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Chapter 1

Introduction

Suppose we observe time series X;, but we wish to find prediction for non-linear transfor-
mation of this time series, say Y; = T'(X;). We will assume that the series X, follows some
simple model, such as ARMA, which enables us to find prediction Xt+h for the original
series. The obvious method of simply transforming this prediction to obtain prediction
Yion = T(Xy1p) for the new series Y; may sometimes lead to very poor results. It is the
so-called “naive prediction”.

The aim of this diploma thesis is to describe the methods, which provide better results
than the naive prediction and to evaluate the mean square errors for these predictions.

In general it can be said that the problem of finding the best prediction, or at least
the best linear prediction, of the transformed series, is the problem of understanding the
“generating mechanism” of the transformed series. Once we have enough information about
the autocovariance structure of the transformed series or about its spectral density there
are well-developed methods for using this knowledge to find the best linear prediction.
However, under certain circumstances (Gaussian processes, simple transformations) it is
possible to use direct formulas that greatly facilitate finding the prediction and estimating
its mean square error.

Granger and Newbold [6] developed a direct method of finding the optimal and other
predictions for transformations, which can be expressed by means of Hermite polynomials.
The authors restricted themselves to Gaussian series only, on the other hand the results are
very simple to implement and offer very quick yet accurate way of finding good predictions.

Somewhat similar approach via Hermite polynomials can be found in Hannan [8]. The
author proves formula for the autocovariance function and spectral density of processes
transformed from the original series, with known spectral density, by a linear combina-
tion of Hermite polynomials. Once we know the autocovariance function or the spectral
density of transformed process we can use this information for making the prediction, see
e.g. Grenander and Rosenblatt [7]. However no “ready-to-go” results were provided.

Choi and Taniguchi [5] studied the naive and bias-adjusted predictions for the square-
transformed processes using the spectral density. The results they obtained are, as ex-
pected, in accordance with the results obtained by Granger and Newbold [6] via the au-
tocovariance function. It is worth to mention that Choi and Taniguchi in their article
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derived the expected square prediction error of the naive prediction also for non-Gaussian
processes and made somewhat surprising finding that in certain cases the expected square
error is smaller for non-Gaussian than for Gaussian series.

Palma and Zevallos [10] considered only the square transformation, but with more
general innovations. They provided specific formula for the autocorrelation of the square-
transformed processes.

When dealing with transformations for which it is impossible or impractical to use
expansion with Hermite polynomials, such as fractional powers, one of the possibilities is to
study similar transformation that can be expressed using the Hermite polynomials. In case
that more accurate results are required Abadir and Talmain [1] offer a very general theorem,
which creates a link between the autocovariance functions of two transforms of a process.
As a special case the theorem establishes a link between autocovariance functions of a
process and its transform. Once the autocovariance structure of the transformed process
is known standard prediction methods can be used for finding the optimal prediction.



Chapter 2

Autocovariance and spectral density

In this chapter we will look at the methods of finding the autocovariance and spectral
density of the transformed series.

2.1 Autocovariance of transformed (GGaussian processes

Granger and Newbold [6] derived exact formulas for general class of instantaneous trans-
formations of a stationary Gaussian time series. The formulas use expansion of the trans-
formation with Hermite polynomials, which can theoretically be found for almost any real
function in the form

T(z) = Z a;Hj(z),

using Formula (7.6) (see Appendix A - Properties of Hermite polynomials), however the
derivation is in most cases very complicated. Expansion for the exponential function can
be found from the generating function (7.4), and the expansion for polynomial functions
can be found using e.g. the table in Abramowitz[2], p. 801 or Formulas (7.7) and (7.8).

2

Theorem 2.1. Let X; be a stationary Gaussian time series with mean u, variance o and

autocorrelation function corr(Xy, Xy1,) = pr. Define

X, —
7, = t— M

for all t.

Then Z; and Zyy, have bivariate normal distribution with zero means, unit variance and
correlation p.. Define series Y; = T(Z;), where T(Z;) = Zj]\io a;Hi(Zy) and Hi(Zy) are
Hermite polynomials. Then the mean of the transformed series is

E(Y;) = a0, (2.1)
the covariance between the original and transformed series is

cov(Xy, Yiir) = aqpro (2.2)

6
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and finally the autocovariance function of the transformed series is
cov(Vy, Yiyr) = Zj'a%’ (2.3)

Proof. The first statement follows from the basic properties of normal distribution. Now
consider the orthogonality of the system of Hermite polynomials (7.3), which implies

) o 07 j 7& ka
el zomzi ={ G, I
For the formula (2.1) we write
M
E(Y:) = E[Ho(Z)Y)|=E |Ho(Z)>  a;H;(Z)
=0

= Z o E [Ho(Z)H,;(Z)] = aoE [Ho(Ze)Ho(Z:)] = .

Now we have

cov(Xy, Yir) = E(XiYigr) — E(Xy)E(Yiyr)
= E[(0Z + 11)Yisr] — pavo
= oE(ZiYiir) + E(MYHT) — H®

E|H\(Z) Za] (Zyir)| +E

= oapr + NOéo — HQp = Q1 pr0

and finally

M M
cov(Yy, Vi) = E[ZajHj(Zt)ZaiHi(ZHr)
= 1=0

SN CACAIE)

7j=1 =1

M
= ) jlaipl.
j=1

]

Let us now apply this theorem to three transformations: exponential, quadratic and
cubic. First it is necessary to find the Hermite expansion for each of these transformations.
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2.1.1 Application to three transformations

Corollary 2.2. (Exponential transformation) Using the expression for the generating
function of Hermite polynomials (7.4) we can write for the exponential transformation

1 1 1 1
Y, =exp(X;) = exp <0Zt + 40— 502 + 502> = exp <,u + 502) exp (aZt — §a2>

1, el

j=o

Define a; = exp (p + 30?) ‘;—f Then

Y; = exp(Xy) = Z o H
From formulas (2.1), (2.2) and (2.3) it follows that the mean of the transformed series is

1
E(Y;) = ag = exp (u + 502) :

the covariance between the original and the transformed series is

1
cov(Xy,Yii,) = aypro = exp <,u + 502) a?p,,

and finally the autocovariance function of the transformed series is

oo

=exp (2u+ 0°) (exp(c®p,;) — 1) .

(2.4)

M
cov(Vy, Yier) = Y jladpl =
7j=1

jzl

Corollary 2.3. (Quadratic transformation) Recall that

Ho(z) = 1,
Hi(z) = z,
Hy(z) = 2*—1,
Hj(x) 7 — 3z

Counsider the transformation

Vi = X7 =(0Z+p)?=p*+2u0Z + 07}
= P +o*+20uZ 4 0?7 — o
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Denoting
ap = p+o’
ap = 204,
Qg = O'2

we obtain the Hermite expansion for the quadratic transformation
Y, = X7 = ag + a1 Hi(Z;) + axHo(Zy).
Using again formulas (2.1), (2.2) and (2.3) we write the mean of the transformed series
E(Y)) = ap = p* + 07,
the covariance between the original and the transformed series
cov(Xy, Yiyr) = arpro = 202 up-

and finally the autocovariance function of the transformed series
M
cov(Yy, Vi) = Zj!a?pi = aip, + 20302 = 40*pPp, + 204 p2. (2.5)
j=1

Corollary 2.4. (Cubic transformation) Consider the transformation
i = X} =(0Z+p)’
= 1+ 30u*Z; + 30°uZ} + 30° 7}
= W +30°u+ (3op® +30°) Zy + 30°1Z; — 30’ u+ 30°Z} — 36°Z,.
Denoting
ay = p’ 4307,
ar = 3ou* +30°,
as = 30’pu,
as = o°
we obtain the Hermite expansion for the cubic transformation
ag + a1 Hi(Zy) + aoHo(Zy) + asH3(Zy).
The mean of the transformed series is then
E(Y;) = ap = p* + 3071,
the covariance between the original and the transformed series is
cov(Xy, Yiyr) = aupro = 3021 pr + 30 p;

and finally the autocovariance function of the transformed series is
M
cov(Y;, Vi) = Zj!oz?p; = aip, + 20502 + 6a3p7? (2.6)
j=1

= (3op*+ 303)2 pr+ 2 (302u)2 P2+ 6(0%)?p3. (2.7)
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2.1.2 Application to ARMA processes

In order to apply general formulas to a given process we need to know its mean p and
variance o2, as well as its autocorrelation function p,. This is very easy to calculate for
MA (o00) process.

