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Abstract:

In this thesis, the single-level correlated quantum dot attached to two BCS super-
conducting leads is analyzed. A difference in the superconducting phases of the
leads induces the DC Josephson supercurrent in the junction. In this setup, the
influence of asymmetrical dot-lead couplings on transport properties is clarified
analytically. The coupling asymmetry and the phase difference can be combined
into one function, which allows us to calculate physical properties of a system
with coupling asymmetry from the properties of its effective symmetric counter-
part. The coupling asymmetry turns out to be an important parameter which
influences the position of the 0−π quantum phase transition even in the strongly
correlated Kondo regime.

Further, this thesis contributes to the interpretation of an AC Josephson current
measurement, in which a surprising drop in the amplitude was observed in the
Kondo regime. The experimental setup is characterized using numerical renor-
malization group calculations of the equilibrium many-body spectra. Possible
quantum-point-contact-based interpretations are discussed. Although a drop in
the AC Josephson current at the experimental bias voltage is also expected in a
quantum point contact, we conclude that the physical mechanisms causing it in
the quantum dot system are likely not the same.
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Introduction

This thesis deals with a mesoscopic “superconducting quantum dot”, a small sys-
tem with discrete energy levels connected to one or two superconducting leads.
The superconductivity considered is conventional, described by the mean-field
Barden-Cooper-Schrieffer (BCS) theory, and only a single electronic level is con-
sidered for the quantum dot. Nevertheless, the electrons on the dot (strongly)
interact via Coulomb interaction. Even for a non-superconducting quantum dot,
attached to a single reservoir, such interaction sets up the famous and difficult
Kondo problem. Adding a second lead introduces the rich physics of quantum
transport, and making the system superconducting means that the proximity
and Josephson effects enter the picture, making the study of superconducting
quantum dots a difficult problem on the intersections of many fields of physics.

This thesis is a purely theoretical study, however it is inspired by and related
to the experiments on carbon-nanotube quantum dots performed in Laboratoire
de physique des solides, Orsay, France. Both numerical and analytical results are
used to obtain insights and formulas describing the system of the superconducting
quantum dot.

Chapter 1 introduces the related concepts and physical background. Sec. 1.1
introduces the single-impurity Anderson model and the Kondo model for non-su-
perconducting quantum dots. Sec. 1.2 introduces superconductivity, the Joseph-
son effect, and the superconducting quantum point contact. Sec. 1.3 discusses
some known theoretical results about the superconducting quantum dot (super-
conducting single-impurity Anderson model) itself, Sec. 1.4 deals with the nu-

Quantum dot

Source
(Superconductor)

Gate

Drain
(Superconductor)

Figure 0.0.1: Schematic representation of a quantum dot connected to supercon-
ducting leads. Terminology reminiscent of a conventional field-effect transistor is
often adopted.
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merical renormalization group method, and Sec. 1.5 describes recent experiments
on carbon nanotubes which have motivated our work.

Chapter 2 is a short summary of some results presented in the included arti-
cles, emphasizing my own contribution. Sec. 2.1 is based on Paper I and Paper II.
It explains the influence of coupling asymmetry on the physics of a phase-biased
superconducting quantum dot, finds the asymmetry of a specific experiment, and
discusses to what extent the notion of Kondo universality is valid in the trans-
port setup. Sec. 2.2 presents my contribution to interpreting the experimental
AC Josephson measurement published in Paper III.

The research presented in this thesis is in line with the continued effort of
the condensed matter theory group at KFKL MFF UK to fully understand the
superconducting single-impurity Anderson model.
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Chapter 1

Theoretical background

1.1 Non-superconducting quantum dots
In this thesis, by “quantum dot” we mean any system with discrete (though possi-
bly degenerate) quantum levels. Examples of quantum dots include single atoms
and molecules, impurities in bulk material and adatoms on surfaces, nanowires
(e.g. InAs wires) and carbon nanotubes in certain regimes. (More about the
spectrum of a carbon nanotube can be found in Sec. 1.1.5.) If the energy sep-
aration of levels of a quantum dot is large enough compared to other relevant
energy scales of the system (Coulomb interaction, voltage bias, ...), it is possible
to describe a single level and its interaction with the environment “locally” (in
the energy-range of interest) via the single-impurity (or single-level) Anderson
model.

1.1.1 Single-impurity Anderson model
The single-impurity Anderson model (SIAM) [1] has proven successful in descrip-
tion of dilute magnetic impurities in metals, adatoms on surfaces and quantum
dots in the transport (source-drain-gate) setup. The Hamiltonian consists of a
part describing the dot, the leads (or the bulk), and the tunnel-coupling between
those two. For a quantum dot with a single spin-degenerate quantum level it
reads

H = Hdot +
∑︂

α

(Hα
lead + Hα

T ), (1.1.1)

Hdot = ε
∑︂

σ=↑,↓
d†

σdσ + Ud†
↑d↑d

†
↓d↓ (1.1.2)

Hα
lead =

∑︂
kσ

εαk c†
αkσcαkσ (1.1.3)

Hα
T =

∑︂
kσ

(tαkc†
αkσdσ + H.c.) (1.1.4)

where α numbers the lead(s) (e.g. α = L, R for left and right in the trans-
port setup), c†

αkσ, cαkσ are the creation and annihilation operators of electrons in
the leads with momentum k and spin σ and d†

σ (dσ) create (annihilate) on-dot
electrons. The level-energy ε and the local Coulomb interaction U are the two
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parameters which describe the dot. Tunneling matrix elements tαk give rise to
tunnel-coupling magnitudes Γα(ε) ≡ π

∑︁
k |tαk|2δ(ε − εαk), which are assumed to

be constant in the energy range of interest, Γα(ε) ≃ Γa (wide-band approxima-
tion). We define the total coupling as Γ = ΓR + ΓL.

For ε = −U
2 the Hamiltonian (1.1.1) is particle-hole symmetrical. This is also

called half-filling.
The Γ quantity is best understood for the non-interacting (U = 0) Anderson

model, sometimes also called the “resonant level”. A well-known form of the (re-
tarded, advanced) Green’s function (see also Appendix A) of the non-interacting
quantum dot at zero temperature reads [16]

GR,A
0 (ω) = 1

ω − ε ± i Γ , (1.1.5)

independent of spin. This leads to a density of states (DOS) on the dot per spin

ρd0 = ∓ 1
π

Im
{︂
GR,A

0 (ω)
}︂

= 1
π

Γ
(ω − ε)2 + Γ2

. (1.1.6)

This broadened density of states on the dot stems entirely from the interaction
or the resonant level with the leads, and Γ = ΓR + ΓL is the half-width at
half-maximum (HWHM) of the Lorentzian function1. The time scale ℏ/Γ is the
“lifetime” of the resonant level, or the time an electron spends on the dot.

For the interacting (U ̸= 0) case, the dot’s Green function acquires an
additional self-energy term

GR,A
σ (ω) = 1

ω − ε ± i Γ − ΣR,A
U,σ (ω)

(1.1.7)

which is not exactly known, and can be computed in various approximations. A
logarithmic divergence in the third order of perturbation theory hints at the
famous Kondo problem (see secs. 1.1.3, 1.1.4), an effect of strong correlations
which is not captured at all in the mean-field approximation or in second-order
perturbation theory.

1.1.2 Coulomb blockade physics
The basic transport setup consists of two lead electrons (the source and the
drain, with chemical potentials µs, µd), coupled to the dot directly with ΓR,L,
and a gating electrode which is only capacitatively coupled to the quantum dot.
Applying voltage to the gating electrode changes the position of the energy level(s)
of the dot relative to µs,d. Bias voltage, applied to the leads, changes the chemical
potentials in the leads so that eV = µs − µd.

For weak tunnel coupling ΓR,L (Γ ≪ ∆E, where ∆E is the distance between
consecutive energy levels of the dot, and Γ ≪ U), electrons can only tunnel

1Sometimes, the relation ΓR,L = πρR,Lt2
R,L is used. This is the simplest form of the wide-

band approximation where tαk is considered fully k-independent, Γα(ε) ≡ π
∑︁

k |tαk|2δ(ε −
εαk) ≈ πt2

α

∑︁
k δ(ε − εαk). The density of states of the lead electrons ρR,L is again counted per

spin.
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(a) (Figure source: [64]) The basic principle of the Coulomb blockade. (a) Because
tunneling into the dot level would cost excess energy, single electron transport is
blocked. (b) Under applied voltage bias, chemical potentials of the two leads differ.
Electrons may tunnel through the junction freely if one of the dot levels is present
in the gap between µs and µd. The position of the dot level(s) may be changed by
gate-voltage.

(b) (Figure source: [38]) Coulomb diamonds in a semiconductor quantum dot. The
differential conductance as a function of gate voltage and bias voltage displays the
typical pattern. In the dark areas, there is an average even occupation of the QD and
transport is blocked.

Figure 1.1.1
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through the barriers one by one. This is called sequential tunneling. In this
regime, the occupation number of the dot is well defined, and current will flow
from left to right only if there is an energy level of the QD between µs and µd.
Fig. 1.1.1 shows a schematic of sequential tunneling, and the resulting “Coulomb
diamond” pattern in differential conductance.

At higher temperatures, bias voltages or tunnel couplings Γ, two electrons
can tunnel through the dot simultaneously (possibly borrowing energy for an
intermediate virtual state). As most of this thesis is concerned with very low
temperatures, these cotunneling processes are not of interest. However, what
does play a role, is the Kondo effect.

1.1.3 The relation between Anderson and Kondo Hamil-
tonians

The Kondo model is a different model-description of a quantum impurity – de-
scribing a single spin (or a singly-occupied quantum level) coupled to a continuum
of electrons. The Kondo model is described by the Hamiltonian

HK =
∑︂

k

εkc†
kck −

∑︂
kk′

Jkk′Sd·skk′ (1.1.8)

with the spin operators

skk′ =
∑︂
σσ′

1
2c†

kσσσσ′ck′σ′ , Sd =
∑︂
σσ′

1
2d†

σσσσ′dσ′ , (1.1.9)

where σ denote the Pauli matrices. In a certain range of parameters ensuring
single occupation of the Anderson level (ε/Γ ≪ −1, (ε+U)/Γ ≫ 1), it is possible
to transform the SIAM on the Kondo model via the so-called Schrieffer-Wolff
transformation [59], as a result of a first-order perturbation expansion in the
tunnel coupling HT . The Kondo coupling constant Jkk′ is identified as related to
the parameters of the SIAM as

JSW
k′k = tk′tk

{︃ 1
ε − εk

+ 1
ε − εk′

− 1
ε + U − εk

− 1
ε + U − εk′

}︃
. (1.1.10)

Making the assumption of k, k′ momenta being close to the Fermi energy, one can
neglect εk, εk′ in the denominators. Assuming Γ = πρ |tkF

|2, equation (1.1.10) is
simplified to

Jρ = 2Γ
π

(︃1
ε

− 1
ε + U

)︃
, (1.1.11)

where ρ is the density of states per spin in the bulk. This dimensionless quantity
is used in expressions for the Kondo temperature in the next section.

1.1.4 The Kondo effect
The Kondo effect was first measured already in 1930’s as an unexpected increase
in electrical resistivity at low temperatures in metals (like copper and gold) with
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added magnetic impurities (such as cobalt). It remained unexplained until the
1960’s and 70’s, when three nobel-prize laureates Jun Kondo, Philip W. Anderson
and Kenneth G. Wilson contributed with their ideas, and continues to enjoy
theoretical and experimental interest ever since. Interestingly enough, in quantum
dots the same mechanisms which lead to the Kondo effect in aloys lead to an
increase in conductance, not resistivity, at low temperatures (roughly) below the
Kondo temperature TK . While the resistance minimum in metals occurs around
10K, for single magnetic atoms between two leads the conductance minimum
can be around 0.5 K [34]. For clean carbon nanotubes, a typical value of TK is
below 2K, and the conductance at low enough temperatures may approach the
conductance quantum 2e2/h.

The Kondo-effect is caused by processes which flip the spin of the impurity.
The graphical imagination often used in metals is that of a (large) impurity spin
“screened” by conduction electrons. In quantum dots in the transport setup, a
spin-flip process is the tunneling of an electron from one lead into the dot and
(almost simultaneously) the dot-electron (with an opposite spin) tunneling out
into the other lead. There is a resulting Kondo resonance visible in the spectral
function and in conductance, which is always pinned to Fermi energy even though
the dot’s energy level ε is not.

The Kondo temperature in its precise meaning is an energy scale character-
izing the temperature-dependence of conductance and other physical quantities.
So called “Kondo universality” is this: As a function of T/TK all temperature de-
pendent curves look the same, although the underlying microscopic parameters
may be very different. This is a remarkable property and a clear sign of Kondo
physics, given that TK can vary over several orders of magnitude. The Kondo
temperature is an exponential function of J , and can be related to the parameters
of the Anderson model [28] by

TK ∼
√︂

|ε(ε + U) Jρ| exp (1/Jρ) , (1.1.12)

with Jρ = 2Γ
π

(︂
1
ε

− 1
ε+U

)︂
, see Eq. (1.1.11).

In half-filling (ε = −U/2), the exponent further simplifies to Jρ = − 8Γ
πU

and
the Kondo temperature becomes

TK ∼
√︂

ΓU/2 exp (−πU/8Γ) (1.1.13)

Numerical prefactors in Eqs. (1.1.12) and (1.1.13) may differ depending on the
physical quantity we are interested in.2

In perturbation theory, spin-flip processes are third-order in the coupling J [6],
and the corresponding term diverges logarithmically at low temperatures below
TK . This shows that perturbation expansions are unsuitable for quantitative
results in the Kondo regime. Several numerical methods have been developed to
deal with this effect of strong quantum correlations: In equilibrium (i.e. without
voltage bias) the numerical renormalization group (NRG) method (Sec. 1.4) can

2Also note there is an alternative definition of TK sometimes used in literature, in which Γ
is twice as large, ie. corresponding to the full width at half maximum of the Kondo resonance.
If mistaken, the factor of 2 in the exponent makes a significant difference.
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Figure 1.1.2: (Figure source: [21]) Differential conductance in a carbon-nanotube
quantum dot in the normal (non-superconducting) state as a function of gate and
bias voltage (upper panel), a cut of the same at zero bias (middle panel), and the
supercurrent (lower panel). In the upper panel, we see Coulomb diamonds which
have a periodicity of four, labeled by the number of electrons in their respective
level. The diamond labeled “A” exhibits Kondo effect, which can be seen in the
differential conductance as a line on zero bias voltage.

be used for quasiexact numerical results, at higher temperatures quantum Monte
Carlo is available.

