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e-mail vedoućıho: pawlas@karlin.mff.cuni.cz
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funkce vyhlazen. Následně je uveden Kaplan̊uv-Meier̊uv odhad funkce přežit́ı. Je
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Introduction

Set-indexed random processes are a generalization of classic random processes in
R1. This generalization is somehow a delicate point. The reason is as follows: if
we have a “time-indexed” random process {Xt, t ≥ 0}, we can for each Xt and
Xs decide whether t < s or vice-versa. On the other hand, for two general sets
in Rd

+ we cannot explicitly decide which one is “greater”, because we do not have
an unique ordering in Rd

+. Therefore, we must develop a suitable structure of the
indexing sets, which will allow us to work with set-indexed random processes in
a way which will be as much as possible analogous to the one-dimensional case.

In this thesis, the set-indexed random processes will provide us a theoretical back-
ground to the solution of the following problem. We consider a point process of
some particles in Rn, which we observe in a bounded observation window. We
associate a vector of d parameters with each particle. For a given realization we
assume that the parameters can be determined for the particle lying completely in
the window. However, for only partially observable particles the information about
these parameters is incomplete. Our aim is to estimate the distribution of these
parameters. Since these parameters should describe some geometrical qualities of
the observed particles (e.g. surface, volume, diameter), it is natural to assume that
these parameters are non-negative.

We will use the following mathematical construction to represent the described
problem. For every particle of the realization of our particle process, we create
a d-dimensional vector describing the particle. Naturally, each of these vectors can
be represented as a point in Rd

+, therefore it belongs to some suitably chosen set
in Rd

+. We will use a theory of set-indexed random processes in Rd
+ to construct

a d-dimensional estimator for our vector.

Since we are dealing with censored data, there is an analogy with survival data
analysis. We will be mainly interested in the estimation of the cumulative hazard
rate, the hazard rate, and the survival function. For this purpose, we will apply
the theory of set-indexed survival analysis, which is presented in [7].

This thesis will be divided into three chapters. In Chapter 1, we will consider
the one-dimensional case and we will develop a Nelson-Aalen estimator of the
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cumulative hazard rate. Then we will smooth this estimator to get an estimator of
the hazard rate. At the end of Chapter 1, we will develop a Kaplan-Meier estimator
of the survival function.

In Chapter 2, we will introduce the issue of set-indexed random processes, which is
taken from [6], and based on this concept, we will develop an analogy to the Nelson-
Aalen estimator for the cumulative hazard rate in d dimensions. The analogy
between the one-dimensional and the multi-dimensional case will be studied. We
will also introduce a generalization of the smoothed Nelson-Aalen estimator and
a multi-dimensional Kaplan-Meier estimator, for which the distinction between the
one-dimensional and the multi-dimensional estimator will be explained.

In Chapter 3, we will apply our theoretical achievements to simulated data and we
will estimate the hazard rate and the survival function in some particular cases.
Based on these results, the influence of the selected parameters will be discussed.
The Kaplan-Meier estimator will be compared with a Horvitz-Thompson estimator
which uses only information about the completely observed particles.

The thesis concludes with a brief discussion of the problem and suggestions for
further research.
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Chapter 1

One-dimensional case

Let us consider the situation which was described in Introduction. As we have
mentioned, we will work with a point process of particles. Hence, it is necessary to
define the particle process and its desired properties exactly. This will be done in
the following section.

1.1 Particle processes

In this section, we give basic definitions for point processes of compact sets. We
follow [9] and [10], where more details can be found.

Let (K′, %) be the family of non-empty compact subsets of Rn endowed with the
Hausdorff metric

%(K,L) = max

{
sup
x∈K

d(x, L), sup
y∈L

d(y, L)

}
, K, L ∈ K′,

where d(x, L) = infz∈L ‖x−z‖ is the distance of the point x to the set L. Denote by
N the set of locally finite counting measures on K′. We equip N with a σ-algebra
N which is defined as the smallest σ-algebra on N making the mappings ψ 7→ ψ(U)
measurable for all Borel sets U ∈ B(K′).

Definition 1.1.1 (Particle process) A measurable mapping Ψ : (Ω,F, P ) −→
(N,N) is called a point process of compact sets or a particle process.

We will consider stationary particle processes.
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Definition 1.1.2 (Stationary point process) Let tz be a shift operator on N

defined as
tzψ(U) = ψ({K − z : K ∈ U}), U ∈ B(K′).

A point process Ψ on K′ is stationary if its distribution is invariant with respect
to tz, i.e. Ψ and tzΨ have the same distribution for all z ∈ Rn.

Definition 1.1.3 (Reference point) Let c : K′ −→ Rn be a measurable map-
ping that is equivariant under translations, i.e. c(K +x) = c(K)+x for all x ∈ Rn

and K ∈ K′. A point c(K) will be referred as the reference point of the particle K.
Furthermore, denote K′

0 = {K ∈ K′ : c(K) = 0} the family of non-empty compact
subsets of Rn with the reference point in the origin.

There are many possibilities how to choose the mapping c. In this thesis, we will
assume (if not stated otherwise) that the reference point is the minimum point
with respect to the lexicographic order.

A measurable mapping φ : (x,K0) 7→ x + K0 is a bijection of Rn × K′
0 onto

K′. Obviously, the inverse mapping is φ−1 : K 7→ (c(K), K − c(K)). Using this
bijection, we can identify each stationary particle process Ψ with a stationary
marked point process Ψ̃ having the mark space K′

0:

Ψ({K}) > 0 ⇐⇒ Ψ̃({φ−1(K)}) > 0.

In the remainder of the thesis, we do not distinguish between Ψ and Ψ̃ and use the
same symbol Ψ for both of them. It means that we can use the representation

Ψ =
∑

i

δ(Xi,Ξi), (1.1)

where the points {Xi} form a stationary point process

Φ =
∑

i

δXi

on Rn with an intensity α and the marks Ξi belong to K′
0. The process (1.1) is also

called a germ-grain process, see [5] or [10].

We will assume that (1.1) is an independently marked point process, i.e. Φ and {Ξi}
are independent, and {Ξi} is a sequence of independent identically distributed
random elements of K′

0. The common distribution of the particles Ξi coincides
with the mark distribution of the marked point process Ψ. Let Ξ0 be a random
compact set having this distribution; it is called a typical particle.

Later, we will often consider stationary Poisson particle processes. Every stationary
Poisson particle process is automatically independently marked point process (see
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[10], 4.3.3), and the corresponding point process of reference points is a stationary
Poisson point process.

It was mentioned in Introduction that we will consider a d-dimensional vector
of non-negative parameters associated with the particles. Our aim is to get the
estimates of the distributional properties of this vector based on a single realization
of the particle process in a bounded observation window W . We suppose that for
completely observed particles, we have an information about the vector. But since
the window W is bounded, edge effects cause that some of the particles may be only
partially observable. This can be considered as a type of random censoring. We
will exploit the methods from survival analysis to deal with the censoring effects
in our problem.

In addition to the censoring effects, another type of edge effects is spatial sampling
bias, see [2]. The probability of observing a particle depends on its size or shape. It
is intuitively clear that larger particles have greater chance to hit the observation
window. In order to avoid sampling bias, we will take into account only those
particles whose reference points lie in W .

In this chapter, we concern ourselves with the case d = 1. For concreteness,
we consider the process of discs in R2, and we are interested in two geometrical
parameters for each disc: its area and perimeter. Since both parameters depend
only on the radius of the disc, our two-dimensional vector can be calculated from
a single one-dimensional variable. Therefore, we will construct the estimators in
one dimension. This construction does not require a theory of set-indexed random
processes, but it gives us a basic principle which is then generalized in the multi-
dimensional case as will be apparent in the following chapters. We denote the
radius of the disc Ξi by Yi.

