
Charles University in Prague
Faculty of Mathematics and Physics

DIPLOMA THESIS

Jan Horáček

Segmentace a odhad hustoty ve stehennim
kloubu

Segmentation and Density Estimation in Femur

Department of Software and Computer Science Education

Supervisor: Mgr. Lukáš Maršálek,

Study Program: Computer Science, Software Systems

2008

Most of all I would like to thank my supervisor and the co-author of our
method Mgr.Lukáš Maršálek for his time, patience and advices. His involve-
ment in our new method development was very significant and he gave me
many very important hints that made the method possible.

Next I would like to thank Mgr.Václav Kraj́ıček for introducing me
into the medical segmentation problems and their solution and provided
or pointed out most of the literature from which this thesis came. MUDr.
Martin Horák provided me with a lot of medical information, prepared all
the CT test data and commented the final application. Mgr. Jana Timková
and Mgr. Katarina Figurová helped me with the insight into statistical data
analysis and provided support when LATEX stopped behaving nicely.

I would also like to thank my parents for supporting me my whole life,
which is not always an easy task, and my friends at dormitory for their
patience, friendly environment and their help in times the deadlines were
approaching at a lightning speed.

I declare that I wrote the thesis by myself and listed all used sources. I agree
with making the thesis publicly available.

Prague, April 11, 2008 Jan Horáček

ii

Contents

1 Introduction 3
1.1 Femoral neck fracture . 3

1.1.1 Old people . 3
1.1.2 Femoral neck . 3
1.1.3 Total endoprosthesis 5
1.1.4 Screw . 5

1.2 Femoral head density estimation 7
1.3 Computed Tomography . 7
1.4 Summary . 8
1.5 Goals of the thesis . 9
1.6 Structure of the text . 9

2 Background research 11
2.1 Medical segmentation . 11
2.2 CT data properties . 13
2.3 Current medical segmentation methods 15

2.3.1 Thresholding . 15
2.3.2 Isosurfaces . 16
2.3.3 3D Edge detection 17
2.3.4 Atlas based segmentation 18
2.3.5 Region growing . 19
2.3.6 Deformable models 20

3 Method Overview 22
3.1 Problem . 22
3.2 Real world data . 22
3.3 Solution approach . 24
3.4 Bone quality analysis . 25

4 Preprocessing 27
4.1 Removing noise . 27
4.2 The cost function . 28

iii

4.3 Gradient component . 28
4.3.1 Enhancing corticallis 29
4.3.2 Notes on gradient component 31

4.4 Local gradient channels . 32

5 Segmentation 35
5.1 Segmentation algorithm . 35

5.1.1 Slice-by-slice segmentation 35
5.1.2 Slice selection . 36

5.2 Slice processing . 38
5.2.1 Graph search algorithm 38
5.2.2 Problem definition and solution 38

5.3 User-defined cutting plane 41
5.4 Final volume . 42
5.5 Parallelization . 43
5.6 Notes . 43

6 Implementation 45
6.1 Application structure . 45
6.2 Utility classes . 47

6.2.1 Volumetric data transport 47
6.2.2 Planar data transport 48
6.2.3 Helper classes . 48

6.3 DICOM layer . 49
6.3.1 DICOM slice . 49
6.3.2 DICOM datasets . 50

6.4 User interface layer . 53
6.4.1 Window . 53
6.4.2 Coordinates transformation 54
6.4.3 Dialogs . 54

6.5 Computation layer . 55
6.5.1 Helper functions . 55
6.5.2 Spherical computation 57
6.5.3 Channeling segmentation 58
6.5.4 Polar Dijkstra . 61

7 Results 63
7.1 Result utilization . 63
7.2 Results showcase . 63
7.3 Time complexity . 64
7.4 Segmentation results . 66

iv

8 Conclusion 74
8.1 Discussion and future work 75

A User manual 77
A.1 Program overview . 77
A.2 Study examination . 78

A.2.1 Opening the study 78
A.2.2 Toolbar . 79
A.2.3 Keyboard . 80
A.2.4 Mouse . 80

A.3 Spherical segmentation . 81
A.4 Channeling segmentation . 82
A.5 Other program features reference 83

A.5.1 Patient info . 83
A.5.2 Menu . 83
A.5.3 Dialog boxes . 85

B Quick guide 88
B.1 Open DICOM study . 88
B.2 Set center of computation 89
B.3 Set user-defined cut . 89
B.4 Segmenting the primary slices 89
B.5 Complete segmentation . 91
B.6 Postprocessing . 92

C Contents of DVD 93

Bibliography 94

v

List of Figures

1.1 Examples of femoral neck fractures on axial CT slices 4
1.2 Example of a special metal screw 6

2.1 Example of a CT slice and its histogram 13
2.2 Example of a CT slice and a 1D cut through this slice 14
2.3 Thresholding CT slices of pelvis 15
2.4 Sagittal cut through a femoral head and a magnified part . . 16
2.5 Example of an isosurface . 17
2.6 Example of region growing on our preprocessed data 20

3.1 Example of segmentation result 23
3.2 Histogram of segmented data from fig.3.1 25

4.1 A graphical representation of angles αL and αR 30
4.2 Cost function construction 34

5.1 Example how one border voxel may be insufficient, but two
are enough . 38

5.2 Example of a cost function e(x, y, z) 39
5.3 Polar transformation of the cost function e(x, y, z) from fig.5.2 40

6.1 Program structure . 46
6.2 Example of a window function transformation 52
6.3 Example of a polar transformation 62

7.1 A 3D isosurface visualization of a segmented femoral head . 64
7.2 Virtual pelvic acetabulum inspection 65
7.3 Timing of various thread setting 67
7.4 Complete segmentation in one click 70
7.5 Example of hard to segment data 71
7.6 Example of an average segmentation process, first control slices 72
7.7 Example of an average segmentation process, correcting seg-

mentation . 73

A.1 Program toolbar and menu 78

vi

A.2 Program layout after loading a DICOM directory 78
A.3 Example of a spherical segmentation 82

B.1 Open dialog . 88
B.2 Choosing center of computation 89
B.3 Setting user-defined cut plane 1 90
B.4 Setting user-defined cut plane 2 90
B.5 Primary segmentation - sagittal plane 91
B.6 Secondary segmentation - frontal plane 91
B.7 Final segmentation . 92

vii

List of Tables

7.1 Timing of various thread setting 66
7.2 Summary of segmentations of 30 patients 68

viii

Název práce: Segmentace a odhad hustoty ve stehenńı kosti
Autor: Jan Horáček
Katedra (ústav): Kabinet software a výuky informatiky
Vedoućı diplomové práce: Mgr. Lukáš Maršálek
e-mail vedoućıho: lukas.marsalek@mff.cuni.cz

Abstrakt: Existuj́ı dvě hlavńı metody pro léčbu zlomenin krčku stehenńı
kosti - totálńı endoprotéza a spojeńı speciálńım kovovým šroubem. Při
dostatečně kvalitńı kosti je preferován šroub. Ovšem pokud je př́ılǐs ř́ıdká,
šroub se může proř́ıznout kloubńı hlavićı, což vede k daľśım operaćım.
Tato práce se zabývá novou metodou pro měřeńı hustoty kostńı trámčiny
kloubńı hlavice, které slouž́ı lékaři jako daľśı vod́ıtko pro rozhodnut́ı, zda ap-
likovat šroub nebo totálńı endoprotézu. Náš př́ıstup je založen na poloauto-
matické segmentaci kloubńı hlavice z CT dat, založené na hledáńı optimálńı
cesty v polárńıch souřadnićıch na axiálńıch řezech, kde základ cenové funkce
tvoř́ı kombinace vlastnost́ı okostice, zejména směrový charakter 3D gradi-
ent̊u a velikost gradient̊u ve 2D řezech, kde tvoř́ı typické ”kanálky” . Pomoćı
vyplňováńı a morfologických operaćı je pak vytvořen objem, jehož vlastnosti
jsou dále měřeny.
Výsledná implementace byla experimentálně ověřena na RTG klinice FN
na Bulovce a umožňuje RTG specialistovi intuitivně, pomoćı grafického
rozhrańı vytvořit přesný odhad hustoty kloubńı hlavice v rozpět́ı 1 až 3
minut.

Kĺıčová slova: segmentace, femur, objemová data, CT, Dijkstra, polárńı
souřadnice

1

Title: Segmentation and Density Estimation in Femur
Author: Jan Horáček
Department: Department of Software and Computer Science Education
Supervisor: Mgr. Lukáš Maršálek
Supervisor’s e-mail address: lukas.marsalek@mff.cuni.cz

Abstract: There are two basic ways of surgical treatment of femoral neck
fracture - total endoprosthesis or a special metal screw in the bone. In case
of a dense enough bone the screws are preferred. But for a too sparse bone,
the screw may cut through the femoral head, which results in further surgi-
cal operations.
We present a novel method for femoral head density measurement, which
serves as another hint for the doctor’s decision, whether to apply a screw
or total endoprosthesis. Our approach is based on semi-automatical femoral
head segmentation from CT dataset based on finding optimal path through
polar coordinates on axial slices. The cost function is based on a combina-
tion of corticallis properties, mostly the directional behavior of 3D gradients
and their size in 2D slices, where they form typical ”channels”. The final
volume is computed using filling and morphological algorithms and its pro-
perties are further measured.
The final implementation was experimentally validated on RTG clinic of
Bulovka hospital and allows radiologists to intuitively and accurately esti-
mate the femoral head density in approximately 1 to 3 minutes.