1.1.5 Carbon nanotube quantum dots
Single-wall carbon nanotubes (CNT) can be imagined as rolled up sheets of
graphene. Valued for both their mechanical and electrical properties, they have
become a field of study on their own, with review articles on transport properties
including [11] and [35]. Without a superconducting lead, carbon nanotubes can
be metallic or semiconducting. Provided the length of the nanotube is smaller
than the mean free path of electrons, the CNT is a coherent lossless (ballistic) con-
ductor. With low transparency of the contacts between the CNT and the leads,
confinement in both the transversal and longitudinal dimensions leads to quan-
tization, and the system becomes essentially zero-dimensional, a.k.a. a quantum
dot. Very few (and often just one) energy levels are available for transport near
the Fermi energy. In the first approximation, these energy levels are spaced apart
∆E (which is inversely proportional to the length of the CNT) and four-fold
degenerate, namely in both spin and orbital quantum numbers (corresponding
to electrons moving clockwise or counter-clockwise around the nanotube). In a
clean CNT, the conductance of such a degenerate level reaches a maximal value
of G = 4e2

h
. The degeneracy is partially lifted by spin-orbit interactions or dis-

order into so-called Kramers’ doublets separated by energy δE. If the levels of
the CNT are well separated (Γ, kBT ≪ U, δE), the CNT quantum dot is in the
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Coulomb blockade regime. The special electronic structure of a CNT leads to a
specific structure of the Coulomb diamonds, with alternating larger and smaller
diamonds depending on occupancy, which is well defined for low enough temper-
atures (see Fig. 1.1.2 and Refs. [19] for more detail). While a two-orbital model
should be kept to describe all of the intricate physics in carbon nanotubes, for
CNT’s with Γ ≪ δE, the single-impurity Anderson model can be also used and
has been used with success eg. in Ref. [40, 43]. In oddly occupied diamonds, the
Kondo effect as described in the previous section can develop3.

3This is the SU(2) Kondo effect. Two-level phenomena, such as the SU(4) Kondo effect, will
not be discussed in this thesis.
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Figure 1.2.1: (Figure source: [41]) BCS density of states of a superconductor
diverges at ∆ and drops of as a square root. The DOS is particle-hole symmetrical
and only states above the Fermi energy are shown.

1.2 Mesoscopic superconducting systems

Superconductivity in this thesis is conventional and treated in a standard
way via the BCS theory (with “s-wave” pairing). The BCS theory in the bulk
assumes a phonon-mediated attractive interaction between electrons, leading to
the formation of Cooper pairs, which are responsible for the transport of the
supercurrent, and to the opening of a gap ∆ in the quasiparticle density of states
(Fig. (1.2.1)).

A critical understanding when it comes to superconductors is, that the Cooper
pairs overlap spatially and behave in a coherent way, and therefore the Cooper-
pair condensate in one piece of a superconductor in equilibrium can be described
by a single wavefunction (sometimes called the order parameter). Superconduct-
ing phenomena such as the Josephson effect (Sec. 1.2.2) depend on the variation
of the phase of this wavefunction, or the phase-difference between two leads.

For superconducting nanostructures, the proximity effect (sometimes called
boundary or Holm-Meissner effect) is also important. When a non-superconduct-
ing material (normal metal, quantum dot) is in close contact with a supercon-
ductor, an induced gap is opened in its density of states and it also becomes
superconducting. This can be understood as leaking of Cooper pairs into the
non-superconducting material, leading to a slow exponential drop-off of the order
parameter at the boundary.

For good books on superconductivity see e.g. [18, 37, 65], for many-body
descriptions of the BCS theory see also [6, 41].

1.2.1 The Hamiltonian of the superconducting lead
The BCS Hamiltonian, describing the interaction between Cooper pairs reads

HBCS =
∑︂
kσ

εkc†
kσckσ +

∑︂
kk′

Vkk′c†
k↑c

†
−k↓c−k′↓ck′↑ (1.2.1)

12



where the coupling strength Vkk′ is a negative constant for |εk| , |εk′ | below the
Debye energy and zero otherwise. This Hamiltonian is treated in a mean-field
way [6], obtaining

HMF
BCS =

∑︂
kσ

εkc†
kσckσ −

∑︂
k

(︂
∆kc†

k↑c
†
−k↓ + ∆∗

kc−k↓ck↑
)︂

(1.2.2)

with a generally complex order parameter

∆k = −
∑︂
kk′

Vkk′ ⟨c−k′↓ck′↑⟩ . (1.2.3)

Assuming Vkk′ constant in a certain range of |k|’s around the Fermi energy and
zero otherwise, in that range, ∆k is k- independent and the subscript can be
dropped. Denoting ∆α the amplitude of (1.2.3) in a material and φα it’s phase,
we get the well known form of the BCS Hamiltonian for a superconducting lead

Hlead =
∑︂
kσ

εkc†
kσckσ − ∆α

∑︂
k

(︂
eiφαc†

k↑c
†
−k↓ + e−iφαc−k↓ck↑

)︂
, (1.2.4)

The lead Hamiltonian (1.2.4) is used throughout this thesis, see Sec. 1.3.1 for the
full Hamiltonian of the S-QD-S system.

1.2.2 DC and AC Josephson effect
The Josephson effect refers to supercurrent flowing through a thin non-super-
conducting layer between two superconductors (a Josephson junction). It is, at
its basis, a phenomenon of quantum tunneling. Given a difference in the overall
phases of the two superconductors (from now on always denoted φ), there can
be supercurrent with no bias voltage applied. The first Josephson relation for a
planar tunnel junction

J (φ) = Jc sin φ (1.2.5)
connects the supercurrent J and the phase difference φ. The critical current Jc

is a constant which depends on the exact geometry of the junction. Eq. (1.2.5)
is valid in the absence of any voltage bias, and in case of a constant φ leads to
a constant supercurrent, thus the name DC Josephson effect. The suppercurrent
is dissipation-less, yet potential energy Us = Ec(1 − cos φ) with Ec = ℏJc/2e is
bound in the junction [65].

Eq. (1.2.5) is an example of what we call a current-phase relation (CPR).
The CPR may be non-sinusoidal for structures more complicated then a simple
Josephson junction (namely for the superconducting quantum dot near the 0 − π
transition, see Sec. (1.3.4)).

If a constant bias voltage V is applied across a junction, the so called AC
Josephson effect leads to an alternating current, generated by a changing phase
difference which obeys

dφ

dt
= 2eV

ℏ
. (1.2.6)

Josephson relations (1.2.5) and (1.2.6), first published in 1962, have become the
basis of a rich field of mesoscopic superconducting physics.
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1.2.3 Superconducting quantum point contact
One special case of a Josephson junction, which has been extensively studied
(notably [5, 2, 15, 52]) is the superconducting quantum point contact (QPC).
By that we understand a point-like constriction, which is both short - shorter
than the coherence length of Cooper pairs in the superconductor - and narrow
(as opposed to the spatially wide layer of a classical Josephson junction). The
transverse directions need to be comparable to the Fermi wavelength for the
transverse modes to be quantized, which leads to a quantized conductance, and
a quantized supercurrent, which is independent of the exact geometry of the
junction.

The superconducting quantum point contact is in some features similar to the
superconducting quantum dot, the main topic of this thesis, but can be treated
as a non-interacting problem (due to the absence of the Coulomb interaction).
Ref. [5] uses the Bogoljubov-de-Gennes equation and the WKB equation with
appropriate boundary condition to find the band structure and the quantized DC
supercurrent. Summarizing some results, the band-structure of the superconduct-
ing QPC has been found to have a continuum of states above ∆ (and below −∆),
and two discrete subgap states (sometimes called Andreev bound states, ABS) of
energy E± = ±∆

√︂
1 − D sin2 φ

2 , where D is the transmission the very same QPC
would have without superconductivity. In the quantum point contact, these sub-
gap states carry the supercurrent (surprisingly, the contribution of the continuum
can be neglected). Moreover, the amplitude of the stationary (V=0) supercur-
rent can be found as a derivative of the occupied subgap state J (φ) = 2e

ℏ
dE−(φ)

dφ
,

yielding the stationary current-phase relation for a single transport channel

J (φ) = eD∆
2ℏ

sin φ√︂
1 − D sin2 φ

2

. (1.2.7)

This current-phase relation is very different from Eq. (1.2.5). In particular, for
perfect transmission D = 1, Eq. (1.2.7) reduces to J (φ) = e∆

ℏ sin
(︂

φ
2

)︂
sgn

(︂
cos

(︂
φ
2

)︂)︂
.

The AC Josephson effect has been also studied. Ref. [2] uses the scattering
S-matrix approach to find the components of the AC Josephson current in a
junction with non-zero reflectivity, while Ref. [15] uses non-equilibrium Green’s
function approach to the same problem, and numerical results for the first Fourier
components of the supercurrent are available for different reflectivities (to be used
in Sec. 2.2.4).

14



BCS Superconductor Quantum dot BCS Superconductor

Figure 1.3.1: Schematic of the superconducting quantum dot with parameter
description.

1.3 Superconducting quantum dots

We now turn our attention to the core topic of this thesis: A single-level quantum
dot connected to BCS superconducting leads, with (strong) Coulomb interaction
between electrons. This is a special kind of Josephson junction, as well as a
special setup for the (already difficult to solve) problem of a quantum dot with
interaction coupled to two leads, which we talked about in Sec. 1.1. While this
system has been studied since the nineties (review articles include [17, 42, 44]),
once strong interaction enters, questions have remained open and the only way
to get exact quantitative results are still numerical methods.

With the introduction of superconductivity into the SIAM, several new phe-
nomena emerge. The superconducting proximity effect induces a gap in the local
density of stated on the quantum dot at the Fermi level. This gap is, in the ap-
propriate parameter range, said to be “in competition” with the Kondo resonance
we expect in non-superconducting systems. As in the case of the superconducting
quantum point contact, subgap states are present. Unlike the QPC though, these
can cross, which leads to a (first-order) quantum phase transition at zero temper-
ature, usually called the 0 − π transition. This phase transition can be induced
by changing the parameters of the QD, including ε and φ as demonstrated by
experiments (see e.g. [66, 31] for demonstration of a gate-controlled 0 − π tran-
sition, and [20, 21] for phase control), and is accompanied by a sudden change
in the amplitude of the supercurrent. This makes the superconducting quantum
dot interesting as possible switching elements for superconducting electronics.

In BCS theory, charge-conservation is broken. One of the effects is, that
NRG calculations are an order of magnitude more computationally demanding
in comparison to the non-superconducting metal-impurity system. Part of the
effort of our theory group and my thesis has been to find fast yet still reliable
methods to characterize the dot, decreasing the need for heavy numerics.

This chapter will introduce the superconducting version of the single-impurity
Anderson model and the (non-interacting) Green’s function of the dot in Nambu
formalism (Sec. 1.3.1), the subgap states and the 0 − π transition in an “atomic
limit” view for simplified understanding (Sec. 1.3.2), and finally the phase dia-
gram and the interplay between Kondo physics and superconductivity is presented
(Sec. 1.3.4).
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1.3.1 Superconducting single-impurity Anderson model
The superconducting single-impurity Anderson model (sc-SIAM) for the quantum
dot attached to superconducting leads is the same as presented in Sec. (1.1.1)
with the exception of the lead Hamiltonian (1.1.3) now being changed according
to Eq. 1.2.4:

H = Hdot +
∑︂

α

(Hα
lead + Hα

T ), (1.3.1)

Hdot = ε
∑︂

σ=↑,↓
d†

σdσ + Ud†
↑d↑d

†
↓d↓ (1.3.2)

Hα
lead =

∑︂
kσ

εαk c†
αkσcαkσ − ∆α

∑︂
k

(eiφαc†
αk↑c

†
α −k↓ + H.c.) (1.3.3)

Hα
T =

∑︂
kσ

(tαkc†
αkσdσ + H.c.) (1.3.4)

with α = L, R again denoting the left and right lead. The added term is the stan-
dard BCS Hamiltonian, with ∆αeiφα being the superconducting order parameter.
As in the previous sections, φ ≡ φL −φR is the superconducting phase difference,
and the tunnel coupling Γα ≃ Γα(ε) ≡ π

∑︁
k |tαk|2δ(ε − εα(k)) is assumed to be

constant in the energy range of interest. The coupling asymmetry a is defined as
a = ΓL/ΓR. Throughout this thesis, I consider the left and right lead to have the
same amplitude of the gap, ∆ = ∆L = ∆R.

The Matsubara Green’s function of the quantum dot is a 2 × 2 matrix in
the Nambu spinor formalism (see Appendix A for the Matsubara formalism and
Appendix B for the Nambu representation)

ˆ︁G (τ) =
(︄

G(τ) G(τ)
Ḡ(τ) Ḡ(τ)

)︄
= −

⎛⎝⟨Tτ [d↑(τ)d†
↑(0)]⟩ , ⟨Tτ [d↑(τ)d↓(0)]⟩

⟨Tτ [d†
↓(τ)d†

↑(0)]⟩ , ⟨Tτ [d†
↓(τ)d↓(0)]⟩

⎞⎠ (1.3.5)

The exact form of the non-interacting (U = 0) Green’s function ˆ︁G0(iωn) can be
written as a function of Matsubara frequencies ωn ≡ (2n + 1)π/β (the derivation
of ˆ︁G0 is given in Appendix B):

ˆ︁G0(iωn) =
(︄

iωn[1 + s(iωn)] − ε , ∆φ(iωn)
∆∗

φ(iωn) , iωn[1 + s(iωn)] + ε

)︄−1

, (1.3.6)

where
s(iωn) =

∑︂
α=L,R

Γα√︂
∆2

α + ω2
n

(1.3.7)

is a hybridization term which is due to the coupling to the leads, and

∆φ(iωn) =
∑︂

α=L,R

Γα∆α√︂
∆2

α + ω2
n

eiφα (1.3.8)

is the off-diagonal element of ˆ︁G0 which contains the dependence on the supercon-
ducting phase-difference. The non-interacting Green’s function Ĝ0 is taken as a
starting point for the derivation of our symmetry-asymmetry relation (Sec. 2.1.1,
Paper I).
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The full Green’s function ˆ︁G−1(iωn) = ˆ︁G−1
0 (iωn) − ˆ︁Σ(iωn) contains additional

self-energy terms, which are not known exactly. Its second-order perturbative
treatment is given in Refs. [78, 79], and is interestingly more successful for the
superconducting quantum dot (up to approx. U/Γ ≈ 6, before strongly correlated
Kondo physics becomes dominant) than its normal-state counterpart. Numerical
renormalization group solutions are considered quasi-exact for the equilibrium
setup.

1.3.2 The atomic limit
Some basic properties of the superconducting quantum can be understood in the
so-called atomic limit (see Refs. [32, 45, 50]). This refers to solving the interacting
U ̸= 0 sc-SIAM model with the assumption ∆ → ∞. It is the only limit of the
interacting model, which can be solved analytically, providing some insight into
the structure of the lowest lying many-body eigenstates and revealing a quantum
phase transition.