It is useful to note that if the window is rectangular, we can determine the radius
of each disc with the lexicographic minimum point in the window even if we are
not able to observe the full extent of the disc. Thus, there are in fact no censoring
effects in this situation. In this way, we obtain an additional information, and it is
possible to construct a better (uncensored) estimator.

In the following section we will use some theory about jump processes and martin-
gales to get an estimator of the hazard rate of the one-dimensional vector formed
by the radius of the typical disc Ξ0.

1.2 Nelson-Aalen estimator

We will write down a few definitions and propositions which are needed to make
the terminology clear and unified.
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Definition 1.2.1 (Cadlag process) Let (Ω,F, P ) be a probability space and
(X(t), t ∈ T), where T = [0, T ] for some T ∈ R+, be a stochastic process on
this space. Then X is called a cadlag process if its sample paths (X(t, ω), t ∈ T)
are right-continuous with left-hand limits P -almost surely (a.s.).

Definition 1.2.2 (Multivariate counting process) Let (Ω,F, P ) be a proba-
bility space equipped with a filtration (Ft, t ≥ 0) that satisfies the usual conditions,
i.e. it is increasing, right continuous and complete. A multivariate counting process

N = (N1, . . . , Nm)

is a vector of m adapted cadlag processes, all zero at time zero and with paths that
are piecewise constant and non-decreasing and have jumps of size +1 only. No two
components may jump simultaneously a.s.

Remark 1.2.1 Since the components of a counting process N are adapted, cadlag,
locally bounded, and non-decreasing, they are local submartingales and therefore
have compensators Λi, i = 1, . . . , m. Thus, Mi = Ni − Λi is a local martingale for
every i = 1, . . . , m.

Definition 1.2.3 (Intensity process) Let N = (N1, . . . , Nm) be a multivariate
counting process. We say that Ni has an intensity process λi if

Λi(t) =

∫ t

0

λi(s) ds,

where Λi is a compensator of Ni. If Ni has an intensity process λi for every
i = 1, . . . , m, we say that the process N has an intensity process λ = (λ1, . . . , λm).

Definition 1.2.4 (Multiplicative intensity model) Let N = (N1, . . . , Nm) be
a multivariate counting process with an intensity process λ = (λ1, . . . , λm). We say
that N satisfies the multiplicative intensity model if λi can be written in the form

λi(t) = ai(t)Zi(t), i = 1, . . . , m,

where ai(t) is a non-negative deterministic function, and Zi(t) is a predictable
process.

Let us consider a multivariate counting process N = (N1, . . . , Nm) with an intensity
process λ = (λ1, . . . , λm) satisfying the multiplicative intensity model

λi(t) = ai(t)Zi(t), i = 1, . . . , m.
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We want to get an estimator for

Ai(t) =

∫ t

0

ai(s) ds, i = 1, . . . , m.

Since

Mi(t) = Ni(t) −
∫ t

0

ai(s)Zi(s) ds

is a local martingale, we can write symbolically

dNi(t) = ai(t)Zi(t)dt + dMi(t),

where dMi(t) can be considered as a “random noise” component. By this, we get
an estimator of Ai(t) as

Âi(t) =

∫ t

0

Zi(s)
−1 dNi(s).

Remark 1.2.2 Some problems could arise at this point if there would exist some
t ∈ R+ for which Zi(t) = 0. At this point, we will assume that Zi(t) is positive,
and we will return to this problem later when we will have particular process Zi(t).

Let Ti1 < Ti2 < . . . denote the successive jump times of Ni. Then Ni gives mass 1
to each of these jump times and mass 0 elsewhere, i.e.

Ni =
∑

j

δTij
.

Thus, it follows that we may write Âi(t) as a simple sum

Âi(t) =
∑

{j:Tij≤t}

Zi(Tij)
−1, i = 1, . . . , n.

The function Âi(t) is called a Nelson-Aalen estimator.

Now, we will work with a special counting process N(t) to get the results which
will be applicable to our situation. First, we define a univariate counting process
N by

N(t) = I(Y ≤ t), (1.2)

where Y is a non-negative random variable with an absolutely continuous distri-
bution function F , the survival function S = 1−F , and the density f . The hazard
rate of Y is defined as

h(t) =
f(t)

S(t)
.
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This random variable Y will stand for the radius of the typical disc Ξ0, so for
clarity, we will denote the variable by r instead of t.

Along with the hazard rate, we define the cumulative hazard rate by

H(r) =

∫ r

0

h(s) ds.

We will now prove the following key proposition, which gives us the form of a com-
pensator of N . Both Proposition 1.2.1 and its proof are taken from [1].

Proposition 1.2.1 The counting process N defined in (1.2) has a compensator Λ0

given by

Λ0(r) =

∫ r

0

h(s)Z0(s) ds

and, hence, N has an intensity process λ0 in the form

λ0(r) = h(r)Z0(r),

where Z0(r) is a left-continuous adapted process defined as Z0(r) = I(Y ≥ r), and
h(r) is the hazard rate of Y .

Proof : Let τF be the upper limit of the support of F and

Nr = σ{N(s) : s ≤ r} = σ{Y ∧ r, I(Y ≤ r)}
be the filtration generated by the process N . We note that Λ0 is predictable (it is
continuous and adapted), so we need only to verify that M = N − Λ0 is a local
martingale (and therefore a square integrable martingale, as can be found in [1]).
To show the martingale property, it suffices to verify that

E[M(∞)|Nr] = M(r),

because this implies, for s < r,

E[M(r)|Ns] = E[E[M(∞)|Nr]|Ns]

= E[M(∞)|Ns]

= M(s).

First, we will consider the case r = 0. Because N0 is trivial, we must show that
E[M(∞)] = 0. We have N(∞) = 1 and

E[Λ0(∞)] = E
∫ τF

0

h(s)Z0(s) ds

=

∫ τF

0

P (Y ≥ s)h(s) ds

=

∫ τF

0

S(s)
f(s)

S(s)
ds =

∫ τF

0

f(s) ds = 1.
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Next, we will show that the result for general r follows from that for r = 0. When
conditioning on Nr = σ{Y ∧ r, I(Y ≤ r)}, we have to consider two separate cases:
conditioning on Y = s ≤ r for some s ≤ r and conditioning on Y > r. In the first
case, M(∞) = M(r) = M(s) and there is nothing to prove. In the second case,

M(∞) −M(t) = 1 −
∫ τF

t

I(Y ≥ s)h(s) ds

and we must show that the expectation of this random variable, given Y > r, is
zero. But conditionally on Y > r, Y has the hazard rate hI(r,τF ). So this is just
the same as the case r = 0 only with a different hazard rate.

�

Now, we can define the process N(r). It will be based on the radii of the discs
Xi + Ξi such that Xi ∈ W . Let N 0 = (N1, . . . , NΦ(W )) be a counting process with

Ni(r) = I(Yi ≤ r),

where Yi are iid non-negative random variables (the radii of the discs Ξi) with the
same distribution as Y above. We note that since no two components of N 0 jump
simultaneously a.s.,

N(r) =
∑

i

Ni(r) =
∑

i

I(Yi ≤ r)

is also a counting process. Since the process Ψ is independently marked, then from
Proposition 1.2.1 it immediately follows that N has a compensator

Λ(r) =

∫ r

0

h(s)Z(s) ds,

where
Z(r) =

∑

i

I(Yi ≥ r).