Example 2.5. Consider a MA(oco) process X; defined by

o0
X = E i€,
i=0

where 0y = 1, Y o0, 07 < oo and ¢ ~ N(0,02). The mean of this process is obviously zero,

its variance is
o0 o0 o0
o? = var(X;) = var E Oier—; | = E O2var(e; ;) = o2 E 0,
i=0 i=0 i=0
the autocovariance function is
o0
2
cov(Xy, Xiyr) = 07 E 01014+
t=0
and the autocorrelation function is

COV(XtaXt-i-T) _ :io 0,011~
var(X}) S 62

Using the derived formulas we can write for the exponential transformation Y; = exp(X;):

1 00
E(Y;)) = exp 50329?) ,
1 00 )
COV(Xt,}/t_‘_T) = exp 50’?20912> <03;9t9t+7> s

cov(Yy, Yirs) = exp 03291‘2) [exp (U?ZQtQtJrr) - 1] 5
=0 =0

for the square transformation Y; = X?:

Pr =

E(Y) = o2) ¢,
1=0

cov(Xy, Yipr) = 0,

0o 2
COV(K)KH-T) = 20? (Z 9t9t+7>
t=0
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and finally for ¥; = X3

E(:) = 0O,

COV(Xt, }/H_q—) = 30'2L (Z 83) (Z 9t0t+T> s
=0 t=0
o 2 o0 o0 3
cov(Y, Yipr) = 909 (Z 93) (Z Mm) + 60° (Z Mm) .
=0 t=0

t=0

Example 2.6. As a special case of the previous example consider the following AR(1)
process
X = pXi1 + €,

where €, ~ N(0, 1) are i.i.d. This process can also be written in the form

Xt = Z (,Djet_j.
7=0

The mean of this process is zero, ;= 0, and its variance is

2 2
o° = var(X}) ;0 ¥ 1— o2

Y

taking into consideration that ¢; are i.i.d. The autocovariance function of this process is

Rx(t) = cov(X;, X¢ir) = cov (Z e, Z gojet+7_j>
3=0 §=0
- J+T o J , , 241 __ "
- ];0 ¥ Var(Et*]+T€t+T7]) J; 2 =1 902 .

The autocorrelation function is then

_ Bx(n) _
pr var(X;) 7

Using formula (2.4) we can find the autocovariance function of the transformed series
Y, = exp(Xy)

Rg)(T) = cov(Y;, Yiir) = exp (2u + 0?) (exp(c”p,) — 1)

- (i) [ (s2)
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Using formula (2.5) we can find the autocovariance function of the transformed series
Y, = X?

Rg/z) (1) = cov(Yy,Yiyr) = 402ﬂ2,07 + 204p3

1 2
— 2" .
v <1—902)

Finally, using formula (2.6) we can find the autocovariance function of the transformed
series V; = X}

RO(r) = cov(Vi,Yirs) = (301° +30°)° pr +2 (30°w)% p2 + 601

1 3 o 3 1 3
= 9y 6 = (90" + 637 .
v (1—s02) " <1—<P2) Sl )<1—902)

In Figure 2.1 there is autocovariance function of AR(1) process, as well as the autoco-
variance functions of the transformed series exp(X;), X7 and X}.

Example 2.7. Finally, let us consider the following MA(1) process
X =€+ 06,
where ¢, ~ N(0, 1) are i.i.d. The mean of this process is zero, u = 0, and its variance is
o? = var(X;) = (1 +6%).
The autocovariance function of this process is

RX <T> = COV<Xt> Xt+7') = COV(Q + 9€t71; €t4r + 0€t+771)

1462, if 7 =0,
= 0, ifr=1or7=-1,
0, otherwise

and its the autocorrelation function is

1, if =0,
px(T) = Hﬁ%, ifr=1or7=-1,
0, otherwise.

The autocovariance function of the transformed process Y; = exp(X}) is from (2.4) calcu-
lated using the formula

Rg,l)(T) = exp(1+6%) [exp (1 + 6*)px (7)) — 1]

and so
exp(1 + 6?) [exp(1 +6%) — 1], if 7 =0,
RO ={ exp(l+6?) (exp(6) —1),  ifr=lorr=-1,
0, otherwise.
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Figure 2.1: Autocovariance functions of the original process AR(1) and its transforms.
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The autocovariance function of the transformed process Y; = X? is from (2.5) calculated
using the formula

RY (1) = 2(1 + 6%)2p (1)

and so
2(1+6%)?2, if 7 =0,
Rg)(T) =< 207, ifr=1or7=-1,
0, otherwise.

Finally, the autocovariance function of the transformed process Y; = X} is from (2.6)

P (7) = 9(1+ 6% pe(r) + 6(1 + 6)°ix (7)

and so
9(1+6%)3 +6(1 +6%)3p%(7), if =0,
Rg)(T) = ¢ 96(1+ 6%)* + 66°, ifr=1or71=-1,
0, otherwise

For illustration table 2.1 contains the values of autocovariance of the original and trans-
formed series for the MA(1) process.

0=025| 7=0|7=1]60=075]| =0 | 7=1
X, 1.063 | 0.250 X 1.562 | 0.750
exp(X;) | 5.479 | 0.723 | exp(X,) | 17.989 | 3.578
X? 2.258 | 0.265 X? 4.882 | 1.172
X} 10.795 | 2.540 X} 34.332 | 16.479

Table 2.1: Autocovariance of M A(1) process and its transforms.

2.2 General innovations and the square transforma-
tion

Palma and Zevallos in [10] studied the behavior of the autocorrelation function of the
square of a time series with the following expansion

X = VY (B)e,
where

U(B) =Y ;B Yo =1, D W < o0,
i=0 1=0

¢; has finite kurtosis 7 and B is the lag operator. In the following we will assume that ¢
are uncorrelated, but not necessarily independent.
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Theorem 2.8. Let us assume that €¢; are i.i.d. random variables with zero mean, finite
kurtosis, n = E(e})/ [E(e2)]”. Let us assume that
2

cla={ o o=

0, otherwise,
autocorrelation function function of € is pe(T) and

1+ (n—1pea(s—v)|ol, ifs=t,u=vors=u,t=u,
E(eserene,) =< [14+ (n—Dpa(s—t)] o, ifs=wv,t=u,
0, otherwise.

Consider now process X; defined by formula

Xy = Z Oi€t—i,
i=0
where 6y =1 and Y-, 07 < 0o. The autocorrelation function of the process Xy is
oi 0t0t+7'
corr(Xy, Xo1r) = px(7) = =5
2im0;

Let us define
2 0008
oT) = TS
2 im0 07
A(r) = Yoo D0 010501405 rpe2(t — 5)
(326
_ Zzio Zzo ‘939?/)52 (T+t—29)
(22,07
=, 6!
(Zzoo—m +3(n = 1A(),
i=0 Vi

where Kk is kurtosis of Y, . Then the autocorrelation function of the squared process Y, =
(Xy)? is given by

9

Y

kK=3—2n

2 Kk—3 -1
corr(¥;, Yier) = py(r) = —— % (r) + 2 a(r) + T L () + 20() — 3AO)a(7)].
Proof. See Palma and Zevallos [10]. O

Corollary 2.9. (Linear process)
Let €; be i.i.d. random variables with zero mean and finite kurtosis 1, i.e. € is strict white

noise. Then
2 k=3

py(7) = ——pk(r) + “—a()
where K is the kurtosis of Y; given by
> ico O
k= (n—23) 0t _+3

(220 07)
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Proof. In this case we can write

20 02071
7)=A(1) = A0)a(7) =
6(r) = A(r) = AO)atr) = L

and therefore ¢(7) + 2A(7) — 3A(0)a(7) = 0, also
> g4
A = Z
(2= 07)
The expected results follow immediately. O]

The above general theorem and corollary are useful generalizations, however the prin-
cipal focus of this work is on ARMA processes and in the following we show that when
considering the MA(o0) as a special case we obtain the same results as with the method
developed earlier.

