motion regime, shown in the order that corresponds to the typical time evolution
of the particle motion, i.e., S— A — F — D.

exist in the full, multi-dimensional velocity-acceleration space. Our data display
a hint of such behavior, but additional experimental efforts are required to obtain
firm conclusions. On the other hand, it should be relatively easy to employ the
outlined tools for the analysis of dedicated numerical simulations of quantum
turbulence [66].
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4 Counterflow jets

Steady jets form when the fluid is continuously pushed through a small opening
(nozzle) into a sufficiently large quiescent reservoir. Since the nozzle geometry
has a significant impact on the resulting flow [108], from now on we focus only on
round jets, formed past nozzles with the circular cross section. The jets usually
obtain their energy from the steady influx of momentum and are routinely realized
in classical [109] and cryogenic experimental facilities [110], as well as in a large
number of engineering and industrial applications.

Somehow peculiar are the counterflow jets that exist only in quantum fluids such
as He II [111]. They gain their energy from the heat dissipated by a heater
enclosed in a small volume, open to the surrounding helium bath through the
nozzle. When the heater is powered, thermal counterflow establishes inside the
nozzle; the normal component flows out and the superfluid component flows into
the enclosure.

In this chapter we briefly review the properties of the counterflow jets (§4.1).
In §4.2 we summarize our results on the measurement of the vortex line density
in the counterflow jets, carried out at Institut Néel in Grenoble. Scaling laws
observed in the acquired data are discussed in §4.3.

4.1 Introduction

The dynamics of round jets depends on the nozzle diameter D and the fluid
velocity at the nozzle exit. Following Ref. [59], the characteristic velocity in the
case of the counterflow jets is the normal fluid velocity, v, inside the nozzle and
the corresponding jet Reynolds number is defined as

_ pDyy,

Rej I y (41)

where p is the He II density and u, represents the dynamic viscosity of the normal
component; both quantities are tabulated in Ref. [18]. Direct visualization of
the counterflow jets [59] indicates they become turbulent when Re; > 5000. In
comparison, a classical jet with a similarly defined Reynolds number becomes
turbulent at Re & 2000 [108].

Turbulent counterflow jets were extensively studied in the past, because they
represent a boundary-free alternative to the channel counterflow [111], making
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Figure 4.1: Flow fields of the normal and superfluid components in a counterflow
jet. Adapted from [117].

them suitable for the investigation of the mutual friction forces. Presence of the
vortex tangle in these jets, first detected by negative ion trapping [112], suggests
that the coupling between He II components, mediated by the quantized vortices,
cannot be neglected. Indeed, subsequent measurements of temperature gradients
along the jet axis [113] and the second sound investigations [114,115] lead to the
conclusion that the normal and superfluid components are tightly coupled some
small distance above the nozzle and they flow with zero relative velocity.

The flow field of the superfluid component is then twofold, as sketched in Fig. 4.1.
The superfluid flows in the direction opposite to the normal fluid inside the nozzle
and in its close vicinity. Above the nozzle a stagnation point can be found,
followed by the region where the superfluid component flows together with the
normal fluid. Coflowing arrangement above the nozzle requires a transfer of
momentum between the normal fluid ejected from the nozzle and the otherwise
stationary superfluid component. This is achieved by the process analogous to
turbulent entrainment known for classical jets [108,111]. As a result, the coflow
velocity becomes fyv,, where f, = p,/p is the temperature-dependent normal
fluid fraction. Such velocity scaling was confirmed experimentally by the laser

Doppler velocimetry measurements performed as close as 0.5D above the nozzle
[116,117].

The velocity field in the region above the nozzle is spatially inhomogeneous.
Experimental evidence suggests that the radial profile of the fluid velocity is first
flattened [59], but a self-similar profile quickly develops, at a distance of a few
nozzle diameters [118]. Two similar shapes of the velocity profiles are reported
in literature, the Gortler and the Gaussian one [108, 118]; robust experimental
evidence favours the second one [119], which can be expressed in the cylindrical
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coordinate system (r,y) as

v(r,y) = vo(y) exp [— (;yﬂ : (4.2)

where vy(y) is called the centerline velocity and /5 denotes the jet growth rate.
For classical jets, 5 & 0.11 [109]. The centerline velocity follows in both classical
and counterflow jets [108,118]

Vo y\!
~l=) . 4.3
futn <D> (43)
Note that for classical jets, f,v, is replaced in the equation above by the fluid

velocity at the nozzle exit.

Equations (4.2) and (4.3) indicate that the kinetic energy of the flow is adiabat-
ically transferred between the planes perpendicular to the nozzle symmetry axis.
If we consider that the kinetic energy, normalized by the fluid density, is equal to
v?/2, the total energy contained in the jet, per unit height, is equal to

dE T @2 T i
S R
Yy 4 0

By

It follows from the right-hand side that &, is constant because of the vy ~ y~*

scaling introduced by Eq. (4.3), which means that the energy is indeed conserved
between planes.

Below, we present spatially resolved measurements of the vortex line density
L(r,y) in counterflow jets, as the spatial structure of L is largely unknown by
date. Such data can be regarded as complementary ones to the just outlined
structure of the fluid velocity.

4.2 Measurement of the vortex line density

The central tool of this work is a pair of miniature second sound tweezers, de-
scribed in §2.2. The sensor consists of a small open cavity, where we transmit
a standing wave of the second sound, whose amplitude is sensitive to the local
value of the vortex line density found in the cavity. A counterflow jet is generated
at the bottom of a 100 LL helium cryostat, see Fig. 4.2 for the photography of the
experimental setup. We use a nozzle made of brass, with D = 2mm diameter,
attached to the bottom flange of the cryostat insert. The nozzle encloses a custom
pyramidal box equipped with the heater.

The box (sketched in Fig. 5.8 below) is 3D-printed from Cu-filled PLA. Pyramidal
shape of the box reflects the square shape of the heater, placed at the bottom
of the box. Inner walls of the device are coated with Stycast 2850-FT epoxy to
suppress the penetration of He II through the plastic, partially preventing heat
losses from the box towards the surrounding bath. Linear contraction of the box
along its height aims to decrease the fluid recirculation inside the box.
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A steady jet is formed above the nozzle shortly after we supply the heater with
a constant current. In this work, we consider heating powers supplied to the
heater in the range from 190 mW to 780 mW, which were used to generate jets at
three distinct temperatures, 1.65 K, 1.95K and 2.10 K, see Tab. 4.1 for detailed
information on the data sets.

Mobile shaft
Mobile arm

Second sound sensor

Nozzle

Bottom flange
Thermometer

Figure 4.2: Photography of the bottom flange of the cryostat insert. Nozzle
enclosing the heater box is attached to the flange, while the second sound sensor
is mounted on a mobile arm that allows its displacement in two directions marked
by yellow arrows. See the main text for details.

Table 4.1: Experimental conditions of individual data sets. Displayed symbols
are used in Figs. 4.5-4.7. T: thermodynamic temperature; f, = p,/p: normal
fluid fraction; P: dissipated power; v,: normal fluid velocity inside the nozzle,
Eq. (1.4); Rej: jet Reynolds number, Eq. (4.1).

TIK] f. P[mW] v, [m/s] Rej/10°

O JA1l 1646 0.19 194 0.78 175
o JA2 1.650 0.19 381 1.51 338

JA3 1.637 0.19 776 3.24 726
vV JB1 1.947 0.48 194 0.26 %)
O JB2 1.947 0.48 381 0.52 108
* JB3 1.952 0.48 776 1.03 215
x JC3 2.095 0.73 776 0.65 107

Note that the values of v, obtained from Eq. (1.4), should be rather regarded as
over-estimates of the actual values, as we assume that the flow inside the nozzle
is isothermal. In reality, the temperature inside the heater box is higher than the
one reported in Tab. 4.1. Relevant temperature increase can be estimated from
Ref. [113] as
4P \?
ATzH(—)bT, 4.5
) uT) (15)
where H = 8mm is the length of the nozzle, the term 4P/(nD?) denotes the
heat flux in the nozzle and b(T) < 2 - 1071 K-s%kg™3-m~! is a proportionality
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coefficient related to the force of mutual friction.!® Cubic scaling of AT with
the heating power results in the large span of temperature increments: we obtain
0.04 K for 194 mW, 0.28 K for 381 mW and 2.4 K for 776 mW, respectively. Such
outcome suggests that, in the case of the highest heating power, the boiling of the
normal-phase helium must occur in the nozzle. However, such scenario is unlikely
to happen, as the heat might as well leak from the heater box through its walls
or via the joint between the plastic device and the nozzle. Moreover, the box was
tested in an optical cryostat and we did not observe bubbles leaving the nozzle,
at similar temperatures and heating powers as discussed here.

Our claims are supported by the direct visualization of the counterflow jets, ob-
tained in the experimental cell depicted in Fig. 5.8 below, at 1.65 K and for similar
heating powers as reported in Tab. 4.1. We know from the preliminary data that
the typical velocity achieved by deuterium particles is of the order of 100 mm/s,
i.e., 10-times less than the values of v, calculated in Tab. 4.1.

In conclusion, it is likely that the actual values of Re; are smaller than those
reported in Tab. 4.1 roughly by one order of magnitute. However, these values
are still larger than the critical Reynolds number reported in Ref. [59], which
means that the jets are convincingly turbulent.

