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ABSTRACT 

The immune checkpoint blockade is a novel approach of cancer therapy, which 

markedly enhanced treatment efficacy of several cancer types. However, the frequency 

of cancer patients non-responding to this treatment is high. Establishment of predictive 

markers to distinguish patients suitable for the immune checkpoint blockade would 

enhance the number of patients receiving benefit from the therapy. This dissertation thesis 

focuses on the enhancement of efficacy of immune checkpoint inhibitors (ICIs) and 

predictive markers in experimental models of mouse tumours induced by TC-1 and TC-

1/A9 cell lines and its clones with deactivation of interferon (IFN)-γ signalling (TC-

1/dIfngr1 and TC-1/A9/dIfngr1), or CD80 molecule (TC-1/dCD80-1). IFN-γ is presumed 

to be the main inducer of programmed death ligand 1 (PD-L1) and a major 

histocompatibility complex I (MHC-I). Moreover, PD-L1 expression may predict 

sensitivity to PD-1/PD-L1 blockade. Non-functional IFN-γ signalling or downregulated 

MHC-I expression has been associated with resistance to ICIs in some patients. We found 

that IFNs type I (IFN-α and IFN-β) induced the expression of PD-L1 and MHC-I on TC-

1/A9/dIfngr1 tumour cells with reversible downregulation of both molecules. We also 

showed that deactivation of IFN-γ signalling in TC-1/A9 cells was not a contraindication 

to PD-1/PD-L1 blockade combined with DNA vaccination. As TC-1-induced tumours 

were not sensitive to PD-L1 blockade, we next investigated the impact of CD80 expressed 

in tumour cells on the efficacy of ICIs and the tumour microenvironment. Although the 

CD80 deactivation in tumour cells did not induce the efficacy of anti-PD-L1 antibody, it 

considerably promoted the efficacy of anti-CTLA-4 antibody. Moreover, TC-1/dCD80-1 

cells were more immunogenic than the TC-1 cell line. Therefore, CD80 molecule should 

be assessed as a predictive marker for cancer treatment by CTLA-4 blockade and as a 

possible target for the development of tumour cell-specific cancer therapy. Besides the 

major projects, experimental combined therapy of tumours with reversible 

downregulation of MHC-I and development of mouse oncogenic cell line with 

irreversible downregulation of MHC-I by deactivation of beta-2-microglobulin (B2m) are 

included in the thesis. Altogether, we developed clinically relevant models of mouse 

tumours with deactivated IFNGR1, CD80, and B2m and used them for enhancement of 

cancer immunotherapy and for search of its predictive markers. 
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ABSTRAKT 

Blokování kontrolních bodů imunitních reakcí je novým terapeutickým přístupem 

v léčbě nádorů, který značně zvýšil účinnost léčby různých typů nádorů. Avšak podíl 

pacientů s nádory neodpovídajících na tuto léčbu je vysoký. Zavedení predikčních znaků 

pro rozlišení pacientů vhodných pro léčbu blokováním kontrolních bodů by mohlo zvýšit 

počet pacientů, kteří by měli z této léčby užitek. Tato disertační práce je zaměřena na 

zvýšení účinnosti inhibitorů kontrolních bodů imunitních reakcí (ICIs) a na predikční 

znaky s využitím experimentálních modelů myších nádorů vyvolaných buněčnými 

liniemi TC-1 a TC-1/A9 a jejich klony s deaktivací signalizace interferonu (IFN)-γ (TC-

1/dIfngr1 a TC-1/A9/dIfngr1) nebo molekuly CD80 (TC-1/dCD80-1). IFN-γ je 

považován za hlavní cytokin zvyšující expresi ligandu programované buněčné smrti 1 

(PD-L1) a hlavního histokompatibilního komplexu I (MHC-I). Exprese PD-L1 může 

předpovídat citlivost k blokování PD-1/PD-L1. Nefunkční signalizace IFN-γ nebo 

snížená exprese MHC-I u některých pacientů souvisela s rezistencí k ICIs. Zjistili jsme, 

že IFN I. typu (IFN-α a IFN-β) zvyšují expresi PD-L1 a MHC-I na nádorových buňkách 

TC-1/A9/dIfngr1 s reverzibilně sníženou expresí obou molekul. Také jsme ukázali, že 

deaktivace signalizace IFN-γ v buňkách TC-1/A9 nebyla kontraindikací pro blokování 

PD-1/PD-L1 v kombinaci s DNA vakcinací. Protože nádory vyvolané buňkami TC-1 

nebyly citlivé na blokování PD-L1, následně jsme vyšetřovali vliv molekuly CD80, 

produkované v nádorových buňkách, na účinnost ICIs a na nádorové mikroprostředí. 

Přesto, že deaktivace CD80 v nádorových buňkách nezvýšila účinnost protilátky anti-PD-

L1, významně podpořila účinnost protilátky anti-CTLA-4. Buňky TC-1/dCD80-1 byly 

více imunogenní než buněčná linie TC-1. Proto by měl být posouzen význam molekuly 

CD80 jako predikčního znaku pro léčbu nádorů blokováním CTLA-4 a také jako možný 

cíl pro vývoj terapie proti nádorovým buňkám. Kromě hlavních projektů je v této práci 

zahrnuta experimentální kombinovaná terapie nádorů s reverzibilním snížením MHC-I a 

vývoj myší onkogenní buněčné linie s ireverzibilně sníženou expresí MHC-I 

prostřednictvím deaktivace beta-2-mikroglobulinu (B2m). Vyvinuli jsme klinicky 

významné myší modely nádorů s deaktivací IFNGR1, CD80 a B2m a využili je pro 

zvýšení účinnosti nádorové terapie a hledání jejich prediktivních znaků. 



 
 

7 

1. INTRODUCTION 

1.1.  Immune checkpoints 

Co-stimulatory and co-inhibitory molecules, defined as immune checkpoints, 

tightly regulate immune reactions in order to maintain homeostasis of the host and to 

avoid immunopathology (1, 2). The immune checkpoints were originally studied in T 

cells. Besides the 1st signal, which naïve T cells receive from the T cell receptor (TCR) 

after recognition of antigen presented on the major histocompatibility complex (MHC), 

co-stimulatory and co-inhibitory receptors provide the 2nd signal in antigen-independent 

manner (3, 4). Co-stimulatory receptors (such as cluster of differentiation (CD)28, CD80, 

CD86, inducible T cell costimulatory (ICOS), glucocorticoid-induced tumour necrosis 

factor receptor (GITR) and many others) support T cell activation, effector functions and 

survival (5, 6). On the contrary, co-inhibitory receptors and their corresponding ligands 

promote the state of unresponsiveness to antigenic stimulation. Overexpression of co-

inhibitory molecules is one of the major characteristics of T cell exhaustion, which can 

be induced by persistent antigenic stimulation due to a chronic infection or cancer (7). 

Expression of co-inhibitory receptors alternates during the T cell activation and 

differentiation (8). Naïve T cells express a high level of B and T lymphocyte attenuator 

(BTLA) and T cell immunoglobulin mucin-3 (Tim-3) is detectable during this early stage 

too (9). Additional co-inhibitory receptors, such as (cytotoxic T lymphocyte antigen 4 

(CTLA-4), programmed death 1 (PD-1), lymphocyte-activation gene 3 (Lag-3), CD244, 

T cell immunoreceptor with immunoglobulin and immunoreceptor tyrosine-based 

inhibition motif  domains (TIGIT) and killer cell lectin-like receptor subfamily G member 

1 (KLRG-1)), are upregulated following antigenic stimulation (10, 11). Majority of the 

terminally differentiated effector T cells undergo apoptosis after clearance of antigen, 

whereas long-lived memory T cells maintain the response after the secondary exposure 

to antigen (12, 13). Immune checkpoint molecules are important regulators of T cell 

memory establishment. Expression of various immune checkpoints is specific for distinct 

types of memory T cells, such as relatively high expression of immune checkpoints on 

effector memory T cells in comparison with central memory T cells (10). Interestingly, 

some immune checkpoints, such as PD-1, inhibit CD8+ T cell differentiation into memory 

phenotype (14).  

https://www.sciencedirect.com/topics/medicine-and-dentistry/lymphocyte
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The firstly discovered immune checkpoint was CTLA-4, a type I transmembrane 

receptor of the immunoglobulin family, expressed by T cells (15).  CTLA-4 competes 

with CD28 for binding to the ligands CD80 and CD86 in order to inhibit activation of 

naïve T cells (16–18). The affinity of CTLA-4 for CD80 and CD86 binding is approx. ten 

times higher than that of CD28 (18). The study also shows that CD80 and CTLA-4 

expression increases in activated antigen presenting cells (APCs) and T cells, 

respectively, whereas the expression of CD86 and CD28 is constitutive. CD80 is therefore 

considered to be the primary ligand of CTLA-4, while CD86 predominantly interacts with 

CD28 (18, 19). Expression of CTLA-4 varies in different T cell subsets. CTLA-4 is 

expressed especially on activated CD4+ T cells and to a lesser extent on CD8+ T cells 

(20). CTLA-4 mediated immunosuppression is one of the major effector mechanisms of 

regulatory T (Treg) cells, which constitutively express high level of this molecule (21, 

22). The essential role of CTLA-4 in Treg mediated immunosuppression has been 

determined by Treg-specific CTLA-4 deactivation (23). In that study, CTLA-4- Treg cells 

were unable to maintain self-tolerance and Treg specific CTLA-4 deactivation promoted 

anti-tumour immunity. 

Furthermore, one of the most frequently studied immune checkpoints is PD-1, a 

type I transmembrane receptor and a member of the CD28/CTLA-4 family of 

immunoglobulin receptors (24). The PD-1 gene was originally studied in apoptotic cell 

lines and in mouse thymocytes (25). Function of this molecule was determined in a PD-

1 deficient mouse model (26). The animals developed severe lupus-like autoimmune 

disease, which indicated the immunosuppressive role of PD-1. The PD-1 protein structure 

consists of N-terminal Ig-like variable domain, a transmembrane region, and an 

intracellular tail (27). Binding of ligand to PD-1 through the variable domain triggers 

phosphorylation of immunoreceptor tyrosine-based inhibition motif and immunoreceptor 

tyrosine-based switch motif on the PD-1 intracellular domain and association with 

sarcoma homology 2 domain-containing protein (SHP) 1 and SHP2 tyrosine phosphatases 

(27–29). Subsequently, SHP1/2 interfere with TCR and CD28 signalling pathways, 

suppress T cell functions and promote apoptosis (30–32).  

PD-1 is expressed especially on activated and effector memory T cells, Treg cells, 

and natural killer (NK) T cells, and to some extent on B cells and NK cells (10, 33–35). 

MHC-I restricted cytotoxic CD8+ T cells are presumably the main target of PD-

1/programmed death ligand 1 (PD-L1) axis in tumours (36). The anti-tumour response in 
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some tumours with downregulated MHC-I expression is mediated by NK cells, 

independently of CD8+ T cells, and such tumours may also be sensitive to the PD-1/PD-

L1 blockade (37). However, the direct effect of PD-1 blockade on NK cell effector 

functions remains unclear (38). Moreover,  recent study has revealed an essential role of 

myeloid cells in PD-1 mediated tumour protection (39). Specific deactivation of PD-1 in 

myeloid cells resulted in enhanced effector functions of monocytes, macrophages, and 

dendritic cells (DCs), reduced frequency of myeloid-derived suppressor cells (MDSCs), 

and elevated frequency of effector memory T cells with improved anti-tumour effector 

functions, although PD-1 expression on lymphoid cells was preserved.  

PD-1 interacts with PD-L1 (Fig. 1) as well as PD-L2 (24, 40). Tumour cells and 

several types of tumour infiltrating cells, such as T cells, B cells, NK cells, macrophages, 

and DCs, may express PD-L1 and inhibit anti-cancer immune response (41–43). PD-L2 

is expressed on stimulated macrophages and DCs, or B cells (44–46). Unlike PD-L1, the 

contribution of PD-L2 in the immune response is controversial. In some settings, PD-L2 

acts as a co-stimulatory molecule, independent of PD-1, and inhibits tumour growth (45). 

PD-L1 expression on tumour cells and/or host cells promotes tumour growth of 

some tumour types (47–51). Importance of PD-L1 expression on host cells in the 

inhibition of anti-tumour immunity was identified in B16 melanoma (47). Moreover, PD-

L1 expression on myeloid cells was found to be essential for response to PD-1/PD-L1 

blockade in MC38-, A20-, and E.G7-induced tumours (51). Another study showed that 

MC38 tumour cells as well as host cells inhibit T cell cytotoxicity and contribute to 

Figure 1: Molecular structure of PD-1/PD-L1 complex. The PD-1 domains are shown in 

red and violet, and PD-L1 is blue (28). 
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tumour escape from immune surveillance (49, 50). Therefore, PD-L1 expression on 

tumour cells and host cells may be predictive in the selection of patients suitable for PD-

1/PD-L1 blockade. 

PD-L1 overexpression is a frequently occurring immune escape mechanism in 

tumours. 9p24.1 amplification, enhancement of PD-L1 transcription, or increased 

messenger ribonucleic acid (mRNA) stability due to disruption of the PD-L1 mRNA three 

prime untranslated region upregulate PD-L1 expression (52–54). PD-L1 expression may 

also be enhanced by constitutive activation of some signalling pathways in tumours, such 

as mitogen-activated protein kinase kinase/extracellular signal-regulated kinase, 

phosphatidylinositol 3-kinase/protein kinase B, Janus kinase (JAK)/signal transducer and 

activator of transcription proteins (STAT), neurogenic locus notch homolog protein 

3/mammalian target of rapamycin, or microRNA-200/zinc-finger E-box-binding 

homeobox 1 (55–58). Some transcription factors have been reported to induce PD-L1 

expression, for example, hypoxia-inducible factor 2α or STAT3 (59, 60). Furthermore, 

PD-L1 upregulation in cancer is associated with viruses, such as Epstein-Barr virus 

(EBV) and hepatitis B virus, and some bacteria, such as Helicobacter pylori (61–64). 

However, the relationship between PD-L1 and viruses is not uniform in various studies 

(65–67). Significantly upregulated PD-L1 expression was associated with lymphocyte 

infiltration in tumours and interferon (IFN)-γ expression in some human papillomavirus 

(HPV)+ head and neck squamous cell carcinoma (HNSCC) patients (66). On the contrary, 

another study of HNSCC reported that HPV infection correlated with methylation of PD-

L1 promotor and silenced transcription of the corresponding gene (65). In conjunctival 

squamous cell carcinoma (SCC), PD-L1 expression did not correlate with HPV status 

(67).  

Several studies evaluated PD-L1 as a prognostic marker in various cancer types. 

For instance, upregulated PD-L1 implied reduced overall survival (OS) in breast cancer 

(68). The study showed that PD-L1 expression was associated with increased tumour size, 

metastasis into lymph nodes, and oestrogen receptor negativity. Moreover, genetic 

alteration of 9p24.1 and PD-L1 upregulation in hepatocellular carcinoma correlated with 

poor outcome of patients (69). On the contrary, PD-L1 in melanoma did not predict the 

prognosis, although upregulation of PD-L1 correlated with the absence of metastasis in 

lymph nodes (70).  
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1.2. Cytokines in the tumour microenvironment 

Cytokines are indispensable regulators of immune reactions and modulate anti-

cancer immune response. One of the most frequently studied cytokines in cancer is IFN-

γ, a type II IFN occurring in the form of a homodimer, which was discovered in activated 

human leucocytes (71). This cytokine is produced in tumours mainly by stimulated T 

cells, innate lymphoid cells (ILC)1, NK cells, and NKT cells (72–74). IFN-γ receptor 

(IFNGR) comprises two IFNGR1 and two IFNGR2 subunits. The IFNGR recruits non-

receptor tyrosine kinases JAK1 and JAK2 upon binding IFN-γ that activate transcription 

factors STAT1 or STAT3 (75, 76). IFN-γ induces the expression of IFN stimulated genes 

(ISGs) in tumour cells as well as host cells and affects tumour growth (77). So far, 124 

proteins of IFN-γ signalling pathway have been described (78, 79).  

IFN-γ is a pleiotropic cytokine that can regulate multiple mechanisms in tumours, 

for instance, antigen presentation, cell infiltration, cell cycle, metabolism, invasiveness, 

and immunosuppression (78). IFN-γ induces MHC-I expression and production of 

chemokines with anti-tumour functions such as chemokine (C-X-C motif) ligand (CXCL) 

9, CXCL10 and CXCL11 (80, 81). IFN-γ can downregulate PD-1 and act in a synergy 

with immune checkpoint blockade (82). Furthermore, IFN-γ contributes to the 

polarization of macrophages into anti-tumour M1 phenotype (83). This cytokine may also 

switch immunosuppressive tumour associated macrophages (TAMs) to M1 macrophages, 

which express inducible nitric oxide synthase (iNOS) and produce nitric oxide (NO) (84).  

Besides the immunostimulatory function of IFN-γ, this cytokine promotes the 

expression of immunosuppressive molecules, such as PD-L1 or indolamine 2,3-

dioxygenase (IDO). IFN-γ upregulates the PD-L1 on tumour cells and host cells and PD-

L1 upregulation was also observed on exosomes derived from tumour cells (85, 86). 

Efficiency of IFN-γ to stimulate PD-L1 was even enhanced in triple negative breast 

cancer (TNBC) by amplification of 9p24.1 chromosome (87). However, contradictory 

effect of IFN-γ signalling on anti-tumour immune response has been determined in 

tumour cells in comparison with immune cells (77). IFN-γ promoted PD-L1 expression 

on colorectal and melanoma cancer cells, while it simultaneously stimulated effector 

functions of immune cells in that study. Deactivation of IFN-γ signalling in tumour cells 

resulted in increased accumulation of T cells, maturation of NK/ILC1 cells, and 

elimination of cancer cells. 
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Even though IFN-γ is considered to be the major cytokine inducing MHC-I and 

PD-L1, other cytokines may have similar effect. A broad range of cytokines induce MHC-

I expression, such as IFN-α, IFN-β, tumour necrosis factor (TNF)-α, interleukin (IL)-1α, 

or IL-27 (80, 88–90). Furthermore, IFN-α, IFN-β, IL-1α, IL-1β, IL-27, CCL2, and 

granulocyte-macrophage colony stimulating factor (GM-CSF) can induce the PD-L1 

expression (80, 86, 91–95). Some cytokines (for instance, TNF-α, epidermal growth 

factor (EGF), and IL-6) regulate post-translational modifications of PD-L1 and stabilize 

the molecule by inhibition of proteasomal degradation (96–98).  

1.3.  Immune checkpoint inhibitors 

Recent discovery of the immune checkpoints and approval of immune checkpoint 

inhibitors (ICIs) was a real breakthrough in cancer therapy because it prolonged survival 

of many patients with different tumour types (99). In 2018, James Allison and Tasuku 

Honjo were awarded the Nobel Prize in Physiology and Medicine for their discovery of  

CTLA-4 and PD-1 and the development of ICIs (100). The first ICI, a monoclonal 

antibody blocking CTLA-4 (ipilimumab), was approved by FDA in 2011 for treatment of 

malignant melanoma (101). In 2014, first antibodies targeting PD-1 (pembrolizumab and 

nivolumab) were approved for the treatment of metastatic melanoma and approvals for 

additional types of cancer (such as non-small-cell lung carcinoma (NSCLC), renal cell 

carcinoma (RCC), and head and neck carcinoma) were approved later (102–104). 

Moreover, another anti-PD-1 antibody (cemiplimab) was approved in 2018 for treatment 

of cutaneous SCC (105). Furthermore, PD-L1 blockade has been found effective in anti-

cancer therapy. In 2016, the first anti-PD-L1 monoclonal antibody (atezolizumab) was 

approved for the treatment of bladder cancer, NSCLC, and triple-negative breast cancer 

(106–108). Additional approvals of new anti-PD-L1 antibodies (avelumab and 

durvalumab) followed later (109, 110). 

1.4.  Mechanisms of tumour resistance to immune checkpoint inhibitors  

Successful immunotherapy promotes recognition of tumour cells by the immune 

system and tumour elimination (111). Although the immune checkpoint blockade was a 

breakthrough in cancer therapy, many cancer patients are resistant to ICIs (112, 113). 

Patients with primary (innate) resistance are completely non-sensitive to the therapy and 

patients with secondary (acquired) resistance initially respond to the treatment and 

develop resistance during the treatment (114). The selective pressure of immune system 
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and the cancer therapy shape characteristics of tumours and may result in the tumour 

elimination, or evasion of the immune system and therapy (115–117).  

The tumour microenvironment affects the therapeutic outcome of immune 

checkpoint blockade (118). Distinct types of tumours have been characterised as “cold” 

or “hot” based on the level of tumour infiltration by immune cells and anti-cancer immune 

response. The cold tumours are often resistant to immunotherapy and therefore the 

development of combined therapy to switch cold tumours into hot is a challenging issue 

(119).  Cold tumours are deficient in activated immune cells owing to the absence of 

danger signals, insufficient tumour antigen presentation, or inability of immune cells to 

infiltrate the tumour. Immune cells accumulate in hot tumours, although persistent 

stimulation with tumour antigens leads to exhaustion of T cells and to strengthening of 

suppressive mechanisms in the tumour microenvironment. The hot tumours are especially 

sensitive to immune checkpoint blockade (120, 121). ICIs may restore the activation of 

exhausted T cells accumulated in hot tumours and promote tumour regression. 

 Abrogation of tumour antigen presentation due to defects in the antigen-

processing machinery or downregulation of MHC-I expression frequently occurs in 

patients resistant to ICIs (122–125). Moreover, primary as well as secondary resistance 

to ICIs were observed in patients with truncating mutations in JAK-1 or JAK-2 that 

inhibited the function of IFN-γ signalling in tumours (122, 126). Low PD-L1 expression, 

downregulation of antigen presentation, the lack of anti-proliferative effect of IFN-γ, and 

inhibition of tumour infiltration by T cells might have caused the resistance to ICIs in 

tumours insensitive to IFN-γ (122, 126, 127). Expression of immunosuppressive 

molecules by tumour cells may bypass blockade of PD-1/PD-L1 and mediate resistance 

to ICIs (128–130). For example, IDO, prostaglandin E2, IL-10, or transforming growth 

factor β (TGF-β) may promote differentiation of immune cells into immunosuppressive 

phenotype, which enhance tumour growth, such as Treg cells, M2 macrophages, or 

MDSCs. PD-1/PD-L1 blockade may be compensated by upregulation of additional 

immune checkpoints, such as CTLA-4, Tim-3, TIGIT, or Lag-3 (11, 131). Another study 

reported that CTLA-4, Tim-3, Lag-3, or BTLA blockade synergised with inhibition of 

PD-1/PD-L1 axis (132). Thus, single ICI may be less effective than simultaneous 

targeting of different pathways in cancer treatment. A single blockade of PD-1/PD-L1 

axis may strengthen CTLA-4/CD80 signalling, as PD-L1 interaction with CD80 in cis 

(on the same cell) inhibits immunosuppressive effect of CTLA-4 in some cases (133). 
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Resistance to PD-1/PD-L1 blockade may also be mediated by PD-L1 on the surface of 

exosomes, which inhibits the effector functions of CD8+ T cells and induce apoptosis of 

these cells (134, 135). However, the mechanism of exosomal PD-L1 mediated resistance 

to the anti-PD-L1 is unclear. 

