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Introduction

People play games to enjoy themselves, making player enjoyment one of the
key concepts of games and their design. Enjoyment is hard to define and was
thoroughly studied in multiple fields, including game studies and psychology [1,
2, 3].

One of the most notable views of enjoyment is Csikszentmihalyi’s concept of
flow [1]. The flow is a state of mind where the players become engrossed in a
task so much that they practically ignore everything else. The state of flow can
be achieved when a task presents the right amount of challenge and is not boring
nor frustrating.

The right level of challenge of a task is entirely subjective for every player [2].
Many factors can make the task boring or frustrating, including the players’ state
of mind, the game’s genre, or the weather outside. For some games, the most
crucial factor is the game’s difficulty [3].

The difficulty depends on player preferences. More experienced players want
harder challenges, while less experienced players prefer them more forgiving [4].
Even when their skill is the same, players have different expectations from the
game and its challenges. Hence adjusting the game’s difficulty is difficult. Fur-
thermore, when the difficulty does not match the players’ skill, players might get
frustrated and quit the game.

In a typical game, game designers design the game components before the
game is released. In the game, the desires and skills of the players must be met,
and not the designers’ [4]. The designers try to balance the difficulty of the game
to fit all the players. However, that is a hard task because they always have a
different experience than an average player.

The problem is usually solved by creating multiple difficulty settings for the
players and giving them an option to select the game’s difficulty. The problems
are that players do not know what the difficulty settings mean before they play
the game, and allowing them to change the difficulty throughout the game can
have unwanted side effects [5].

Dynamic difficulty adjustment methods try to adjust the game’s difficulty
algorithmically to solve the problem of subjective difficulty. It is a new research
field that has seen most of its popularity in the last decade [6, 7]. The main goals
are to make the game’s difficulty more dynamic, increasing players’ enjoyment.
The algorithms adjust different game components like player controls, game rules,
or game levels. A sound DDA adapts to the player’s skill, makes unnoticeable
changes, and creates the right amount of challenge [6].

Procedural Content Generation (PCG) is a technique that generates game
content procedurally [8]. It is often applied to the generation of game levels. It is
capable of generating more levels than the game designer increasing the game’s
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replayability. Very often, the PCG is used together with DDA to generate levels
specially tailored to players’ skill [7].

The endless runner is one of the most popular game genres of previous years,
especially on mobile platforms [9]. In a typical endless runner game, the player
character runs endlessly while avoiding obstacles by performing actions requiring
precise timing and fast reactions. Endless runners usually have levels with differ-
ent playthroughs and difficulties. The goal can be getting to the end of the level,
completing challenges [9], or playing to reach the best score.

Endless runners are an interesting case study for dynamic difficulty adjustment
because their difficulty is closely tied to the player’s enjoyment. The difficulty of
a level depends significantly on the speed of the level and the difficulty of player
actions. Skilled players predict actions and time them perfectly, while new players
can struggle with the most basic actions.

In this work, we aim to create an endless runner game, which uses DDA and
PCG techniques to create player-tailored levels that match the player’s skill and
present an optimal level of challenge.

Thesis goals
This thesis has two goals:

1. Create an endless runner. The goal is to create a playable game utilizing
server-client architecture that will be playable in a browser. The game will
have all the main features an endless runner game should have [9]. The
game will have endless levels and a few levels in which the DDA could be
tested.

2. Adjust its difficulty dynamically. The goal is to implement a server-
side DDA system capable of balancing the difficulty of levels to present an
appropriate challenge for every player.

Thesis structure
We have structured the work into two parts. In chapters 1-3, we deal with

the design and implementation of an endless runner game. In the second part,
we analyze the difficulty in our game and implement the DDA system.

In the first chapter 1 we describe the necessary background. Then we design
our own endless runner game and its mechanics in the chapter 2. In chapter
3 we describe the implementation of the game and its architecture. We start
analyzing difficulty in chapter 4, where we also outline our approach in creating
the DDA system. In chapter 5 we discuss its implementation, and we continue in
chapter 6 where we create an experiment to evaluate the game and the difficulty
adjustment. We present conclusions and outline future work in chapter 7.

4



Chapter 1

Background

In this chapter, we introduce key concepts that we use and reference in the
following chapters. We begin by defining video games and game design. Next,
we introduce the concept of enjoyment and dynamic difficulty adjustment. We
continue by introducing procedural content generation, endless runners, and list-
ing three popular endless runner mobile games. We finish by defining genetic
algorithms and introducing the Unity game development environment.

1.1 Video games
Creating an exact definition of a game is hard. All games are different, and

their history can be traced back to the beginning of human civilization. Hence,
there are different views regarding their definition. The view we identify with
the most can be found in Jasper Juul’s book Half-Real [10], where he discusses
modern video games.

Juul defines a game as: "A game is a rule-based system with a variable and
quantifiable outcome, where different outcomes are assigned different values, the
player exerts effort to influence the outcome, the player feels emotionally attached
to the outcome, and the consequences of the activity are negotiable" [10].

The player is a person who is taking part in the game. The game rules create
challenges for the players that they need to overcome to influence its outcome.
In order to overcome the challenges, players improve their knowledge and skills.

Therefore playing a game can be viewed as a learning experience, which is an
important view shared by Koster [2]. According to Koster, games should promote
cognition such as exploration and mastery of challenges because players enjoy the
feeling of learning something new.

A video game is an electronic game in which a player controls images on a
video screen [11]. It is made out of rules and a fictional world. Playing a video
game is an interaction with real rules while imagining a virtual world [10]. This
interaction is one of the most important features of video games. It is present in
multiple aspects of video games and their creation process.

A critical category of video games is mobile games, which are played on
mobile devices. They are controlled by the player’s touch on the mobile screen.
It has an interesting design implication, as designers try to make their controls
as simple as possible, which is especially true for endless runner [9].
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1.2 Game design
Game design is the act of deciding what a game should be [12]. It in-

volves designing all the parts of a video game, such as game mechanics, interface,
controls, sound, or aesthetics. Therefore, a game designer is anyone who has
something to do with any part of the game.

The goal of game designers is to create interesting games and offer unique
experiences to the players. Designers work with players’ skills throughout their
gameplay through challenges.

Game design has a significant impact on the game’s development. A poorly
designed game will not attract as many players nor keep them interested and
might increase the cost of the game if the design changes significantly during the
development. A well-designed game will be more fun while also being cheaper to
make. Hence, it is essential to design the games properly.

There exist many different approaches to how games and software should be
created and designed. Ernest Adams [13] identifies three essential stages in the
game development process:

• Concept stage: The fundamental game concept is created. A target au-
dience and the player’s role are determined.

• Elaboration stage: The primary game mode, game world, and core me-
chanics are defined. The game is implemented, tested, and iteratively im-
proved.

• Tuning stage: No more new features are added. Small adjustments and
polishing of the game.

In the concept stage, the game designer focuses on the game idea and the
definition of the core mechanics and concepts. During the elaboration stage, the
developers improve and test the concept. The last stage starts before the game is
released and continues long after and involves incorporating player feedback into
the game [14].

Game designers are also concerned with game models and identifying what
key components make a game. Adams [13] identifies three key components, which
are present in every game:

• User: Without a user, there is no game.

• Core mechanics: The game rules and their implementation.

• User Interface: User interface mediates between the core mechanics of
the game and the users. It consists of:

– Interaction models: Models which turn the users’ inputs into actions
within the game world.

– Camera models: Represent models of how the information about
the game world is presented to the user.
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Core game mechanics define the game’s rules, challenges, and its goal. Players
perceive the game world through the camera model and use the interaction models
to control the game and interact with the game mechanics.

Game designers take a big interest in trying to understand their players. It
starts in the concept stage when the designer tries to identify the target au-
dience and is present in all the development stages. Identifying an audience
requires a thorough research. One important concept is Bartle’s taxonomy of
player types [12], which divides players into four categories depending on their
primary goals and expectations from games:

• Achievers: Want to achieve the goals of the game and have satisfaction
from completing its challenges.

• Explorers: Want to discover the game and explore its world. They do not
care about points.

• Killers: Are primarily satisfied by defeating other players. They want to
be the best in the game.

• Socializers: Are interested in relationships with other people and seek the
pleasures of fellowship.

Game designers try to define their target audience to understand better the
needs and background of players they expect to play their game. Knowing the
target audience helps the designers to make a better game for their target players.
For example, if the game is targeted at children, the game might need a more
thorough tutorial and simpler mechanics.

Other approaches and guidelines for game designers exist. One interesting
example is The Art of Game Design by Schell [12]. It presents a complete overview
of the game design process and creates a set of so-called lenses. Each lens looks at
the game from a different perspective by posing questions for the game designer.
By referencing lenses in the book, a game designer can look at the game from
different angles.

Game design is a complicated process that requires background from multiple
fields. A thorough view of game design can be found in Fundamentals of Game
Design by Adams [13].

1.3 Enjoyment
Enjoyment is an important concept to understand. It can mean different

things depending on the context in which it is presented. We are working with
enjoyment in video games, in which enjoyment is how much the player enjoys
the game. It is difficult to describe how different players enjoy video games.

There exist multiple views that look at the problem of analyzing enjoyment
from different perspectives and research fields. One of the most popular concepts
used very often in works related to DDA is Csikszentmihalyi’s concept of flow [1].
This concept is universal and can be used to define enjoyment of almost every
activity [3]. Hence it is better than other theories such as Malone’s taxonomic
model of intrinsic motivations [15].
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Flow is a state of mind in which people are completely engrossed in a given
task that they practically ignore everything else. It can be achieved during almost
any activity we do, ranging from reading a book to running a marathon.

Csikszentmihalyi identifies the following aspects, which characterize the state
of flow:

• A challenging activity requiring skill. An activity needs to be chal-
lenging and non-trivial in order to be motivating and satisfying.

• A merging of action and awareness. Most of the person’s relevant
skills are needed to cope with the activity.

• Clear goals and feedback. The goal is clear, and feedback is received
immediately.

• Concentration on the task at hand. The person does not care about
anything else but the activity and is not easily distracted.

• A sense of control. The task does not cause worry to the person. The
person feels in control.

• The loss of self-consciousness. When the people submerge in the activ-
ity, they stop thinking about themselves.

• The transformation of time. The time does not seem to pass the way
it normally does.

An example could be a person reading a book. For the reader to be in a state
of flow, the book must be exciting and demand all his attention. Breaking one
of the aspects of flow, like reading in a noisy environment, could break the flow
state.

The flow creates a relation between the player’s skill and the difficulty of
a given task. We can experience the state of flow only if the task is not too
hard or easy and presents the right amount of challenge. Otherwise, the task
might be frustrating or boring. This concept is visualized in figure 1.1, where the
relationship between difficulty and enjoyment can be seen.

The concept of flow was later adapted to video games by Sweetser et al. [3].
The authors present a concept of GameFlow, which is a model for the design,
understanding, and evaluation of player enjoyment in games. They identified a
set of eight core elements of flow in games:

• Concentration: Games should require concentration, and the players
should be able to concentrate on the game.

• Challenge: Games should be challenging and match the player’s skill level.

• Player skills: Games must support player skill development and skill mas-
tery.

• Control: Players should feel a sense of control over their actions in the
game.
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Figure 1.1: Flow
Flow can be achieved if the difficulty matches the players’ skills.

• Clear goals: Games should provide clear goals at appropriate times.

• Feedback: Players must receive appropriate feedback at appropriate times.

• Immersion: Players should experience deep but effortless involvement in
the game.

• Social interaction: Games should support and create opportunities for
social interaction.

Elements of GameFlow relate to Csikszentmihalyi’s flow characteristics. One
of the added elements is social interaction, which is especially important in video
games, because it can create additional motivation and goals for the player. There
exist games without clear goals (e. g. Minecraft1), where social interaction can
be the primary motivation and goal of its players.

1.4 Difficulty adjustment
Dynamic difficulty adjustment (DDA) is a method of algorithmically ad-

justing the game’s difficulty depending on the player’s skill and performance.
Because the difficulty of any activity is subjective, it is hard for the designers
to create a solution that would fit all the players. The goal of DDA is to solve
this problem and make the game enjoyable for a greater audience of players by
tweaking its difficulty.

A few steps identical for all the DDA techniques can be identified [6]:
1https://www.minecraft.net/en-us
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• Data collection: Data from the game about the players’ performance and
other characteristics are collected.

• Data analysis: The data are interpreted, adjusted, and analyzed.

• Modelling: Models representing some player attributes are created.

• Adjustment: A part of the game is adjusted accordingly to the created
model.

Based on the problem at hand, DDA systems vary significantly on all the
stages and use different ways of adjusting the difficulty and modeling the player.
The most used approaches include probabilistic methods, dynamic scripting, or
machine learning [7].

Most of the systems can be categorized as either active or passive DDA.
Active DDA gives the player direct control over the game’s difficulty. For example,
the game might ask the player to select his preferences regarding difficulty to guide
the DDA. The game then adjusts the settings to match the player’s preferences.
The advantage is that players have a feeling of control over the game. Passive
DDA adjusts the difficulty without asking the player. In the ideal case, the players
will not notice that the game adjusts the difficulty.

Another distinction some works [16] use is the distinction between proactive
and reactive adjustments. Reactive adjustments influence game elements that
are already in play while proactive adjustments influence only elements that are
not currently in play.

Other works also make a distinction between single-player and multi-player
DDA (MDDA) [17]. While single-player DDA concerns itself with only adjusting
games played by a single player, multi-player DDA concerns itself with groups of
players in a multi-player game. In our work, we are dealing only with single-player
DDA.

We mention some research done on DDA algorithms applied to games simi-
lar to endless runners in chapter 4. There exist more detailed reviews of DDA
algorithms by Sepulveda et al. [6] or Zohaib [7].

1.5 Procedural content generation
Procedural content generation (PCG) is the process of creating any con-

tent algorithmically with limited or no human contribution [17]. In the video
game context, content is anything that an artist or a game designer usually cre-
ates. For example, game levels, music, textures, models, or game rules. In the
context of generating games, PCG is a procedural generation that "affects the
gameplay significantly" [17].

PCG is widely used in game development for a few different reasons. First, it
can generate much more content than a content creator. That can make the game
feel much less repetitive and increase its replayability. Another unique advantage
is that PCG can be used to create personalized game content. It can consider
other things that the game designer might not know beforehand to make the
game content better suited for the player.
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On the other hand, the main disadvantage of PCG is that the generated
content might feel too artificial to the players compared to the designer-made
content. A mixed-initiative approach is used to alleviate this problem - a part
of the algorithm uses some external input from the game designer. An example
of this approach is template level generation, which generates game levels out of
small designer-created chunks (e. g. in Spelunky2).

Procedural generation was described in lots of works. For example, Mourato
et al. [17] introduce PCG in the context of platform video games. They also list
platform games that utilize PCG and some of the main challenges of PCG in the
context of video games.

1.6 Endless Runners
Endless runners, sometimes also called infinite runners, are a genre of plat-

form video games where the player character continuously moves in potentially
infinite levels. Endless runners are a subgenre of endless games, which include
other games such as endless flyers [9].

We deal with endless runners, where the player character runs on a track with
obstacles. The main game loop usually involves the players avoiding obstacles,
while hitting an obstacle results in defeat. The placement of obstacles and the
player’s running speed are the main factors of difficulty.

The gameplay of an endless runner is focused on fast player reactions and
precise timing. Endless runners usually progressively increase in difficulty as the
game progresses, while the levels are usually played for a short duration. The
player in endless games is often focused on collecting points and achieving a high
score [9].

Next, we will break down three examples of endless mobile runners. We have
picked two of the most popular mobile endless runners and an interesting runner
played in a first-person perspective. We will reference them in later chapters.

1.6.1 Subway Surfers
Subway Surfers [18] by SYBO Games is the most successful endless runner

mobile game of all time. At the time of writing, it has over 2 billion installs on
Android alone and was the most downloaded game from 2012 to 2019 [19].

The player controls a character that is running in an environment resembling
a subway. The player runs in an environment that contains three train tracks
and a wide range of obstacles. There are both stationary and moving trains on
each of the tracks. The players can run on top of some of the trains. Then there
are hurdles that the player needs to duck under and other static obstacles that
should be avoided.

The main game loop has the player running endlessly forward while dodging
trains, collecting coins, and other pickable objects (score multiplier, magnet). In
the left screenshot in the figure 1.2 you can see the player, the track he runs in,
coins that he collects, and trains that should be avoided.

2https://spelunkyworld.com/
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Figure 1.2: Endless runners
Subway Surfers, Temple Run 2 and Fotonica

The game is controlled by swiping on a touch screen. A horizontal swipe is
needed to move the player to the adjacent track. An upward vertical swipe makes
the player character jump in the air. Swiping down cancels the jump and makes
the player land faster. Swiping downwards while running on the ground makes
the character perform a slide used to get past hurdles.

1.6.2 Temple Run 2
Temple Run 2 [20] was published in early 2013 on multiple mobile platforms.

The game is a part of the Temple Run series, counting three more games. All
games in the series are based on similar game mechanics.