Using the previous results, we can now construct a Nelson-Aalen estimator of the
cumulative hazard rate:

Ĥ(r) =
∑

{j:Yj≤r}

Z(Yj)
−1. (1.3)

Remark 1.2.3 If we return to Remark 1.2.2, we see that if there exists some
r1 > 0 such that Z(r1) = 0, then there will be no observed disc with radius greater
than r1. But in that case, it would be natural to set Ŝ(r1) = 0, and the estimation
of H(r1) would make no sense. Therefore, we will construct an estimator only for
r ∈

(
0,maxi=1,...,Φ(W ) Yi

)
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The last constructed estimate (1.3) is however an uncensored one, i.e. it could be
used if we had a complete observation, as it is, for example, in the case of the
process of discs observed in some rectangular window. Generally, if some of the
variables Yi are censored, we only know some lower boundary which they certainly
exceed. From the observation of the process in the window W we get the censored
sample (Ỹi, Di), where Ỹi = Yi ∧ Ci, Di = I(Ỹi = Yi) and Ci are the censoring
random variables. According to the definition of the process of discs, Xi is the
lexicographic minimum point of the disc Xi + Ξi which has the radius Yi. If we
omit the possibility to determine the radii exactly, we can define the right-censoring
random variables as

Ci = d(Xi, ∂W ) = inf
w∈∂W

‖Xi − w‖.

The Ci form a right-censoring process C.

Definition 1.2.5 (Independent censoring) Let N be a multivariate counting
process with a compensator Λ with respect to a given filtration (Ft). Let C be
a right-censoring process which is adapted to a filtration (Gt) ⊇ (Ft). Then we
call the right-censoring of N generated by C independent if the compensator of N

with respect to (Gt) is also Λ.

Analogously to Proposition 1.2.1, it can be proved that if the censoring is indepen-
dent, the univariate counting process

NC(r) =
∑

i

I(Ỹi ≤ r,Di = 1)

satisfies the multiplicative intensity model with λ(r) = h(r)ZC(r), where

ZC(r) =
∑

i

I(Ỹi ≥ r).

But from the definition of Ci and from the assumptions we made on Ψ it is obvious
that our censoring is independent. Now, it is easy to see that in this situation the
Nelson-Aalen estimator will be

ĤC(r) =
∑

{j:fYj≤r}

Dj

ZC(Ỹj)
.

1.3 Smoothing of Nelson-Aalen estimator

In the previous section, we constructed a censored version of the Nelson-Aalen
estimator of the cumulative hazard rate. But the subject of our interest is mainly
the hazard rate h(r), so we will now smooth the Nelson-Aalen estimator to get
a censored-case estimator ĥC(r) of h(r). To achieve this, we will use a kernel
function estimator.
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Definition 1.3.1 (Kernel function) The function k : R −→ R is called a kernel
function if k is bounded, non-negative, vanishes outside [−1, 1], and has an integral
equal to 1.

Now, we construct a kernel function estimator of h(r):

ĥC(r) = b−1

∫ ∞

0

k

(
r − s

b

)
dĤC(s),

where the bandwidth b is a positive parameter.
As ĤC is a step-function, the last integral can be again written as a sum:

ĥC(r) = b−1
∑

j

k

(
r − Ỹj

b

)
· Dj

ZC(Ỹj)
.

First, we must note that since k vanishes outside [−1, 1], only those indices j

contribute to the sum for which r − b ≤ Ỹj ≤ r + b. Second, it is obvious that
particular values of this estimator will depend on the choice of k and b. We will
discuss this problem in Chapter 3.

1.4 Kaplan-Meier estimator

In this section, we will derive a Kaplan-Meier estimator of the survival function S.
To see how this estimator is created, we use a different formulation of the survival
function S, which can be found in [1]. In order to write down the formula, we need
the following definition.

Definition 1.4.1 (Product integral) Let X(t), t ∈ T be a cadlag function. We
define a product integral of X over intervals of the form [0, t], t ∈ T as

R
s≤t

(1 +X(ds)) = lim
max |ti−ti−1|→0

∏
(1 +X(ti) −X(ti−1)),

where 0 = t0 < t1 < . . . < tk = t is a partition of [0, t].

The survival function can be written in the following form:

S(r) = R
s≤r

(1 − dH(s)), r ∈ T = [0, ρ) with ρ = sup{r : S(r) > 0},

where H(r) is the cumulative hazard rate.
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But now, since we have the Nelson-Aalen estimator of H(r), it is straightforward
to define a Kaplan-Meier estimator ŜC(r):

ŜC(r) = R
s≤r

(1 − dĤC(s)).

Because Ĥ is a step-function, we may write

ŜC(r) =
∏

s≤r

(1 − ∆ĤC(s)) =
∏

{j:fYj≤r}

(
1 − Dj

ZC(Ỹj)

)
,

where
∆ĤC(s) = ĤC(∆s) = ĤC(s) − ĤC(s−).
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Chapter 2

Multi-dimensional case

2.1 Set-indexed random processes

In this chapter, we will consider our problem in a general way. At the beginning,
a framework of set-indexed processes will be established, making the terminology
analogous to the terminology in the one-dimensional case as much as possible in
order to make the analogy between these two cases clear. The framework of set-
indexed processes is taken from [6].

Let T be a locally compact Hausdorff space and ν a measure on B (the Borel sets
of T ) which is finite on compact sets. All processes will be indexed by a class A of
compact connected subsets of T . We will now define some properties of such class,
which are needed for consistent definition of set-indexed random processes.

In what follows, A(u) will denote the class of finite unions of sets from A, (·) and
(·)◦ will denote, respectively, the closure and the interior of a set.

Definition 2.1.1 (Indexing collection) A non-empty class A of compact, con-
nected subsets of T is called an indexing collection if it satisfies the following con-
ditions:

(i) ∅ ∈ A and ∀A ∈ A, A 6= A◦ if A 6= ∅ or T . In addition, there is an increasing
sequence (Bn) of sets in A(u) such that T =

⋃∞
n=1B

◦
n.

(ii) A is closed under arbitrary intersections and if A,B ∈ A are non-empty, then
A ∩ B is non-empty. If (Ai) is an increasing sequence in A and there exists
n such that Ai ⊆ Bn for every i, then

⋃
iAi ∈ A. (Such a sequence (Ai) is

called bounded.)
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(iii) For σ(A) (the σ-algebra generated by A) it holds σ(A) = B.

(iv) Separability from above: There exists an increasing sequence of finite sub-
classes An = {An

1 , . . . , A
n
kn
} of A closed under intersections and satisfy-

ing ∅, Bn ∈ A(u) (Bn is defined in (i) above) and a sequence of functions
gn : A −→ A(u) ∪ {T} such that:

(a) gn preserves arbitrary intersections and finite unions, i.e. gn(
⋂

A∈A′ A) =⋂
A∈A′ gn(A) for any A′ ⊆ A, and

⋃k

i=1 gn(Ai) =
⋃m

j=1 gn(A
′
j) whenever⋃k

i=1Ai =
⋃m

j=1A
′
j,

(b) for each A ∈ A, A ⊆ (gn(A))◦,

(c) gn(A) ⊆ gm(A) if n ≥ m,

(d) for each A ∈ A, A =
⋂

n gn(A),

(e) if A,A′ ∈ A, then for every n, gn(A) ∩ A′ ∈ A, and if A′ ∈ An, then
gn(A) ∩ A′ ∈ An.

(f) gn(∅) = ∅ ∀n.

(v) Every countable intersection of sets in A(u) may be expressed as a closure of
a countable union of sets in A.

Further, for t ∈ T we define the following sets:

• The “past” of t: At =
⋂{A,A ∈ A, t ∈ A}.

• The “future” of t: Et =
⋂{Bc, B ∈ A, t /∈ B}.