Furthermore, extrinsic factors, such as gut microbiota, may influence immune 

reactions and sensitivity to ICIs (136). The impact of gut microbiota on the sensitivity to 

ICIs was tested  in germ-free mice that received faecal transplantation from cancer 

patients (137–139). The efficacy of ICIs observed in cancer patients was preserved in 

mice, in that study. Moreover, it was determined that changed microbiota composition 

after treatment with antibiotics, tyrosine kinase inhibitors (TKIs), or corticosteroids may 

induce primary resistance to ICIs (137, 140). For example, deficiency of Akkermansia 

muciniphila (Verrucomicrobiae order) in the gut of the NSCLC, and RCC patients and 

Bacteroides salyersiae (Bacteroidales order) in the RCC patients correlated with 

resistance to blockade of PD-1/PD-L1 axis (137, 139). Moreover, Bacteroidales order 

was abundant in non-responders to anti-PD-1 in metastatic melanoma patients (141).  

Besides resistance to ICIs, some individuals may develop hyper-progressive 

disease, a rapid increase of tumour growth after treatment with ICIs which is significantly 

faster than in non-responders (142). The hyper-progressive disease may be mediated by 

rapid proliferation and immunosuppressive functions of Treg cells, exhausted T cells, M2 

macrophages, or MDSCs (143). However, mechanisms inducing the hyper-progressive 

disease are not completely understood. 

1.5.  Predictive markers of response to immune checkpoint inhibitors  

1.5.1. The tumour microenvironment  

The tumour microenvironment regulates the therapeutic outcome of ICIs. 

Accordingly, the characteristics of tumour microenvironment may predict efficacy of the 

therapy (144). Analysis of PD-L1 expression on tumour cells or tumour infiltrating cells 

was approved as the first predictive biomarker for response to PD-1/PD-L1 blockade in 

several tumour types (Fig. 2). However, PD-L1 expression as a single biomarker was 

predictive in only 28.9% of various cancer cases (145). Low sensitivity of 

immunohistochemistry (IHC), a standard technique of PD-L1 detection in the tumour 

microenvironment, may contribute to the limited predictive capacity of PD-L1. 
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Therefore, more sensitive methodologies are being developed, such as radiolabelled 

monoclonal antibodies imaging with positron-emission tomography (PET) (146). PD-L1 

imaging with PET predicted the response of cancer patients to blockade of PD-1/PD-L1 

more accurately than IHC. Standardisation of diagnostic assays in clinical use and 

biomarkers additional to PD-L1 expression in tumours should increase accuracy to 

predict the sensitivity of patients to ICIs (147). Thus, predictive value of various markers 

is investigated.  

The level of immune cell infiltration into tumour and a functional state of tumour 

infiltrating cells are fundamental factors in the therapeutic outcome of ICIs. The 

frequency of selected immune cells infiltrating tumours was described as an 

Figure 2: PD-L1 testing as a companion diagnostic for administration of immune 

checkpoint inhibitors. Bars represents the number of FDA approvals for immune 

checkpoint inhibitors (pembrolizumab (N = 18), nivolumab (N = 11), atezolizumab (N 

= 5), ipilimumab with nivolumab (N = 3), ipilimumab (N = 2), durvalumab (N = 2), 

cemiplimab (N = 2), and avelumab (N = 2). The dark-gray colour illustrates approved 

and the light-grey colour non-approved PD-L1 testing. Abbreviations: gastro-

oesophageal junction (GEJ), hepatocellular carcinoma (HCC), Hodgkin’s Lymphoma 

(HL), non-small-cell lung cancer (NSCLC), primary mediastinal B-cell lymphoma 

(PMBCL), renal cell carcinoma (RCC), squamous cell carcinoma (SCC), small-cell lung 

cancer (SCLC) (145). 
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„immunoscore” (148). As CD8+ T cells play the major role in tumour rejection in 

response to ICIs, the accumulation of these cells in tumours is evaluated together with 

expression of PD-1 and PD-L1 (149). Enhanced abundance of CD8+, PD-1+, or PD-L1+ 

cells in tumours, detected by IHC before treatment with ICIs, predicted the response in 

melanoma patients (11, 150). These studies showed that blockade of PD-1/PD-L1 axis 

induced CD8+ T cell proliferation, activation of effector functions, infiltration into tumour 

parenchyma, and control of tumour growth. On the contrary to these studies, the 

frequency of CD8+ T cells and the ratio of CD4+/CD8+ cells was not associated with 

response to ICIs in metastatic melanoma patients receiving ipilimumab, pembrolizumab 

or nivolumab, although the level of tumour infiltration by lymphocytes correlated with 

OS (148). Furthermore, expression of immune checkpoints on CD8+ T cells infiltrated 

into tumour has been reported as a predictive marker for ICIs in cancer (151). In that 

study, partially exhausted (PD-1+ CTLA-4+) CD8+ T cells infiltrated into tumour 

predicted response to pembrolizumab or nivolumab in metastatic melanoma patients. The 

study indicated that the frequency of partially exhausted CD8+ T cells exceeding 20% of 

all tumour infiltrating CD8+ T cells detected before treatment was associated with 

significantly higher response rate (RR) and longer progression free survival (PFS) after 

PD-1 blockade. The treatment induced functional activation of CD8+ T cells and 

infiltration into tumours, while infiltration of CD4+ T cells declined and the ratio of 

CD4+/CD8+ cells was decreased. Accumulation of tumour-antigen-specific exhausted 

CD8+ T cells within the tumours, especially tissue-resident memory cells (CD103+ CD69+ 

CD49a+), was also a predictive factor of response to PD-1/PD-L1 blockade in patients 

with HNSCC (152). ICIs restored effector functions of exhausted cells, induced 

proliferation of memory T cells in the circulation, and initiated anti-tumour immune 

response. Moreover, effector memory (EOMES+ CD69+ CD45RO+) T cells were 

associated with prolonged PFS in melanoma patients, and upregulated abundance of these 

cells was predictive of response to ICIs (11).  

Besides T cell infiltration into tumours and immune checkpoint expression by 

these cells, diversity of TCR repertoire and clonal expansion was evaluated as a predictive 

marker of response to ICIs. Accumulation of T cells in tumours correlated with reduced 

diversity of TCR β-chain and upregulated clonality in melanoma patients subsequently 

responding to pembrolizumab (150). Proliferation was restricted to tumour-specific T 

cells and such clones expanded in responders after pembrolizumab administration. 
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Another study evaluated the predictive value of TCR diversity and clonality in peripheral 

blood T cells (153). The high clonality and the lack of TCR diversity predicted a 

favourable outcome of pembrolizumab, or nivolumab, but poor response to anti-CTLA-

4 in melanoma patients. 

1.5.2. Genetic alterations in tumours 

 Genetic instability enhances tumour immunogenicity and sensitivity to 

immunotherapy. The predictive capacity of tumour mutational burden (TMB) in the 

immune checkpoint blockade has been evaluated in cancer patients. The level of TMB 

predicted therapeutic outcome in a dataset of patients with various tumour types 

(melanoma, NSCLC, and 19 other types of tumours; N = 52, 36, and 63 patients, 

respectively) (154). In that study, the RR after PD-1/PD-L1 blockade was approx. three 

times higher in patients with high TMB than in patients with low to intermediate TMB 

across all tumour types. Interestingly, TMB was not predictive of the combined PD-1/PD-

L1 and CTLA-4 blockade. Other studies evaluated TMB as a predictive marker for 

specific types of cancer, such as melanoma, NSCLC, or metastatic RCC (77, 155–157). 

TMB correlated with the probability of response to PD-1 blockade in melanoma (77). 

Furthermore, nivolumab and ipilimumab were significantly more efficient than 

chemotherapy in stage IV or recurrent NSCLC patients with high TMB compared with 

low TMB tumours (155). However, TMB was not predictive in metastatic RCC patients 

treated with nivolumab and/or ipilimumab or pembrolizumab (156). Despite the 

correlation of TMB with response to ICIs in several studies, 54.5% of patients with high 

TMB in various tumour types did not respond to PD-1/PD-L1 blockade (158). Therefore, 

the combination of TMB with additional markers may improve prediction accuracy in 

cancer.  

Besides TMB, mismatch repair (MMR) and microsatellite instability (MSI) have 

been evaluated as predictive markers of response to ICIs (159). The frequency of defects 

in deoxyribonucleic acid (DNA) repair, including MMR, did not correlate with RR to PD-

1/PD-L1 blockade across 13 different cancer types (112). Moreover, proficient MMR, 

low status of MSI, and low to intermediate TMB were identified in a fraction of cancer 

patients who achieved objective response to ICIs (154, 160). In contrast to those studies, 

MSI status contributed to the identification of metastatic gastric cancer (mGC) patients 
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suitable for the therapy with ICIs (161). In that study, MSI had stronger predictive 

capacity than PD-L1 expression.  

Determination of the immunoscore alongside the MMR and MSI may improve 

the accuracy of prediction which patients may benefit from ICIs. In most cases, deficiency 

of MMR and high MSI correlated with upregulated expression of PD-L1 and PD-L2, 

infiltration of CD4+ and CD8+ cells and enhanced activation of IFN-γ signalling in 

majority of patients with colorectal cancer (CRC) (160). However, the study also showed 

increased PD-L1 expression and activated IFN-γ signalling in tumours with proficient 

MMR and low MSI. In that tumours, the level of CD4+ and CD8+ cells infiltration was 

comparable to high MSI tumours and therefore PD-1/PD-L1 blockade may be efficient 

in both tumour types.  

Genetic instability may generate immunogenic neoantigens (154, 162). Therefore, 

the occurrence of neoantigens is evaluated alongside markers of genetic instability in 

order to predict the efficacy of ICIs. For example, increased somatic non-synonymous 

TMB and neoantigens detected in NSCLC correlated with favourable prognosis  in 

response to pembrolizumab (upregulated (ORR), durable clinical benefit (DCB), and 

PFS) (163). Another study was conducted on 12 different types of advanced cancer 

deficient in MMR and with  high MSI status (113). In that study, expansion of neoantigen 

specific T cells was identified in responders to pembrolizumab, according to the 

sequencing analysis of CDR3 regions of TCR. Moreover, neoantigens suitable for 

presentation on MHC molecules have been shown to correlate with better clinical 

outcome of patients with high TMB in different types of solid tumours treated with ICIs 

(158). Genotype of HLA corresponds to the repertoire of epitopes presented on MHC 

molecules (164). Patients with heterozygosity at HLA-I, and especially HLA-B44 allele, 

had a significantly better outcome of ICIs compared to patients with loss of 

heterozygosity or HLA-B62.  

 Furthermore, copy number chromosomal aberrations in various types of cancer 

are associated with the efficacy of ICIs. Focal copy number gain of 9p24.1, which 

upregulates PD-L1, PD-L2, and JAK-2 expression, occurred in several malignancies, 

such as Hodgkin’s lymphoma (HL), triple-negative breast cancer (TNB), diffuse large B 

cell lymphoma, hepatocellular carcinoma (HCC) or CRC (69, 166–169).  Predictive value 

of this genetic alteration and constitutive upregulation of PD-L1 was evaluated for the 
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efficacy of ICIs. PD-L1 was amplified in 0.7% of various types of solid tumours and 

66.7% of patients with the upregulation of this gene responded to ICIs independently of 

TMB or MSI (52). Furthermore, nivolumab was an effective treatment in relapsed or 

refractory HL and the majority of patients bearing this type of tumour responded to the 

therapy (166, 170). All patients in the study had genetic alterations of the PD-L1 and PD-

L2 loci, and upregulation of PD-L1 protein production was associated with increased 

efficacy of nivolumab (170). Upregulated PD-L1 was also detected in patients with rare 

types of large B-cell lymphoma (relapsed/refractory primary central nervous system and 

testicular lymphoma) sensitive to nivolumab (171). The portion of responders to 

pembrolizumab in relapsed or refractory classical HL was similar to nivolumab and the 

majority of tumours were PD-L1+, presumably due to 9p24.1 genetic alteration (172). 

Moreover, enhanced efficacy of pembrolizumab in a patient with advanced CRC and 

9p24.1 copy number gain in liver metastasis further supports the predictive value of this 

biomarker (168). 

1.5.3. Viruses and microbiota 

Some viruses associated with tumorigenesis may affect sensitivity to ICIs and 

serve as predictive markers. For instance, detection of  EBV strongly correlated with 

enhanced ORR to pembrolizumab in mGC (161). On the contrary, Merkel cell 

polyomavirus (MCPyV) detected in patients did not correlate with the response to 

pembrolizumab in Merkel cell carcinoma (MCC) (34). Instead of the MCPyV status, the 

high abundance of PD-1+ and PD-L1+ cells in tumours and the interaction of these 

molecules were associated with clinical outcome. Another study also reported that 

MCPyV did not correlate with response to pembrolizumab in MCC (173). Furthermore, 

sensitivity to nivolumab was independent of HPV infection or PD-L1 expression in 

patients with HNSCC (174).  

Treatment with antibiotics prior to administration of ICIs predicted reduced OS 

and PFS of cancer patients due to altered composition of microbiota (175). Several studies 

analysed the enrichment of particular bacterial species in the gut of melanoma patients 

before treatment and its impact on the efficacy of ICIs (138, 141, 176). For instance, 

Bifidobacterium longum, Collinsella aerofaciens, and Enterococcus faecium indicated 

response to the PD-1 blockade (138). Moreover, Faecalibacterium in melanoma patients 

was associated with response to ipilimumab or PD-1 blockade (141, 176). Clostridiales 
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order and Ruminococcaceae family were enriched in the gut of responders to anti-PD-1 

in metastatic melanoma patients (141). As the level of tumour infiltrating leucocytes is 

associated with the efficacy of ICIs, the impact of bacteria on immune cell infiltration 

into tumours has been assessed in some studies (139, 141). For instance, A. muciniphila 

increased the accumulation of CD4+ T cells in mouse tumours (139). Moreover, the 

occurrence of other bacteria, Faecalibacterium genus (Clostridiales order), in the gut of 

melanoma patients correlated with increased abundance of CD4+ and CD8+ T cells in the 

periphery and it enhanced the accumulation of CD8+ T cells in the tumours (141). On the 

contrary, the high abundance of Bacteroidales supported the increased frequency of Treg 

cells and MDSCs in the circulation and promoted resistance to PD-1 blockade in that 

study. 

1.5.4. Systemic factors  

Liquid biopsy is advantageous in routine clinical practice thanks to its feasibility 

and non-invasiveness. Prognostic value of several systemic factors examined from the 

blood of cancer patients is studied in order to monitor the efficacy of ICIs and to predict 

the suitability of treatment. Circulating tumour cells (CTC) and expression of 

immunosuppressive molecules by CTC appeared to be prognostic in patients receiving 

PD-1/PD-L1 inhibitors (177–179). CTC in the peripheral blood and PD-L1 expression on 

these cells during the therapy correlated with inferior outcome of NSCLC and urothelial 

cancer (UC) patients (177, 178, 180). Expression of IDO in CTC indicated shorter PFS 

and OS, and increased risk of death in advanced NSCLC patients treated with anti-PD-1, 

while PD-L1 surface expression on CTC was not predictive (179). Moreover, the amount 

of circulating tumour DNA was associated with response to CTLA-4 and PD-1/PD-L1 

blockade in various types of tumours (161, 181, 182).  

The composition of immune cells in the peripheral blood was evaluated as a 

predictive marker of sensitivity to ICIs. The frequency of CD14+CD16-HLA-DRhi 

monocytes was described as a strong predictive marker of response to pembrolizumab or 

nivolumab in patients with stage IV melanoma (183). In that study, high frequency of 

monocytes and low frequency of T cells in the blood of responders indicated T cell 

accumulation in tumours before treatment. The frequency of activated T cells, central 

memory T cells, and NKT cells was enhanced in the circulation after PD-1 blockade in 

responders. Another study focused on the predictive capacity of cytokines in the 
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peripheral blood in patients with NSCLC receiving pembrolizumab or nivolumab (184). 

Cytokines (IFN-γ, TNF-α, IL-1β, IL-2, IL-4, IL-5, IL-6, IL-8, IL-10, and IL-12) detected 

before therapy did not predict therapeutic outcome of ICIs. However, increased 

concentration of these cytokines after treatment markedly correlated with favourable 

prognosis. Another study showed that increased concentration of IFN-γ in blood samples, 

which were stimulated with tuberculosis antigen in vitro, predicted response to PD-1/PD-

L1 blockade in NSCLC patients treated with nivolumab, pembrolizumab, or atezolizumab 

(185). 

1.5.5. IFN-γ signalling  

  Several studies tested the capacity of IFN-γ and IFN-γ-related genes to predict the 

therapeutic outcome of ICIs in various cancer types (11, 124, 186). Expression of IFN-γ 

and IFN-γ-related genes correlated with “hot”/”inflamed” tumour microenvironment and 

predicted response to ICIs in cancer patients (186, 187). For instance, the expression of 

IFN-γ and IFN-γ-inducible genes were upregulated in melanoma before atezolizumab 

administration in responders (187). Furthermore, the set of IFN-γ-responsive genes, 

which represented activation of IFN-γ signalling, activation and effector functions of 

immune cells and recruitment of CD8+ T cells into tumours, predicted the efficacy of 

pembrolizumab (186). The set of IFN-γ-responsive genes was initially defined in 

melanoma and HNSCC patients and subsequently validated on a large cohort of patients 

with nine different cancer types. Moreover, IFNG expression and markers of IFN-γ 

stimulation in tumours before treatment were predictive in melanoma patients responding 

to nivolumab (124). Another study determined the expression of genes associated with 

IFN-γ and its downstream signalling, such as STAT1 and IRF1 (11). Expression of these 

genes correlated with response to nivolumab or pembrolizumab in melanoma patients. 

Similarly, elevation of pSTAT1 and its spatial colocalization with CD8+  cells at the 

invasive tumour margin indicated the response to pembrolizumab in metastatic melanoma 

(150). Moreover, IFN-γ expression signature in tumour microenvironment predicted the 

efficacy of ICIs in NSCLC patients (77). In that study, the response to anti-PD-1 and anti-

CTLA-4 therapy surprisingly correlated with mutations in IFN type I and II pathways, on 

the contrary to the aforementioned studies. This observation further supports the dual role 

of IFNs in cancer.  
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1.6.  Integration of immune checkpoint blockade predictive markers 

 High throughput techniques have been used to integrate various predictive 

markers to ICIs based on genomic and transcriptomic features (188, 189). TMB did not 

predict sensitivity to ICIs in melanoma in these studies. However, mutations in the DNA 

repair gene BRCA2 were identified in tumours of responders, while innate anti-PD-1 

resistance signature (IPRES) characterised by upregulated transcription of genes 

associated with angiogenesis, hypoxia, remodelling of extracellular matrix, and 

mesenchymal transition predicted primary resistance to the treatment (188). Model 

integrating clinical, genomic and transcriptomic characteristics of tumours showed that 

MHC-II expression, tumour purity (the proportion of tumour cells in the tumour tissue), 

heterogeneity (the occurrence of subclonal mutations), and ploidy predicted response to 

anti-PD-1 (189). Next, markers of resistance to PD-1/PD-L1 blockade were determined 

in the tumour microenvironment based on clinical-grade RNA sequencing assay (190). 

Expression of immune checkpoint molecules Tim3 and VISTA, and CD68 marker of 

macrophages predicted worst clinical outcome and markedly shorter PFS in patients with 

diverse types of tumours treated with PD-1/PD-L1 blockade. 

In conclusion, cancer is a heterogeneous disease and multiple factors affect the 

therapeutic outcome of ICIs. Besides the integration of biomarkers, a personalized 

approach would improve the accuracy of patient selection for the therapy. A tool “cancer 

immunogram” designed to evaluate the probability of response to ICIs based on multiple 

parameters  has been recently introduced (191). The cancer immunogram comprises 

markers that represent the level of immune cell infiltration, mutational status, occurrence 

of neoantigens, and the degree of immunosuppression in tumours. Subsequent studies 

introduced alternative cancer immunograms related to UC or NSCLC (192, 193). 

Development of immunograms related to additional cancer types and extension of a set 

of predictive markers would contribute to the effective cancer treatment. 
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2. AIMS 

During my doctoral studies, I focused on the development of clinically relevant 

experimental mouse tumour models with altered expression of molecules involved in 

anti-tumour immune response and regulation of sensitivity to cancer immunotherapy.  

The main aims of the dissertation thesis were: 

 To assess whether deactivation of IFN-γ signalling in tumour cells with reversibly 

downregulated PD-L1 and MHC-I may be a contraindication to PD-1/PD-L1 

blockade and to evaluate the impact of cytokines on PD-L1 and/or MHC-I 

expression on tumour cells. 

 To characterise the microenvironment of tumours with deactivation of CD80 

costimulatory molecules and to test the sensitivity of these tumours to the ICIs. 