The player controls a character running in a temple environment while over-
coming obstacles, collecting coins, and being chased by a monster. There are
obstacles that the players should avoid, which include jets of fire, waterfalls, zip
lines, and L-shaped turns. A screenshot from the game can be seen in the middle
of the figure 1.2, where you can see the player, some collectibles, and an obstacle
that should be jumped over.

The basic controls involve the player tilting the mobile left and right to avoid
obstacles. Sometimes the players must jump over obstacles by swiping up or slide
under obstacles by swiping down. The players must swipe left or right to pass
an L-shaped turn depending on the direction they want or are forced to take.
They can also collect some additional boosts along the way (e. g. speed boost)
activated by double-tapping.

1.6.3 Fotonica
Fotonica [21] is a multiplatform endless runner game by an Italian indie games

studio Santa Ragione. It was released on App Store, Google Play, and Steam. It
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does not have as many downloads as the other two games, but it is an interesting
example of an endless runner.

Fotonica features unique vector-style graphics and a first-person point of view,
where the players see directly through the eyes of the game’s unnamed protago-
nist. The player character always runs only in one direction with speed based on
the player input. Falling into gaps in the track makes the player lose. The player
earns a score by running and collecting colored spheres. The levels are infinite,
and the goal of the game is to earn the highest score possible.

The game is controlled by pressing a single button or making a single touch
on the screen. By holding the button down, the player starts running forward.
By releasing and pressing the button, the players control jumping and landing.
There is only one track, and the player does not move sideways. The graphics of
the game and one of the starting levels can be seen in figure 1.2.

1.7 Genetic algorithms
Genetic algorithms (GAs) are a special kind of evolutionary algorithms.

They are optimization algorithms inspired by biological evolution and natural
processes [22], based on the Darwinian evolutionary theory.

Genetic algorithms work with a set of candidate solutions, which is called
a population. Each candidate solution is called an individual and consists of
chromosomes and genes representing the solution features. In order to solve an
optimization problem, the algorithm creates an initial population of individuals,
which are iteratively adjusted through evolutionary processes.

Parents
selection

Termination
condition

Survivors
selection

Mutation

Initialization

Crossover

Return best
solution

Evolution

Figure 1.3: Genetic algorithm
Basic steps of a genetic algorithm.

One step of evolving a population is called a generation. During generation,
the algorithm adjusts the population through selection, crossover, and mutation
to create a new population of individuals, solving the problem better. The algo-
rithm utilizes a so-called fitness function.
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A fitness function calculates a score for individuals to evaluate the quality of
the solution they represent. Fitness is often used in selection steps. For example,
better fit individuals might be selected for crossover more often as they might
have a higher chance of producing a better-fit individual.

Standard genetic algorithm performs the steps shown in figure 1.3 and listed
below:

• Population initialization: Initial population of candidate solutions is
created.

• Fitness calculation: Fitness function is computed for each of the individ-
uals. It is usually done during the selection steps.

• Selection: A subset of individuals are selected based on some rules.

• Crossover: Selected individuals take part in the crossover. By combining
their genes, new individuals are created.

• Mutation: Genes of some individuals get tweaked according to some rules.

• Termination check: The algorithm checks if an end condition is satisfied,
in which case the best solution is returned.

The steps typically differ with the given problem, and different methods of
generation are used. Because of that, some literature calls all operations on the
population as operators [22].

During one generation step, a typical genetic algorithm selects individuals
from the population for the crossover. In the crossover, parent individuals are
combined to create new individuals called the offspring. Then some of the
individuals are mutated by tweaking their genes. A new population is created by
combining the old population with the offspring and is used in the next generation
step.

We can distinguish between two models of population management. The
generational model begins in each step with a population of size µ from which
it selects parents for crossover. Next, it creates an offspring of size λ by applying
the crossover operators. The next generation is created by selecting µ individuals
from the offspring. In a steady-state model, part of parents survives to the
new generation.

The steady-state model gives rise to the concept of elitism. Sometimes, the
genetic algorithm is developed so that the best individuals survive into the next
generation. It can be used so that the best solution found is not lost during the
generation.

The evolution is driven by selection, crossover, and mutation steps. Those
create a new population with individuals that have features of the previous pop-
ulation. Crossover changes the solution dramatically, for example, combining half
of one solution with another. Mutations tweak the individuals just a little bit
and present new genes to the population.

The representation of individuals and their genes is important. The individ-
uals are often represented as arrays of numbers, representing their features. For
example, a person’s gene can be an array of numbers representing a person’s
height, weight, age, and other features.
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Crossover usually creates a new individual by using the genes of both the
parents. There exist a few very often used approaches:

• One-point crossover: One point on both parent chromosomes is chosen.
A new individual is created using a left part from one of the parents and a
second part from the other based on the crossover point.

• N-point crossover: N points are chosen. New individuals are created by
alternating between parts of the parent outlined by the chosen points.

• Uniform crossover: Each gene is chosen from either parent with the same
probability.

The selection of parents plays a big role in the performance of the algorithm.
Some selection methods might make one of the individuals dominate the popula-
tion or reduce the population’s variability. There exist multiple approaches how
to select parents [23]:

• Uniform parent selection: All individuals have the same chance to be
selected.

• Roulette-wheel selection: Every individual’s probability of being chosen
depends on their fitness. The probability of i-th individual is calculated
using:

PRW S(i) = fi∑︁µ
j=1 fj

where fi is the fitness of the i-th individual.

• Tournament selection: It is based on comparing groups of individuals
using their fitness and ranking them based on how they performed. It does
not require the knowledge of the whole population and can be faster than
sorting the whole population.

• Linear ranking selection: Individuals are sorted by fitness and given a
rank i while the best individual gets a rank µ and the worst one gets a rank
1. The rank is used to calculate the selection probability as:

PLRS(i) = 1
µ

(n− + (n+ − n−) i − 1
µ − 1)

where n+

µ
is the selection probability of the best individual and n−

µ
is the

selection probability of the worst individual.

• Exponential ranking selection: Similar to linear ranking, but probabil-
ities are exponentially weighted:

PERS(i) = cµ−i∑︁µ
j=1 cµ−j

where 0 < c < 1 is the parameter of the method. The closer it is to 1, the
lower is the "exponentiality" of the probabilities.
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The approaches to crossover and mutation are very often compared and se-
lected given the nature of the problem [23, 24]. The comparisons of those methods
often deal with the notion of selection pressure and variance. Selection pressure
characterizes the individual’s ability to survive in the population, while popu-
lation variability specifies how different are individuals in the population. For
example, in the uniform selection, all individuals have the same survival proba-
bility, while in a fitness-based selection, the fittest individuals are the most likely
to survive.

Different problems require different crossover, selection, and mutation meth-
ods. They also pose different restrictions and requirements on the whole algo-
rithm. There exist different approaches to every step of the algorithm, some of
which exploit problem-dependent properties. The genetic algorithm is usually
created and balanced to solve a specific problem.

The genetic algorithm ends after some number of generations or when the
found solution has some fitness deemed satisfactory by the designer. More infor-
mation about genetic algorithms can be found in the Introduction to Evolutionary
Computing by Eiben et al. [25]

1.8 Unity
Unity [26] is an integrated development environment and a game engine. It

is targeted at creating 3D and 2D video games for multiple platforms, including
Windows, MacOS, Linux, WebGL, or mobile devices such as Android or iOS. It
is one the most used modern game engines of recent years [27].

Unity provides developers with development tools and an integrated devel-
opment environment (IDE), making game development much faster and easier.
It provides memory management implementations, scene management, rendering
engine, physics engine, and much more.

Unity is written in C++, while it provides a C# and Javascript scripting
APIs. Developers do not have access to Unity’s source code and write scripts for
the API, which Unity’s engine executes.

The core of any project in Unity is a game scene and game objects. Each
scene contains game objects, which are the primary building blocks of the game.
They have a position in the game world and can have script components attached
to them. Each script on the game object extends the MonoBehaviour class.

Unity manages game objects, handling their creation and management and
allows the developer to do the same using the API. Every MonoBehaviour has
multiple functions, which Unity calls on different occasions. The most important
ones include:

• Awake() If the game object is active, it gets called before the Start method,
when the scene starts.

• Start() Gets called only once when the object gets initialized.

• Update() Gets called once per each game frame.

• FixedUpdate() Gets called each physics update cycle. May be called
multiple times during a frame.
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• OnEnable() Called on all scripts when the game object gets enabled.

• OnDisable() Called on all scripts when the game object gets disabled.

Game developers create game objects in the scene, write scripts and assign
them to the objects and use the above functions to interact with the scene. For
example, the Update() method can be used to update a position of an object in
the game within a frame. Game objects can be used to create so-called prefab
objects. Scripts can use prefabs to instantiate premade game objects in the scene.

The development of games in Unity is done through a Unity Editor IDE. The
editor provides functionality for managing and creating scenes, game objects, and
managing other game-related features. Each MonoBehaviour object can create
fields, which are visible in the editor. The developers use the fields to configure
game objects and to reference other objects in the scene. A sample view of the
editor can be seen in the figure 1.4.

Figure 1.4: Unity editor IDE

The main parts of the editor are:

1. The hierarchy, where the current scene can be seen together with all the
game objects in it. The user can click the game objects to highlight them
in the scene view and view them in the inspector.

2. A scene view, where the current scene is rendered. The user can use a
mouse to pan around the scene and select game objects, which are then
displayed in the inspector.

3. The inspector view shows the selected game object and all the components
attached to it. By default, each game object has a Transform component.

4. Project view shows project folders with the scripts and other game assets.

The editor can be customized by opening additional windows, including a
console, profiler, project settings, or the game view, where the game is played
once the user starts it. Unity allows the developers to run the game directly in
the IDE and debug it easily.

17



Unity provides a UI Toolkit, a system for the creation of a graphical user
interface in Unity. Unity has an implementation of Canvas, which contains and
draws all the user interface elements on the screen, including buttons, input fields,
or text fields. Creating UI involves creating UI elements in the scene view and
assigning developer-made scripts to them, which handle their logic.
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Chapter 2

Game design

In this chapter, we describe our process of designing an endless runner game.
First, we create the concept of our game and its target audience. Then we discuss
the creation of user interface, game mechanics, and the game world. We finish
by defining the core game loop.

2.1 Concept
The first step in designing a game is to create a game concept. We wanted to

create an endless runner because it is a compelling study case for the difficulty
adjustment and because we found the genre interesting.

Our goal was to create an endless runner mobile game that would adjust
itself to the players. The original idea was that players would play the game
and always get new interesting and challenging levels to play. This goal was the
primary motivation of our game, and we wanted to design features of the game
around it.

Because the game’s difficulty is tied to its enjoyment, we wanted to create a
game that supports as many flow elements as possible. Designing a game similar
to other games would make the game feel more familiar to the player. If done
correctly, the game would then be easier to learn and would have a better flow.

In the previous chapter, we listed three examples of successful endless runner
mobile games. Because endless runners are the most known on mobile platforms,
most users also know them from there. To create a game that feels familiar, we
needed to find out what features make an endless runner and what the players are
most used to. Fortunately, Cao [9] researched design patterns used by the most
popular endless runner mobile games. He has found design patterns by exploring
literature, performing case studies of the most popular ER mobile games, and
creating surveys for game developers.

Out of fifteen design patterns, seven were identified as essential. The patterns
are described in greater detail in his work.

• Endless mode: The game allows the player to play a level endlessly until
the game is over.

• Quick progressive difficulty: Difficulty increases with the player’s pro-
gression in the level.
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• Random level generation: The game levels are randomly generated.

• Score system: A numerical value that represents a player’s skill that is
changing depending on player actions in the environment.

• Obstacle: Any game entity that forces a player action that must be per-
formed in order to continue the game.

• Simple control: The game provides simple controls which are not hard to
learn.

• Leaderboard: The game provides a comparison of players based on their
skill and progress in the game.

It could be argued that some of the patterns are not a necessity. For example,
a leaderboard is something that some players like but does not make sense in a
single-player game. On the other hand, we have not found any other research
done on this topic. Hence we consider this research very useful from the game
design perspective and identify with all the patterns.

After identifying our goals for the game concept, the next step was figuring
out the target audience. Based on the most known ER games, endless runners are
primarily played by achievers. They want to beat the game and achieve the most
points on the leaderboard, and they enjoy the game’s difficulty. Killers might
identify with leaderboards, but the leaderboards alone probably would not give
them enough motivation to defeat others. Socializers and explorers have not got
much to go for unless we would add additional features. Because of that, we can
define our target audience as consisting primarily of achievers and players who
are used to playing other ER games.

The last critical step before defining the mechanics and environment was figur-
ing out the game’s perspective. Most mobile runners have a third-person perspec-
tive, where the game features a player character. However, because this feature
is not deemed essential, we decided to create our runner in the first-person per-
spective, where the player plays the game through the player character’s eyes.
The main benefit was that it reduced the number of required assets and anima-
tions, which would be hard to create because we had no experience creating 3D
animated assets.

In the end, we decided to make the game runnable in the browser instead of
making it a mobile game. The main reason was that we wanted to experiment on
the created game. We feared that it would be much harder to find participants
for a mobile game—the main reason being that people would not want to install
anything on their devices.

2.2 User interface
We wanted to design the game controls to be easy to learn and give the player

a sense of control over the game with immediate feedback. By doing so, we
wanted to support control and feedback GameFlow elements [3].

While designing controls, we could have taken multiple approaches:

• Touch: A mobile game controlled with touch or swipe.
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• Keyboard: A game controlled with keys on the keyboard.

• Gamepad: A game controlled with a gamepad stick or keys.

• Combination: Any combination of multiple control methods.

To choose a proper input, we developed a prototype of the game on which we
tested all the approaches. We implemented a game controller controlled with a
single touch on the screen and by swiping. By displaying buttons on the screen or
mapping touch in some parts of the screen, controls worked well. Nevertheless,
swiping introduced an unnecessary input lag when the players must make the
whole swipe before the game character moves.

The gamepad controls had an issue of balancing the mapping of stick position
to an action. It felt similar to pressing buttons. However, there was a short lag
introduced by the input dead zones. We also felt that the gamepad is probably
the least used way of controlling an endless runner, making the controls harder
to learn.

In the end, we decided to use the keyboard as we did not want to introduce
any difficulty bias introduced by the player’s inability to master the controls. We
decided to use a simple keyboard control scheme. The player uses four buttons
to control the game, making the controls easy to learn.

2.3 Mechanics
While designing game mechanics, we considered all of the games cited in

chapter 1 and other most played games of the endless runner genre. We decided
that we wanted to create actions that the players are familiar with not to create
any difficulty bias caused by the player’s inability to learn or understand them.

In the most known games, there is some track on which the player moves and
obstacles that require the player to perform actions [9]. We decided that we want
the game to have a track consisting of three lanes, which the player can change.
The approach is similar in both Temple Run and Subway Surfers. An example
of a track with an obstacle can be seen in figure 2.1.

Next, we thought about some interesting actions that the player can take in
the game. Those included changing colors, collecting keys in order to pass gates,
or changing platform heights. In the end, we decided to use four basic actions
that the player can perform:

• Left: Player moves one lane to the left.

• Right: Player moves one lane to the right.

• Jump: Player jumps in the air and lands after some time.

• Duck: Player ducks and can move under an obstacle.

We played around with all the actions and tweaked them. We wanted to have
them easy to learn but hard to master. For that reason, we made jump and duck
actions depend on the time for which the player holds the corresponding keys.
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Figure 2.1: Jump obstacle
An example of a jump obstacle and lanes.

The longer the players hold the jump key, the further and higher they jump.
Releasing the button will make them land sooner. We added a minimum duration
to jump even if the key is pressed during only one frame.

The longer the players hold the duck key, the longer they are performing the
duck. We decided to add a time limit to the duck, after which the character
stands up. That way, the players must time the duck not to end while still under
an obstacle.

To give the players motivation, we added a scoring mechanic, which scores the
player for performing actions in the environment and coins that can be collected
for extra points. The coins also have the function of guiding the player through
obstacles as they are always placed in the spot where the player is supposed to
pass the obstacle.

To define the game’s goal, we started by giving the players a fixed number of
lives, making them play the level until they die. We found out that we were not
interested in the game’s outcome, and playing for the score was not interesting
enough. Hence we created an end condition mechanic - the player must fulfill a
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condition to win the level.
The end conditions make the player run for a given distance or perform a

given number of jumps over obstacles. End conditions seemed to be a much
better motivation to play the game, and they helped with the clear goal element.

2.4 Game world
The game world is one of the most critical elements of the game. Together

with game mechanics, they are the most important features that define the game.
The main goals of our environment are to support the concentration, immersion,
and clear goals elements.

When the game world is exciting and does not introduce any noise that affects
the player’s focus, the player can concentrate on the task at hand. At the same
time, the world can be used to increase the immersion when the player identifies
with the game world.