The second sound twezers are attached to a mobile arm, which perpendicularly
extends from the vertical shaft located off the cryostat symmetry axis. A pair of
room-temperature stepper motors (Dynamixel MX-64AR) precisely displace and
rotate the shaft, which in turn displaces the sensor along a circle that intentionally
crosses the cryostat axis. We denote the sensor angular position as 17 and we set
1 = 0 to the position at which the sensor is located above the nozzle. The angle
can be then transformed into the radial distance r of the sensor as

P (g) , (4.6)

where d,., = 73 mm is the effective length of the mobile arm.

The setup is designed to systematically sweep across the jet axis, at different axial
distances y. For each sensor position, defined by n, r and y, we attempt to measure
the corresponding second sound amplitude. For data sets JA1-JA3 we directly
measure this amplitude by driving the second sound at a fixed frequency, fy =
= 37.22kHz (we have previously found that f; corresponds to the 18 harmonic
mode displayed in Fig. 2.9). Excitation with a constant frequency is here possible
because, at T' ~ 1.65 K, the temperature dependence of the second sound velocity
plateaus [18]. Hence, small temperature fluctuations, occurring in almost every
cryogenic experiment, have only a negligible effect on the resonance frequency.

We suppress the experimental noise by performing multiple sweeps (usually 25)
at the same axial distance, which are later averaged. An example of the averaged
signal is displayed in Fig. 4.3. Colour lines represent individual angular sweeps
performed equidistantly between 18 mm and 63 mm away from the nozzle. A

13The value of b(T) is estimated from Fig. 14 in Ref. [113] for T = 1.65K; for other temper-
atures considered in this work, the coefficient is not larger than the value reported in the main
text. Note that the coefficient is originally given in cgs units.
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systematic decrease of the second sound amplitude near n = 0 neatly depicts a
dense vortex tangle localized along the jet axis, which spreads in the radial direc-
tion with the axial distance. Note that the signal minimums display a constant
offset, which is estimated as 19 = (1.9 + 0.3)° and marked by the black dashed
line in Fig. 4.3. This value corresponds to the actual angular position at which
the sensor crosses the jet symmetry axis and we use it to recalibrate the positions
of the sensor.
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Figure 4.3: Acquired second sound signal for the data set JA3 as the function
of the jet angular position 7. Colour lines: average amplitude obtained from 25
angular sweeps. Colour areas: one standard deviation interval. Different colours
code different axial distances of the sensor, from 18 mm (dark blue) to 63 mm
(dark red) with steps of 5mm. Black dashed line: average of signal minimums
marks the offset ny = 1.9°, used to recalibrate the positions of the sensor.

It is not possible to employ the same approach for data sets JB1-JB3 and JC3,
which were obtained at temperatures where the second sound velocity is steeply
temperature dependent. We hence perform here a full frequency sweep at each
sensor position and we estimate the corresponding sound amplitude from the
circle fit of the in-phase and quadrature signal components (Fig. 2.7).

Vortex line density L is calculated as the function of r and y by using Eq. (2.15).
Note that the amplitude Ay and the peak width Ay were found by direct fitting
of the frequency sweeps acquired in quiescent He II (data sets JA1-JA3) or from
the frequency sweeps measured at the maximum and minimum angular positions,
i.e., far away from the jet (data sets JB1-JB3 and JC3). The resulting maps of
the vortex line density—some of them are plotted in Fig. 4.4—provide a neat and
unprecedented visualization of the vortex tangles in this kind of flow.

Note that the largest measured vortex line density is of the order of 10 m~2,
which corresponds to the mean intervortex distance equal to 10um. This value
is of the same order of magnitude as the typical intervortex distance (denoted
as sq) observed in the visualization experiments summarized in §3. However, in
the present case, the tangle density quickly decreases with the axial and radial
distances. Finite sensitivity of the sensor, combined with the presence of experi-
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Figure 4.4: Maps of the vortex line density in cylindrical coordinates (r,y).
Displayed data sets: JA3 (left), JB3 (middle) and JC3 (right panel). Note dif-
ferent colour scales, indicated by the colour bars above the maps. Red dashed
line: cross section of the cone with the opening half-angle of 11.1°, see §4.3 for
additional information.

mental noise, limits the maximum accessible axial distance to ca. 70 mm (35D).
We also start our measurements at the minimum distance of 18 mm (9D), because
the second sound waves are likely advected from the sensor by the action of a
large fluid velocity in the close vicinity of the nozzle, which leads to the parasitic
sound attenuation, not directly linked to the vortex tangle [78]. Considering that
the velocity of He IT is of the order of 100 mm/s at the nozzle exit, we can estimate
from Eq. (4.3) that this velocity is reduced to about 10mm/s at the minimum
distance probed by the second sound sensor.

4.3 Scaling laws

Although the fluid velocity and the vortex line density are conceptually different
quantities, we find that radial VLD profiles display a shape similar to a unimodal
Gaussian peak, i.e., analogous to Eq. (4.2) valid for the velocity profiles. We
introduce the fitting function for the vortex line density,

L(r,y) = Lo(y) exp [— <rj€y)>2] , (4.7)

where two free parameters are the centerline density Ly and the jet width ;. Good
agreement between the experimental data and Eq. (4.7) allows us to determine
these parameters and to analyze their dependence on the axial distance y.

We start with the jet width. A neat linear scaling of r; with y is apparent, see
Fig. 4.5. We only plot here the profiles with a large enough amplitude, i.e., large
enough Ly, as they are not appreciably affected by the experimental noise. We
specifically plot profiles that meet Ly > 2.2 - 10° m~2; weaker profiles follow this
trend only qualitatively. Since all the displayed data collapse onto a single line,
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we conclude that the growth of the jet width does not depend on temperature
nor the applied heat flux. Considering that a similar behaviour holds also for the
growth of the velocity profile width (Eq. 4.2), we can write

ri = By — w), (4.8)

where 1, denotes the growth rate of the vortex tangle and g is the virtual origin
of the jet. Collective linear fit of the displayed data (black line in Fig. 4.5) yields
yo = (—1.8 £ 1.6) mm, which means that the jet origin nearly matches the tip of
the nozzle. For the growth rate we obtain 5, = 0.139 4 0.006.
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Figure 4.5: Jet width, 7, obtained from the fits of Eq. (4.7), as the function
of the axial distance. Only values from the profiles that meet Ly > 2.2 -10%m™2

are displayed. Black line: collective linear fit reveals the jet growth rate g, =
= 0.139 + 0.006. Symbols as in Tab. 4.1.

This value is larger by about 20 % than the growth rate of the velocity profiles,
equal to § = 0.11 for classical jets, whose Reynolds numbers are of the order of
10° [109], i.e., comparable to Re; achieved in the present work (Tab. 4.1). Similar
results are reported for jets with Re; of the order of 10*, with different nozzle
geometries [120]. We can hence say that both the fluid velocity and the vortex
line density display mutually compatible spatial structures.

Following the two-sigma rule for Gaussian peaks, 95% of the vortex tangle is
localized within the interval [—v/2rj,+/2r;]. In other words, we can enclose the
vortex tangle by a cone with the half-angle equal to arctan(v/28;) = (11.1 £ 0.5)°.
Cross section of this cone is displayed by red dashed lines in each panel of Fig. 4.4.

Centerline VLD, L is plotted as the function of y in the left panel of Fig. 4.6 for
all considered data sets. It steeply decreases with the axial distance, following
a power law. The corresponding exponent is found to vary between the data
sets. We estimate it as —3/2, which agrees well with the scaling of the largest
Lo values. If we plot Ly as the function of the rescaled coordinate, (y/D) /2,
we obtain nearly-linear functions featuring a wide range of slopes. In order to
visualize the anticipated scaling and compare individual data sets, we normalize
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the slopes to unity, see the right panel of Fig. 4.6, where we observe that all data
sets collapse approximately onto a single line, confirming the suggested power
law scaling.
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Figure 4.6: Left panel: centerline VLD, Ly as the function of the axial dis-
tance y. Right panel: same data plotted as the function of the rescaled distance,
normalized to a unit slope. Symbols as in Tab. 4.1.

The obtained scaling exponent can be interpreted in terms of the fluid velocity.
If we consider that the centerline velocity follows vy ~ (y/D)”" (Eq. 4.3), we
find for the centerline density that Ly ~ vg/ ?. Such scaling between the vortex
line density and the fluid velocity is typical to the coflow of He II components
(Eq. 1.8). For instance, it is reported in Ref. [32] that this exponent holds for
a mechanically forced channel flow of He II in the wide velocity range, at least
from 1 mm/s to 1 m/s, and for temperatures between 1.17 K and 2.16 K. Since the
present data securely fall into these intervals, we can say that the observed scaling
further verifies the idea of the coflowing He II components in the counterflow jets,

as sketched in Fig. 4.1.

Although the outlined interpretation of Ly ~ y~/? is compatible with the current
knowledge on the counterflow jets, our experimental observations are somehow
limited. In particular, we currently probe a relatively narrow range of axial
distances, between 9 and 35 nozzle diameters, which deny a precise determination
of the scaling exponent. Indeed, linear fits of log(Lg) versus log(y) dependence
display deviations from the expected —3/2 slope, especially for data sets JAI,
JB1 and JB2. Further experimental effort is required to reduce the experimental
noise, e.g., by performing multiple scans along the jet vertical axis, and to prove
that the measured dependencies are reproducible.