Besides the main projects of this thesis, I participated in two projects focused on 

mouse tumour models characterized by downregulation of MHC-I molecules. The aim of 

the first project was to test experimental combined immunotherapy against tumours with 

reversible MHC-I downregulation. In the second project, the aim was to generate a mouse 

tumour model with irreversible downregulation of MHC-I molecules and to examine the 

combined immunotherapy in this model.  
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3. RESULTS AND DISCUSSION 

3.1.  Publication 1: Abrogation of IFN-γ signalling may not worsen 

sensitivity to PD-1/PD-L1 blockade 

3.1.1. Main characteristics of cell lines used in the study 

In order to assess whether the IFN-γ signalling regulates the efficacy of the PD-

1/PD-L1 blockade, we used mouse oncogenic TC-1 cell line, which was prepared by 

transformation of primary C57BL/6 mouse lung cells with the HPV16 E6/E7 oncogenes 

and human activated H-ras. This cell line was kindly provided by Dr. T.-C. Wu, John 

Hopkins University, Baltimore, MD, USA (194). These cells constitutively express PD-

L1 and MHC-I. Next, TC-1/A9 cell line with reversible downregulation of PD-L1 and 

MHC-I was generated from the TC-1 cell line (195). The expression of both molecules 

can be induced by cytokines, such as IFN-γ. We used TC-1 and TC-1/A9 cell lines to 

generate cells insensitive to IFN-γ (TC-1/dIfngr1 and TC-1/A9/dIfngr1). We functionally 

deactivated the IFNGR1 subunit of the IFN-γ receptor with the CRISPR/Cas9 system 

(Publication 1, Fig. 1A). Oncogenicity of the TC-1/dIfngr1 or TC-1/A9/dIfngr1 cells was 

comparable to that of the TC-1 or TC-1/A9 cells, respectively (Publication 1 Fig. 1B). 

This finding is in line with a previous study that has also shown similar oncogenicity of 

melanoma cells with deactivated expression of IFNGR1 and parental cells (196).   

As the enhancement of tumour growth by PD-L1, expressed on tumour cells and 

host cells, is dependent on tumour type (47–51), we evaluated the role of PD-L1 in the 

oncogenicity of TC-1 and TC-1/A9 cell lines. We deactivated PD-L1 molecule with the 

CRISPR/Cas9 system and produced TC-1/dPD-L1 and TC-1/A9/dPD-L1 cells 

(Publication 1, Fig. 1C). Mice injected with various doses (3 x 104, 3 x 105, and 3 x 106) 

of TC-1/dPD-L1 cells did not form any tumour and only the 1 x 105 dose induced tumour 

formation in two out of five mice (Publication 1, Fig. 1D). The TC-1/A9/dPD-L1 cells 

were more oncogenic than the TC-1/dPD-L1 cells. However, the growth of TC-

1/A9/dPD-L1-induced tumours was significantly slower in comparison with TC-1/A9-

induced tumours. The reduced oncogenicity of both cell lines suggests the involvement 

of PD-L1 expression on tumour cells in the suppression of anti-tumour immunity and 

implies the potential sensitivity of TC-1- and TC-1/A9-induced tumours to PD-L1 

blockade. 
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3.1.2. The role of IFNGR1 in anti-tumour immunity 

We next tested the impact of IFNGR1 deactivation in tumour cells on pro-/anti-

oncogenic function of CD4+, CD8+, NK1.1+ and macrophages in mouse tumours 

(Publication 1, Fig. 2). We depleted immune cells in tumour bearing mice with anti-CD4, 

anti-CD8, or anti-NK1.1 antibody and treated mice with carrageenan to achieve 

macrophage depletion. As IFN-γ signalling of host cells was functional in tumours with 

IFNGR1 deactivation, we also treated mice with anti-IFN-γ in order to evaluate the effect 

of IFN-γ on tumour growth. Deactivation of IFNGR1 in TC-1 cells eliminated the anti-

oncogenic role of CD8+ cells and pro-oncogenic role of macrophages, while anti-

oncogenic function of NK1.1+ cells and IFN-γ remained preserved in TC-1/dIfngr1-

induced tumours. Only NK1.1+ cells were anti-oncogenic in TC-1/A9-induced tumours, 

which was not preserved in TC-1/A9/dIfngr1-induced tumours. Interestingly, 

deactivation of IFNGR1 in TC-1/A9 promoted the pro-oncogenic function of IFN-γ. The 

mechanisms of the impact of IFNGR1 deactivation in tumour cells on alterations in pro-

/anti-oncogenic immune cell functions are currently unclear. 

3.1.3. PD-L1 and MHC-I expression in tumours in comparison with cell lines 

Furthermore, we analysed PD-L1 and MHC-I expression on tumour cells obtained 

from tumours (Publication 1, Fig. 3).  The expression of both molecules was slightly 

upregulated on TC-1/dIfngr1 and TC-1/A9/dIfngr1 cells isolated from tumours compared 

with parental cells. Moreover, the expression on TC-1/A9/dIfngr1 cells in tumours was 

comparable to the level of expression on TC-1/A9 cells stimulated with IFN-γ in vitro. 

These data suggest that besides IFN-γ, other factors induced PD-L1 and MHC-I 

expression on tumour cells in the tumour microenvironment. 

3.1.4. Detection of cytokines in tumours and their secretion by cell lines 

Multiple factors may induce PD-L1 or MHC-I expression, such as IFN-γ, IFN-α, 

IFN-β, IL-1α, IL-6, IL-27, TNF-α, chemokine CCL2, GM-CSF, and EGF (80, 86, 88–95, 

97, 98). We therefore analysed the occurrence of these presumed inducers of PD-L1 

and/or MHC-I expression in tumours and cell lines with a LEGENDplex assay 

(Publication 1, Fig. 4A). We found almost all cytokines in tumours. The exception was 

the absence of IFN-α in TC-1- and TC-1/dIfngr1-induced tumours. The cell lines 

produced IL-6 and CCL2. Downregulation of PD-L1 and MHC-I expression on TC-1/A9 

cells indicated that IL-6 and CCL2 did not induce the expression of these molecules. We 



 
 

26 

therefore excluded these two cytokines from further analysis and tested the effect of 

remaining cytokines on PD-L1 and MHC-I expression in vitro (Publication 1, Fig. 4B). 

Among these cytokines, IFN-α and IFN-β significantly increased PD-L1 and MHC-I, 

especially on TC-1/A9 and TC-1/A9/dIfngr1 cells. Relative upregulation of both 

molecules on TC-1/A9/dIfngr1 cells by type I IFNs was comparable to the effect of IFN-

γ on TC-1/A9 cells. TNF-α slightly induced MHC-I expression on TC-1/A9/dIfngr1 cells. 

According to previous studies, type I IFNs promote anti-tumour immune response and 

may enhance the efficacy of ICIs (197, 198). Our data indicate that type I IFNs can be 

potent inducers of PD-L1 and MHC-I expression on tumour cells that are insensitive to 

IFN-γ signalling.  

3.1.5. PD-L1 and MHC-I expression in tumours with blockade of IFN-α and 

IFN-β signalling  

We next assessed the effect of type I IFNs on PD-L1 and MHC-I expression in 

mouse tumours (Publication 1, Fig. 5). We neutralized IFN-α and IFN-β function by 

antagonistic monoclonal antibody anti-IFNAR1, which targets a shared IFN-α and IFN-

β receptor, in mice bearing TC-1/dIfngr1- and TC-1/A9/dIfngr1-induced tumours. The 

PD-L1 and MHC-I expression was markedly downregulated on TC-1/A9/dIfngr1 tumour 

cells isolated from mice treated with anti-IFNAR1, whereas the expression on TC-

1/dIfngr1 was not significantly changed. As mentioned above, IFN-α was not detected in 

TC-1/dIfngr1-induced tumours, whereas this cytokine was present in TC-1/A9/dIfngr1-

induced tumours. The expression of PD-L1 and MHC-I on TC-1/A9/dIfngr1 cells isolated 

from tumours was comparable to the expression of IFN-γ stimulated TC-1/A9 cells in 

vitro. It implies the predominant contribution of IFN-α in PD-L1 and MHC-I stimulation 

on tumour cells in vivo, although the concentration of IFN-β was higher than the 

concentration of IFN-α in all tumours. Type I IFNs are important inducers of anti-tumour 

immune response and IFN-α has been particularly shown to enhance the efficacy of PD-

L1 blockade (197, 198). In line with the previous studies, we hypothesised that type I 

IFNs might have enhanced the efficacy of PD-1/PD-L1 blockade in TC-1/A9/dIfngr1-

induced tumours. 

3.1.6. Sensitivity of tumours to combined therapy 

Finally, we evaluated the sensitivity of TC-1/A9- and TC-1/A9/dIfngr1-induced 

tumours to anti-PD-L1 therapy (Publication 1, Fig. 6). We combined PD-L1 blockade 
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with DNA vaccination in order to stimulate the immune response against HPV16 E7 

oncoprotein. TC-1/A9- as well as TC-1/A9/dIfngr1-induced tumours were sensitive to 

PD-L1 blockade in combination with the DNA vaccination. Sensitivity to immune 

checkpoint inhibition in tumours with deactivated IFN-γ signalling has been also studied 

in mouse tumours induced by CRC cell line (CT26) (77). Unlike the TC-1/A9 cell line 

with cytokine inducible MHC-I expression used in our study, the CT26 cells are highly 

immunogenic due to the constitutive expression of MHC-I. Deactivation of IFNGR and 

IFNAR promoted the efficacy of PD-1/PD-L1 blockade owing to the inhibition of 

resistance-associated IFN stimulated genes in CT26-induced tumours.  

Recent evidence suggests that mutations in Ifngr1, Ifngr2, JAK1, and JAK2, 

involved in IFN-γ signalling, were detected in cancer patients regardless of response to 

PD-1/PD-L1 blockade (123, 157, 188, 199–201). These studies further support the 

clinical relevance of our model of PD-1/PD-L1 blockade in mice bearing tumours with 

deactivated IFN-γ signalling. Therefore, reduced sensitivity of tumour cells to IFN-γ as a 

single predictive marker should not be a contraindication to PD-1/PD-L1 blockade. In 

conclusion, the predictive capacity of both, IFN-γ and type I IFNs signalling should be 

evaluated in PD-1/PD-L1 blockade. 

3.2.  Publication 2: CD80 expression on tumour cells alters tumour 

microenvironment and the efficacy of cancer immunotherapy by 

CTLA-4 blockade  

CD80 is expressed by tumour cells as well as host cells and its pro-/anti-oncogenic 

nature depends on various factors (202–206). In this study, we aimed to determine 

whether CD80 expressed by tumour cells affects the tumour microenvironment and 

sensitivity to ICIs. 

3.2.1. Characteristics of TC-1/dCD80-1 cancer cell line 

Firstly, we deactivated CD80 molecule in the TC-1 oncogenic cell line with 

CRISPR/Cas9 system and generated TC-1/dCD80-1 cells (Publication 2, Fig. 1). These 

cells were more immunogenic than TC-1 cell line (Publication 2, Fig. 2A). Ten times 

higher dose of TC-1/dCD80-1 than TC-1 cells formed tumours of comparable growth 

(Publication 2, Fig. 2B). Our observation is in agreement with previously reported 

reduction of tumour formation and growth due to CD80 deactivation (204). 
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3.2.2. CD80 expression on tumour cells regulates immune reactions 

Next, we analysed whether CD80 on tumour cells regulate anti-tumour immune 

response (Publication 2, Fig. 3). The deactivation of CD80 switched pro-oncogenic nature 

of macrophages to anti-oncogenic and abrogated the anti-oncogenic function of NK1.1+ 

cells. Consistent with our findings, another study has shown that CD80 expression on 

tumour cells enhanced NK cell-mediated control of tumour growth (207). Furthermore, 

CD80 deactivation promoted the immunosuppressive activity of CD4+ cells, while the 

anti-oncogenic function of CD8+ cells remained preserved in the TC-1/dCD80-1-induced 

tumours in our study. CD4+ T cells express CTLA-4 with higher intensity than CD8+ T 

cells (20). As CD80 is still expressed by host cells in mice bearing TC-1/dCD80-1-

induced tumours, enhancement of CTLA-4 expression by CD4+ cells might contribute to 

immunosuppressive mechanisms.  

3.2.3. CD80 expression on tumour cells affects sensitivity to CTLA-4 blockade 

We next tested the effect of CTLA-4 blockade in TC-1- and TC-1/dCD80-1-

induced tumours (Publication 2, Fig. 4). CD80 deactivation induced sensitivity of 

tumours to CTLA-4 blockade. However, PD-L1 blockade did not significantly reduce 

tumour growth and it did not support the effect of CTLA-4 blockade regardless of CD80 

expression on tumour cells. Depletion of immune cells in mice bearing TC-1/dCD80-1-

induced tumours showed that CD8+ cells were essential for the efficacy of anti-CTLA-4 

treatment, whereas depletion of CD4+ cells supported the effect of the therapy. Similarly, 

direct killing of tumour cells by activated CD8+ T cells in anti-CTLA-4 treated tumours 

has been previously reported (208, 209). 

3.2.4. CD80 expression on tumour cells regulates tumour microenvironment 

We designed flow cytometry panels to compare microenvironment of TC-1- and 

TC-1/dCD80-1-induced tumours. CD80 deactivation enhanced the frequency of both 

lymphoid and myeloid cells in tumours (Publication 2, Fig. 5). Another studies have 

shown that CD80 blockade induced infiltration of mouse adenocarcinoma (210, 211). 

Furthermore, the frequency of M1 macrophages increased and M2 decreased in the TC-

1/dCD80-1- compared with the TC-1-induced tumours. Our data are in line with a 

previous study which has shown that blockade of CTLA-4/CD80 axis induced M1 

polarization of macrophages in melanoma patients (212). Moreover, CD80 deactivation 

enhanced CTLA-4 expression on T helper (Th) 17 cells and upregulated the frequency of 
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APCs in tumours. Consistently, enhanced APCs co-stimulation of lymphocytes has been 

reported to induce CTLA-4 expression, particularly on Th17 cells (213). 

Moreover, the CTLA-4 blockade downregulated frequencies of most immune cell 

types in the TC-1-induced tumours, whereas it promoted the frequency of lymphoid cells 

in the TC-1/dCD80-1-induced tumours (Publication 2, Fig. 6). Within the CD4+ T cells, 

especially the frequency of Th1 subset was enhanced in TC-1/CD80-1-, unlike the TC-1-

induced tumours. Increased infiltration of tumours by Th1 cells has been previously 

shown in mouse models as well as cancer patients treated with CTLA-4 blockade (196, 

214, 215).  

3.2.5. CD80 expression regulates immunosuppressive potential of Treg cells 

The Treg cells were the most abundant CD4+ T cell subset in untreated tumours. 

In order to analyse immunosuppressive potential of Treg cells, we measured expression 

of markers CTLA-4, GITR, ICOS, Lag3, CD73, granzyme B (GrzB), and neuropilin 1 

(Nrp-1), which imply immunosuppressive potential of Treg cells (216–220), (Publication 

2, Fig. 7). Furthermore, we performed unsupervised clustering by FlowSOM algorithm 

and generated four distinct Treg subpopulations (subpopulation 1 (CTLA-4hi GITRhi 

ICOShi Lag3lo CD73- GrzB+ Nrp-1lo) and subpopulation 2 (CTLA-4hi GITRhi ICOShi 

Lag3lo CD73+ GrzB+ Nrp-1lo) with high immunosuppressive potential, and subpopulation 

3 (CTLA-4- GITRhi ICOShi Lag3+ CD73+ GrzB+ Nrp-1lo) and subpopulation 4 (CTLA-4lo 

GITRlo ICOSlo Lag3- CD73+ GrzB+ Nrp-1+) with weak immunosuppressive potential). 

The anti-CTLA-4 treatment downregulated the frequency of subpopulation 3 Treg cells 

in the TC-1-induced tumours, while it supported these cells and reduced frequency of 

subpopulation 2 Treg cells in the TC-1/dCD80-1-induced tumours.  

Collectively, our data indicate that CD80 deactivation in tumour cells promotes 

infiltration of immune cells into tumours, inhibits the immunosuppressive 

microenvironment and enhances tumour sensitivity to CTLA-4 blockade. 

3.3.  Publication 3: Experimental combined immunotherapy of tumours 

with major histocompatibility complex class I downregulation 

We have previously shown that the immune response to DNA vaccination 

targeting tumour specific antigen E7 in TC-1/A9-induced tumours was weak in 

comparison with TC-1-induced tumours (195). Next, we have enhanced the efficacy of 
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DNA vaccination by combination with adjuvants in mice bearing tumours induced by 

parental TC-1 cells (221). Several other studies have also reported that combined cancer 

therapy targeting innate as well as adaptive immunity is more efficient than a single 

therapy (222, 223). To achieve the immune response against the TC-1/A9-induced 

tumours, we tested combined therapy comprising DNA vaccination against the tumour 

specific antigen E7, an adjuvant (oligodeoxynucleotide (ODN) 1585, levamisole, ODN 

1826, or α-galactosylceramide (α-GalCer) – the mechanisms of action of these 

compounds have been reviewed in the study (224), and the immune checkpoint blockade 

with anti-Tim-3 monoclonal antibody (Publication 3, Fig. 1). The adjuvants alone did not 

significantly influence tumour growth. Administration of ODN 1826 or α-GalCer 

combined with DNA vaccination markedly reduced tumour growth and some tumours 

completely regressed. This observation indicates indispensable cooperation of the innate 

immune system and tumour specific adaptive immunity in tumour regression. Moreover, 

anti-Tim-3 antibody enhanced the reduction of tumour growth in mice treated with 

combination of ODN 1826, α-GalCer and DNA vaccine. Next, we delayed the 

administration of adjuvants by one week after DNA vaccination and achieved enhanced 

efficacy of the therapy (Publication 3, Fig. 2). Tim-3 blockade unfortunately did not have 

a significant additional effect in the modified schedule. 

Furthermore, we performed flow cytometry analysis of tumours during the period 

of tumour regression induced by combined therapy (Publication 3, Fig. 3). Administration 

of adjuvants in combination with DNA vaccine increased the frequency of CD45+ 

immune cells in tumours (Publication 3, Fig. 3A), particularly CD8+ T cells, cDCs, and 

neutrophils (Publication 3, Fig. 3B). Tim-3 blockade did not have additional effect to the 

combined therapy. Moreover, the frequency of Treg cells in CD3+ population was 

reduced (Publication 3, Fig. 3A). We also analysed the frequency of Nrp-1+ Treg cells, 

because Nrp-1 stabilise the phenotype of Treg cells and promote the survival and 

immunosuppressive function of these cells in the tumour microenvironment (225). 

Treatment of mice with adjuvants or anti-Tim-3 monoclonal antibody combined with 

DNA vaccination reduced the frequency of Nrp1+ Treg cells. We also tested in vivo the 

anti-tumour mechanism of the therapy by the administration of anti-CD4, anti-CD8, or 

anti-NK1.1 antibody, carrageenan (depletion of macrophages), or anti-IFN-γ neutralising 

antibody (Publication 3, Fig. 3C). Particularly CD8+ cells and IFN-γ, and to a lesser extent 

NK1.1+ cells and macrophages contributed to anti-tumour response induced by ODN 
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1826 combined with DNA vaccine. Similarly, CD8+, NK1.1+ cells and IFN-γ played anti-

tumour role in mice treated with α-GalCer combined with DNA vaccine, whereas 

macrophages did not significantly affect tumour growth.  

Previous studies have also shown cooperation between cells of innate and adaptive 

immunity and important role of CD8+ T cells and macrophages in killing of tumour cells 

(226–228). We therefore focused on CD8+ T cell activation and macrophage polarization 

in TC-1/A9 tumours. In this respect, we measured IFN-γ production, a marker of T cell 

activation, with an ELISPOT assay (Publication 3, Fig. 4A). We isolated mononuclear 

splenocytes from mice treated with DNA vaccine alone, or combined with ODN 1826, α-

GalCer and/or anti-Tim-3 monoclonal antibody and re-stimulated these mononuclear 

splenocytes with E7 (MHC-I restricted) or PADRE (MHC-II restricted) peptides. The 

treatment of mice with ODN 1826 enhanced IFN-γ production, especially in PADRE re-

stimulated cells. α-GalCer, anti-Tim-3 or the combination of adjuvants with anti-Tim-3 

did not improve the activation of splenocytes. Subsequently, we conducted flow 

cytometry analysis of  T-cell markers of activation (IFN-γ and TNF-α) and exhaustion 

(PD-1 and Tim-3) (7) in tumour infiltrating CD8+ T cells (Publication 3, Fig. 4B). 

Immunotherapy significantly induced IFN-γ production in a relatively small portion of 

CD8+ T cells, and the frequency of PD-1+ or Tim3+ CD8+ T cells in tumours was also 

significantly increased. The expression of the immune checkpoints was reduced after 

Tim-3 blockade.  

According to the previous study, M2 macrophages are the major 

immunosuppressive cells in TC-1-induced tumours (229). Macrophages are prominent 

myeloid population also in TC-1/A9-induced tumours (Publication 3, Fig. 3B). Based on 

the intensity of MHC-II expression (230), we monitored macrophage polarization into 

M1 (MHC-IIhi) and M2 (MHC-IIneg) phenotype.  M1 macrophages are also defined by 

other markers, such as iNOS and TNF-α and M2 macrophages by expression of arginase 

and urea production (230–232). MHC-IIhi M1 macrophages were markedly enriched in 

tumours of mice receiving immunotherapy, while MHC-IIneg M2 macrophages were 

abundant in tumours of non-treated mice (Publication 3, Fig. 5A). ODN 1826 combined 

with DNA vaccination significantly induced the expression of iNOS, while TNF-α 

intracellular expression was not enhanced with combined therapy (Publication 3, Fig. 

5B). TAMs were partially Tim-3+ and the immunotherapy upregulated the expression. 

However, anti-Tim-3 monoclonal antibody did not support the shift of TAMs to the M1 
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phenotype. In order to further test the role of ODN 1826 and Tim-3 blockade in the 

polarization and activity of macrophages, we stimulated TAMs in vitro and used 

peritoneal macrophages as a reference. We measured production of NO (a marker of 

iNOS activity) (Publication 5, Fig. 5D) and TNF-α (Publication 5, Fig. 5E). NO and TNF-

α were significantly induced by ODN 1826 in the IFN-γ dependent manner in peritoneal 

macrophages. The NO production by TAMs corresponded to the production by peritoneal 

macrophages but ODN 1826 induced TNF-α independently of IFN-γ treatment. 

Interestingly, Tim-3 blockade did not have any effect on NO or TNF-α production. To 

assess the ability of TC-1/A9 cells to directly influence the polarization of TAMs, we co-

cultivated TAMs and TC-1/A9 cells in vitro (Publication 3, Fig. 6). We measured the 

production of NO (Publication 3, Fig. 6A) and urea (a marker of arginase activity; 

Publication 3, Fig. 6B) as markers of M1 and M2 polarization, respectively. TC-1/A9 

cells induced NO production in TAMs stimulated by ODN 1826, whereas urea production 

was independent of the stimulation. Tim-3 blockade did not have the effect neither on NO 

nor urea production. Altogether, these data indicate that TAMs in TC-1/A9-induced 

tumours can be polarized to M1 phenotype by immunotherapy. 