We shall also define a class C of all subsets of T of the form

C = A \B, A ∈ A, B ∈ A(u).

At this point, the purpose of defining the class C may not be clear, but it will be
necessary for the definition of a set-indexed martingale.

Remark 2.1.1 When developing the multi-dimensional analogy to the Nelson-
Aalen estimator, we will use the following particular T and A:

T = Rd
+,

A = {[0, t] : t ∈ Rd
+}, (2.1)

where [0, t] = [0, t1]× · · · × [0, td], t = (t1, . . . , td). It is obvious that this particular
A satisfies the conditions to be an indexing collection on T . Furthermore, the class
C(u) (the class of finite unions of sets from C) consists of all finite unions of disjoint
rectangles of the form

(s, t] , s, t ∈ Rd
+.

It is also easily seen that At = [0, t] and Et = [t,∞), t ∈ Rd
+.
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Since we want to define a random process on A and later a set-indexed martingale,
we have to define an A-indexed filtration.

Definition 2.1.2 (Set-indexed filtration) Let (Ω,F, P ) be any complete prob-
ability space. An A-indexed filtration is a class {FA, A ∈ A} of complete sub-σ-
fields of F which satisfies the following conditions:

(i) ∀A,B ∈ A,FA ⊆ FB, if A ⊆ B,

(ii) monotone outer-continuity: F∩Ai
=
⋂

FAi
for any decreasing sequence (Ai)

in A,

(iii) if T /∈ A, then FT = F.

We are now able to define a set-indexed stochastic process.

Definition 2.1.3 (Set-indexed stochastic process) For an indexing collection
A we define an A-indexed stochastic process X = {XA, A ∈ A} as a collection of
random variables indexed by A. It is said to be adapted if XA is FA-measurable
for every A ∈ A. The process X is said to be integrable if E|XA| < ∞ for every
A ∈ A. The process X : Ω −→ R is increasing if X can be extended to a finitely
additive process on C, X∅ = 0 and XC ≥ 0 ∀C ∈ C a.s.

At this point, we will construct the σ-algebra G∗
C , which will allow us to define

a strong martingale. If B ∈ A(u), then

F0
B =

∨

A∈A,A⊆B

FA,

where
∨

FA is the smallest σ-algebra generated by
⋃

FA. The σ-algebras {F0
B : B ∈

A(u)} are complete and increasing, but not necessarily monotone outer-continuous.
Thus, we define

FB =
⋂

n∈N

F0
gn(B), B ∈ A(u),

G∗
C =

∨

B∈A(u),B∩C=∅

FB, C ∈ C(u)\A,

G∗
A = F∅, A ∈ A.

Definition 2.1.4 (Set-indexed martingales) Let X = {XA, A ∈ A} be an
adapted and integrable additive process.
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(i) X is called a strong martingale if for all C ∈ C we have E[XC |G∗
C ] = 0.

(ii) If the process X satisfies the condition of strong martingale, but it is not
adapted, we call it a pseudo-strong martingale.

Definition 2.1.5 (*-compensator) A process X is called a *-compensator of the
process X if it is increasing (XC ≥ 0 for all C ∈ C), and the difference X −X is
a pseudo-strong martingale. The *-compensator is not necessarily unique.

We are now in a position to define the multi-dimensional hazard rate. Let (Ω,F, P )
be a complete probability space and Y : Ω −→ T be a T -valued random variable.
We denote by F the distribution function of Y : F (B) = P [Y ∈ B]. The survival
function associated with Y is

S(t) = F (Et), (2.2)

(but, in contrary to the one-dimensional case, F (At) 6= 1− S(t)). We assume that
F is absolutely continuous with respect to ν and denote by f the Radon-Nikodym
derivative of F with respect to ν on the Borel sets of T .

Under these assumptions, we define the hazard rate of Y as

h(t) =
f(t)

S(t)
, t ∈ T.

Further, we define the cumulative hazard rate as

HA =

∫

A

h(u) ν(du), A ∈ A.

Moreover, the hazard rate may be also defined as

h(t) = lim
n→∞

P (Y ∈ gn(At) | Y ∈ Et)

ν(gn(At) ∩ Et)
, (2.3)

when this limit exists.

Now, using the random variable Y from the previous paragraph, we will introduce
a single jump process N as follows. Let

N = {NA, A ∈ A} = {I(Y ∈ A), A ∈ A}

be a single jump process associated with Y and {FY
A , A ∈ A(u)} its minimal filtra-

tion: FY
A = σ{NB : B ∈ A, B ⊆ A} ∪ {P0}, where P0 is the class of P -null sets. It

can be easily shown that FY is monotone outer-continuous. We also note that the
process N can be extended to an additive process on the more general index sets
A(u) and C.

The following proposition will give us a form of the *-compensator of our jump
process N .
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Proposition 2.1.1 The process Λ defined by

ΛA =

∫

A∩AY

F (Eu)
−1 F (du)

=

∫

A∩AY

h(u) ν(du)

=

∫

A

I(Y ∈ Eu)h(u) ν(du)

is a *-compensator of the process N with respect to its minimal filtration, where
AY (ω) = AY (ω).

The proof of this proposition can be found in [7].

We have enough information to be able to construct the multi-dimensional analogy
to the Nelson-Aalen estimator. But this construction is analogical to that in one
dimension, so we will leave it out, and instead we will straightly develop the cen-
sored estimator. To be able to do this, we must first introduce a multi-dimensional
censoring mechanism by defining a stopping set ξ.

Definition 2.1.6 (Stopping set) A random variable ξ : Ω −→ A(u) is a stopping
set with respect to a filtration F if for any A ∈ A, {ω : A ⊆ ξ(ω)} ∈ FA and
{ω : ∅ = ξ(ω)} ∈ F∅.

Generally, the observation of the random variable Y is “right-censored” or in our
setting “outer-censored”; that is, Y is observed not on A but only on a subset of
the form A∩ξ. Consequently, it will be necessary to assume a type of independence
between the censoring mechanism and the random variable being observed.

Definition 2.1.7 (Weak independence) Let Y be a T -valued random variable
and let FY be the minimal filtration generated by its associated jump process N .
Let F be a filtration such that FY

A ⊆ FA ∀A ∈ A(u), and let ξ be a F-stopping set.
Then ξ is weakly independent of Y if the *-compensator of N with respect to F is
the same as the *-compensator with respect to FY .

When it exists, we may define the hazard rate of the censored random variable Y
as

hξ(t) = lim
n→∞

P (Y ∈ gn(At) | Y ∈ Et, ξ * Ec
t )

ν(gn(At) ∩ Et)
.

If we look at this definition and at (2.3), it is obvious that if ξ is weakly independent
of Y , then hξ = h.
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Now, let Y be a T -valued random variable whose associated jump process N is
adapted to a filtration F and let ξ be an F-stopping set. We define a censored jump
process N ξ as

N ξ = {N ξ
A, A ∈ A} = {I(Y ∈ A ∩ ξ), A ∈ A}.

The following proposition, which is an analogoue of Proposition 2.1.1, will give us
the *-compensator of this jump process N ξ.

Proposition 2.1.2 Assume that ξ is a stopping set, weakly independent of Y .
Then the stopped process Λξ defined by

Λξ
A =

∫

A∩ξ∩AY

F (Eu)
−1 F (du)

=

∫

A∩ξ∩AY

h(u) ν(du)

=

∫

A

I(u ∈ ξ)I(Y ∈ Eu)h(u) ν(du)

is a *-compensator of N ξ.