Example 2.10. Consider the M A(co) process

[ee]
X = E QiEtﬂA
i=0

with 6y =1, D767 < oo and ¢ ~ N(0,02). Autocorrelation sequence of € is pe(t) = 1
for t = 0 and 0 otherwise. From the basic properties of the normal distribution we know
that kurtosis of ¢, is 7 = 3. Hence

py () = pk(7),
where the autocorrelation of the original series (see Example (2.5)) is

COV(Xm Xt+r) _ Zzo 0,014+
ViarX)Phar( X )P Y

This result is in accordance with the results obtained in example 2.5, because

p(1) = corr(Xy, Xoyr) =

p (T) — COV(}/;&,}/;&—&-T) _ 20? (Zzo Qt‘gt—i—T)Q _ p2 (T)
' var(Y;) 200 (St

2.3 Generalized transformations

A different approach was offered by Abadir and Talmain [1], who established a link between
the autocovariance functions of two transforms of a process. The problem investigated
in this work can be considered a special case, one of the transforms being the identical
transformation. However, more detailed description of this rather general theorem exceeds
the scope of this work and will not be included.
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2.4 Spectral representation of transformed processes

Hannan [8] derived the same results regarding the autocovariance of transformed processes
as Granger and Newbold [6], moreover he derived also a formula for the spectral density
of the transformed process.

Theorem 2.11. Consider a Gaussian process X; with zero mean, unit variance, autoco-
variance function R(T) and spectral density f(X\). Then the autocovariance of the trans-
formed series

M
Y, = Z o Hj(Xy)

j=0
18 u

Ry(7) = cov(Y;,Yipr) = _jlafRI(7) (2.8)
j=0
and -
R = [

where f*(X) is the j-fold convolution of f(\) with itself, f*°(X\) is defined as 5(\), the Dirac
delta function. The spectral density of the transformed process Yy is

M
Fr(N) =) jlad (), (2.9)
=0
Proof. The idea behind the proof of (2.8) is the same as that of (2.3) in Theorem 2.1, note
only that we assume unit variance of the process, hence
pr = corr(Yy, Yii,) = cov(Ys, Yiyr) = R(7).
For the rest of the proof see Hannan [8], p. 82. ]

As an illustration of application of this Theorem we consider MA(1) process.

Example 2.12. Consider the following MA(1) process
Xi =€ + 06,

where €, ~ N(0, 1) are i.i.d. Recall that we have already studied this case in Example 2.7.
In the following we will show that the previous theorem leads to the same results. The
density of this MA(1) process is

1 .
fA) = 2—|1 + 0e™|? | where \ € [, 7].
s
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Consider the square transformation of this process, i.e. process
Y, = X2 = agHo(X;) + asHy(X,),
where ap = 1 and ay = 1. Using (2.9) the density of this transformed process is
fr(A) = ag [0+ 2lag f*2 = 6(N) + 2f*°

and
1
f? = / f(A—a) da—/ 2—|1+9_“\“)| |1+Qe_m|2da

= — (1+9e_“\“)(1+9e’\a)(1+9e_i“)(1+96i“) da

47r2 o
= 4%2 : (14 6e7 A% 4 60 4 67) (14 6e ™ + 6™ + 6°) da
= 4%;2 : (1 + 62 + 260 cos(\ — a)) (1 + 6%+ 26 Cos(a)) da
- 4L7r2 : [(1+6%)* 4 46° cos(a) cos(A — a)] da
— % [27(1 + 6%)* + 476” cos(N) ]
— 217r<1 +6%)* + %92 cos(N).

Hence the spectral density of the transformed process is

frA) =06\ + 1 [(1 + 62)* 4 260? COS()\)] )

™

18

To show that this is indeed in accordance with the results in example 2.7 we will use the
following relationship between the autocovariance function and spectral density (see e.g.

Préskova [11], p. 28).
R(t) = / e fF(N) dA

In our case

RP(r) = - / " it [O(N) + (1 +6%)2 +26% cos(\)] dA.

—T

Calculating this integral for concrete values of 7 we have
RY(0) = 201+ 6%,
RY(1) = RY(-1)=26",
R(Y2)(T) = 0, for 7 > 2,

which is in accordance with the results derived in example 2.7.



Chapter 3

Predictions

We have already addressed the issue of autocovariance and spectral properties of trans-
formed time series and thus obtained tools for predicting future realizations of the trans-
formed series. All that is required is to apply the standard methods for predictions. How-
ever, Granger and Newbold [6] derived explicit formulas that can be used without the need
of investigating the autocovariance or spectral properties of the transformed time series.

3.1 Optimal, naive and linear predictions

3.1.1 Optimal prediction

Theorem 3.1. (Optimal prediction) Let X; be a Gaussian stationary process with mean
p and variance o2, and X, be the optimal h-step ahead prediction of Xyyp, given the in-
formation set I; (previous observations Xy, Xy—1,...), t.e. Xirn = E(Xyyn|ly). Assume that
the error of prediction ey p = Xpyop — Xpwn given Iy has conditionally normal distribution
with zero mean and variance S*(h). Define Z, = = ~ N(0,1) and A = /1 — %

Consider the following transformation

M
Y =T(Z) =Y _ o:H(Z).
i=0
Define random variable R
Xpon — X
Wiin = t+fiq<h) t+h

Then constants ; can be found such that'Y; = Zfio ~iH;(Wy). The h-step ahead optimal
prediction of Yy is
v = (3.1)

19



CHAPTER 3. PREDICTIONS 20

and the unconditional mean square error of this prediction is
VO(h) = E (X~ Keon) Eyw — 4%),

Proof. The h-step ahead prediction of Y;,, is in fact the conditional expectation of this
random variable. Hence we can use the results from theorem 2.1 and the formula (3.1)
follows immediately. R

Random variable X;.; has conditionally normal distribution with mean X;,, and vari-
ance S%(h) and therefore random variable W, is conditionally, given I;, distributed as a

standard normal variable. Define B = v/1 — A2 = \/% and C = \/X*;—hTQ“ We have

Xevn — _ WiinS(h) + )?t+h — K

Ziyh = - -
S(h S2(h) Xy —
_ Sty i S0 K
o o o2 — S%(h)
- BWt+h+AC.