There exist endless runner games, where the player performs actions in a
rhythm [28]. If this approach is implemented correctly, the game is easier to
learn, and the player can concentrate better. We wanted to use this approach in
our game. By creating obstacles that always force a specific action from the player
and playing with distances between them, a simple rhythm started to occur.

We decided to build our obstacles out of cubes. The main reason for doing
so was that we were not experienced in creating any complicated 3D assets. The
cubes take a space of one lane and can have different lengths. The player can
jump over a maximum of two cubes and duck under the height of one cube. The
cubes are easy to understand to the players and do not have complicated colliders.

End condition
completed?

Collision

Select level

(Re)start level

Level won

Avoid obstacles
Jump RightDuckLeft

Figure 2.2: Main game loop

The rest of the game world is also important because it makes the game ex-
citing and supports the game flow. We decided to create the track’s surroundings
by using a few static objects and varying the game’s color scheme, the sun, and
then having the track change its curvature (e. g. by slowly rising).
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2.5 Main loop
To conclude, it is essential to define the main game loop, which should describe

the players’ primary interaction with the game and its goals. The loop starts with
the players entering the game. In the game, they select and start a new level.
In the game level, they will be presented with an end condition that they need
to fulfill. The progress towards the end condition will be visible to the players,
making the level goal clearly defined.

The players will avoid obstacles in the level while collecting coins. When the
players collide with an obstacle, the game is restarted. Players play the level until
they complete the end condition or quit. After completing the end condition, the
level is finished, and players can decide to play another level. A diagram of the
main game loop can be seen in the figure 2.2.
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Chapter 3

Game implementation

In this chapter, we describe the implementation of our endless runner game.
First, we give an overview of the implementation and our approach. Next, we
describe the architecture and continue by describing the implementation of the
game core, game client, and game server.

3.1 Overview
Before we started the implementation, it was essential to decide on a program-

ming language and a development platform. We had two goals that we wanted
to achieve with the endless runner. First, we wanted a game that would allow
the implementation of a DDA system. Second, we wanted a game that we could
test on users and evaluate the difficulty adjustment.

We wanted to create a game to support a standard mobile resolution, which
could be later deployed to a mobile platform. We decided to use a client-server
architecture to collect data about the players, which will be used during the game
evaluation. In this setup, the game client interacts with the server, which stores
and verifies all the sensitive data.

Typically the client sends requests to the server. Depending on the type
of request, the server responds with some data, which the client interprets and
displays to the user. Hence both server and client often interact with the same
kinds of data. It can be beneficial to share code between the server and the client.

We needed to share code also because of the difficulty adjustment. We wanted
to be able to generate levels on both the client and the server. The client creates
the levels so that the user can play them, while the server creates levels to validate
them before sending them to the client. As levels are potentially infinite, we share
only their definition. In order to share code, we used the same programming
language for both the server and the client.

For the implementation of the game, we used Unity [26]. It is one of the most
used modern game engines [27] in recent years. Because of that, there are many
free assets and developer forums where it is easy to find relevant information and
help. We have already implemented some games in the engine, making it a viable
choice.

Unity uses .NET and the C# programming language. One of the server
solutions which supports .NET and C# is Microsoft Azure [29]. Azure offers
services for the development, deployment, and management of cloud solutions
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using ASP.NET Core. We considered some alternative solutions, but in the end,
we chose Azure because it is similar to the cloud computing services that we
worked with. Choosing Azure allowed us to share code between the client and
the server while also making the server development easier.

3.2 Architecture
Our game consists of three separate projects - RunnerCore, RunnerClient,

and RunnerServer. RunnerCore is the core of our project, which is compiled
as a dynamic library and linked to both RunnerClient and RunnerServer. The
RunnerClient is a Unity project that implements the game client. RunerServer
implements the server functionality and is running on Azure.

The core implements all of the functionality, which is shared between the client
and server implementations. It includes level generation and implementation of
the core game mechanics and objects. It is also used to define data objects used
in the communication between the server and the client.

Figure 3.1: Screenshots from the game
Screenshots of the main menu and the game level.

The client implements the game in Unity by using the RunnerCore. The
client visualizes the game elements and represents them using Unity objects. In
Unity, we created all the screens and UI elements used for the user interface. In
figure 3.1 you can see screenshots of the game, including the main menu and a
screenshot of level gameplay. While most of the game logic is written in the core,
its visualization and management are done on the client.
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Figure 3.2: Architecture
Outline of the interaction between the game and the server.

The basic relation and interaction of all three projects can be seen in figure
3.2. We use the JSON data format to exchange information between the server
and the client, using objects from the core. Core objects are serialized and dese-
rialized using a C# JSON library Json.NET [30]. It is a high-performance JSON
framework for .NET, which makes it easy to work with JSON objects.

3.3 Core
The RunnerCore project contains the core functionality shared between the

RunnerServer and RunnerClient. It is linked to both client and server as a dy-
namic library. It implements the core game loop used by the RunnerClient and
the RunnerServer to run the game. It also defines the communication interface
between the server and the client.

The core provides the following functionality:
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• Game loop: The implementation of the game mechanics and its core loop.

• Player: The implementation of the player controller.

• Player actions: The implementation of player actions.

• Collisions: The implementation of a collision handling and a definition of
colliders used for the player and the obstacles.

• Level generation: The generation of levels for the game.

• Settings: Settings and variables used in the core library.

• Events: Events that can happen in the game and a system that allows
objects to listen to them.

• Data: Data objects and objects are shared between the server and the
client.

• Communication interface: The definition of commands, data objects,
and objects involved in the communication between the server and the
client.

The settings of the game are implemented as a GameSettings object. It
contains variables used on both the server and the client. We store the settings
on the server and send them to the client with the newest data during the client
initialization. It is a common approach, as developers change settings very often,
and releasing a new client version is usually more complicated than changing the
configuration on the server.

The core triggers basic events which can happen in the game or client imple-
mentation. Those include events triggered on the game start or after a level is
generated. Client or server use the EventManager to listen to game events by
implementing IEventListener interface.

3.3.1 Level structure
Before we start describing the game and its implementation, we describe the

level structure and generation. In the core, we generate the level structure rep-
resented as objects. The structure is visualized in the client to create the levels
which the player can see.

As we mentioned in the previous chapter, we are trying to create levels, which
require the player to perform actions in a rhythm. Our main inspiration was the
work by Smith et al. [28]. They used a level generation method, where they
generate a rhythm of the level. Based on the rhythm, they generate the level
geometry. They compose the rhythm out of notes made of triplets of action,
start time, and duration. The rhythm they define is then used to create levels for
a 2D platformer. The generated levels, which are evaluated as valid, are given to
the player. They state that the rhythm-based generation is much more appealing
and gives the player a better sense of flow.

Our approach is similar to that of Smith et al.. However, we present a couple
of modifications, which we use to adjust the approach to fit the endless runner
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environment. Our implementation of the rhythm uses RhythmNote objects to
represent notes. Each note has an action associated with it, which the player
must perform in the level.

We defined ten action types:

• None: no action

• Left: move one lane left

• Right: move one lane right

• Short jump: jump over a short obstacle

• Medium jump: jump over an obstacle of medium length

• Long jump: jump over a long obstacle

• High jump: perform jump over high obstacle

• Short duck: duck under a short obstacle

• Medium duck: duck under an obstacle of medium length

• Long duck: duck under a long obstacle

Figure 3.3: Obstacle examples

We represent each action in the level as an obstacle that forces the player
to perform the given action. To choose each obstacle, we consider the player’s
position on the track. For example, if the player is in the middle lane, we can
place one box in every lane to force the player to perform a jump. For every action
and player position, there exist multiple combinations of obstacle placements. In
figure 3.3 you can see examples of a few obstacles. The first obstacle forces players
to jump in every lane, while the last obstacle forces them to duck in the middle
lane.

Next, each RhythmNote has a start time and a duration. The start time
corresponds to the start of the note. Because of how we are placing obstacles
to represent the rhythm, we split duration into runup and recovery durations.
Runup is the time that the player will have before the action, and recovery is the
time the player will have after the action. We are always placing the obstacle,
which represents the action between the runup and recovery times.

The runup and recovery represent a typical flow that players have in an endless
runner game. They run in the level until they encounter an obstacle. After they
pass the obstacle, they need some time to recover and prepare for the next one.
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Coin
# collider: BoxCollider
# position: Vector3

LevelSegment
# start: float
# length: float
# rhythmNote: RhythmNote
# obstacle: Obstacle

Track
# notes: List<RhythmNote>

+ AddNote(RhythmNote)
+ GetNote(int): RhythmNote
+ Merge(GameSettings, Track)

LevelChunk
# track: Track
# segments: List<LevelSegment>
# coins: List<Coin>
# startZ: float
# endZ: float

RhythmNote
# actionType: int
# start: float
# runup: float
# recovery: float
# duration: float

Figure 3.4: Level objects
A simplified UML diagram of the main parts of a level.

This time depends on the obstacles, actions, and the structure of the level. For
example, after a high jump, the recovery must be longer because the player did
not see what was behind the obstacle when they started jumping.

We are composing the durations similarly to how they are used in the mu-
sic theory - we have whole, half, and quarter base durations (the quarter note
corresponds to duration 1). Having random durations or durations of uneven
lengths would be visible in the level and would break the rhythm. In the level,
we represent one rhythm note as a LevelSegment. This object stores the note
and an Obstacle object that was generated to represent the action.

Level is represented as a list of LevelChunk objects, which store their corre-
sponding Track object and a list of LevelSegment objects. Track object groups
together RhytmNote objects. It is just a list of notes used during the generation
to represent a part of a level. A diagram of these objects can be seen in the figure
3.4.

We repeat parts of the rhythm, which we call verse and chorus. We took inspi-
ration from music theory [31], where both the verse and chorus repeat themselves
in the song while the chorus carries the main message of the song. The chorus
is much longer and contains more actions, while the verse is much shorter with
fewer actions.

We place pairs of chorus and verse followed by a short chunk, where no actions
are required. That way, players can learn parts of the level and have a short rest
between the actions. We tweak the verse and chorus during the game by adding
more actions or changing an action, making the level more variable.

An example of a level with such a structure can be seen in the table 3.1. There
are three chunks of a sample level. The first one consists of a verse and a chorus.
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Rhythm type Start Runup Recovery Duration
Medium duck 4 1 2 3

Left 7 1 0 1
Short duck 8 1 0 1

Right 9 1 0 1
Left 10 1 0 1
None 11 0 0 1
None 12 0 0 1
None 13 0 0 1
None 14 0 0 1

Medium duck 15 1 2 3
Left 18 1 0 1

Short duck 19 1 0 1
Short jump 20 1 1 2

Right 22 1 0 1
Left 23 1 0 1

Table 3.1: Level rhythm
A representation of the first two chunks of a level. The chorus is highlighted.

They are repeated in the last chunk, where the chorus has got one more action.
The second chunk is just a transition chunk with no actions.

The level structure from the table can be seen in the final level in figure 3.5.
The first chunk is represented as five obstacles, followed by a short chunk with
no obstacles but only coins. The next chunk again starts with a medium duck
action. The runup and recovery durations can also be observed - there is only
one segment between the left and right actions. The durations are mapped to
the distances between obstacles in the level.

Figure 3.5: Example level layout
An example of a level structure.

To represent the obstacles, we use the Obstacle object. An obstacle is multi-
ple boxes placed next to each other, each represented by a BuildingBlock object.
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Each box has a BoxCollider, which represents its collider.
We implemented our collision detection in a class SeparatingAxisTester.

The collision detection is implemented using the Separating Axis Theorem [32]
with some of the axis omitted to increase performance. We check collisions only
with the obstacle closest to the player on the z-axis, which is the axis on which
the player moves forward.

We represent the collider of the player and all the obstacles using the BoxCo-
llider. Because we represent obstacles as boxes, it is enough for the obstacles.
Using the collision box as the player’s collider should work as the player moves
only in one lane and because we use box colliders for everything else.

3.3.2 Level generation
The level generation starts in a class that implements interface ILevelGene-

rator. The interface provides methods that let us generate levels based on the
player’s profile. The purpose of the generator is to guide the level generation and
create its settings. An example of such a level generator is a RandomLevelGene-
rator which generates random levels.

The generation of the level is performed by an implementation of ILevel-
GenerationStrategy interface. The interface provides a method that returns
the next chunk in the level based on already generated chunks. The method
is used from the main game loop to generate new level chunks when they are
needed.

During the generation of levels in the final version of the game, we use the
implementation DefaultLevelGenerationStrategy. This strategy starts by cre-
ating a starting chunk that contains only empty notes. Then it creates chunks of
the level (representing the chorus and the verse), followed by a chunk made up
only of empty notes to give the player a short rest. The table 3.1 showed such a
level structure.

The goal of the generation is to generate notes consisting of action, a start
time, and their runup and recovery durations. For the selection of rhythm actions,
we created the interface INoteSelectionStrategy and implemented multiple
strategies:

• Probability selection: We select each note action based on a given prob-
ability, which can be tweaked at runtime.

• Difficulty proportional: We select random notes, and then we tweak
them using a simple hill-climbing algorithm to obtain a set of actions with
predefined difficulty. The difficulty is based on a designer-defined difficulty
ranking of pairs of actions.

• Rhythm-based: Selects actions by repeating rhythms (e. g. two jumps
in a row).

• Random: Selects actions completely randomly.

During the development, we experimented with multiple rhythm-based strate-
gies. It was, for example, a strategy that would be generating actions in pairs
and sometimes would break the pattern. The idea was that the level would feel
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more rhythmic to the player. In the end, we used mainly the probability and
weight-based selections. Those were easier to tweak to change how the levels
look by specifying sets of weights and probabilities. For example, we tweaked
them to increase the probability of actions needed by the end condition to make
the generated levels shorter.

The weight-based strategy was also interesting, as it has let us define weights
for pairs of actions. Then given the level’s difficulty, we could put a proportional
number of hard and easy actions into the level.

The drawback of probability and weight proportional strategies is that the
structure of the level and actions might seem too random. However, it is mitigated
by utilizing the verse and chorus structure. Even if the actions seem random, they
still create patterns that the player can learn.

To generate the levels, we store all the parameters of the generation in a
LevelTemplate object. It is used to define the level and its visual look uniquely.
We discretized some of the parameters by giving them minimum, maximum values
and a step by which they can be increased. Most of the parameters and their
values can be seen in the table 3.2.

Parameter Min Max Step
Seed 0 10000 1

Initial chorus size 2 6 1
Initial verse size 2 3 1

Chorus extension P 0.30 0.60 0.005
Verse extension P 0.10 0.30 0.005

BPM 60 140 2
BPM increase 0.40 1.00 0.005

Note selection strategy 1 3 1
End condition 1 25 1
Environment 1 6 1
Color scheme 1 7 1

Curvature 1 9 1
Background music 1 6 1

Table 3.2: Level template parameters

The most important values are the initial BPM (beats per minute) and its
increase, which define the initial speed of the game and its increase each time a
player gets over an obstacle. Then we have initial sizes and probabilities of ex-
tending a chorus or a verse, which impact how many actions we generate in each
level chunk. The parameters for the color scheme, the curvature, the environ-
ment, and the background music have only an audiovisual effect on the generated
level. The environment parameters and end conditions are indices that map to
corresponding settings on the client.

The idea of discretizing parameters makes sense because if we change them
by a small amount, we create a very similar level. It also gives us a smaller space
of levels, which is beneficial later for the DDA system.

The entry point of the level generation is the LevelFactory. Its primary
function is to add a chunk to an IChunkManager interface. This interface is
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implemented by components that manage the level, such as the GameController.
The factory uses a generation strategy that implements the interface ILevelGe-
nerationStrategy. The generation strategy should take care of the generation
of the level’s track, coins, and segments. The outline of this system can be seen
in figure 3.6.

<<Interface>>
ILevelGenerationStrategy

+ Initialize(RandomWrapper, GameContext, LevelTemplate)
+ CreateNext(): LevelChunk

TrackFactory

+ Initialize(RandomWrapper, LevelTemplate)
+ CreateNext(ChunkType[]): Track

SegmentsFactory

+ Initialize(RandomWrapper, GameContext, LevelTemplate)
+ Create(): List<LevelSegment>

CoinsFactory

+ Initialize(RandomWrapper, GameContext, LevelTemplate)
+ Populate(LevelChunk): List<Coin>

LevelFactory
# generationStrategy: ILevelGenerationStrategy

+ Initialize(LevelTemplate, ILevelGenerationStrategy)
+ AddNextChunk(IChunkManager): bool

DefaultLevelGenerationStrategy
# trackFactory: TrackFactory
# segmentsFactory: SegmentsFactory
# coinsFactory: CoinsFactory

+ Initialize(LevelTemplate, ILevelGenerationStrategy)
+ AddNextChunk(IChunkManager): bool

Figure 3.6: LevelFactory
A simplified UML diagram of LevelFactory and its components.