Direct visualization of the counterflow jets, already mentioned above, indicates
that the mean vertical velocity of solid deuterium particles is consistent with the
Gaussian radial profile, Eq. (4.2). However, the scaling of the centerline velocity
given by Eq. (4.3) was not reproduced in our experiments; although we observe
that vy decreases with the axial distance, a power-law dependence, reported for
the counterflow jets in Ref. [118], is yet to be verified in our setup.
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A useful step towards the validation of the proposed VLD profile shape is to
calculate the total length of vortex lines, observed at the given axial distance.
Upon the assumption of axial symmetry of the vortex tangle, we can calculate
the vortex line length per unit height as

d 0o 00 2
L, = dE = /27‘[7‘[/(7”, y)dr = QTcLo/eXp [— (r) ] rdr = TELOTJ'27 (4.9)
y "
s 0

where we used Eq. (4.7) to plug in for L(r, y) before explicitly solving the integral.

Note that £, can be estimated in two independent ways. One is to evaluate the
right-hand side of Eq. (4.9). The other one is to evaluate the integrand from the
left-hand side, i.e., 2nrL(r,y), and numerically integrate between the endpoints
(—7max, 0) or (0, Tmayx ), Where rp.x is the maximum radial distance probed by the
sensor. Since the VLD profiles are symmetric, the absolute value of both integrals
should be the same, so we take for the estimate of £, their (absolute) average.

We plot both outlined estimates of £, as the function of the axial distance in
Fig. 4.7. Colour symbols indicate the result of a direct numerical integration using
the trapezoidal rule; the corresponding grey symbols denote the same quantity
estimated from Ly and r;.
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Figure 4.7: Length of the vortex lines per unit height as the function of the
axial distance. Colour symbols: result of numerical integration. Grey symbols:
estimate based on L and rj, see the right-hand side of Eq. (4.9). Symbols as in
Tab. 4.1.

Note first that the direct integration and use of Eq. (4.9) provides comparable
results. Somehow different are only values obtained for the data set JA1 (blue
circles), where we observe that some values of £, obtained by the integration are
negative. These unphysical data points originate from Eq. (2.15), which yields
negative VLD when A > Ay. The occurrence of such data points is related to
the small signal-to-noise ratio of the measured second sound amplitude. For the
remaining data sets we consistently obtain £, > 0, as expected.
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The most significant outcome is that the line length is roughly constant for most
of the data sets. In fact, the only obvious exception is the data set JA3 (yellow
triangles), which we cannot explain at this point. If we consider that the energy
contained by a quantized vortex is proportional to its length, the conservation
of £, between the planes perpendicular to the jet axis suggests, by analogy to
&, introduced in §4.1, another mechanism of energy transfer along the jet axis.
In particular, it seems that the radial growth of the vortex tangle embedded in
the jet might be due to the diffusion of the vortex lines rather than due to the
generation of new vortices or stretching of the existing ones.

However, the outlined physical model is inconsistent with the proposed scaling
laws for the jet width and the centerline density. If we consider that r; ~ y
and Ly ~ y~3/2, it follows from Eq. (4.9) that £, ~ y2, in contrast to the
experimental results. Instead, if we assume that £, is constant and the jet width
grows linearly with 3, we should find that Ly ~ y~2 and, by consequence, that
Lo ~ v, i.e., the scaling analogous to thermal counterflow (Eq. 1.7).

It now seems that the vortex tangle in the jet combines the features of the coflow
and counterflow turbulence, which is a rather unexpected behaviour. Especially
interesting is the question of the VLD generation mechanism. Is the entire vortex
line length produced in the close vicinity of the nozzle, i.e., in the counterflow
regime? Does the vortex tangle holds memory of its generation process? Or,
do the vortices additionally nucleate in the self-similar region further away? In
order to shed more light on this physical problem (compared to the presented
outcomes), further investigations are likely needed.
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5 Macroscopic vortex rings

Somehow complementary flow structures to the jets, discussed in the previous
chapter, are vortex rings, commonly subjected for experimental and theoretical
enquiries [121]. Vortex rings are toroidal vortices, which usually gain their energy
from a finite momentum influx, supplied, e.g., by the stroke of a piston. By
analogy with the counterflow jets, we focus in this chapter on thermally generated
turbulent rings in He II, which we study by the flow visualization and the second
sound attenuation techniques. We show below that the macroscopic vortex rings
are, in fact, conceptually different from the quantized vortex loops, which play
an important role in quantum turbulence at small scales [122].

Basic concepts required for further discussions are introduced in §5.1. In §5.2 we
describe how the rings can be visualized and in §5.3 we analyze their motions
in the framework of the classical similarity theory [123], following mainly our
own work [124]. Preliminary outcomes of the performed second sound study,
supported by flow visualization, are reported in §5.4.

5.1 Introduction

In the most common experimental set up, the vortex rings are generated by a
piston that ejects a relatively small amount of the fluid into a quiescent reservoir
through some opening, e.g., an orifrice or a nozzle. The geometry of the opening,
as well as the piston velocity history affects the ring generation process and the
occurrence of instabilities in the flow [121,125]. Here, we consider rings that are
formed past a circular nozzle of diameter D due to a piston that displaces the
fluid with a constant velocity V,, over a distance L, called the stroke. Following
Ref. [121], the ring Reynolds number can be defined as Re, = V,,L,,/2v¢, where
vy = py/ps denotes the fluid kinematic viscosity.

In He II, we can replace the piston by a heater and we can generate the rings
thermally, by supplying a short power pulse to the heater [126]. If we assume that
the power pulse is orthogonal and the heat conductivity of He II is sufficiently
large to diffuse the heat fast enough [18], we find that the analogue of V}, in He II
becomes the normal fluid velocity v,, and L, becomes v,t,, where ¢, indicates
the pulse duration. The ring Reynolds number can be then rewritten as

_ Ut

Re,
e i

: (5.1)
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where p is the density of He II and p,, is the dynamic viscosity of the normal fluid
component.

Despite the simplicity of their thermal generation, first macroscopic vortex rings
in He II were generated by displacing a piston. Their direct visualization [127]
revealed that they are similarly sized and propagate with a velocity comparable to
that of the classical vortex rings. Acoustic measurements performed in a similar
set up [128,129] indicate that the rings consist of the normal and superfluid
components, and the velocity circulation measured in both components is equal.
In Ref. [129], the authors suggest that quantized vortices formed in the nozzle are
responsible for the coupling of the He II components into a single velocity field,
in a process similar to the counterflow jets [111]. This idea is generally accepted
and consistent with the second sound measurements of thermally generated vortex
rings [130] and recent numerical simulations [131].

Besides the Reynolds number, a vortex ring is also characterized by its circulation
;. According to the slug model [121], one can write

_ ViLyp _ Ugtp

I
2 2

(5.2)
Neat correspondence between the model and the experimentally obtained circu-
lation was confirmed for both classical and superfluid rings [129, 132], at least
relatively close to the nozzle.

Following Ref. [125], the formation of laminar or turbulent rings depends simulta-
neously on the Reynolds number (note Re, = pI'y/11,) and the aspect ratio L,/ D,
which is defined for thermally generated rings as

L, wntp
— = . 5.3
D =D (5.3)
In approximate terms, if Re, > 10* and L,/D 2 4, the vortex rings are considered

turbulent, which can be experimentally recognized by the formation of a visible
wake that follows the ring along its path [125,133].

5.2 Lagrangian pseudovorticity

We first investigate the vortex rings by flow visualization. Specifically, we use
solid deuterium particles, whose motions are captured at 1kHz or 2kHz frame
rates, in a 25 mm wide and 22 mm high field of view, located above the circular
nozzle of D = 5mm diameter. The nozzle is a part of the experimental cell,
shown in Fig. 5.1, and is placed above a flat resistive heater. We supply the
heater with orthogonal pulses of 500 ms or 1000 ms duration and various heat
fluxes, ranging from ca. 350 W/m? to 4500 W/m?, in the temperature range from
1.28 K to 1.95 K. We observe that the vortex rings form some distance above the
nozzle and travel in the vertical direction.

We analyze 15 data sets, each consisting of multiple vortex ring realizations.
For the sake of argument, we consider here eight representative sets, labelled
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Figure 5.1: Photography (left) and scheme (right) of the experimental cell.
Centering frame is 3D-printed from PLA, the remaining parts are made of brass.
The parts are coated with black paint to reduce reflections of the laser light.
Dimensions are given in millimeters.

LRO-LR5, that fully illustrate the underlying dynamics of all studied rings.4
Individual data sets differ in temperature, the applied heat flux and the pulse du-
ration, see Tab. 5.1 for experimental conditions. The obtained Reynolds numbers
and aspect ratios indicate that all rings can be considered turbulent. We indeed
observe that the rings are followed by visible wakes, consistently with literature.

Note that the values of the heat flux reported in Tab. 5.1 are obtained by dividing
the power applied to the heater by the heater area, i.e., (25.4mm)?, because the
heater is not tightly enclosed by the cover (see Fig. 5.1) and it is likely that some
heat manages to escape to the surrounding bath, bypassing the much smaller
nozzle.

To visualize the rings, we illuminate the particles, previously dispersed in the
open volume above the nozzle, by a thin laser sheet that crosses the symmetry
axis of the setup. Therefore, we only access the ring cross section, which appears
as a pair of counter-rotating vortices. The vortices appreciably affect nearby
particles: we commonly observe trajectories that are bent into loops, making
the time-dependent position of the ring visible to a naked eye. Aiming for a
quantitative analysis though, we make the rings visible to a computer thanks
to a custom scalar parameter called Lagrangian pseudovorticity [134], proved to
be suitable for the visualization of large vortices in the Lagrangian framework.
Pseudovorticity is defined as

o(z,t) = <[<w" —2) X u]> (5.4)

@ — x|’

In the equation above,  and t denote position and time coordinates where 6 is

ATl 15 data sets are discussed in Ref. [124], attached to this work.
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Table 5.1: Experimental conditions of the representative data sets. T": thermo-
dynamic temperature; ¢: heat flux; ¢,: pulse duration; v,: normal fluid velocity
at the nozzle exit, Eq. (1.4); L,/D: aspect ratio, Eq. (5.3); Re,: ring Reynolds
number, Eq. (5.1).