Note that A% + B? = 1, hence we can use the summation formula (7.5). For each j € N
we can write

Hij(Zyn) = Hj(BWyn + AC)
7 .
= > (2 ) BFATFH (CYH R (Woiyn).
k=0

Recall that the Hermite polynomials have the following property (7.1)

0, k>0,

el W] = { 170

Now we have the optimal prediction in the quadratic loss sense:

1/1-5(—&})1 — 1/;‘/+h = E [Z Od] Zt+h = E [Z CKJ BWt+h + AC)

M i .
= > o) (2) BY AR H; 4 (C)E[Hy(Wiis)] Z o; AV H;
j=0 k=0

To calculate the unconditional mean square error we first write

~ 2 —~ 2
VO(R) =€ [Ven = T0] =Bl =26 [vin T8 + E[F0] . 62
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Recall from the properties of Hermite polynomials, formula (7.3), that

E{Hi(Zisn)H;j(Zi1n)} = { 0, i # 7,

I Q=
Therefore
M 2 M M M
E[Yiin]" =E [Z QG Hi(Zin) | =) iy E[Hi(Zin) Hy(Zign)] = ) jlad.
3=0 i=0 j=0 i=0
Similarly,

M
E |:§/}t(+1i)zi|2 = E [Z%Ajﬂj(c)

because C' ~ N(0,1). Since cov(Xyin, er4n) = 0 and cov(eip, €r0) = S?*(h) we can write

COV<Xn+h) Xt+h) = COV(XtJrh, Xiyn — €t+h) = COV<Xt+h7 Xt+h) - COV(XtJrh, €t+h)
= O'2 — COV(XH_h + €t+h, €t+h) = 0'2 — COV(Xt+h, €t+h) — COV(@t_;,_h, €t+h)
= o> - S*(h)

and so the autocorrelation between Z; ., and C' is

cov(Zyip, C)

p = cort(Zyp, C) = cov(Zyyn, C)

- V/var(Zyp,)var(C)
—  cov Xirn — p )?tJrh — K
o /o~ S2(h)
1 .
= cov(Xpan, X
ov/0? — S%(h (Kot Xe)
1 2 _ G2
S (0 =5 ) =/ M =4
oy/0? — S%(h) o

Now we can write
M

2F [f/fjgmh} = 2B | @wHi(Zisn)
L =0

M
[Z O./jAjHj(P)
7=0
M M

= 2E Z Z ()éi()éjAjHZ‘(Zt_._h)Hj(C)

L i=0 j=0

M M
= 2) jladAp =2 jlajAY.
j=0 =0
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Returning back to formula (3.2) we derived the expected expression for the forecast error
M M M
VO = > a2jl =23 a2A%jl+ ) a2AY)!
=0 =0 j=0

M
= S ot (1 - A%).
§=0

3.1.2 Naive prediction

In the following we will be using the notation | X | for the integer part of a real number.

Theorem 3.2. (Naive prediction) Under the same assumptions as in Theorem 3.1
consider the naive h-step ahead prediction of Yy

Then the mean square error of this prediction is

M M - [13(M—3)) . k
, - A% | P j + 2k)! 1
SOEDITIEVIES SEl I pERHEE =t G IREE)
j=1 j=0 : k=1 :

Proof. We have
12 ~ 2
van) = E[Yin— 0] =E[(Yen - 7Om) - (v - v )]
~ 2 ~ 2
= E(Yion = YOM) =26 (Yo = PO (v - vi)) +E (% - i)
The first term in (3.3) is V) (h) from Theorem 3.1. The second term is derived in similar

manner using the properties of Hermite polynomials. See also Granger and Newbold [6].

[]

3.1.3 Linear prediction

Theorem 3.3. (Linear prediction) Under the same assumptions as in Theorem 3.1
consider h-step ahead prediction of Yiin, which is optimal in the quadratic loss sense in
the class of forecasts that are linear in X;_;, j > 0. Then this prediction can be written as
follows:
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The expected square error of this prediction is
M 2Q2
, a;S%(h)
=D jlaj +
=2 7

Proof. The covariance between X, and Y, is given by (2.2). The cross spectrum between
X; and Y; will be therefore a constant times the spectrum of X;. Hence

o)
&
+
2

The mean square prediction error is

~ 2 2
VOMR) = (Yin = V) = Ein)’ = 26 (Yia%8) +E ()

where
Yt+h Z J '04

Notice that the remaining two terms are spemal cases of the corresponding terms in (3.2),
because

1
X, —
}/t(fl)l = Z O./jHj ( t+h > Z OZJA]H = Qq + (llAHl(O),
=0
see Theorem 3.1. Hence we have
) SOV N 2 42
E (Y;JrhY;Jrh) =E (Y;H-h) = Z]!O‘jA .
§=0
And so the mean square prediction error is
M 1 M M
VE(h) = ijﬁ — Zj!a§A2j = Zj!a§ —ap — afA® = Zj!a? —afA? =

h
= Z]'a +a1 1—A2 Z]'a +a?B? = Z]'a +Oél (>

71=2
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3.2 Three transformations

In this section three transformations are considered and all three predictions are calculated
for each of the transformation, together with the mean square prediction errors of these
predictions. The predictions are compared on the basis of the proportional increase in
mean square error, defined as follows

V@ (h) - VO(h)

GH(h) = V() : (3.4)
G(p) — v
G(S)(h) v (}‘;)(1)(; (h) (3.5)

3.2.1 Exponential transformation

Let us first consider the exponential transformation and apply the formulas derived in the
previous section to find the optimal, naive and linear predictions and their mean square
erTors.

Corollary 3.4. Consider the transformation

V= explX) = 30 o Hy(Z0) = 30 H (W),
§=0 J=0

where
B 1 ,] o7
a; = exp u—|—§0 N
> 1 Si(h
Vi = exp {Xt—ﬁ-h + 552(@} j<' )

Then the predictions for the transformed series are

B 1
v = exp Xt+h+552(h)17

Yt(f;l = &Xp Xt—i—h}?

N i 1 N
YO = exp|u+ 502} (1 + Xiin — M) :

their mean square prediction errors
VO(h) = exp [2(n+0%)] [1 = exp(=5*(h))] ,
V() = exp [2(u+0?)] {1 — 2exp (—gsz(h)) + exp (—zsz(h))] ,
VE(h) = exp(2u+0?) [exp(0?) — 1 —o® + S*(h)],
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and the proportional increase in the mean square error for the naive and linear predictions

[exp(—38°(h)) — exp(=S*(h))]
1 —exp(=5%(h)) ’
exp(—0?) [S?(h) — 1 — 0] + exp(=5*(h))

1 —exp(=5%(h)) '

2

Proof. The coefficients of Hermite expansion «; were derived using the generating function
of Hermite polynomials (formula (7.4)), see Corollary 2.2. To show the expressions for ;
recall from Theorem 3.1 that by definition Wy, = (Xypn—Xein)/S(h) and Z, = (X,—p) /o,
where Z; ~ N(0, 1) and (Xt+h—)A(t+h) has conditionally normal distribution with zero mean
and variance S?(h). Hence if we know the coefficients «; from Corollary 2.2 we also know
the coefficients ~;; they will have X4 instead of u and S?(h) instead of 0.

Using Theorem 3.1 we have

~ -~ 1
Y;(j})l = 7 = exp {th + 55 (h)}
and
vO(h) = Zj!a? (1— A%)
=1
< 2 .
= exp (2p+0%) Y iy (1 - A%)
=Y
o[ oY,
= exp (2u +0%) ZT—ZTA
j=1 J=1
= exp (2u+ 0%) [exp(0?) — 1 — exp(c®A?) + 1]
= exp [2(u+0%)] [1 - exp(0?A® — 0%)]
— o 21+ 9] [1 - expl-57(0)].
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and to evaluate VU (h) we need first to calculate the second term in (3.3)

M ] . k
: 2j /iy —1 (J + 2k)! L,
g D AT D e (5B
]:

M 2 2y |l k
I 2 (A0%) 1 Lo o
= A}Enooexp@u—l—a ) g g o —§B o

1l
j=0 J: k=1

Now we can write
VOH) = exp [2(u+ o) [1 - exp(-57() + [ex (35200 ) — expl—5201) ]

= exp [2(p+ 0”)] <1 — 2exp (—%S%h)) + exp(—252(h))) :

Using Theorem 3.3 we have

. Xy — 1 Xpn —
Y9 = a0+ oy =T H e {u+—a2} <1+0M)
o 2 o
1, ~
= exp M+§U (1+Xt+h—u>

and

aiS?(h)

o2

M
VO(h) = lim > jla? +
Jj=2

M—o0 ~
o

= exp <u~|— 302)2 L: G)?

= exp(2u+0?) [exp(c?) — 1 — o® + S*(h)] .

