Abstract

Immunotherapy based on chimeric antigen receptor (CAR)-expressing T lymphocytes has proven to be

highly successful in the treatment of acute lymphoblastic leukemia (ALL), leading to development of

CAR-based immunotherapies for other hematologic malignancies. Currently, efforts are underway to

refine T cell modifications to make patient treatment more effective. Each time, this modification then

needs to be empirically validated in in vitro experiments. We decided to study the effect of the cytokine

IL-21 on the antitumor function of CD19-specific CAR T cells using in vitro assays. A construct that

co-expressed IL-21 under the control of the inducible NFAT promoter together with CARs against CD19

was introduced into T cells. In a series of experiments, the properties of these cells were compared

after coculture with tumor B cell lines and CLL cells obtained from patients. The results showed that

CAR T cells that express IL-21 proliferate and activate better, even after repeated stimulation with

leukemia cells.

In addition to CARs specific against the CD19 molecule, we also investigated CARs specific against the

CLL1 molecule, which has been described in the literature as one of the promising targets for the

treatment of AML. We prepared CAR T cells against CLL1 producing IL-21. For this purpose, we had to

prepare a plasmid that contains the IL-21 gene under the control of the NFAT promoter in addition to

the sequence for CAR. The functionality of the plasmid was verified by transfecting PBMCs and

culturing CAR T cells expressing the given CAR and IL-21. The concentration of IL-21 was measured by

ELISA. The use of interleukin-21 in CAR T therapy could yield positive effects.

Key words: Immunotherapy, CAR T cells, CD19, ALL, CLL1, NFAT, IL-21, hematologic malignancies