As the reduction of tumour growth after combined therapy was temporary, we 

assessed the immunosuppressive mechanisms of acquired resistance to combined therapy. 

With RT-qPCR, we measured expression of genes (Ifng, Ido1, Il10, Foxp3, Ncf1, Tgfb1, 

and Arg1) potentially associated with immunosuppression within the tumour 

microenvironment (Publication 3, Fig. 7). Ifng and Ido1 expression was enhanced with 

combined therapy and both markers correlated with each other, which implies the 

induction of Ido1 expression by IFN-γ in TC-1/A9-induced tumours. This observation 

further supports the dual role of IFN-γ in the tumour microenvironment (233).  

3.4.  Publication 4: Establishment and characterization of mouse tumour 

cell line with irreversible downregulation of MHC class I molecules 

Heterogeneity of MHC-I expression on tumour cells regulates their oncogenicity 

and invasiveness and efficacy of immunotherapy (234). Downregulation of MHC-I 

expression is one of the most frequent mechanisms of tumour escape from immune 

surveillance and is associated with primary and acquired resistance to cancer therapy 

(122, 235). In our study, we developed a model of TC-1-derived mouse tumours with 

irreversibly downregulated MHC-I expression.   
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Firstly, we deactivated beta-2-microglobulin (B2m) in TC-1 cells with 

CRISPR/Cas9 system and established TC-1/dB2m cells with irreversible downregulation 

of MHC-I. Next, we compared in vitro characteristics of TC-1, TC-1/A9, and TC-1/dB2m 

cell lines (Publication 4, Fig. 1). Surface expression of H-2Kb, H-2Db, and B2m molecules 

was considerable on unstimulated TC-1 cells and IFN-γ even slightly upregulated the 

expression (Publication 4, Fig. 1A). Expression of these molecules on unstimulated TC-

1/A9 cells was downregulated but inducible by IFN-γ. We confirmed the abrogation of 

B2m and downregulated the surface expression of MHC-I heavy chains H-2Kb and H-

2Db on TC-1/dB2m. Although B2m is also associated with CD1d molecule (236), the 

deactivation of B2m did not affect the surface expression of CD1d. Furthermore, the 

proliferation rate of TC-1/dB2m cells was significantly reduced compared to TC-1 and 

TC-1/A9 cell lines and IFN-γ did not affect this parameter in any cell line (Publication 4, 

Fig. 1B). This observation is consistent with previous reports that showed B2m as a factor 

promoting proliferation and invasiveness of tumour cells (237, 238). 

Oncogenicity of TC-1/dB2m cells was markedly decreased in comparison with 

TC-1- and TC-1/A9-induced tumours (Publication 4, Fig. 2A). Furthermore, MHC-I 

downregulation was associated with abrogation of anti-oncogenic role of CD8+ cells, 

whereas NK1.1+ cells significantly reduced the growth of all three types of tumours 

(Publication 4, Fig. 2B). Consistently, a previous study has also shown enhanced growth 

of mouse tumours with deactivated B2m after depletion of NK1.1+ cells (239). Moreover, 

MHC-I downregulation markedly decreased sensitivity to DNA vaccination (Publication 

4, Fig. 2C). TC-1/dB2m-induced tumours did not respond to the DNA vaccine, although 

the preventive DNA vaccination completely abrogated the growth of TC-1-induced 

tumours and significantly reduced the growth of TC-1/A9-induced tumours. These data 

indicate the importance of MHC-I expression on tumour cells in the efficacy of DNA 

vaccine. In order to induce anti-cancer immune response in TC-1/dB2m-induced tumours, 

we combined DNA vaccination with adjuvants (ODN 1826 or α-GalCer; Publication 4, 

Fig. 3) successfully tested in TC-1/A9-induced tumours in the previous study (224). 

Combined therapy significantly reduced the growth of TC-1/dB2m-induced tumours, but 

this effect was weak.  

We next analysed the tumour microenvironment in TC-1/dB2m-induced tumours 

in non-treated mice and mice receiving immunotherapy (ODN 1826 alone or combined 

with DNA vaccination; Publication 4, Fig. 4). The frequency of some lymphoid (CD4+ T 
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cells, Treg cells, and γδT cells) and myeloid (cDCs and pDCs) cells was significantly 

increased, while the frequency of NK cells and TAMs was downregulated in TC-1/dB2m-

induced tumours in comparison with TC-1- and TC-1/A9-induced tumours. The ratio of 

MHC-IIhi M1 to MHC-IIneg M2 macrophages was higher in TC-1/dB2m- than in TC-1- 

and TC-1/A9-induced tumours. Immunotherapy did not significantly alter the proportion 

of M1 and M2 macrophages in TC-1/dB2m-induced tumours, whereas we observed a 

considerable increase of M1 macrophages in TC-1/A9-induced tumours after 

immunotherapy in our previous study (224). In addition, immunotherapy increased the 

frequency of TAMs, PD-1+ TAMs, and activated PD-1+ NK and NKT cells in TC-

1/dB2m-induced tumours to the level comparable with TC-1- and TC-1/A9-induced 

tumours. 

To further examine anti-tumour effect of immunotherapy, we depleted CD4+, 

CD8+, and NK1.1+ cells, and macrophages and we neutralised IFN-γ in mice bearing TC-

1/dB2m tumours treated with DNA vaccine and ODN 1826 (Publication 4, Fig. 4D). 

Combined therapy of TC-1/dB2m-induced tumours was associated exclusively with anti-

oncogenic function of NK1.1+ cells and IFN-γ. We observed activated phenotype of both 

subpopulations of NK1.1+ cells, i.e., NK and NKT cells, with flow cytometry. However, 

α-GalCer, which can be presented on CD1d molecule and stimulate NKT cells (240), was 

less efficient than ODN 1826 in combined immunotherapy and we therefore hypothesise 

that NK cells are dominant in reactions against TC-1/dB2m-induced tumours. These data 

support the conclusion that irreversible downregulation of MHC-I inhibited the adaptive 

anti-tumour response in TC-1/dB2m tumours and thus reduced the efficacy of cancer 

therapy.  
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4. CONCLUSIONS 

Despite the recent success of ICIs in cancer therapy, many patients suffer from 

primary or acquired resistance. Personalised approach in the selection of patients suitable 

for a specific type of cancer immunotherapy would prolong patients’ life expectancy, 

minimise side effects, and reduce treatment expenses. Therefore, predictive markers are 

necessary to distinguish which patients will benefit from the therapy. The objective of 

this thesis was to establish clinically relevant mouse experimental tumour models in order 

to study predictive markers for ICIs and anti-tumour immune response. 

The main project of this dissertation thesis focused on the sensitivity of tumours 

with abrogated IFN-γ signalling to PD-1/PD-L1 blockade. IFN-γ is considered to be the 

major inducer of PD-L1 and MHC-I expression (81). PD-L1 expression in tumours 

predicts sensitivity to PD-1/PD-L1 axis blockade in most cases (145). Defects in IFN-γ 

signalling or MHC-I expression have been found in some cancer patients with primary 

and acquired resistance to ICIs (122, 126). We showed that IFN-α and IFN-β induced PD-

L1 and MHC-I expression on tumour cells with abrogated IFNGR1 receptor in vitro and 

we confirmed this effect with antibody neutralizing IFN-α/IFN-β receptor in mouse 

tumours. As both the TC-1/A9- and TC-1/A9/dIfngr1-induced tumours were sensitive to 

the PD-L1 blockade combined with DNA vaccination, abrogation of IFN-γ signalling 

may not be a contraindication for PD-1/PD-L1 axis blockade. Sensitivity of tumour cells 

to type I IFNs as well as IFN-γ should be therefore evaluated as a predictive marker of 

PD-1/PD-L1 blockade.  

Efficacy of the anti-PD-L1 antibody was low in TC-1-induced tumours. Previous 

study has shown that PD-L1 blockade may promote CTLA-4/CD80 axis (133). Thus, we 

tested whether CD80 expression on tumour cells inhibits sensitivity to PD-L1 blockade 

in mice bearing TC-1-induced tumours. Although CD80 deactivation in TC-1 cells did 

not enhance the efficacy of anti-PD-L1 treatment, TC-1/dCD80-1-induced tumours were 

more immunogenic and more sensitive to anti-CTLA-4 antibody than TC-1-induced 

tumours. Analysis of the tumour microenvironment revealed that CD80 deactivation 

increased the frequency of lymphoid as well as myeloid cells infiltrating tumours. It also 

promoted M1 phenotype of macrophages and enhanced CTLA-4 expression on Th17 

cells. Therefore, CD80 expression on tumour cells should be assessed as a predictive 
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marker of CTLA-4 blockade. Development of tumour cell targeted CD80 blockade 

should be considered as a novel tumour treatment. 

Next, we tested the combined therapy of tumours with reversible MHC-I 

downregulation and evaluated the efficacy of another ICI, an anti-Tim-3 antibody. In this 

study, activation of innate immune response with adjuvants (ODN 1826 and/or α-GalCer) 

promoted the efficacy of DNA vaccination, which elicited adaptive immune response and 

resulted in markedly reduced TC-1/A9-induced tumour growth. Although Tim-3 was 

expressed in the tumour microenvironment, Tim-3 blockade had a weak effect on tumour 

growth and anti-tumour immune response. The combined therapy enhanced the frequency 

of immune cells (mainly CD8+ T cells) in the tumours and induced macrophage 

polarization into M1 phenotype. We showed that activation of innate and adaptive 

immune response with combined therapy was beneficial in cancer treatment. 

Finally, we introduced a tumour model with irreversible downregulation of MHC-

I. Expression of this molecule regulated sensitivity to DNA vaccination. While TC-1-

induced tumours were sensitive to DNA vaccination, the TC-1/A9-induced tumours were 

less affected and TC-1/dB2m-induced tumours were resistant to DNA vaccination. 

Combination of DNA vaccination with the adjuvant ODN 1826 only slightly reduced TC-

1/dB2m-induced tumour growth. The combined therapy did not increase the number of 

cells infiltrating TC-1/dB2m-induced tumours. As the irreversible MHC-I 

downregulation impaired the anti-tumour effect of CD8+ T cells, NK1.1+ cells controlled 

the growth of TC-1/dB2m-induced tumours and were associated with the efficacy of the 

combined therapy.  

Taken together, this thesis contributed to the development of clinically relevant 

mouse experimental models of tumours with abrogated IFN-γ signalling or CD80 

expression, or reversible and irreversible MHC-I downregulation. We used these models 

to test the efficacy of ICIs and to study predictive biomarkers for this cancer treatment. 

Research into single predictive markers should be implemented into the “cancer 

immunograms” to select cancer patients suitable for the treatment with ICIs and to choose 

the appropriate type of this treatment. Moreover, we developed experimental combined 

therapy of tumours with reversible MHC-I downregulation, one of the most frequently 

occurring mechanism of tumour escape from immune surveillance. Our experimental 

model of reversible and irreversible MHC-I downregulation resembles the heterogeneity 
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of MHC-I expression in human tumours and may contribute to the further clinical 

research into cancer therapy.  
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5.  CONTRIBUTION TO PROJECTS/PUBLICATIONS 

5.1.  Abrogation of IFN-γ signalling may not worsen sensitivity to PD-

1/PD-L1 blockade 

During my doctoral studies, I focused mainly on the sensitivity to PD-1/PD-L1 

blockade in tumours with abrogation of IFN-γ signalling. I had joined the lab when the 

cell lines with IFNGR1 deactivation have already been prepared and the oncogenicity of 

respective cell lines was evaluated. From then on, with the kind support of my supervisor, 

I acquired funding for the continuation of this project (GAUK 988218), designed and 

conducted most experiments (Publication 1, Fig. 1A, C, and D, Fig. 2-6), analysed the 

data, and wrote the original draft of the publication where I am the first author. 

5.2. CD80 expression on tumour cells alters tumour microenvironment 

and the efficacy of cancer immunotherapy by CTLA-4 blockade 

This study was the second project, where I was the first author of the respective 

publication. I designed and conducted most experiments (data presented in all figures of 

Publication 2), analysed the data, and wrote the manuscript of the publication, with the 

kind support of my supervisor and colleagues. 

5.3. Experimental combined immunotherapy of tumours with major 

histocompatibility complex class I downregulation 

In this study, I contributed to the analysis of tumour infiltrating leucocytes. I had 

the opportunity to be involved in multicolour flow cytometry experiments and the data 

analysis of lymphoid cells with FlowJo software (Publication 3, Fig. 3A, B and Fig. 4B). 

I also helped with editing of the manuscript.    

5.4.  Establishment and characterization of mouse tumour cell line with 

irreversible downregulation of MHC class I molecules 

In this project, I assisted with in vitro proliferation assay (Publication 4, Fig. 1B), 

was involved in in vivo depletion experiments (Publication 4, Fig. 2B, 4D) and 

participated in the combined therapy (Publication 4, Fig. 3). Next, I was involved in 

multicolour flow cytometry (Publication 4, Fig. 4) and helped with the design of 
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multicolour panels of antibodies, the setup of flow cytometer, the experimental procedure, 

and data analysis with FlowJo software. I was also involved in editing of the manuscript. 

 

 

Prohlášení školitele o podílu studenta na výsledcích 

 

I agree with the author’s contribution statement. 

 

 

Prague, ……………….. 

 

        ……………………………. 

        RNDr. Michal Šmahel, Ph.D. 

 

 



 
 

40 

6. REFERENCES 

1.  C. Huang, H.-X. Zhu, Y. Yao, Z.-H. Bian, Y.-J. Zheng, L. Li, H. M. Moutsopoulos, 

M. E. Gershwin, Z.-X. Lian, Immune checkpoint molecules. Possible future 

therapeutic implications in autoimmune diseases. J. Autoimmun. 104, 102333 

(2019). 

2.  F. Xu, T. Jin, Y. Zhu, C. Dai, Immune checkpoint therapy in liver cancer. J. Exp. 

Clin. Cancer Res. 37, 110 (2018). 

3.  D. L. Mueller, M. K. Jenkins, R. H. Schwartz, Clonal Expansion Versus Functional 

Clonal Inactivation: A Costimulatory Signalling Pathway Determines the Outcome 

of T Cell Antigen Receptor Occupancy. Annu. Rev. Immunol. 7, 445–480 (1989). 

4.  A. H. Sharpe, Mechanisms of costimulation. Immunol. Rev. 229, 5–11 (2009). 

5.  L. Chen, D. B. Flies, Molecular mechanisms of T cell co-stimulation and co-

inhibition. Nat. Rev. Immunol. 13, 227–242 (2013). 

6.  N. Peyravian, E. Gharib, A. Moradi, M. Mobahat, P. Tarban, P. Azimzadeh, E. 

Nazemalhosseini-Mojarad, H. Asadzadeh Aghdaei, Evaluating the expression 

level of co-stimulatory molecules CD 80 and CD 86 in different types of colon 

polyps. Curr. Res. Transl. Med. 66, 19–25 (2018). 

7.  M. Y. Balkhi, Receptor signaling, transcriptional, and metabolic regulation of T 

cell exhaustion. Oncoimmunology. 9, 1747349 (2020). 

8.  S. A. Fuertes Marraco, N. J. Neubert, G. Verdeil, D. E. Speiser, Inhibitory 

Receptors Beyond T Cell Exhaustion. Front. Immunol. 26, 310 (2015). 

9.  L. Derré, J.-P. Rivals, C. Jandus, S. Pastor, D. Rimoldi, P. Romero, O. Michielin, 

D. Olive, D. E. Speiser, BTLA mediates inhibition of human tumor-specific CD8+ 

T cells that can be partially reversed by vaccination. J. Clin. Invest. 120, 157–167 

(2010). 

10.  L. Baitsch, A. Legat, L. Barba, S. A. F. Marraco, J.-P. Rivals, P. Baumgaertner, C. 

Christiansen-Jucht, H. Bouzourene, D. Rimoldi, H. Pircher, N. Rufer, M. Matter, 

O. Michielin, D. E. Speiser, Extended Co-Expression of Inhibitory Receptors by 

Human CD8 T-Cells Depending on Differentiation, Antigen-Specificity and 

Anatomical Localization. PLOS ONE. 7, e30852 (2012). 

11.  T. N. Gide, C. Quek, A. M. Menzies, A. T. Tasker, P. Shang, J. Holst, J. Madore, 

S. Y. Lim, R. Velickovic, M. Wongchenko, Y. Yan, S. Lo, M. S. Carlino, A. 

Guminski, R. P. M. Saw, A. Pang, H. M. McGuire, U. Palendira, J. F. Thompson, 

H. Rizos, I. P. da Silva, M. Batten, R. A. Scolyer, G. V. Long, J. S. Wilmott, 

Distinct Immune Cell Populations Define Response to Anti-PD-1 Monotherapy 

and Anti-PD-1/Anti-CTLA-4 Combined Therapy. Cancer Cell. 35, 238-255.e6 

(2019). 

12.  J. Sprent, C. D. Surh, T Cell Memory. Annu. Rev. Immunol. 20, 551–579 (2002). 



 
 

41 

13.  M. S. Soon, J. A. Engel, H. J. Lee, A. Haque, Development of circulating CD4+ 

T-cell memory. Immunol. Cell Biol. 97, 617–624 (2019). 

14.  T. Takahashi, H. Hsiao, S. Tanaka, W. Li, R. Higashikubo, D. Scozzi, A. Bharat, 

J. Ritter, A. Krupnick, A. Gelman, D. Kreisel, PD-1 expression on CD8+ T cells 

regulates their differentiation within lung allografts and is critical for tolerance 

induction. Am. J. Transplant. 18, 216–225 (2018). 

15.  J. F. Brunet, F. Denizot, M. F. Luciani, M. Roux-Dosseto, M. Suzan, M. G. Mattei, 

P. Golstein, A new member of the immunoglobulin superfamily--CTLA-4. Nature. 

328, 267–270 (1987). 

16.  A. Ganesan, T. C. Moon, K. H. Barakat, Revealing the atomistic details behind the 

binding of B7–1 to CD28 and CTLA-4: A comprehensive protein-protein 

modelling study. Biochim. Biophys. Acta BBA  1862, 2764–2778 (2018). 

17.  D. J. Lenschow, G. H. Su, L. A. Zuckerman, N. Nabavi, C. L. Jellis, G. S. Gray, J. 

Miller, J. A. Bluestone, Expression and functional significance of an additional 

ligand for CTLA-4. Proc. Natl. Acad. Sci. U. S. A. 90, 11054–11058 (1993). 

18.  D. M. Sansom, CD28, CTLA-4 and their ligands: who does what and to whom? 

Immunology. 101, 169–177 (2000). 

19.  T. Pentcheva-Hoang, J. G. Egen, K. Wojnoonski, J. P. Allison, B7-1 and B7-2 

Selectively Recruit CTLA-4 and CD28 to the Immunological Synapse. Immunity. 

21, 401–413 (2004). 

20.  D. V. Chan, H. M. Gibson, B. M. Aufiero, A. J. Wilson, M. S. Hafner, Q.-S. Mi, 

H. K. Wong, Differential CTLA-4 expression in human CD4+ versus CD8+ T cells 

is associated with increased NFAT1 and inhibition of CD4+ proliferation. Genes 

Immun. 15, 25–32 (2014). 

21.  T. Lindsten, K. P. Lee, E. S. Harris, B. Petryniak, N. Craighead, P. J. Reynolds, D. 

B. Lombard, G. J. Freeman, L. M. Nadler, G. S. Gray, Characterization of CTLA-

4 structure and expression on human T cells. J. Immunol. 151, 3489–3499 (1993). 

22.  S. Sakaguchi, N. Mikami, J. B. Wing, A. Tanaka, K. Ichiyama, N. Ohkura, 

Regulatory T Cells and Human Disease. Annu. Rev. Immunol. 38, 541–566 (2020). 

23.  K. Wing, Y. Onishi, P. Prieto-Martin, T. Yamaguchi, M. Miyara, Z. Fehervari, T. 

Nomura, S. Sakaguchi, CTLA-4 Control over Foxp3+ Regulatory T Cell Function. 

Science. 322, 271–275 (2008). 

24.  G. J. Freeman, A. J. Long, Y. Iwai, K. Bourque, T. Chernova, H. Nishimura, L. J. 

Fitz, N. Malenkovich, T. Okazaki, M. C. Byrne, H. F. Horton, L. Fouser, L. Carter, 

V. Ling, M. R. Bowman, B. M. Carreno, M. Collins, C. R. Wood, T. Honjo, 

Engagement of the Pd-1 Immunoinhibitory Receptor by a Novel B7 Family 

Member Leads to Negative Regulation of Lymphocyte Activation. J. Exp. Med. 

192, 1027–1034 (2000). 



 
 

42 

25.  Y. Ishida, Y. Agata, K. Shibahara, T. Honjo, Induced expression of PD-1, a novel 

member of the immunoglobulin gene superfamily, upon programmed cell death. 

EMBO J. 11, 3887–3895 (1992). 

26.  H. Nishimura, M. Nose, H. Hiai, N. Minato, T. Honjo, Development of lupus-like 

autoimmune diseases by disruption of the PD-1 gene encoding an ITIM motif-

carrying immunoreceptor. Immunity. 11, 141–151 (1999). 

27.  M. Marasco, A. Berteotti, J. Weyershaeuser, N. Thorausch, J. Sikorska, J. Krausze, 

H. J. Brandt, J. Kirkpatrick, P. Rios, W. W. Schamel, M. Köhn, T. Carlomagno, 

Molecular mechanism of SHP2 activation by PD-1 stimulation. Sci. Adv. 6, 

eaay4458 (2020). 

28.  D. Y. -w. Lin, Y. Tanaka, M. Iwasaki, A. G. Gittis, H.-P. Su, B. Mikami, T. 

Okazaki, T. Honjo, N. Minato, D. N. Garboczi, The PD-1/PD-L1 complex 

resembles the antigen-binding Fv domains of antibodies and T cell receptors. Proc. 

Natl. Acad. Sci. 105, 3011–3016 (2008). 

29.  T. Yokosuka, M. Takamatsu, W. Kobayashi-Imanishi, A. Hashimoto-Tane, M. 

Azuma, T. Saito, Programmed cell death 1 forms negative costimulatory 

microclusters that directly inhibit T cell receptor signaling by recruiting 

phosphatase SHP2. J. Exp. Med. 209, 1201–1217 (2012). 

30.  H. Dong, S. E. Strome, D. R. Salomao, H. Tamura, F. Hirano, D. B. Flies, P. C. 

Roche, J. Lu, G. Zhu, K. Tamada, V. A. Lennon, E. Celis, L. Chen, Tumor-

associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune 

evasion. Nat. Med. 8, 793–800 (2002). 