T [K] q[W/m? ¢, [ms] v, [mm/s] L,/D Re, /103

LRO 1.50 2780 500 65.0 6.5 108.3
LR1 1.29 350 1000 23.0 4.7 22.9
LR2a 1.50 770 1000 18.0 3.6 16.6
LR2b  1.50 770 1000 18.0 3.6 16.6
LR3 1.75 4230 1000 35.9 7.1 70.8
LR4 1.75 3060 1000 26.0 5.2 37.0
LR5a 1.95 4120 1000 17.4 3.5 15.7
LR5b  1.95 4220 1000 17.8 3.6 16.6

calculated. Vectors x; and u; represent the position and velocity of the i*! parti-
cle.!® Subscript z indicates the only non-zero component of the vector product,
since both its factors are effectively two-dimensional vectors. Ensemble averag-
ing, indicated by the angle brackets, is performed over all particles that fall into
the inspection area sketched in Fig. 5.2. It consists of an annulus with 1 mm inner
and 5 mm outer radii, centred in . Annular geometry is intentionally chosen to
eliminate diverging contributions of the particles that are located too close to the
inspection point. The size of the inspection area approximately matches that of
the observed vortices. Averaging is carried out also in the time domain, where
we employ a 10 ms wide sliding window, centred in ¢.

Choice of the inspection area size and shape results from the systematic search for
an optimal parametrization. In particular, we investigated how the mean signal,
i.e., (#%),,, depends on the outer inspection radius. We found that we obtain the
maximum signal for a 10 mm radius, which correlates with the size of the vortex
pair. The final (outer) radius of the inspection area was then taken as the half of
this value, in order to optimize it for individual (clockwise and counter-clockwise)
vortices.

Analytical relation between 6 and Eulerian vorticity w = V x u can be found
for an idealized case of homogeneously distributed tracers that follow a smooth
velocity field. It follows that pseudovorticity is equal to the half of vorticity
in the vicinity of the inspection point.'® However, the assumptions leading to
this straightforward relation are not usually met in experiments. For instance,
deuterium particles are usually inhomogeneously distributed in the camera FOV
and they only rarely sample the vortex cores. Nevertheless, we can say that @ is,
in the realistic case, at least a qualitative measure of the actual flow vorticity.

In order to find how the pseudovorticity is distributed in space we compute 6 on

15We calculate the particle velocity by convolving its position with the Gaussian velocity
estimator, described in §2.1.
6For derivation see §2.1 of Ref. [124], attached to this work.
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Figure 5.2: Calculation of the Lagrangian pseudovorticity #. For each mesh
point (purple point) we calculate the normalized vector product of the position
(blue) and velocity vectors (red) for all particles (yellow point) that fall into the
inspection area (purple area), defined as an annulus in space coordinates and as a
sliding window in time. The resulting pseudovorticity is obtained as the averaged
contribution of individual particles.

a regular mesh that consists of 115 x 101 inspection points, fully covering the
camera field of view. This way, we obtain quasi-Eulerian, time-dependent maps
of pseudovorticity (6-maps). Realizations of the rings that fall into the same data
set are found to produce comparable -maps, which allows us to merge them by
extending the ensemble averaging in Eq. (5.4) over multiple acquired movies. This
step leads to the data sets that contain more than 1 million positions each; the
increased particle concentration in the field of view then reduces the background
noise. A typical example of the resulting averaged 6-map obtained with the data
set LRO is displayed in the left panel of Fig. 5.3. Note that areas of positive and
negative pseudovorticity representing the vortex pair can be easily distinguished
in the figure.

We typically observe that the vortex pair first emerges from the background sig-
nal near the bottom end of the field of view. Subsequently, the vortices become
more apparent and propagate towards the top end, where they eventually disap-
pear. Their upwards journey can be precisely tracked by separating the vortices
from the background signal. We achieve this by setting a positive threshold 6,
ranging from 0.15s7! to 0.25s7! in the present experiment. Inspection points
are filtered and only those meeting |0| > 6, are kept. We then typically obtain
two separate regions that represent the clockwise (f > 0) and counter-clockwise
(0 < 0) vortices, respectively, see the right panel of Fig. 5.3. Vortex positions,
p+ and p_ are calculated as the |f]-weighted averages of the filtered inspection
points. Reconstructed trajectories of the vortices are plotted by red lines in the
right panel of Fig. 5.3.

Position of the entire ring p is defined as the joint |0|-weighted position of the
two vortices. Cartesian components of p are plotted as the function of time in
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Figure 5.3: Left panel: map of pseudovorticity 6 obtained 1.15s after the heat
pulse. Data from the data set LR0O. Tip of the nozzle is located 11 mm below
the bottom edge of the map. Right panel: pair of counter-rotating vortices can
be isolated by setting the threshold 6y = 0.25s7! (see the main text for details).
Red points: respective positions of the vortex pair. Red lines: trajectories recon-
structed from the previous f-maps.

the left panel of Fig. 5.4 for the same data set LRO. Note that the horizontal
position component remains constant in time and the vertical one systematically
increases, indicating that the rings propagate vertically, as expected. Deviations
can be seen at the beginning and at the end of the investigated time interval.
Such spurious data usually originate from the relatively small number of filtered
inspection points and they usually correspond to a weak signal-to-noise ratio.
Interval when the vortex area (i.e., the number of considered inspection points)
is at least 30 % of its maximum is marked by black dotted lines.

Ring velocity is obtained by differentiation of p with respect to time. This is
achieved by the convolution with the Gaussian velocity estimator, Eq. (2.11),
see the middle panel of Fig. 5.4. Note that the vertical velocity component
is systematically non-zero and varies between ca. 5mm/s and 30 mm/s in the
present case. Apparent velocity decrease occurs for late times, which suggests
that the ring has a tendency to slow down. Ring radius, displayed in the right
panel of Fig. 5.4, is defined as r, = |p+ — p_|/2 according to [135]. Note that
r, increases in time, which is consistent with the behaviour of classical vortex
rings [136] as well as mechanically generated rings in He II [127].

Decrease of the ring velocity and increase of its size in time is observed also for
other data sets. Note that this behaviour is typical for the rings that propagate
in classical fluids [136] and can be explained by energy losses due to turbulent
entrainment and viscous dissipation. Instead, the quantized vortex loops tend to
shrink and accelerate [122] as they loose their energy via the interaction with the
normal fluid. This fundamental difference between small and large-scale vortex
rings coexisting in the same fluid is remarkable. It exists due to the circulation,
which is constrained exactly to x for the quantized loops, while for large vortex
rings it is a continuous quantity, which tends to slowly decrease in time [135].
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Figure 5.4: Tracking of the vortex ring. Left panel: ring position. Middle
panel: ring velocity. Right panel: ring radius. Black dotted lines: interval where
the vortex area is at least 30 % of its maximum value. Data from the data set

LRO.

We have not yet mentioned that the experimental cell used to generate the rings
is attached to a mobile shaft, which allows us to vertically displace the nozzle
with respect to the camera position, in order to study vortex rings in a wider
range of nozzle distances than the camera FOV. Notable reproducibility of the
ring dynamics is demonstrated in Fig. 5.5, where we plot pairs of ring trajectories
obtained under similar conditions (see Tab. 5.1), but at different distances from
the nozzle. Neat overlap of the trajectories suggests that the rings can be precisely
tracked for distances up to 30 mm (6D), in the current experimental set up.
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Figure 5.5: Demonstration of the highly reproducible ring dynamics. Trajec-
tories obtained at different positions of the camera FOV neatly overlap, which
indicates that the ring dynamics is well defined up to 30 mm (6D) away from
the nozzle. Displayed positions correspond to the vortex areas that cover at least
30 % of their maximum values.
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5.3 Classical scaling laws

The idea of quasi-classical dynamics of macroscopic vortex rings in He II can
be elaborated further. In particular, we aim to check if the similarity theory,
developed for turbulent vortex rings propagating in a classical fluid [123], can be
applied to our data. The theory describes the rings as self-similar objects, whose
dynamics is governed only by two dimensional parameters, the fluid density and
the hydrodynamic impulse; viscous dissipation can be neglected for turbulent
rings [123]. If the fluid is Newtonian and the interactions with the flow boundaries
are neglected, both parameters are constant in time. These assumptions allow us
to construct the corresponding stream function and it follows from its dimensional
analysis that

Ty~ (yr - yO) ) (55)
(e — y0)* ~ (t —to) (5.6)

where 7y, 1, is the ring radius and its vertical position, respectively. Virtual space
and time origins, denoted as yy and %y, vary with individual ring realizations and
can be found experimentally.