Keywords: segmentation, femur, volumetric data, CT, Dijkstra, polar co-
ordinates

2

Chapter 1

Introduction

1.1 Femoral neck fracture

1.1.1 Old people

For older people, each surgical operation is a burden the body has great
problems coping with. It may even be fatal for very old or sick people.
Each operation may also result in immobility for the patient for some time
and moreover the immobility itself may result in health problems. So it is
necessary to minimize the number of surgical operations and guarantee their
positive outcome as much as possible. Unfortunately these people are also
the ones, who have accidents that may result in femoral neck fracture.

1.1.2 Femoral neck

The femoral neck is a very important part of the human skeleton. For the
sake of mobility the femur is not a straight bone. The femoral neck displaces
the femoral head several centimeters from the axis of femur. This enables us
to move our legs very freely. Straight femur would be much more resistent to
fractures, but would restrict the movement we are able to do. This way, we
are able to walk, jump, run, kick and many other complicated movements,
such as dance.

The actual reason why the femur (and femoral neck) has its shape should
be better as a topic for discussion with a physician but we are more interested
in the physical properties of this small part of the bone. It must transfer the
whole body weight from the pelvis through the femoral head to the femoral

3

Figure 1.1: Examples of femoral neck fractures on axial CT slices. The most
apparent result of a fracture is a discontinuity of the bone corticallis. Sometimes
even discontinuities in the trabecular bone are clearly visible.

body and then to the knee. Femur itself is the biggest and strongest bone
of the skeleton and we may say that the femoral neck is the weakest part of
this bone.

The inner part of the femoral neck and head is a trabecular bone that has
a very delicate internal structure to endure the lifetime burden and to stay
light at the same time. A young and healthy person is not endangered by a
fracture in this part of the body, unless subjected to very intensive stress such
as some very serious accidents (more information on the human pelvis and
hip joint can be found in any text book for medical students, for example [1]).
But as the age progresses, the bones start to loose their strength. Very old
people, people with bad eating habits and people with genetic dispositions or
a disease that may affect the development of osteoporosis are all endangered

4

with femoral neck fracture.

It is enough to fall on a slippery pavement and if the person is unlucky,
he or she suffers a femoral neck fracture. This is a serious matter, because
the accident can happen unexpectedly, the correction is very difficult and
the healing process lengthy and painful.

There are basically two methods for femoral neck fracture treatment.
Both are difficult surgical operations. One is total endoprosthesis and the
second is fastening the broken bones together with a special metal screw.

1.1.3 Total endoprosthesis

Total endoprosthesis is a temporary solution. It usually takes about five to
twenty years for the endoprosthesis to get loose, or become unusable by other
means for example by interaction of increased number of friction particles
with biological tissue, by dislocation, etc. [5]. The accident risk is increased
with younger age, higher activity, male gender, overweight or femoral head
osteonecrosis of the patient. Even when it is well done and the person is
using it according to doctor’s advice, it is rarely a solution that enables a
person to painlessly walk till the person’s death. It is the same as with many
other artificial additions to human body.

When a person walks (or even jumps), the whole body weight is resting
on the femoral neck, so when we replace the original bone with something
artificially fastened to the rest of the bone, it is obvious that it takes consid-
erable care to make it as good as the solution nature blessed us with. The
endoprosthesis is usually cemented inside the hollow part of the bone. So if
the cement breaks or the femoral bone is torn apart, the person is unable to
walk anymore.

1.1.4 Screw

Another solution to femoral neck fracture, which is nowadays very popular,
is screwing together the two fractions of the femoral bone (femoral head and
the body of the femur) with a special metal screw. There is a variety of
available screws. Technically all consist of two parts: one is a metal rod
fastened from the side with several small screws to the femoral body, the
second is a quite large screw that goes through the rod inside the end of the
femoral body and continues to the femoral head. The angle between these
two parts is usually 130 degrees. Newer rods have an addition: a pike at

5

Figure 1.2: Example of a special metal screw, a post-operative CR image.

the lower end of the rod that is inserted in the hollow part of the femur. It
helps the rod to fasten as much as possible to the body of the bone.

The screw is in a stationary contact with the rest of the skeleton, it only
acts as a complementary addition to the femur, which helps the femoral neck
to spread the force inflicted by the body weight during walking to a larger
area of the femoral body. So the joint (the acetabulum and the femoral
head) remain the same. Human technology is not yet able to make a better
part than the human body itself, the original joint and ligaments are still
better than anything we are able to artificially manufacture.

However, the screw thread is quite small, about 1cm wide and several
centimeters long (usually 2 to 4cm). So the force which is inflicted by the
body weight must be transferred by this part of the screw to the rod. If the
spongy bone in the femoral head is too sparse, it may happen that (during
walking or other physical activity) it could begin to cut through the femoral

6

head and finally destroy it. That would result in another surgical operation
and replacement with total endoprosthesis (if applicable).

1.2 Femoral head density estimation

There are several ways to help the doctor decide, whether to apply a screw,
or directly total endoprosthesis. As to this date the best seems to be a survey
at the rheumatologist combined with a computed tomography examination of
vertebra for osteoporosis. That gives the best insight to possible problems
and patient’s suitability for undergoing either total endoprosthesis or screw
surgical treatment.

We are looking for a new hint that would with certain probability predict
the suitability of either surgical treatment. Even though the method for
examining osteoporosis in vertebra is already in common use, it only gives
us a rough estimation of global osteoporosis of the patient’s skeleton, but
not actual state of the femoral head. So the basic principle that comes
into mind is to take this examination locally to the femoral head. A simple
explanation of our method would be:

1. segment the data from a CT scanner and find the femoral head

2. perform some sort of quality analysis of the segmented spongy bone

The second step may be simplified by some sort of statistics, that will
tell us the mean value, standard deviation, histogram, etc. However, the
first step is a nontrivial one and will be the topic of this diploma thesis.

1.3 Computed Tomography

The data acquired from computed tomography is volumetric. It consists of
a number of slices, each usually with square dimensions, the resolution may
vary between 256x256 to 4096x4096 voxels per slice. Medical CT scanners
produce usually slices with resolution 512x512. Higher resolutions are ac-
quired only in industrial environments and the needed radiation exposure is
not suitable for (or bearable by) a human body.

Each voxel represents a block of volume, one side is usually square,
with dimensions around 1mm (may be from 0.5mm to 2mm, depending
on the field of view selected by the radiologist during the examination). The

7

”length” of the block is called collimation and represents the distance be-
tween two slices. Usually it is not larger than 5mm, today it is possible to
set collimation to a value close to 0.5mm, so the voxels are almost cubic.

The value of each voxel is given in Hounsfield units. Hounsfield units are
a special value defined for the ability of matter to absorb X-Rays. The lowest
value is defined as -1000HU and represents air (absorbs minimal amount of
radiation), 0HU is water and +3000 is almost total absorbtion, which is for
example in metals. Human body tissues have values around 0, for example
fat is -120HU, muscles +40HU and bones may wary from +100HU to +500
or even +800HU. It is also worth noting that the CT data is quite good
for bone recognition or complete organ recognition, but not good enough
to provide detailed information about the structure of individual organs,
muscles or ligaments. The slices are saved in DICOM format [3] as 12-bit
per voxel values.

The slices may overlap, normally they overlap only by a small amount,
but it can be even more than half of the collimation.

We would like to have as narrow slices as possible, because for example
if we have collimation 5mm, the gap between acetabulum and the femoral
head may disappear completely – its width is usually 1mm to 5mm. On the
other hand, very narrow collimation introduces a lot of noise in the image.
For us the narrow collimation is much better, because we are able to filter
the noise but we are unable to recover information lost due to long voxels.

Also, we usually have no chance to take another CT scan of a person, if
the one we are working on is too noisy or unclear. One CT scan of human
pelvis is hundreds of times more intensive than a simple x-ray image. It
is desirable to minimize the exposure of the patient to x-rays. We have to
work with what we get the first time, so a robust technique with possible
user interaction is needed.

A nice introduction to the function of computed tomography can be
found in [7].

1.4 Summary

Femoral neck fracture is a serious accident which results in a complicated
surgery operation. The two possible solutions are total endoprosthesis and
fastening together with a screw. Both of these operations are heavy-duty
and if done inappropriately or to a unsuitable patient, it may begin where
it started or even worse and burdens the patient extensively.

8

Any hint that would help the doctor decide which type of treatment to
apply is appreciated. With the expansion of computed tomography avail-
ability, the CT inspection is done anyway to see how bad the broken bone
is. So our additional processing of these data is almost free of charge (from
the patient’s burden point of view). It can be done in a matter of minutes
including data loading and correct segmentation, so even the radiologist’s
time is spared.

But in the end this insignificantly looking examination may save a lot of
trouble to the patient and the doctor.

1.5 Goals of the thesis

The goal of this thesis is to provide a theory for a novel method for femoral
head density estimation and implement it in a working application. This
method would help a specialist decide which surgical treatment is better for
a patient, whether to use total endoprosthesis or a special metal screw.

The method should be based on computed tomography data of pelvis
and its surroundings. The result should be given as a mean value and a
standard deviation of the segmented femoral head excluding the femoral
corticallis, both given in Hounsfield units. As an addition, histogram of the
segmented data may be shown as well. A specialist should be able to use
this application to segment the femoral head as quickly as possible and use
the results in further analysis.

1.6 Structure of the text

The following Chapter 2 is a short overview of the most relevant methods
used in medical and CT data segmentation. A short introduction to each of
them is given.

Chapter 3 is an introduction to our approach of the femoral head seg-
mentation. The method is discussed from a broader perspective from the
point of view of the data properties and a brief discussion of bone quality
analysis is given.

Chapter 4 gives a detailed explanation of the theoretical background of
our preprocessing step. Both techniques and parameters of those techniques
are discussed.

9

Chapter 5 gives an explanation of the segmentation step performed on
preprocessed data. The actual finding of the femoral head corticallis is de-
scribed, as well as the final postprocessing steps to obtain the whole volume.