The TrackFactory creates a track composed of notes. Then level segments are
generated in the SegmentsFactory which represent the notes and their actions
as obstacles. Next, coins are placed on the track by the CoinsFactory in the
places where the player is supposed to get over the obstacles.

The rhythm is generated using the RhythmGenerator which generates the
track and chunks that compose it. The generator is used by the TrackFactory
to create the verse and chorus chunks using one of the possible strategies for the
selection of note actions and durations. The structure of the rhythm generation
can be seen in figure 3.7.

INoteDurationSelectionStrategy is an interface for the strategies imple-
menting the note duration selection. We experimented with multiple strategies.
However, during the implementation, we found out that selecting fixed durations
works best. Because of that, we utilize ProportionalNoteDurationSelection-
Strategy in the final build of the game.

This strategy selects runup and recovery times based on the note action. If
we selected different durations for actions, they were much harder to learn. It
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<<Interface>>
IRhythmChunkGenerator

+ Initialize(RandomWrapper, GameContext, LevelTemplate)
+ GenerateInitial(RhythmPlayer): Track
+ GenerateNext(RhythmPlayer): Track

VerseRhythmGenerator
# noteDurationSelector: INoteDurationSelectionStrategy
# noteSelector: INoteSelectionStrategy
# generationIndex: int

ChorusRhythmGenerator
# noteDurationSelector: INoteDurationSelectionStrategy
# noteSelector: INoteSelectionStrategy
# generationIndex: int

TrackFactory
# verseRhythmGenerator: VerseRhythmGenerator
# chorusRhythmGenerator: ChorusRhythmGenerator

+ Initialize(RandomWrapper, LevelTemplate)
+ CreateNext(ChunkType[]): Track

Figure 3.7: TrackFactory
A simplified UML diagram of TrackFactory and its components.

also led to some unplayable levels, where some obstacles would be too close to
each other. A possible disadvantage is that the levels might get too predictable if
the player plays many of them. However, because we are presenting only a small
number of levels to the player, it should not be a problem.

3.3.3 Game
The game logic is implemented in the core, while its update function is called

from the server or client implementations. The main class of the game is the
GameController, which controls the main components of the game and its flow.
It manages the level, collision detection, the player, and the level’s data. Dia-
gram 3.8 shows the GameController and its components.

The controller stores and manages the level with all its segments, obstacles,
and coins. Whenever a new level chunk is generated, the level representation is
updated. The game controller always keeps track of the next obstacle in front
of the player and uses it to check for collisions. The game controller manages
the player through an IPlayerManager interface by calling its methods whenever
some game event occurs. For example, whenever a player dies or hits an obstacle.

The main loop of the GameController, which is repeated each tick of the
game, looks as follows:

• Update player: Update player by calling the CustomUpdate(float) func-
tion on the IPlayerManager every frame.

• Check obstacle collisions: Find the obstacle closest to the player and
check if the player collided with the obstacle.

• Check coin collisions: Find the coin closest to the player and check if
the player collided with it.
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LevelFactory

+ Initialize(LevelTemplate, ILevelGenerationStrategy)
+ AddNextChunk(IChunkManager): bool

<<Interface>>
ILevelManager

+ OnPlayerDeath()

GameController
# chunks: List<LevelChunk>
# obstacles: List<Obstacle>
# coins: List<Coin>
# playerManager: IPlayerManager

+ Initialize(ILevelGenerationStrategy)
+ AddChunk()
+ Start()
+ Restart()
+ Update(float)
+ IncreaseSpeed(float)
+ FixedUpdate(float)

LevelTemplate
# seed: int
# BPM: int
# BPMIncrease: float

LevelChunk
# track: Track
# segments: List<LevelSegment>
# coins: List<Coin>
# startZ: float
# endZ: float

Obstacle
# blocks: BuildingBlock[][]
# colliders: List<BoxCollider>
# startZ: float
# endZ: float
# position: Vector3

+ Initialize(int, int)

<<Interface>>
IPlayerManager

# playerController: IPlayer
# score: int
# gameData: GameData
# playerManager: IPlayerManager

+ Initialize(GameContext, GameController)
+ CustomUpdate(float)
+ CustomFixedUpdate(float)
+ OnDeath(int)
+ OnCoinCollected(int)
+ OnActionStart(ActionData)
+ OnActionEnd(ActionData)
+ OnObstacleOver(float, Obstacle)
+ Reset()

Figure 3.8: GameController
A simplified UML diagram of GameController and some of the game

components.

• Update level: If the player moved through a chunk, generate a new one
if there is not enough generated in the game.

We implemented the end conditions of the game as classes that implement
IEndCondition interface. For example, we have a distance condition imple-
mented as class DistanceCondition, which checks players for the distance they
have traveled in the game. We store and send the end conditions as strings. The
condition itself is not checked in the core implementation of the game, but it is
done in the classes that manage the game on the client.

3.3.4 Player
IPlayerManager is an interface that every player manager should implement

through which the GameController interacts with the player. It should subclass
the player implementation that uses the PlayerController to map the input to
player actions. PlayerController manages player actions, which are triggered
by player input, updates the player position and other data based on the current
game state. This is visualized in the diagram 3.9.

We use the IPlayerManager interface in Unity to create a component that
updates the player’s game representation. It is also used by our agents, which we
implement later on for the DDA system.
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<<Interface>>
IPlayer

# position: Vector3
# collisionBox: BoxCollider
# currentTrack: int

+ Initialize(GameContext, GameController, IPlayerManager)
+ FixedUpdate(float, float, float): Vector3
+ IsGrounded(): bool
+ OnDeath(int)
+ Reset()

PlayerController

# actions: Action[]
# currentSegment: LevelSegment
# nextSegment: LevelSegment

Figure 3.9: PlayerController
A simplified UML diagram of PlayerController and its actions.

We implemented each action as a separate class, which extends IActionImpl
interface. Each action has a special condition under which it can be activated or
deactivated. If the action is active, its update method is called influencing the
player’s position. A diagram of player actions can be seen in figure 3.10.

<<Interface>>
IActionImpl

# actionType: ActionType
# active: bool

+ Initialize(GameContext, GameController)
+ Update(float, InputType): Vector3
+ GetActionData(): ActionData
+ ShouldStart(IPlayer, InputType): bool
+ Start(float, float, Obstacle)
+ ShouldEnd(IPlayer, InputType): bool
+ End(IPlayer, bool)

Action

# startTime: float
# startZ: float
# duration: float
# holdDuration: float
# startingSpeed: float

+ StartInternal(float)
+ EndInternal(float)

JumpActionLeftAction DuckAction RightAction

Figure 3.10: Player actions
A simplified UML diagram of player actions implementation.

LeftAction and RightAction move the player from one lane to another when-
ever possible. We implemented those actions as a simple linear interpolation be-
tween the player’s position at the start of the action and the middle of the target
lane. The player cannot cancel the action during the transition.

DuckAction implements the duck. This action reduces the players’ height and
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makes it possible for them to get under obstacles with the lowest block empty.
Duck also has a duration, after which the player stands up. While the player is
ducking, jumping, or switching lanes is not possible.

JumpAction provides the implementation of jump action. The players can
jump only if they are on the ground. We sample a jump curve that has a specified
maximum height and a duration. The height was set so that players cannot jump
over more than two blocks of height. There is also a minimum duration for which
the action is always active. Whenever the players release the jump button, we
stop sampling the curve and let them fall. In figure 3.11 you can see how the
duck and jump actions look in the game.

Figure 3.11: Jump and duck
A jump and duck actions in the game.

All the actions and their durations are scaled to fit the current BPM of the
game, which is tracked by the game controller. All the actions are implemented
so that they work the same at higher speeds. This way, they do not confuse the
players or are too hard to learn.

Each action manages its data, including the time it started, its duration, or
the starting speed. The data is stored by the game when the action finishes.

3.4 Client
The RunnerClient is a Unity project which consists of C# scripts and other

assets used by Unity, such as configuration files or graphical assets. Unity handles
user input, displaying the scene to the user and handling the graphical user inter-
face (GUI). The RunnerClient works as a layer between Unity and RunnerCore,
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which implements the game logic.
In Unity, we created a scene titled GameScene, which contains all the game

objects. This scene contains all the game elements, including the UI and all
managers that handle the game. We have also used other scenes for debugging
the environment, rhythm, and obstacles during the development.

In figure 3.12 you can see the hierarchy of the game scene and the scene view.
There is only a part of the track and a background environment shown in the
game’s main menu in the scene view. The manager game objects or the player
camera can also be seen. We also have a UIHolder game object, which holds all
the UI canvases.

Figure 3.12: Game scene
A hierarchy and the game scene.

Most of the RunnerClient scripts extend MonoBehaviour and are attached to
game objects. In the game scene, we define manager game objects. Each one has
an attached script that manages a different aspect of the game:

• GameManager: Manages the flow and control of the game.

• NetworkManager: Responsible for sending and receiving requests from the
server.

• ConfigurationManager: Responsible for holding the game settings and
configuring some of the game objects.

• EntitiesManager: Holds references to different game entities and updates
their data based on server responses.

• LevelManager: Handles the creation and management of levels and game-
play.

• TutorialManager: Handles the tutorial flow for the new players.

Most of the managers are referenced throughout the scene and triggered from
other scripts or by UI events. The most important ones are the GameManager,
LevelManager and PlayerManager. Those manage the game, levels, and the
player, respectively.

39



3.4.1 Level generation
The most important function of the client is to manage the game by interacting

with both the core and the server. During startup, the game downloads the newest
GameSettings object from the server and prepares all the static data.

After the user logs in, the client is responsible for managing different UI
components, handling networking, and displaying the correct data to the user.
Most UI elements wait for the user interaction and then update their state and
call the server.

To start a new level, the player enters a level selection screen, which is con-
troller by LevelSelectionController. It displays information about levels that
the player can play. Whenever the screen is displayed, it checks if it has the next
level the player is supposed to play. If it does not, the level is downloaded, and
the screen gets updated.

Whenever the user selects a level and hits the play button, the GameManager
gets called. The game manager then calls LevelManager, which is responsible for
initializing the level and handling the main game loop.

LevelManager uses the data of a downloaded level which contains Level-
Template and other information about the level, such as its name or id. Then
the manager creates and initializes a GameController and a LevelFactory by
using the level template. Then it instantiates a prefab of the level.

The prefab contains level game objects, which should be present at every level,
including level manager scripts. Those include managers that handle the level’s
environment, color schemes, or music. After the instantiation, the LevelManager
initializes the managers with the level template. The level prefab can be seen in
figure 3.13 as well as the manager and generator scripts on the prefab. All parts
of the generated track, obstacles, and environment are always parented to the
instantiated prefab.

Figure 3.13: Level prefab
Prefab of the level with its components.

Next the manager uses LevelFactory to generate the level chunks. The
generated chunks are fed to TrackGenerator, ObstacleGenerator and Coin-
Generator. Those components are responsible for representing the core level
structure in the Unity scene.

TrackGenerator creates the track in the game by placing boxes representing
the track into the scene one after the other. Next, ObstacleGenerator creates
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obstacles in the scene by creating boxes and placing them in the correct places.
Finally, CoinGenerator creates coins represented as triangular meshes into the
level.

We defined manager scripts for the management of the level game objects
- TrackManager, ObstacleManager and CoinManager. They are responsible for
generating the corresponding level game objects whenever the level gets extended
by a new chunk.

We generate only a small number of starting chunks that are later extended
as the player moves through the level for performance reasons. We do not delete
generated chunks so that whenever the player dies, we do not need to generate
them again.

3.4.2 Gameplay
Once the level has been generated and created within the scene, the game

starts after a short countdown. The main loop happens in the LevelManager,
which calls the update on its GameController. The controller moves the player
along the z-axis and checks for collisions and other events in each frame.

On the client we created a PlayerManager script, which extends the IPlayer-
Manager interface. The manager is used to manage the player in the level. It
is responsible for updating the position of the game object, which represents the
player in the scene, and for passing the user input to the PlayerController.
During each frame, the manager checks if the user pressed any input keys and
forwards the input to the controller.

The only thing that moves within the scene is the player and the player
camera. The camera is implemented in the class CameraController. It follows
the player’s game object at a specified distance to simulate the first-person view.
We experimented with tilting the camera whenever the players jump to simulate
the actual jump and give them a better vision of the obstacle over which they
jump.

The level finishes when the player completes the end condition or dies. Both
of those game events are captured by the LevelManager. Whenever the level is
finished and should end, the game manager will get informed. The level prefab
is destroyed together with all the level game objects.

In the end, the game displays a popup to the user with information about his
performance in the level. Whenever the user exits the popup, we send a request
to the server with the gameplay data. Then the user is returned to the level
selection.

3.4.3 Environment
As discussed in the design section, creating an interesting environment might

increase the player’s enjoyment of the game. Hence, we tried to create a visually
enjoyable game by implementing several environment features.

First, we implemented a variable environment. Whenever a level is gener-
ated, we assign it a unique environment, which is then generated once the level
is initialized on the client. We implemented multiple environments, including
mountains, a simple pyramid, or a sidewalk, which can be seen in figure 3.14.
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We tried implementing more interesting and detailed environments. However,
because of the game’s speed, details were not as visible or too distracting.

Figure 3.14: Example environments
Examples of mountains, a pyramid, and a sidewalk with the default color

scheme.

Every graphical asset in the game uses a custom shader to assign a color
palette to every material. We assign a base color to every material, which is a
shade of gray. Whenever we assign a color palette, the shader maps color to the
material based on the 0-1 base gray color. It allows us to easily map parts of a
scene to different parts of the palette. It is used, for example, in the sidewalk
environment, where we assign different colors for the highlights of the environment
(treetops) and the other parts (tree trunks).

In the scene, we have a PaletteSwapManager, which is responsible for loading
the color schemes and swapping them. We load a default scheme, which is always
active in the main menu, and we swap each time a level is initialized based on the
level template. An example of simple color schemes can be seen in figure 3.15.

Figure 3.15: Color scheme examples
A few color schemes were applied on the track, obstacles, environment, and the

coin. Sun settings also change to fit the scheme.
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During the development, we experimented with multiple ways to represent
the track. Our goal was to have a track that would have bends and hills, making
the level more interesting and less predictable.

Our first approach was to generate the mesh of the track dynamically. That
was done by algorithmically creating a set of triangles, vertices, and uv coor-
dinates. Then we used splines to define the shape of the track. In the level,
we moved the vertices of the track to capture its shape. The approach looked
promising. However, its main disadvantages were that it was painful to match
the obstacle orientation with the track’s curvature, and it was hard to tweak the
curve to look good.

Instead, we chose a much easier and faster approach. We adjusted the shader
to bend meshes based on the camera position. We can generate the track com-
pletely straight and flat, and then we let the shader bend it as the player plays.
This approach works great for static curvatures. However, simulating a track
that has curves in multiple directions did not look well.

However, because our levels are short, defining levels with a fixed curvature
still looks interesting enough. Hence, we created multiple settings, making the
track bend in one direction for the whole duration of the level. An example of
curvatures can be seen on the image 3.16.

Figure 3.16: Curvature examples
From left to right: a track that goes downhill, the default track, and track that

goes uphill.

As the last step, we created multiple music tracks for our game by using a
free music kit that we found. Because the level has a rhythmic structure, we play
the beats in the rhythm of the level. We assigned a unique sound for different
actions, played once the player successfully gets past an obstacle. This way, the
rhythmic structure of the level should be more apparent, and it should make the
timing of actions easier.

3.4.4 User interface
The user interface provides an interface between the game and the users. It

includes both the users’ input and the graphical elements shown to them. We
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created the GUI elements by using a Unity asset pack with UI icons and graphical
elements and then using and adjusting the elements to create UI for our game.

While in the game, the user can use the keyboard to control the player char-
acter. The client maps the controls to floating-point values representing vertical
and horizontal input, which is then passed through the PlayerManager to the
core’s PlayerController. Next, the player can interact with the game using a
mouse by clicking on the GUI elements. Unity interprets the clicks as events and
distributes them to the corresponding components based on the cursor’s position.
We use those events to assign a function to visual elements such as buttons or
clickable text.

All the UI components are stored in a hierarchy under the UIHolder object,
as can be seen in figure 3.12. We split the UI into several canvases. Each canvas
is on a different layer and has a different sort order, which determines the order
in which UI is drawn on the screen. We can easily turn off some of the canvases
when the player enters a game or the main menu. Unity updates the whole canvas
when a change is made to it.

The most important canvases are the MainMenuCanvas, the OverlayCanvas
and the GameCanvas. The MainMenuCanvas contains the main menu elements
and a few screens, such as the level selection screen. In the OverlayCanvas we
store most of the popups that appear in the game, which include the level info
popup or the popups shown at the end of the level. The GameCanvas displays UI
during the game, such as the score or number of coins the player has collected.

We end by listing several UI screens and popups that we created:

• Login: Login screen, where the players fill their names and passwords.

• Main menu: From where the players transition to other screens and pop-
ups.