Our data follow both these rules. We show it by plotting the representative data
sets and their linear fits in Fig. 5.6. In this figure, we already subtracted virtual
origins 1o and ty from the data so that individual dependencies pass through the
plot origins for clarity. We can say that the linear scaling of the ring radius (left
panel) is somehow less clear than that of its vertical position (right panel). This
suggests that 8-maps are performing well mainly for tracking the ring position,
while the estimate of the ring size is considerably noisy, at least in the investigated
parameter range.
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Figure 5.6: Verification of the scaling rules predicted by the similarity theory
of turbulent vortex rings. Left panel: ring radius r, as the function of the vertical
position 1 — o, Eq. (5.5). Right panel: power-raised position (y; — yo)" as the
function of time t — ¢y, Eq. (5.6). Black lines: corresponding linear fits previously
used to determine virtual origins yo and ¢, and adequately shifted in this figure.

The ring propagation velocity, v, is expected to scale with time and distance as
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well. These dependencies can be expressed in terms of time-independent con-
stants ¢, ¢, and ¢, [135], defined as

ct :vf/?’ (t —to),

Cy = Ui/g (yr - yO) )

¢ = vl3r,.

Our data verify these equations. Specifically, we observe that the values of ¢, ¢,
and ¢, fluctuate!” around their mean values, which differ among individual real-
izations, as displayed in Tab. 5.2. This outcome is consistent with the similarity
theory, which predicts that only the ratios ¢, /c; and ¢, /¢, are universal. We verify
this by plotting ¢, and ¢, as the function of ¢; in Fig. 5.7, for all available data
sets. Neat linear scaling in the left panel (blue points) is in excellent agreement
with the predicted slope ¢,/c; = 4 (black dashed line). However, the relation
between ¢, and ¢; (red squares in the right panel) is not systematic.

Table 5.2: Time-independent constants obtained from the similarity theory,
Egs. (5.7) = (5.9). Reported are the mean values and standard deviations.

cy [mm4/3s—1/3] ¢ [mm4/3sfl/3] ¢, [mm4/3871/3]

LR1 274.9 + 18.7 69.9+17.5 7.6 +0.6

LR2a 174.1+12.1 428 +11.9 85405

LR3 194.4 + 10.0 47.5+9.9 11.0£0.5

LR4 369.3 + 18.9 90.2 £17.8 10.0 £ 0.6

LRba 169.5 £ 10.6 43.2 +£11.0 89+0.6
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Figure 5.7: Left panel: c, as the function of ¢; (blue points). Black dashed line:
predicted ¢,/c; = 4 slope. Right panel: ¢, as the function of ¢; (red squares).
Note that data from all available data sets is plotted.

Consistency between the theory and experiment implies that our vortex rings
move as they were moving in a classical fluid. Moreover, this outcome highlights
the usefulness of the Largangian pseudovorticity and the underlying tracking

ITFluctuations are found to be normally distributed.
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scheme developed. On the other hand, the missing universality of the ratio ¢, /c;
(right panel of Fig. 5.7) points out that the ring radius is not correctly estimated
by the outlined tracking scheme. Other, say, physical reasons for such behaviour
are not clear at the moment.

5.4 Second sound study

The second sound attenuation and the flow visualization techniques are combined
to investigate the vortex rings generated in He II in the cell shown in Fig. 5.8.
Similarly to the previous experiment, the rings gain their energy from brief power
pulses, supplied to a resistive heater enclosed in the pyramidal box already intro-
duced in §4.2, and open to the surrounding bath via a circular nozzle of D = 2 mm
diameter. The cell features an open volume above the nozzle that is 50 mm high
and can be seeded with solid particles. Custom-made second sound channel is
located above this open volume and its detailed description can be found in §2.2.
Two second sound transducers are located at a distance d = (68.5 £ 1) mm from
the nozzle. Reported are results obtained at two temperatures, 1.66 K and 1.51 K,
which correspond to the normal fluid fractions, f, equal to ca. 20% and 12 %,
respectively.

44

>

il
S~ Mounting support

Second sound channel

Second sound sensor

Visualization area

Support pillars
Nozzle (22)

Centering frame

Heater box

Figure 5.8: Photography (left) and scheme (right) of the experimental cell. The
heater box, the centering frame and the second sound channel are 3D-printed from
Cu-filled PLA, remaining parts are made of brass. The nozzle and the support
pillars are coated with black paint. Dimensions are in millimeters. White dashed
lines indicate the inner walls of the heater box and the second sound channel.
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Resonant second sound wave is continuously excited in the channel by applying
a sine wave with 7V RMS amplitude to one of the sensors. Fine-tuning of its
frequency is controlled by a PID loop, ensuring that the resonant condition is
always met. For VLD measurements we take the 4'® harmonic mode that occurs
in the present channel near 3610 Hz at 1.66 K and 3545 Hz at 1.51 K. In-phase
and quadrature components of the transmitted signal are read from the second
sensor at ca. 15 Hz sampling rate.

Power pulses (up to 0.7W of the heating power and 1500 ms duration) are pro-
grammatically supplied to the heater. We check the shape of the pulses by mea-
suring the corresponding current and voltage by a pair of synchronized multi-
meters with 250 Hz sampling rate. Obtained data confirm that the pulses are
orthogonal, and we use them for the precise timing of the experiment (the in-
stant when the pulse starts is taken for the time origin of the second sound data).
More than a thousand ring realizations were acquired and split into multiple data
sets, summarized in Tab. 5.3.

Heat flux used to compute the ring Reynolds number and the aspect ratio is
calculated by dividing the pulse power with the heater area, consistently to §5.2.
It is clear from the scheme in Fig. 5.8 that the heater area is significantly larger
than the nozzle cross section. Values reported in Tab. 5.3 should be then regarded
as their conservative estimates. All observed rings appear turbulent, since the
wakes are clearly formed behind them. Occurrence of these wakes suggests that
the actual values of Re, and L,/D are larger than what we report in Tab. 5.3,
indicating that the deposited heat effectively spreads over a smaller area than the
heater cross section.

On the other hand, if we consider for this area solely the nozzle cross section—
n(D/2)* = 3.1 mm?, roughly 200-times smaller than the heater area—we obtain
an unrealistic increase of Re, by 4 orders of magnitude and that of L,,/D by 2
orders of magnitude. The use of this area also results in the calculated normal
fluid velocity of the order of 1m/s inside the nozzle.

A more adequate physical picture arises if we assume that the flow inside the
heater box is not isothermal similarly to the case of the counterflow jets and
consistent with the reported temperature gradients in turbulent counterflow [90,
113]. If we take into account that the heater box contains approximately 10 cm? of
He II, adiabatic addition of 1J of heat at 1.66 K would increase the temperature
inside the box by ca. 0.3 K. This in turn leads to the decrease of vy, see Eq. (1.4),
Re, and L,/D. Additionally, a further decrease of v, inside the nozzle is possible
due to heat leaks through the joints between the brass nozzle and plastic walls of
the heater box, similarly to our discussion in §4.2.

Again, a realistic order-of-magnitude estimate of v, can be obtained from visu-
alization. At 1.66 K, we observe that the particle velocity above the nozzle is of
the order of 100 mm/s (see, e.g., Fig. 5.13 below, where this velocity is estimated
to ca. 83mm/s). Following this observation, we can say that realistic values of
Re, are about 100-times larger and those of L,/D are about 10-times larger than
what is reported in Tab. 5.3.
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Table 5.3: Experimental conditions of the acquired data sets. T: thermody-
namic temperature; f,: normal fluid fraction; N,: number of ring realizations
in the data set; P: applied power; ¢,: heat pulse duration; @) = Pt,: dissi-
pated heat; L,/D: aspect ratio, Eq. (5.3); Re,: ring Reynolds number, Eq. (5.1).
Superscripts denote the availability of visualization data.

N, PmW] t,[ms] Q] L,/D Re /103
T =1.66K, f, = 0.20

RA1* 40 242 5194+6 0.13 1.3 1.4
RA2* 50 242 8214+9 020 20 2.2
RA3 39 242 1518+10 0.37 3.7 4.0
RA4*t 50 483 32149 016 1.5 3.3
RA5*T 50 483 5209 025 2.5 5.4
RA6*T 50 483 818+8 040 3.9 8.5
RA7 45 483 1520+8 0.73 7.3 15.8
RA8* 50 675 2234+9 0.15 1.5 4.5
RA9* 35 675 321+7 022 22 6.5
RA10*T 30 675 523+8 035 3.5 10.6

RA11*T 30 675 819+10 0.55 5.5 16.7
T =151K, f, =0.12

RB1 20 96 522+10 0.05 0.9 0.7
RB2 20 97 1522+£9  0.15 2.8 2.2
RB3 20 240 219+ 11  0.05 1.0 1.9
RB4 20 240 319+£7  0.08 1.4 2.8
RB5 30 240 2207  0.12 2.3 4.5
RB6 30 240 8187  0.20 3.7 7.1
RB7 30 240 15207 0.36 6.8 13.2
RB8 7 481 117+ 17 0.06 1.0 4.1
RB9 38 481 220+ 10 0.11 2.0 7.7

RB10 50 481 3217  0.15 2.9 11.2
RB11 30 481 2195  0.25 4.7 18.0
RB12 30 481 820+ 10 0.39 7.3 28.5
RB13 30 481 1521 +£11 0.73  13.6 52.9
RB14 20 672 221+£11  0.15 2.8 15.0
RB15 20 672 3219  0.22 4.0 21.8
RB16 30 672 522+9  0.35 6.5 35.4
RB17 30 672 821+9 055 10.3 55.7

* Visualization data available 9.3 mm above the nozzle.
t Visualization data available 24.3 mm above the nozzle.