Chapter 6 presents the structure and ideas behind the actual implemen-
tation of our method into a fully working application. The focus of the
description is on the structure of the program and logical connections be-
tween different components. A detailed explanation of individual methods
is done only for the most important ones, the rest are either self-explanatory
or commented in the code.

Chapter 7 is a summary of various measurements done with our applica-
tion. Also some possible utilizations are proposed.

Chapter 8 is a final summary of the whole thesis and also gives some
hints about possible future research and optimization done on our method.

Appendix A is a description of the application used for our segmentation
algorithm from the point of view of a user or radiologist that wants to work
with it.

Appendix B is a short and simple introduction to show novice users the
way our segmentation is done in our application.

10

Chapter 2

Background research

2.1 Medical segmentation

An extensive research has been done in the area of image processing and
computer vision, supported by a solid theoretical background. But most of
the work was done in the area of 2D image processing and 2D pattern recog-
nition. A number of techniques exists, each of them is good for something
else. The needed basis for any image processing including some elemen-
tary mathematical background may be found in [8], image segmentation is
mentioned in [8, pages 689-794]. The basics of 2D image processing with
implementation examples in MATLAB system can be found for example in
[9].

However, the CT data are volumetric, so we need some other means than
2D image segmentation, because the result is also in 3D. A simple overview
of techniques used during medical data segmentation is in [14] and [19].

A nice classification based on approach is given in [14]. It consists of
three main groups of methods, most of which can be used directly on 3D
data or can act as a preprocessing step on them.

Structural techniques – these methods are based on analysis of the struc-
ture of the region, which results in segmentation

Stochastic techniques – the whole decision is based only on a per voxel
basis or a local neighborhood, no other information about the structure
of the region is applied

Hybrid approaches – have characteristics of both structural and stochas-
tic methods

11

Basically any complete medical segmentation usable on real world data
consists of at least two steps:

1. Preprocessing

2. Segmentation

Preprocessing usually consists of one or several image enhancement meth-
ods, which bring the usually noisy and damaged real world data closer
to something more suitable for mathematical description. The knowledge
needed for the preprocessing method design or selection is an analysis of how
the data can be damaged and what can be done to reconstruct them. The
following segmentation is then based more on the knowledge what exactly
the data should look like and how to mathematically model the real world
phenomena.

A short list of problems that can be encountered during the femoral
head segmentation from CT data is discussed in [17]. We have solved some
of them (such as defining the intact part of the bone without fracture) during
our preprocessing step, but some remain and will be discussed in this thesis
as well (such as the structure of the trabecular bone and its relation to the
structure of the femoral head corticallis).

There are many different segmentation techniques, some are good for al-
most any type of data, some are more sensitive to the type of data processed.
In medical CT data segmentation, there are a few techniques, that can be
used or have been described as useful. A basic and very simple technique
usable almost anywhere with more or less successful results is thresholding.
More elaborate technique, but still quite simple is a sort of edge detection,
which is not usable by its own, but is important as a preprocessing step for
many other techniques.

As we dig more deeply into the problematics of medical CT data segmen-
tation, a fact about the structure of the data cannot pass by unnoticed. The
human body has usually more or less the same structure in regard of the
relative position of different organs. Also the shape of those organs in the
body of a healthy person is very similar. So using this knowledge, we can try
to use techniques such as various deformable models. Techniques directly us-
ing the information about the structure are called atlas based segmentation,
which try to fit a known shape to the given data.

Some of the basic segmentation techniques are discussed further in this
chapter.

12

Figure 2.1: Example of a CT slice and its histogram. (Note: the image has been
enhanced for viewing purposes, histogram represents original 12-bit data.)

2.2 CT data properties

Let’s analyze the actual data properties, so that we would be able to choose
the right method. We are interested in two properties:

1. Absolute values

2. Spatial characteristics

On fig.2.1 we can see the absolute values and amount of each of those
values. In the histogram, you can see two major peaks. The first peak
represents air and other gasses. The second peak represents the mass of the
body and can be further subdivided into three parts. The biggest part (with
the smallest density values) represents fat and softer organs, the second part
represents mostly muscles and denser organs and the third small (barely
noticeable) represents mostly parts of the examination table, but also the
most dense organs and some softer bones. Unfortunately, bones themselves
do not form a noticeable peak in the histogram, their values are spread over
a large area that begins somewhere in the second major peak (somewhere
between the second and third mentioned part) and go on far beyond this
peak into higher density values.

Fig.2.2 shows a magnified part of our interest, i.e. femoral head. A
line has been drawn over this part (shown in cyan) and the absolute values
encountered along this line are drawn in a graph on the right side. Here we
can examine the spatial relations between the parts of the body we want to

13

Figure 2.2: Example of a CT slice and a 1D cut through this slice. (1) pelvis, (2)
femoral head corticallis, (3) femoral head trabecular bone (Note: the image has
been enhanced for viewing purposes, graph represents original 12-bit data.)

segment. Here we can see that (1) the pelvic corticallis is very significant in
the data, but (2) the femoral head corticallis has a tendency to disappear in
the structure of trabecular bone (3) inside the femoral head.

If you look only at the graph and hide the description, you can notice
that it is almost impossible to tell where the femoral corticallis is. The
trabecular bone has everything more intensive than the corticallis. That
means local maxima and minima, both larger and smaller features, it is
locally both denser than the corticallis, but in other places less dense than
the surrounding organs. Another difficulty is the pelvis being the major
feature in this cut and presenting all features of our femoral head corticallis,
but in a much stronger way. So it seems that segmenting femoral head
corticallis from both pelvis and trabecular bone would be a very difficult
problem.

Fortunately, even though the trabecular bone has a quite significant in-
ternal structure, it is still more random than the corticallis. This implies
that a method for segmenting this part of the human body would have to
exhibit both structural and stochastic features, either together at the same
time, or separated into several phases.

14

Figure 2.3: Thresholding CT slices of pelvis. Threshold 70, left image is without
noise, collimation 5mm, right image is noisy, collimation 0.75mm

2.3 Current medical segmentation methods

2.3.1 Thresholding

Probably the simplest method for segmentation. This method works without
problems on both 2D and volumetric data. We can classify it as a purely
stochastic technique. The input from user (or other algorithm) is one or more
thresholds which define intervals of values that are used to assign voxels to
different classes. Defining only one value makes a binary segmentation of
volume. A survey of different thresholding techniques is in [22].

Thresholding without additional advancements is very sensitive to input
data quality, for example noise may add very disturbing artifact, as can be
seen in fig.2.3.

Another disadvantage is sensitivity to the selected threshold. Thresholds
with very similar values do not necessarily end up with similar segmenta-
tions. Sufficient results are obtained only on images with good contrast
between areas of interests that should be segmented into different classes.
But even then it is important to choose the threshold wisely.

For example for our CT data (fig.2.1) we can define a threshold some-
where between 70HU and 150HU. Using everything above this threshold and
discarding everything below will give us a rough human skeleton. Of course,
it may omit some sparse bones or add some dense organs, but is enough for
a rough bone localization. If we want only an interval (for example most of
the soft tissues in the body), we can choose two thresholds, such as -150HU
as the lower threshold and +80HU as the higher threshold. This will omit
most of the bones and harder tissues together with air and other gasses.

15

Figure 2.4: Sagittal cut through a femoral head and a magnified part.

Automatic or semi-automatic algorithms for threshold selecting usually
derive the input value from histogram. Histogram properties have been
discussed in Section 2.2. These histogram based algorithms either utilize
some additional information about estimated histogram layout (such as the
description in Section 2.2) or perform some general histogram analysis (for
example try to represent the histogram as a combination of gaussian curves
and take the major gaussian curves as representations of significant features
of the image).

For a detailed thresholding overview, see [23].

More advanced techniques utilize also other information, for example a
nice technique implementing thresholding together with segments merging
is given in [29]

For the purpose of segmenting femoral head, thresholding is not a good
choice, because it ignores the structure of the bone. The biggest problem
that we face is a clear segmentation of pelvis and femoral head. Pelvis is
usually (at least older people have it this way) much denser than the worn
down femoral head, sometimes we even cannot see where the corticallis of
the femoral head is (fig.2.4). Thresholding may show us where both of the
bones are, but is unable to separate one from the other.

2.3.2 Isosurfaces

Isosurface is a surface placed at the points in space, in which the values
are equal to input isovalue. We can imagine it as the border of two classes

16

Figure 2.5: Example of an isosurface.

after binary thresholding. This method in its basic form is usually good for
visualization, but is not good enough for practical utilization in medicine
segmentation.

However, we can enhance this technique with different algorithms that
track the evolution of curves in the volume. That gives a smoother result
than thresholding and even some sub-voxel shape estimation.

The evolution of isosurface may be tracked by numerical techniques such
as placing a set of marker points on the evolving surface and then chang-
ing their position according to the moving surface. Another technique that
exploits a strong link between moving surfaces and computational fluid equa-
tions is level-sets (more on level-sets in [14, pages 9-11]). But this is more a
topic for deformable models discussed in Section 2.3.6.

Even though isosurfaces together with some evolution tracking algorithm
already belong to the structural techniques, they exhibit very similar prop-
erties to thresholding. They are too dependent on the absolute values of
voxels, which vary greatly in the femoral head. The same reasons apply to
why we cannot use this technique, even with its enhancements.

2.3.3 3D Edge detection

Edge detection is the basic method for image processing in the same way as
thresholding is the basis for segmentation. Edge detection in its purest form
does not segment anything, it only acts as a preprocessing step for further
manipulation. We can of course interpret the result of edge detection as a

17

segmentation of image into two classes – edges and homogenous areas. In
this sense edge detection may be regarded as a structural technique.