For ΓR = ΓL and ∆ → ∞ the non-interacting Green’s function (1.3.6) takes
the form ˆ︁GAL

0 (iωn) =
(︄

iωn − ε ∆d(φ)
∆d(φ) iωn + ε

)︄−1

= 1
iωn − HAL

0
(1.3.9)

with ∆d(φ) = Γ cos φ
2 and HAL

0 = ε
∑︁

σ=↑,↓ d†
σdσ − ∆d(φ)

(︂
d†

↑d
†
↓ + d↓d↑

)︂
, which is

ωn independent. The interaction term may be simply added

HAL = ε
∑︂

σ=↑,↓
d†

σdσ − ∆d(φ)
(︂
d†

↑d
†
↓ + d↓d↑

)︂
+ Und↑nd↓. (1.3.10)

This Hamiltonian can written in the basis |0⟩ , |↑⟩ , |↓⟩ , |↑↓⟩ and diagonalized.
We obtain doubly degenerate eigenenergy ε belonging to the |↑⟩ and |↓⟩ states,
and eigenenergies E± =

(︂
U
2 + ε

)︂
±
√︃(︂

U
2 + ε

)︂2
+ ∆2

d belonging to a combination
of |↑↓⟩ and |0⟩ states. (Note that it still makes sense to speak about even and
odd occupation of eigenstates, yet the distinction between an empty and a doubly
occupied dot is lost.) The ground state is non-degenerate (singlet) for E− < ε
and twofold spin-degenerate (doublet) otherwise, exposing a first-order impurity
quantum phase transition with the phase boundary given by(︃

U

2 + ε
)︃2

+ Γ2 cos2
(︃

φ

2

)︃
=
(︃

U

2

)︃2
, (1.3.11)

a semi-ellipse in the ε−Γ parameter space. The expressions for the eigenenergies
and the phase-boundary further simplify for half-filling (ε = −U

2 ).
Qualitatively, this description shows some of the main features of the sc-

SIAM. In the full model, the ground state is also either a singlet or a doublet,
and once interaction is in the picture, a quantum phase-transition (called 0 − π
after the change in the phase-dependence, and thus the sign of the supercurrent)
is possible. Note that the gap ∆ doesn’t tend to be the biggest energy scale in
experiment - quite on the contrary, it is possible for U and Γ to be larger than ∆
by an order of magnitude, so the results of the atomic limit can’t give quantitative
predictions.
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1.3.3 Approximate methods vs. numerically demanding
quasiexact approaches

The full Hamiltonian of the sc-SIAM (1.3.1) cannot be diagonalized analytically,
but various approximations and numerical methods have been applied. Here I
give a brief overview, see review [44] for more detail.

Already the 1973 study of a classical magnetic moment in a superconductor
[60] indicates a crossing of subgap states, and the approximate treatment of a
Kondo impurity by Glazman and Matveev [25] in 1989 hints a change in sign of
the supercurrent, and thus a phase-transition. A mean-field approach to the sc-
SIAM, if applied naively, suggests spin symmetry breaking, but this is an artifact
of the method [44]. With more success, perturbation expansions in Γ have been
attempted [49, 26] (yielding results with limited validity for kBT ≫ Γ), as well as
perturbative expansions around the atomic limit [46]. For small and intermediate
Coulomb interaction (U/Γ ≤ 8 in half-filling) second-order perturbation theories
are effective [68, 78, 79], and have been even attempted out of equilibrium [22].
A successful semi-analytical method is also the functional renormalization group
[32, 47].

The most exact results can be gained by computationally demanding numer-
ical methods, namely the numerical renormalization group (NRG), which is best
suited for zero (or close to zero) temperature, and finite-temperature quantum
Monte Carlo (QMC)4. The NRG has been first applied to the Kondo problem in
a superconductor in 1992, Refs. [57, 56], later came the sc-SIAM with φ = 0 (ef-
fectively one lead), Ref. [72]. In 2004, the full two-lead transport setup (which is
more demanding of computational resources) has been studied by both NRG [12]
and QMC [61, 62, 13, 63]. The results for the Josephson current in these early
studies didn’t agree, and the dispute has been clarified by a later NRG study
[32], and more reliable QMC data have been published eg. in Ref. [39]. Since
then, both NRG and QMC have been successfully used to describe experimen-
tal findings (see Sec. 1.5 for chosen experimental references). Finite-temperature
NRG and QMC calculations have been also directly compared in Ref. [55] and
our Paper II, and satisfactory agreement has been found.

1.3.4 Subgap states and the phase diagram of a supercon-
ducting quantum dot

In this subsection I describe some basic properties of the sc-SIAM as known from
previous research - the spectrum and the phase diagram.

The many-body spectrum. Setting the energy of the ground-state to zero,
the many-body spectrum of the sc-SIAM - eigenenergies of the full Hamiltonian
(1.3.1) - exhibits a continuum of eigenenergies above ∆ (similarly to the quantum
point contact) and one or two discrete excited states inside the gap.5 As we have

4In fact, multiple variants of the QMC method have been used, yet this is outside the scope
of this thesis.

5The energies of the subgap states can (in principle) be computed from the determinant
of the exact inverse Green’s function (more accurately, from its continuation to the real axis)
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Figure 1.3.2: Scheme of many-body eigenstates of the superconducting quantum
dot. The energy of the ground state has been set to zero. The crossing of
eigenstates marks the 0 − π impurity quantum phase transition. The energies
of Andreev bound states are given by single-particle jumps between the ground
state and excited states with different spin parity.

Figure 1.3.3: (Figure source: [53]) Experimental data for the tunneling density
of states in a CNT quantum dot as a function of gate-voltage (top) and a pair of
Andreev bound state energies obtained by NRG for fixed U/∆ ratios and Γ as a
the only fitting parameter (bottom).
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Figure 1.3.4: (Figure source: [79]) Phase diagram of the superconducting quan-
tum dot in half-filling ε = −U/2 and φ = 0. The 0−phase has a singlet ground
state, while the π−phase has a spin doublet ground state. With changing in-
teraction strength, the singlet gradually changes its character from BCS-like to
Kondo-like. The grey transition region has been estimated as the area where
second-order perturbation theory fails [79].

seen in the atomic limit, the ground state and the first excited state can be either
a spin singlet (S) or a doublet (D), while the second excited state is always a
singlet (ES). The excited singlet may merge with the continuum of states above
∆. (See Fig. 1.3.2.)

Andreev bound states. Confusion often arises between the many-body eigen-
states of the Hamiltonian, and so-called Andreev bound states6, which are single-
particle states observed in the spectral function and in tunneling experiments.
The ABS can be understood as arising from transitions between the lowest excited
many-body states and the ground state, and one transition gives rise to a pair of
ABS at ±EA around the Fermi energy. The transitions (imagine single-electron
jumps) occur between states with different spin parity, a transition between the
two singlet states is impossible.

The 0 − π transition The crossing of ABS corresponds to the underlying
crossing of the many-body singlet and doublet states and marks the quantum
critical point, a first-order impurity quantum phase transition commonly called
0 − π. With a non-zero interaction strength U , a change in any of the model

being zero.
6The terms “Andreev reflection” and “Andreev bound state” originally refer to

superconductor-metal (S-N) interfaces and S-N-S junctions. At the N-S interface, an elec-
tron is supposed to be Andreev-reflected in a charge- and momentum-conserving way, forming
an electron-hole pair in the metal and a Cooper pair in the superconductor. The case of the
quantum dot (or point contact) doesn’t necessarily fit this simple physical picture. Another,
equally inaccurate, name sometimes used for the subgap states in a quantum dot is Yu-Shiba-
Rusinov, or just “Shiba”, states, which originally refers to subgap states generated by a classical
magnetic moment in a superconductor.
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parameters ε, φ, Γ and even the asymmetry a can cause the phase-transition
[79].

The 0 − π transition gets its name after the change in the current-phase
relation: In the 0-phase, unless very close to the transition point, the CPR of
the quantum dot is close to sinusoidal, while in the π-phase the supercurrent
has the opposite sign (its phase shifted by π) and a smaller amplitude. Zero-
temperature methods, like the NRG, show a sharp jump in the CPR, while at
realistic temperatures, there is more of a smooth crossover (see also Sec. 1.5.1,
Fig. 1.5.2).

For the two different phases of the quantum dot, the structure of the subgap
states is as follows:

• In the 0-phase the ground state is a singlet with energy ES. A spin-
degenerate doublet with energy ED is the first excited state, and possibly a
the second excited singlet with energy EES may be present inside the gap.
Only one pair of ABS with energy EA = ED − ES is visible in the spectral
function. As long at the quantum dot stays in the 0-phase, the spectrum is
very similar to the quantum point contact.

• In the π-phase, the spin doublet is the ground state. Since the ground state
has a different spin parity than both excited states, one or two pairs of ABS
with energies E

(1)
A = ES − ED and E

(2)
A = EES − ED may be visible in the

gap, depending on parameters.

The “Kondo regime” of the quantum dot. In Sec. 1.1 we have talked
about the Kondo effect in quantum dots, the universality property of the Kondo
Hamiltonian, and the possibility to map the SIAM and the Kondo models in a
suitable parameter regime (i.e. U/Γ ≫ 1 for half-filling). It is a-priori not clear at
all, that the Kondo effect survives in the presence of superconductivity - both the
Kondo resonance and the superconducting gap occur at the Fermi level. It has
been shown for quantum impurities in superconductors (e.g. in Ref. [72] by NRG,
and in Ref. [8] experimentally) that for a small enough superconducting gap in
comparison to the Kondo temperature (Eq. (1.1.12)), ∆ ≪ TK , the quantum
dot keeps Kondo-like universality. We discuss how this is influenced by coupling
asymmetry in Paper II and in Sec. 2.1.3 of this thesis.

The range of parameters where Kondo behavior is expected is commonly called
the Kondo regime, even if no Kondo physics can take place in the π−phase. We
want to stress that, while ∆/TK comparisons are popular, outside of the Kondo
regime the TK scale is meaningless for the SIAM.

The phase diagram. The phase diagram of the quantum dot in the ∆ − U
plane (with fixed φ = 0 and ε = −U/2) is shown in Fig. 1.3.4. The π−phase with
its doubly degenerate ground state emerges for large enough Coulomb interaction
U . In the 0−phase, while the structure of many-body states remains the same, the
singlet ground state smoothly changes its character. For large U/Γ and TK ≫ ∆,
the ground state is Kondo-like, while for small U/Γ, BCS superconductivity is
the main physical mechanism.
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1.4 The numerical renormalization group method

The idea of renormalization (also used in high-energy physics and for historical
reasons inaccurately called “group”) is to, step by step, integrate out high-energy
(short wavelength) degrees of freedom. Each iteration of the procedure must
reproduce the functional form of the theory (represented by the Hamiltonian or
the action functional), only changing the coupling constants. With enough
iterations, it is eventually possible to get a solution, i.e. a fixed point of the
renormalization mapping. The application to condensed matter problems has
it’s own specifics.

The numerical renormalization group is a method of solving strongly inter-
acting quantum impurity problems. It was invented in the 1970’s by Kenneth
Wilson (Nobel prize laureate in 1982) to solve the Kondo problem [70], and fur-
ther adapted to more complicated quantum impurity setups (see [9] for a review).
While involving approximations, the procedure is non-perturbative in any of the
system’s parameters. This is necessary due to vastly different energy scales in-
herent to quantum impurity problems (remember the exponentially thin Kondo
resonance in the SIAM).

The basic setup of the NRG calculation is a small system (the impurity)
coupled to a “bath” or conduction band (the lead, represented by non-interacting
or superconducting electrons), as sketched in Fig. 1.4.1a. The bandwidth of the
conduction band in energy is denoted D7. The energy-dependent coupling of the
impurity to the bath is described by the hybridization function, which for the
SIAM is the energy-dependent tunnel coupling magnitude Γ(ω) = π

∑︁
k t2

kδ(ω −
εk)8 known from Sec. 1.1.1. The hybridization function is assumed to be non-zero
only within the conduction band [−D, D].

The NRG calculation consists of a few steps (following Ref. [9], see also
Fig. 1.4.1):

1. Dividing the conduction band into a set of intervals of exponentially de-
creasing length separated by points ±Λ−n. The choice of the discretization
parameter Λ contributes to the precision of further approximations. The
“logarithmic discretization” is chosen to capture effects close to the Fermi
energy with enough precision.

2. Discretizing the hybridization function, so that it is replaced by only one
value in each of the above-mentioned intervals. This is an approximation,
and it’s precision is not a priori clear. The limit Λ → 1 should recover the
precise model, and it turns out, that Λ = 2 for the non-superconducting
SIAM and Λ = 4 for sc-SIAM often lead to good enough results.

7The bandwidth D is the largest energy scale in NRG. It’s usual to count all other energy
scales “in units of the bandwidth”.

8The hybridization function is denoted ∆(ω) in Fig. 1.4.1a-b, as usual for non-supercon-
ducting systems. In the text I stick to Γ(ω) to avoid confusion with the superconducting gap
∆. Also, coupling constants tk in Γ(ω) = π

∑︁
k t2

kδ(ω − εk) are not to be confused with the
hopping elements of the chain Hamiltonian tn in Fig. 1.4.1c.
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Figure 1.4.1: (Figure source: [9]) Initial steps of the NRG calculation for the
SIAM. The impurity (green circle) is coupled to a continuous conduction band.
(a) The band is divided into intervals of exponentially decreasing size. (b) The
continuous spectrum is replaced by a set of single states. (c) The model is mapped
onto a semi-infinite tight-binding Wilson chain.
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3. It is now possible to transform the Hamiltonian of the discretized model
into the Hamiltonian of a semi-infinite chain of noninteracting electrons
with the impurity as its 0th site. For the SIAM, the hopping elements tn

of the chain model fall off as tn ∝ Λ−n/2. The sites of the chain correspond
to a sequence of energy-shells centered around the impurity [9].

4. The key step follows, in which renormalization enters the picture. The outer
shell is integrated out, and the resulting model is again stretched to fit the
whole bandwidth. Technically, the chain model is solved in an iterative
way, starting from the impurity, adding one site of the chain in each step.
Successive Hamiltonians are linked by recursion relations, HN+1 = R(HN)
(Eq. (36) in Ref. [9]), which is a specific expression of the renormalization
group equation9. The calculation is finished at a finite length of the chain
when a fixed point is reached. This corresponds to the ground state of the
system (or close-to-zero temperature).