25

jl—1—co"+ S*(h)

00
0

The proportional increase in mean square prediction error for the naive prediction and
for the linear prediction follow immediately from the definition ((3.4) and (3.5)) and the
derived expressions for VIV (h), V@ (h) and VO (h). O
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3.2.2 Quadratic transformation

Let us now consider the quadratic transformation ¥; = X2. We know from Corollary 2.3
that only the first three coefficients of the Hermite expansions (ag, oy and «) are greater
than zero, therefore finding the predictions and their errors will be much easier than in the
case of the exponential transformation.

Corollary 3.5. (Quadratic transformation) Consider the transformation

9 2
— Zasz(Zt) = ZWsz(Wt%
i=0 i=0

where
2 2
g = P +0°,
o = 20U,
Qg = 0'2,

Yo = X+h+52()
mo= 2Xt+h5(h),

Y2 = Sz(h’)y
see corollary 2.3. Then the predictions for the transformed series are
~1 ~
v = X+ S0,
~ (5 ~
Y;&(+2L = Xt2+h’
th’i = 0% — i+ 2uX i,

VO(h) = 4(u® +0*)S(h) —
VO(h) = 4(p® +0®)S?(h) —
V() = 20" 4 4u>5%(h),

254( );
S'(h),

and the proportional increase in the mean square error for the naive and linear predictions

2 Si(h)
GO = fEron — sy
GO(n) = [0 — S*(h)]?

2012 + 02)S2(h) — S ()

Proof. The coefficients of the Hermite expansion «; were derived in Corollary 2.3. Using
the same reasoning as in the previous proof can say that the coefficients ; will be the same
as «a;, but with X;,; instead of x4 and S?(h) instead of o. Using Theorem 3.1 we write
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and

VO(R) = a?(1— A% +a2(1—AY

= do%u? (@) + 20" |1 — <1 — Si(f))j

= 42S(h) +2[0" ~ (0% — S*(W))]
= 4047 + )5 (k) — 25*(h).

Using Theorem 3.2 we write .
~ (5 <o
Yieh = Xign

and the second term in (3.3) (only the term with k = 1 is greater than zero)

2

M M L5 (M—j)] . k
. : e + 2k)! 1
Z()‘?]!(l — AY) + ZAQ](J!) ! Z O‘j+2k% (—532)
j=1 =0 k=1
2 2 2
= {2042 (—%BQ)} = [025 (Qh)} = S*(h),
o

hence
V() = 4(p? + o) S?(h) — 25%(h) + S*(h).

Finally using Theorem 3.3 we have

=0

X _
(-E})z = Ck(]—i-Oél—t—H;_ a

= 0% — ® + 2uXy i

and
aiS?(h)

o2

VE(h) =202 + =202 + 4u*S%(h).

Again, the proportional increase in mean square prediction error for the naive prediction
and for the linear prediction follow immediately from the definition ((3.4) and (3.5)) and
the derived expressions for VI (h), V@ (k) and V® (h). O

3.2.3 Cubic transformation

Finally let us look at the the cubic transformation. From Corollary 2.4 we know that only
the first four coefficients (ag, oy, as and asz) in the Hermite expansion are greater than
zero. The application of the Theorems 3.1, 3.2 and 3.3 is very similar to the case of the
quadratic transformation, although a little more tedious.
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Corollary 3.6. (Cubic transformation) Consider the transformation

3 3
Y, = th = ZaiHi(Zt) = Z%Hi(wt),
i=0

1=0

where

ag = 1+ 30y,

o, = 3op®+30°,

ay = 30’u,

as = o°,

Y = Xt?lh + 382(h)5€t+h7
o= 3X%,S(h) +35%(h),

Y2 = 352(h)55t+h7 V3 = Sg(h),

see corollary 2.4. Then the predictions for the transformed series are Then

}//\;f(—:l)z = X} +352(W) Xip,

(2) %
}/t—i-h = X3+h )

~

Yﬁ; = 3(u’ + UQ)Xt-i-h -2

their mean square errors
VO(h) = S*(h) [9(p® + 0%)* + 6S*(h) — 18u*S*(h) + 1807 (21 + 0® — S*(h))]
VO(h) = V() +95*(h)(1* + 0 — S*(h)),
VO(h) = 603" + 0*) + 95°(h) (1* + 0”)?,

and the proportional increase in the mean square error for the naive and linear predictions

38°(h)(* + 0* — S*(h))
3(u? 4 02)? +254(h) — 6u2S%(h) 4+ 60%(2u2 + 02 — S%(h))’
604 (3u? + %) — S?*(h)(65*(h) — 18u2S?(h) + 1802 (2u* + 0 — S2(h)))
S2(h) [9(u? + 02)2 + 654(h) — 18u2S52(h) + 1802 (2u% + 02 — S2(h))]

Proof. To see that the coefficients «; are calculated correctly we write:

Y, =

WE

o Hi(Zy)
j=0

X, —
= 1P +30%u+ (Bop® + 303)t—’u +
o

X, —n\? X, —u\® X, —
+&¥u[< i “) 1 ( i “) _ g ”]
g g ag

_ X3,

+ 08
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The coefficients v; are obtained in similar way as in the case previous transformations;
with X, instead of u and S?(h) instead of 0. Using Theorem 3.1 we write

}7(121 =% = )A(t?:rh + 352(h))?t+h

and
vO(h) = iﬂo@ (1— A%)
= (30#2 + 303)2 {1 — M} + 2(3‘72M)2 [1 . (02 - SQ(h))

160 [1 - (== _(;32(]”)3]

= S*(h) {9(p* + 0%)* + 65 (h) — 18p>S?*(h) + 1807 (2u* + 0 — S*(h)) } .

Using Theorem 3.2 we write

The second term in (3.3) the only non-zero terms are

1 2
j=0and k=1: {2@2 (—532)} = a3B*

2
j=0and k=1:A? {3!043 (-%1}32)] =903 A’B*.

Hence

VO(h) = VO(R) + BY (02 + 9a24?)
o ()
= VO(h) + 95 (h) (i + 0 — S2(h)).

W~
S—

VO (h) +

Finally, using Theorem 3.3 we have

Xpon — Xpon —
G = ata (%ﬂ) = 1® + 30%u + Bop® + 30°) (%ﬂ)

0
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and

§%(h)

o2

3
V@ (h) = Zj!a? +af
=2

S%(h
= 180*u® + 60° + (3ou® + 303)2%
= 60" (3u* + 0%) + 95%(h)(p* + 0?)?,

Again, the proportional increase in mean square prediction error for the naive prediction
and for the linear prediction follow immediately from the definition ((3.4) and (3.5)) and
the derived expressions for VM (h), V@ (h) and VO (h). O

3.3 Predictions using spectral density

Theorem 2.11 provides the framework for finding the spectral density of a transformation
of a Gaussian process. Once we know the spectral density of the transformed series, we can
find the best linear predictor for the transformed series. Methods for finding the optimal
linear prediction using the spectral density are described in Andél [3] and in Grenander and
Rosenblatt [7]. General Theorem is given in Appendix B. This method, however general,
is not very practical. In special cases much simpler formulas can be derived.

Choi and Taniguchi [5] derived formula for the mean square prediction error of the naive
prediction for square-transformed Gaussian process and compared the naive prediction with
the bias-adjusted prediction.

Theorem 3.7. (Naive prediction) Let X, be Gaussian stationary process with zero
mean and variance o* and spectral density

o) = e, |e(0) = o2

27 e’

where ¢(z) # 0 for |z| < 1. Then the mean square prediction error of the naive prediction

18
2 v2 12 _ 2 2 4
E[Xt+1 - Xt+1] =4do;0” — 0o,

where )?Hl is the optimal predictor of X;.1.

Proof. Process X; can be expressed using its spectral density (see e.g. Andél [3] or
Praskova [11]) in the following way

Xt:/ ™ dz(N).

The best linear prediction (see Theorem 8.1 in Appendix B and Grenander and Rosen-
blatt [7]) is

S T c(e™™) — ¢(0
X1 = /ﬂe(tﬂ)A% dz(\).