31.  E. Hui, J. Cheung, J. Zhu, X. Su, M. J. Taylor, H. A. Wallweber, D. K. Sasmal, J. 

Huang, J. M. Kim, I. Mellman, R. D. Vale, T cell costimulatory receptor CD28 is 

a primary target for PD-1–mediated inhibition. Science. 355, 1428–1433 (2017). 

32.  K.-A. Sheppard, L. J. Fitz, J. M. Lee, C. Benander, J. A. George, J. Wooters, Y. 

Qiu, J. M. Jussif, L. L. Carter, C. R. Wood, D. Chaudhary, PD-1 inhibits T-cell 

receptor induced phosphorylation of the ZAP70/CD3ζ signalosome and 

downstream signaling to PKCθ. FEBS Lett. 574, 37–41 (2004). 

33.  Y. Agata, A. Kawasaki, H. Nishimura, Y. Ishida, T. Tsubat, H. Yagita, T. Honjo, 

Expression of the PD-1 antigen on the surface of stimulated mouse T and B 

lymphocytes. Int. Immunol. 8, 765–772 (1996). 

34.  N. A. Giraldo, P. Nguyen, E. L. Engle, G. J. Kaunitz, T. R. Cottrell, S. Berry, et 

al., Multidimensional, quantitative assessment of PD-1/PD-L1 expression in 

patients with Merkel cell carcinoma and association with response to 

pembrolizumab. J. Immunother. Cancer. 6, 99 (2018). 

35.  I. Datar, M. F. Sanmamed, J. Wang, B. S. Henick, J. Choi, T. Badri, W. Dong, N. 

Mani, M. Toki, L. D. Mejías, M. D. Lozano, J. L. Perez-Gracia, V. Velcheti, M. D. 

Hellmann, J. F. Gainor, K. McEachern, D. Jenkins, K. Syrigos, K. Politi, S. 

Gettinger, D. L. Rimm, R. S. Herbst, I. Melero, L. Chen, K. A. Schalper, 

Expression Analysis and Significance of PD-1, LAG-3, and TIM-3 in Human 



 
 

43 

Non–Small Cell Lung Cancer Using Spatially Resolved and Multiparametric 

Single-Cell Analysis. Clin. Cancer Res. 25, 4663–4673 (2019). 

36.  V. A. Boussiotis, Molecular and Biochemical Aspects of the PD-1 Checkpoint 

Pathway. N. Engl. J. Med. 375, 1767–1778 (2016). 

37.  J. Hsu, J. J. Hodgins, M. Marathe, C. J. Nicolai, M.-C. Bourgeois-Daigneault, T. 

N. Trevino, C. S. Azimi, A. K. Scheer, H. E. Randolph, T. W. Thompson, L. Zhang, 

A. Iannello, N. Mathur, K. E. Jardine, G. A. Kirn, J. C. Bell, M. W. McBurney, D. 

H. Raulet, M. Ardolino, Contribution of NK cells to immunotherapy mediated by 

PD-1/PD-L1 blockade. J. Clin. Invest. 128, 4654–4668 (2018). 

38.  S. J. Judge, C. Dunai, E. G. Aguilar, S. C. Vick, I. R. Sturgill, L. T. Khuat, K. M. 

Stoffel, J. Van Dyke, D. L. Longo, M. A. Darrow, S. K. Anderson, B. R. Blazar, 

A. M. Monjazeb, J. S. Serody, R. J. Canter, W. J. Murphy, Minimal PD-1 

expression in mouse and human NK cells under diverse conditions. J. Clin. Invest. 

130, 3051–3068 (2020). 

39.  L. Strauss, M. A. A. Mahmoud, J. D. Weaver, N. M. Tijaro-Ovalle, A. Christofides, 

Q. Wang, R. Pal, M. Yuan, J. Asara, N. Patsoukis, V. A. Boussiotis, Targeted 

deletion of PD-1 in myeloid cells induces antitumor immunity. Sci. Immunol. 5, 

eaay1863 (2020). 

40.  Y. Latchman, C. R. Wood, T. Chernova, D. Chaudhary, M. Borde, I. Chernova, Y. 

Iwai, A. J. Long, J. A. Brown, R. Nunes, E. A. Greenfield, K. Bourque, V. A. 

Boussiotis, L. L. Carter, B. M. Carreno, N. Malenkovich, H. Nishimura, T. 

Okazaki, T. Honjo, A. H. Sharpe, G. J. Freeman, PD-L2 is a second ligand for PD-

1 and inhibits T cell activation. Nat. Immunol. 2, 261–268 (2001). 

41.  W. Dong, X. Wu, S. Ma, Y. Wang, A. P. Nalin, Z. Zhu, J. Zhang, D. M. Benson, 

K. He, M. A. Caligiuri, J. Yu, The mechanism of anti-PD-L1 antibody efficacy 

against PD-L1 negative tumors identifies NK cells expressing PD-L1 as a cytolytic 

effector. Cancer Discov. 9, 1422–1437 (2019). 

42.  D.-N. Tong, J. Guan, J.-H. Sun, C.-Y. Zhao, S.-G. Chen, Z.-Y. Zhang, Z.-Q. Zhou, 

Characterization of B cell-mediated PD-1/PD-L1 interaction in pancreatic cancer 

patients. Clin. Exp. Pharmacol. Physiol. 47, 1342–1349 (2020). 

43.  T. Yamazaki, H. Akiba, H. Iwai, H. Matsuda, M. Aoki, Y. Tanno, T. Shin, H. 

Tsuchiya, D. M. Pardoll, K. Okumura, M. Azuma, H. Yagita, Expression of 

Programmed Death 1 Ligands by Murine T Cells and APC. J. Immunol. 169, 5538–

5545 (2002). 

44.  E. Furusawa, T. Ohno, S. Nagai, T. Noda, T. Komiyama, K. Kobayashi, H. 

Hamamoto, M. Miyashin, H. Yokozeki, M. Azuma, Silencing of PD-L2/B7-DC by 

Topical Application of Small Interfering RNA Inhibits Elicitation of Contact 

Hypersensitivity. J. Invest. Dermatol. 139, 2164-2173.e1 (2019). 

45.  K. Tomihara, T. Shin, V. J. Hurez, H. Yagita, D. M. Pardoll, B. Zhang, T. J. Curiel, 

T. Shin, Aging-associated B7-DC+ B cells enhance anti-tumor immunity via Th1 

and Th17 induction. Aging Cell. 11, 128–138 (2012). 



 
 

44 

46.  S. Wang, J. Bajorath, D. B. Flies, H. Dong, T. Honjo, L. Chen, Molecular Modeling 

and Functional Mapping of B7-H1 and B7-DC Uncouple Costimulatory Function 

from PD-1 Interaction. J. Exp. Med. 197, 1083–1091 (2003). 

47.  V. R. Juneja, K. A. McGuire, R. T. Manguso, M. W. LaFleur, N. Collins, W. N. 

Haining, G. J. Freeman, A. H. Sharpe, PD-L1 on tumor cells is sufficient for 

immune evasion in immunogenic tumors and inhibits CD8 T cell cytotoxicity. J. 

Exp. Med. 214, 895–904 (2017). 

48.  J. W. Kleinovink, K. A. Marijt, M. J. A. Schoonderwoerd, T. van Hall, F. 

Ossendorp, M. F. Fransen, PD-L1 expression on malignant cells is no prerequisite 

for checkpoint therapy. OncoImmunology. 6, e1294299 (2017). 

49.  J. Lau, J. Cheung, A. Navarro, S. Lianoglou, B. Haley, K. Totpal, L. Sanders, H. 

Koeppen, P. Caplazi, J. McBride, H. Chiu, R. Hong, J. Grogan, V. Javinal, R. 

Yauch, B. Irving, M. Belvin, I. Mellman, J. M. Kim, M. Schmidt, Tumour and host 

cell PD-L1 is required to mediate suppression of anti-tumour immunity in mice. 

Nat. Commun. 8, 14572 (2017). 

50.  T. Noguchi, J. P. Ward, M. M. Gubin, C. D. Arthur, S. H. Lee, J. Hundal, M. J. 

Selby, R. F. Graziano, E. R. Mardis, A. J. Korman, R. D. Schreiber, Temporally 

Distinct PD-L1 Expression by Tumor and Host Cells Contributes to Immune 

Escape. Cancer Immunol. Res. 5, 106–117 (2017). 

51.  H. Tang, Y. Liang, R. A. Anders, J. M. Taube, X. Qiu, A. Mulgaonkar, X. Liu, S. 

M. Harrington, J. Guo, Y. Xin, Y. Xiong, K. Nham, W. Silvers, G. Hao, X. Sun, 

M. Chen, R. Hannan, J. Qiao, H. Dong, H. Peng, Y.-X. Fu, PD-L1 on host cells is 

essential for PD-L1 blockade-mediated tumor regression. J. Clin. Invest. 128, 580–

588 (2018). 

52.  A. M. Goodman, D. Piccioni, S. Kato, A. Boichard, H.-Y. Wang, G. Frampton, S. 

M. Lippman, C. Connelly, D. Fabrizio, V. Miller, J. K. Sicklick, R. Kurzrock, 

Prevalence of PDL1 Amplification and Preliminary Response to Immune 

Checkpoint Blockade in Solid Tumors. JAMA Oncol. 4, 1237–1244 (2018). 

53.  M. R. Green, S. Monti, S. J. Rodig, P. Juszczynski, T. Currie, E. O’Donnell, B. 

Chapuy, K. Takeyama, D. Neuberg, T. R. Golub, J. L. Kutok, M. A. Shipp, 

Integrative analysis reveals selective 9p24.1 amplification, increased PD-1 ligand 

expression, and further induction via JAK2 in nodular sclerosing Hodgkin 

lymphoma and primary mediastinal large B-cell lymphoma. Blood. 116, 3268–

3277 (2010). 

54.  K. Kataoka, Y. Shiraishi, Y. Takeda, S. Sakata, M. Matsumoto, S. Nagano, T. 

Maeda, Y. Nagata, A. Kitanaka, S. Mizuno, H. Tanaka, K. Chiba, S. Ito, Y. 

Watatani, N. Kakiuchi, H. Suzuki, T. Yoshizato, K. Yoshida, M. Sanada, H. 

Itonaga, Y. Imaizumi, Y. Totoki, W. Munakata, H. Nakamura, N. Hama, K. Shide, 

Y. Kubuki, T. Hidaka, T. Kameda, K. Masuda, N. Minato, K. Kashiwase, K. Izutsu, 

A. Takaori-Kondo, Y. Miyazaki, S. Takahashi, T. Shibata, H. Kawamoto, Y. 

Akatsuka, K. Shimoda, K. Takeuchi, T. Seya, S. Miyano, S. Ogawa, Aberrant PD-

L1 expression through 3′-UTR disruption in multiple cancers. Nature. 534, 402–

406 (2016). 



 
 

45 

55.  L. Chen, D. L. Gibbons, S. Goswami, M. A. Cortez, Y.-H. Ahn, L. A. Byers, X. 

Zhang, X. Yi, D. Dwyer, W. Lin, L. Diao, J. Wang, J. D. Roybal, M. Patel, C. 

Ungewiss, D. Peng, S. Antonia, M. Mediavilla-Varela, G. Robertson, S. Jones, M. 

Suraokar, J. W. Welsh, B. Erez, I. I. Wistuba, L. Chen, D. Peng, S. Wang, S. E. 

Ullrich, J. V. Heymach, J. M. Kurie, F. X.-F. Qin, Metastasis is regulated via 

microRNA-200/ZEB1 axis control of tumour cell PD-L1 expression and 

intratumoral immunosuppression. Nat. Commun. 5, 5241 (2014). 

56.  M.-H. Lee, J. Yanagawa, L. Tran, T. C. Walser, B. Bisht, E. Fung, S. J. Park, G. 

Zeng, K. Krysan, W. D. Wallace, M. K. Paul, L. Girard, B. Gao, J. D. Minna, S. 

M. Dubinett, J. M. Lee, FRA1 contributes to MEK-ERK pathway-dependent PD-

L1 upregulation by KRAS mutation in premalignant human bronchial epithelial 

cells. Am. J. Transl. Res. 12, 409–427 (2020). 

57.  F. A. Mansour, A. Al-Mazrou, F. Al-Mohanna, M. Al-Alwan, H. Ghebeh, PD-L1 

is overexpressed on breast cancer stem cells through notch3/mTOR axis. 

Oncoimmunology. 9, 1729299 (2020). 

58.  R. Okita, A. Maeda, K. Shimizu, Y. Nojima, S. Saisho, M. Nakata, PD-L1 

overexpression is partially regulated by EGFR/HER2 signaling and associated with 

poor prognosis in patients with non-small-cell lung cancer. Cancer Immunol. 

Immunother. 66, 865–876 (2017). 

59.  M. Ruf, H. Moch, P. Schraml, PD-L1 expression is regulated by hypoxia inducible 

factor in clear cell renal cell carcinoma. Int. J. Cancer. 139, 396–403 (2016). 

60.  I. Zerdes, M. Wallerius, E. G. Sifakis, T. Wallmann, S. Betts, M. Bartish, N. 

Tsesmetzis, N. P. Tobin, C. Coucoravas, J. Bergh, G. Z. Rassidakis, C. Rolny, T. 

Foukakis, STAT3 Activity Promotes Programmed-Death Ligand 1 Expression and 

Suppresses Immune Responses in Breast Cancer. Cancers. 11, 1479 (2019). 

61.  S. Das, G. Suarez, E. J. Beswick, J. C. Sierra, D. Y. Graham, V. E. Reyes, 

Expression of B7-H1 on gastric epithelial cells: its potential role in regulating T 

cells during Helicobacter pylori infection. J. Immunol. Baltim. Md 1950. 176, 

3000–3009 (2006). 

62.  W. Fang, J. Zhang, S. Hong, J. Zhan, N. Chen, T. Qin, Y. Tang, Y. Zhang, S. Kang, 

T. Zhou, X. Wu, W. Liang, Z. Hu, Y. Ma, Y. Zhao, Y. Tian, Y. Yang, C. Xue, Y. 

Yan, X. Hou, P. Huang, Y. Huang, H. Zhao, L. Zhang, EBV-driven LMP1 and 

IFN-γ up-regulate PD-L1 in nasopharyngeal carcinoma: Implications for 

oncotargeted therapy. Oncotarget. 5, 12189–12202 (2014). 

63.  J. Guillermo Espinoza-Contreras, M. Idalia Torres-Ruiz, L. Ariel Waller-

González, J. De Jesús Ramírez-García, J. Torres-López, J. Ventura-Juárez, E. 

Verónica Moreno-Córdova, J. Ernesto López-Ramos, M. Humberto Muñoz-

Ortega, M. Eugenia Vargas-Camaño, R. González-Segovia, Immunological 

markers and Helicobacter pylori in patients with stomach cancer: Expression and 

correlation. Biomed. Rep. 12, 233–243 (2020). 

64.  B.-J. Wang, J.-J. Bao, J.-Z. Wang, Y. Wang, M. Jiang, M.-Y. Xing, W.-G. Zhang, 

J.-Y. Qi, M. Roggendorf, M.-J. Lu, D.-L. Yang, Immunostaining of PD-1/PD-Ls 



 
 

46 

in liver tissues of patients with hepatitis and hepatocellular carcinoma. World J. 

Gastroenterol. 17, 3322–3329 (2011). 

65.  A. Franzen, T. J. Vogt, T. Müller, J. Dietrich, A. Schröck, C. Golletz, P. Brossart, 

F. Bootz, J. Landsberg, G. Kristiansen, D. Dietrich, PD-L1 ( CD274 ) and PD-L2 

( PDCD1LG2 ) promoter methylation is associated with HPV infection and 

transcriptional repression in head and neck squamous cell carcinomas. Oncotarget. 

9, 641–650 (2017). 

66.  S. Lyford-Pike, S. Peng, G. D. Young, J. M. Taube, W. H. Westra, B. Akpeng, T. 

C. Bruno, J. D. Richmon, H. Wang, J. A. Bishop, L. Chen, C. G. Drake, S. L. 

Topalian, D. M. Pardoll, S. I. Pai, Evidence for a role of the PD-1:PD-L1 pathway 

in immune resistance of HPV-associated head and neck squamous cell carcinoma. 

Cancer Res. 73, 1733–1741 (2013). 

67.  P. Nagarajan, C. El-Hadad, S. K. Gruschkus, J. Ning, C. W. Hudgens, O. Sagiv, N. 

Gross, M. T. Tetzlaff, B. Esmaeli, PD-L1/PD1 Expression, Composition of Tumor-

Associated Immune Infiltrate, and HPV Status in Conjunctival Squamous Cell 

Carcinoma. Invest. Ophthalmol. Vis. Sci. 60, 2388–2398 (2019). 

68.  M. Zhang, H. Sun, S. Zhao, Y. Wang, H. Pu, Y. Wang, Q. Zhang, Expression of 

PD-L1 and prognosis in breast cancer: a meta-analysis. Oncotarget. 8, 31347–

31354 (2017). 

69.  L.-J. Ma, F.-L. Feng, L.-Q. Dong, Z. Zhang, M. Duan, L.-Z. Liu, J.-Y. Shi, L.-X. 

Yang, Z.-C. Wang, S. Zhang, Z.-B. Ding, A.-W. Ke, Y. Cao, X.-M. Zhang, J. Zhou, 

J. Fan, X.-Y. Wang, Q. Gao, Clinical significance of PD-1/PD-Ls gene 

amplification and overexpression in patients with hepatocellular carcinoma. 

Theranostics. 8, 5690–5702 (2018). 

70.  J. Yang, M. Dong, Y. Shui, Y. Zhang, Z. Zhang, Y. Mi, X. Zuo, L. Jiang, K. Liu, 

Z. Liu, X. Gu, Y. Shi, A pooled analysis of the prognostic value of PD-L1 in 

melanoma: evidence from 1062 patients. Cancer Cell Int. 20, 96 (2020). 

71.  E. F. Wheelock, Interferon-Like Virus-Inhibitor Induced in Human Leukocytes by 

Phytohemagglutinin. Science. 149, 310–311 (1965). 

72.  N. Marquardt, E. Kekäläinen, P. Chen, M. Lourda, J. N. Wilson, M. Scharenberg, 

P. Bergman, M. Al-Ameri, J. Hård, J. E. Mold, H.-G. Ljunggren, J. Michaëlsson, 

Unique transcriptional and protein-expression signature in human lung tissue-

resident NK cells. Nat. Commun. 10, 3841 (2019). 

73.  S. Paul, S. Chhatar, A. Mishra, G. Lal, Natural killer T cell activation increases 

iNOS+CD206- M1 macrophage and controls the growth of solid tumor. J. 

Immunother. Cancer. 7, 208 (2019). 

74.  G. R. Rossi, E. S. Trindade, F. Souza-Fonseca-Guimaraes, Tumor 

Microenvironment-Associated Extracellular Matrix Components Regulate NK 

Cell Function. Front. Immunol. 11, 73 (2020). 

75.  S. Pestka, C. D. Krause, M. R. Walter, Interferons, interferon-like cytokines, and 

their receptors. Immunol. Rev. 202, 8–32 (2004). 



 
 

47 

76.  X. Zhang, Y. Zeng, Q. Qu, J. Zhu, Z. Liu, W. Ning, H. Zeng, N. Zhang, W. Du, C. 

Chen, J. Huang, PD-L1 induced by IFN-γ from tumor-associated macrophages via 

the JAK/STAT3 and PI3K/AKT signaling pathways promoted progression of lung 

cancer. Int. J. Clin. Oncol. 22, 1026–1033 (2017). 

77.  J. L. Benci, L. R. Johnson, R. Choa, Y. Xu, J. Qiu, Z. Zhou, B. Xu, D. Ye, K. L. 

Nathanson, C. H. June, E. J. Wherry, N. R. Zhang, H. Ishwaran, M. D. Hellmann, 

J. D. Wolchok, T. Kambayashi, A. J. Minn, Opposing Functions of Interferon 

Coordinate Adaptive and Innate Immune Responses to Cancer Immune 

Checkpoint Blockade. Cell. 178, 933-948.e14 (2019). 

78.  M. Y. Bhat, H. S. Solanki, J. Advani, A. A. Khan, T. S. Keshava Prasad, H. Gowda, 

S. Thiyagarajan, A. Chatterjee, Comprehensive network map of interferon gamma 

signaling. J. Cell Commun. Signal. 12, 745–751 (2018). 

79.  M. R. Walter, W. T. Windsor, T. L. Nagabhushan, D. J. Lundell, C. A. Lunn, P. J. 

Zauodny, S. K. Narula, Crystal structure of a complex between interferon-gamma 

and its soluble high-affinity receptor. Nature. 376, 230–235 (1995). 

80.  C. Rolvering, A. D. Zimmer, A. Ginolhac, C. Margue, M. Kirchmeyer, F. Servais, 

H. M. Hermanns, S. Hergovits, P. V. Nazarov, N. Nicot, S. Kreis, S. Haan, I. 

Behrmann, C. Haan, The PD-L1- and IL6-mediated dampening of the IL27/STAT1 

anticancer responses are prevented by α-PD-L1 or α-IL6 antibodies. J. Leukoc. 

Biol. 104, 969–985 (2018). 

81.  S. Zhang, K. Kohli, R. G. Black, L. Yao, S. M. Spadinger, Q. He, V. G. Pillarisetty, 

L. D. Cranmer, B. A. V. Tine, C. Yee, R. H. Pierce, S. R. Riddell, R. L. Jones, S. 

M. Pollack, Systemic Interferon-γ Increases MHC Class I Expression and T-cell 

Infiltration in Cold Tumors: Results of a Phase 0 Clinical Trial. Cancer Immunol. 

Res. 7, 1237–1243 (2019). 

82.  G. Ding, T. Shen, C. Yan, M. Zhang, Z. Wu, L. Cao, IFN-γ down-regulates the 

PD-1 expression and assist nivolumab in PD-1-blockade effect on CD8+ T-

lymphocytes in pancreatic cancer. BMC Cancer. 19, 1053 (2019). 

83.  C. Baer, M. L. Squadrito, D. Laoui, D. Thompson, S. K. Hansen, A. Kiialainen, S. 

Hoves, C. H. Ries, C.-H. Ooi, M. De Palma, Suppression of microRNA activity 

amplifies IFN-γ-induced macrophage activation and promotes anti-tumour 

immunity. Nat. Cell Biol. 18, 790–802 (2016). 