5. A necessary part of the iterative procedure is another approximation, trun-
cation of the spectrum. In each step, the Hamiltonian HN is diagonalized,
and characterized by its eigenenergies EN and the corresponding eigenstates
|r⟩N . Next, the N +1 chain site is added, and the basis for HN+1 is a tensor
product of |r⟩N and a suitable basis for the new chain site. Consequently,
the Hilbert space blows up exponentially. It is therefore necessary to limit
the number of eigenenergies kept in each step only to some maximum num-
ber of lowest lying eigenstates. The numerical error introduced by choosing
a truncation parameter needs to be checked.

The output of a NRG calculation is the flow of eigenenergies EN , as well as
(possibly) the low-temperature values of various thermodynamic and transport
properties.

This work uses the NRG implementation called NRG Ljubljana developed by
Rok Žitko [74, 75, 77] to solve the superconducting quantum dot setup.10 Problem
initialization is done in Mathematica using the SNEG package [76] for performing
calculation with second quantization operators. The iterative diagonalization of
the Wilson chain is implemented in C++. The input Hamiltonian and a sample
input parameter file can be found in Appendix C.

9More accurately, due to parity effects, the renormalization group transformation corre-
sponds to two successive steps of the calculation HN+2 = R2(HN ). The results may differ for
even and odd steps in some models [75].

10The NRG Ljubljana code has been in continued development, and versions 2.3 and 2.4 have
been used.

24



Figure 1.5.1: (Figure source: [4]) Scanning electron microscope image of a carbon
nanotube quantum dot embedded in a SQUID loop. The “large” Josephson
junctions have a much higher critical current than the “small” carbon-nanotube
junction. The setup is phase-biased by the magnetic flux Φ through the loop, and
allows for the measurement of both the differential conductance and the current-
phase relations of the CNT junction.

1.5 Recent experiments on superconducting car-
bon nanotube quantum dots

Experiments with superconducting quantum dots have now a history of two
decades. Proximity-induced supercurrent through a single-walled carbon nano-
tube has been measured in 1999, Refs. [33, 48]. The Kondo effect in a sc-QD has
been observed in 2002 [7], and a gate-controlled 0 − π transition has been first
measured in a semiconductor nanowire [66], and in carbon nanotubes in [14] and
[31] (successfully interpreted via sc-SIAM and QMC in Ref. [40]). Andreev bound
states have been observed in e.g. Refs. [54, 10, 58]. More sc-CNT experiments
include [51, 73, 24, 43].

While numerous, these experiments remain difficult, and are getting more and
more refined in recent years. This thesis contributes to the interpretation of two
experiments by Laboratoire de physique des solides, Orsay, which I will briefly
introduce in the following subsections: Detailed measurement of the current-
phase relations [20, 21, 19], and the measurement of the AC Josephson effect in
the Kondo regime of the quantum dot, published in Paper III.

1.5.1 Current-phase relation measurement
The experimental measurement of the current-phase relations in question has

been first announced in Ref. [20] and explored in detail in Refs. [21, 19]. It is
based on embedding the carbon-nanotube junction into a SQUID device with
three junctions, described in Ref. [4] (see also Fig. 1.5.1). The SQUID contains
the carbon nanotube junction we are interested in and two reference Josephson
junctions with a much higher critical current. Through this cleverly constructed
circuit, it is possible to measure both the current-phase relations and the differ-
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Figure 1.5.2: (Figure source: [21]) Current-phase relations of a superconducting
carbon nanotube quantum dot, measured by Delagrange, et al. (a) Switching
current as a function of gate voltage and magnetic field, for different Coulomb
diagrams which exhibit a 0 − π transition (labeled A,B,C,G,I in Fig. 1.1.2). (b)
Current-phase relations for diamond I (green line) near the transition. The dashed
lines are guides to the eyes, representing sine dependencies typical for the 0 and
π phases.

ential conductance of the carbon nanotube.
In Ref. [21], two CNT samples were measured, and we are mostly interested

in one of them. It was made of a carbon nanotube and Pd/Nb/Al leads with a
small superconducting gap ∆ = 0.17 meV. First, the junction was characterized
in a non-superconducting state, achieved by applying a magnetic field (a strong
field B = 1T was necessary to destroy superconductivity in the Pd/Nb/Al lead).
The differential conductance was measured and the observed Coulomb diamonds
were used to determine parameters of the CNT quantum dot (please refer back to
Fig. 1.1.2 in Sec. 1.1.5, where I’ve used it to illustrate the broken four-fold degen-
eracy of a CNT). Coulomb interaction U and total coupling Γ were determined
for each gate-voltage region separately. In Ref. [21], for most diamonds except
one, the coupling asymmetry a = ΓL/ΓR wasn’t determined. I have fitted the
coupling asymmetry from the available experimental results as part of my thesis
work, and this is the topic of Sec. 2.1.4).

Next, the differential conductance and the switching current in the supercon-
ducting state of the junction are measured. In several Coulomb diamonds with
occupation number n = 1 (see blue squares in Fig. 1.1.2 ) the 0−π transition has
been observed. Those regions are chosen for more detailed current-phase relation
measurement, featured in Fig. 1.5.2.

Fig. 1.5.2a displays the switching current as a function of the magnetic field
B in the SQUID (which is proportional to the superconducting phase difference
φ) and the gate voltage (which is directly proportional to ε). From this measure-
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Figure 1.5.3: (Figure source: [21]) The critical phase φC dependence on the level
energy ε, shifted and rescaled by the width of the transition (see Eq. (1.5.1) in
the main text). The measured phase transitions for several Coulomb diamonds
fall on an arccosine curve. Inset: Same for Coulomb region labeled C, where the
transition doesn’t span the whole range of φ and doesn’t fit the arccosine.

ment, current-phase relations are extracted. Fig. 1.5.2b shows the current-phase
relations in one of the Coulomb diamonds, progressively changing with level en-
ergy ε. While sinusoidal CPRs corresponding to the zero phase are observed on
one side of the diamond, and CPRs with smaller amplitude and opposite sign
corresponding to the π phase can be seen in the middle of it, there is a transition
region with a finite width δε where the junction isn’t fully in either phase. In this
transition region a mix of both the 0− and π−phase dependencies is identified in
the CPRs, and the authors identify a critical point φC where the 0 − π transition
in the superconducting phase difference φ takes place11. The ε dependence of φC

is studied (see Fig. 1.5.3). The authors conclude, that for several diamonds φC(ε)
can be mapped on the same arccosine curve given by

φC = arccos
{︃

−2ε − εt

δε

}︃
(1.5.1)

where δε is the width of the transition region in ε and εt is a linear shift.
We will further discuss this dependence in Sec. 2.1.4, where we also use results

of this thesis to estimate the coupling asymmetry of this experimental setup.
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Figure 1.5.4: (Figure source: Paper III) AC Josephson effect measurement
scheme. The carbon-nanotube Josephson junction is biased by voltage VSD
and emits Josephson radiation, which is absorbed by a simple superconductor-
insulator-superconductor Josephson junction detector. The resonator is used to
filter out a single frequency line.

1.5.2 High-frequency AC Josephson emission in the Kondo
regime

Through the experimental work in Laboratoire de physique des solides, Orsay, it
has also become possible to measure the AC Josephson effect in a carbon nanotube
quantum dot. Preliminary results on a sample with Pd/Nb/Al contacts have
already been published in the thesis of R. Delagrange [19], and more quantitative
results on a sample with Pd/Al contacts and ∆ = 0.05 meV can be found in the
thesis of D. Watfa [69] and in our collaborative Paper III.

The AC Josephson effect measurement is done by detecting the microwave
radiation emitted by the CNT Josephson junction (see Fig. 1.5.4). Under voltage
bias VSD (source-drain), alternating current with the amplitude IAC

C is induced in
the CNT junction, and Josephson radiation with frequency νJ = 2eVSD/h is emit-
ted12. This electromagnetic radiation is captured by a second Josephson junction
with a known current-voltage characteristics I0

D(VD), which acts like a detector in
this setup, and photo-assisted (PAT) current IPAT is induced. A superconducting
waveguide resonator is constructed to filter out a narrow frequency range around
ν0 = 12.5 GHz, and possibly its odd harmonics. The PAT current induced by
Josephson radiation is proportional to the amplitude of the Josephson current

11In Ref. [21] the critical point φC is estimated as the point where the CPR first crosses zero
when going from the region which is closer to sine dependence to the region closer to cosine
dependence. This assumption was supported by a quadratic extrapolation of finite temperature
Monte-Carlo data to zero temperature. We discuss in detail in Paper II why this is principally
wrong - however, the practical difference is not too big and doesn’t invalidate the analysis of
the φC(ε) dependence in Ref. [21].

12A near-sinusoidal current-phase relation is assumed (and confirmed through NRG calcula-
tions for the DC current, see Sec. 2.2.1) and higher harmonics are neglected.
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IAC
C squared

IPAT ≃

(︂
IAC

C

)︂2

V 2
SD

I0
D(VD + 2VSD) , (1.5.2)

and the proportionality constant depends on the impedance of the resonant circuit
[3]. To match the resonator frequency ν0, the bias voltage needs to be tuned to
eVSD = hν0/2 ≈ 26 µV, which is about half of the superconducting gap ∆/2 for
the sample in question. This is the energy where the signal from the Josephson
radiation is expected. (Supplemental material to Paper III contains details on
separating the signal from the background of the measured PAT current, as well
as details on sample characterization, sketched below.)

The AC Josephson effect measurement is accompanied by complementary
measurements used for sample characterization. First, differential conductance
as a function of gate voltage and bias voltage in the non-superconducting regime
is measured, where superconductivity is, again, suppressed by the magnetic field.
Due to the small size of the superconducting gap, a field of 0.1 T suffices. This
allows for the Kondo effect to be clearly visible in the normal state dI/dV .
The Kondo temperature of two regions (labeled A and B) is extracted from
temperature-dependent conductance, and the parameters U , Γ and coupling
asymmetry a are determined from normal-state measurements. Second, the DC
Josephson effect is also measured. The critical current is extracted using the
RCSJ model [31]. Note that, unlike the experiment described in previous sec-
tion, there is no control over the superconducting phase difference, so the CPR
can’t be measured. The DC Josephson current however suggests, that the CNT
junction stays in the 0−phase in the entire range of gate-voltages, a picture that
I confirmed with NRG calculations (see Sec. 2.2).

The most surprising result of this work is a drop in the AC Josephson current
observed in regions where the Kondo effect is visible in the normal state differ-
ential conductance. This kind of behavior is not seen in the DC case. Fig. 1.5.5
features a comparison of both supercurrents: In regions A and B, the amplitude
of the AC Josephson current drops significantly in the Kondo region, while the
DC Josephson current is at its highest. This is not observed in control region C,
which exhibits no Kondo features.

In Paper III we suggest an explanation of this effect based on quasiparticle
dynamics. A comparison of the measurement result to the AC Josephson emission
expected in the quantum point contact is given in supplemental material to Paper
III and in Sec. 2.2 of this thesis.
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Figure 1.5.5: (Author of figure: Diana Watfa) Differential conductance and photo-
assisted current. (a) Differential conductance dI/dV in the superconducting state
and PAT current IPAT as a function of bias voltage VSD and gate voltage VG for
Kondo region A. (b)-(d) Critical currents IC for the DC Josephson effect, and
IAC

C for the AC Josephson effect for Kondo regions A, B and control region C.
(e) Same for the Pd/Nb/Al sample and two resonator frequencies (the IC curve
has been downscaled 10x).
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Chapter 2

Results and discussion

This chapter presents the results of my thesis and their implication for further re-
search. Section 2.1 deals with the DC Josephson effect in a superconducting QD,
especially with the 0 − π transition, and summarizes a part of the research pub-
lished in Papers I and II, most importantly the influence of coupling asymmetry,
which has been previously missed in literature. Section 2.2 concerns my contribu-
tion to interpreting the measured AC Josephson emission of a superconducting
carbon nanotube under constant voltage bias, in the experiment described in
Sec. 1.5.2, expanding on the published supplement to Paper III.

2.1 Phase-biased superconducting SIAM with
coupling asymmetry

In this section, I consider a phase-biased quantum dot Josephson junction (only
the DC Josephson effect being responsible for the supercurrent). Such a setup has
been experimentally realized as described in Sec. 1.5.1. I introduce the symmetry-
asymmetry relation and its derivation (Secs. 2.1.1 and 2.1.2), discuss the influence
of asymmetry in the Kondo regime specifically (Sec. 2.1.3), and apply the sym-
metry asymmetry relation to experiment (Sec. 2.1.4). In the whole chapter, I
keep the condition ∆ = ∆L = ∆R, which is necessary for the validity of the
symmetry-asymmetry relation (Sec. (2.1.1)) and results which follow from it.

2.1.1 Symmetry-asymmetry relation

Previously, most theoretical studies about the sc-SIAM (defined by the Hamilto-
nian (1.3.1)) have focused on the presumably simplest case of symmetric dot-leads
coupling, a = ΓL/ΓR = 1. The role of asymmetric coupling had not been clari-
fied, and often it had been neglected entirely in the interpretation of experiments,
especially in the Kondo regime, where universal dependence on TK/∆ only was
assumed. What we call the symmetry-asymmetry relation is a simple analyti-
cal relation, derived by using Green’s function of the superconducting quantum
dot, which links the physics of an asymmetric sc-SIAM model to its effective
symmetric equivalent. Let us have a look at the its derivation and consequences.
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Inspecting the non-interacting Matsubara Green’s function ˆ︁G0(iωn) (Eq. (1.3.6)),
we notice that it only depends on φR,L through its off-diagonal element ∆φ(iωn),
which under the assumption ∆L = ∆R becomes

∆φ(iωn) = ∆√︂
ω2

n + ∆2
(ΓLeiφL + ΓReiφR).