At this point, we have enough information to be able to construct the set-indexed
version of the Nelson-Aalen estimator of the cumulative hazard rate

HA =

∫

A

h(u) ν(du)

using censored data. As in the one-dimensional case, let (Yi) be a sequence of iid T -
valued random variables with the same distribution as Y , and let (ξi) be a sequence
of stopping sets. We shall assume that for every i and j, ξi is an F-stopping set,
weakly independent of Yj. Next, we define

N
ξ
A =

∑

i

I(Yi ∈ A ∩ ξi).

Then, by independence and Proposition 2.1.2, N
ξ
A has a *-compensator in the form

ΛA =

∫

A

Z(t)h(t) ν(dt),

where
Z(t) =

∑

i

I(Yi ∈ Et)I(t ∈ ξi). (2.4)

Therefore, the process

MA = N
ξ
A −

∫

A

Z(t)h(t) ν(dt)

22



is a pseudo-strong martingale with respect to F, and, exactly as in the classical
case, we have

N
ξ(dt) = Z(t)h(t)ν(dt) +M(dt).

Regarding M as noise, we are led to the set-indexed version of the Nelson-Aalen
estimator of HA:

ĤA =

∫

A

N
ξ(dt)

Z(t)
=

∑

{j:Yj∈A∩ξj}

(Z(Yj))
−1. (2.5)

2.2 Application to a process of rectangles

Now, we will apply the developed estimator to a particular case, for which we will
later in Chapter 3 explicitly calculate the estimator from simulated data.

Our case will be as follows: Let us have a process of rectangles in the plane and
assume that we can observe this process only in a rectangular window W . Let
for simplicity the rectangles be parallel to the window W in the manner which is
shown in Figure 2.1.

The observed variables of these rectangles will be their area and perimeter as well
as in Chapter 1. But now, the number of parameters cannot be lessened, so we
have to use the multi-dimensional theory. The reference point is the lexicographic
minimum point of the rectangle (the left bottom corner). For each rectangle Ξi,
we create a vector Yi = (Y 1

i , Y
2
i ), where Y 1

i denotes the area of Ξi and Y 2
i the

perimeter of Ξi. According to Remark 2.1.1, we put

T = R2
+,

A = {[0, t] : t ∈ R2
+}.

We will regard censoring in this example in the following way. For each rectangle
Xi + Ξi we need to measure the perimeter and area, or in the case that Xi + Ξi

is not fully observed, we need to get lower boundaries for these values. For this
purpose, we will measure the distance between the left bottom corner Xi and the
right and upper boundary of the rectangular window W . These distances will be
denoted, respectively, by d1(Xi,W ) and d2(Xi,W ). Then we use these values to
construct the censoring set ξi. Explicitly,

ξi = [0, ξ1
i ] × [0, ξ2

i ],

ξ1
i = ϕ1

i · ϕ2
i ,

ξ2
i = 2(ϕ1

i + ϕ2
i ), (2.6)

where

ϕ1
i = min{d1(Xi,W ), R1

i },
ϕ2

i = min{d2(Xi,W ), R2
i }
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Figure 2.1: An example of a realization of the particle process Ψ in a rectangular
window W .

with R1
i , R

2
i denoting the lengths of the two sides of Ξi, respectively. It is obvious

that if Xi + Ξi hits the boundary of W , then we do not know either R1
i or R2

i , but
we know that they are at least equal to d1(Xi,W ) or d2(Xi,W ), respectively, so
both ϕ1

i and ϕ2
i are correctly defined.

Since we have defined the censoring sets ξi, we can also put the random vectors
Yi = (Y 1

i , Y
2
i ) into our scheme. For the partially observed particles we only know

that Yi ∈ Eξi
. On the other hand, if the particle Xi + Ξi is contained in W , we

have
Yi = ξi ∩ Eξi

and
Di = I(R1

i < d1(xi,W )) · I(R2
i < d2(xi,W )) = 1.

Hence, for these particular random variables we will use the formula (2.5) to get
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the estimator in our particular case. As mentioned above, the exact calculation
will be done in Chapter 3.

Note that since we are dealing with non-negative variables we are in fact in the
position of two-dimensional survival analysis, see e.g. [8]. However, the set-indexed
framework enables applications for more general situations.

Remark 2.2.1 In [7], the consistency and asymptotic normality of the estimator
(2.5) was shown under the assumption that the censoring sets ξi are iid and inde-
pendent of a sequence of iid random vectors Yi (see [8] for the same results in the
two-dimensional setting). If we want to use the estimator (2.5) in our bivariate
case, we meet the following problem. The censoring mechanism defined in (2.6) is
not independent of the vectors Yi. Nevertheless, we still think that it is reasonable
to consider the corresponding two-dimensional Nelson-Aalen estimator. Of course,
the statistical properties of the estimator can be destroyed. The open problem is
whether the assumption of independence can be weakened, and how it influences
the quality of the estimator. In Chapter 3, we make small simulation study which
shows that the influence of the dependence between the censoring and the data is
not so severe. However, this issue still requires further investigation.

2.3 Smoothing of the multi-dimensional Nelson-

Aalen estimator

Similarly as in the one-dimensional case, we will smooth our multi-dimensional
Nelson-Aalen estimator of the cumulative hazard rate by using a multi-dimensional
kernel function. We will develop this smoothed estimator for a general multi-
dimensional case and then apply it to our example with the rectangles.

Definition 2.3.1 (Multi-dimensional kernel function) We call the function
k : Rd −→ Rd a d-dimensional kernel function if k is bounded, non-negative,
vanishes outside [−1, 1]d, and has integral equal to 1.

Let now
N = {NA∩ξ, A ∈ A}

be a counting process in Rd
+ (and therefore A = {[0, t] : t ∈ Rd

+} according to (2.1))
with jump points Yi ∈ Rd

+. Using the notation from the previous sections, we will
assume that this counting process has a compensator in the form

∫

A

h(t)Z0(t) ν(dt).
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This assumption is strong, but we know that in our example we have the explicit
form of the compensator, so we will be able to use the theory under such assump-
tion.

Since we know the compensator of N , we can now, based on the theory developed
earlier, construct an estimator of the cumulative hazard rate:

ĤA =
∑

{j:Yj∈A∩ξj}

(Z0(Yj))
−1.

According to (2.1), we will take A = [0, s], s ∈ Rd
+, and we will formally write

ĤA = Ĥ(s).

Using the multi-dimensional kernel function, we get a kernel function estimator
ĥ(t) of h(t) as

ĥ(t) = b−d

∫

Rd
+

k

(
t− s

b

)
dĤ(s), t ∈ Rd

+,

where the bandwidth b is a positive real parameter. Since Ĥ is a jump process, the
last integral can be written as a sum:

ĥ(t) = b−d
∑

{j:Yj∈[t−b,t+b]∩ξj}

k

(
t− Yj

b

)
(Z0(Yj))

−1, (2.7)

where

[t− b, t + b] = [t1 − b, t1 + b] × · · · × [td − b, td + b] , t = (t1, . . . , td).

The application to our case is straightforward, we only set d = 2 and instead of
the general process Z0, we will use our particular process Z defined in (2.4).

2.4 Kaplan-Meier estimator on the plane

In this section, we will first develop a general theory to get a Kaplan-Meier esti-
mator of the survival function in the two-dimensional space. Then we will apply
this estimator to our example with the rectangles. The reasons, why we do not
develop the theory for general multi-dimensional case as we have done with the
Nelson-Aalen estimator, are at least two. First, although the generalization to the
multi-dimensional case is possible and intuitive, in some points it can lose clarity,
and also it can become uselessly complicated. Second, since in our example we
work with two-dimensional vector of parameters, this theory will be sufficient to
our case, and also the analogy to the one-dimensional case can be discussed more
easily.