84.  E. Müller, M. Speth, P. F. Christopoulos, A. Lunde, A. Avdagic, I. Øynebråten, A. 

Corthay, Both Type I and Type II Interferons Can Activate Antitumor M1 

Macrophages When Combined With TLR Stimulation. Front. Immunol. 9, 2520 

(2018). 

85.  G. Chen, A. C. Huang, W. Zhang, G. Zhang, M. Wu, W. Xu, Z. Yu, J. Yang, B. 

Wang, H. Sun, H. Xia, Q. Man, W. Zhong, L. F. Antelo, B. Wu, X. Xiong, X. Liu, 

L. Guan, T. Li, S. Liu, R. Yang, Y. Lu, L. Dong, S. McGettigan, R. Somasundaram, 

R. Radhakrishnan, G. Mills, Y. Lu, J. Kim, Y. H. Chen, H. Dong, Y. Zhao, G. C. 

Karakousis, T. C. Mitchell, L. M. Schuchter, M. Herlyn, E. J. Wherry, X. Xu, W. 



 
 

48 

Guo, Exosomal PD-L1 contributes to immunosuppression and is associated with 

anti-PD-1 response. Nature. 560, 382–386 (2018). 

86.  A. Garcia-Diaz, D. S. Shin, B. H. Moreno, J. Saco, H. Escuin-Ordinas, G. A. 

Rodriguez, J. M. Zaretsky, L. Sun, W. Hugo, X. Wang, G. Parisi, C. P. Saus, D. Y. 

Torrejon, T. G. Graeber, B. Comin-Anduix, S. Hu-Lieskovan, R. Damoiseaux, R. 

S. Lo, A. Ribas, Interferon Receptor Signaling Pathways Regulating PD-L1 and 

PD-L2 Expression. Cell Rep. 19, 1189–1201 (2017). 

87.  M. Chen, B. Pockaj, M. Andreozzi, M. T. Barrett, S. Krishna, S. Eaton, R. Niu, K. 

S. Anderson, JAK2 and PD-L1 Amplification Enhance the Dynamic Expression of 

PD-L1 in Triple-negative Breast Cancer. Clin. Breast Cancer. 18, e1205–e1215 

(2018). 

88.  S. Ghosh, A. Paul, E. Sen, Tumor Necrosis Factor Alpha-Induced Hypoxia-

Inducible Factor 1α–β-Catenin Axis Regulates Major Histocompatibility Complex 

Class I Gene Activation through Chromatin Remodeling. Mol. Cell. Biol. 33, 

2718–2731 (2013). 

89.  K. G. Paulson, A. Tegeder, C. Willmes, J. G. Iyer, O. K. Afanasiev, D. Schrama, 

S. Koba, R. Thibodeau, K. Nagase, W. T. Simonson, A. Seo, D. M. Koelle, M. 

Madeleine, S. Bhatia, H. Nakajima, S. Sano, J. S. Hardwick, M. L. Disis, M. A. 

Cleary, J. C. Becker, P. Nghiem, Downregulation of MHC-I Expression Is 

Prevalent but Reversible in Merkel Cell Carcinoma. Cancer Immunol. Res. 2, 

1071–1079 (2014). 

90.  I. P. Wicks, T. Leizer, S. O. Wawryk, J. R. Novotny, J. Hamilton, G. Vitti, A. W. 

Boyd, The Effect of Cytokines on the Expression of Mhc Antigens and Icam-1 by 

Normal and Transformed Synoviocytes. Autoimmunity. 12, 13–19 (1992). 

91.  G. Carbotti, G. Barisione, I. Airoldi, D. Mezzanzanica, M. Bagnoli, S. Ferrero, A. 

Petretto, M. Fabbi, S. Ferrini, IL-27 induces the expression of IDO and PD-L1 in 

human cancer cells. Oncotarget. 6, 43267–43280 (2015). 

92.  S. Chen, G. A. Crabill, T. S. Pritchard, T. L. McMiller, P. Wei, D. M. Pardoll, F. 

Pan, S. L. Topalian, Mechanisms regulating PD-L1 expression on tumor and 

immune cells. J. Immunother. Cancer. 7 (2019), doi:10.1186/s40425-019-0770-2. 

93.  C. Kudo-Saito, H. Shirako, M. Ohike, N. Tsukamoto, Y. Kawakami, CCL2 is 

critical for immunosuppression to promote cancer metastasis. Clin. Exp. 

Metastasis. 30, 393–405 (2013). 

94.  T.-T. Wang, Y.-L. Zhao, L.-S. Peng, N. Chen, W. Chen, Y.-P. Lv, F.-Y. Mao, J.-

Y. Zhang, P. Cheng, Y.-S. Teng, X.-L. Fu, P.-W. Yu, G. Guo, P. Luo, Y. Zhuang, 

Q.-M. Zou, Tumour-activated neutrophils in gastric cancer foster immune 

suppression and disease progression through GM-CSF-PD-L1 pathway. Gut. 66, 

1900–1911 (2017). 

95.  Z. Zong, J. Zou, R. Mao, C. Ma, N. Li, J. Wang, X. Wang, H. Zhou, L. Zhang, Y. 

Shi, M1 Macrophages Induce PD-L1 Expression in Hepatocellular Carcinoma 

Cells Through IL-1β Signaling. Front. Immunol. 10, 1643 (2019). 



 
 

49 

96.  L.-C. Chan, C.-W. Li, W. Xia, J.-M. Hsu, H.-H. Lee, J.-H. Cha, H.-L. Wang, W.-

H. Yang, E.-Y. Yen, W.-C. Chang, Z. Zha, S.-O. Lim, Y.-J. Lai, C. Liu, J. Liu, Q. 

Dong, Y. Yang, L. Sun, Y. Wei, L. Nie, J. L. Hsu, H. Li, Q. Ye, M. M. Hassan, H. 

M. Amin, A. O. Kaseb, X. Lin, S.-C. Wang, M.-C. Hung, IL-6/JAK1 pathway 

drives PD-L1 Y112 phosphorylation to promote cancer immune evasion. J. Clin. 

Invest. 129, 3324–3338 (2019). 

97.  C.-W. Li, S.-O. Lim, W. Xia, H.-H. Lee, L.-C. Chan, C.-W. Kuo, K.-H. Khoo, S.-

S. Chang, J.-H. Cha, T. Kim, J. L. Hsu, Y. Wu, J.-M. Hsu, H. Yamaguchi, Q. Ding, 

Y. Wang, J. Yao, C.-C. Lee, H.-J. Wu, A. A. Sahin, J. P. Allison, D. Yu, G. N. 

Hortobagyi, M.-C. Hung, Glycosylation and stabilization of programmed death 

ligand-1 suppresses T-cell activity. Nat. Commun. 7, 12632 (2016). 

98.  S.-O. Lim, C.-W. Li, W. Xia, J.-H. Cha, L.-C. Chan, Y. Wu, S.-S. Chang, W.-C. 

Lin, J.-M. Hsu, Y.-H. Hsu, T. Kim, W.-C. Chang, J. L. Hsu, H. Yamaguchi, Q. 

Ding, Y. Wang, Y. Yang, C.-H. Chen, A. A. Sahin, D. Yu, G. N. Hortobagyi, M.-

C. Hung, Deubiquitination and Stabilization of PD-L1 by CSN5. Cancer Cell. 30, 

925–939 (2016). 

99.  L. Falzone, S. Salomone, M. Libra, Evolution of Cancer Pharmacological 

Treatments at the Turn of the Third Millennium. Front. Pharmacol. 13, 1300 

(2018). 

100.  A. Rotte, G. D’Orazi, M. Bhandaru, Nobel committee honors tumor 

immunologists. J. Exp. Clin. Cancer Res. 37, 262 (2018). 

101.  F. Cameron, G. Whiteside, C. Perry, Ipilimumab. Drugs. 71, 1093–1104 (2011). 

102.  G. Kwok, T. C. C. Yau, J. W. Chiu, E. Tse, Y.-L. Kwong, Pembrolizumab 

(Keytruda). Hum. Vaccines Immunother. 12, 2777–2789 (2016). 

103.  A. Ribas, J. D. Wolchok, Cancer immunotherapy using checkpoint blockade. 

Science. 359, 1350–1355 (2018). 

104.  J. Sul, G. M. Blumenthal, X. Jiang, K. He, P. Keegan, R. Pazdur, FDA Approval 

Summary: Pembrolizumab for the Treatment of Patients With Metastatic Non-

Small Cell Lung Cancer Whose Tumors Express Programmed Death-Ligand 1. 

The Oncologist. 21, 643–650 (2016). 

105.  A. Markham, S. Duggan, Cemiplimab: First Global Approval. Drugs. 78, 1841–

1846 (2018). 

106.  A. Markham, Atezolizumab: First Global Approval. Drugs. 76, 1227–1232 (2016). 

107.  E. Dolgin, Atezolizumab Combo Approved for PD-L1–positive TNBC. Cancer 

Discov. 9, OF2 (2019). 

108.  N. J. Shah, W. J. Kelly, S. V. Liu, K. Choquette, A. Spira, Product review on the 

Anti-PD-L1 antibody atezolizumab. Hum. Vaccines Immunother. 14, 269–276 

(2017). 



 
 

50 

109.  J. M. Collins, J. L. Gulley, Product review: avelumab, an anti-PD-L1 antibody. 

Hum. Vaccines Immunother. 15, 891–908 (2018). 

110.  Y. Y. Syed, Durvalumab: First Global Approval. Drugs. 77, 1369–1376 (2017). 

111.  M. L. Disis, Mechanism of action of immunotherapy. Semin. Oncol. 41, S3-13 

(2014). 

112.  R. M. Chabanon, M. Pedrero, C. Lefebvre, A. Marabelle, J.-C. Soria, S. Postel-

Vinay, Mutational Landscape and Sensitivity to Immune Checkpoint Blockers. 

Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 22, 4309–4321 (2016). 

113.  D. T. Le, J. N. Durham, K. N. Smith, H. Wang, B. R. Bartlett, L. K. Aulakh, S. Lu, 

H. Kemberling, C. Wilt, B. S. Luber, F. Wong, N. S. Azad, A. A. Rucki, D. Laheru, 

R. Donehower, A. Zaheer, G. A. Fisher, T. S. Crocenzi, J. J. Lee, T. F. Greten, A. 

G. Duffy, K. K. Ciombor, A. D. Eyring, B. H. Lam, A. Joe, S. P. Kang, M. 

Holdhoff, L. Danilova, L. Cope, C. Meyer, S. Zhou, R. M. Goldberg, D. K. 

Armstrong, K. M. Bever, A. N. Fader, J. Taube, F. Housseau, D. Spetzler, N. Xiao, 

D. M. Pardoll, N. Papadopoulos, K. W. Kinzler, J. R. Eshleman, B. Vogelstein, R. 

A. Anders, L. A. Diaz, Mismatch repair deficiency predicts response of solid 

tumors to PD-1 blockade. Science. 357, 409–413 (2017). 

114.  R. W. Jenkins, D. A. Barbie, K. T. Flaherty, Mechanisms of resistance to immune 

checkpoint inhibitors. Br. J. Cancer. 118, 9–16 (2018). 

115.  G. P. Dunn, L. J. Old, R. D. Schreiber, The Three Es of Cancer Immunoediting. 

Annu. Rev. Immunol. 22, 329–360 (2004). 

116.  D. Liu, R. W. Jenkins, R. J. Sullivan, Mechanisms of Resistance to Immune 

Checkpoint Blockade. Am. J. Clin. Dermatol. 20, 41–54 (2019). 

117.  D. Mittal, M. M. Gubin, R. D. Schreiber, M. J. Smyth, New insights into cancer 

immunoediting and its three component phases — elimination, equilibrium and 

escape. Curr. Opin. Immunol. 27, 16–25 (2014). 

118.  D. S. Chen, I. Mellman, Elements of cancer immunity and the cancer-immune set 

point. Nature. 541, 321–330 (2017). 

119.  P. Bonaventura, T. Shekarian, V. Alcazer, J. Valladeau-Guilemond, S. Valsesia-

Wittmann, S. Amigorena, C. Caux, S. Depil, Cold Tumors: A Therapeutic 

Challenge for Immunotherapy. Front. Immunol. 10 (2019), 

doi:10.3389/fimmu.2019.00168. 

120.  L. W. Pfannenstiel, C. M. Diaz-Montero, Y. F. Tian, J. Scharpf, J. S. Ko, B. R. 

Gastman, Immune-Checkpoint Blockade Opposes CD8+ T-cell Suppression in 

Human and Murine Cancer. Cancer Immunol. Res. 7, 510–525 (2019). 

121.  S. C. Wei, N.-A. A. S. Anang, R. Sharma, M. C. Andrews, A. Reuben, J. H. Levine, 

A. P. Cogdill, J. J. Mancuso, J. A. Wargo, D. Pe’er, J. P. Allison, Combination 

anti–CTLA-4 plus anti–PD-1 checkpoint blockade utilizes cellular mechanisms 

partially distinct from monotherapies. Proc. Natl. Acad. Sci. U. S. A. 116, 22699–

22709 (2019). 



 
 

51 

122.  J. M. Zaretsky, A. Garcia-Diaz, D. S. Shin, H. Escuin-Ordinas, W. Hugo, S. Hu-

Lieskovan, D. Y. Torrejon, G. Abril-Rodriguez, S. Sandoval, L. Barthly, J. Saco, 

B. Homet Moreno, R. Mezzadra, B. Chmielowski, K. Ruchalski, I. P. Shintaku, P. 

J. Sanchez, C. Puig-Saus, G. Cherry, E. Seja, X. Kong, J. Pang, B. Berent-Maoz, 

B. Comin-Anduix, T. G. Graeber, P. C. Tumeh, T. N. Schumacher, R. S. Lo, A. 

Ribas, Mutations Associated with Acquired Resistance to PD-1 Blockade in 

Melanoma. N. Engl. J. Med. Boston. 375, 819–829 (2016). 

123.  M. Sade-Feldman, Y. J. Jiao, J. H. Chen, M. S. Rooney, M. Barzily-Rokni, J.-P. 

Eliane, S. L. Bjorgaard, M. R. Hammond, H. Vitzthum, S. M. Blackmon, D. T. 

Frederick, M. Hazar-Rethinam, B. A. Nadres, E. E. Van Seventer, S. A. Shukla, K. 

Yizhak, J. P. Ray, D. Rosebrock, D. Livitz, V. Adalsteinsson, G. Getz, L. M. 

Duncan, B. Li, R. B. Corcoran, D. P. Lawrence, A. Stemmer-Rachamimov, G. M. 

Boland, D. A. Landau, K. T. Flaherty, R. J. Sullivan, N. Hacohen, Resistance to 

checkpoint blockade therapy through inactivation of antigen presentation. Nat. 

Commun. 8, 1136 (2017). 

124.  S. J. Rodig, D. Gusenleitner, D. G. Jackson, E. Gjini, A. Giobbie-Hurder, C. Jin, 

H. Chang, S. B. Lovitch, C. Horak, J. S. Weber, J. L. Weirather, J. D. Wolchok, 

M. A. Postow, A. C. Pavlick, J. Chesney, F. S. Hodi, MHC proteins confer 

differential sensitivity to CTLA-4 and PD-1 blockade in untreated metastatic 

melanoma. Sci. Transl. Med. 10, eaar3342 (2018). 

125.  S. Miyauchi, P. D. Sanders, K. Guram, S. S. Kim, F. Paolini, A. Venuti, E. E. W. 

Cohen, J. S. Gutkind, J. A. Califano, A. B. Sharabi, HPV16 E5 Mediates Resistance 

to PD-L1 Blockade and Can Be Targeted with Rimantadine in Head and Neck 

Cancer. Cancer Res. 80, 732–746 (2020). 

126.  D. S. Shin, J. M. Zaretsky, H. Escuin-Ordinas, A. Garcia-Diaz, S. Hu-Lieskovan, 

A. Kalbasi, C. S. Grasso, W. Hugo, S. Sandoval, D. Y. Torrejon, N. Palaskas, G. 

A. Rodriguez, G. Parisi, A. Azhdam, B. Chmielowski, G. Cherry, E. Seja, B. 

Berent-Maoz, I. P. Shintaku, D. T. Le, D. M. Pardoll, L. A. Diaz, P. C. Tumeh, T. 

G. Graeber, R. S. Lo, B. Comin-Anduix, A. Ribas, Primary Resistance to PD-1 

Blockade Mediated by JAK1/2 Mutations. Cancer Discov. 7, 188–201 (2017). 

127.  M. Šmahel, PD-1/PD-L1 Blockade Therapy for Tumors with Downregulated MHC 

Class I Expression. Int. J. Mol. Sci. 18 (2017), doi:10.3390/ijms18061331. 

128.  L. G. Feun, Y.-Y. Li, C. Wu, M. Wangpaichitr, P. D. Jones, S. P. Richman, B. 

Madrazo, D. Kwon, M. Garcia‐Buitrago, P. Martin, P. J. Hosein, N. Savaraj, Phase 

2 study of pembrolizumab and circulating biomarkers to predict anticancer 

response in advanced, unresectable hepatocellular carcinoma. Cancer. 125, 3603–

3614 (2019). 

129.  R. B. Holmgaard, D. Zamarin, Y. Li, B. Gasmi, D. H. Munn, J. P. Allison, T. 

Merghoub, J. D. Wolchok, Tumor-expressed IDO recruits and activates MDSCs in 

a Treg-dependent manner. Cell Rep. 13, 412–424 (2015). 

130.  J. Miao, X. Lu, Y. Hu, C. Piao, X. Wu, X. Liu, C. Huang, Y. Wang, D. Li, J. Liu, 

Prostaglandin E2 and PD-1 mediated inhibition of antitumor CTL responses in the 

human tumor microenvironment. Oncotarget. 8, 89802–89810 (2017). 



 
 

52 

131.  R. Saleh, S. M. Toor, S. Khalaf, E. Elkord, Breast Cancer Cells and PD-1/PD-L1 

Blockade Upregulate the Expression of PD-1, CTLA-4, TIM-3 and LAG-3 

Immune Checkpoints in CD4+ T Cells. Vaccines. 7, 149 (2019). 

132.  C. Stecher, C. Battin, J. Leitner, M. Zettl, K. Grabmeier-Pfistershammer, C. Höller, 

G. J. Zlabinger, P. Steinberger, PD-1 Blockade Promotes Emerging Checkpoint 

Inhibitors in Enhancing T Cell Responses to Allogeneic Dendritic Cells. Front. 

Immunol. 8, 572 (2017). 

133.  Y. Zhao, C. K. Lee, C.-H. Lin, R. B. Gassen, X. Xu, Z. Huang, C. Xiao, C. 

Bonorino, L.-F. Lu, J. D. Bui, E. Hui, PD-L1:CD80 Cis-Heterodimer Triggers the 

Co-stimulatory Receptor CD28 While Repressing the Inhibitory PD-1 and CTLA-

4 Pathways. Immunity. 51, 1059-1073.e9 (2019). 

134.  D. H. Kim, H. Kim, Y. J. Choi, S. Y. Kim, J.-E. Lee, K. J. Sung, Y. H. Sung, C.-

G. Pack, M. Jung, B. Han, K. Kim, W. S. Kim, S. J. Nam, C.-M. Choi, M. Yun, J. 

C. Lee, J. K. Rho, Exosomal PD-L1 promotes tumor growth through immune 

escape in non-small cell lung cancer. Exp. Mol. Med. 51, 94 (2019). 

135.  M. Poggio, T. Hu, C.-C. Pai, B. Chu, C. D. Belair, A. Chang, E. Montabana, U. E. 

Lang, Q. Fu, L. Fong, R. Blelloch, Suppression of Exosomal PD-L1 Induces 

Systemic Anti-tumor Immunity and Memory. Cell. 177, 414-427.e13 (2019). 

136.  V. Gopalakrishnan, B. A. Helmink, C. N. Spencer, A. Reuben, J. A. Wargo, The 

Influence of the Gut Microbiome on Cancer, Immunity, and Cancer 

Immunotherapy. Cancer Cell. 33, 570–580 (2018). 

137.  L. Derosa, B. Routy, M. Fidelle, V. Iebba, L. Alla, E. Pasolli, N. Segata, A. 

Desnoyer, F. Pietrantonio, G. Ferrere, J.-E. Fahrner, E. Le Chatellier, N. Pons, N. 

Galleron, H. Roume, C. P. M. Duong, L. Mondragón, K. Iribarren, M. Bonvalet, 

S. Terrisse, C. Rauber, A.-G. Goubet, R. Daillère, F. Lemaitre, A. Reni, B. Casu, 

M. T. Alou, C. Alves Costa Silva, D. Raoult, K. Fizazi, B. Escudier, G. Kroemer, 

L. Albiges, L. Zitvogel, Gut Bacteria Composition Drives Primary Resistance to 

Cancer Immunotherapy in Renal Cell Carcinoma Patients. Eur. Urol. 78, 195–206 

(2020). 

138.  V. Matson, J. Fessler, R. Bao, T. Chongsuwat, Y. Zha, M.-L. Alegre, J. J. Luke, T. 

F. Gajewski, The commensal microbiome is associated with anti–PD-1 efficacy in 

metastatic melanoma patients. Science. 359, 104–108 (2018). 

139.  B. Routy, E. Le Chatelier, L. Derosa, C. P. M. Duong, M. T. Alou, R. Daillère, A. 

Fluckiger, M. Messaoudene, C. Rauber, M. P. Roberti, M. Fidelle, C. Flament, V. 

Poirier-Colame, P. Opolon, C. Klein, K. Iribarren, L. Mondragón, N. Jacquelot, B. 

Qu, G. Ferrere, C. Clémenson, L. Mezquita, J. R. Masip, C. Naltet, S. Brosseau, C. 

Kaderbhai, C. Richard, H. Rizvi, F. Levenez, N. Galleron, B. Quinquis, N. Pons, 

B. Ryffel, V. Minard-Colin, P. Gonin, J.-C. Soria, E. Deutsch, Y. Loriot, F. 

Ghiringhelli, G. Zalcman, F. Goldwasser, B. Escudier, M. D. Hellmann, A. 

Eggermont, D. Raoult, L. Albiges, G. Kroemer, L. Zitvogel, Gut microbiome 

influences efficacy of PD-1-based immunotherapy against epithelial tumors. 

Science. 359, 91–97 (2018). 