Edges are a discontinuity in image intensity. This implies that the more
contrast between the areas of interest we have, the better the result is. On
the other hand, edge detection is usually very sensitive to noise.

A number of techniques for edge detection in 2D has been described. For
example gradient operators Roberts, Sobel, Prewitt (see [9, pages 707-712])
or the Canny edge detector [9, pages 719-725] . They are mentioned in every
image processing textbook. For example Roberts operator, in Liu [15] may
be extended to 3D as well.

Usually edge detection is used either as a preprocessing step or for cor-
recting results from another method. A method that uses edge detection
(Canny’s edge detector) for modifying results obtained by region growing is
described in [27].

A simple edge detection is not usable for our purpose, because the spongy
bone inside the femoral head is not homogenous and introduces false bound-
aries. But if we can somehow enhance the edge for corticallis and suppress
the internal trabecular bone, that may be the way for our segmentation. In
truth the method described in this thesis is based on enhanced edge detec-
tion algorithm.

2.3.4 Atlas based segmentation

Atlas based segmentation is a structural technique that merges image seg-
mentation with image registration [16].

A basis for this segmentation is a so called atlas, which is a prototype
of one or more model segmentations done by a professional. The prototype
dataset is iteratively deformed to match a target dataset. If we have more
prototypes, we try to select the most suitable (that means the one we need
to deform the least to register it on the examined data). When the prototype
is selected and registration is finished, we segment the examined data the
same way as the deformed prototype (the same deformation is applied on
the segmentation labels). An application of several different registration
approaches with multiple specimen is in [21].

When the prototype set is well chosen, the results from this segmentation
are usually very good, because we utilize very much information about the
structure being segmented. This information obtained from a specialist is
stored explicitly in the prototypes in the form of the manual segmentation.

18

On the other hand this method is very intensive on the preparation of
the atlas. The specimen must be properly selected and precisely segmented,
usually by hand. That may take several weeks or even months only for the
preparation of a single application. Also the complexity of the deformation
has to be nontrivial in order to deform the prototypes properly. That means
that the overall time complexity is also very high, because registration with
nontrivial deformations take a lot of computational resources.

A femoral head segmentation method that is based on a prototype regi-
stration is described in [18].

We did not use this algorithm because there is a need for an extensive
specimen preparation done by a professional. We wanted to find an algo-
rithm that would allow us utilize the information about the structure of the
segmented region right in the code and no additional data would be needed.
Also some of the patients have their hip joint dislocated from the accident
and that prevents us from using atlases with pelvis – those would be the most
beneficial for us in case of normal joints, because the information about the
pelvis would bring us the most advancement over our current method.

2.3.5 Region growing

Probably the simplest hybrid approach to segmentation. We need two inputs
for the algorithm: a seed and a homogeneity criterion [10]. The algorithm
starts from the seed and adds other regions around it as long as the homo-
geneity criterion is satisfied. However, region growing may be quite sensitive
to noise or discontinuities in the object boundary. An example of a medical
segmentation with adaptive region growing is in [20].

Region growing in its simplest form is unusable for our purpose because of
the structure of the femoral head. We need to find either only the trabecular
bone or the complete femoral head and then remove the corticallis manually.
But the structure of the trabecular bone is in this sense quite similar to
the structure of the corticallis, so we would either be unable to find the
corticallis, or lose some parts because the trabecular bone would look like
the corticallis and prevent us from reaching to the whole volume of the
femoral head.

What we also tried was using this technique on data much more suit-
able for this algorithm. We took the data from our preprocessing step in
Chapter 4, adjusted them and used several thresholds to fill them from the
seed point given by user as a point lying on the femoral head corticallis.
But it turned out that either we cannot get the whole corticallis or the al-

19

Figure 2.6: Example of region growing on our preprocessed data. Left image is
one axial slice from our thresholded and adjusted cost function from Chapter 4,
right image is one frontal slice from the original CT data with green mask from
region growing on adjusted cost function.

gorithm leaks into other parts of the data. Unfortunately, mostly happen
both of these effects at once unless we use very high or very low threshold
and we were unable to find a suitable threshold for one dataset that would
prevent both of these cases to happen, less so to find a universal threshold
or algorithm for finding one for any data.

On fig.2.6 you can see the results of our tests. Even though the cost
function seems to be suitable for a filling algorithm as seen on the left image,
on the right image with mask there is a clearly visible place in the upper part
where the algorithm has a tendency to leak into other parts of the skeleton
(in this case pelvis, but similar places for leaking into the trabecular bone
may be found as well).

The structure of the data implies that we would need a very sophisti-
cated criterion for defining the trabecular bone, because as we have seen the
method is unsuitable for finding the corticallis even after extensive enhance-
ment. But finding this criterion would not be an easy task, the trabecular
bone is quite hard to describe in a simple mathematical equation.

2.3.6 Deformable models

Deformable models are usually some solids, curves or surfaces defined within
the image and are being deformed according to applied internal and external

20

forces. External forces are from the data being segmented and try to deform
the object so that it moves towards the data. Internal forces keep the object
smooth.

Deformable models have been popularized for image processing in [26].
They have also other uses, for example in computer graphics. Deformable
models for image processing can be divided into three groups: energy mini-
mizing snakes, dynamic deformable models and probabilistic deformable mod-
els.

Snakes [11] are the most popular of the three deformable models groups.
They are planar contours trying to minimize the weighted sum of internal
energy (tension or smoothness of the curve) and external energy (defined
over the whole volume domain, usually with local minima around edges).

Dynamic deformable models (mentioned in [14, page 7]) is another ap-
proach, that constructs a dynamic system governed by a functional that is
being evolved into equilibrium between external and internal forces. These
models are able to segment not only static shapes, but also shapes evolving
through time.

Probabilistic deformable models incorporate also the information about
the estimated shape of the object in terms of probability distributions. This
method also provides a measure of uncertainty of the estimated shape pa-
rameters after the fitting has been computed [25].

A thesis focused especially on deformable models and their practical us-
age in medical volume data segmentation is in [12]. Measurement of internal
organs volume based on deformable models is in [13].

Deformable models was one of our options if the method we have imple-
mented for segmentation showed up that the shortest path search algorithm
does not work well. The preprocessing step would stay the same, but the
segmentation itself would be probably done with snakes. We went the way
of the simplest algorithm possible and it showed up that our shortest path
search algorithm performs well enough on the femoral head corticallis seg-
mentation. The deformable models would need a much more sophisticated
implementation.

21

Chapter 3

Method Overview

3.1 Problem

The problem being solved in this thesis already mentioned in Introduction
is stated as follows:

Problem 1 Let’s have a CT scan of pelvis, where one of the femoral necks is
broken. Let’s assume that it is broken somewhere beyond the end of femoral
head, so that the femoral head is as complete as possible. Set a user-defined
plane that ends the non-broken part of the femoral head. Segment the spongy
bone bordered from one side by corticallis and by user-defined plane from the
other side. In this segmentation, we want only the spongy bone, we do not
want the corticallis to be included. From this segmentation, compute the
mean value and standard deviation of the voxels that represent the spongy
bone.

An example of what we want to actually get from the segmentation
algorithm as a result can be found in fig.3.1.

3.2 Real world data

First we look at the shape of the bone to be segmented. In an ideal case,
the femoral head is almost spherical, from one side it is connected to the
femoral neck and from the other side there is a small depression. Most of
the volume is composed of trabecular bone usually with an apparent internal
structure. The border of the bone is a little bit denser cortical bone. The

22

Figure 3.1: Example of a correct segmentation result.

pelvic acetabulum, where the femoral head is mounted to pelvis, has some
very similar properties, also with quite strong cortical bone and has almost
the same shape as the spherical part of femoral head.

However, this is true only in an ideal case. Real world data may be quite
different in several ways. The femoral neck fracture is usually diagnosed
to older patients, who had an accident (usually on some slippery surface, a
critical time of the year is the whole winter, especially the first snow). These
patients may have osteoporosis in different stages of acuteness, so the bone
quality is usually decreased and some parts of the bone may be less apparent
on the CT scan. Also the corticallis is worn down and its density may be
much lower than for example the density of the trabecular bone inside the
femoral head.

The shape of the joint is not directly related to age, but of course it may

23

be a little affected. Real world pelvic joints may have a shape somewhere
between a perfect sphere, to something that with a bit of imagination may
look like an ellipsoid with sharp edges and dents. The small depression
on the medial side that is inserted into acetabulum is usually quite clearly
visible with all of the patients.

The size of the bone is around 4cm, with a tolerance of ±2cm.

The fracture does not alter the shape of the joint part of the femoral head,
because this surgical treatment using a screw is only applied to patients,
where the fracture is in the femoral neck or further in the femur and the
femoral head is almost intact.

We can assume that the femoral bone to be segmented is almost convex
volume with almost smooth surface (however, there can be dents and also
the small depression should be correctly segmented). The overall shape is
close to a deformed sphere. The corticallis has a locally higher HU values
than its close surrounding, but the trabecular bone may have it a little
higher and the pelvic acetabulum may have it very much higher (and it is
very close, so it may mislead the segmentation).

3.3 Solution approach

We try to present a solution as simple as possible, both from the implemen-
tation point of view and from the theoretical point of view.

We are looking for a method that would be able to find the corticallis of
the femoral head with little additional information other than that it is a
deformed sphere and it is locally more dense than its close surroundings.

The method presented here focuses only on segmentation, bone quality
analysis is given just as an example. We divide our method into these parts:

1. Preprocessing

2. Segmentation

3. Bone quality analysis

24

Figure 3.2: Histogram of segmented data in fig.3.1. Horizontal axis is in Hounsfield
units, vertical axis shows quantities. The result mean value was 265.02HU, stan-
dard deviation 131.75HU.