Vortex line density

The current understanding of large vortex rings in He II [129] indicates that a
localized vortex tangle propagates alongside the normal-fluid ring, so that both
helium components display equal circulation. Presence of the vortex tangle is
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detected by the second sound as the decrease of its amplitude. Since the tangle
is localized and moves with respect to the second sound sensor, the measured
sound amplitude changes in time. In particular, we see that it abruptly decreases
at first (this corresponds to the arrival of the ring between the sensors) and
then slowly recovers (this reflects a non-zero vorticity present in the wake). The
second sound response is found to be highly reproducible and we can average
multiple ring realizations into a single response curve. This is achieved by the
synchronization of individual signals with respect to the heat pulse start and
by their subsequent averaging within adjacent 70 ms time windows. A typical
example of the resulting second sound amplitude is displayed as the function of
time in the left panel of Fig. 5.9 (red line), alongside with the corresponding heat
pulse (black line).
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Figure 5.9: Left panel: typical second sound response to a vortex ring that
propagates along the second sound channel. Data from the data set RB7. Red
line: averaged signal from 30 realizations. Pale red area: one standard deviation
interval. Black line, right axis: the mean heat pulse. Right panel: examples of
the calculated VLD profiles. Open points: characteristic time tg, Eq. (5.10).

Time-dependent vortex line density L(t) is computed from the averaged second
sound amplitude by employing Eq. (2.15). Unattenuated amplitude A, is cal-
culated as the mean value of the first 50 points from each response curve and
the resonance width Ay is taken from full frequency sweeps, regularly acquired
in quiescent He II during the experiment. The resulting vortex line density pro-
files can be considered as central outcomes of the second sound setup and four
representative cases are plotted in the right panel of Fig. 5.9.

Note that individual L(t) profiles appear to share the same shape, which can
be verified by finding an adequate set of normalization parameters. Natural
candidates for these parameters are the peak amplitude L,, = max [L(t)] and the
corresponding arrival time t,,, (defined as L(t,,) = Ly,). We can also calculate the
profile area L; = [ L(t) dt and the characteristic time g, defined as

tg = zt:tL(t)/zt: L(t) . (5.10)

This time can be understood as the centroid of the profile and its estimate is
more robust against the experimental noise than ¢,,. It turns out that this is
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particularly useful because tg and t,, are linearly correlated, see the left panel
of Fig. 5.10. In other words, tg can be employed as the characteristic time scale
of the VLD profiles. Similarly, L; is less affected by the noise compared to L,
because L; is an integral quantity. Linear scaling between these parameters is
observed as well, see the right panel of Fig. 5.10. Slight departure from the linear
scaling is apparent only for relatively weak rings (L; < 10°s/m?), which can be
attributed to low signal-to-noise ratios of these profiles.
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Figure 5.10: Left panel: linear scaling of tg with ¢,. Points: experimental
data. Dashed line: linear fit. Right panel: linear scaling of L,, with L;. Squares:
experimental data. Dashed line: linear fit of points that meet L; > 10°s/m?
(these points are highlighted by red colour).

Normalization of the VLD profiles aims to remove the dependence on the specific
ring realization. This can be achieved by non-dimensionalization of both coordi-
nates. Specifically, we normalize time by tg and the vortex line density by L;/tg.
The obtained non-dimensional profiles L'(t') are of unit area and neatly overlap;
we show this by small grey points in Fig. 5.11.

Ensemble average of dimensionless profiles (blue line in Fig. 5.11) reflects only
the geometric features of the flow structure that consists of the vortex ring and
its wake. Sharp peak at the beginning corresponds to a dense vortex tangle
constituting the vortex ring; turbulent wake can be associated with the following
gradual decrease of L’. Since the rings move with a velocity of the order of
10 mm/s and a non-zero vortex line density is observed typically for 20s past the
arrival time, the measured signals correspond to a flow structure that is roughly
20 cm (100D) long.

Non-dimensional profile can be fitted with the following function:
L'(t)=p.H ' —py) (' +1—pp)" %G (py), (5.11)

where four parameters p,, py, p. and p, are free, H denotes the Heaviside step
function and G(p,) is the Gaussian blur kernel with the standard deviation p,
that accounts for the finite size of the second sound sensors. Eq. (5.11) simply
reflects the observed behaviour of the dimensionless profile: the model function is
first zero, then sharply rises at ¢’ = p, and decays with the power-law exponent p...
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Levenberg-Marquardt fit of Eq. (5.11) yields p, = 2.15, p, = 0.39 and p. = —2.98
for the fixed p, = 0.07 in non-dimensional units. The resulting function, plotted
as the red line in Fig. 5.11, displays an excellent agreement with the experimental
data.
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Figure 5.11: Normalized profile of the vortex line density. Time is normalized
by tg, the vortex line density is normalized by L;/tg. Grey points: overlapping
experimental data (only data sets that meet L; > 10°s/m? are displayed). Blue
line: ensemble average of the experimental data. Red line: fit of Eq. (5.11).

The width of the blur kernel was set manually, in order to improve the fit; we
can however argue that its (dimensional) value, 0.07tg is physically sound. If we
assume that the ring velocity can be estimated as d/t,,, where d = 68 mm is the
distance between the nozzle and the sensor pair (we discuss the ring velocity in
more detail below), we obtain that the spatial analogue of the kernel width is
0.07dtg/ty. If we consider that tg/t, ~ 1 (the slope of the linear fit displayed
in the left panel of Fig. 5.10 is ca. 0.97), we find that the spatial extent of the
kernel is 0.07d ~ 5 mm, which is comparable to the radius of the second sound
sensors (4mm).

We can now compare p, with the (normalized) time needed for L’ to reach its
maximum value from zero; the latter is smaller than p, and we estimate it from
Fig. 511 as t;, ~ 0.2, by subtracting the latest time when L’ is practically
zero from the time when L' peaks to the maximum value. Roughly speaking,
tye = 3po, which hints that the vertical size of the dense vortex tangle that

propagates through the channel is ca. 15 mm.

Moreover, we can also estimate the expected radius of the ring inside the second
sound channel from the similarity theory developed for classical turbulent rings
[136] (see below). We obtain D + 0.01d = 2.68 mm, where we take the initial
nozzle radius equal to D and we let it expand over the distance d according to
the growth rate reported in Ref. [136].

Perhaps the most interesting outcome of the fit is that the vortex line density in
the wake decays with the power-law exponent p. ~ —3. Interpretation of this
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outcome is, however, not straightforward, because of the lack of a linear (Galilean)
transformation between the laboratory and ring frames of reference. As we will
show below, the ring velocity is not constant in time and the corresponding
transformation is hence non-linear.

Control parameters

Control parameters, summarized in Tab. 5.3, are expected to tune the resulting
velocity and strength of the vortex rings. We aim to estimate these characteristics
from the second sound response and check whether and how they depend on the
relevant control parameters.

For instance, we can calculate the average ring velocity (v,) based on the arrival
time t,, and the distance d separating the sensors from the nozzle, as

d
(vp) = . (5.12)
However, the instantaneous velocity, v, is not constant. It likely decreases in
time (or with the travelled distance) because turbulent rings tend to loose their
kinetic energy into the wake [136]. Following the similarity theory introduced in
Ref. [136], the ring velocity depends on distance as

—(34+Cp)
) , (5.13)

o
ve(y) = v (y +1
To

where o = dr,/ dy = 0.01 denotes the growth rate of the ring radius and Cp, is the
drag coefficient related to the entrainment of the surrounding fluid. Parameters vy
and 7y indicate the initial ring velocity and radius, respectively. They correspond
to the point where the vortex ring is fully formed and the concept of similarity
becomes applicable. This point is also taken for the origin of ¢t and y. Note that
Eq. (5.13) results in the same asymptotic behaviour as Egs. (5.5) and (5.6) if
Cp < 1. We also note that the ring formation process limits the applicability of
this theory to distances larger than ca. 15 nozzle diameters [136].

For the sake of argument, let us here neglect the formation process and assume
that the ring follows Eq. (5.13) right after the heat pulse, just above the nozzle.
By integrating v,(y) we obtain for the travelled distance

1/(44+Cp)
y:m{[w@lwﬂl _1}‘ (5.14)

(6 To

This equation is also valid for time ¢, and position d. We can then express vy as

<ML+QLWD—4. (5.15)

To

To

T Ut Cp)aty,

Now, if we assume that 2ry ~ D and o and Cp are constant for all rings, we find
that vy depends only on t,, (vo ~ t,'). By comparing Egs. (5.12) and (5.15) it
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follows that (v,) is, in fact, proportional to vy and their ratio is

2 d 4+Cp
<g+1) —1]%5.3,

where we took for a« = 0.01 and Cp = 2, following the experimental results
reported in [136]. Due to multiple simplifications considered above we should
take this result with caution, but it nevertheless suggests that the mean ring
velocity can be considered as a semi-quantitative estimate of vy and should be
then recognized as a valid physical parameter.

Vo ~ D
(vr) ~ 9 (4+Cp)ad

(5.16)

Systematic dependence of (v,) emerges if we plot it as the function of the heat
dissipated during the power pulse, further rescaled by the normal-fluid fraction,
i.e., Q/ fu, see the left panel of Fig. 5.12. Note that data obtained at two different
temperatures (empty and full points) neatly overlap in this plot.

Although such outcome is intriguing, we need to keep in mind that the accuracy of
(v;) is affected by the ring formation process, which may vary between individual
data sets. More experimental effort is required to clarify this behaviour and—
more importantly—to provide its physical interpretation. Note that no clear
dependence is apparent when we plot the same data as the function of the ring
circulation, I';, which is a relevant control parameter for the rings with thin
cores [122]. We also note that T, is proportional to P?t,, while Q = Pt,.