 
 

53 

140.  D. Spakowicz, R. Hoyd, M. Muniak, M. Husain, J. S. Bassett, L. Wang, G. Tinoco, 

S. H. Patel, J. Burkart, A. Miah, M. Li, A. Johns, M. Grogan, D. P. Carbone, C. F. 

Verschraegen, K. L. Kendra, G. A. Otterson, L. Li, C. J. Presley, D. H. Owen, 

Inferring the role of the microbiome on survival in patients treated with immune 

checkpoint inhibitors: causal modeling, timing, and classes of concomitant 

medications. BMC Cancer. 20, 383 (2020). 

141.  V. Gopalakrishnan, C. N. Spencer, L. Nezi, A. Reuben, M. C. Andrews, T. V. et. 

al., Gut microbiome modulates response to anti–PD-1 immunotherapy in 

melanoma patients. Science. 359, 97–103 (2018). 

142.  S. Champiat, L. Dercle, S. Ammari, C. Massard, A. Hollebecque, S. Postel-Vinay, 

N. Chaput, A. Eggermont, A. Marabelle, J.-C. Soria, C. Ferté, Hyperprogressive 

Disease Is a New Pattern of Progression in Cancer Patients Treated by Anti-PD-

1/PD-L1. Clin. Cancer Res. 23, 1920–1928 (2017). 

143.  X. Wang, F. Wang, M. Zhong, Y. Yarden, L. Fu, The biomarkers of 

hyperprogressive disease in PD-1/PD-L1 blockage therapy. Mol. Cancer. 19, 81 

(2020). 

144.  F. Petitprez, M. Meylan, A. de Reyniès, C. Sautès-Fridman, W. H. Fridman, The 

Tumor Microenvironment in the Response to Immune Checkpoint Blockade 

Therapies. Front. Immunol. 11, 784 (2020). 

145.  A. A. Davis, V. G. Patel, The role of PD-L1 expression as a predictive biomarker: 

an analysis of all US Food and Drug Administration (FDA) approvals of immune 

checkpoint inhibitors. J. Immunother. Cancer. 7, 278 (2019). 

146.  F. Bensch, E. L. van der Veen, M. N. Lub-de Hooge, A. Jorritsma-Smit, R. 

Boellaard, I. C. Kok, S. F. Oosting, C. P. Schröder, T. J. N. Hiltermann, A. J. van 

der Wekken, H. J. M. Groen, T. C. Kwee, S. G. Elias, J. A. Gietema, S. S. 

Bohorquez, A. de Crespigny, S.-P. Williams, C. Mancao, A. H. Brouwers, B. M. 

Fine, E. G. E. de Vries, 89Zr-atezolizumab imaging as a non-invasive approach to 

assess clinical response to PD-L1 blockade in cancer. Nat. Med. 24, 1852–1858 

(2018). 

147.  D. B. Doroshow, S. Bhalla, M. B. Beasley, L. M. Sholl, K. M. Kerr, S. Gnjatic, I. 

I. Wistuba, D. L. Rimm, M. S. Tsao, F. R. Hirsch, PD-L1 as a biomarker of 

response to immune-checkpoint inhibitors. Nat. Rev. Clin. Oncol., 1–18 (2021). 

148.  C. Kümpers, M. Jokic, O. Haase, A. Offermann, W. Vogel, V. Grätz, E. A. Langan, 

S. Perner, P. Terheyden, Immune Cell Infiltration of the Primary Tumor, Not PD-

L1 Status, Is Associated With Improved Response to Checkpoint Inhibition in 

Metastatic Melanoma. Front. Med. 6 (2019). 

149.  S. Tsukumo, K. Yasutomo, Regulation of CD8+ T Cells and Antitumor Immunity 

by Notch Signaling. Front. Immunol. 9, 101 (2018). 

150.  P. C. Tumeh, C. L. Harview, J. H. Yearley, I. P. Shintaku, E. J. M. Taylor, L. 

Robert, B. Chmielowski, M. Spasic, G. Henry, V. Ciobanu, A. N. West, M. 

Carmona, C. Kivork, E. Seja, G. Cherry, A. J. Gutierrez, T. R. Grogan, C. Mateus, 

G. Tomasic, J. A. Glaspy, R. O. Emerson, H. Robins, R. H. Pierce, D. A. Elashoff, 



 
 

54 

C. Robert, A. Ribas, PD-1 blockade induces responses by inhibiting adaptive 

immune resistance. Nature. 515, 568–571 (2014). 

151.  A. I. Daud, K. Loo, M. L. Pauli, R. Sanchez-Rodriguez, P. M. Sandoval, K. 

Taravati, K. Tsai, A. Nosrati, L. Nardo, M. D. Alvarado, A. P. Algazi, M. H. 

Pampaloni, I. V. Lobach, J. Hwang, R. H. Pierce, I. K. Gratz, M. F. Krummel, M. 

D. Rosenblum, Tumor immune profiling predicts response to anti–PD-1 therapy in 

human melanoma. J. Clin. Invest. 126, 3447–3452 (2016). 

152.  C.-C. Balança, C.-M. Scarlata, M. Michelas, C. Devaud, V. Sarradin, C. Franchet, 

C. M. Gomez, C. Gomez-Roca, M. Tosolini, D. Heaugwane, F. Lauzéral-Vizcaino, 

L. Mir-Mesnier, V. Féliu, C. Valle, F. Pont, G. Ferron, L. Gladieff, S. Motton, Y. 

T. L. Gac, A. Dupret-Bories, J. Sarini, B. Vairel, C. Illac, A. Siegfried-Vergnon, 

E. Mery, J.-J. Fournié, S. Vergez, J.-P. Delord, P. Rochaix, A. Martinez, M. 

Ayyoub, Dual Relief of T-lymphocyte Proliferation and Effector Function 

Underlies Response to PD-1 Blockade in Epithelial Malignancies. Cancer 

Immunol. Res. 8, 869–882 (2020). 

153.  S. A. Hogan, A. Courtier, P. F. Cheng, N. F. Jaberg-Bentele, S. M. Goldinger, M. 

Manuel, S. Perez, N. Plantier, J.-F. Mouret, T. D. L. Nguyen-Kim, M. I. G. 

Raaijmakers, P. Kvistborg, N. Pasqual, J. B. A. G. Haanen, R. Dummer, M. P. 

Levesque, Peripheral Blood TCR Repertoire Profiling May Facilitate Patient 

Stratification for Immunotherapy against Melanoma. Cancer Immunol. Res. 7, 77–

85 (2019). 

154.  A. M. Goodman, S. Kato, L. Bazhenova, S. P. Patel, G. M. Frampton, V. Miller, 

P. J. Stephens, G. A. Daniels, R. Kurzrock, Tumor Mutational Burden as an 

Independent Predictor of Response to Immunotherapy in Diverse Cancers. Mol. 

Cancer Ther. 16, 2598–2608 (2017). 

155.  M. D. Hellmann, T.-E. Ciuleanu, A. Pluzanski, J. S. Lee, G. A. Otterson, C. 

Audigier-Valette, E. Minenza, H. Linardou, S. Burgers, P. Salman, H. Borghaei, 

S. S. Ramalingam, J. Brahmer, M. Reck, K. J. O’Byrne, W. J. Geese, G. Green, H. 

Chang, J. Szustakowski, P. Bhagavatheeswaran, D. Healey, Y. Fu, F. Nathan, L. 

Paz-Ares, Nivolumab plus Ipilimumab in Lung Cancer with a High Tumor 

Mutational Burden. N. Engl. J. Med. 378, 2093–2104 (2018). 

156.  M. K. Labriola, J. Zhu, R. Gupta, S. McCall, J. Jackson, E. F. Kong, J. R. White, 

G. Cerqueira, K. Gerding, J. K. Simmons, D. George, T. Zhang, Characterization 

of tumor mutation burden, PD-L1 and DNA repair genes to assess relationship to 

immune checkpoint inhibitors response in metastatic renal cell carcinoma. J. 

Immunother. Cancer. 8, e000319 (2020). 

157.  H. Rizvi, F. Sanchez-Vega, K. La, W. Chatila, P. Jonsson, D. Halpenny, A. 

Plodkowski, N. Long, J. L. Sauter, N. Rekhtman, T. Hollmann, K. A. Schalper, J. 

F. Gainor, R. Shen, A. Ni, K. C. Arbour, T. Merghoub, J. Wolchok, A. Snyder, J. 

E. Chaft, M. G. Kris, C. M. Rudin, N. D. Socci, M. F. Berger, B. S. Taylor, A. 

Zehir, D. B. Solit, M. E. Arcila, M. Ladanyi, G. J. Riely, N. Schultz, M. D. 

Hellmann, Molecular Determinants of Response to Anti-Programmed Cell Death 

(PD)-1 and Anti-Programmed Death-Ligand 1 (PD-L1) Blockade in Patients With 



 
 

55 

Non-Small-Cell Lung Cancer Profiled With Targeted Next-Generation 

Sequencing. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 36, 633–641 (2018). 

158.  A. M. Goodman, A. Castro, R. M. Pyke, R. Okamura, S. Kato, P. Riviere, G. 

Frampton, E. Sokol, X. Zhang, E. D. Ball, H. Carter, R. Kurzrock, MHC-I genotype 

and tumor mutational burden predict response to immunotherapy. Genome Med. 

12, 45 (2020). 

159.  A. Vanderwalde, D. Spetzler, N. Xiao, Z. Gatalica, J. Marshall, Microsatellite 

instability status determined by next‐generation sequencing and compared with 

PD‐L1 and tumor mutational burden in 11,348 patients. Cancer Med. 7, 746–756 

(2018). 

160.  T. Kikuchi, K. Mimura, H. Okayama, Y. Nakayama, K. Saito, L. Yamada, E. Endo, 

W. Sakamoto, S. Fujita, H. Endo, M. Saito, T. Momma, Z. Saze, S. Ohki, K. Kono, 

A subset of patients with MSS/MSI-low-colorectal cancer showed increased 

CD8(+) TILs together with up-regulated IFN-γ. Oncol. Lett. 18, 5977–5985 

(2019). 

161.  S. T. Kim, R. Cristescu, A. J. Bass, K.-M. Kim, J. I. Odegaard, K. Kim, X. Q. Liu, 

X. Sher, H. Jung, M. Lee, S. Lee, S. H. Park, J. O. Park, Y. S. Park, H. Y. Lim, H. 

Lee, M. Choi, A. Talasaz, P. S. Kang, J. Cheng, A. Loboda, J. Lee, W. K. Kang, 

Comprehensive molecular characterization of clinical responses to PD-1 inhibition 

in metastatic gastric cancer. Nat. Med. 24, 1449–1458 (2018). 

162.  K. Hatakeyama, T. Nagashima, K. Ohshima, S. Ohnami, S. Ohnami, Y. Shimoda, 

M. Serizawa, K. Maruyama, A. Naruoka, Y. Akiyama, K. Urakami, M. Kusuhara, 

T. Mochizuki, K. Yamaguchi, Mutational burden and signatures in 4000 Japanese 

cancers provide insights into tumorigenesis and response to therapy. Cancer Sci. 

110, 2620–2628 (2019). 

163.  N. A. Rizvi, M. D. Hellmann, A. Snyder, P. Kvistborg, V. Makarov, J. J. Havel, 

W. Lee, J. Yuan, P. Wong, T. S. Ho, M. L. Miller, N. Rekhtman, A. L. Moreira, F. 

Ibrahim, C. Bruggeman, B. Gasmi, R. Zappasodi, Y. Maeda, C. Sander, E. B. 

Garon, T. Merghoub, J. D. Wolchok, T. N. Schumacher, T. A. Chan, Mutational 

landscape determines sensitivity to PD-1 blockade in non–small cell lung cancer. 

Science. 348, 124–128 (2015). 

164.  D. Chowell, L. G. T. Morris, C. M. Grigg, J. K. Weber, R. M. Samstein, V. 

Makarov, F. Kuo, S. M. Kendall, D. Requena, N. Riaz, B. Greenbaum, J. Carroll, 

E. Garon, D. M. Hyman, A. Zehir, D. Solit, M. Berger, R. Zhou, N. A. Rizvi, T. A. 

Chan, Patient HLA class I genotype influences cancer response to checkpoint 

blockade immunotherapy. Science. 359, 582–587 (2018). 

165.  J. Budczies, M. Bockmayr, C. Denkert, F. Klauschen, S. Gröschel, S. Darb‐

Esfahani, N. Pfarr, J. Leichsenring, M. L. Onozato, J. K. Lennerz, M. Dietel, S. 

Fröhling, P. Schirmacher, A. J. Iafrate, W. Weichert, A. Stenzinger, Pan-cancer 

analysis of copy number changes in programmed death-ligand 1 (PD-L1, CD274) 

– associations with gene expression, mutational load, and survival. Genes. 

Chromosomes Cancer. 55, 626–639 (2016). 



 
 

56 

166.  S. M. Ansell, A. M. Lesokhin, I. Borrello, A. Halwani, E. C. Scott, M. Gutierrez, 

S. J. Schuster, M. M. Millenson, D. Cattry, G. J. Freeman, S. J. Rodig, B. Chapuy, 

A. H. Ligon, L. Zhu, J. F. Grosso, S. Y. Kim, J. M. Timmerman, M. A. Shipp, P. 

Armand, PD-1 blockade with nivolumab in relapsed or refractory Hodgkin’s 

lymphoma. N. Engl. J. Med. 372, 311–319 (2015). 

167.  S. Gupta, C. M. Vanderbilt, P. Cotzia, J. A. Arias-Stella, J. C. Chang, A. Zehir, R. 

Benayed, K. Nafa, P. Razavi, D. M. Hyman, J. Baselga, M. F. Berger, M. Ladanyi, 

M. E. Arcila, D. S. Ross, Next-Generation Sequencing–Based Assessment of 

JAK2, PD-L1, and PD-L2 Copy Number Alterations at 9p24.1 in Breast Cancer. 

J. Mol. Diagn. JMD. 21, 307–317 (2019). 

168.  A. H. Ree, V. Nygaard, H. G. Russnes, D. Heinrich, V. Nygaard, C. Johansen, I. 

R. Bergheim, E. Hovig, K. Beiske, A. Negård, A.-L. Børresen-Dale, K. Flatmark, 

G. M. Mælandsmo, Responsiveness to PD-1 Blockade in End-Stage Colon Cancer 

with Gene Locus 9p24.1 Copy-Number Gain. Cancer Immunol. Res. 7, 701–706 

(2019). 

169.  Y. Wang, K. Wenzl, M. K. Manske, Y. W. Asmann, V. Sarangi, P. T. Greipp, J. E. 

Krull, K. Hartert, R. He, A. L. Feldman, M. J. Maurer, S. L. Slager, G. S. 

Nowakowski, T. M. Habermann, T. E. Witzig, B. K. Link, S. M. Ansell, J. R. 

Cerhan, A. J. Novak, Amplification of 9p24.1 in diffuse large B-cell lymphoma 

identifies a unique subset of cases that resemble primary mediastinal large B-cell 

lymphoma. Blood Cancer J. 9, 1–11 (2019). 

170.  A. Younes, A. Santoro, M. Shipp, P. L. Zinzani, J. M. Timmerman, S. Ansell, P. 

Armand, M. Fanale, V. Ratanatharathorn, J. Kuruvilla, J. B. Cohen, G. Collins, K. 

J. Savage, M. Trneny, K. Kato, B. Farsaci, S. M. Parker, S. Rodig, M. G. M. 

Roemer, A. H. Ligon, A. Engert, Nivolumab for classical Hodgkin’s lymphoma 

after failure of both autologous stem-cell transplantation and brentuximab vedotin: 

a multicentre, multicohort, single-arm phase 2 trial. Lancet Oncol. 17, 1283–1294 

(2016). 

171.  L. Nayak, F. M. Iwamoto, A. LaCasce, S. Mukundan, M. G. M. Roemer, B. 

Chapuy, P. Armand, S. J. Rodig, M. A. Shipp, PD-1 blockade with nivolumab in 

relapsed/refractory primary central nervous system and testicular lymphoma. 

Blood. 129, 3071–3073 (2017). 

172.  R. Chen, P. L. Zinzani, M. A. Fanale, P. Armand, N. A. Johnson, P. Brice, J. 

Radford, V. Ribrag, D. Molin, T. P. Vassilakopoulos, A. Tomita, B. von Tresckow, 

M. A. Shipp, Y. Zhang, A. D. Ricart, A. Balakumaran, C. H. Moskowitz, 

KEYNOTE-087, Phase II Study of the Efficacy and Safety of Pembrolizumab for 

Relapsed/Refractory Classic Hodgkin Lymphoma. J. Clin. Oncol. Off. J. Am. Soc. 

Clin. Oncol. 35, 2125–2132 (2017). 

173.  N. J. Miller, C. D. Church, S. P. Fling, R. Kulikauskas, N. Ramchurren, M. M. 

Shinohara, H. M. Kluger, S. Bhatia, L. Lundgren, M. A. Cheever, S. L. Topalian, 

P. Nghiem, Merkel cell polyomavirus-specific immune responses in patients with 

Merkel cell carcinoma receiving anti-PD-1 therapy. J. Immunother. Cancer. 6, 131 

(2018). 



 
 

57 

174.  R. L. Ferris, G. Blumenschein, J. Fayette, J. Guigay, A. D. Colevas, L. Licitra, K. 

J. Harrington, S. Kasper, E. E. Vokes, C. Even, F. Worden, N. F. Saba, L. C. I. 

Docampo, R. Haddad, T. Rordorf, N. Kiyota, M. Tahara, M. Lynch, V. 

Jayaprakash, L. Li, M. L. Gillison, Nivolumab vs investigator’s choice in recurrent 

or metastatic squamous cell carcinoma of the head and neck: 2-year long-term 

survival update of CheckMate 141 with analyses by tumor PD-L1 expression. Oral 

Oncol. 81, 45–51 (2018). 

175.  F. Petrelli, A. Iaculli, D. Signorelli, A. Ghidini, L. Dottorini, G. Perego, M. Ghidini, 

A. Zaniboni, S. Gori, A. Inno, Survival of Patients Treated with Antibiotics and 

Immunotherapy for Cancer: A Systematic Review and Meta-Analysis. J. Clin. 

Med. 9, 1458 (2020). 

176.  N. Chaput, P. Lepage, C. Coutzac, E. Soularue, K. Le Roux, C. Monot, L. Boselli, 

E. Routier, L. Cassard, M. Collins, T. Vaysse, L. Marthey, A. Eggermont, V. 

Asvatourian, E. Lanoy, C. Mateus, C. Robert, F. Carbonnel, Baseline gut 

microbiota predicts clinical response and colitis in metastatic melanoma patients 

treated with ipilimumab. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. 28, 1368–1379 

(2017). 

177.  M. Janning, F. Kobus, A. Babayan, H. Wikman, J.-L. Velthaus, S. Bergmann, S. 

Schatz, M. Falk, L.-A. Berger, L.-M. Böttcher, S. Päsler, T. M. Gorges, L. 

O’Flaherty, C. Hille, S. A. Joosse, R. Simon, M. Tiemann, C. Bokemeyer, M. Reck, 

S. Riethdorf, K. Pantel, S. Loges, Determination of PD-L1 Expression in 

Circulating Tumor Cells of NSCLC Patients and Correlation with Response to PD-

1/PD-L1 Inhibitors. Cancers. 11, 835 (2019). 

178.  C. Nicolazzo, C. Raimondi, M. Mancini, S. Caponnetto, A. Gradilone, O. Gandini, 

M. Mastromartino, G. Del Bene, A. Prete, F. Longo, E. Cortesi, P. Gazzaniga, 

Monitoring PD-L1 positive circulating tumor cells in non-small cell lung cancer 

patients treated with the PD-1 inhibitor Nivolumab. Sci. Rep. 6, 31726 (2016). 

179.  M. A. Papadaki, A. I. Sotiriou, C. Vasilopoulou, M. Filika, D. Aggouraki, P. G. 

Tsoulfas, C. A. Apostolopoulou, K. Rounis, D. Mavroudis, S. Agelaki, 

Optimization of the Enrichment of Circulating Tumor Cells for Downstream 

Phenotypic Analysis in Patients with Non-Small Cell Lung Cancer Treated with 

Anti-PD-1 Immunotherapy. Cancers. 12, 1556 (2020). 

180.  S. Bergmann, A. Coym, L. Ott, A. Soave, M. Rink, M. Janning, M. Stoupiec, C. 

Coith, S. Peine, G. von Amsberg, K. Pantel, S. Riethdorf, Evaluation of PD-L1 

expression on circulating tumor cells (CTCs) in patients with advanced urothelial 

carcinoma (UC). Oncoimmunology. 9, 1738798 (2020). 

181.  L. Cabel, F. Riva, V. Servois, A. Livartowski, C. Daniel, A. Rampanou, O. Lantz, 

E. Romano, M. Milder, B. Buecher, S. Piperno-Neumann, V. Bernard, S. 

Baulande, I. Bieche, J. Y. Pierga, C. Proudhon, F.-C. Bidard, Circulating tumor 

DNA changes for early monitoring of anti-PD1 immunotherapy: a proof-of-

concept study. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. 28, 1996–2001 (2017). 

182.  E. J. Lipson, V. E. Velculescu, T. S. Pritchard, M. Sausen, D. M. Pardoll, S. L. 

Topalian, L. A. Diaz, Circulating tumor DNA analysis as a real-time method for 



 
 

58 

monitoring tumor burden in melanoma patients undergoing treatment with immune 

checkpoint blockade. J. Immunother. Cancer. 2, 42 (2014). 

183.  C. Krieg, M. Nowicka, S. Guglietta, S. Schindler, F. J. Hartmann, L. M. Weber, R. 

Dummer, M. D. Robinson, M. P. Levesque, B. Becher, High-dimensional single-

cell analysis predicts response to anti-PD-1 immunotherapy. Nat. Med. 24, 144–

153 (2018). 

184.  E. Boutsikou, K. Domvri, G. Hardavella, D. Tsiouda, K. Zarogoulidis, T. 

Kontakiotis, Tumour necrosis factor, interferon-gamma and interleukins as 

predictive markers of antiprogrammed cell-death protein-1 treatment in advanced 

non-small cell lung cancer: a pragmatic approach in clinical practice. Ther. Adv. 

Med. Oncol. 10, 1758835918768238 (2018). 

185.  T. Kanai, H. Suzuki, H. Yoshida, A. Matsushita, H. Kawasumi, Y. Samejima, Y. 

Noda, S. Nasu, A. Tanaka, N. Morishita, S. Hashimoto, K. Kawahara, Y. Tamura, 

N. Okamoto, T. Tanaka, T. Hirashima, Significance of Quantitative Interferon-

gamma Levels in Non-small-cell Lung Cancer Patients’ Response to Immune 

Checkpoint Inhibitors. Anticancer Res. 40, 2787–2793 (2020). 