3.4 Bone quality analysis

Because bone quality analysis is not the primary goal of this thesis, let’s
discuss only the most basic analysis. There are three very simple possibilities
how to characterize the segmented bone:

• Mean value

• Standard deviation

• Histogram

We can compute all three with little effort. Mean value and standard
deviation have an important attribute that they are both scalar values, so
they can be used as a very simple indicator. The disadvantage is that many
different bone structures may have the same mean value and standard de-
viation (both good and bad bones), so it can be also a little bit misleading.
However, it is probable that very bad bones affected by osteoporosis would
have also lower mean value. This way we would have an indicator that would
warn us about weak bones, but it will not guarantee us that the bone would
be good.

Histogram (see fig.3.2) shows us more information about the density
properties of the bone, but still does not contain any information about
the actual structure of the bone. Still, if there could be found some metric
for these histograms that would decide whether the bone is good or not, it
would bring considerable advancement to this theory. Histogram itself is a
1D function that is not easily compared and measured, at least we do not

25

know of any suitable method for bone quality analysis. Maybe good bones
exhibit certain features in the histogram, but this is still a topic for further
research.

At the time of writing of this thesis we compute all three properties of
the segmented data, but for the actual bone quality analysis, we use only
the mean value and standard deviation, histogram is there only for research
purposes and does not participate in the final analysis.

No decision is done in the program, the application only tells raw results
to the doctor and it is up to his evaluation abilities to decide what is the
estimated bone quality.

26

Chapter 4

Preprocessing

Preprocessing prepares the original CT data for us. Real world data are
burdened with hight levels of noise and are (as already mentioned several
times) not very clear in the case of old patients. We perform several steps,
which are all stochastic, all performed the same way on each voxel and do
not take into consideration the bone as a whole.

We want to enhance the corticallis as much as possible and suppress
the trabecular bone inside, so that the femoral head corticallis would be a
dominant edge in the final image.

4.1 Removing noise

CT scans with very small collimation (in our case 0.6mm – 0.8mm) have
quite a lot of noise. For simplicity we can assume that this noise is an
additive Gaussian white noise. It turned out that for removing this noise it
is enough to use a lowpass Gaussian filter with convolution mask size 5x5x5.
The discrete approximation of Gaussian filter is separable, so it is very fast
to use on 3D data. The mask size of 53 is enough for removing most of the
noise, but on the other hand it does not modify the visibility of corticallis
very much.

Some of the other noise-removal algorithms can be applied as well, but
usually the time complexity is not very good for processing 3D data. Here
the separable Gaussian filter serves us well.

27

4.2 The cost function

The cost function should represent the CT data in a way, that the ridge
of the corticallis should be around zero, other parts of the body should
have higher values. In close neighborhood of the corticallis there should be
nonzero values that would define the corticallis as a channel.

A short overview how we will build the final cost function follows:

1. Compute directional corticallis enhancement functions cX , cY , cZ , that
utilize our model of how the corticallis should look like in a 1D cut.
Detected corticallis in given direction is represented with higher values
than its surrounding.

2. Compute complete corticallis enhancement function c(x, y, z) by tak-
ing the maximum of cX(x, y, z), cY (x, y, z), cZ(x, y, z) for each point
(x, y, z). Again, the corticallis is represented with locally higher val-
ues.

3. Compute function d(x, y, z) as a clamped and lowpass filtered linear
transformation of corticallis enhancement function.

4. Compute final cost function e(x, y, z) suitable for graph search algo-
rithms as a clamped linear combination of function d(x, y, z) and the
magnitude of the 3D gradient vector.

4.3 Gradient component

The first idea for enhancing the corticallis was some sort of 3D edge detec-
tion. It turned out that simple edge detections (as described in Section 2.3.3)
based on 1st or 2nd order derivatives are not enough, because even after low-
pass filtering it enhances the trabecular bone and pelvic acetabulum more
than the corticallis. This confuses the segmentation algorithm and the re-
sulting segmentation is usually not very good.

However, the gradient brings some important information, that we can
make use of. For example the magnitude of gradient grows on both sides
of the corticallis, while keeping the center around zero. The same happens
with pelvic acetabulum. Also the direction of the gradient is helpful, because
that can give us a hint on which side of the corticallis we are.

Our method utilizes the information on how the femoral head corticallis
looks like. The width is usually 2–4 voxels and the density is decreasing on

28

both sides. The idea is to look on both sides in each of the 3 axial directions
of the actually processed voxels and search for gradients, that are as big as
possible, with opposing directions pointing as much as possible towards each
other.

4.3.1 Enhancing corticallis

We consider a voxel at position (x, y, z). Its value is:

value = f(x, y, z)

Final output from this step is a corticallis enhancing function c(x, y, z)
which should be very high in places where we find the corticallis and zero
or close to zero everywhere else.

A gradient at position (x, y, z) is:

∇f(x, y, z) =

gx

gy

gz

 (x, y, z) =

∂f
∂x

∂f
∂y

∂f
∂z

 (x, y, z)

Here we will give an example for computation in the X axis and how to
compute an enhancing function cX(x, y, z) in this direction. We look in both
directions in each axis and look at the two closest neighboring gradients, let’s
call them gL1, gL2, gR1, gR2.

gL1 = ∇f(x− 1, y, z)

gL2 = ∇f(x− 2, y, z)

gR1 = ∇f(x + 1, y, z)

gR2 = ∇f(x + 2, y, z)

For each left and right version, we take the bigger one:

gL =

{
gL1, |gL1| > |gL2|
gL2, |gL1| ≤ |gL2|

gR =

{
gR1, |gR1| > |gR2|
gR2, |gR1| ≤ |gR2|

Next we compute an angle between each of those two gradient vectors
and a vector pointing from the position where the gradient was taken to

29

Figure 4.1: A graphical representation of angles αL and αR. The brighter path
in the middle of this image represents magnified corticallis.

the point (x,y,z). We get angles αL, αR. A graphical representation of these
angles can be found in fig.4.1.

cos(αL) =

〈
gL,

x
y
z

− pos(gL)

〉

cos(αR) =

〈
gR,

x
y
z

− pos(gR)

〉

If any of these two angles αL, αR is greater or equal than 90◦ (cos(αi) ≤ 0)
then it means that they point away from the point (x, y, z), the neighborhood
of the point (x, y, z) is probably not the local maximum in the X direction
and thus we do not compute further and finalize the corticallis enhancing
function as cX(x, y, z) = 0.

If the two angles are less than those 90◦, we end the first phase of choosing
the gradients and proceed with computing the function using only those
gradients, not their position or other information. The almost final function
value is computed by multiplying the magnitudes of gradients(gL and gR)
with a negative cosine of their angles (the more opposite they are, the bigger
the function value is).

βg = acos

(〈gL, gR〉
|gL| · |gR|

)

c′X(x, y, z) = −cos(βg) · |gL| · |gR|

A small and final adjustment to the X directional corticallis enhancing

30

function is limiting the cosine of the angle βg between gL and gR to be more
than a constant Mg. This limits the two gradients to be as opposing as
possible (see also Section 4.3.2).

cX(x, y, z) =

{
c′X(x, y, z), βg <= −Mg

0, βg > −Mg

Now we compute functions cY and cZ . The computation is similar to
computation of cX , the only difference is that we take the neighbor gradients
not along the X axis, but along Y , resp. Z axis. The final corticallis
enhancing function is computed as a maximum of these three functions.

c(x, y, z) = max(cX(x, y, z), cY (x, y, z), cZ(x, y, z))

4.3.2 Notes on gradient component

By testing we found that looking in one direction by one and two voxels gives
results good enough. Looking only at one neighbor voxel is not enough, be-
cause it may happen that the corticallis has a width of two voxels and this
way we would not find for both of these voxels two sufficiently matching gra-
dients. On the other hand, looking at three neighboring voxels is too much,
because this may already introduce error by hitting the pelvic acetabulum
in places, where the femoral head and acetabulum are in close proximity.

This discussion is of course largely dependent on the data we process. In
our case we use standard examination CT datasets that have voxel dimen-
sions around 0.5–0.8mm.

A very interesting property of the corticallis enhancement method is that
we compute the method in all three dimensions. Computing it only in the
axial slice would result in unclear data for upper and lower extremes. The
3D approach creates clear path for corticallis even for these extremes. On
the other hand we are using only the X,Y and Z directions, not any other.
According to our method, which gets the values in a rather discrete way,
it may seem that this would result in lowered corticallis recognition ability
in places, where the corticallis is not perpendicular to any of these three
axes, but has an angle of roughly 45◦ with all of the X,Y and Z axes. In
truth it showed up, that it is enough to do it only in these three directions,
the ability to detect corticallis begins to diminish with angles greater than
60◦ and there the result from another direction is usually taken (remember:
the final corticallis enhancing function is taken as the maximum from these
partial directional functions).

31

The mentioned minimal angle constant Mg introduced in the final cost
function computation is another parameter of the segmentation. Our testing
suggested that a value of around 100◦ helps a little bit to the segmentation,
but not very significantly. Larger values (for example around 130◦) make
more probable good segmentation of clearly visible segments where the cor-
ticallis is seen as a local maximum (and appears as a more dense line in
the CT slice), but impedes the segmentation in parts where the corticallis
is not seen as a line but rather as an edge of a dense region. So a value just
above 90◦ seems to be a good choice. The reason to this is the noise, that
makes more dense regions nonhomogeneous and in these regions somehow
randomizes the gradient direction.

In the end our corticallis enhancement method proved to be quite good
in localizing corticallis, while suppressing most of the other structures and
trabecular bone. Of course, noise may bring local peaks of the cost func-
tion, but in the overall view these peaks are mostly solitary (and after the
Gaussian filter also quite small) and insignificant in the segmentation step
where some global localization of connected paths is applied.