• Level selection: Popup that contains a list of available levels that the
players can play.

• Level info: Popup with a play button and information about a level the
player is about to play.

• Level finished: Popup triggered when the level was finished displaying
player’s score in the level.

• Challenges: A popup with a list of timed challenges available for the
player.

• Achievements: A popup with a list of achievements and their progress.

• Settings: Settings popup allowing the player to change the volume of the
game’s music or sound effects.

• Inbox: Popup with the players’ messages.

• Global leaderboard: A leaderboard with scores of all the players.

• Other Other popups for displaying network errors or other status messages.
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3.5 Backend
Our backend is running on Microsoft Azure. We chose this cloud computing

service because of the number of services it offers, its good documentation, and
also because it is similar to other cloud services we have worked with.

We are using a NoSQL Azure Cosmos DB database [29]. NoSQL is used to
deal with large data and applications that need the database to be responsive.
Azure’s Cosmos DB offers high availability and low latency. The solution should
be robust enough to be used even in a production environment to save data about
many players.

The main class is the Program class, which initializes the backend and con-
figures the ASP.NET services using the Startup class. During the startup, we
initialize the Cosmos DB connection and create all necessary containers.

During the initialization, we also initialize the application’s context App-
Context. This object is stored in the server instance and contains objects shared
across all the backend requests. It stores the GameContext, GameSettings ob-
jects with the backend configuration stored inside AppConfiguration and a
DatabaseWrapper that allows us to read and write into the database.

The AppConfiguration stores the application’s endpoint, access tokens for
the database, as well as settings for the initialization of the database and logging.
The AppConfiguration changes based on the deployment profile, which allows
us to create profiles for local deployment or deployment to Azure.

Once our backend solution gets deployed, it runs on the Azure Cloud. Our
backend uses Azure’s Razor Pages, a simplified web application programming
model that allows us to display web pages. We used the pages to display infor-
mation about the experiment we conducted or to visualize some of the entities
stored on the server in the admin interface.

We used the ASP.NET Core’s static files to display the build of the game. We
built the game through Unity and then deployed it to the server.

We map every request, which comes to the webserver on the /api address to
the request handler BackendRequestHandler. This handler parses requests from
the client, handles them, and sends back results represented as JSON.

3.5.1 Entities
We use the database to store storable objects, which represent various objects

used by the backend. Each object extends the AbstactStorable class, which
contains the name of the Azure Cosmos DB container in which it is stored and
the id of the entity. The id is a unique identifier under which we can find the
entity in the database. When we store the entities, we serialize them into JSON
and deserialize them when we read them.

We needed just a few entities in our backend, which include:

• PlayerEntity: Stores players’ data which include such data as ids of lev-
els the players have played, their names, coins, or data with progress of
achievements.

• LevelEntity: Entity representing a level, which stores the corresponding
LevelTemplate and the level’s Leaderboard.
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• LevelResultEntity: An entity that stores the result of a level. Here we
store all of the data that we gathered from the client, including records of
all player actions and metrics from the player’s gameplay.

• LeaderboardEntity: Stores the global leaderboard, which contains all
players who played the game and their scores.

• InboxEntity: Stores the players’ inboxes, which contains all the messages
they received as well as the last date when the inbox was sent.

• SessionEntity: An entity representing the player’s session. It is used to
identify the user.

3.5.2 Commands

BackendRequestHandler

+ HandleAsync(HttpContext): Task
+ ValidateRequest(ILogger, AppContext, Request): Status
+ ProcessRequest(AppContext, ILogger, Request): Task<Response>

StorablesPack
# appContext: AppContext
# commandContext: CommandContext
# storables: Dictionary<string, AbstractStorable>

+ Store(AbstractStorable)
+ WriteAll(): Task
+ Merge(StorablesPack)

ReadablesPack
# appContext: AppContext
# commandContext: CommandContext
# readables: Dictionary<string, AbstractStorable>

+ Read<T>(string): Task<T>
+ Read<T>(): Task<T>

InvolvedPack
# appContext: AppContext
# commandContext: CommandContext
# involved: Dictionary<string, object>

+ Add(AbstractStorable)
+ Merge(InvolvedPack)

CommandProcessor
# appContext: AppContext
# commandContext: CommandContext
# storables: StorablePack

+ ProcessCommands(StorablesPack, ReadablesPack, 
       InvolvedPack, List<Dto>): Task<List<CommandResult>>
+ ProcessCommand(StorablesPack, ReadablesPack, 
       InvolvedPack, Dto): Task<CommandResult>

Figure 3.17: Request handler
Structure of the request handler and some of the important classes that take

part in the request handling process.

The BackendRequestHandler receives raw data from the client. It first de-
serializes the data into a Request object from the RunnerCore. The Request is
an object used by the client to send requests to the server. It contains a Header
with the id of the user’s session and a list of Dto (data transfer object) objects
that represent the commands the client has sent to the server.

The deserialization of data objects is done by using a DtoListConverter.
The converter deserializes the data into the appropriate Dto objects, based on
their names.

Next, the request is validated by checking its header and other data. If the
request is valid, it is processed, and the results are sent back in a Response object.
It contains the Header object used to indicate if the session has changed or if the
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command has failed and a list of command results, each as a pair of status and
a Dto object.

With the response, we can also send a dictionary of involved objects. This
dictionary is used to send to the client any objects, which are also stored on the
client and synchronized with the server. For example, we might send a serialized
player object whenever the player played a level, and some data have changed.

To process each received command, we first create StorablesPack and In-
volvedPack. We use those packs to store entities that should be written into the
database or that should be sent to the user in the involved field. We also use
ReadablesPack which groups entities read from the database during a request.
When handling multiple commands, we do not want to read or write the same
item multiple times.

AbstractCommand
# appContext: AppContext
# gameContext: GameContext
# commandContext: CommandContext
# gameSetttings: GameSettings

+ CreateResult(CommandStatus): CommandResult 
+ CreateResult(CommandStatus, string): CommandResult
+ CreateResult(CommandStatus, Dto): CommandResult

<<Interface>>
ICommand

+ Initialize(AppContext, CommandContext): CommandResult 
+ Preload(Dto): CommandResult 
+ Load(ReadablesPack): Task
+ Validate(): CommandResult
+ Preprocess()
+ Process(StorablesPack, InvolvedPack): Task<CommandResult>
+ Finish()

Figure 3.18: Command interface
Interface that every backend command implements.

Next the CommandProcessor is initialized. It is responsible for processing
commands. We use the name of each data object to instantiate a command imple-
mentation by using reflection. The structure of the backend request handler can
be seen on the diagram 3.17, as well as the structure of the CommandProcessor.

Each command implementation extends the AbstractCommand and imple-
ments the ICommand interface. The main functions of the interface are shown
on the diagram 3.18. The AbstractCommand adds several helper functions and
stores the contextual data. The processor is initialized with the AppContext, and
it handles the received command through several steps:

• Preload: The data object is passed to the processor, which stores it and
validates the data.

• Load: Loads all the necessary entities from the database using the Readables-
Pack.

• Validate: The request is validated by checking the entities obtained from
the database and the received data.
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• Preprocess: In this step, the processor can adjust the received data or
prepare itself for the processing step.

• Process: The command is executed and all the changes are stored in the
StorablePack, InvolvedPack or put into the CommandResult.

• Finish: A place for the finalization of the command.

To better explain how the command gets processed, we can describe the
GetLevel command. This command aims to send to the client the level that
the player is supposed to play or generate a new one if it does not exist yet.

During the preload phase, we store the GetLevelDto. Next we load Player-
Entity and optionally LevelEntity, if a level with a number from the data
object exists. Next, we make sure that the player exists and then continue to the
process step. In the process step, we create a new level if it was not loaded from
the datastore and store its data in the resulting data object, which is sent back
to the client.

Next, we list and describe some of the important commands available on our
backend. We only describe them briefly, as that level of detail is not needed here
and can be found in the source code attached to this work:

• Login: Logs the player into the game or creates a new player. It stores the
player in the database as a PlayerEntity and sends it to the client.

• GetLevel: Sends back a current level for the player or creates a new one.
It does that based on the number of the level which should be played.

• LevelFinished: Sent from the client whenever a level is finished. Stores
the level results in the database.

• GetAchievements: Sends a list of achievements in the game back to the
client.

• GetGameSettings: Sends the current GameSettings object back to the
client.

• GetChallenges: Sends a list of three levels that are playable only for a
fixed time period.

• GetInbox: Sends back an inbox with user messages.

• GetLeaderboard: Sends back a leaderboard with all players and their
scores.

• GetLevelLeaderboard: Sends back a leaderboard for the given level. The
leaderboard contains scores and players who played the level. We store level
leaderboards only for challenge levels.

• TutorialProgressUpdate: Stores information about tutorials that the
player has played so that players do not need to play the tutorial multiple
times.
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Chapter 4

Difficulty analysis

In this chapter, we analyze our endless runner game from the difficulty per-
spective. We begin by reviewing the relevant research done on dynamic difficulty
adjustment. Then we continue by analyzing the difficulty in our game. We end by
proposing an approach used for the dynamic difficulty adjustment in our game.

4.1 Related work
We do not want to give a complete overview of the research done in the DDA

area, as there was quite a lot of research done in the last couple of years. However,
an overview of DDA research was done by Zohaib et al. [7] and by Sepulveda et
al. [6]. Our goal is to explore only the most relevant works for our research.

A typical DDA system starts with data collection. Player data include any-
thing ranging from the record of a player’s gameplay to data from questionnaires.
The data are usually transformed and normalized before they are used.

Player modeling takes the player data and tries to model the player’s behav-
ior from different perspectives as accurately as possible. Different models try to
capture different player preferences. The created model is then used in the dif-
ficulty adjustment to model the player preferences. It is important to note that
modeling is never perfect, as people are hard to model.

Mourato et al. [33] proposed a difficulty metric for platformer games based on
probability theory. They calculate the probability that the players will finish a
level based on their probabilities of getting over obstacles. Their approach deals
with the concept of levels and even accounts for the player quitting the game.

They also try to measure the difficulty of independent obstacles by looking at a
spatial analysis of actions at the level. For example, they analyze the jump curve
and calculate the probabilities of jumping correctly within some error margin.
The prediction was validated by comparing the predicted values to those obtained
from human users.

In their subsequent work, Mourato et al. [34] extended the previous metric
to action games. The proposed models predict difficulty for different challenges.
They take into account different aspects of time and space, analyzing obstacles
such as moving platforms. The approach is based on analyzing the spatiotemporal
characteristics of each challenge and probability distributions of succeeding it.
The validity of the model was verified by gathering data from gameplay sessions.

We think that the approach of analyzing actions is interesting and useful.
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However, they work with analytically defined actions, and their limits can be
easily calculated (e. g. when analyzing simple jump). This is not true for every
game, and for some games, this approach can be too cumbersome.

Togelius and Shaker [35] applied player modeling on platform games. During
the data collection phase, they have collected gameplay data from Infinite Mario
Bros. Data included controllable features of the game, gameplay characteristics,
and results of an in-game player questionnaire.

They created single and multi-layer perceptrons to model player’s fun, frustra-
tion and challenge. They used perceptrons to perform feature selection to select
a set of features that yielded the best prediction accuracy for the given metric.
They used the generated models to generate player levels.

In a similar work, Togelius et al. [36] created a player model for racing games.
They have trained controllers based on neural networks on live player data to
model player’s playstyle. In the end, they have used evolutionary algorithms
with the resulting models to evolve levels.

Both of the approaches used reinforcement learning, which is an interesting
approach to modeling player preferences. It is capable of capturing player pref-
erence. However, it often relies on capturing a lot of data about the players,
training on offline data, or adjusting a preference of all the players (e. g. learning
what levels are fun).

Jenning-Teats et al. [37] created a model for dynamic level generation called
Polymorph. The level generation is based on a model of player-rhythm [28], which
we described in detail in chapter 2. Polymorph collects player data consisting of
gameplay features and a player’s level difficulty rating (1-6). They used a multi-
layer perceptron to model the player and to map level segments to difficulty
value.

Its most important contribution is that they use the model to adjust the game
difficulty during the gameplay. Whenever a next segment of the level should be
generated, they choose segments based on player performance. The system tries
to gradually increase the level’s difficulty while decreasing difficulty if the player’s
performance has drastically declined.

Medeiros et al. explored adjustment of fun in runner games [38]. They im-
plement a game in which the player plays levels and rates their fun and difficulty
values. They export gameplay metrics about the level and player’s feedback. The
resulting data were then fed to a reinforcement learning algorithm, which adjusts
the probability of selecting levels from a level pool to promote fun levels. The
algorithm was able to increase the fun for players. The authors then used the
collected data to identify game features that were not fun for the players.

Another work that researched DDA in endless runners is a work from Yang
et al. [39]. In their work, they try to extend the time players play hypercasual
endless runner games. They use a DDA system that gathers metrics about the
player to improve the gameplay to personalize challenge levels for players. Their
approach is based on adjusting the difficulty of generated obstacles based on
points the players have collected.

They conclude that the approach can be used to create a more practical
tutorial mode using the DDA. They also state that based on the results of their
experiment, people seem to like a higher difficulty spike more compared to a
slower increase in level difficulty. They state that DDA can extend the life of a
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game, especially for beginners.
Other works created DDA for an endless runner, however, we have not found

them interesting enough, or they did something very similar to the works we
listed. However, we have not found a single work, which would directly try to
deal with the increasing speed of an endless runner game.

Adjusting difficulty to get the player in a flow is a complex problem studied by
several works. Frommel et al. [40] proposed an approach of emotion-based DDA.
They use game questionnaires to analyze player’s frustration and boredom. In
an endless game, they adjusted the difficulty of levels based on a simple emotion-
based questionnaire given by the game’s protagonist at the end of the level.

Based on the questionnaire, the difficulty value of the next level was adjusted.
They used a simple matrix, mapping the fun and difficulty to a difficulty increase.
Level generation was based on a single difficulty value which mapped onto mul-
tiple level features. With this approach, they adjusted the game difficulty and
decreased the player death rates throughout their playthrough.

The application of DDA techniques is vast. It could be deployed to tweak the
difficulty of the games in order to increase player enjoyment. Nevertheless, it also
has other applications. For example, Carvalho et al. [41] created a system, which
was able to predict level difficulty for players almost two times better than a
human designer. It can also help people with disabilities [42] or to boost player’s
confidence [43].

4.2 Analysis
In our game, the most significant difficulty factors are the obstacles. Each

obstacle forces the player to perform one action. Actions in our game are quite
simple. For the left and right actions, the players can hit an obstacle only if they
perform an incorrect action or perform it too late. There is a small duration
during which the player character transitions between lanes and collides with an
obstacle along the path.

The jump action is defined by a jump curve, which depends on the player’s
input. The duration for which the player holds the jump key is important, as it
increases the distance and height of the jump. For a jump, its success depends on
the distance from the obstacle at which the player performs it and the duration
for which he holds the button.

The players can fail if they jump too soon and land in front of the obstacle
with no time to perform another jump or if they land on an obstacle. If the jump
is performed too late, the players hit the obstacle because they did not reach the
appropriate height.

The duck action is similar to the jump action. It has a maximum distance for
which the duck can be performed. This distance is also dependent on the duck
key’s hold duration while releasing the key cancels the duck.

The players can hit the obstacle if they start ducking too late because there
is a small transition during which the obstacle can still be hit. If they start the
duck too soon, the duck can stop while the players are still under the obstacle.
If they release the duck key too soon, they will also hit it.

Let us first consider a constant speed and actions which have no hold dura-
tions. Then we could analyze them similarly to the approach taken by Mourato
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et al. [17]. They have analyzed actions for a platformer game and have proven
several key observations about actions and the players.

For a jump action that is done at a constant speed Mourato and al. found out
that the distances from the obstacle at which the action is performed resemble
a normal distribution for each player. The jump has maximum and minimum
distances between which the jump is always successful, and the distribution is
centered after the maximum possible distance at which the player can jump,
while more skilled players jump closer to the obstacle. It is true because players
tend to wait to get past the error window, then jump.

Our actions differ significantly from those analyzed by Mourato. Because
of the hold duration, we make players consider two-dimensional data. Instead of
considering only the distance from obstacles, they must also consider the duration
for which they must hold the corresponding key and how it changes the action.

Another notable difference is that we are changing the game’s speed as the
player progresses through the level. By increasing the speed, we reduce the time
window that the players have to react to the obstacles and perform the actions.
We can also introduce additional difficulty by overwhelming the players if they
need to perform too many actions in quick succession. Compared to platformer
games, the players have a very short time to plan their actions.

The notion of changing speed also breaks the action analysis. Players do
actions differently at higher speeds. Hence, in our work, we must analyze the
effect of changing speed on player actions.

We tried to experiment with changing the speed in our game to find out what
it does with the actions. We played multiple levels made of only evenly spaced
short jump obstacles. We started at 60 BPM and gradually increased the speed
of the level by 10 BPM.