Importantly, the φ dependence is only contained in the ΓLeiφL + ΓReiφR fac-
tor, which is frequency independent. Rewriting this complex number into an
amplitude and phase notation, and denoting the average phase of the junction
δ = 1

2(φL + φR), we get

ΓLeiφL + ΓReiφR = Γ
√︂

χ(φ, a)ei(δ+Ψ(φ, a)) (2.1.1)

with
χ(φ, a) = 1 − 4a

(a + 1)2 sin2 φ

2 (2.1.2)

and
Ψ(φ, a) = arctan

[︃(︃
a − 1
a + 1

)︃
tan φ

2

]︃
. (2.1.3)

Note the function χ(φ, a) given by Eq. (2.1.2) as it will from now on be used any
time we discuss the influence of asymmetry on the sc-SIAM. Function χ(φ, a) and
the phaseshift Ψ(φ, a) together set both the φ-dependence and the asymmetry
dependence ˆ︁G0(iωn). We can equate the amplitude and phase of (2.1.1) of an
asymmetric system to the amplitude and phase of an effective symmetric system
with the same Γ. Namely we choose combinations of φ and a so that the value
of χ(φ, a) remains constant

χ(φS, 1) = χ(φA, a) , (2.1.4)

and choose the average phase of the symmetric system so that

δS = δA + Ψ(φA, a) . (2.1.5)

Superscripts S, A denote the cases of symmetric and asymmetric coupling. The
transformation keeps ˆ︁G0(iωn) unchanged, and expresses therefore an invariant
property of the quantum dot system. Moreover, this invariance caries over to the
interacting case. This is because the full Green’s function ˆ︁G(iωn) is a functional
of ˆ︁G0(iωn), only further depending on the interaction strength U [41]. The
phase-shift δS in (2.1.5) is important for this derivation, but usually insignifi-
cant in practical calculations due to gauge freedom (this is fully true for on-dot
quantities, and discussed in the next section). Therefore only Eq. (2.1.4) needs
to be satisfied, and it’s Eq. (2.1.4) that we call the symmetry-asymmetry rela-
tion. Note that in the symmetric case χ(φ, a) reduces to χ(φS, 1) ≡ cos2 φS

2 . The
value range of χ(φS, 1) is [0, 1], and shrinks to

[︃(︂
a−1
a+1

)︂2
, 1
]︃

for χ(φ, a). Together
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with continuity and monotony of function χ(φA, a) this implies that a suitable
φS exists for any φA ∈ (0, 2π), and Eq. (2.1.4) can be expressed as1

φS = 2 arccos √
χ = 2 arccos

⌜⃓⃓⎷1 − 4a

(a + 1)2 sin2 φA

2
(2.1.6)

It’s inversion, where defined, reads

φA = arccos
(︄

(a + 1)2

2a
(χ − 1) + 1

)︄
= arccos

(︄
1 − (a + 1)2

2a
sin2 φS

2

)︄
. (2.1.7)

The symmetry-asymmetry relation allows us to describe the physics of any
asymmetric junction in terms of the properties of it’s symmetric counterpart,
a junction with the same total coupling Γ and a = 1. The properties of the
symmetric junction usually still must be computed numerically, but we get a
number of advantages:

• the numerics must only be done once to know the properties of a junction
with any asymmetry

• the asymmetry can be estimated from experimental data by fitting

• effectively, we have a system with less independent variables, as φ and a
are related through χ.

We now look explicitly at the consequences of the symmetry-asymmetry relation
for different kinds of physical quantities. First, the 0-π phase boundary, which (at
zero temperature, in a suitable parameter range) happens at a particular critical
phase difference φC , is only influenced by the relation between φS

C and φA
C , and

Eq. (2.1.6) applies directly.
For physical quantities which only depend on the local Green’s function ˆ︁G

(such as the Free energy and the induced gap), the symmetry-asymmetry relation
becomes a substitution relation

F A(φA) = F S(φS) , (2.1.8)

where F S(φS) is the (known) functional dependence of the quantity in question
on φS. Explicitly, substituting from (2.1.6)

F A(φA) = F S

⎛⎝2 arccos

⌜⃓⃓⎷1 − 4a

(a + 1)2 sin2 φA

2

⎞⎠ . (2.1.9)

1We can also relate two cases with different asymmetry, if needed. In that case the relation
(2.1.4) reads χ(φ1, a1) = χ(φ2, a2), and inserting Eq. (2.1.2) into Eq. (2.1.7), we obtain

φ1 = 2 arcsin
(︃√

a2(a1 + 1)
√

a1(a2 + 1)

⃓⃓⃓
sin φ2

2

⃓⃓⃓)︃
The second junction should be less symmetric (a2 > a1 for a1,2 > 1) in order for φ1 to match
every φ2.
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To get a graphical idea, this means that the function F S(φS) is “cut off” at a cer-
tain maximal value of φS (which is φS = 2 arccos

√︂
1 − 4a

(a+1)2 = 2 arcsin
√︂

4a
(a+1)2 )

and “stretched” by the transformation (2.1.7) to fill all the definition range of φA,
φA ∈ (0, 2π).

Finally, let’s talk about the Josephson current, which is not a local on-dot
quantity, and depends explicitly on the leads. To derive the corresponding form
of symmetry-asymmetry relation from definition can be tedious (see next section
and Appendix A to Paper I. However, the easiest way to compute the Josephson
current indirectly is to take the derivative J ≡ 2e

ℏ
∂F
∂φ

of the free energy F , which
is an on-dot quantity and satisfies (2.1.9). Consequently, a prefactor appears in
the symmetry-asymmetry relation for the supercurrent:

J A(φA) =
cos φA

2√︂
(a+1)2

4a
− sin2 φA

2

×

J S

⎛⎝2 arccos

⌜⃓⃓⎷1 − 4a

(a + 1)2 sin2 φA

2

⎞⎠ ,

(2.1.10)

where again J S(φS) is the φ dependence of the Josephson current in the sym-
metric case. The prefactor ensures J A(π) = 0.

2.1.2 Gauge invariance of the Josephson current
The concept of gauge invariance in the context of superconductivity implies that
physical quantities must only depend on the superconducting phase difference
φ (or, in case of continuous change, on the gradient), not the absolute value of
the superconducting phase itself (see e.g. Ref. [27] on a pedagogical discussion
on electromagnetic gauge invariance in the BCS theory). In the language of
the previous paragraph, for a system with two superconducting leads, gauge
invariance states that we can add a constant to both φL,R, or, we can freely
choose δ = 1

2(φL + φR). This is, however, true for measurable quantities only -
Green’s functions may depend on δ explicitly.

In the case of the symmetry-asymmetry relation, we are not talking about one
system, but two systems. As stated previously, to keep the factor (2.1.1) (and
thus the local impurity Green’s function ˆ︁G0) constant, we should equate both its
amplitude and the phase by the already known relations

χ(φS, 1) = χ(φA, a) (2.1.11)

and

δS = δA + Ψ(φA, a) (2.1.12)

with functions χ(φ, a) and Ψ(φ, a) defined by Eqs. (2.1.2) and (2.1.3). Note that
the function Ψ(φA, a) dependents on φA and as such cannot be gauged away. In
this section I would like to clear up some confusion about the second equation
(2.1.12), and when it is needed.
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As mentioned in the last chapter, Eq. (2.1.12) is necessary to explain why the
symmetry-asymmetry relation is valid for interacting (U ̸= 0) sc-QD systems.
The full interacting Green’s function ˆ︁G(iωn) is a functional of ˆ︁G0(iωn). Suppress-
ing the dependence of ˆ︁G0 on ε and the total Γ we can write ˆ︁G = ˆ︁G[ ˆ︁G0(φ, δ, a), U ].
Because Green’s functions need not be gauge invariant, the dependence of ˆ︁G andˆ︁G0 on the phase of ∆φ (the off-diagonal element of ˆ︁G0) may be non-trivial. Eq.
(2.1.12) is essential to make the phases of ∆φ and thus ˆ︁G0 equal for the symmet-
ric and asymmetric systems. The symmetry-asymmetry relation on the level of
Green’s functions reads

ˆ︁G[ ˆ︁G0(φA, δA, a), U ] = ˆ︁G[ ˆ︁G0(φS, δS, 1), U ] , (2.1.13)

assuming both Eq. (2.1.11) and (2.1.12) implicitly.
When applying the symmetry-asymmetry relation to local physical quantities

(those quantities which can be computed from ˆ︁G without depending explicitly
on lead properties like φα, the density of states in the leads, etc.) the use of Eq.
(2.1.12) stays implicit. Taking a local quantity F [ ˆ︁G](φ, a), the claim of gauge-
invariance is, that the measurable F S,A must not depend on δS,A in any way.
The phaseshifts only enter through Eq. (2.1.13), which leads to F A[ ˆ︁G](φA, a) =
F S[ ˆ︁G](φS, 1) (which is Eq. (2.1.8)). In all practical calculation, inserting the
φS(φA) dependence from Eq. (2.1.11) is enough, cf. Eq. (2.1.9).

However, relation (2.1.12) is crucial if we need to make a calculation which
depends on φα explicitly. Let’s take the Josephson current as an example. Ex-
pressed as a sum over Matsubara frequencies it reads

Jα = 4kBT
∑︂
ωn

Γα∆√︂
∆2 + ω2

n

Im
[︂
G(iωn)e−iφα

]︂
, (2.1.14)

where G(iωn) is the off-diagonal element of the interacting Green’s functionˆ︁G(iωn). The gauge invariance of Jα is not obvious from this equation, and I
have carried out and published the lengthy calculation in Appendix A to Paper
I. In summary, if we want to apply the symmetry-asymmetry relation to the def-
inition of the current (2.1.14) directly, we need to use both Eqs. (2.1.11) and
(2.1.12) to first express φS

α in terms of φA
α .2 We then apply the equivalence of the

real and imaginary part of G(iωn) for the symmetric and asymmetric systems and,
with some effort, recover the gauge-invariant relation (2.1.10) for the Josephson
current.

The main take-away from this section is that linking the gauges of the symmet-
ric and asymmetric system by (2.1.12) is necessary, both in the derivation of the
symmetry-asymmetry relation, and explicitly in calculating non-local quantities.

2.1.3 Coupling asymmetry and Kondo universality
Our work on asymmetry has also provided an important clarification on the
Kondo universality for the 0−π phase boundary. In the Kondo regime this phase

2By adding/subtracting Eq. (2.1.11) in the form φS = φS
L − φS

R = 2 arccos
√︁

χ(φA, a)
and Eq. (2.1.12) in the form 2δS = φS

L + φS
R = φA

L + φA
R + 2Ψ(φA, a) we obtain

φS
L,R = 1

2(φA
L + φA

R) + Ψ(φA, a) ± arccos
√︂

χ(φA, a) .
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Figure 2.1.1: (a) Universal shape of the ratio of the critical value of the gap
∆C over the Kondo temperature TK (2.1.16) as a function of variable χ (2.1.2),
in the Kondo regime. The points represent NRG data with U/Γ = 15, 20 and
different values of the bandwidth D. The solid line corresponds to ∆C/kBTK =
exp(α√

χ)−1 with α = 5/3, see Eq. (2.1.15). (b) The ε̃ = (2ε+U)/U dependence
of ∆C/TK for χ=0, 0.2, 0.5, and 1.

boundary was widely believed to be a universal function of TK/∆ and specifically
to occur at TK ≈ ∆. The symmetry-asymmetry relation implies that even in the
Kondo regime coupling asymmetry must play an important role. Nevertheless,
we have shown numerically that the phase boundary can indeed be described by
a universal function of TK/∆ if χ = χ(φ, a) given by Eq. (2.1.2) is used as a
variable. The results are summarized here following Paper II.

NRG data is shown in Fig. 2.1.1. Fig. 2.1.1a is a plot of the ∆C/TK depen-
dence on √

χ, where ∆C denotes the critical gap - the point for which the phase
transition occurs at zero temperature. Zero-temperature data are computed for
two different U/Γ values and thus for very different values of TK (both data sets
strongly in the Kondo regime) at half-filling (ε = −U/2). The NRG bandwidth
D is also changed to check the accuracy of the calculation - since NRG is based
on the wide band approximation, choosing a finite bandwidth influences the data
slightly. The figure shows that deep in the Kondo regime the position of the
phase-transition boundary can be approximated by the function

∆C

kBTK

= exp (α√
χ) − 1 . (2.1.15)

The coefficient α has been fitted to α = 1.65 ± 0.02 ≈ 5/3 (differing very slightly
for the different data sets). The Kondo temperature is given by

kBTK ≡ 0.29
√

ΓU exp
(︄

−π|ε|(ε + U)
2ΓU

)︄
. (2.1.16)

Note the numerical prefactor: For other definitions of TK , Eq. (2.1.15) and
Fig. 2.1.1a must be adequately rescaled. For χ = 1 (corresponding to φ = 0,
which is also the case of a quantum impurity coupled to one superconductor
only) the phase transition appears at ∆C/kBTK ≈ 4.29, indeed a value of order
(but not equal to) one3.

3For another common definition of the Kondo temperature T̃ K (cf. Eq. (1.1.12)) such that
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Fig. 2.1.1b is showing the ∆/kBTK dependence on gate voltage, with the level
energy ε shifted and normalized to

ε̃ ≡ ε + U/2
U/2 (2.1.17)

so that ε̃ = 0 is half-filling. For nonzero values of χ, up to ε̃ ≈ 0.4−0.6 the phase
boundary ∆C/kBTK pretty much adheres to the value predicted by (2.1.15) and
plotted in Fig. 2.1.1a4. (Note that χ = 0 is only achieved for the very specific case
φ = π and a = 1.) This shows the validity of the exponential formula (2.1.15)
for a wide range of gate-voltages out of half-filling.

In Eq. (2.1.15) and Fig. 2.1.1a, χ is used as an independent variable, while ∆C

is the dependent one, which is why we chose to use the subscript C in ∆C (instead
of χC) to mark that we are talking about an equation for the phase boundary.
However, the typical experimental situation stands the other way around: There
is a junction with the (known and fixed) gap size ∆ and a (possibly also known)
coupling asymmetry a. The question then is, if the junction is in the 0−phase,
π−phase, or if we are going to see the phase transition for a particular phase-
difference φC . Let’s answer the question in detail here:

• If ∆
kBTK

≳ 4.29, the junction is in the π−phase for the whole range of
φ ∈ (0, 2π).

• For ∆
kBTK

≲ 4.29, the position of the phase transition is dependent on asym-

metry, because the value range of χ, χ(φ, a) ∈
[︃(︂

a−1
a+1

)︂2
, 1
]︃
, is asymmetry-

dependent. For a symmetric junction (a = 1) in half-filling, the 0 − π
transition is always present - the π−phase being around φ = π. For bigger
asymmetries, the left part of the graph 2.1.1a is cut off.

• For small enough ∆/kBTK and big enough asymmetry, the junction may stay
in the 0−phase for all values of φ ∈ (0, 2π). This happens if χC is not in
the value range of χ(φ, a) for a given asymmetry, χC <

(︂
a−1
a+1

)︂2
.

• Inverting Eq. (2.1.15) gives the position of the phase transition for the
junction with a given ∆, χC = χ(φC , a) = ln

[︂
∆

kBTK
+ 1

]︂
. The critical

superconducting phase difference φC is given from χC by Eq. (2.1.7).

• To see what phase is expected for a given junction, one may also evalu-
ate Eq. (2.1.15) in χ = χ (φ = π, a) =

(︂
a−1
a+1

)︂2
. If the resulting value of

∆C(φ = π, a, TK) > ∆, the junction is in the 0−phase. If on the contrary
∆C(φ = π, a, TK) < ∆, the junction is in the π−phase for φ = π.