The definition of the Kaplan-Meier estimator on the plane is according to [4]. There
are also different approaches to the estimation of the survival function, see e.g. [11].
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2.4.1 Theory

First, we will define the bivariate cumulative hazard rate.

Definition 2.4.1 Let Y = (Y 1, Y 2) be a pair of non-negative random variables
on a probability space (Ω,F, P ), and let S(s, t) = P (Y 1 > s, Y 2 > t) be the
corresponding joint survival function. By a bivariate cumulative hazard rate, we
mean a vector function H(s, t) = (H10(s, t), H01(s, t), H11(s, t)), where

H11(ds, dt) =
P (Y 1 ∈ ds, Y 2 ∈ dt)

P (Y 1 ≥ s, Y 2 ≥ t)
=

S(ds, dt)

S(s−, t−)
,

H10(ds, t) =
P (Y 1 ∈ ds, Y 2 > t)

P (Y 1 ≥ s, Y 2 > t)
=

−S(ds, t)

S(s−, t) ,

H01(s, dt) =
P (Y 1 > s, Y 2 ∈ dt)

P (Y 1 > s, Y 2 ≥ t)
=

−S(s, dt)

S(s, t−)

and
H11(0, 0) = H10(0, t) = H01(s, 0) = 0.

In what follows, for any bivariate function φ(s, t) we will use the following notation:

φ(∆s, t) = φ(s, t) − φ(s−, t),
φ(s,∆t) = φ(s, t) − φ(s, t−),

and
φ(∆s,∆t) = φ(s, t) − φ(s−, t) − φ(s, t−) + φ(s−, t−).

Since in our example we have to work with incomplete observation, we now need
to derive an estimator of the bivariate survival function from censored data. For
this purpose, we will introduce the random variables Y = (Y 1, Y 2) and censoring
random variables C = (C1, C2), which are defined on a common probability space
(Ω,F, P ). Let S(s, t) and G(s, t) denote, respectively, the survival function of Y

and C. The observable random variables will be Ỹ = (Ỹ 1, Ỹ 2) and D = (D1, D2),

where Ỹ j = min{Y j, Cj} and Dj = I(Ỹ j = Y j), j = 1, 2.

Now we will introduce the following functions:

J(s, t) = P (Ỹ 1 > s, Ỹ 2 > t),

K1(s, t) = P (Ỹ 1 > s, Ỹ 2 > t,D1 = 1, D2 = 1),

K2(s, t) = P (Ỹ 1 > s, Ỹ 2 > t,D1 = 1),

K3(s, t) = P (Ỹ 1 > s, Ỹ 2 > t,D2 = 1). (2.8)
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Let us assume that Y = (Y 1, Y 2) and C = (C1, C2) are independent. Then, for
(s, t) such that J(s, t) > 0, we have

J(s, t) = G(s, t) · S(s, t),

K1(ds, dt) = G(s−, t−) · S(ds, dt),

K2(ds, t) = G(s−, t) · S(ds, t),

K3(s, dt) = G(s, t−) · S(s, dt), (2.9)

and therefore from Definition 2.4.1, we get the following equalities:

H11(s, t) =

∫ s

0

∫ t

0

K1(du, dv)/J(u−, v−),

H10(s, t) = −
∫ s

0

K2(du, t)/J(u−, t),

H01(s, t) = −
∫ t

0

K3(s, dv)/J(s, v−). (2.10)

To be able to construct the estimator, we need to express the survival function
S(s, t) in the form that will be suitable for estimating. For this purpose, we define
a function L(s, t) by

L(du, dv) =
H10(du, v−)H01(u−, dv) −H11(du, dv)

{1 −H10(∆u, v−)}{1 −H01(u−,∆v)}
.

Then, as shown in [4], the survival function S(s, t) can be written as a product
integral

S(s, t) =
∏

u≤s

(1 −H10(du, 0)) ×
∏

v≤t

(1 −H01(0, dv)) × R
u≤s

v≤t

(1 − L(du, dv)), (2.11)

where the last factor on the right-hand side is defined by

R
u≤s

v≤t

(1 − L(du, dv)) = lim
max|ui−ui−1|→0

max|vi−vi−1|→0

∏

i,j

(1 − L((ui−1, ui] × (vj−1, vj]))

with 0 = u0 < · · · < um = s, 0 = v0 < · · · < vn = t being, respectively, a partition
of intervals [0, s] and [0, t] and

L((ui−1, ui] × (vj−1, vj]) = L(ui, vj) − L(ui−1, vj) − L(ui, vj−1) + L(ui−1, vj−1),

cf. with Definition 1.4.1. We will now derive an estimator of the survival function
S(s, t) from (2.11) by using the estimator of the bivariate cumulative hazard rate
Ĥ(s, t) = (Ĥ10(s, t), Ĥ01(s, t), Ĥ11(s, t)). This estimator will be constructed in the
following way, see [4] for details.

Let Yi = (Y 1
i , Y

2
i ), i = 1, . . . , m and Ci = (C1

i , C
2
i ), i = 1, . . . , m be iid random sam-

ples, where (Ỹi, Di) is defined analogously to (Ỹ , D) and has the same distribution
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as (Ỹ , D). Since we want an estimator for the bivariate cumulative hazard rate, ac-
cording to (2.9) and (2.10), we need to develop estimators for the functions J(s, t),

K1(s, t), K2(s, t) and K3(s, t) from the random sample (Ỹi, Di), i = 1, . . . , m. This
can be done in a natural way:

Ĵ(s, t) = m−1
m∑

i=1

I(Ỹ 1
i > s, Ỹ 2

i > t),

K̂1(s, t) = m−1

m∑

i=1

I(Ỹ 1
i > s, Ỹ 2

i > t,D1
i = 1, D2

i = 1),

K̂2(s, t) = m−1
m∑

i=1

I(Ỹ 1
i > s, Ỹ 2

i > t,D1
i = 1),

K̂3(s, t) = m−1
m∑

i=1

I(Ỹ 1
i > s, Ỹ 2

i > t,D2
i = 1).

Now we can use these estimators instead of the original functions in (2.10) and get
the estimator for the bivariate cumulative hazard rate:

Ĥ11(s, t) =

∫ s

0

∫ t

0

K̂1(du, dv)/Ĵ(u−, v−),

Ĥ10(s, t) = −
∫ s

0

K̂2(du, t)/Ĵ(u−, t),

Ĥ01(s, t) = −
∫ t

0

K̂3(s, dv)/Ĵ(s, v−).

As mentioned above, we will use these estimators to get the estimator of the survival
function S(s, t):

ŜKM(s, t) = Ŝ(s, 0)Ŝ(0, t)
∏

0<u≤s

0<v≤t

[1 − L̂(∆u,∆v)],

where

L̂(∆u,∆v) =
Ĥ10(∆u, v−)Ĥ01(u−,∆v) − Ĥ11(∆u,∆v)

{1 − Ĥ10(∆u, v−)}{1 − Ĥ01(u−,∆v)}
with Ŝ(s, 0) and Ŝ(0, t) being the usual Kaplan-Meier estimators, i.e.

Ŝ(s, 0) =
∏

u≤s

(1 − Ĥ10(∆u, 0)),

Ŝ(0, t) =
∏

v≤t

(1 − Ĥ01(0,∆v)).

2.4.2 Application

We will now apply the theoretical results achieved in the previous section to our
case, which is described in Section 2.2. We will again work with random variables
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Yi = (Y 1
i , Y

2
i ), where Y 1

i denotes the area and Y 2
i the perimeter of the rectangle Ξi.

As opposed to Section 2.4.1, the sample size is now random. Nevertheless, from
our assumption on Ψ, the random number Φ(W ) is independent of the sequence
(Yi). Therefore, the construction of the Kaplan-Meier estimator can be done in the
same way. Using the notation from Section 2.2, we put

C1
i = ξ1

i ,

C2
i = ξ2

i .