It can be seen in figure 4.1, that the distance from the obstacles at which
we perform the action increased linearly with the increasing BPM, while hold
duration decreased. We believe that it is because we were trying to give ourselves
more room for error. By jumping sooner, we have more time to adjust the jump,
and the action has a higher success rate. We will try to analyze later if it holds
for other players as well.

We made one further observation that we use in the action adjustment and
later on in the genetic algorithm. By playing levels, we found out that the change
is quite noticeable if we increase the speed by more than 20 BPM. It presents a
significant difficulty spike for the players.

As we discussed previously - our game has nine actions. Every action is
different because it is done on a different obstacle. For example, performing a
short jump should be much easier than a long jump, which is performed over a
longer obstacle. The difficulty of the actions is the same and does not depend on
the obstacle representation. Hence it is enough to approximate the difficulty of
the actions. Then we can approximate the difficulty of the obstacles in the level.

Actions are not the only aspect of the difficulty in our game. It is also the
speed of the game, its increase, and other metrics. We list several of the aspects
that influence the difficulty:

• Level length: Even if the level is potentially infinite, we defined its end
condition. The condition defines the length of the level that the player must
play. Longer levels have more actions and end at a higher speed.
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Figure 4.1: Short jump experiment
Graphs showing the relation of changing BPM to the distance and hold

durations of short jump action.

• Action combinations: Some pairs of actions might be more difficult than
others.

• Action distribution: Levels with less difficult actions will be easier com-
pared to levels with actions of greater difficulty.

• Speed: Higher speed of the game makes actions more difficult.

• Speed increase: The amount by which we increase the speed makes the
level harder faster.

• Vision: Some obstacles or the level composition might obstruct the vision
of the players, making it harder for them to predict the next obstacle.

• Time before obstacles: How much time and space do the players have
to perform the actions or plan them.

• Rest periods: Making the rest periods longer, when no actions are per-
formed, can make the level easier.

• Sizes of chunks: The more actions we put into each chunk (longer verse
and chorus), the more difficult the chunks are.

53



Another important aspect to consider is the goals of the DDA and what we are
trying to accomplish. If we were implementing a game without a DDA system,
we would create a few static levels, increasing their difficulty gradually [44].

It is a good and sound approach. However, it is not ideal. First, there will
always be players who might want harder or easier levels for whom the game
will be too boring or frustrating. Second, designers always have trouble defining
difficulty because they are always more experienced than any starting user.

This approach is made on a majority of games. Hence it is a good idea to
compare our solution with it. Usually, the game provides a way of selecting its
difficulty (e. g. easy, medium, or hard), which helps the game designers to create
better levels for the players. However, it presents other issues as players might
not select their appropriate difficulty, and game designers must spend a great
amount of time tweaking the parameters.

The player skills should also be considered. Medeiros et al. [38] analyzed
that differently skilled players have the center of their action distributions placed
differently, and the spread of the actions diminishes with player skill. That means
that skilled players will be able to time the actions more precisely and in a shorter
time window.

Hence, players will differ in their skills, and we cannot create a single model,
which would represent all players. Because of that, there is a need to create a
model for every player.

The model should be able to capture every player’s skill. It needs to be done
on a very small amount of data because our levels will be quite short, and we
do not want to create a game with too many levels. The main reason is that we
want to test the game in an experiment, which should not be too long.

After analyzing the game, we can list a few goals we have for our algorithm:

• The algorithm must work online. Different players with different skills will
be playing the levels, and every level they play should be adjusted.

• It should be capable of adjusting the difficulty with only a small amount of
data about the player.

• The adjustment should scale better for expert and beginner players than
the static version, where the difficulty increases gradually.

• Approximate the difficulty of obstacles and player actions in the level.

• Generate levels of the appropriate difficulty for the players. The system
should be capable of creating different levels for different players.

• Take into account the speed of actions and the game. Levels played at high
speed are more difficult compared to levels played at low speed.

• Take into account the length of the levels and their composition.

4.3 Proposed solution
There exist multiple approaches to adjusting difficulty, as we tried to show in

the related work section. Some of the approaches create a player model based on
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the metrics from gameplay. The metrics include some characteristics of the level,
such as its length or numbers of actions in the level.

This approach was done by Medeiros [38] or Shaker et al. [35]. Both the
approaches worked well for predicting fun in levels. However, they did not work
with analyzing the level’s difficulty directly. We believe that in endless runners,
it is more important how difficult obstacles are in the game than measuring just
the number of jumps the player has performed.

We think that using an approach similar to that of Mourato [17] will better
capture the difficulty of the level. Hence, we will try to create player models that
capture the probability distributions of successfully performing actions.

Once we have such a model, we can use it to approximate the difficulty of
given levels and to generate levels of appropriate difficulty. If we also adjust the
difficulty for the player based on his performance, we will have a functioning
DDA.

4.3.1 Player model
To model the players, we will capture and record all the actions they do while

also taking into account their speed. We will then create an agent that will play
the level by performing the recorded actions.

We will store the records of the actions based on their type. We will always
keep only a given number of actions and throw out the oldest records. This way,
we will store only a few recorded records at a given player’s skill level. Hence, if
the player would play two levels very badly, but would perform very well in the
third, then we could store data from only the two last levels depending on the
parameters.

We also want to model the players directly playing the level instead of only
recording their success probability. That way, we can account for the changing
speed to make the game more difficult for the player at higher speeds. The agent
will always do its actions based on the records of the player. We will base the
agent on the observation we made in the analysis.

4.3.2 Level selection
To select levels, we cannot consider only their difficulty. As we discussed, the

difficulty is also given by other parameters, such as the level length of the actions
in the level. It would be possible to take an approach of Shaker et al. and
explore all the possible levels. However, we would significantly need to reduce
the levels we generate, mainly because we need to simulate the levels to calculate
their difficulty.

Because of that, we will use a genetic algorithm to find appropriate levels. We
will create the fitness function to account for the level’s difficulty and other pa-
rameters that we consider necessary so that the level is interesting and challenging
for the player.

We have been thinking about using other optimization methods for finding the
best level. We considered using hill-climbing algorithms that would have worked,
but we chose the genetic algorithm in the end. The search space has many spikes
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because of the random seeds, on which we believed the genetic algorithm would
perform much better.

4.3.3 Difficulty adjustment
Multiple approaches to adjusting difficulty were made, which we discussed

in the related work section. They adjust the difficulty based on the players’
performance [37], or based on players’ feedback [40].

Adjusting the difficulty based on the performance makes sense if the designer
knows what represents the difficulty in the game. Then it makes sense to rank
the player’s performance and then give him a more or less difficult level. On
the other hand, using players’ feedback might give the DDA a better insight into
what the player finds difficult.

Both approaches have their advantages and disadvantages and their specific
use. However, we think that for our game and experiment, it makes more sense
to go a way similar to the emotion-based DDA done by Frommel et al. [40].

We will give our players the ability to rank the fun and difficulty of levels they
have played. We will then adjust the difficulty based on their feedback. If they
rank a level as hard, we will give them an easier level and vice versa. We will
also base the adjustment on their ranking of enjoyment.
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Chapter 5

DDA implementation

In this chapter, we talk about the implementation of our DDA system. First,
we start by giving an overview of the system. Then we describe the data that are
collected. We continue by creating a system for evaluating the difficulty of levels,
which is then used during the level selection. We end by describing the difficulty
adjustment.

5.1 Overview
Our DDA system was implemented inside the RunnerCore by creating a new

level generator DynamicLevelGenerator that extends the ILevelGenerator. Im-
plementing the system in the core had the implication that parts of the system
could be used on both the client and server. Furthermore, we could easily choose
whether the client or the server performs the adjustment. In our final version, we
perform the adjustment on the server-side, which makes sense because the server
stores all the data about the players.

We first collect the data from the players each time they finish a level. Based
on their perceived difficulty and fun values, we proactively adjust the difficulty
of the next level they should play. Next, we use a genetic algorithm and player
model to find the best level for the player, given the difficulty.

5.2 Data collection
The first important step in creating a DDA system is data collection and

how it is stored. We start while creating the user on the server by creating a
DifficultyProfileEntity, which holds difficulty data about the player. The
data are stored in a core object DifficultyProfile. The most critical data are
the data about player actions which are later used by the player model.

We store action records as a list of ActionDifficultyRecord objects, which
store the distance from the obstacle at which the action was performed, the speed
of the game at that moment, and the duration for which the player has held the
action key while performing the action.

We update the DifficultyProfile whenever the client sends a LevelFini-
shed command after finishing a level. If we have stored more than 20 actions of
the same type, we always throw out the oldest actions.
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After each level, we ask the players about the perceived fun and difficulty
values of the level. We store them on the difficulty profile together with a history
of player difficulty adjustments. We also collect additional data and metrics about
every level, which we do not store in the difficulty profile.

5.3 Player model
The goal of our player model is to represent player actions at the game level

and to capture the player’s current skill. We model the player as an agent who
performs actions the same way as the player and accounts for speed change.

As the first step, we implemented an AgentController, which extends the
PlayerController. Instead of taking input from the player, the controller simu-
lates the input based on an implementation of an agent, which schedules actions.
Its diagram can be seen in figure 5.1.

We created PlayerAgent, which represents the player. It uses action data
from a DifficultyProfile obtained during initialization. During its update
function, the agent chooses an action randomly from the set of action records,
accounts for the speed difference, and schedules it to be performed. Actions are
only scheduled if there is no action of the same type scheduled and only for the
closest obstacle in front of the player.

AgentController
# scheduledActions: Dictionary<ActionType, ScheduledAction>

+ UpdateImpl(float)
+ Do(ActionType, float, float)
+ IsScheduled(ActionType): bool

<<Interface>>
IPlayer

PlayerController

PlayerAgent
# difficultyProfile: DifficultyProfile
# random: RandomWrapper

+ UpdateImpl(float)
+ ScheduleRecord(ActionDifficultyRecod)
+ ClearScheduledRecords()
+ DistanceDeltaCurve(float): float
+ DurationDeltaCurve(float): float

Figure 5.1: Agent controller
A simplified UML diagram of AgentController and its relation to

PlayerController.

For the speed adjustment, we use the observation we made during the anal-
ysis. In figure 4.1 it is visible that the distance or hold duration can both be
approximated by fitting a linear curve through the data. We created two lin-
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ear functions, which give us relations between duration, distance, and beats per
minute.

During the adjustment, we compare the current game’s BPM with the BPM
at which the action was recorded. Next, we sample both speeds and add a delta
to the hold duration and action distance, respectively. Adjusting the parameters
can make successful actions fail, which simulates the player’s adjustment to the
changing speed. The parameters are adjusted to fit the current speed of the game.

Because changing difficulty by more than 20 BPM presents a big difficulty
spike, we use this observation in the player modeling. We ignore actions with
more than 20 BPM differences unless we have no other records for the action, in
which case we perform the actions with the same outcome with which they were
recorded.

5.4 Level evaluation
Next, we needed a way to evaluate the difficulty of levels. First, we created

a SimulationController, which wraps around GameController. We use it to
simulate the agent’s run through the level. We use a fixed delta step for the
simulation while always making sure to trigger scheduled actions at exactly the
same distance from the obstacle. The level evaluation is then implemented in a
LevelEvaluator, which controls the simulation evaluates the level’s difficulty.

Our first approach was to simulate the whole level and make the player agent
choose actions randomly. We always counted the number of player wins and
deaths to calculate the probability of getting through the level. To simulate the
level, we needed to run the whole level multiple times (at least 100 times). It was
time-consuming because whenever the player failed, we needed to start from the
beginning and because some levels were too long.

We tried to mitigate this by only analyzing the last generated chunk, where
the end condition will get completed. The reasoning is simple - because of our
levels’ verse and chorus structure and the increase of speed, the most challenging
chunk will be the last one. The difficulty of previous chunks is always lower. The
difficulty of chunks is independent because of the pauses that require no actions
from the player. If the player is unable to get past the last chunk, he will not
finish the level.

This approach improved the performance a bit. However, a big problem per-
sisted. Because we were choosing the actions randomly, the evaluation was very
inconsistent, evaluating the difficulty of the same level very differently every time.
Increasing the number of evaluations helped but increased the complexity by a
lot.

In the end, we chose to evaluate pairs of obstacles in the level. During the
evaluation, we loop through the actions of the last segment of the level and
calculate probabilities of getting through pairs of actions. We do it by trying out
all combinations of actions for every pair and accounting for the current speed.

The approach is an approximation of the exact probability of passing the last
chunk. The events are all dependent on the previous events in the level chunk.
However, being precise is unnecessary and would require much more computing
power and time that we do not have.
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In order to validate the level evaluation, we created a simple experiment. We
created three models of players with different skills - a bad, average, and skilled
player. We created the models by simulating their actions on a level with 75
BPM. The players’ skill was translated to their probability of completing actions,
given by the ratio of successful and failing actions in the player model. The
probabilities can be seen in the table 5.1.

Action Bad Normal Skilled
Left 8/2 9/1 10/0

Right 8/2 9/1 10/0
Short jump 7/3 9/1 10/0

Medium jump 6/4 8/2 9/1
Long jump 5/5 7/3 9/1
High jump 5/5 7/3 9/1
Short duck 8/2 9/1 10/0

Medium duck 7/3 9/1 9/1
Long duck 6/4 8/2 9/1

Table 5.1: Sample players

At each step, we generated a random level with fixed BPM and no BPM
increase, which was evaluated using the player strategies. The results can be
seen in figure 5.2. The player ordering holds and levels are always the easiest for
the most skilled player.
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Figure 5.2: Changing BPM
Relation of multiple difficulty models on the same level with increasing and
decreasing BPM. On the y axis, the difficulty represents the probability of

failing the level.

It can also be seen that the difficulty changes proportionally to the BPM,
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which is only because of the adjustment we made on player actions. There are
also a few spikes. Adjusting the action hold duration and distance sometimes
changes the action’s outcome. These imperfections create a slight bias, which is
reduced by the number of records in the player model.

To conclude, we created an evaluator that is deterministic, preserves player
skill, and adjusts the difficulty based on the BPM. Hence, we can use it in the
fitness function of a genetic algorithm.

5.5 Level selection
For the selection of levels, we use a genetic algorithm. The selection is made

on the server. Once the GetLevel command is received by the server, the genetic
algorithm selects a new level based on the player’s DifficultyProfile.

The level selection is performed by using the DynamicLevelGenerator. In the
generator, we use our implementation of the genetic algorithm GeneticAlgorithm.
The class implements a genetic algorithm that performs one step of the evolution
using the Evolve() function. In the evolution selection, crossover and mutation
steps are applied to evolve an initial set of level templates.

<<Interface>>
ILevelGenerator

+ Initialize(GetLevelDto)
+ Generate(DifficultyProfile): GeneratedLevel

DynamicLevelGenerator

+ geneticAlgorithm: GeneticAlgorithm

+ Initialize(GetLevelDto)
+ Generate(DifficultyProfile): GeneratedLevel

GeneticAlgorithm

# difficultyProfile: DifficultyProfile
# population: List<LevelChromosome>
# Best: LevelChromosome

+ Evolve()

Figure 5.3: Dynamic level generator
A simplified UML diagram of DynamicLevelGenerator and the genetic

algorithm implementation.

In each generation, the templates are evaluated by the level evaluator. The
evolution changes the level, including its obstacles or speed. The goal of the GA
is to find the level with the best fitness, which accounts for the level’s difficulty
and other parameters. A diagram of the generation can be seen in the figure 5.3.

5.5.1 Evolution
The algorithm starts by creating the initial population. We always create a

set of random levels. Then we tweak each one of them so that their end conditions
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are different from the previous level. We also make sure that we increase BPM
if we increased the difficulty or decrease BPM if we decreased the difficulty. The
BPM does not change by more than 20 BPM compared to the previous level.

Next, we start evolving the population. We evaluate the fitness of every
individual and sort the population. We choose parents for the crossover using the
linear ranking selection.

We experimented with using multiple selection methods. We implemented and
measured all the methods mentioned in the background chapter 1 with different
parameters. In the end, we did not choose the roulette wheel selection because it
makes individuals with high fitness dominate the population.

Instead, we chose the linear ranking selection given by:

PLRS(i) = 2 − selectionPressure + 2(selectionPressure − 1)(positioni − 1)
populationSize − 1

The fitness function depends on a single argument 1 ≤ selectionPressure ≤ 2.
The higher the pressure, the higher is the selection intensity while reducing the
population variance and diversity. In our case, a selection pressure of around 1.9
produced the best results.

We use uniform crossover on the selected parents to create the offspring. We
then try to mutate every individual in the offspring. We mutate every level
parameter with a given probability. During mutation, we uniformly choose a new
random value for the parameter, which is in range, given by the table 3.2.

We finish by selecting survivors. We select them by always using the whole
offspring and leaving only a given number of parents in the population; hence,
we use elitism in our algorithm.