CHAPTER 3. PREDICTIONS 32

Define €11 = X1 — )?tﬂ- Then E(e;41) = 0 and
T T —i\) _ 0
S TSR

- - c(e™?)

™ e(t—l—l))\
- c(O)/ =y dz(N)

and so
2 2
E(ern1)” = 0.
Because we assume that X; is Gaussian also ¢;,; is Gaussian and from the basic properties

of the normal distribution (see e.g. Andél [4]) we have Ee},; = 0 and Ee},; = 302, Hence
we can write

EXt2+1 = E(€t+1 + ‘)?t-‘rl) = E€t+1 + 2E6t+1Xt+1 + EXt—|—1 = EXE+1 2

The mean square prediction error is then

E[X7y — X202 = El(eg + Xo1)® = X732 = Ele] + 26001 X112
= E[Effl-s-l + 4€?+1Xt+1 + 4€t+1Xt2+1] = E€?+1 + 4E(€?+1Xt+l) + 4E(€§+1Xt2+1)
— 30! 4 4B}, EX;y +4ES, X2 = 30 + 402EXD,,
= 30, +402(EX?, —0l) = 30t + 402EX7,, — 40t = 40°EX}, — 0o
= 4020 — ot =VI(1).

Notation V?(1) was chosen in accordance with previously used notation. ]

Theorem 3.8. (The bias-adjusted prediction) Under the same assumptions as in the
Theorem 3.7 consider now bias- adjusted tmnsformed series Vy =Y, —EY; = X? —EX? and
bias-adjusted prediction V}H = Y}H — EYH] = XtQJrl EX,?Jrl The expected error of the
bias-adjusted prediction is

0 2 2 2 2\ 2
E <Vt+1 - v;+1> — V(1) = (0% = 02)°.
Proof. We have
~ \2 2
E (Vi = Vinn) = E[(Xh — EXZ) — (X - EXE, )| =
~ - 2
= E [(Xt2+1 - Xt2+1> - (EXt2+1 - EX162+1)] =
= E (Ut+1 - EUt+1)2 = EU152+1 - (EUt+1)2>
where U, = X7 — )A(f Now we have
2
EUt2+1 = E (thﬂ Xt2+1> = V(Q)(l)
EUpyy = EXZ, —EXZ, =0%—02
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Further comparison of the naive and bias-adjusted predictions in case of the square-
transformed process can be found in Choi and Taniguchi [5].



Chapter 4

Application to ARMA processes

In this chapter we will apply the derived formulas to the three predictions (optimal, naive
and linear) and their mean square errors on each of the three transformations (exponential,
quadratic and cubic) of processes MA(1), AR(1) and ARMA(1,1). From Corollaries 3.4,
3.5 and 3.6 we know that the predictions and their mean square errors are functions of
the following four parameters: the mean p and variance o? of the original series X, the
optimal prediction in the original series X, and its error S%(h).

4.1 MA(1) process
Consider the following MA (1) process
Xy =€+ 01,
where ¢, ~ N(0,?) are i.i.d. Obviously p = 0. Variance of the process is
o? = var(X,) = (1 + 6%

The optimal prediction is

(e}

)?t+1 =0, = — Z(—H)thH,j

j=1

and the error of the 1-step ahead prediction is

Now we can use the general formulas to find the predictions and their mean square errors
for this process.

34
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4.1.1 Exponential transformation

Counsider the transformation

Y; = exp(X,).

From corollary 3.4 the predictions for this transformation are

(3
A

= exp

= exp

= exp

<
Il
-

‘Plﬁé%

™

1

L J

_2 ‘

_102(1 + 92)] [1 —

(—0) X1 +

and the mean square errors of these predictions are

1
2

(_9>th+1—j] :

[e.9]

j=1

V(1) = exp[202(1 + 6%)] [1 —exp(o?)],

VA1) = exp[202(1 + 6%)] [1 — 2exp (_202

g

€

2
€ )

Z(—Q)ij—j]

)+ exp(-202)]

V(1) = exp [02(1+6%)] [exp[o?(1+6%)] — 1 — 026%] .

4.1.2 Quadratic transformation

Counsider the transformation

Y, = X?7.

From corollary 3.5 the predictions for this transformation are

35
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4.1.3 Cubic transformation

Counsider the transformation
Y, = X7

From corollary 3.6 the predictions for this transformations are

- 0o — 3 00
}A/t(ﬂ - —Z(—@) Xipr—j| + 307 <_ (—0) Xt+1]> )
L Jj=1 i j=1
- 0o — 3
V8 = |- D0 Xy |
L J=1 i
vE = 30214067 <—Z<—e> X)
j=1

V(1) = 60° [4+60% + 30"]
VA1) = V() +96%°,
VO(1) = 30° (1+6%)°(5+36%).

Y = exp(Xy) h=1|h=2|h=3

=0.25 | G®(h)]0.015 | 0.015 | 0.015
0=025 [ GO(h)] 4.097 | 4.097 | 4.097
()
'(h)

0=0.75 G 0.080 | 0.080 | 0.080
0=0.75 GB 0.350 | 0.350 | 0.350

Table 4.1: MA(1), Y; = exp(X}), proportional increase in mean square prediction error

Y, = X? h=1]h=2[h=3
0=0.25]G?(h)|0.015 | 0.015 | 0.015
0=025|GO(h) | 7.758 | 7.758 | 7.758
()
'(h)

0=0.75| G& 0.110 | 0.110 | 0.110
=0.75 | GG 0.694 | 0.694 | 0.694

Table 4.2: MA(1), Y; = X?, proportional increase in mean square prediction error
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Y, = X7 h=1|h=2|h=3

=025 | G@(h) | 0.019 | 0.019 | 0.019
0=025|GO(h) | 3.275 | 3.275 | 3.275
0 =075 G®(h) | 0.097 | 0.097 | 0.097
0=0.75| G®(h) | 0.205 | 0.205 | 0.205

Table 4.3: MA(1), Y; = X}, proportional increase in mean square prediction error

4.2 MA(c0) process

It is very simple to extend the previous case to MA(oo) process
Xi=¢+ 0161+ b6 2,

where again ¢, ~ N(0,0?) are i.i.d. The variance of this process is
o0
2 2 2
o =var(X;) = o E 03,
i=0

where 6y = 1. The optimal prediction can be calculated by means of standard methods,
we will use the notation X;,;. The error of this prediction is, as in the previous case,

S%(1) = o2

€

Now we can use the general formulas to find the predictions and their mean square errors
for this process.

4.2.1 Exponential transformation

Consider the transformation
Y; = exp(Xy).

From corollary 3.4 the predictions for this transformation are

~ ~ 1
Yt(ﬂ = exp (Xt—H + 503) )

~

Yt(ﬂ = €xp [)?t—i—l],

~ 1 ad ~
Y;(j’% = exp [503 E 9]2- [1 + XtH}
J=0
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and the mean square errors of these predictions are

V(U(l) = exp (20 ZeZ) exp )] :
3
VA1) = exp (2062 ;0?) [1 — 2exp (—50 ) + exp(— 203)] 7
VA1) = exp [062 Z 0]2] [exp (03 Z 93) —1-07 Z g]? + 02
7=0 j=0 j=0

4.2.2 Quadratic transformation

Consider the transformation

Y; = exp(Xy).
From corollary 3.5 the predictions for this transformation are
>
}/tg-i - Xt2+1
>(2
Y;s(+% = XtQ-i—la

Y - ey
=0

and the mean square errors of these predictions are

v = 4 0329? o? —20?,

VA1) = 4 0329]2- ol — ot

V) = 22> 6
L Jj=0

4.2.3 Cubic transformation

Counsider the transformation
Y, = X7

From corollary 3.6 the predictions for this transformation are
Yt(ﬂ = th+1 + 302 X141,
2
}/t(+i - Xt3+17
~(3 ~
v = 302X
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and the mean square prediction errors are

[e.e] 2 [e.e]
viD(1) = 30° 9(293) +6) 67 +2
§=0 =0

4.3 AR(1l) process

Consider now the AR(1) process
Xi =X te,

where ¢ ~ N(0,¢?) are i.i.d. This process can be also written in the following form

X = Z S0j€t—j
j=0

from which it is obvious that the variance of the process is

o0 2
2 2 2j g
o =var(X;) = o ng )= . _:02.
§=0
The optimal prediction is R
X1 = pXy
and the mean square prediction error is
S%(1) = o2

Now we can use the general formulas to find the predictions and their mean square errors
for this process.