In conclusion, Fig. 2.1.1a is a significant contribution to the notion of Kondo
universality in the sc-QD transport setup. Even in the strong Kondo limit, cou-
pling asymmetry is crucial, changing the position of the phase boundary and even

0.29
√

2 kBT̃ K = kBTK the phase transition occurs at ∆C/kBT̃ K ≈ 1.76 for φ = 0.
4Results in Fig. 2.1.1b are in agreement with Ref. [72, Fig. 9a]. Authors of this previous

study have tested the ε-independence for two different values of U/Γ and concluded that the
universality breaks down in the valence fluctuation regime |ε| ≲ πΓ (|ε̃| ≳ 1 − 2πΓ/U ≈ 0.58).
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influencing if there is one to begin with. However, universality holds for the phase
boundary if coupling asymmetry is included through the χ variable. In addition,
the position of the phase boundary can be described by the simple exponential
formula (2.1.15).

2.1.4 Symmetry-asymmetry relation applied to experiment

The symmetry-asymmetry relation has been applied to find the asymmetry of
the experiment of Delagrange et al. [20, 21, 19], which has been described in
Sec. 1.5.1. In the experiment, current-phase relations have been measured, the
critical phase φC (the point of the phase-transition in φ) has been determined,
and the dependence of φC on ε has been studied. In the original analysis, the
Coulomb interaction strength U and the total Γ are known from experiment, but
the coupling asymmetry is not.

For several measured regions, the authors of Ref. [21] fitted the φC(ε) by an
arccosine curve with a linear dependence on ε,

φC = arccos
{︃

−2ε − εt

δε

}︃
(2.1.18)

where δε is the width of the transition region in ε and εt is a linear shift. After
introducing the symmetry-asymmetry relation, the arccosine dependence can now
be understood by referring to Eq. (2.1.7), where φC is expressed in terms of χC .
This equation shows clearly that φC(ϵ) has an exactly arccosine shape if and only
if χC(ϵ) is linear in ϵ.

To explore the range of validity of this experimental finding, we compute the
phase boundary for different values of U, see Fig. 2.1.2. Fig. 2.1.2a is a phase
diagram in the φ − ε plane, while the curves χC(ϵ) are visualized in Fig. 2.1.2b.
We observe that, while for small U there is a quadratic χC(ε) dependence, ap-
proaching the Kondo regime with increasing U the boundary becomes linear.
Moreover, when asymmetry is involved, only the values of χ close to 1 are used.
This means that for large asymmetry a linear approximation becomes relevant
for a wide range of parameters.

With this in mind, we approximate χC(ε) by χC(ε) ≈ 1 − (ε − ε1) /β, where
χC(ε1) = 1 and β is minus the slope of the ε (χC) dependence. Inserting the
expansion into Eq. (2.1.7) we obtain

φA
C = arccos

(︄
−(a + 1)2

2a

1
β

(ε − ε1) + 1
)︄

. (2.1.19)

Comparison of Eqs. (2.1.18) and (2.1.19) leads to

δϵ = 4a

(a + 1)2 β(U, Γ, ∆), (2.1.20)

where we have explicitly stated the dependence of β on model parameters. As
seen from this last equation, the transition width is proportional to β by a factor
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Figure 2.1.2: 0 − π phase diagram. (a) Dependence of the critical phase φC

on the shifted and normalized level energy ε̃ = (ε + U
2 )/U

2 , for ∆ = 0.17meV,
Γ = 0.44meV, a = 1 and different values of U (from left to right the curves
belong to U = {2, 2.5, 2.8, 3.2, 4, 5, 7} meV). The lines are guide to the eyes.
The red line (U = 3.2 eV) corresponds to the experimental values of Delagrange
et al. [21]. (b) Same as (a) with χC on the y-axis. We observe that for increasing
U the χC(ε) dependence becomes more and more linear.

dependent on the asymmetry of the junction (which reduces to 1 for the symmetric
case).

In their experiment, Delagrange et al. [21] fitted the 0 − π transitions on both
sides of three Coulomb diamonds (called B, G and I in Fig. 1.5.2) with the curve
(2.1.18), and determined the transition widths on both sides of the diamond5. For
diamond I (left side) the asymmetry a=4 was found via Quantum Monte Carlo
simulations [20], for B and G it is unknown. The experimental parameters are
summarized in table 2.1. I have computed via NRG the χC(ε) dependence for the
parameters U , Γ, ∆ given from experiment, and applied Eq. (2.1.20) to find the
asymmetry of each diamond, and I will now shortly describe the fitting procedure.
Fig. (2.1.3) shows ε̃(χC) data computed for diamond B, left side (which is the
one with the lowest U/Γ ratio, and consequently also the one which is the least
linear of the three). As seen in the figure, the slope of the fit for the whole [0, 1]
range of χC , labeled βS

NRG, differs somewhat from the slope βA
NRG fitted only

in the range appropriate for the final asymmetry alin, χC ∈
[︃(︂

alin−1
alin+1

)︂2
, 1
]︃
. The

fitting range and the asymmetry need to be determined in a (short) self-consistent
loop (where βS

NRG is first used to compute an asymmetry via Eq. (2.1.20), this is
used compute the range and fit a new slope, which is then used to compute the
asymmetry...). The values of βA

NRG and, most importantly, alin, are again given in
table 2.1. The standard fitting error of βA

NRG is bellow 2%, and mostly caused by
the imperfect linear approximation (this is, however, negligible compared to the
uncertainty of the input parameters). In Paper I we have (on demand of a referee,

5Other diamonds (labeled A, C in Fig. 1.5.2) with a single level 0 − π transition were
measured, but their transition widths weren’t determined.
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Figure 2.1.3: Obtaining the coupling asymmetry. The numerically determined
ϵ(χ) dependence (bullets) is approximated by a linear fit in the symmetric (blue
line) and asymmetric (red line) case. The negative slopes are denoted βS

NRG and
βA

NRG respectively. The fitting range for the asymmetric case is marked by the
dashed line, and must be determined self-consistently together with alin. The
data in this figure is computed for Coulomb diamond B, left side, cf. Figs. 1.5.2
and 1.5.3.

B G I
left right left right left right

U 2.8 3.4 3.2
Γ 0.43 0.4* 0.44
∆ 0.17 0.17 0.17˜︂δϵexp 0.23 0.43 0.06 0.06 0.15 0.20

βA
NRG 0.479 # 0.202 0.202 0.347 0.317
alin 5.8 1# 11 11 6.4 4.0

Table 2.1: Transition width and asymmetry — summary of experimental data [21]
and our corresponding results. Columns correspond to the measured Coulomb
diamonds. The parameters U , Γ, ∆, given in meV, are known with a 10% (or 20%,
marked by *) experimental uncertainty and used as input for NRG calculation.
The inverse negative slope βA

NRG (illustrated in Fig. 2.1.3) and the measured
transition widths ˜︂δϵexp ≡ 2δϵexp/U are used to determine the asymmetry alin as
discussed in the main text. (#) Here, ˜︂δϵexp is bigger then the transition width
computed from NRG for the case of a symmetric junction, but the difference is
within experimental uncertainty.
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and considering the success of the GAL approximation in [78]) also considered a
quadratic χC(ε) dependence. The results for the asymmetry are however similar.

Analysis of the right side of diamond I (red lines in Figs. 2.1.2) with the
measured transition width ˜︂δϵexp = 0.20 leads to the asymmetry a = 4, which
agrees with the value obtained via QMC in Ref. [20]. Even bigger asymmetries
were obtained for diamond G and the left sides of diamonds I and B. On the other
hand, the large normalized transition width ˜︂δϵexp = 0.43 measured on the right
side of diamond B suggests a symmetric junction. The measured value is actually
even wider than the width calculated for the symmetric coupling (˜︂δϵ = 0.39), but
the difference is within 10% experimental uncertainty [Paper I].

To conclude, the symmetry asymmetry relation has been successfully used to
determine the coupling asymmetry of an experimental setup, where it was previ-
ously unknown. The results point towards large asymmetries, and the accuracy of
the analysis is limited mostly by experimental uncertainty. The results stress the
significance of coupling asymmetry for our understanding of experimental data.
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2.2 Interpreting the AC Josephson emission of
a carbon-nanotube quantum dot

This section describes my contribution to the characterization of the experiment
presented in Sec. 1.5.4 and Paper III. Most of the text in this section has been
already made public in supplemental material to Paper III. While I have clarified
the underlying ideas with my supervisor T. Novotný and with R. Deblock and D.
Watfa, I have written this part of the supplement myself. In this thesis, I have
added details especially in Secs. 2.2.3 and 2.2.2.

First, I present the NRG calculation of the DC Josephson effect used to char-
acterize the quantum dot. Second, I give two attempts on explaining the dip
which was observed in the AC Josephson current in the Kondo regime of the dot
(see Fig. 1.5.5). Due to the combination of out-of equilibrium aspects of the AC
Josephson effect and strong Coulomb interaction, it is difficult to describe the
AC Josephson effect in the superconducting quantum dot, and has been only at-
tempted in certain regimes [22, 29, 36]. Therefore I wasn’t able to perform exact
numerical calculations, and instead discuss the similarities and differences be-
tween the quantum dot and the quantum point contact, for which the full theory
of the AC Josephson effect is available [2, 15].

2.2.1 DC Josephson effect - NRG results
Numerical renormalization group (NRG) calculations, as described in Sec. 1.4,
have been performed to understand the DC behavior of the CNT QD. Using the
parameters determined from experiment in the non-superconducting state for
regions A and B (see table 2.2), the φ− and ε−dependent spectra of many-body
states and the current-phase relations have been calculated. Fig. 2.2.1a is showing
an example of the calculated spectrum of excited sub-gap many-body states (at
half-filling, ε = 0), with the ground-state energy equated to zero. The ground
state is always a singlet, confirming both regions A and B stay in the 0-phase in
the entire range of φ. As described in Sec. 1.3.2, the first excited state is the spin
doublet, and its energy difference from the ground state corresponds to Andreev
bound state energy EA. The second excited state is again a singlet, which is not
linked to the ground state by single-particle processes, hence it doesn’t produce
a pair of ABS.

Fig. 2.2.1b shows the current phase relations (corresponding to Fig. 2.2.1a),
which are slightly non-sinusoidal, with the critical current in the nanoampere
range. The φ dependence of the ABS energy is plotted for multiple values of
level-energy ε in Fig. 2.2.1c.

The ε dependent spectra for φ = 0 and φ = π are shown in Fig. 2.2.3a-b.
With increasing distance from the center of the Coulomb diamond the energy of
the excited states increases.
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Figure 2.2.1: NRG results (for parameters see Table 2.2). (a) The many-body
spectra for Kondo regions A and B and ε = 0. The ground state is a singlet
and its energy is set to zero in the NRG. The first excited state is a spin doublet
(marked D in the legend) and the second excited state is a singlet (marked ES).
This spectrum corresponds to a junction in the 0-phase with one pair of Andreev
bound states. (b) The corresponding DC current-phase relations, (c) Andreev
bound state energy for chosen values of the level energy ε for regions A and B.

43



TK(K) U (meV) Γ(meV) a ∆(meV)
Kondo A 1.1 3.9 0.62 3.3 0.05
Kondo B 1.7 4 0.75 2.5 0.05

Table 2.2: Parameters of the carbon nanotube quantum dot in Kondo regions A
and B determined from the experiment and used as an input to the NRG (see
Paper III).

2.2.2 Comparison of the quantum dot and quantum point
contact spectra

Quantum dots in the Kondo regime have been sometimes treated like a quan-
tum point contact [71, 67]. The idea is that Coulomb interaction U causes a
renormalization of parameters (ABS energies, transmission), but doesn’t produce
qualitative differences. As long as the junction remains in the zero phase in the
entire range of the superconducting phase difference φ ∈ (0, 2π), the structure of
many-body levels is indeed similar, in both cases consisting of a singlet ground
state, an excited spin doublet and an excited spin singlet. There are however
important differences.

For a QPC the ABS energy (the difference in energy between the doublet
excited state and the ground state) is

EQPC
A = ∆

√︂
1 − D sin2 (φ/2) (2.2.1)

(with D the transmission of the junction in the normal state), and the differ-
ence between the energy of the excited singlet and the singlet ground state is
2EA. With interaction, none of this is true any longer: the ABS don’t touch the
continuum at φ = 0, the energy of ABS at φ = π no longer corresponds to the
normal state transmission through Eq. (2.2.1), and the energy difference between
the excited singlet and the ground state is significantly higher than 2EA. A com-
parison of the (φ−dependent) many body spectrum of a quantum point contact
vs. NRG data for the interacting quantum dot is shown in Fig. 2.2.2. We choose
to equate the ABS energies of the QD and the QPC at φ = π.

In the following subsections, we give two quantum-channel-based interpreta-
tions of the experimentally observed drop in the AC Josephson current that seem
plausible until a closer look.

2.2.3 Landau-Zener tunneling
In a quantum point contact the variation of IAC

C (VSD) at low bias voltage has
been attributed to Landau-Zener (LZ) tunneling [2], a basic quantum mechanical
phenomenon occurring at avoided crossings. The probability for this transition
to occur is given by [2]

PLZ = exp
[︄
−π

(δE/2∆)2∆
eVSD

]︄
. (2.2.2)

We denote δE the energy difference between the states involved in LZ tunneling.
For the quantum point contact δE = 2EA(φ = π), and the quantity (δE/2∆)2 =
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Figure 2.2.2: Comparison of the many body spectrum for Kondo ridge A at the
particle-hole symmetry point and the spectrum of a quantum point contact with
the same energy of the Andreev bound state at π, as a function of the phase
difference φ. The dots represent NRG data for the energy difference between the
spin doublet and the ground state corresponding to the ABS energy (blue) and
the difference between the excited singlet and the ground state (red). The lines
(green, yellow) represent the same quantities for the quantum point contact.

R = 1 − D is the reflectivity of the junction. VSD is the applied voltage, which
determines the phase evolution through the Josephson relation dφ/dt = 2eVSD/ℏ,
and in the experiment eVSD ∼= ∆/2.

Let us insert the ABS energies of the quantum dot into the Landau-Zener
probability (2.2.2). With the ε−dependence of EA(φ = π) pictured in Fig. 2.2.3b
(the doublet, blue), the Landau-Zener probability is close to one at half-filling
and drops to zero far away from it, see Fig. 2.2.3d.