4.4 Local gradient channels

When we have the cost function, we have to adjust it for the actual seg-
mentation method we choose. For our method that is based on dynamic
programming approach (Dijkstra’s shortest path search algorithm), we have
to process the function in a way that the corticallis should be around zero
and all other parts should manifest themselves as non-zero.

Another information that we would like to add is the information ob-
tained from the magnitude of gradient mentioned in Section 4.3. Simple
gradient magnitude after some sort of noise-removal makes for us very nice
channels, or paths with very small values on the ridge of corticallis, which
are bordered with non-zero values in close proximity. Also very high peaks
are found on the borders of very dense bones, such as the pelvis. In this
sense gradient magnitude gives us similar results to our corticallis enhance-
ment method, only with reversed values (small for corticallis, big for its
neighborhood).

However, it also enhances channels in the trabecular bone and is often
confused by noise. So we would like to utilize the information from both our
corticallis enhancement method and the gradient magnitude to increase the
robustness.

32

Corticallis enhancement method is able to pinpoint the corticallis, while
gradient magnitude makes accidental confusion of pelvis for femoral head
less probable. The gradient magnitude does not spoil the cost function
on places where the actual femoral corticallis is, but adds other penalties
around, so that we can stick to it during segmentation.

The actual cost function adjustment is as follows. First we clamp and
stretch the function c(x, y, z), so that the values from 100 to 1000 are
stretched over the interval 0 to 256 (this interval has no hidden meaning,
it is just for viewing purposes, other intervals like 0 to 1 can be used, only
the final constants need adjusting). Values below 100 and over 1000 are
clamped to 0, resp. 256. Next, the function is filtered with Gaussian filter,
kernel size 53 (the reason for this kernel size is the size of the features in
our CT data, more discussion in Section 4.1). The Gaussian filter makes the
cost function smoother. That is better for optimal path search than the one
we obtained from our method in Section 4.3.1, which exhibits strong edges
and homogenous flat spaces. Let’s call this result a modified cost function
d(x, y, z).

d(x, y, z) =
2∑

a,b,c=−2

(
clamp

[
(c(x + a, y + b, z + c)− 100) · 256

900
, 0, 256

])
·G(a, b, c)

where G(a,b,c) is the gaussian kernel.

The final combination of gradient magnitude and function d(x, y, z) is
done through linear combination and clamping. Let’s call the final cost
function e(x, y, z).

e(x, y, z) = clamp[(A · |∇f(x, y, z)|+ B · d(x, y, z) + C), 0, 256]

Where the constants A, B and C represent the final weights that com-
bine our modified cost function with gradient magnitude. In our case these
constants were chosen as follows:

A = 1

B = −0.35

C = 80

These constant values were selected empirically, there is definitely a room
for optimization. However, even these values were selected with some re-
search and value estimation to make the segmentation possible.

33

Figure 4.2: Cost function construction (from top left to bottom right): (a) Orig-
inal data. (b) Gauss-filtered original data. (c) Gradient size approximation. (d)
Corticallis enhancing function c(x, y, z). (e) Function d(x, y, z). (f) Final cost
function e(x, y, z).

The cost function e(x, y, z) is clamped to interval 0 to 256. We have to
make sure that it is non-negative everywhere (for the sake of correct graph-
search algorithm, more in Section 5.2). The upper limit serves the purpose
that we do not have one solitary peak that would attract the graph-search
algorithm. A step-by-step example of cost function construction can be seen
in fig.4.2.

34

Chapter 5

Segmentation

5.1 Segmentation algorithm

5.1.1 Slice-by-slice segmentation

A very nice method for segmenting internal organs that inspired our method
is presented in [28]. This method is good for segmenting homogenous organs
on a slice-by-slice basis. An interesting idea is to transform the slice into
polar coordinates, where the segmentation is much easier for organs that
resemble the shape of a deformed sphere or a deformed cylinder.

We need to find several input parameters: the upper and lower extremes
where to begin and end segmentation and the center of polar transformation
in each slice. However, this is enough only for homogenous organ segmenta-
tion. For our case we also need a starting point for segmentation and if the
segmentation went wrong, then correction points that add additional shape
information to the algorithm.

It is important to know for our computation, that the shape of the
femoral head should resemble a deformed sphere. So path finding in po-
lar coordinates is one of the best solutions, because even in places where
there is no relevant information for segmentation, the algorithm would have
tendency to go along the shortest path (in polar coordinates along a line, in
spatial coordinates it would go along a circle) until it hits another defined
path.

The 3D segmentation we chose is based on a slice-by-slice basis. In other
words, the final 3D segmentation is composed of a series of 2D segmentations.
Each of these slice segmentations creates a contour that locates the femoral

35

corticallis. A summary of individual steps performed during the process is
as follows:

1. Subdivide the volume into individual slices

2. Perform segmentation on several user-defined slices that provide seeds
for the rest of the slices

3. Use seeds from step 2 and perform segmentation on the rest of the
data

4. Floodfill each slice, so that the whole femoral head is filled into the
segmentation mask

5.1.2 Slice selection

The input for each slice segmentation is a set of waypoint voxels (at least
one voxel), which define the corticallis. If the bone is well defined, only one
waypoint is necessary. However, if the femoral corticallis is unclear, more
correcting waypoints may be added to guide the segmentation. See fig.5.1
for an example.

Output from each slice segmentation is a set of voxels, that form a curve
around the femoral head. This implies, that if the data are clear enough,
then only one control voxel would be necessary. This input voxel would
provide us with enough information to segment one slice perpendicular to
all other slices and provide one or two seeds for each slice to be segmented.
This way we are able to segment the whole volume with seeds generated
from the first slice. Of course we need to make sure that this one slice is
segmented so that it goes through all the slices and really provides a seed
even for the slices on upper and lover extremes.

However we have found out that only one control slice (the one that
creates seeds) is not enough for real world CT scans. There is a part of the
femoral head, which seems to be critical for our algorithm with most of the
patients. In terms of human body directions that is the proximal posterior
direction, or upper rear part of the femoral head. Here most of the friction
happens, the articular cartilage is thinned and the density of corticallis is
reduced, so that it is barely visible in the CT scan. The pelvis is usually not
so damaged, so it stands out very much over the corticallis and confuses our
algorithm. Here is the place we need to add most of the information.

If we look at all three slices through the body perpendicular to each of
the base axes, we can see that the most unclear part is the sagittal cut.

36

Here we can add most of the required information in one or a few slices. So
the first control cut is in the sagittal plane. Increased effort in segmenting
this slice gives us an advantage in segmenting the other slices, because it
generates seeds in the most difficult part of the femoral head.

But sometimes one slice is not enough, because the unclear area may
be quite large. So it is a good idea to be able to add another control slice
in the sagittal cut. In our case any number of sagittal cuts is possible, the
only problem with each new slice is that it has to be segmented correctly,
otherwise it introduces error into the rest of segmentation.

Sagittal control cuts are good for adding information into unclear ar-
eas. But anyway, sometimes the final segmentation in individual slices may
exhibit strange behavior because of local parameters for this segmentation.
For example it may happen, that a part of the trabecular bone stands out
in a few slices and in these slices it is enough to confuse the segmentation
while not changing the other slices. We need to bring in some coherency
between the individual slices.

The simplest solution is to bring another control cut. Not in the sagittal
plane anymore, but rather in the frontal plane. We have usually enough
information from the sagittal cuts, so this segmentation goes almost auto-
matically without any need for correcting. In case it goes wrong anyway
(usually in places where the corticallis intersects the user-defined cutting
plane – more in Section 5.3), then of course we can edit this segmentation
as well. This frontal plane segmentation usually brings enough information
to control the coherency of the final slices.

Now starts the final segmentation in axial planes. It finds the extremes
from the sagittal control cuts and performs segmentation in each slice we
have seeds for. This part goes usually completely automatically. In case any
of the slices is too unclear, we need a facility to correct the segmentation
on a slice-by-slice basis. But here we are usually without problems, only a
very small number of slices goes wrong (they are usually near the extremal
positions along the up/down direction).

So a short summary of slice selection is:

1. Perform one or more control cuts in the sagittal plane directly from
the user-defined input voxels (for example see sagittal slices in fig.5.1)

2. Perform one control cut in the frontal plane, input voxels are seeds
from step 1 and user defined correcting voxels.

3. Perform segmentation on a slice-by-slice basis for all slices between

37

Figure 5.1: Example how one border voxel may be insufficient, but already two
lead to correct segmentation.

the upper and lower extremes, input voxels are all voxels given by user
together with all results from the steps 1 and 2

5.2 Slice processing

5.2.1 Graph search algorithm

The cost function e(x, y, z) has some interesting properties, as mentioned in
Section 4.4. The position of the femoral head corticallis is usually given by
values around zero and they form a path that does not branch very much.
There may be also other paths that represent other body parts that may
look like corticallis in the CT scan, but these should not be connected to
our femoral head corticallis with a clear path. These data properties imply
that some sort of a shortest path graph search algorithm may be used.

Our method utilizes Dijkstra’s shortest path graph search algorithm. The
actual usage will be described later.

5.2.2 Problem definition and solution

We need to segment the corticallis in each slice. Our input is a set of one or
more control points and the CT slice data. Output should be a set of voxels
that define the border of the femoral head, or more precise, the corticallis.

38

Figure 5.2: Example of a cost function e(x, y, z).

The shape of the femoral head (as was already mentioned several times)
reminds the shape of a deformed sphere. So we have chosen to do this 2D
segmentation in polar coordinates. If the user chooses correctly the center
of the femoral head, it is enough to use a vector perpendicular to our slice
and going through this central point, that defines the central point of polar
transformation at the point of intersection with this slice.