The random variable Di will have the same form as in the theoretical part:

Dj
i = I(Ỹ j

i = Y j
i ), j = 1, 2. (2.12)

For those i for which Di = (0, 0), we do not know the values of Yi, but we know

that they are greater or equal to Ci, and therefore Ỹi is correctly defined.

As in Section 2.2, the problem which arises in this particular case is the required
independence of Yi and Ci. We see from the definition of Yi and Ci that this condi-
tion is not satisfied in our situation. Moreover, the Ci are not independent if Φ is
not the Poisson point process. However, the application of the developed estimator
does make sense in our case. For the calculations with particular data, the exact
form of the censoring mechanism is not required. In Chapter 3 we study the quality
of the estimator by simulation experiments. The problem of losing independence is
common while working with spatial data. For example, see [3], where the Kaplan-
Meier estimators of the nearest neighbour and the contact distribution function for
point processes are introduced. There is no satisfying solution up to now and still
further investigation is needed.

There is one thing which is worth noticing in our example. Since the two observed
parameters are the area and the perimeter of the rectangles, either both or none of
them are censored. It cannot happen that Di is either (1, 0) or (0, 1). Because of
this fact, all the functions K1, K2 and K3 defined in (2.8) coincide into one function.
Moreover, in some sense of words, we can say that our case is “properly” doubly
parametric, because the two parameters are somehow “connected” in the sense
that they are observed at once. The following example will show the difference
between our “proper” doubly parametric case and the case in which we also have
two parameters, the number of parameters cannot be lessened, and though the
independence of observations and censoring can be achieved.

Let us now consider the following setup. We will again observe the same process of
rectangles as in the previous case, but the observed parameters of this rectangles
will now be the lengths of their sides. Using the same notation as in Section 2.2
and denoting Y = (Y 1

i , Y
2
i ) the observed values, where Y 1

i , Y
2
i are the lengths of

the two sides of the rectangle Ξi, we set

C1
i = d1(Xi,W ),

C2
i = d2(Xi,W ).
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In this case, the random variable Di will have the same form as in (2.12). However,
since Ψ is assumed to be independently marked point process, it is obvious that
now the censoring mechanism is independent of the random variables Yi.

The difference between our two examples is in the fact that in the second one, two
parameters can be observed separately.

2.4.3 Differences compared to one dimension

We will now explain the differences between the one-dimensional and the multi-
dimensional Kaplan-Meier estimator. If we look at the classical Kaplan-Meier
estimator in a less formal way, we can see that it is computed by the product of
some values (in fact the values are (1 − size of jump of the Nelson-Aalen estimator))
taken in those times the Nelson-Aalen estimator jumps (in our case we work with
the radii instead of time). In the multi-dimensional case, the situation is to a certain
extent analogical, but there is one important difference. If the dimension is greater
than one, then we have to be careful while defining the jump time. Speaking of
the two-dimensional case, as a jump time of the two-dimensional random vector
has to be taken each time in which at least one of the components of the random
vector jumps. However, it can happen that both of these components jump in
one time. Intuitively, this “double jump” has to be treated in another way than
the “single jumps”. In our case, this was solved by introducing the functions
H11, H10, H01, that, roughly speaking, stand for the instantaneous risk of “double
jump” (represented by H11) or both components’ “single jumps” (represented by
H10, H01). If the dimension would be d > 2, the situation would become even
more complicated, because the d-variate cumulative hazard rate would consist of
2d − 1 functions representing the instantaneous risk of “q-tuple jumps” of all d
components. As we mentioned above, this was one of the reasons why we developed
the multi-dimensional Kaplan-Meier estimator only for d = 2.
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Chapter 3

Simulations

We will apply the multi-dimensional estimators on simulated data in this chapter.
In particular, we will observe a stationary Poisson process of rectangles. As the
observation window we choose

W = [0, 1]2.

For simplicity, we will assume that the rectangles are transparent, i.e. that if two
rectangles of the process overlap, then we still can see both of them. The point
process Φ is the Poisson point process with an intensity α. The reference points of
the rectangles will be the lexicographic minimum points, the sides of the rectangles
will be parallel to the coordinate axes, and the joint distribution of their lengths
(A,B) will have a two-dimensional probability density f(a, b).

The realization of the process Φ will be simulated in a greater window

W+ = [−amax, 1]2,

where amax is the maximal side length of the rectangle. The choice of this window
ensures that we get all rectangles that hit the window W . Whenever Xi lies outside
W+, the corresponding particle Xi + Ξi does not hit W . If the coordinates of Xi

are (X1
i , X

2
i ), then d1(Xi,W ) = 1−X1

i and d2(Xi,W ) = 1−X2
i , and the censoring

random vectors are given by (2.6).

Since we want to compare our Kaplan-Meier estimator with the theoretical survival
function S(x, y), we need to compute the density function g(x, y) of the random
vector Yi = (Y 1

i , Y
2
i ), and then for each (x, y) we have

S(x, y) =

∫ ∞

x

∫ ∞

y

g(u, v) dv du.

The choice of the density function f(a, b) is crucial, because we need the density
function g(x, y) to be as simple as possible so that we are able to express S(x, y).
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For the computation of g(x, y), we will use the change of variables theorem. If we
transform the random vector (A,B) with a density function f(a, b) to the random
vector (X, Y ) = (A · B, 2(A + B)), then, according to the change of variables
theorem, the density g(x, y) has the form

g(x, y) = f(a, b)
1√

y2 − 16x

= f(
1

4
(y +

√
y2 − 16x),

1

4
(y −

√
y2 − 16x))

1√
y2 − 16x

+

f(
1

4
(y −

√
y2 − 16x),

1

4
(y +

√
y2 − 16x))

1√
y2 − 16x

, y2 ≥ 16x.

If we choose

f(a, b) =
6

(amax − amin)3
(a− b), a > b, (a, b) ∈ [amin, amax] × [amin, amax],

the density function g(x, y) will have the form

g(x, y) =
3

(amax − amin)3

for (x, y) such that

a2
min ≤ x ≤ a2

max, 4amin ≤ y ≤ 4amax,

y ≥ 4
√
x, y ≤ 2amin +

2x

amin

, y ≤ 2amax +
2x

amax

.

The domain of the density function g(x, y) is shown on Figure 3.1 for amin = 0.05
and amax = 0.15.

The simulation from the density f(a, b) can be accomplished by the rejection
method. But much faster way is to use the fact that A − B has beta distribu-
tion and conditionally on A − B the random variable A has uniform distribution
on the interval [amin + A− B, amax].

Figure 3.2 shows the comparison of the theoretical survival function S(x, y) and the
two-dimensional Kaplan-Meier estimator for amin = 0.05, amax = 0.15 and α = 50.

The latter estimator is based on the rectangles with lexicographic minimum point
in the window. Another possibility is to choose a different reference point (e.g.
lexicographic maximum point). Averaging of both estimators should lead to the
estimator with lower variance.

We would like to investigate whether an additional information from the censored
data in the Kaplan-Meier estimator gives a better estimate than if we would use
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Figure 3.1: The domain of the density function g(x, y) for amin = 0.05, amax = 0.15.

only completely observable data (so called minus-sampling, see [2]). For this pur-
pose, we will introduce a Horvitz-Thompson estimator of the distribution function
F (x, y) of the vector Yi. To be able to do this, we define the following set operations:

V̌ = {−x : x ∈ V },
U 	 V =

⋂

y∈V

(U + y) = {x : x+ V̌ ⊆ U} (Minkowski-subtraction).