Moreover, although the ABS detach from continuum at φ = 0, the emptying of
ABS states at φ = 0 still happens through Demkov-Osherov tunneling processes.
The probability PDO of tunneling between ABS and the continuum, based on
Ref. [30], is pictured on Fig. 2.2.3c. Recent work, Ref. [36], has investigated
a quantum dot junction with ABS detached from continuum (but still keeping
assumptions similar to δE = 2EA(φ = π)) and found that the ratio between
PDO and PLZ is significant for the occupation of the states in the junction. In
our case PDO < PLZ up to ε ∼= 1.1 meV, which is where the biggest changes
in the experimentally measured current occur. These observations make it very
compelling to call Landau-Zener responsible for the measured drop in IAC

C .
However, although LZ tunneling is often pictured as particles tunneling from

one ABS to another, on the many body level, it must be a transition from the
ground state to the excited singlet state. The jump between the ground state
and the spin doublet is forbidden by parity - the singlet and doublet states don’t
interact at all (this is illustrated by the fact that they can cross in the QD). If
there is an avoided crossing, it is between the two singlet states. This means for
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Figure 2.2.3: (a) NRG calculation of the many-body spectrum (ABS energy) at
φ = 0 as a function of the energy level of the QD ε for the Kondo region A.
This measures the detachment of the ABS from the continuum of excitation. (b)
Same quantity at φ = π. (c) Probability for a QP present in the quantum dot
to escape after tunneling into the continuum due to Demkov-Osherov tunneling,
region A. This curve is calculated at a voltage eV =∆/2 and use the result derived
in Ref. [30]. (d) Calculated Landau-Zener probability, region A. Blue: Using
δE = 2EA (see formula (2.2.2)), as for a QPC. Red: Using instead the energy of
the excited singlet of the QD.

the quantum dot that instead of taking δE = 2EA(φ = π) one should consider
δE to be the energy of the excited singlet.6

For our quantum dot junction the energy of the excited singlet is
δE(φ = π) = 0.74∆ for Kondo region A at half-filling, leading to a transition
probability P QD

LZ = 0.43. This value only changes slowly when one goes away from
the particle-hole symmetry point (Fig. 2.2.3d). Hence at ϵ = 1 meV, where we see
in the experiment that the dynamical supercurrent increases, this Landau-Zener
probability is still 0.24 - which makes Landau-Zener tunneling in and of itself
unsuitable to explain the observed data.

6This is also the case for the QPC - while δE = 2EA(φ = π) is usually understood as the
distance between the two ABS inside the gap, it is nothing other than the energy of the excited
singlet. This is a coincidence for the QPC.

While this observation is trivial, none of the people working on this problem noticed for quite
a while. This is partly because comprehensive pictures of many-body spectra like Fig. 2.2.2
are not readily available to the community. The quantum point contact is always done in a
single-particle picture, only talking about ABS energies, which makes equating ABS energies
tempting.
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2.2.4 Renormalized QPC based interpretation
The Landau-Zener approach from the previous subsection assumes small bias
voltage, which ensures adiabatic development of the system. The interpreta-
tion presented now drops this assumption (hardly obvious for eV = ∆/2), and
compares the experimental data to the full transport theory for a quantum point
contact, which was published in the nineties by Averin and Bardas [2] and Cuevas,
Martín-Rodero and Levy Yeyati [15]. These studies feature results for the real
and imaginary part of the first Fourier component I1 of the AC current for sev-
eral values of transmission. We use their results (read off graphically from their
figures) for applied bias voltage V = ∆/2e to construct the |I1(D)| dependence
of the AC current on transmission, see Fig. 2.2.4a.

Again, we choose to equate the energy of ABS of the QD and the QPC at
φ = π. Equating the models means renormalizing the normal state transmis-
sion of the quantum dot junction so that it corresponds to EA(φ = π) through
Eq. (2.2.1), D = 1 − (EA(φ = π)/∆)2. This renormalized transmission (based
on the equilibrium values of EA(ϵ, φ = π) which have been presented in Fig.
2.2.3b) is plotted in Fig. 2.2.4b. Figs. 2.2.4a and 2.2.4b also contain approxi-
mative functions7, which, put together, give us an |I1(ε)| prediction. Results for
both Kondo ridges A and B are similar and given in Fig. 2.2.4c, quite surprisingly
showing a nice semi-quantitative agreement between the renormalized-quantum-
point-contact-based prediction and measured experimental data.

Fig. 2.2.4c shows that the drop in the AC current at this particular bias volt-
age is already expected in a QPC, suggesting similarity. However, this analysis
still does not take into account the differences in the many-body spectrum of the
quantum point contact vs. quantum dot (illustrated in equilibrium by the detach-
ment of ABS from the continuum and the raised energy of the excited singlet),
which raises doubt about its accuracy. Therefore, in Paper III we have decided
in favor of a different physical mechanism (the interaction with quasiparticles) to
explain the observed voltage drop.

7The approximations don’t have a physical meaning. The |I1(D)| dependence at V = ∆/2e
is fitted by αDβ exp(−γDδ) + κD, and the D (ϵ) curve by (1 − Dmin) cosζ

(︁ 2ε+U
2U

)︁
+ Dmin.
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(a) Values of the first Fourier component of the
AC Josephson current at ∆/2 read off graph-
ically from Refs. [2] and [15]. The dotted line
is an approximation.
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(b) Transmission of the renormalized QPC
junction for regions A and B, computed from
the ABS energy at φ = π, and approximated
by the dotted line.

(c) Gate dependence of the first Fourier component |I1| of the AC Josephson current. Bullets
represent the experiment, lines the theoretical prediction for a single quantum point contact
with the corresponding transmission.

Figure 2.2.4
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Conclusion

This thesis has explored a single-level quantum dot attached to two superconduct-
ing leads, described via the superconducting single-impurity Anderson model. I
have used analytical techniques and numerical renormalization group calculations.

A major contribution to the large body of previous research is the clarifica-
tion of the role of coupling asymmetry in the phase-biased (equilibrium) setup.
We have been able to link the physics of an asymmetric sc-SIAM system to its
effective symmetric counterpart through the symmetry-asymmetry relation. If a
physical quantity is known in the symmetric case, it is now possible to derive its
value for an asymmetric system analytically. This reduces the need for numeri-
cal calculations - it is enough to only compute the symmetric system. Explicit
formulas for the phase boundary, on-dot quantities, and the Josephson current
are given, and the role of gauge-invariance in deriving the explicit form of the
symmetry-asymmetry relation for the Josephson current is specified.

The symmetry-asymmetry relation was applied to find the asymmetry of an
experiment from the measured width of the transition region where the current-
phase relations are neither fully 0− nor fully π−phase.

This thesis also clarifies to which extent Kondo universality holds for the su-
perconducting quantum dot in a transport setup: The asymmetry turns out to be
an important parameter which influences the position of the 0−π phase boundary
even in the Kondo regime. The idea that the phase transition occurs for a fixed
∆/TK ratio is compromised by its asymmetry and phase dependence. However,
the number of parameters can be effectively reduced by one as the superconduct-
ing phase difference and the asymmetry are combined into one function by the
symmetry-asymmetry relation. We have shown that Kondo universality still holds
when using said function as a variable, and the position of the phase boundary
deeply in the Kondo regime can be described by a simple exponential formula.

The second topic of this thesis concerns a measurement of the AC Josephson
current in a quantum dot setup, specifically the experimentally observed drop in
the AC Josephson current in regions where the Kondo effect occurs.

First, the equilibrium many-body spectra and the DC Josephson current are
computed to characterize the dot. The dot is found to stay in the 0−phase and
its current-phase relations are almost sinusoidal.

Next, I attempt a quantum-point-contact-based interpretation of the observed
drop. A comparison of the many-body spectra of a quantum point contact and
the quantum dot is given. Landau-Zener tunneling is considered as a possible
cause. The amplitude of the first Fourier component of the AC Josephson current

49



expected from the exact transport theory of a quantum point contact is also
presented. Both methods indicate that a drop in the AC Josephson current
is already expected in a QPC, however, taking into account the differences in
many-body spectra, we conclude that the mechanisms that cause a drop in the
AC Josephson current in a QD are likely different from mechanisms acting in a
QPC.

This thesis is a part of the broad research field of superconducting nano-
structures. Current endeavors involve the search for exotic matter (Majorana
fermions), quantum computing, and the search for a superconducting memory
cell. Superconducting quantum dots may serve as basic building blocks for more
complicated nanostructures and devices in the near future. It is my hope and be-
lief, that this thesis has contributed to their correct and thorough understanding.
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Appendix

Appendix A - Green’s functions in Matsubara
frequencies
In this appendix, I give some definitions and introduce the Matsubara formalism.
The conventions generally correspond to Ref. [6].

The real-time retarded Green’s function (for fermionic operators d↑, d↓) is
defined as

GR
dσ,dσ′(t′ − t) = −iθ(t − t′)

⟨︂{︂
dσ(t), d†

σ′(t′)
}︂⟩︂

(2.2.3)

with {} marking the anticommutator and ⟨⟩ the (grand)canonical average, ⟨■⟩ =
− 1

Z
Tr
[︂
e−βH■

]︂
, with H = H−µN for grandcanonical averaging. Green’s functions

are translationally invariant in the time-domain, so that t′ can be set to zero.
More often, we work in the energy/frequency domain (ℏ = 1), using the Fourier
transform GR

dσ,dσ′(ω) =
´ +∞

−∞ dt eiωtGR
dσ,dσ′(t). The spectral function is defined as

Ad(ω) ≡ Adσ(ω) = −2ImGR
dσ(ω). Generally, the density of states corresponds to

diagonal elements of a spectral function. In case of the impurity, the spectral
function is related to the local density of states (per spin) ρd = 1

2π
Ad(ω) and the

occupation number nd =
´∞

−∞
dω
2π

Ad(ω)nF (ω).
For solving equilibrium yet temperature dependent problems, Matsubara fre-

quencies are often advantageous. For this, a transformation into imaginary time

t → −iτ

is done first. This makes it possible to treat temperature in the (grand)canonical
averaging and time-dependence of operators similarly, yet induces some counter-
intuitive properties like non-hermitian-conjugated operators d(τ), d†(τ) and a ne-
cessity to perform an analytic continuation onto the real axis at the end of the
calculation. The interaction (Dirac) picture with a Hamiltonian H = H0 + V
is used most often. The time dependence of operators in the imaginary time is
governed by A(τ) = eτH0Ae−τH0 , and the Heisenberg equation reads

∂A (τ)
∂τ

= [H, A](τ) . (2.2.4)

The imaginary-time d-d† correlation function, or Matsubara Green’s function
(which, after analytic continuation corresponds to the retarded Green’s function)
is defined as

Gdσ,dσ′(τ) ≡ −
⟨︂
Tτ

(︂
dσ(τ)d†

σ′

)︂⟩︂
(2.2.5)
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with the time-ordering operator Tτ [A(τ)B]± = θ(τ)A(τ)B ±θ(−τ)BA(τ) (minus
sign for fermionic operators), and d(τ) = eτH0d e−τH0 . Because of the identity
Cdd†(τ +β) = −Cdd†(τ) for τ < 0, only the case τ > 0 needs to be calculated. The
thermal averaging ⟨⟩ is done using the full Hamiltonian. For quadratic Hamilto-
nians, the equation of motion technique can be used to find the exact form of the
correlation function. For the Matsubara Green’s function, eq. (2.2.4) becomes

−∂τ Gdσ,dσ′(τ) = δ(τ)δσ,σ′ +
⟨︂
Tτ

(︂
[H, dσ] (τ) d†

σ′

)︂⟩︂
. (2.2.6)

The Fourier transformation into the Matsubara frequency domain is defined as

GAB(iωn) =
βˆ

0

dτeiωnτ GAB(τ) (2.2.7)

with the inverse
GAB(τ) = 1

β

∑︂
ωn

e−iωnτ GAB(iωn) (2.2.8)

with ωn = 2πn
β

for bosonic operators A, B, and ωn = (2n+1)π
β

for fermionic opera-
tors.

The (non-interacting, U = 0) Green’s function of the SIAM

The electron Green’s function of a single level interacting with the continuum,
GSIAM

0 dσ (ikn), can be found by the equation of motion technique (the computation
starts with Eq. (2.2.6), and can be found in Ref. [6]). In Matsubara frequencies
(for one lead and one spin) we obtain

GSIAM
0 dσ (ikn) = 1

ikn − εd − Σ0(ikn) (2.2.9)

with
Σ0(ikn) =

∑︂
k

|tk|2

ikn − εk

(2.2.10)

The selfenergy can be further simplified using the approximation of a wide, flat
band. Assuming ε ∈ [−D, D] for energies inside the band and Γ ≡ 2π

∑︁
k |tk|2δ(ε−

εk) we get

Σ0(ikn) = Γ
2π

ln
(︄

ikn + D

ikn − D

)︄
D→∞−−−→ −iΓ sgn(kn) , (2.2.11)

meaning
GSIAM

0 dσ (ikn) = 1
ikn − εd + iΓ sgn(kn) . (2.2.12)

Performing the analytic continuation ikn → ω + iη for kn > 0 must reproduce
the well-known real-time retarded Green’s function for electrons, GR, SIAM

0 dσ (ω) =
1/ (ω − εd + iΓ), cf. eq. (1.1.5) in the main text.
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Appendix B - Nambu formalism and the non-
interacting Green’s function of the superconduct-
ing quantum dot
To compute the Green’s function of the superconducting quantum dot (see Sec.
1.3.1, Eq. (1.3.1) in the main text for the Hamiltonian), an extended version of
the Nambu matrix formalism (often used for superconductivity, see e.g. [6]) is
used. Following Appendix A in [49] , infinite Nambu spinors are defined as

α (τ) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

d↑(τ)
d†

↓(τ)
cLk↑(τ)
c†

L−k↓(τ)
cRk↑(τ)

c†
R−k↓(τ)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(2.2.13)

with τ the imaginary time defined in Appendix A. The Nambu Green’s function
is a generalization of the correlation function in Eq. (2.2.5):

ˆ︁G (τ) = −
⟨︂
Tτ α (τ) α† (0)

⟩︂
. (2.2.14)

For the non-interacting dot (see Hamiltonian (1.3.1) with U = 0), the Green’s
function ˆ︁G0(iωn) can be computed exactly. In that case the equation of motion
(2.2.6) takes the form −∂τ

ˆ︁G0(τ) = δ(τ)I − M ˆ︁G0(τ) with matrix M

M =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

−ε 0 −t∗
Lk 0 −t∗

Rk 0
0 ε 0 tLk 0 tRk

−tLk 0 −εLk ∆L 0 0
0 t∗

Lk ∆∗
L εLk 0 0

−tRk 0 0 0 −εRk ∆R

0 t∗
Rk 0 0 ∆∗

R εRk

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (2.2.15)

where ∆L,R = ∆L,ReiφL,R is the complex order parameter of the left(right) lead,
which includes the superconducting phase. This equation is now Fourier-trans-
formed (2.2.7), so that ∂τ → −iωn, resulting in

ˆ︁G0(iωn) = (iωn + M)−1 (2.2.16)

It is enough for our purposes to compute the 2x2 upper-left corner of ˆ︁G0(iωn),
representing the quantum dot, or the Fourier-transformed version of

ˆ︁G0 (τ) =
(︄

G(τ) G(τ)
Ḡ(τ) Ḡ(τ)

)︄
= −

⎛⎝⟨Tτ [d↑(τ)d†
↑(0)]⟩ , ⟨Tτ [d↑(τ)d↓(0)]⟩

⟨Tτ [d†
↓(τ)d†

↑(0)]⟩ , ⟨Tτ [d†
↓(τ)d↓(0)]⟩

⎞⎠ .