The strength of the vortex rings can be quantified by L;, the VLD profile area,
which is found to scale linearly with the modified heat, see the right panel of
Fig. 5.12. Data obtained at both temperatures collapse onto a single line within
the full range of the applied ) values, which are limited by the maximum equal
to ca. 0.75J. For greater values of () we observe that the self-similarity of VLD
profiles no longer holds, i.e., the profiles get deformed, which likely means that a
jet-like structure forms past the nozzle instead of a localized vortex ring.
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Figure 5.12: Left panel: mean ring velocity (v,) as the function of the modified
heat @Q/f.. Right panel: VLD profile area L; as the function of the modified
heat. Open symbols: data sets RA1I-RA11 (T = 1.66 K). Filled symbols: data
sets RBI-RB17 (1.51 K).

The already mentioned lack of a Galilean transformation between the laboratory
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and ring frames of reference impedes a straightforward interpretation of L(t).
Finite size of the second sound sensors (their radius is Ry = 4mm) results in
the measurement of a spatially averaged VLD. As the first-order estimate of this
effect we can model the obtained values of L(t) as

L) = g [ LI+ uOlde = [ S© Ll +y0)ae = (L 8) o), 617)

where we additionally assume that L is only a function of the axial distance vy,
whose time dependence is given by Eq. (5.14). The right-hand side of Eq. (5.17)
denotes the convolution of VLD with the characteristic function of the sensor
S(&), which is here an orthogonal step function from — Ry to R with the functional
value equal to 1/(2R;) (its integral is equal to 1). Integral of L(y) is finite and
proportional to the total length of the vortex lines in the channel and integral
of L(t) approximately equals to L; even if we extend the integration limits to
infinity. Since all the functions are integrable, it follows from the Fubini theorem
that the integral of a convolution can be split into the product of integrals, i.e.,

L~ / L(t)dt = / S(€) de - / L{y(1)] dt. (5.18)

Because the first integral on the right-hand side is equal to 1, L; differs from
the spatially-integrated vortex line density only by the non-linear transformation
between ¢t and y. In an idealized case when the ring velocity is constant and equal
to, say, vg, we would obtain that

[e.9]

1
Ly =— L(y) dy. (5.19)
Vo

Equations (5.18) and (5.19) provide the physical interpretation of L;. Since the

right-hand side is proportional to the total length of the vortex lines observed in
the channel, L; is a relevant measure of the vortex ring strength.

It then follows, for an identical heat pulse employed, that the ring generated
at a lower temperature will move faster and display a larger peak of VLD than
the ring produced at a higher temperature. Such behaviour is to some extent
intuitive, if we consider that the normal component likely exits the nozzle with a
higher velocity when the temperature decreases. However, the simple scaling of
(vy) and L; with the normal fluid fraction does not fully match the temperature
scaling of v, in thermal counterflow (Eq. 1.4) and one has to take into account
the underlying ring formation mechanism. Do identical energy injections generate
rings with the same initial velocity and strength, or is their formation temperature
dependent? If not, do large vortex rings in He II loose their energy at different
rates for different temperatures?” We believe that additional experiments are
needed to answer these questions and to clarify the outlined behaviour.

Complementary results of flow visualization

We employ solid deuterium particles to visualize the vortex rings in the open
volume of the experimental cell from Fig. 5.8, under similar experimental con-
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ditions and with the same control parameters as the selected data sets listed in
Tab. 5.3. Cross sections of the vortex rings are captured in the field of view ca.
12.7mm wide and 8 mm high, now located at two different distances, d; = 9.3 mm
and dy = 24.3 mm, measured between the bottom edge of the camera FOV and
the nozzle tip. In agreement with the previous work, the movies depict vortex
pairs that propagate vertically in a well-defined and reproducible manner, which
allows us to merge multiple ring realizations into large data sets prior to their
analysis. In comparison to the visualization study reported in §5.2, the rings are
now smaller (the nozzle diameter is 2 mm instead of 5 mm), move faster and their
wakes are more prominent.

The acquired positions and velocities of the particles'® are split into multidi-
mensional bins. We resolve 50 bins according to their horizontal position and
additional bins of 0.1s width according to time (number of bins depends on the
movie length). For each bin combination we calculate the average horizontal
position = and the average vertical velocity (u,) of the particles, to obtain the
velocity profiles, i.e., (u,) expressed as the function of z (particle dynamics along
the FOV height is therefore averaged). Typical profiles are displayed in Fig. 5.13.

Vertical velocity [mm/

Figure 5.13: Typical velocity profiles. Data from the data set RA9 (Tab. 5.3, the
field of view is located 9.3 mm away from the nozzle) are split into 50 horizontal
position and 10 time bins. Grey shadows in the background: profile maximums
in the given spatial and time dimensions.

Time evolution of the velocity profiles is similar for all data sets. At first, the
profile is flat. Small negative values of (u,) are compatible with the gravitational
settling of deuterium particles. Relatively shortly after the heater is powered, we
observe a small positive velocity in the middle. Afterwards, the profile quickly
develops, i.e., we see that the particles move upwards in the full height of the cam-
era field of view. Shape of the fully developed profiles is close to a single-peaked
Gaussian. Constant peak position, combined with the apparent symmetry of the
profiles, suggests that individual vortex rings propagate along similar trajectories.

8We calculate the particle velocity by convolving its position with the Gaussian velocity
estimator, described in §2.1.
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Constant width of the developed profiles additionally indicates that the size of
the observed flow structure does not appreciably change between the data sets.

We can demonstrate these features explicitly by plotting the position of the peak
velocity x,, defined as (u,)(z,) = max((u,)), as the function of time, for all
available data sets in a single plot, see the left panel of Fig. 5.14. Small blue and
red points denote two locations of the field of view, and we see that the mea-
sured peak positions are roughly constant within these groups. A small relative
difference between the two groups indicates a non-zero tilt of the ring trajectories
(estimated to be ca. 4°), which likely originates from the slight misalignment of
the experimental cell inside the cryostat. A somehow larger scatter of the ring
positions in the more distant field of view can be linked to the occurrence of tur-
bulent instabilities, which are typical for vortex rings obtained at large Re, [135].
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Figure 5.14: Left panel: position of the velocity peak z, as the function of
time. Right panel: linear scaling of the profile area as the function of the peak
velocity. Blue (red) points: field of view located 9.3 mm (24.3 mm) away from the
nozzle. Black lines: linear fits with zero intercept reveal the size of the observed
ring-wake structure (see the main text).

Constant width of the profiles can be verified by direct fitting. However, we sug-
gest an alternative approach. After having checked that some of the profiles are
Gaussian-like, we numerically compute their areas and plot them as the function
of the peak velocity, see the right panel of Fig. 5.14. Neat linear dependencies,
obtained in both field of view locations, confirm the idea of a constant width.
Because the area, A, below a Gaussian peak with the amplitude a, and standard
deviation o, is equal to A, = \/ﬁagag, the slopes of linear dependencies in the
right panel of Fig. 5.14 are equal to \/2_Tcag.

We can estimate the apparent radius of the ring-wake structure as r, = 20y, in
the accordance with the two-sigma rule valid for Gaussian peaks. It seems that r,
does not depend on temperature nor the applied heat flux or the pulse duration.
However, r, clearly increases with the distance from the nozzle. For two locations
of the field of view we obtain

ra1 = (2.21 £ 0.03) mm,
ras = (4.19 £ 0.08) mm.
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We note in passing that this effect is not directly visible from the individual
velocity profiles, because they contain information that is averaged along the
FOV height.

The corresponding growth rate can be estimated as

a2 —Ta1

——  =0.13 £ 0.01.

dy — dy
This value is about 10-times larger than the growth rate a = 0.01 reported for
classical rings [123,136], but comparable to the growth rate of the counterflow
jets [, measured in §4. It hence seems that the current data reflect rather the
turbulent wake than the vortex ring. It is likely that the actual ring radius is

ry < rqr & D, which is consistent with the previous visualization study (see the
left panel of Fig. 5.6).

We note in passing that both visualization experiments failed to reproduce the
classical value of the ring growth rate, despite the motion of large rings in He II
was found to be classical-like.'? Eventual observation of the ring growth rate in
He II compatible with @ may strengthen the analogy between the superfluid and
classical vortex rings, built in this work and in Ref. [124].

The access to a more detailed information, e.g., the ring propagation velocity,
is limited with the currently available data. The latter can be approximately
estimated from the time evolution of the velocity profiles, to be of the order of
10 mm/s, with no clear dependence on control parameters. In order to obtain
more refined results, several technical challenges are needed to be overcome. For
example, the potential use of the Lagrangian pseudovorticity requires a signifi-
cantly larger density of tracer particles than that achieved in the current experi-
ment, which are needed to be captured with a large enough camera frame rate, in
a relatively small field of view. It would be hence easier to visualize larger rings
that propagate more slowly, but such requirements compete with those imposed
by the second sound attenuation technique. In particular, the size of the vortex
rings is limited by the width of the second sound channel (10 mm sides). More-
over, the detection of spatially confined tangles of quantized vortices in smaller
vortex rings is more sensitive than in larger ones, since dense tangles attenuate
the second sound waves more efficiently than dilute ones.