186.  M. Ayers, J. Lunceford, M. Nebozhyn, E. Murphy, A. Loboda, D. R. Kaufman, A. 

Albright, J. D. Cheng, S. P. Kang, V. Shankaran, S. A. Piha-Paul, J. Yearley, T. Y. 

Seiwert, A. Ribas, T. K. McClanahan, IFN-γ-related mRNA profile predicts 

clinical response to PD-1 blockade. J. Clin. Invest. 127, 2930–2940 (2017). 

187.  R. S. Herbst, J.-C. Soria, M. Kowanetz, G. D. Fine, O. Hamid, M. S. Gordon, J. A. 

Sosman, D. F. McDermott, J. D. Powderly, S. N. Gettinger, H. E. K. Kohrt, L. 

Horn, D. P. Lawrence, S. Rost, M. Leabman, Y. Xiao, A. Mokatrin, H. Koeppen, 

P. S. Hegde, I. Mellman, D. S. Chen, F. S. Hodi, Predictive correlates of response 

to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature. 515, 563–567 

(2014). 

188.  W. Hugo, J. M. Zaretsky, L. Sun, C. Song, B. H. Moreno, S. Hu-Lieskovan, B. 

Berent-Maoz, J. Pang, B. Chmielowski, G. Cherry, E. Seja, S. Lomeli, X. Kong, 

M. C. Kelley, J. A. Sosman, D. B. Johnson, A. Ribas, R. S. Lo, Genomic and 

Transcriptomic Features of Response to Anti-PD-1 Therapy in Metastatic 

Melanoma. Cell. 165, 35–44 (2016). 

189.  D. Liu, B. Schilling, D. Liu, A. Sucker, E. Livingstone, L. Jerby-Amon, L. Zimmer, 

R. Gutzmer, I. Satzger, C. Loquai, S. Grabbe, N. Vokes, C. A. Margolis, J. 

Conway, M. X. He, H. Elmarakeby, F. Dietlein, D. Miao, A. Tracy, H. Gogas, S. 

M. Goldinger, J. Utikal, C. U. Blank, R. Rauschenberg, D. von Bubnoff, A. 

Krackhardt, B. Weide, S. Haferkamp, F. Kiecker, B. Izar, L. Garraway, A. Regev, 

K. Flaherty, A. Paschen, E. M. Van Allen, D. Schadendorf, Integrative molecular 

and clinical modeling of clinical outcomes to PD1 blockade in patients with 

metastatic melanoma. Nat. Med. 25, 1916–1927 (2019). 

190.  S. Kato, R. Okamura, Y. Kumaki, S. Ikeda, M. Nikanjam, R. Eskander, A. 

Goodman, S. Lee, S. T. Glenn, D. Dressman, A. Papanicolau-Sengos, F. L. Lenzo, 

C. Morrison, R. Kurzrock, Expression of TIM3/VISTA checkpoints and the CD68 



 
 

59 

macrophage-associated marker correlates with anti-PD1/PDL1 resistance: 

implications of immunogram heterogeneity. Oncoimmunology. 9, 1708065 (2020). 

191.  C. U. Blank, J. B. Haanen, A. Ribas, T. N. Schumacher, The “cancer 

immunogram.” Science. 352, 658–660 (2016). 

192.  N. van Dijk, S. A. Funt, C. U. Blank, T. Powles, J. E. Rosenberg, M. S. van der 

Heijden, The Cancer Immunogram as a Framework for Personalized 

Immunotherapy in Urothelial Cancer. Eur. Urol. 75, 435–444 (2019). 

193.  T. Karasaki, K. Nagayama, H. Kuwano, J.-I. Nitadori, M. Sato, M. Anraku, A. 

Hosoi, H. Matsushita, Y. Morishita, K. Kashiwabara, M. Takazawa, O. Ohara, K. 

Kakimi, J. Nakajima, An Immunogram for the Cancer-Immunity Cycle: Towards 

Personalized Immunotherapy of Lung Cancer. J. Thorac. Oncol. Off. Publ. Int. 

Assoc. Study Lung Cancer. 12, 791–803 (2017). 

194.  K.-Y. Lin, F. G. Guarnieri, K. F. Staveley-O’Carroll, H. I. Levitsky, J. T. August, 

D. M. Pardoll, T.-C. Wu, Treatment of Established Tumors with a Novel Vaccine 

That Enhances Major Histocompatibility Class II Presentation of Tumor Antigen. 

Cancer Res. 56, 21–26 (1996). 

195.  M. Šmahel, P. Šıma, V. Ludvıková, I. Marinov, D. Pokorná, V. Vonka, 

Immunisation with modified HPV16 E7 genes against mouse oncogenic TC-1 cell 

sublines with downregulated expression of MHC class I molecules. Vaccine. 21, 

1125–1136 (2003). 

196.  J. Gao, L. Z. Shi, H. Zhao, J. Chen, L. Xiong, Q. He, T. Chen, J. Roszik, C. 

Bernatchez, S. E. Woodman, P.-L. Chen, P. Hwu, J. P. Allison, A. Futreal, J. A. 

Wargo, P. Sharma, Loss of IFN-γ Pathway Genes in Tumor Cells as a Mechanism 

of Resistance to Anti-CTLA-4 Therapy. Cell. 167, 397-404.e9 (2016). 

197.  Y. Liang, H. Tang, J. Guo, X. Qiu, Z. Yang, Z. Ren, Z. Sun, Y. Bian, L. Xu, H. 

Xu, J. Shen, Y. Han, H. Dong, H. Peng, Y.-X. Fu, Targeting IFNα to tumor by anti-

PD-L1 creates feedforward antitumor responses to overcome checkpoint blockade 

resistance. Nat. Commun. 9, 4586 (2018). 

198.  L. Schadt, C. Sparano, N. A. Schweiger, K. Silina, V. Cecconi, G. Lucchiari, H. 

Yagita, E. Guggisberg, S. Saba, Z. Nascakova, W. Barchet, M. van den Broek, 

Cancer-Cell-Intrinsic cGAS Expression Mediates Tumor Immunogenicity. Cell 

Rep. 29, 1236-1248.e7 (2019). 

199.  M. L. Ascierto, A. Makohon-Moore, E. J. Lipson, J. M. Taube, T. L. McMiller, A. 

E. Berger, J. Fan, G. J. Kaunitz, T. R. Cottrell, Z. A. Kohutek, A. Favorov, V. 

Makarov, N. Riaz, T. A. Chan, L. Cope, R. H. Hruban, D. M. Pardoll, B. S. Taylor, 

D. B. Solit, C. A. Iacobuzio-Donahue, S. L. Topalian, Transcriptional Mechanisms 

of Resistance to Anti–PD-1 Therapy. Clin. Cancer Res. 23, 3168–3180 (2017). 

200.  J. M. Mehnert, A. Panda, H. Zhong, K. Hirshfield, S. Damare, K. Lane, L. Sokol, 

M. N. Stein, L. Rodriguez-Rodriquez, H. L. Kaufman, S. Ali, J. S. Ross, D. C. 

Pavlick, G. Bhanot, E. P. White, R. S. DiPaola, A. Lovell, J. Cheng, S. Ganesan, 

Immune activation and response to pembrolizumab in POLE-mutant endometrial 

cancer. J. Clin. Invest. 126, 2334–2340 (2016). 



 
 

60 

201.  N. Riaz, J. J. Havel, V. Makarov, A. Desrichard, W. J. Urba, J. S. Sims, F. S. Hodi, 

S. Martín-Algarra, R. Mandal, W. H. Sharfman, S. Bhatia, W.-J. Hwu, T. F. 

Gajewski, C. L. Slingluff, D. Chowell, S. M. Kendall, H. Chang, R. Shah, F. Kuo, 

L. G. T. Morris, J.-W. Sidhom, J. P. Schneck, C. E. Horak, N. Weinhold, T. A. 

Chan, Tumor and Microenvironment Evolution during Immunotherapy with 

Nivolumab. Cell. 171, 934-949.e16 (2017). 

202.  J. Li, Y. Yang, H. Inoue, M. Mori, T. Akiyoshi, The expression of costimulatory 

molecules CD80 and CD86 in human carcinoma cell lines: its regulation by 

interferon γ and interleukin-10. Cancer Immunol. Immunother. 43, 213–219 

(1996). 

203.  M. R. Bernsen, L. Håkansson, B. Gustafsson, L. Krysander, B. Rettrup, D. Ruiter, 

A. Håkansson, On the biological relevance of MHC class II and B7 expression by 

tumour cells in melanoma metastases. Br. J. Cancer. 88, 424–431 (2003). 

204.  I. Tirapu, E. Huarte, C. Guiducci, A. Arina, M. Zaratiegui, O. Murillo, A. 

Gonzalez, C. Berasain, P. Berraondo, P. Fortes, J. Prieto, M. P. Colombo, L. Chen, 

I. Melero, Low Surface Expression of B7-1 (CD80) Is an Immunoescape 

Mechanism of Colon Carcinoma. Cancer Res. 66, 2442–2450 (2006). 

205.  X.-Y. Feng, L. Lu, K.-F. Wang, B.-Y. Zhu, X.-Z. Wen, R.-Q. Peng, Y. Ding, D.-

D. Li, J.-J. Li, Y. Li, X.-S. Zhang, Low expression of CD80 predicts for poor 

prognosis in patients with gastric adenocarcinoma. Future Oncol. Lond. Engl. 15, 

473–483 (2019). 

206.  C. Marchiori, M. Scarpa, A. Kotsafti, S. Morgan, M. Fassan, V. Guzzardo, A. 

Porzionato, I. Angriman, C. Ruffolo, S. Sut, S. Dall’Acqua, R. Bardini, R. De Caro, 

C. Castoro, M. Scarpa, I. Castagliuolo, Epithelial CD80 promotes immune 

surveillance of colonic preneoplastic lesions and its expression is increased by 

oxidative stress through STAT3 in colon cancer cells. J. Exp. Clin. Cancer Res. 38, 

190 (2019). 

207.  P. L. Ganesan, S. I. Alexander, D. Watson, G. J. Logan, G. Y. Zhang, I. E. 

Alexander, Robust anti-tumor immunity and memory in Rag-1-deficient mice 

following adoptive transfer of cytokine-primed splenocytes and tumor CD80 

expression. Cancer Immunol. Immunother. 56, 1955–1965 (2007). 

208.  S. Spranger, H. K. Koblish, B. Horton, P. A. Scherle, R. Newton, T. F. Gajewski, 

Mechanism of tumor rejection with doublets of CTLA-4, PD-1/PD-L1, or IDO 

blockade involves restored IL-2 production and proliferation of CD8+ T cells 

directly within the tumor microenvironment. J. Immunother. Cancer. 2, 3 (2014). 

209.  B. Farhood, M. Najafi, K. Mortezaee, CD8+ cytotoxic T lymphocytes in cancer 

immunotherapy: A review. J. Cell. Physiol. 234, 8509–8521 (2019). 

210.  F. Bengsch, D. M. Knoblock, A. Liu, F. McAllister, G. L. Beatty, CTLA-4/CD80 

pathway regulates T cell infiltration into pancreatic cancer. Cancer Immunol. 

Immunother. 66, 1609–1617 (2017). 

211.  M. Scarpa, P. Brun, M. Scarpa, S. Morgan, A. Porzionato, A. Kotsafti, M. 

Bortolami, A. Buda, R. D’Incà, V. Macchi, G. C. Sturniolo, M. Rugge, R. Bardini, 



 
 

61 

I. Castagliuolo, I. Angriman, C. Castoro, CD80-CD28 signaling controls the 

progression of inflammatory colorectal carcinogenesis. Oncotarget. 6, 20058–

20069 (2015). 

212.  G. Madonna, C. Ballesteros-Merino, Z. Feng, C. Bifulco, M. Capone, D. 

Giannarelli, D. Mallardo, E. Simeone, A. M. Grimaldi, C. Caracò, G. Botti, B. A. 

Fox, P. A. Ascierto, PD-L1 expression with immune-infiltrate evaluation and 

outcome prediction in melanoma patients treated with ipilimumab. 

OncoImmunology. 7, e1405206 (2018). 

213.  S. M. Krummey, C. R. Hartigan, D. Liu, M. L. Ford, CD28-Dependent CTLA-4 

Expression Fine-Tunes the Activation of Human Th17 Cells. iScience. 23, 100912 

(2020). 

214.  T. L. Walunas, J. A. Bluestone, CTLA-4 Regulates Tolerance Induction and T Cell 

Differentiation In Vivo. J. Immunol. 160, 3855–3860 (1998). 

215.  S. C. Wei, J. H. Levine, A. P. Cogdill, Y. Zhao, N.-A. A. S. Anang, M. C. Andrews, 

P. Sharma, J. Wang, J. A. Wargo, D. Pe’er, J. P. Allison, Distinct Cellular 

Mechanisms Underlie Anti-CTLA-4 and Anti-PD-1 Checkpoint Blockade. Cell. 

170, 1120-1133.e17 (2017). 

216.  W. Hansen, M. Hutzler, S. Abel, C. Alter, C. Stockmann, S. Kliche, J. Albert, T. 

Sparwasser, S. Sakaguchi, A. M. Westendorf, D. Schadendorf, J. Buer, I. Helfrich, 

Neuropilin 1 deficiency on CD4+Foxp3+ regulatory T cells impairs mouse 

melanoma growth. J. Exp. Med. 209, 2001–2016 (2012). 

217.  F. Arce Vargas, A. J. S. Furness, K. Litchfield, K. Joshi, R. Rosenthal, E. Ghorani, 

I. Solomon, M. H. Lesko, N. Ruef, C. Roddie, J. Y. Henry, L. Spain, A. Ben Aissa, 

A. Georgiou, Y. N. S. Wong, M. Smith, D. Strauss, A. Hayes, D. Nicol, T. O’Brien, 

L. Mårtensson, et al. Effector Function Contributes to the Activity of Human Anti-

CTLA-4 Antibodies. Cancer Cell. 33, 649-663.e4 (2018). 

218.  M. Zhang, Y. Wu, D. Bastian, S. Iamsawat, J. Chang, A. Daenthanasanmak, H. D. 

Nguyen, S. Schutt, M. Dai, F. Chen, W.-K. Suh, X.-Z. Yu, Inducible T-Cell Co-

Stimulator Impacts Chronic Graft-Versus-Host Disease by Regulating Both 

Pathogenic and Regulatory T Cells. Front. Immunol. 9, 1461 (2018). 

219.  D.-Y. Li, X.-Z. Xiong, ICOS+ Tregs: A Functional Subset of Tregs in Immune 

Diseases. Front. Immunol. 11, 2104 (2020). 

220.  M. L. di Ricco, E. Ronin, D. Collares, J. Divoux, S. Grégoire, H. Wajant, T. 

Gomes, Y. Grinberg‐Bleyer, V. Baud, G. Marodon, B. L. Salomon, Tumor necrosis 

factor receptor family costimulation increases regulatory T-cell activation and 

function via NF-κB. Eur. J. Immunol. 50, 972–985 (2020). 

221.  M. Šmahel, I. Poláková, E. Sobotková, E. Vajdová, Systemic Administration of 

CpG Oligodeoxynucleotide and Levamisole as Adjuvants for Gene-Gun-Delivered 

Antitumor DNA Vaccines. Clin. Dev. Immunol. 2011, 176759 (2011). 

222.  C. A. Hartl, A. Bertschi, R. B. Puerto, C. Andresen, E. M. Cheney, E. A. 

Mittendorf, J. L. Guerriero, M. S. Goldberg, Combination therapy targeting both 



 
 

62 

innate and adaptive immunity improves survival in a pre-clinical model of ovarian 

cancer. J. Immunother. Cancer. 7, 199 (2019). 

223.  K. M. Storey, S. E. Lawler, T. L. Jackson, Modeling Oncolytic Viral Therapy, 

Immune Checkpoint Inhibition, and the Complex Dynamics of Innate and 

Adaptive Immunity in Glioblastoma Treatment. Front. Physiol. 11, 151 (2020). 

224.  A. Grzelak, I. Polakova, J. Smahelova, J. Vackova, L. Pekarcikova, R. Tachezy, 

M. Smahel, Experimental Combined Immunotherapy of Tumours with Major 

Histocompatibility Complex Class I Downregulation. Int. J. Mol. Sci. 19, 3693 

(2018). 

225.  G. M. Delgoffe, S.-R. Woo, M. E. Turnis, D. M. Gravano, C. Guy, A. E. Overacre, 

M. L. Bettini, P. Vogel, D. Finkelstein, J. Bonnevier, C. J. Workman, D. A. A. 

Vignali, Stability and function of regulatory T cells is maintained by a neuropilin-

1–semaphorin-4a axis. Nature. 501, 252–256 (2013). 

226.  N. Bercovici, A. Trautmann, Revisiting the role of T cells in tumor regression. 

Oncoimmunology. 1, 346–350 (2012). 

227.  T. C. van der Sluis, M. Sluijter, S. van Duikeren, B. L. West, C. J. M. Melief, R. 

Arens, S. H. van der Burg, T. van Hall, Therapeutic Peptide Vaccine-Induced CD8 

T Cells Strongly Modulate Intratumoral Macrophages Required for Tumor 

Regression. Cancer Immunol. Res. 3, 1042–1051 (2015). 

228.  M. Thoreau, H. L. Penny, K. Tan, F. Regnier, J. M. Weiss, B. Lee, L. Johannes, E. 

Dransart, A. Le Bon, J.-P. Abastado, E. Tartour, A. Trautmann, N. Bercovici, 

Vaccine-induced tumor regression requires a dynamic cooperation between T cells 

and myeloid cells at the tumor site. Oncotarget. 6, 27832–27846 (2015). 

229.  A. P. Lepique, K. R. P. Daghastanli, I. M. Cuccovia, L. L. Villa, HPV16 Tumor 

Associated Macrophages Suppress Antitumor T Cell Responses. Am. Assoc. 

Cancer Res. 15, 4391–4400 (2009). 

230.  C. D. Mills, Anatomy of a Discovery: M1 and M2 Macrophages. Front. Immunol. 

6, 212 (2015). 

231.  A. Mantovani, S. Sozzani, M. Locati, P. Allavena, A. Sica, Macrophage 

polarization: tumor-associated macrophages as a paradigm for polarized M2 

mononuclear phagocytes. Trends Immunol. 23, 549–555 (2002). 

232.  M. Rath, I. Müller, P. Kropf, E. I. Closs, M. Munder, Metabolism via Arginase or 

Nitric Oxide Synthase: Two Competing Arginine Pathways in Macrophages. 

Front. Immunol. 5, 532 (2014). 

233.  M. R. Zaidi, The Interferon-Gamma Paradox in Cancer. J. Interferon Cytokine Res. 

39, 30–38 (2018). 

234.  I. Romero, C. Garrido, I. Algarra, V. Chamorro, A. Collado, F. Garrido, A. M. 

Garcia-Lora, MHC Intratumoral Heterogeneity May Predict Cancer Progression 

and Response to Immunotherapy. Front. Immunol. 9, 102 (2018). 



 
 

63 

235.  F. Garrido, N. Aptsiauri, E. M. Doorduijn, A. M. Garcia Lora, T. van Hall, The 

urgent need to recover MHC class I in cancers for effective immunotherapy. Curr. 

Opin. Immunol. 39, 44–51 (2016). 

236.  H. S. Kim, J. Garcia, M. Exley, K. W. Johnson, S. P. Balk, R. S. Blumberg, 

Biochemical characterization of CD1d expression in the absence of beta2-

microglobulin. J. Biol. Chem. 274, 9289–9295 (1999). 

237.  W.-C. Huang, D. Wu, Z. Xie, H. E. Zhau, T. Nomura, M. Zayzafoon, J. Pohl, C.-

L. Hsieh, M. N. Weitzmann, M. C. Farach-Carson, L. W. K. Chung, beta2-

microglobulin is a signaling and growth-promoting factor for human prostate 

cancer bone metastasis. Cancer Res. 66, 9108–9116 (2006). 

238.  T. Nomura, W.-C. Huang, H. E. Zhau, D. Wu, Z. Xie, H. Mimata, M. Zayzafoon, 

A. N. Young, F. F. Marshall, M. N. Weitzmann, L. W. K. Chung, β2-Microglobulin 

Promotes the Growth of Human Renal Cell Carcinoma through the Activation of 

the Protein Kinase A, Cyclic AMP–Responsive Element-Binding Protein, and 

Vascular Endothelial Growth Factor Axis. Clin. Cancer Res. 12, 7294–7305 

(2006). 

239.  K. Das, D. Eisel, C. Lenkl, A. Goyal, S. Diederichs, E. Dickes, W. Osen, S. B. 

Eichmüller, Generation of murine tumor cell lines deficient in MHC molecule 

surface expression using the CRISPR/Cas9 system. PloS One. 12, e0174077 

(2017). 

240.  T. Kawano, J. Cui, Y. Koezuka, I. Toura, Y. Kaneko, K. Motoki, H. Ueno, R. 

Nakagawa, H. Sato, E. Kondo, H. Koseki, M. Taniguchi, CD1d-Restricted and 

TCR-Mediated Activation of Vα14 NKT Cells by Glycosylceramides. Science. 

278, 1626–1629 (1997). 

 

 



 
 

64 

7. REPRINTS OF PUBLICATIONS 

 



 
 

65 



 
 

66 



 
 

67 



 
 

68 



 
 

69 



 
 

70 



 
 

71 



 
 

72 



 
 

73 

 



 
 

74 



 
 

75 



 
 

76 



 
 

77 

 



 
 

78 



 
 

79 



 
 

80 



 
 

81 



 
 

82 



 
 

83 



 
 

84 



 
 

85 



 
 

86 



 
 

87 



 
 

88 



 
 

89 



 
 

90 



 
 

91 



 
 

92 



 
 

93 



 
 

94 

 



 
 

95 



 
 

96 



 
 

97 



 
 

98 



 
 

99 



 
 

100 



 
 

101 



 
 

102 



 
 

103 



 
 

104 



 
 

105 



 
 

106 



 
 

107 



 
 

108 



 
 

109 



 
 

110 



 
 

111 



 
 

112 



 
 

113 



 
 

114 



 
 

115 



 
 

116 



 
 

117 



 
 

118 



 
 

119 



 
 

120 



 
 

121 



 
 

122 



 
 

123 



 
 

124 



 
 

125 

 