(2.2.17)
This can be done by applying the matrix partitioning scheme(︄

A c
d B

)︄−1

=
(︄

(A − cB−1d)−1 −A−1c (B − dA−1c)−1

−B−1d (A − cB−1d)−1 (B − dA−1d)−1

)︄
(2.2.18)
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with A corresponding to the 2x2 upper-left corner of (iωn − M) in Eq. (2.2.16),
B is an infinite square matrix and c, d are rectangular. Computing the
(A − cB−1d)−1 combination and integrating out the k−dependence assuming
Γα ≡ π

∑︁
k |tαk|2δ(ε − εαk) constant, we arrive at

ˆ︁G0(iωn) =
(︄

iωn[1 + s(iωn)] − ε , ∆φ(iωn)
∆∗

φ(iωn) , iωn[1 + s(iωn)] + ε

)︄−1

(2.2.19)

with s(iωn) = ∑︁
α

Γα√
∆2

α+ω2
n

and ∆φ = ∑︁
α

Γα√
∆2

α+ω2
n

∆αeiφα , which is Eq. (1.3.6) in
the main text.
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Appendix C - NRG calculation of sc-SIAM
This appendix contains input files for the NRG calculation. These have been
used with the NRG Ljubljana 2.3 and 2.4 versions (in particular 2.4.3.34). An
example of the “param” input file:

[ ext ra ]
Gamma1=0.00214285714
Gamma2=0.00535714286
phi =!( Pi ) ∗0 . 5

[ param ]
model=siamphase .m
symtype=SPSU2

bcsgap1 =0.0005
bcsgap2 =0.0005

U=0.04
de l t a =0.0
Lambda=4

Tmin=1e−9
keepmin=200
keepenergy=6
keep=10000

d i s c r e t i z a t i o n=Z
z=1

ops=n_d q_d q_d^2 JC

dumpannotated=100
dumpscaled=0
groupto l=1e−300

System parameters U , ΓL, ΓR, ∆L = ∆R, φ, and δ = ε + U/2 are set in this
file. All energy scales are set “in units of the bandwidths”, meaning U = 0.04 D.
For the sc-SIAM, the discretization parameter is set to Λ = 4. The truncation
of the spectra is controlled by either the maximum number of states kept (pa-
rameter “keep”) or the maximum energy of the states (parameter “keepenergy”),
whichever is more restrictive. For the superconducting (gaped) system, it is also
important to set a minimum number of states kept in each iteration. The eigen-
states are computed and stored, as well as the Josephson current.

The custom model Hamiltonian in Wolfram language using SNEG package,
called as siamphase.m in the param file, reads:
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def2ch [ 1 ] ;

Hc = gammaPolch1 hopphi [ f [ 0 ] , d [ ] , phi /2 ]
+ gammaPolch2 hop [ f [ 1 ] , d [ ] ] ;

H = H0 + H1 + Hc ;

This defines a two-channel (two leads) model with one impurity site. Hc is the
hybridiziation part of the Hamiltionian. The phase difference φ is taken into
account by performing a rotation in the Nambu space by φ/2. This factor then
enters the hopping matrix element between channel 1 and the impurity orbital.
H0 and H1 describe the (superconducting) lead and the dot and are predefined
elsewhere in the code.
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BCS Superconductor Quantum dot BCS Superconductor

Normal 
metal

Figure 2.2.5: Schematics of the three-teminal setup.

Appendix D - Lehmann representation for the
exchange coupling constant in a three-terminal
setup
This Appendix presents a calculation of the exchange coupling constant J in
a setup with two superconducting and one normal-metal leads (see Fig. 2.2.5).
The coupling to the normal-metal lead is taken as a weak perturbation, while
the superconductor-quantum dot-superconductor (S-QD-S) system is described
by the sc-SIAM (Hamiltonian (1.3.1)) and mapped onto the Kondo model. The
goal is to express J in terms of many-body matrix elements of the operator d
and the spectrum which can be calculated by the NRG. The resulting formula
hasn’t been published or numerically implemented during my studies, but it may
be used in future calculations.

The S-QD-S system in the π-phase has a degenerate ground state consisting of
many-body states |⇓⟩ and |⇑⟩, denoting eigenstates of the global spin operator. It
is also known that the S-QD-S system in certain parameter regimes is governed
by Kondo physics. Analogically to the Schrieffer-Wolff transformation in non-
superconducting systems, we expect it to be possible to map the S-QD-S system
coupled to a normal-metal lead on the Kondo model, and express JkF kF

in the
vicinity of the Fermi level. The Kondo model is described by the Hamiltonian

HK = HN + VK =
∑︂

k

εkc†
kck −

∑︂
kk′

Jkk′Sd·skk′ (2.2.20)

with the spin operators

skk′ =
∑︂
σσ′

1
2c†

kσσσσ′ck′σ′ , Sd =
∑︂
σσ′

1
2d†

σσσσ′dσ′ , (2.2.21)

where c†
kσ, ckσ creates/annihilates an electron in the normal-metal probe, d†

σ, dσ

on the dot, and σ is the vector of Pauli matrices. Using an isotropic Kondo model
is based on symmetry considerations – the ground state is (without a magnetic
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field) an exactly degenerate spin-doublet, so there is no reason for anisotropy –
supported by the result for the atomic limit in Ref. [23].

Our approach is to consider a scattering state and compare the lowest non-zero
orders in the T-matrix expansion for the Kondo and the SIAM models. Elements
of the T-matrix for a Hamiltonian H = H0 + V are defined by (see e.g. Ref. [6],
page 88)

⟨f | T |i⟩ = ⟨f |
(︂
T (1) + T (2) + ...

)︂
|i⟩ = ⟨f |

(︄
V + V 1

Ei − H0 + iη
V + ...

)︄
|i⟩ ,

(2.2.22)
where |i⟩, |f⟩ are the initial and final states, and Ei is the energy of the initial
state.

We choose initial and final states

|i⟩ = |FS⟩ |⇓⟩
|f⟩ = c†

k′↓ck↑ |FS⟩ |⇑⟩ , (2.2.23)

where |FS⟩ denotes the Fermi sea zero-temperature ground state of the normal
lead, and |⇓⟩, |⇑⟩ denote the doubly degenerate ground state of the generalized
SIAM (in the simplest single-impurity case they’re just the up and down states
of the impurity spin, but in case of the S-QD-S setup they’re complicated many-
body states of the dot and the superconducting leads obtained by the NRG).

The impurity part of the Kondo Hamiltonian (2.2.20) in the case of a simple
impurity can be expanded to

VK = −
∑︂
ll′

Jll′
1
2

[︃
d†

↑d↓c
†
l↓cl′↑ + d†

↓d↑c
†
l↑cl′↓ + 1

2
(︂
d†

↑d↑ − d†
↓d↓
)︂ (︂

c†
l’↑cl↑ − c†

l′↓cl↓
)︂]︃

.

The first order of the T-matrix gives a non-zero result (only the first term of HK

contributes for the choice (2.2.23)), namely

⟨f | VK |i⟩ = −
∑︂
ll′

Jll′
1
2
{︂
⟨↑| d†

↑d↓ |↓⟩ ⟨FS| c†
k↑ck′↓c

†
l↓cl′↑ |FS⟩

}︂
= −1

2Jk′knF (k) (1 − nF (k′))
(2.2.24)

For the generalized SIAM, H0 is the Hamiltonian of the S-QD-S system (1.3.1)
plus the normal lead, and the perturbation V is the coupling to the normal lead

V =
∑︂
pσ

(︂
Vpc†

pσdσ + V ∗
p d†

σcpσ

)︂
.

The first order of the T -matrix expansion (2.2.22) for V is zero, because this
perturbation describes no spin flip processes. The first nonzero contribution is

⟨f | T (2) |i⟩ = ⟨f | V 1
Ei − H0 + iη

V |i⟩ .

Using the Lehmann representation, we insert 1 = ∑︁
αn |αn⟩ ⟨αn| , |αn⟩ = |α⟩ |n⟩,

where |α⟩ are all the eigenstates of the generalized SIAM system and |n⟩ are
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normal-metal lead states, and compute

⟨f | T (2) |i⟩ =
∑︂
αn

1
Ei − Eαn + iη

⟨f | V |αn⟩ ⟨αn| V |i⟩

=
∑︂
αn

1
Ei − Eαn + iη

⎧⎨⎩∑︂
p′σ′

Vp′ ⟨FS| c†
k↑ck′↓c

†
p′σ′ |n⟩ ⟨⇑ |dσ′ | α⟩ +

+
∑︂
p′σ′

V ∗
p′ ⟨FS| c†

k↑ck′↓cp′σ′ |n⟩
⟨︂
⇑
⃓⃓⃓
d†

σ′

⃓⃓⃓
α
⟩︂⎫⎬⎭×

×
{︄∑︂

pσ

Vp ⟨n| c†
pσ |FS⟩ ⟨α |dσ| ⇓⟩ +

∑︂
pσ

V ∗
p ⟨n| cpσ |FS⟩

⟨︂
α
⃓⃓⃓
d†

σ

⃓⃓⃓
⇓
⟩︂}︄

Now it’s time to see which states |n⟩ can be reached and also what Ei −Eαn is. If
the matrix element ⟨n| cpσ |FS⟩ is to be non-zero, it forces |n1⟩ = cpσ |FS⟩. The
initial energy is Ei = EN + E0, where EN corresponds to the lead and E0 to the
groundstate |⇓⟩ of the dot. By annihilating an electron, EN → EN − εp, so that
Eαn1 = EN − εp + Eα, and Ei − Eαn1 = E0 − Eα + εp. Similarly, for ⟨n| c†

pσ |FS⟩
only |n2⟩ = c†

pσ |FS⟩ survives, and Ei − Eαn2 = E0 − Eα − εp.
From the four terms in the previous expression only two survive (with the

right number of c, c†):

⟨f | T (2) |i⟩ =

=
∑︂

α

∑︂
pp′σσ′

{︄
Vp′V ∗

p

E0 − Eα + εp + iη
⟨FS| c†

k↑ck′↓c
†
p′σ′cpσ |FS⟩ ⟨⇑ |dσ′ | α⟩

⟨︂
α
⃓⃓⃓
d†

σ

⃓⃓⃓
⇓
⟩︂

+

+
V ∗

p′Vp

E0 − Eα − εp + iη
⟨FS| c†

k↑ck′↓cp′σ′c†
pσ |FS⟩

⟨︂
⇑
⃓⃓⃓
d†

σ′

⃓⃓⃓
α
⟩︂

⟨α |dσ| ⇓⟩
}︄

Working out the contractions, we arrive at

⟨f | T (2) |i⟩ =
∑︂

α

⎧⎨⎩⟨⇑ |d↓| α⟩
⟨︂
α
⃓⃓⃓
d†

↑

⃓⃓⃓
⇓
⟩︂

E0 − Eα + ϵk + iη
−

⟨︂
⇑
⃓⃓⃓
d†

↑

⃓⃓⃓
α
⟩︂

⟨α |d↓| ⇓⟩
E0 − Eα − ϵk′ + iη

⎫⎬⎭
× V ∗

k Vk′nF (k)(1 − nF (k′)) .

(2.2.25)

Comparing Eq. (2.2.25) to Eq. (2.2.24), the coupling constant Jk′k is identified
easily

Jk′k = −2V ∗
k Vk′

∑︂
α

⎧⎨⎩⟨⇑ |d↓| α⟩
⟨︂
α
⃓⃓⃓
d†

↑

⃓⃓⃓
⇓
⟩︂

E0 − Eα + ϵk + iη
− −

⟨︂
⇑
⃓⃓⃓
d†

↑

⃓⃓⃓
α
⟩︂

⟨α |d↓| ⇓⟩
E0 − Eα − ϵk′ + iη

⎫⎬⎭ (2.2.26)

However, there’s a problem with formula (2.2.25) to be revealed by comparison
to SIAM.

In the simplest case of a bare quantum dot, the states |α⟩ = {|0⟩ , |↑⟩ , |↓⟩ , |↑↓⟩},
Eα = {0, ϵd, ϵd, 2ϵd + U} , and E0 = ϵd. The result for the Kondo coupling con-
stant is well known from the Schrieffer-Wolff transformation [59]

JSW
k′k = Vk′Vk

{︃ 1
εd − εk

+ 1
εd − εk′

− 1
εd + U − εk

− 1
εd + U − εk′

}︃
. (2.2.27)
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Formula (2.2.26) is evaluated as follows:

⟨↑ |d↓| α1⟩
⟨︂
α1

⃓⃓⃓
d†

↑

⃓⃓⃓
↓
⟩︂

= −1 Eα1 = 2ϵd + U⟨︂
↑
⃓⃓⃓
d†

↑

⃓⃓⃓
α2
⟩︂

⟨α2 |d↓| ↓⟩ = 1 Eα2 = 0

leading to
Jk′k = −2V ∗

k Vk′

{︃ 1
εd + U − εk

− 1
εd − εk′

}︃
,

which is not exactly Eq. (2.2.27). To obtain JSW
k′k , one has to symmetrize (2.2.26)

in k, k′. After symmetrization, the formula gives the correct Jkk′ also for the
three-terminal setup in the ∆ −→ ∞ as calculated in [23].

The relevant scattering happens at the Fermi level, and after setting εk =
εk′ = εkF

= 0, we obtain

JkF kF
ρN

ΓN

= JkF kF

π|VkF
|2

= 1
π

∑︂
α

⟨︂
⇑
⃓⃓⃓
d†

↑

⃓⃓⃓
α
⟩︂

⟨α |d↓| ⇓⟩ − ⟨⇑ |d↓| α⟩
⟨︂
α
⃓⃓⃓
d†

↑

⃓⃓⃓
⇓
⟩︂

E0 − Eα

(2.2.28)

The small positive imaginary part has been omitted in the denominator.
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List of Abbreviations

ABS Andreev bound state(s)

BCS Bardeen-Cooper-Schrieffer

CPR Current-phase relations

DOS Density of states

LZ Landau-Zener

NRG Numerical renormalization group

sc- Superconducting

SIAM Single-impurity Anderson model

S-QD-S Superconductor-Quantum dot-Superconductor

QD Quantum dot

QMC Quantum Monte Carlo

QPC Quantum point contact
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