We can nevertheless conclude that the simultaneous use of the flow visualization
and the second sound attenuation techniques is possible. Preliminary data pre-
sented in this section can be considered as the proof-of-concept, as we showed
that the combination of two distinct experimental techniques offers a useful tool
for the complex characterization of large vortices that propagate in He II.

9The growth rates of the vortex rings displayed in the left panel of Fig. 5.6 are equal to the
slopes of the respective linear fits.
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Conclusions

Interactions between small solid particles and the quantized vortices were ex-
ploited in view to address physical phenomena that occur in the channel coun-
terflow and are not yet fully understood. First, we studied the role of the
heater, which doubles as a solid boundary and the flow generator. We devised
a method for the qualitative estimation of the vortex line density, based on the
scale-dependent velocity flatness. We found that the vortex tangle is apprecia-
bly denser in the area located immediately above the heater, compared to the
bulk (Fig. 3.3). This outcome is robust and is verified by two types of particles
that differ in density (solid Dy and HD). Our observation provides experimental
evidence that the vortex tangle develops inhomogeneity in thermal counterflow,
in the direction of the heat flux. The findings are published as research articles
(Refs. [61,79]) and reproduced here as Attachments 1 and 2.

The ability of the particles to gain or lose their kinetic energy was investigated
in quantum turbulence via longitudinal velocity increments. The classical phe-
nomenon of flight-crash events, which is responsible for negatively skewed dis-
tributions of the increments, was not found in thermal counterflow of He II,
for length scales both smaller and larger than the mean intervortex distance
(Fig. 3.7). The observed difference is linked to the existence of non-classical en-
ergy transport mechanisms in quantum turbulence, which influence the motion
of the flow-probing particles. Instead, for mechanically generated turbulence in
He II, probed only at scales larger than the mean intervortex distance, the ob-
served particle dynamics qualitatively corresponds to the classical result. In this
case, the collective behaviour of the vortex tangle resembles the action of classi-
cal viscosity. A detailed discussion is provided in our own publication (Ref. [80]),
which is reproduced here as Attachment 3.

Apart from the statistical properties of a large number of trajectories, we also
followed the motion of individual particles in the counterflow. In the specific
range of temperatures and normal fluid velocities, we neatly observed that the
particles intermittently switch between two distinct motion regimes (Fig. 3.10),
associated with the bimodal distribution of the vertical particle velocity. A novel
technique for the estimation of the normal fluid velocity, based solely on the ob-
served particle dynamics, was developed. The method yields comparable results
as Eq. (1.4), but it does not require information on the bath temperature and
the applied heat flux.

Two motion regimes are typically associated with the particles that are trapped
by the vortex tangle and the particles that travel undisturbed by quantized vor-
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tices [105]. We introduced a custom separation scheme (Fig. 3.11) aimed to in-
dependently analyze the motion regimes and we showed that the particle-vortex
interactions are more pervasive than previously thought. Signatures of these
interactions are present in both motion regimes (Fig. 3.12), albeit the interac-
tion strength differs between them. The study is published as a research article
(Ref. [81]) and reproduced here as Attachment 4.

Counterflow jets are conceptually similar to the counterflow in a uniform chan-
nel. However, the flow field of the counterflow jets significantly differs from that
in the channel counterflow, as both components of He II are coflowing in the
volume above the nozzle (Fig. 4.1). We experimentally probed the vortex tangle
embedded in the jet and we mapped its spatial distribution (Fig. 4.4) for the first
time, to the best of the author’s knowledge. The majority of the vortex tangle is
localized within a cone, which is derived from the growth rate of radial profiles
of the vortex line density and whose opening half-angle is found to be ca. 11.1°,
regardless of the bath temperature or the applied heating power. The radial
profiles are nearly-Gaussian, which is consistent with the corresponding velocity
field.

The vortex line density measured along the jet axis displays a power-law decrease
with the distance from the nozzle (Fig. 4.6). The corresponding exponent is found
close to —3/2, which is compatible with the expected dependence of the fluid
velocity. However, our preliminary data are not conclusive and a future study is
likely required to validate the proposed dependence.

If a steady heating is substituted by short heat pulses, the experimental setup
for counterflow jets can be used to thermally generate vortex rings in He II.
We visualized and tracked the propagation of the rings that are about 10 mm in
diameter by using the Lagrangian pseudovorticity (Eq. 5.4), a custom scalar field
that is computed from the positions and velocities of the visualized particles.
Time evolution of the ring trajectory and size is in good agreement with the
similarity theory developed for turbulent rings propagating in a classical fluid
[123] (Figs. 5.6 and 5.7). The tracking method, as well as the ring propagation,
are further discussed in our publication [124], reproduced here as Attachment 5.

In order to probe the quantized vortex tangle embedded in the rings, we have
successfully combined the particle tracking velocimetry and the second sound
attenuation techniques in a single experiment (Fig. 5.8). In comparison to the
previous study, the investigated vortex rings have a smaller diameter (ca. 4 mm)
and their wakes are more pronounced. The collected profiles of the vortex line
density were found self-similar and highly reproducible (Figs. 5.9 and 5.11). They
neatly reflect the ring-wake structure that passes between the second sound sen-
sors. Parameters that describe individual profiles are related to the ring velocity
and the total length of vortex lines produced by the heat pulse. We found that
these parameters depend on the deposited heat and bath temperature (Fig. 5.12),
although the physical interpretation of such behaviour is unclear at the moment.

Complementary visualization data confirm that a vortex ring develops after each
heat pulse; the rings propagate vertically towards the second sound channel. The
estimated size of the ring—wake structure (right panel of Fig. 5.14) is found to
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grow with the distance from the nozzle, at the rate comparable to that of the
counterflow jets, which suggests that the visualized particle motion is affected
mainly by the turbulent wake.

To summarize, we believe that the presented thesis contributes to the understand-
ing of several aspects of turbulent flows of He II. However, some of the outcomes
are not definitive. In particular, our second sound studies, presented in §4.3 and
§5.4, are mostly based on preliminary data and they leave several questions unan-
swered. We hope that such open problems will always stimulate the interest of
the research community in quantum turbulence, a complex yet exciting branch
of fluid dynamics.
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FOV Field of view
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PDF Probability density function
PID ... Proportional-integral-derivative (controller)
PIV Particle imaging velocimetry
P A Polylactic acid
PV Particle tracking velocimetry
RM S Root mean square
VLD Vortex line density

95



96



List of Publications

Publications [A—E]| are directly related to the presented thesis and are reproduced
as Attachments 1-5.

[A]

P. évanéara, D. Duda, P. Hrubcova, M. Rotter, L. Skrbek, M. La Mantia, E.
Durozoy, P. Diribarne, B. Rousset, M. Bourgoin, and M. Gibert. Ubiquity
of particle-vortex interactions in turbulent counterflow of superfluid helium.
Journal of Fluid Mechanics, 911:A8, 2021.

P. évanéara, M. Pavelka, and M. La Mantia. An experimental study of tur-
bulent vortex rings in superfluid *He. Journal of Fluid Mechanics, 889:A24,
2020.

P. Svancara and M. La Mantia. Flight-crash events in superfluid turbulence.
Journal of Fluid Mechanics, 876:R2, 2019.

P. évanéara, P. Hrubcova, M. Rotter, and M. La Mantia. Visualization study
of thermal counterflow of superfluid helium in the proximity of the heat source

by using solid deuterium hydride particles. Physical Review Fluids 3:114701,
2018.

P. Hrubcova, P. évanéara, and M. La Mantia. Vorticity enhancement in
thermal counterflow of superfluid helium. Physical Review B, 97:64512, 2018.

D. Duda, P. évanéara, M. La Mantia, M. Rotter, D. Schmoranzer, O. Kolosov,
and L. Skrbek. Cavitation bubbles generated by vibrating quartz tuning fork

in liquid *He close to the M-transition. Journal of Low Temperature Physics,
187:376-382, 2017.

P. Svancara and M. La Mantia. Flows of liquid *He due to oscillating grids.
Journal of Fluid Mechanics, 832:578-599, 2017.

M. La Mantia, P. évanéara, D. Duda, and L. Skrbek. Small-scale universality
of particle dynamics in quantum turbulence. Physical Review B, 94:184512,
2016.

D. Duda, P. évanéara, M. La Mantia, M. Rotter, and L. Skrbek. Visualization
of viscous and quantum flows of liquid *He due to an oscillating cylinder of
rectangular cross section. Physical Review B, 92:64519, 2015.

97



98



Attachments

1. Vorticity enhancement in thermal counterflow of superfluid helium

2. Visualization study of thermal counterflow of superfluid helium in the prox-
imity of the heat source by using solid deuterium hydride particles

3. Flight-crash events in superfluid turbulence

4. Ubiquity of particle-vortex interactions in turbulent counterflow of super-
fluid helium

5. An experimental study of turbulent vortex rings in superfluid *He

99



100



	Preface
	Superfluidity and quantum turbulence
	Properties of superfluid 4He
	Quantum turbulence in He II
	Relation to classical turbulence

	Methods of investigation
	Particle tracking velocimetry
	Second sound attenuation

	Particle-vortex interactions in channel counterflow
	Introduction
	Role of flow boundaries
	Flight-crash events
	Bimodal particle dynamics

	Counterflow jets
	Introduction
	Measurement of the vortex line density
	Scaling laws

	Macroscopic vortex rings
	Introduction
	Lagrangian pseudovorticity
	Classical scaling laws
	Second sound study

	Conclusions
	Bibliography
	List of Abbreviations
	List of Publications
	Attachments