5.5.2 Fitness function
In our genetic algorithm, we try to minimize the value of the fitness function

across its individuals. The lower the fitness, the better is the individual.
The fitness function takes into account multiple level parameters. We started

by having fitness equal to the evaluated difficulty, but the level quality was bad.
We have also taken into account level length, level bpm and a ratio of left and
right actions. The fitness function is a weighted average of other functions:

f = fdifficulty + 0.3fbpm + 0.3factions + 0.15flength

1.75
First, we calculate the fitness of the level’s difficulty. We take into account

the desired difficulty and the level’s approximated difficulty. We take the value
of their absolute difference.

fdifficulty = |nextDifficulty − levelDifficulty|

To calculate the fitness of the BPM in the level, we created a function that
prefers levels, which differ more from the previous level’s BPM. We wanted the
change in the BPM to be noticeable. The function gives the lowest fitness to the
maximum possible BPM change, while maxDifference is a value close to 20 BPM.
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fbpm = 1 −
⃓⃓⃓⃓
⃓currentBPM − originalBPM

maxDifference

⃓⃓⃓⃓
⃓

Next, we defined a fitness of the ratio of actions in the level. By experimen-
tation, we found that levels where the player is forced to perform more left and
right actions have a more interesting flow. Hence, we prefer levels with almost
the same number of left and right actions compared to other actions.

factions = min(1,

⃓⃓⃓
moveActions

actions
− 0.5

⃓⃓⃓
0.4 )

To calculate the fitness of the level length, we calculate the number of actions
in the last chunk of the level. We want the more difficult levels to have more
actions, while the easier levels will be shorter with fewer actions. Hence, we
created a quadratic function with an optimal falloff to prefer solutions close to
the optimal length. The function is adjusted to have its maximum in a number
dependent on the difficulty. The number of optimum actions ranges from 8 to 32
actions.

flength = 1 − (− 1
64x2 + 1

4x)

where
x = actions + (8 − 24difficulty + 16)

5.5.3 Settings
We tweaked the parameters of our algorithm so that it has a good performance.

The most significant restriction is that we have around six seconds in which we
want to give the player a new level. This restriction was created so that the player
does not need to wait for new levels for too long. There are ways to increase the
time by downloading the level sooner or increasing the time users spend on the
finished screen.

The settings we chose can be seen in the table 5.2.

Parameter Value
Max iterations 100

Time limit 6s
Population size 20
Offspring size 18

Mutation chance 0.05
Uniform crossover P 0.5
Selection pressure 1.9

Table 5.2: Genetic algorithm parameters

We played with all the parameters to create an algorithm that would return
good levels in the short amount of time it had. We found out that the optimal
settings include a relatively smaller population of individuals.
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Because of the time limitation, we consider finding a sub-solution a good
result. Hence we wanted a higher selection pressure and higher mutation rate to
find levels faster and reduce their fitness. It is also a reason we decided to use
elitism because we did not want to lose the best-found solution.

In this setting, we can generate around 20 iterations on average in the given
time limit before returning the best-found solution.

5.6 Difficulty adjustment
The level’s difficulty is represented as a number between zero and one. The

hardest levels have difficulty close to one and the easiest close to zero. Every
player has a value of difficulty that his next level should have. We start at 0.5
difficulty, which represents a level of average difficulty. In the context of the level
evaluator, it would represent a level where player wins are equal to player deaths
in the level.

The adjustment is made in the LevelFinished command, which is sent af-
ter the player finishes a level. We implemented the adjustment in the class
DynamicAdjustmentSubsystem. To adjust the difficulty, we defined a table of
difficulty adjustments. We adjust the difficulty by taking the appropriate value
by using the player’s reported fun and difficulty values as indices and adding it
to the difficulty of the previous level. The adjustment values can be seen in the
table 5.3.

Fun / Difficulty 1 2 3 4 5
1 0.2 0.15 0.1 0.05 0.05
2 0.15 0.1 0.05 0.04 0.03
3 0.1 0.05 0.05 0.03 0.02
4 -0.05 -0.05 -0.05 -0.02 -0.015
5 -0.2 -0.15 -0.1 -0.05 -0.05

Table 5.3: Difficulty adjustment values
The number 1 means the level was too easy or not enjoyable at all. Number 5

means that the level was too hard or very enjoyable.
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Chapter 6

Experiments

In the previous chapters, we described the implementation of the game and
the difficulty adjustment system. We have created an experiment to test the
validity of our approach. In this chapter, we describe the experiment and its
goals.

6.1 Experiment goals
The goal of the experiment is to evaluate the performance of our approach.

We are focused on evaluating mainly the difficulty adjustment aspect of our game.
The goals of the experiment are to validate the following hypotheses:

1. Players perform actions further away from the obstacle if the BPM in-
creases.

2. Dynamically adjusted levels are more enjoyable than levels with progressive
difficulty.

3. Players will die more in the progressive levels compared to levels with dy-
namic difficulty.

4. Perceived difficulty of DDA levels would be closer to the target value (0.5)
than the perceived difficulty of progressive levels.

5. Flow occurs more often in levels with DDA compared to levels with increas-
ing difficulty.

6. The difficulty predicted by the player model and the player’s perceived
difficulty should get closer as the game progresses. The player model gets
better at modeling the player.

We defined the experiment goals in order to validate our expectations from
the DDA algorithm. The first hypothesis should validate the self-test we made
in difficulty analysis. The other goals try to validate that the adjusted levels are
better than the progressive ones and validate the soundness of the approach. The
last goal tries to validate the player model and its ability to represent the player’s
skill.
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6.2 Methodology
We created the game to be played in the browser. We wanted to distribute

the game between players and have the whole experiment done directly in the
game, explaining its rules and providing the player with questionnaires.

We created two groups to evaluate the experiment - a control group and a DDA
group. Only the DDA group will experience the adjustment of levels. Both the
groups start on the same level, and only the additional levels and their difficulty
differ.

6.2.1 Control group
We had multiple options while we were choosing our baseline strategy. We

could have compared our algorithm to a completely random level generator, to
an algorithm with a much simpler DDA, or designer-made levels. In the end, we
decided to compare our approach to a generator that creates levels with increasing
difficulty based on designer-defined parameters.

This approach should create levels that are more playable than completely
random levels. At the same time, the levels are not as perfect as if a human
designer made them from the ground up. Hence they will resemble the levels
obtained from the DDA generator, as they use the same level factory.

To create the levels, we defined their LevelTemplate parameters by hand.
Then we played the levels and tweaked the parameters so that the levels increase
in difficulty.

Most notably, we increase the speed of the level by 10 BPM, and we increase
it by 0.4 BPM each time the player passes an obstacle. We tweaked the seed of
the levels so that the levels are playable and have a better flow. The sizes and
extension probabilities of chorus and verse were also changed. The chosen values
with the impact on difficulty can be seen in table 6.1.

Number BPM BPMIncrease VS/EP CS/EP End condition
1 60 0.4 2/0.10 2/0.30 Distance(30)
2 70 0.4 2/0.12 2/0.30 Jump(30)
3 80 0.4 2/0.14 3/0.40 Coins(20)
4 90 0.4 3/0.16 4/0.40 Distance(40)
5 100 0.4 3/0.18 5/0.50 Duck(14)
6 110 0.4 3/0.20 6/0.50 Coins(30)

Table 6.1: Static level parameters.
Parameters of a static level with the impact on difficulty. The first level settings

are used by both the groups.

6.2.2 DDA group
The DDA group uses the difficulty adjustment and the genetic algorithm, as

described in the previous chapter. The main difference between the two groups
is that the DDA group will play levels with parameters generated by the DDA
algorithm. The levels will also differ in audiovisual aesthetics - we picked them
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by hand for the control group, while in the DDA levels, they were generated
randomly.

We created a model for the starting player at 60 BPM. We want the players
to start at 60 BPM and only move to higher BPMs slowly and if they are skilled
enough. We modeled the player based on the data in table 6.2.

Action Success/Failure
Left 8/2

Right 8/2
Short jump 7/3

Medium jump 6/4
Long jump 5/5
High jump 5/5
Short duck 8/2

Medium duck 7/3
Long duck 6/4

Table 6.2: Default DDA player

The default player success rates are rates of the bad player from the previous
chapter. We tried to set lower success rates so that we do not overestimate the
skills of a starting player. At the same time, if the difficulty of the level increases
for a good player, the lower success rates will make the algorithm choose those
actions that the player did not play yet.

6.2.3 Experiment flow
Next, let us describe the steps of the experiment:

1. The player will register into the game and be covertly assigned to a control
or the DDA group. We assign the player by flipping a coin using a pseudo-
random generator.

2. The game displays a tutorial explaining the basics of the experiment, game
controls, and rules.

3. Players play six levels, which are generated based on their group. It is the
only difference between the groups. After each level, the players are asked
to rank the level’s difficulty and fun values.

4. After the players finish the last level, they are asked to provide basic infor-
mation about themselves, including their age, gaming experience, experi-
ence with endless runners, and optional feedback.

5. Next, the player is asked to fill a 14-question questionnaire for the evaluation
of flow.

We made a few adjustments to the game because of the experiment. First, we
added a button to the pause menu, allowing the player to give up a level. When
the player gives up a level, we store this information in the database and let the
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player rate the level and continue the experiment. It was done to prevent the
participants from quitting the experiment if they were frustrated or in the case
of an unplayable level. We explain this button in the tutorial of the game.

We hid all mentions of the game’s speed and other variables that the player
might have interpreted as the level’s difficulty. The only information the play-
ers know about the level is its name and the color scheme it uses. During the
gameplay, they see only their score and coins collected. On the rating screen, the
player only rates the levels and does not see anything else. We display the score
and coins he collected afterward. The popup displayed at the end of the level and
the popup used for the collection of information about the player can be seen in
figure 6.1.

Figure 6.1: Experiment popups
On the left is a popup which is shown at the end of the level. Next to it is a
popup asking about the player’s background at the end of the experiment.

We tried the experiment multiple times to evaluate its length and settings. A
single experiment run took around 10 minutes, which differed mainly in the time
it took to fill in questionnaires and read the tutorial. Every level was played in
less than two minutes.

To evaluate the flow, we use the Flow Short Scale by Rheinberg, Vollmeyer,
and Engeser [45], which is a questionnaire used in other works regarding DDA.
All the questions can be seen in appendix A.2. Typically the questionnaire would
be in multiple places to evaluate the flow throughout the game to see if the player
loses interest in the game. However, because we only have six short levels, the
flow probably would not change much. It would make the experiment tedious
and time-consuming.
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Chapter 7

Results

In this chapter, we analyze and discuss the results of the experiment. We
start by analyzing the data obtained from the experiment. Then we analyze
the difficulty and data of progressive levels, followed by the analysis of the DDA
approach. We continue by comparing the two approaches and analyzing the flow
questionnaire. We finish by discussing the results.

We have collected test subjects by creating a web page describing how to
participate in the experiment. We have then shared the link over various social
networks and communication channels (most notably on Discord1, Facebook2,
and Reddit3).

A total of 66 players have entered the game and registered. A total of 54
players have played at least some levels, and 34 players finished the experiment
by playing all six levels and filling the questionnaire. The players were randomly
divided into the control and DDA groups. The control group consisted of 26 play-
ers, out of which 18 players finished the experiment. The DDA group consisted
out of 28 players, out of which 16 finished the experiment.

First, we need to analyze the participants to see if the groups were evenly
distributed. We put the data about the player background into table 7.1. We list
averages of the obtained values with one standard deviation.

Variable Control DDA
Age 21.75 ± 5.47 22.5 ± 4.73

Gaming experience 0.5 ± 0.79 1.16 ± 1.16
ER experience 1.69 ± 0.92 1.8 ± 0.8
Participants 26 18

Finished 28 16

Table 7.1: Experiment participants

The age and sizes of groups are very similar. The control group has more
players who play video games daily, while the DDA group comprises players who
play a few times a week. Participants in both groups were players that considered
themselves to be average endless runner players.

1https://discord.com/
2https://facebook.com/
3https://reddit.com/
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It is hard to say if the frequency with which the players play games could
have impacted the results. However, we think that it only means that both
the populations were made of experienced gamers, and playing more often does
not impact their performance. We performed a Pearson’s chi-squared test on the
player age and experiences to confirm the homogeneity of our data (with p=0.532,
p=0.129, and p=0.162, respectively).

7.1 Control group
First, we try to analyze the levels with progressive difficulty created for the

control group. We created the levels by hand. We tweaked the parameters and
played with them to create levels that progressively increase in difficulty. To
evaluate the difficulty of a level, we can observe the number of deaths in the level
and the player’s perceived difficulty. In the ideal case, players would die more in
more difficult levels.
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Figure 7.1: Deaths in the control group
Deaths in the control group and their regression.

We plotted the deaths in the levels and the perceived difficulties for all the
players of the control group in figure 7.1. First, looking at the numbers of deaths,
there were two outliers - one that has played level five with almost a hundred
deaths and one with almost sixty deaths in level four. The overall difficulty of
levels increases progressively, as can be seen from the regression line.

Next, looking at the perceived difficulties, it can be seen that the first level
was perceived as an easy level. Hence making it a good starting level for all the
players. There is an increase of players ranking levels as very difficult from the
second level onwards. The third level was probably too difficult as some players
were close to forty deaths, which is visible also in the perceived difficulty.
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7.2 DDA group
We do a similar analysis of deaths in the DDA group. We plotted the deaths in

the levels together with player perceived difficulties in figure 7.2. First, analyzing
the numbers of deaths, there are two outliers - one who died in his second level
almost sixty times and one who died around fifty times in the last level. It can
also be seen that some players had higher amounts of deaths in some of the levels.
In the first and last levels, the deaths are reasonably grouped.
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Figure 7.2: Deaths in the DDA group
Death counts and perceived difficulty of levels in the DDA group.

Looking at the difficulty of DDA levels, it can be seen that the first level is
again considered easy by the players. Next, it can be seen that there are not as
many players who would rank levels as extremely hard or easy compared to the
control group.

We were also curious how would the difficulty of levels change. In figure 7.3 we
show the predicted difficulty of generated levels calculated by the level evaluator.
First, it can be seen that the difficulty tends to increase, meaning that players
prefer to get harder levels. It can again be seen that the first level’s difficulty
is correct, as all the players want a more difficult level. The different skills of
players can also be observed as some players reach the greatest difficulty, while
some prefer low difficulty.

7.3 Comparison
We continue by comparing both groups together. We calculated average diffi-

culty and fun values based on the level results, and we list them in the table 7.2.
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Figure 7.3: Difficulty of generated levels
Predicted difficulty of DDA levels based on the level number.

First, for the control group, the difficulty of the third and fifth levels is greater.
Otherwise, the difficulty of levels increases progressively. The fun value of the
control levels decreases with the level’s difficulty. The difficulty gets closer to the
optimal difficulty (0.5) for the DDA group, which is ideal. The fun value grows
more steadily than that of the control group.

Level Difficulty Fun DDA Difficulty DDA Fun
1 0.13 ± 0.15 0.43 ± 0.25 0.24 ± 0.21 0.42 ± 0.22
2 0.53 ± 0.29 0.42 ± 0.25 0.58 ± 0.28 0.49 ± 0.19
3 0.72 ± 0.25 0.35 ± 0.23 0.42 ± 0.25 0.57 ± 0.27
4 0.59 ± 0.29 0.53 ± 0.35 0.58 ± 0.28 0.57 ± 0.31
5 0.70 ± 0.24 0.44 ± 0.27 0.47 ± 0.27 0.61 ± 0.27
6 0.58 ± 0.35 0.59 ± 0.32 0.49 ± 0.24 0.64 ± 0.26

Table 7.2: Fun and difficulty comparison
Average values of difficulty and fun in the levels with one standard deviation.

We continue by evaluating the DDA questionnaire (see attachment A.2),
which is presented at the end of the experiment. The answers can be mapped to
corresponding flow, difficulty, and anxiety values. The flow is obtained by calcu-
lating and normalizing the average from questions 1-10, anxiety from questions
11-13, and the difficulty from the last question asking the user to rank the game’s
difficulty.

We list the calculated values in table 7.3. The flow was close to average in
both groups. The difficulty ratings for both groups were also close to average,
meaning that players felt that the demands of the game were on the right level.
The average anxiety caused by the game was quite low.
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Group Flow Difficulty Anxiety
Control group 0.52 ± 0.145 0.40 ± 0.249 0.22 ± 0.187
DDA group 0.49 ± 0.141 0.46 ± 0.211 0.27 ± 0.143

Table 7.3: Flow comparison
Averages of flow, difficulty and anxiety metrics from the flow questionnaire.

Next, we try to further analyze the results by looking at answers from the
flow questionnaire. We plot the results of the questionnaires for both groups in
figure 7.4. We visualize the answers people selected for every sentence. People
answered with a number 1-7, where the one indicates that they did not agree
with the statement at all, and seven means they very much agreed. The answers
are ordered from left to right, where the leftmost answer corresponds to selecting
number one.