We then choose an initial angle step size and a radial step size and trans-
form the preprocessed cost function e(x, y, z) into a 2D cost function p(u, v),
where u ∈ [0◦, 360◦) and v ∈ [0, r), r is the maximal radius of segmentation
(should be by our estimation at least one third bigger than the maximal
distance of corticallis from center). When visualized as a greyscale image,
this cost function p(u, v) looks like a slice from e(x, y, z) being unwrapped
around our given central point (see fig.5.3). The corticallis is now projected
into a roughly straight path from one side of the polar cut to the other,
broken only in the place where there is femoral neck (in case we are looking
at frontal or axial slice, in sagittal slice it should be an almost straight line).
We also transform the initial control voxel positions into these coordinates.
They should be projected into points lying hopefully on the cortical path.

Now our problem is simplified into the following:

Problem 2 Find a path from one starting control point around the whole
polar cut. It must cross the angular border, but not the radial one and on
its way it must hit all the other control points. The path it takes should be
through points with small values (as to why, look into Section 4.4).

39

Figure 5.3: Polar transformation of the cost function e(x, y, z) from fig.5.2.

As you can see, the definition of this problem is not very clear, at least not
in a mathematical sense. Especially the phrase ”through points with small
values” is very unclear. This is because we do not know what exactly we
want. We only know that our cost function e(x, y, z) transformed into polar
coordinates has lower values (theoretically should be around zero) in places
where we find corticallis or similar structures and higher values elsewhere.

The path that consists of low values is almost continuous, but may be
broken in some places and some segments may be missing completely. Ad-
ditionally, we have a set of control points that we want to hit in a specific
order (this order is given by their respective positions along the angular –
or u – coordinate). This further reduces the problem:

Problem 3 Find the cheapest way in an image from starting point to end
point. The way may wrap around the horizontal coordinate, but each suc-
cessive path pixel cannot have its horizontal coordinate lower than its prede-
cessor in case it does not wrap around the whole image. For each horizontal
coordinate there may be only one path pixel.

For this, it would be advisable to use some sort of graph search algo-
rithm. We have used Dijkstra’s shortest path graph search algorithm. We
define the weighted directed graph for this algorithm as follows: vertices V
are the pixels in the polar cut image. Edges E lead from each pixel to its
right neighbor, upper right neighbor and lower right neighbor if they exist.
For vertices at the horizontal end, the right neighbors are defined as vertices
created from pixels at the beginning of horizontal coordinates (with coordi-
nate u = 0). The weight of each edge is defined as the original pixel value
of the vertex the edge is pointing to.

Let’s consider we have k control points C0, . . . , Ck−1 sorted by their u co-
ordinate. Now we want to find a path between each two consecutive control

40

points in this image (the last control point horizontally has the first con-
trol point as its consecutive neighbor). So we define the graph as mentioned
above and run the shortest path search algorithm for each pair Ci, C(i+1)mod k

where i ∈ [0, k − 1].

This way we will obtain the shortest path around such defined polar cut.
Now we transform it back from polar to spatial coordinates. We have now
a set of border voxels that define the femoral head corticallis.

5.3 User-defined cutting plane

The bone is not of a healthy person, but is broken somewhere in the femoral
neck. We need to add some additional information about this fracture, to
limit the segmentation only to the femoral head. Actually we want only the
femoral head, even if most of the femoral neck is intact and connected to
the head, because this segmentation is meant to provide some information
about the quality of the bone where we will place the screw – and that is in
the middle of the femoral head. The femoral neck is insignificant for us, or
even unwanted, because it may bring an error to our femoral head trabecular
bone quality estimation.

We had to design a facility for the doctor to provide us with this in-
formation. The simplest way for both the program and for the doctor is
to define a plane. More elaborate methods are sometimes confusing and
hard to visualize or imagine. A plane is easily controllable by three points
in space and a precise placement can be displayed even without volumetric
data visualization just by intersection with each of three basic slices through
the CT data (frontal, sagittal and axial).

However, implementation of this general cutting plane into the method
was somehow tricky. The first idea to stop the shortest path search algorithm
at the plane cannot be used, because that would ruin our expectation about
the shortest path and we will find the shortest path from one of the control
points to this plane but not to the intersection of this plane with femoral
corticallis.

This implies the second idea to stop the algorithm at the intersection of
the plane with femoral neck corticallis. That would be equivalent to adding
another control points on the intersections of the plane and corticallis and
then artificially connect these two new control points through the neck,
which is not possible, because we do not know, where this intersection is,
we are actually trying to find it.

41

So the third idea was to change the data for our graph search algorithm
in a way that would clearly define, where this plane is. On the other hand
it should not spoil the result, if the real corticallis is very close to this plane
but does not intersect it. So what we did was to artificially create another
channel through the preprocessed data, that would look like the corticallis
for the algorithm and would ease the path search through it but would not
attract the algorithm in case the corticallis is parallel to it and very close.

The implementation of this ides is to create a matrix of values with the
same dimensions as the original data. In this matrix we set all voxels equal
to 1, only those whose center is closer to the plane than nV voxels are set to
0. Next follows Gaussian filter with mask size mG.

These constants are next parameters of our segmentation, but in this
case they do not alter the actual corticallis segmentation, but only help to
guide it through places where there is no corticallis present. In our case
these constants were:

nV = 1

mG = 5

When we have this mask, we simply multiply voxel-vise the original prepro-
cessed data with this mask. That would create the wanted channel inside
the original data. From the worst-case point of view this is not correct,
because the segmentation may overcome this boundary and also add some
parts of the bone behind this plane, but by testing on many CT datasets it
is clear that it is not the case of real world data, where this safely guides
the segmentation over parts of the bone where no corticallis is present.

5.4 Final volume

After the segmentation step we have located the corticallis and it is marked
with a mask. To get the whole volume we assume that all slices are cutting
through a deformed sphere, as was the first assumption about the shape
of the femoral head. So they do not form difficult shapes and we can use
standard 2D floodfill algorithm on each slice to get the whole volume. There
will be errors along the poles of the femoral head (the top and especially
the bottom of the segmentation), but these represent only a very small
number of wrong voxels and are usually without problems discarded in the
last morphological step that follows.

42

So now we have the whole femoral head but we want only the trabecular
bone inside. We can notice that the corticallis has almost the same thickness
along its whole surface. The absolute value of this thickness can wary from
patient to patient, but one patient usually has the corticallis thickness uni-
form. And this corticallis happens to be at the border of our segmentation.
So the first and simplest method to deal with this is some sort of morpholog-
ical filter, like erosion. Erosion on a 6-neighborhood or a 26-neighborhood
(3D equivalents of a 2D 4-neighborhood and a 8-neighborhood) removes
one layer of voxels from the border of our set. We used erosion on a 6-
neighborhood and all our results are computed with it.

Each patient may have different corticallis thickness (usually 2-3 voxels),
so it is up to the examining specialist to decide how much should be removed.
In our testing datasets it turned out that it is good to remove 3 layers each
time, because even for patients that could require only 2 layers it introduces
only a minor error in the final statistical analysis (only a few percent of the
resultant HU values). For example we are looking whether the mean value
of the patient is 100HU, 150HU or 250HU (the real values are in this area)
and the difference of this mean value may be around 1 to 10HU, so it is
clear that removing the third layer even when it is not necessary introduces
insignificant error to the whole computation.

5.5 Parallelization

The algorithm can be parallelized without problems. The only part that
must be serialized is the primary and secondary slice segmentation. The
final axial slice segmentation can be run in parallel. In case the parent
thread that is supposed to clean up the results is well written, the boost in
speed with each additional processor is almost linear. See Section 7.3 for
actual numbers on a quad core processor.

5.6 Notes

It turned out that the algorithm is not so sensitive to the central point
selection. It is, of course, important to have the central point inside the
femoral head and as close to the real center as possible (we can define the
real center as a geometrical mean value of the femoral head, that is the best
point for our segmentation), but there is a tolerance of about 1cm in each
dimension, which does not make much difference in terms of segmentation

43

output quality and it is not difficult to hit this tolerance by just looking at
the data.

The result is, as mentioned, a set of vertices in polar coordinates that are
transformed to a set of voxels in original data. At first sight you may think
that it can happen that the result will not be connected, which would prevent
us from using the simple floodfill algorithm in the end to complete the result
mask. In general it would be good to use some more robust representation,
such as connecting the result voxels with lines. But in our case it turned
out that we need good enough precision for the polar cut construction, so
that all relevant voxels are represented. This resolution must be so good,
that if we have a connected path in the polar cut, its transformation into
the spatial domain would not bring us non-continuous path, but even many
voxels are duplicated. So for our case it was not necessary to utilize some
more robust path representation.

44

Chapter 6

Implementation

The application implements the features mentioned in previous chapters
and several other features, that were there added for various reasons dur-
ing the development of our method. Some of them were added on request
from MUDr. Horák and MUDr. Vacuĺık, who were constantly informed
about the progress and helped to shape the functionality of our application.
Other features are for debugging purposes or to show some properties of
the implemented methods. A detailed description of the actual application
implementation follows in this chapter.

Implementation is done in C++, compiled with compiler Msvc version 8
from Visual C++ 2005. Final application is designed to run under Windows
system. We have found no functionality problems on various 32-bit MS
Windows versions. Thorough testing has been done on Windows XP SP2
32-bit and Windows Vista Business Edition 32-bit. Porting for Linux system
is not planned, although the program runs fine under the Wine emulator.

We used Windows API for user interface and some basic disk operations
and DICOM Toolkit ver. 3.5.4 by OFFIS for DICOM data loading and
processing.

6.1 Application structure

The application can be subdivided into four main parts (see fig.6.1):

DICOM interface – Utilizes the library OFFIS DCMTK (DICOM Toolkit,
[2]) for loading CT datasets stored as a set of DICOM files and provides
a way to store them in the program.