4.3.1 Exponential transformation

Counsider the transformation
Y; = exp(Xy).
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The predictions for this transformation are

~ I 1
P = e et 502

V8 = explpXi],

Y = exp —@] (1+¢X;)

and the mean square errors of these predictions are

V(1) = exp (21 fiz) [1—exp(=o7)],

2 3
V(2)(1) = exp (21 i:OQ) {1 — 2exp (—503) + exp (—20?)} ,

2 2 2
(3) — Oe Oc 1 O 2
s eXp(l—soz) [eXp(l—wZ) 1 1—902+05}'

4.3.2 Quadratic transformation

Counsider the transformation
Y, = X7

The predictions for this transformation are

~

1
Y = ex?+a?

(1
Yt(ﬁ = SOXtQ’

2
1) O¢
)/t+1 - 1 _ g02

and the mean square errors of these predictions are

4.3.3 Cubic transformation

Consider the transformation
Y, = X7
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The predictions for this transformation are
~1 ~
Vi = oX} 4307 X0,

(2
Yig—:)l = SOXt3>

Yt(ﬂ = 3 (ﬁZw”) Xt
=0

and the mean square errors of these predictions are

1 \? 1
2
'(=5) +o(=p)

2
Va1 = v<1>+9a6< L4 )
1 —?

1 \’[ 2
ve1) = 305(1_¢2> [1_(102—1—3].

Y; = exp(Xy) h=1|h=2|h=3
©=025 | G®(h)|[0.015 | 0.016 | 0.016
©0=2025 | GO(h) | 4.120 | 3.850 | 3.834
©=0.75 | G®(h) ] 0.080 | 0.090 | 0.090

'(n)

V(1) = 308

€

Y

=075 | G®(n)]0.681|0.292]0.185

Table 4.4: AR(1), Y; = exp(X}), proportional increase in mean square prediction error

Y, = X? h=1|h=2|h=3
0 =025 G?h) ] 0.015 | 0.016 | 0.016
0 =025 GOh) | 7.791 | 7.289 | 7.260
©=0.75] G@(h) | 0.070 | 0.119 | 0.150
©=0.75 | G®(h) | 1.317 | 0.610 | 0.407

Table 4.5: AR(1), Y; = X?, proportional increase in mean square prediction error

4.4 ARMA(1,1) process
Consider now the ARMA(1, 1) process

Xy =X+ e+ 06,
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Y, = X} h=1]h=2[h=3

© =025 GP(h) | 0.019 | 0.020 | 0.020

© =025 GO(h) | 3.290 | 3.068 | 3.055

0 =075 GP() [ 0073 | 0.102 | 0.112
'(h)

=075 GV 0.456 | 0.174 | 0.101

Table 4.6: AR(1), Y; = X}, proportional increase in mean square prediction error

where €; ~ N(0, 02) are i.i.d. If |¢| < 1 then this process can be also written in the following

form
oo
Xt: E Cj€¢—j,
j=0

where
=1 ¢=¢ ' 0+¢p), j>1,

see for example Praskova [11], p. 69. The variance of this process is
e o1+ 200 + 62
€ 1 _ (pz

The optimal prediction can be calculated by means of standard methods, we will use the
notation X; ;1. The error of this prediction is, as in the previous case, and the mean square
prediction error is

S%(1) = o?

Now we can use the general formulas to find the predictions and their mean square errors
for this process.

4.4.1 Exponential transformation

Counsider the transformation
Y; = exp(Xy)

The predictions for this transformation are

~ ~ 1
Y;(ﬂ = €xp (Xt+1 + 5062) )
2(42 = €Xp ()?H-l) )

S 1,14 b+ 6 S
Yt(j% = exXp (Eaglf—(pz) (1+Xt_|_1)
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and the mean square errors of these predictions are

) [1 = exp(—a?)],

1+ b + 62

VD) = exp (203 .

92
V(Q)(l) = exp (2062%) {1 — 2exp (—gaf) + exp (—2062)} )

1 — 2
1 4 200 + 62
V(3)<1) = exp [03%

4.4.2 Quadratic transformation

Consider the transformation
Y, = X7

The predictions for this transformation are
S(1
Yt(—i-i = 90X3 + 0-62 )
(2
}/t(Jr} = QDXE )

-~ 1 + 290(9 + 62
3

and the mean square errors of these predictions are

1 4 200 + 62
viha) = 403% — 202,
-
1+ 2¢0 + 62
Vo) = R R
2
v = gt (LEXOLE
1— 2 ’
4.4.3 Cubic transformation
Counsider the transformation
Y, = X7

The predictions for this transformation are

~

Vi = oXP 430X,
(2
Y;S(—&-% = @Xit??

S 14200 + 6%\ o
vy = 3<03+¢2) X

1 + 2¢0 + 6*
|:eXp (0'621_—%02 -1

o1+ 200 + 62

€

1— 2

2
7.
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and the mean square errors of these predictions are

1+ 200 + 02\ 1+ 200 + 62
9(—+‘p;r )+6<—+“0j )+2],
1—0 11—

2
VA1) = v 4908 1+200+67 1),
€ 1 _ (pQ

14200 +602\? [ 1+ 200 + 62
G)(1) = 300 (—F 7 ) |27~ 43,
V(1) 306( s -2 +

Vi) = 308




Chapter 5
Empirical part

The formulas derived in the previous chapter were verified in a simulation. Tested were
three models; MA(1), AR(1) and ARMA(1,1) with various parameters, but constant vari-
ance of innovations var(e) = 02 = 1. The observed average squared errors for each predic-
tion

~

n 1 1

n

n (2 2
n

n (3 3
n

were compared with the theoretical values V(M (1), V(1) and V®(1). The variance of
innovations is in all cases 02 = 1 and therefore error of the 1-step ahead prediction X, is
in all cases S?(1) = 1. The simulation was carried out for n = 20000 observations.

Note that in each row the observed average squared error of the optimal prediction
is better than that of the naive and linear predictions, which is in accordance with the
expectations. For each transformation it can be said that with increasing coefficient 6 also
the error of the prediction increases, which is also in accordance with the expectations.
In general, exponential transformation leads to very large errors for large AR coefficients
(p close to 1), but the prediction for cubic-transformed process has larger error for small
values of the AR coefficient.

We can also see significant difference between the theoretical mean square error and
calculated average square error and that especially in case of the exponential transformation
(see e.g. table 5.7) for large values of . Similar discrepancies can be observed in case of
the cubic transformation, while in case of the quadratic transformation the theoretical and
observed errors are relatively close. After running the simulation several times we recorded
very large positive as well as negative differences between the theoretical and calculated
errors. Together with the fact that simulations with more observations lead in general to
reduction and gradual elimination of these differences we came to the conclusion that there
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is no systematic error. It seems that in case of large values of ¢ any randomly occurring
perturbations are projected within the process very far, thus distorting the calculated

average square errors of predictions.