Now, we can define a Horvitz-Thompson estimator by

F̂HT (x, y) =
1

α̂

∑

i

I(Xi + Ξi ⊆ W )

|W 	 Ξ̌i|
I(Yi ∈ (−∞, x] × (−∞, y]),

where

α̂ =
∑

i

I(Xi + Ξi ⊆ W )

|W 	 Ξ̌i|
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Figure 3.2: Comparison of the survival function and the Kaplan-Meier estimator.

is an unbiased estimator of the intensity α. It follows from Campbell’s theorem
for stationary marked point processes that α̂F̂HT (x, y) is an unbiased estimator
of αF (x, y). Thus, F̂HT (x, y) is a ratio-unbiased estimator of F (x, y). In [5], the
asymptotic properties of F̂HT (x, y) were studied.

If we want to get the Horvitz-Thompson estimator of the survival function S(x, y),
we cannot use the simple equation

ŜHT (x, y) = 1 − F̂HT (x, y),

which would be used in one dimension, because according to (2.2), this equation
does not hold in our setup. Therefore, we have to put

ŜHT (x, y) =
1

α̂

∑

i

I(Xi + Ξi ⊆ W )

|W 	 Ξ̌i|
I(Yi ∈ [x,∞) × [y,∞))

to get the Horvitz-Thompson estimator ŜHT (x, y) of the survival function S(x, y).
Again, ŜHT (x, y) is a ratio-unbiased estimator. The comparison of the survival
function and the Horvitz-Thompson estimator for amin = 0.05, amax = 0.15 and
α = 50 is shown in Figure 3.3.

For both the Kaplan-Meier estimator and the Horvitz-Thompson estimator, we
measure the goodness-of-fit by two commonly used distances between distribution
functions (Kolmogorov-Smirnov and Cramer-von Mises). We will use these distance
measures for the survival functions instead of the distribution functions. Explicit
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S(x, y) ŜHT (x, y)

Figure 3.3: Comparison of the survival function and the Horvitz-Thompson esti-
mator.

forms are

dKS(Ŝ, S) = max
x,y

|S(x, y) − Ŝ(x, y)|, (3.1)

dCvM (Ŝ, S) =

∫ ∞

0

∫ ∞

0

(S(x, y) − Ŝ(x, y))2g(x, y) dx dy. (3.2)

We will choose amin = 0.05 and amax = 0.15. For these parameters we will consider
two different intensities α1 = 30 and α2 = 50. This choice of parameters leads to
a situation in which we have approximately αi (i = 1, 2) rectangles that have the
reference point inside W and about a fifth of them is censored. We have simulated
50 independent realizations of the process. We calculated both the Kaplan-Meier
and the Horvitz-Thompson estimator for each realization. For the calculation of
the Kaplan-Meier estimator, we used two different choices of the reference point
(lexicographic minimum and maximum). Let us denote these estimators by Ŝmin

and Ŝmax, respectively. We also computed the average of these two estimators.
This averaged estimator is denoted by ŜKM . The averages of the distances (3.1)
and (3.2) over 50 realizations are shown in Table 3.1 for α1 and in Table 3.2 for α2.

We see that the Kaplan-Meier estimator gives slightly better results than the
Horvitz-Thompson estimator. It is not surprising that the estimators are more
precise if the number of observed particles is greater. Similar results can be ob-
tained for the problem of estimation of side lengths which was described in Section
2.4.2.
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Ŝmin Ŝmax ŜKM ŜHT

dKS(Ŝ, S) 0.2006 0.2021 0.1997 0.2020

100 · dCvM (Ŝ, S) 0.8092 0.8478 0.8099 0.8542

Table 3.1: The comparison of the Kaplan-Meier and the Horvitz-Thompson esti-
mator for α1 = 30.

Ŝmin Ŝmax ŜKM ŜHT

dKS(Ŝ, S) 0.1473 0.1480 0.1472 0.1498

100 · dCvM (Ŝ, S) 0.3941 0.4052 0.3958 0.4289

Table 3.2: The comparison of the Kaplan-Meier and the Horvitz-Thompson esti-
mator for α2 = 50.

For the setting of the parameters which we used in the second case (α2 = 50), we
will also calculate the rest of our estimators. Figure 3.4 shows the multi-dimensional
Nelson-Aalen estimator. Since the function ĤA is a function of sets in the form
A = [0, t], t ∈ R2

+, for each set A the value ĤA is plotted in the point t which is
the top right corner of A.

The next two figures show the smoothing of the previous estimator. In Figure 3.5,
we used an one-dimensional Epanechnikov kernel

k(x) =
3

4
(1 − x2), x ∈ [−1, 1]

to create a bivariate kernel function

ke(x, y) =
9

16
(1 − x2)(1 − y2), x, y ∈ [−1, 1].

The difference between the two graphs in the first figure is induced by different
bandwidths. In the first case, we take as a bandwidth an estimate of the mean
distance between the points yi = (y1

i , y
2
i ) representing the realization of the ran-

dom variables Yi. But since the area and the perimeter of the rectangles have
proportionally different values, we use different bandwidth for each component of
Yi. Therefore, the estimator defined in (2.7) will now have the form

ĥ(t) =

d∏

i=k

b−1
k ·

∑

{j:Yj∈[t−b,t+b]∩ξ}

k

(
t− Yj

b

)
(Z0(Yj))

−1,

where b = (b1, . . . , bd). Then the choice of b in our case has the form

b̂k =
1

Φ(W )2

∑

i,j

|yk
i − yk

j |, k = 1, 2.
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Figure 3.4: The two-dimensional Nelson-Aalen estimator of the cumulative hazard
rate.

In the second case, we multiplied the bandwidth by 2. As is perceptible from Figure
3.5, the increase of bandwidth induces that the estimator is more smoothed than
in the first case.

By the same construction as for the kernel function ke, we create a two-dimensional
biweight kernel function. An one-dimensional biweight kernel is defined as

k(x) =
15

16
(1 − x2)2, x ∈ [−1, 1].

Therefore, the bivariate kernel function based on the biweight kernel will have the
form

kb(x, y) =
225

256
(1 − x2)2(1 − y2)2, x, y ∈ [−1, 1].
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Figure 3.5: Smoothed Nelson-Aalen estimator by using the kernel function ke(x, y)
for two different choices of bandwidths.

The results of smoothing the Nelson-Aalen estimator by the kernel function kb

are shown in Figure 3.6. Again we smoothed the estimator twice, each time with
a different bandwidth. The values of the bandwidth were the same as in Figure
3.5.
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Figure 3.6: Smoothed Nelson-Aalen estimator by using the kernel function kb(x, y)
for two different choices of bandwidths.
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Conclusion

In this thesis, we dealt with a problem of estimating the hazard rate and the
survival function of the particle process parameters from censored data. For the
solution of this problem, the theory of set-indexed random processes was used.
It provided us a background for defining the multi-dimensional Nelson-Aalen es-
timator of the cumulative hazard rate. As an estimator of the multi-dimensional
survival function, the Kaplan-Meier estimator was developed. Though, for both
estimators we identified a problem of dependence of the censoring mechanism on
the data, we used our estimators in a particular case. In Chapter 3 we showed that
the difference between the estimators and the theoretical functions was reasonably
small. It also turned out that the Kaplan-Meier estimator was more efficient than
the Horvitz-Thompson estimator which uses only completely observable data.

Still, there remains an issue to be a subject of further investigations, namely the
problem of the influence of dependence between the censoring mechanism and the
data on the estimation procedure. Furthermore, it would be also advisable to
study the problem for other classes of point processes (cluster or hard-core point
processes) than for the Poisson point process. Then we would be in the situation
where the censoring variables are no longer independent.
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