For the questions regarding flow (1-10), the ideal response of the players would
be 7, meaning that they agree with the given statement. For statements about
anxiety (11-13), the ideal answers are that they do not agree with them at all,
represented by answer 1. The last question asks the players to rank the demands
of the game by a number. In this case, the ideal answer is close to number 4,
which means the demands of the game were not too easy or too hard.

By looking at the answers to flow questions (1-10), we can observe three
questions with dominant answers:

• Question 8: "I know what I have to do each step of the way."
A total of 23 (67%) respondents answered that they knew what they are
doing every step of the way (answers 5-7).

• Question 9: "I feel that I have everything under control."
A total of 19 (55%) respondents answered that they felt they do not have
everything under control (answers 1-3).

• Question 10: "I am completely lost in thought."
A total of 23 (67%) respondents answered that they were not completely
lost in thought (answers 1-3).

7.4 Hypotheses testing
To test the hypotheses, we will evaluate the obtained data for hypotheses 1-5.

The last hypothesis about the player model prediction will be evaluated without
a statistical analysis by visualizing the data because it is hard to analyze.

1. Players perform actions further away from the obstacle if the BPM in-
creases.

• We test the hypothesis on the short jump action. We gathered data
of distances of short jump action performed at around 70 BPM (±5
BPM) represented as the distribution jumps70. We compare it to data
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Figure 7.4: Flow questionnaire results
Answers to the flow questions by both the groups.

gathered at around 90 BPM (±5 BPM) represented as the distribution
jumps90. The distributions can be seen in figure 7.5.

• H0: jumps70 ≥ jumps90. The mean of jumps70 is greater or equal to
the mean of jumps90.

• H1: jumps70 < jumps90. The mean of jumps70 is smaller than the
mean of jumps90.

• Analysis: We performed a Shapiro-Wilk test of normality. The ob-
tained data can be considered normally distributed with p = 0.091
and p = 0.094. Therefore, we performed a two-sampled one-tailed
Student’s t-test to reject the null hypothesis. The null hypothesis was
rejected with p = 0.493 × 10−13. Therefore, the alternative hy-
pothesis can be accepted.

• Result: Data indicate that players tend to perform actions
further away from the obstacles if the speed of the game
increases.

2. Dynamically adjusted levels are more enjoyable than levels with progressive
difficulty.

• We test the hypothesis by comparing perceived enjoyment values for
the control and DDA groups. The distribution enjoymentcontrol cor-
responds to the perceived enjoyments of the control group, while the
distribution of the DDA group is represented by enjoymentDDA.

• H0: enjoymentcontrol ≥ enjoymentDDA. The mean of enjoymentcontrol

is greater or equal to the mean of enjoymentDDA.
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Figure 7.5: Distribution of distances from obstacles
Distribution of action distances for short jump based on BPM.

• H1: enjoymentcontrol < enjoymentDDA. The mean of enjoymentcontrol

is less than the mean of enjoymentDDA.
• Analysis: The data cannot be considered normal because of the Likert

scale. We used the Mann-Whitney two-sample one-tailed U test to
reject the null hypothesis. The null hypothesis was rejected with p =
0.0101. Therefore, the alternative hypothesis can be accepted.

• Result: Data indicate that players in the DDA group enjoy
the levels more.

3. Players will die more in the progressive levels compared to levels with dy-
namic difficulty.

• We test the hypothesis by comparing deaths in levels for both the
groups, represented by distributions deathscontrol and deathsDDA.

• H0: deathscontrol ≤ deathsDDA. The mean of deathscontrol is less than
or equal to the mean of deathsDDA.

• H1: deathscontrol > deathsDDA. The mean of deathscontrol is greater
than the mean of deathsDDA.

• Analysis: The data cannot be considered normal because of the Likert
scale. We used the Mann-Whitney two-sample one-tailed U test to
reject the null hypothesis. The null hypothesis was rejected with p =
0.0481. Therefore, the alternative hypothesis can be accepted.
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• Result: Data indicate that players in the progressive levels
die more often.

4. Perceived difficulty of DDA levels would be closer to the target value than
the perceived difficulty of progressive levels.

• We test the hypothesis by comparing differences between the ideal
value and perceived difficulty values obtained at the ends of levels,
represented by distributions difficultycontrol and difficultyDDA. The
ideal value is 0.5, which corresponds to the player rating the level as
not hard or easy.

• H0: difficultycontrol ≤ difficultyDDA. The mean of difficultycontrol

is less or equal to the mean of difficultyDDA.
• H1: difficultycontrol > difficultyDDA. The mean of difficultycontrol

is greater than the mean of difficultyDDA.
• Analysis: The data cannot be considered normal because of the Likert

scale. We used the Mann-Whitney two-sample one-tailed U test to
reject the null hypothesis. The null hypothesis was rejected with p =
0.016. Therefore, the alternative hypothesis can be accepted.

• Result: Data indicate that the DDA is capable of creating
levels closer to the optimal difficulty compared to progressive
levels.

5. Flow occurs more often in levels with DDA compared to levels with increas-
ing difficulty.

• We test the hypothesis by comparing average perceived flow values
from the flow questionnaire, represented by distributions flowcontrol

and flowDDA.
• H0: flowcontrol ≥ flowDDA. The mean of flowcontrol is greater or equal

to the mean of flowDDA.
• H1: flowcontrol < flowDDA. The mean of flowcontrol is smaller than

the mean of flowDDA.
• Analysis: The data cannot be considered normal because of the Likert

scale. We used the Mann-Whitney two-sample one-tailed U test to
reject the null hypothesis. We failed to reject the null hypothesis
with p = 0.588. Therefore, we cannot accept the alternative
hypothesis.

• Result: Data indicate that flow is not better in levels that
use DDA.

Next, we analyze the hypothesis that the error of the difficulty predicted by the
player model decreases with time. We calculated the error between the difficulty
prediction and the level’s perceived difficulty. The resulting graph of errors can
be seen in figure 7.6. We observed that the error decreased for some participants,
but we cannot say that it is true in general.
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Figure 7.6: Modelling error
A player modelling error in predicting the level difficulty.

Instead, we tried to compare the predicted difficulty with player deaths in
levels. In the figure 7.7 the deaths relative to the predicted difficulty can be seen.
It is apparent that there are some outliers, which we have seen before, but the
number of deaths tends to get higher for more difficult levels.

7.5 Discussion
Now, we try to discuss the results. First, the game was quite well received

by the participants. They reported that they enjoyed the aesthetics of the game
and the overall idea. On the other hand, some people had problems with some
of the game mechanics:

• Timed duck: Some players reported that they had a hard time with duck
action ending on its own after a short duration - they were not used to this
concept, or it made it harder to perform the duck action.

• Slow paced: Some players reported that the game felt too slow for them.

• Collisions: Some players found it hard to adjust to the first-person per-
spective and to know when they are over an obstacle.

We think that the problem with the timed duck is that it is mapped to holding
a button. Computer players are used to the fact that if they hold a button, the
action is done until they release the button. For example, in Subway Surfers,
there is a timed duck, but it is done with a slide on the touch screen. Hence, we
think that the players were not used to the controls, instead of the duck being
implemented in an unusual way.
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Figure 7.7: Difficulty to number of deaths
A relation between predicted difficulty and the number of deaths.

In our opinion, the collisions in our game were the biggest problem. It was
caused by the positioning of the player camera, the field of view, and the player’s
collider size. We did not test the game on other users before the experiment,
and we did not see the problem since we learned to adjust to the collisions. Even
when players reported it as an issue, they were still able to complete the levels. In
order to release the game, we would need to address this issue by reworking the
colliders or making the game use a third-person perspective, where the collision
between player and obstacle can be better anticipated.

Next, we tried to think about the reason why players did not finish the ex-
periment. Out of the players that did not finish, only one player reported that
he got bored after playing three levels. Other than that, we have no idea why
people left or why no one used the button to give up a level if it was too hard.
Because the players from both groups left the experiment at approximately the
same rate, we think that it was people who just thought the experiment would
take less time or just lost interest throughout the game. In retrospect, we would
probably put the questionnaire about players at the start of the experiment to
better analyze which players quit the game.

We should also address the flow questionnaire. We think that placing the
progress towards the end condition directly on the screen helped to define clear
goals to players, which was appreciated in question 8. The negative answers to
questions 9 and 10 were probably due to the problems mentioned above. Other-
wise, the results for difficulty and anxiety were better than we expected.

We tested several hypotheses. The first hypothesis confirmed that players
perform actions further away from obstacles when the game speed increases.
It confirms the hypothesis we made during the analysis of the algorithm and
confirms that players learn to play the game and adjust to the changing speed.

Next, we have found out that DDA created more enjoyable levels for the

78



players. We think this is because of the difficulty adjustment as this was the main
difference between the levels. However, the analysis might be invalid when the
progressive levels would be too hard or if there was another factor that impacted
the quality of DDA levels, which we did not account for.

First, we think that we picked levels of reasonable difficulty to simulate the
progressive levels. As discussed before, we made the third level slightly more
difficult than intended. However, each level is completely different, making it
very complicated for the DDA to pick a good level out of all the combinations
and seeds. Hence we think that a bad DDA would pick more difficult levels than
progressive difficulty, especially if the difficulty adjustment can be much more
significant than difficulty increase in the progressive levels.

Second, the only other thing which is different is the environment of the levels.
However, because we pick it completely randomly for the DDA group compared
to the progressive levels, we think that it would favor the control group, not the
DDA group. Hence, we think that the impact of the game environment can be
ignored.

The points made above also hold for the next hypothesis that confirmed that
players in the adjusted levels died less than in the adjusted levels. It shows that
the DDA adjusts to the skills of less skilled players that did not die as much in
adjusted levels. Based on the discussion, we think it is not a result of coincidence,
and it is hard to achieve given the variability of levels. In the end, it would point
at least to the problem we mentioned several times, that game designers have a
hard time designing difficulty for a game.

Most notably, we confirmed that DDA moves the level difficulty closer to
the ideal value. The players reported that adjusted levels presented challenges
closer to the optimum than progressive levels. This is a significant result, which
confirms that the DDA system was better than the designer-defined system.

We failed to validate that the flow is higher for the DDA. The flow was close
to average, but it is hard to say why that was. It might correlate to the difficulty
adjustment, but the flow has many other components that could have impacted
it. For example, the fact that this is an experiment could make the players give
it less effort.

In the end, we did not confirm if our model approximates the player skill well
or if it learns to do so based on the number of levels players play. We think that
it can be because the predicted difficulty relates to the difficulty of actions in the
last chunk. At the same time, players might rate difficulty based on other metrics.
For example, players might rank the level’s difficulty based on the previous level
they have played, making it harder to analyze.

We have at least shown that the difficulty prediction impacts player deaths,
which is an alternative and more objective metric to the player’s perceived diffi-
culty. We conclude that more tests would be needed to analyze the model better,
or more data regarding perceived difficulty should be collected from users.
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Conclusion

In this thesis, we explored dynamic difficulty adjustment for an endless runner
game. First, we designed and implemented our own endless runner game, which
utilizes a server-client architecture.

Next, we created DDA for the game that created new levels for the players
based on their skills, perceived difficulty, and fun in the game. We modeled
players by recording their gameplay data and creating agents to simulate their
skills to approximate the difficulty of any level with increasing speed. After every
level, the ideal difficulty for every player was adjusted to match their skill, and
the player model was used to select a new level of the right difficulty.

We designed and conducted an experiment to test the game and validate our
approach on live users. We validated that our approach works by comparing it to
a strategy that generated levels with progressive difficulty. The adjustment made
the game more enjoyable and lowered the number of player deaths in the levels.
Players rated the adjusted levels to be closer to their ideal desired difficulty.

While improvements could be made to our approach, we believe that our
thesis presents interesting results and could be used in a production environment
or as a good starting point in further research.

Future work
There are multiple parts of the game that could be improved. The two biggest

issues in the experiment were bad collisions and unnatural duck action, which
could be improved. If we wanted to publish the game, it would need to have
more interesting actions and levels. Most of its components would need to be
tested on users, and the game reworked to take into account user feedback.

Next, every part of our DDA system can be improved:

• Player modeling: While our approach seemed promising, other approaches
could be tried. First, different models which are not based solely on the
difficulty of actions could be used to identify other things which contribute
to the difficulty of the game (e. g. similar to work by Togelius et al. [35]).
Our model could also be improved by not simulating the levels to increase
its performance or simulating them differently.

• Speed adjustment: We adjusted actions to simulate the player’s adjust-
ment to changing speed using a simple linear function to tweak the distance
of actions. The impact of changing speed on the player can be better an-
alyzed, or different adjustment methods could be tried. For example, rein-
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forcement learning algorithms can be used to analyze the effect of changing
speed on player actions.

• Level selection: We used a genetic algorithm to select the levels of ap-
propriate difficulty. It is not the only possible algorithm, and there exist
countless other options that can be tried. Interesting would be to tweak the
selection to select better levels for the player or further allowing the game
designer to tweak the selection.

• Difficulty adjustment: While we used a simple adjustment in the form
of emotion-based DDA, other approaches could be tried. The emotion-
based adjustment can also be improved based on the player’s progression,
adjusting levels by a larger amount at the start of the game.

Finally, the level generation can be further improved. We have used a rhythm-
based approach to the level generation based on work by Smith et al. [28]. It
can be taken a step further by taking inspiration from music theory and creating
levels where the rhythm is more apparent or has a better structure.
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Appendix A

Attachments

A.1 Source code
A part of the electronic version is an attachment that contains:

• src Contains the source code of all the projects.

– RunnerCore Contains the implementation of the RunnerCore project
and a project with unit tests.

– RunnerServer Contains the implementation of the RunnerServer project.
– RunnerClient Contains the Unity project RunnerClient with all the

assets Unity and the game use.

• build Contains a build of the game.

– RunnerBuild Folder with a build of the game for the PC platform
that connects to a local server.

• docs Contains documentations of all the projects.

– RunnerCore-docs RunnerCore documentation.
– RunnerServer-docs RunnerServer documentation.
– RunnerClient-docs RunnerClient documentation.
– UserDocumentation.pdf A document with the user documentation

which explains the basics of the game and all its screens.
– ProgrammerDocumentation.pdf A document with basic program-

mer documentation explaining the Unity project and how to start the
game on a local server.

• data Contains the data collected during the experiment.

– export_final.json Contains a list of entities exported from the server
at the end of the experiment. The file contains only entities which are
relevant for the analysis such as PlayerEntity, DifficultyProfile-
Entity, and LevelResultEntity.
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– analyzer.py Is a Python script we have used to analyze the results of
the thesis.

• README.txt: Is a text file that explains the contents of each folder.

A.2 Short Flow Scale questionnaire
After finishing the last level of the experiment, the player was prompted with

a flow short scale questionnaire. The questionnaire contains a list of the following
sentences, to which each player responds with a number from one to seven. The
numbers represent how much they agreed with the sentence.

Sentences 1-10 evaluate the flow in the game, sentences 11-13 evaluate anxiety,
and the last sentence 14 evaluates the game’s difficulty.

1. I feel just the right amount of challenge.
Not at all 1 □ 2 □ 3 □ 4 □ 5 □ 6 □ 7 □ Very much

2. My thoughts run fluidly and smoothly.
Not at all 1 □ 2 □ 3 □ 4 □ 5 □ 6 □ 7 □ Very much

3. I don’t notice time passing.
Not at all 1 □ 2 □ 3 □ 4 □ 5 □ 6 □ 7 □ Very much

4. I have no difficulty concentrating.
Not at all 1 □ 2 □ 3 □ 4 □ 5 □ 6 □ 7 □ Very much

5. My mind is completely clear.
Not at all 1 □ 2 □ 3 □ 4 □ 5 □ 6 □ 7 □ Very much

6. I am totally absorbed in what I am doing.
Not at all 1 □ 2 □ 3 □ 4 □ 5 □ 6 □ 7 □ Very much

7. The right thoughts/movements occur of their own accord.
Not at all 1 □ 2 □ 3 □ 4 □ 5 □ 6 □ 7 □ Very much

8. I know what I have to do each step of the way.
Not at all 1 □ 2 □ 3 □ 4 □ 5 □ 6 □ 7 □ Very much

9. I feel that I have everything under control.
Not at all 1 □ 2 □ 3 □ 4 □ 5 □ 6 □ 7 □ Very much

10. I am completely lost in thought.
Not at all 1 □ 2 □ 3 □ 4 □ 5 □ 6 □ 7 □ Very much

11. Something important to me is at stake here.
Not at all 1 □ 2 □ 3 □ 4 □ 5 □ 6 □ 7 □ Very much
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12. I won’t make any mistake here.
Not at all 1 □ 2 □ 3 □ 4 □ 5 □ 6 □ 7 □ Very much

13. I am worried about failing.
Not at all 1 □ 2 □ 3 □ 4 □ 5 □ 6 □ 7 □ Very much

14. For me personally, the current demands are...
Too low 1 □ 2 □ 3 □ 4 □ 5 □ 6 □ 7 □ Too high
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