In general it can be said that the simulation verified the results derived in the previous

chapters.

o | o2 [V [ voe) | vP0 [ vea) | vPa) | ve )

0.1 1.010 4.702 4.765 5.150 5.194 4.702 4.765

0.5 | 1.250 | 7.586 7.701 8.243 8.395 7.671 7.920

0.9 | 1.810 | 23.629 | 23.602 | 25.671 | 25.728 | 26.331 | 26.278
Table 5.1: MA(1) process, Y; = exp(X})

o | o2 [V [ voo) | vP0 [ vea) | vPa) | ve)

0.1 ] 1.010 | 2.053 2.040 3.079 3.040 2.054 2.040

0.5 ] 1.250 | 3.102 3.000 4.119 4.000 3.239 3.125

0.9 | 1.810 5.212 5.240 6.198 6.240 6.519 6.552
Table 5.2: MA(1) process, Y; = X}

o1 o [V [voe) [ vPa) lven) [ vP0) [ vea)

0.1 | 1.010 | 15.829 | 15.363 | 15.946 | 15.453 | 15.829 | 15.363

0.5 | 1.250 | 27.595 | 25.688 | 30.100 | 27.938 | 27.722 | 25.781

0.9 | 1.810 | 67.526 | 61.875 | 75.532 | 69.165 | 71.205 | 65.063

Table 5.3: MA(1) process, Y; = X}
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V(1)

2)

v ()

V@(1)

v )

V(1)

0.1

1.010

4.518

4.766

4.935

5.196

4.518

4.766

0.5

1.333

9.293

9.097

10.155

9.917

9.543

9.334

0.9

5.263

8203

23567

8811

25691

13629

36267

Table 5.4: AR(1) process, Y; = exp(X;)

v

V(1)

v ()

V(1)

7P )

VE(1)

0.1

1.010

2.019

2.040

3.011

3.040

2.020

2.041

0.5

1.333

3.389

3.333

4.408

4.333

3.611

3.55600

0.9

2.263

19.634

19.053

20.669

20.053

57.215

55.402

Table 5.5: AR(1) process, Y; = X?

v )

V(1)

V(1)

VE(1)

0.1 ] 1.010

15.875

15.366

15.997

15.457

15.875

15.366

0.5 | 1.333

34.177

30.000

37.795

33.000

34.482

30.222

0.9 | 5.263

771.326

659.186

819.446

697.554

1471.947

1124.071

Table 5.6: AR(1) process, Y; = X

(¢, 0)

o

2

V(1)

v 1)

V(1)

v )

VE(1)

0.25,0.25

1.267

9.220

7.962

10.033

8.679

9.383

8.100

3.286

388.534

451.580

418.022

492.268

534.034

626.569

0.25,0.75

2.067

49.236

39.435

53.018

42.988

95.565

46.062

( )
(0.75,0.25)
( )
( )

0.75,0.75

6.142

26 338

136 904

32703

149239

40816

213721

Table 5.7: ARMA(1, 1) process, Y; = exp(X})

(v,0)

0.2

v )

V(l)(l)

7(2) (1)

V(Q)(l)

v 1)

VO)(1)

0.25,0.25

1.267

3.211

3.067

4.234

4.067

3.375

3.209

0.75,0.25

3.286

12.152

11.143

13.233

12.143

24.935

21.592

2.067

6.637

6.267

7.668

7.267

9.080

8.542

( )
( )
(0.25,0.75)
(0.75,0.75)

6.142

22.976

22.571

23.978

23.571

T77.575

75.469

Table 5.8: ARMA(1, 1)process, Y; = X}
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(0,0) | o> [V v | VP [vee | vPu) | ve)
(().25,0.25) 1.267 | 29.205 26.520 31.974 28.920 29.353 26.634
(0.75,0.25) 3.286 | 290.404 | 238.347 | 317.687 | 258.918 | 405.426 309.997
(0.25,0.75) 2.067 | 94.258 84.120 | 105.163 | 93.720 102.832 91.402
(0.75,0.75) 6.142 | 882.115 | 914.265 | 924.160 | 960.551 | 1637.966 | 1730.405

Table 5.9: ARMA(1,1) process, V; = X}
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Conclusion

The aim of this diploma thesis was to find and evaluate predictions for transformed time
series. We considered a class of transformations that can be written as linear combinations
of Hermite polynomials. This enabled derivation of explicit formulas for the general class
of Gaussian processes. The main focus was on situations when the original series can be
described by a simple ARMA process. Explicit formulas were derived for three concrete
transformations.

In the second chapter we investigated the autocovariance function and spectral den-
sity of the transformed series, specific results were derived and some further topics were
outlined.

In the third chapter general theorems for three types of predictions were stated and
applied to three concrete transformations. Also some results were derived using the spectral
density. Theorems from the third chapter were further developed in the fourth chapter and
derived were explicit results for simple ARMA models.

Finally in the fifth chapter the formulas for the simple ARMA processes were verified
in a simulation.
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Appendix A - Properties of Hermite
polynomials

Hermite polynomials H,(z) are orthogonal polynomials over the domain (—oo, c0) with
weighting function exp(—z?).

Definition 7.1. (Hermite polynomials) The system of Hermite polynomials H,(z) is
defined in terms of the standard normal distribution as

i) = oo () e (),

() (4
Hia) = ()

where ¢(x) is the standard normal probability density function.
Explicitly, we can write

Ln/2]

o 2mml(n — 2m)!
= Z xn—2m
where | N| is the integer part of N.
We have
H(](.I) = ].,
Hi(z) = =z,
Hy(z) = 2% -1,
Hi(z) = 2°— 3z,
Hy(z) = a*—62%+3,
Hs(z) = 2°—102° + 152

50



CHAPTER 7. APPENDIX A - PROPERTIES OF HERMITE POLYNOMIALS o1

and so on. Define operators Ey and E by

B (o)) = = [ vlo)ew (‘7) dr,

B} =~ [ twew (‘(‘ZT"“‘)) d.

The Hermite polynomials constitute an orthogonal system with respect to the standard
normal probability density function, so that

0, n#k,
om0} ={ 0y T )
and since Hy(z) = 1, it follows that
Eo{Hn(x)} =0 for n > 0. (7.2)

If X and Y have bivariate normal distribution with zero means, unit variances and corre-
lation coefficient p then

E{H.(X)|Y =y} = p"Hyu(y)

and

0, n # k,
nlp®, n=k.

E(H,(X)H(Y)) = {
The Hermite polynomials obey the recursion formula
Hy(x) —aHy(z) + nH,—1(x) =0

and have the following generating function:

exp <m _ g) _ 2 Hn(x)g. (7.4)

For all z, y and A, B such that A% 4+ B? = 1 we have

Ho(Az + By) =Y (Z) AR B R () Hol o (y). (7.5)

In general, the coefficients «; for Hermite polynomial expansion of a function

T(x) =Y a;H;(a)
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are given by

d" T(x)
“ 0 {dx” n! } (7.6)
To find Hermite expansion polynomial functions it is possible to use the following formulas:
2p)! : Hy;()
x2p:( Z J p=0,12. (7.7)
2 ; YR ) Ly &
2% = (2)1(p — )"
and )
2p +1)! Haj i (2)
2p+1:<p 2j+1 :012 78
X 92p+1 ;(2j+1)'(p—])|’ b Loz, 00, ()

More examples can be found in [9], along with comprehensive account of the properties of
Hermite polynomials. For more information see also [2].
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Appendix B - Best linear prediction
using spectral density

The following Theorem provides a method for finding the optimal linear prediction when
the spectral density is known. More on this topic can be found in Andél [3] and in Grenan-
der and Rosenblatt [7].

Theorem 8.1. (Optimal linear predictor) Let X, be a process with spectral density
f(A) and absolutely continuous spectral distribution function

Foy = [ 1f(x) dz,

where

/7T log f(A)dA > —o0.

Let z(\) be the random measure corresponding to the process X; and

1s such that

1
—le(e NP = f()
Then the best linear h-step ahead prediction is
- EEI—5Y
% _ i(t+h)A Zj:h ¢
Xt+h = /_ﬂe WdZ(A)

The one-step ahead prediction is given by

- T c(e™) —¢(0
Xt+1:/ e(tﬂ))‘%dzb\)

—T
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and the mean square error of this prediction is

~ 1 g
E(XtJrl - Xt+1)2 =27 exp <%/ lOg f()\)d)\) > 0.

Proof: See Grenander and Rosenblatt [7], p. 69.
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