45

Figure 6.1: Program structure. A brief overview.

User interface – Provides a way for the user to interact with the program
and displays results.

Data processing – Implements segmentation algorithms.

Utility classes – Provides transport facilities between other parts of pro-
gram and some additional helper classes.

We are working with quite a lot of data (for today’s computers), because
one standard CT study has hundreds of megabytes. It is not such a big
amount that would need some special caching, it can all fit into the main
memory. But for some quick processing, there has to be some order and
optimizations of the data processing and transfer.

For the sake of clarity of how the data moves in the program, we will
explain first the utility classes, then continue with DICOM layer, that loads
for us the data from disk and stores them. Next is the user interface, that
centralizes the whole program and provides input and feedback between the
user and the program. Computation layer will be explained last with details
and issues of our method of implementation.

46

6.2 Utility classes

6.2.1 Volumetric data transport

We know that the size of the femoral head is not bigger than about 6cm
(usually it is around 4cm), we do not want to process the whole volume,
because we have some initial information from the user about where ap-
proximately the femoral head is. Actually one of the input parameters is
the approximate center of the femoral head. So we can estimate that all
of the segmentation would be done inside a limited area around this point.
This leads to an idea of making an interface for accessing and transporting
a subvolume of the whole CT scan. The data has to be volumetric, so a
box with a parametrically adjustable size comes to mind as the simplest
representation.

Implementation of this interface is in the class CVolumeSet<T>. This
template class has an ability to store many different types of data. This
class has a set of basic methods for setting and getting its size, ability to
remember and provide the original position from which it was taken in the
original DICOM dataset, method for finding out whether a given point lies
inside this volume and many others (discussed later). The data is stored as
a std::vector<T*>, which is a vector of 2D slices, that are internally saved
in an allocated 1D field.

The class provides methods for getting a constant pointer to all three
basic slices. Slice in the XY plane is just a pointer to an adequate plane in
the mentioned vector. Slices in the XZ and Y Z planes are first loaded from
the original data stored inside an internal structure and then a constant
pointer on this structure is returned.

If we want to access individual voxels, it is possible both for reading and
writing. If we want some global access, we can set the whole volume to zero
or some given value. For some global access to change individual voxels, but
assign each voxel a different value, we can get a non-constant pointer to the
slice in XY , but not the other two (this is clear from the point of view how
the slices in XZ and Y Z are constructed).

The class is thread safe for accessing different individual voxels, or for
reading/writing into the XY plane. Most other operations, such as resizing,
accessing slices other than XY , accessing the same voxel, etc. are not thread
safe.

This class is as a template quite incomplete concerning its abilities and
algorithms. All other processing of this class is available through specialized

47

functions, that are not members of this class. One such function that falls
into the data transport topic is the copyVolume function. This function has
several overloaded variations for all needed conversions between different
types. Other functions have more processing power in them and so will be
discussed in Section 6.5.

The primary use for CVolumeSet<T> is for transporting data between
the DICOM interface layer and the data processing layer. But it is also
used for storing the data inside the data processing layer and performing
the preprocessing step.

6.2.2 Planar data transport

Basic planar data transport is done through the class CGeneric2DData<T>.
This acts as a standard 2D rectangular image with the ability to store ar-
bitrary data. Only common methods for resizing and data accessing are
provided.

Another class that stores 2D data is the class CPolarCut, but this class
implements also quite sophisticated transformations to and from polar co-
ordinates, so it will be further discussed in Section 6.5.

6.2.3 Helper classes

Representations of points in 2D and 3D are structures SPoint2D<T> and
SPoint3D<T>. These structures have some basic operators defined to sim-
plify operations with them. These two are defined as general as possible and
are used for many operations, both during the data processing and in the
user interface.

CTimer is a very simple class for measuring time. This is for the purposes
of this thesis to present the results of our algorithm. The implementation
is done with standard Windows API function GetTickCount, that implies
that the actual precision is limited to around 15ms, but we are measuring
seconds or hundreds of milliseconds, so that precision is good enough for us.

Two functions are for std::vector processing, getVectorSum is used for
returning the sum of all members from the whole std::vector. This is used
for Gaussian filter construction and for some bone quality estimations. The
function buildGaussFilter creates an approximation of a Gaussian curve
by creating a row from Pythagoras triangle. This is used for the separable
Gaussian filter during preprocessing.

48

The function createTestData has been used during development for
creating artificial test data which resemble the input but are still somewhat
controllable. The data can be deliberately damaged by a variable amount of
white noise to make them more representable. This function is not currently
used in the code, but could be enabled by a simple change in the user
interface. It has been used during our method planning.

6.3 DICOM layer

The DICOM layer is used primarily for loading and providing the 12-bit data
from DICOM files. It is not its only purpose, it also stores all 12-bit data,
utilizes masks obtained from various computation algorithms and performs
also a basic statistical analysis of the masked data.

The DICOM layer basically consists of only two classes. CImageSet

and CDcmImage. Both are highly specialized to work on the task given, no
generalization except for the most needed one was done. Class CDcmImage

is the class that works directly with DICOM data. It is our interface for one
slice of CT scan. On the other hand, class CImageSet is a sort of container
that represents the whole CT scan and contains an array of CDcmImage to
store the data.

6.3.1 DICOM slice

First we will discuss the class CDcmImage. As already mentioned, this is
our interface to one DICOM slice. It is designed to provide access to 12-bit
2D data, so we can represent it as an image. Unlike normal dynamic 2D
images, such as CGeneric2DImage<T>, this class does not support explicit
resizing. This is because it is not prepared (nor designed) to hold arbitrary
data, but only data loaded from disk. The resizing operation is done only
during loading.

Other methods of a 2D image are present, such as accessing individual
pixels, accessing the whole data, getting size in pixels, etc. There are some
additional methods for getting information about the DICOM data, such
as voxel size, getting bits per pixel and getting information about a patient
(name and id).

There are some methods for measuring (usually their name contains the
word for measuring). These methods are for debugging purposes, they are

49

the leftovers from the time of method design. Currently they are not used,
but are left in the code for the purposes of debugging.

An important feature of the CDcmImage is the loading process. The
loading is done by calling a method loadImage, but this method has an
ability (in the form of a parameter) to postpone the actual data transfer
from disk to memory. This way when we process the whole directory of
DICOM slices, we only assign filenames to the CDcmImage objects. The
actual data loading can be forced by calling forceLoad. Subsequent forcing
is ignored once the data is correctly loaded. This way we can very quickly
initialize the application after the user selects a directory as a source of
DICOM data for us. All data are loaded at the moment they are needed, so
this way we can skip the whole parts of volume the doctor does not need to
examine.

Another feature that is implemented along this postponed loading is some
memory management in case of very large datasets. We can specify a radius
of slices that must be kept in the main memory around the actual slice, but
all slices that fall outside this radius are discarded by calling releaseLoad

and their memory is freed. They can be loaded again if they are needed.

6.3.2 DICOM datasets

The class CImageSet is a kind of container for our slices. It is one of the
most complex classes in the whole project. It is also one of the biggest.
The primary purpose is to hold a std::vector of pointers to CDcmImage

objects. Because the user interface layer has rarely a chance to access the
images themselves, a lot of methods are provided to just hand over the
information from CDcmImage.

Loading is done by calling loadDirectory. At this point we do not sup-
port the DICOMDIR standard, that is planned for future improvements. So
at this moment we need the DICOM data from one dataset to be stored
in one directory and sorted alphabetically (the DICOM file header provides
information about individual slices position, but we have not yet incorpo-
rated this information to the program, it is also planned for future). The
loadDirectory goes through the given directory, finds all DICOM images
and for each of them assigns an internal object CDcmImage. The data are not
forced to load immediately, the actual data loading (see postponed loading
in Section 6.3.1) is done when the image is needed. It is also planned to
do this loading transparently in a separate thread, the program design is
prepared for this but it has not been done yet, it is also a planned feature.

50

As has been already mentioned in Section 6.3.1, we have provided a
facility to limit the memory usage. Class CImageSet provides a possibility
to set a radius around the actually displayed image that should be kept in
the main memory and everything else should be released until it is needed.

Next feature is providing the data, both for computational and display
purposes. Getting data for computation in the form of a CVolumeSet<T> is
very simple, the caller provides an existing object of the type CVolumeSet<T>
with defined dimensions and the position in the complete volume data (in
terms of voxel indices) and our CImageSet fills the provided object with
defined data and if the requested volume extends beyond our data size, all
such voxels are given the value representing clean air, that is -1023.

Providing data for display purposes is a bit more tricky and creates the
most of the complexity of this class. The class CImageSet does not directly
display the data. It only processes the data into three orthogonal slices
through the dataset (axial, sagittal and frontal) and provides transformed
8-bit data obtained by applying a so called window function on the 12-bit
data.

In short the CImageSet gets a center of projection (a point in the whole
volume that represents the position where the user is looking), finds the
appropriate axial slice and computes two orthogonal (sagittal and frontal)
cuts through the volume, all this in 12-bit data. When this is done, a con-
version with user-defined window function is performed to get 8-bit data,
which are returned to the application as a 24-bit color DIB (Device Inde-
pendent Bitmap). Both types of slices (8-bit and 12-bit) are stored locally,
only a pointer to them is given when the user interface needs it to display
the images.

There are some options on how to exactly compute the two cuts, for
example whether the sagittal and frontal slices should always follow the
image chosen in the axial direction, or whether they should be centered
somewhere else. Constructing the two slices proved to take some time (about
hundreds of milliseconds), so it is better to leave the following turned off and
center the slices only on explicit user request. This way the user can sweep
through the data more interactively and does not have to wait till each image
is computed and displayed. Even several hundreds of milliseconds are too
much if you want to display about ten images per second.

The window function (fig. 6.2) has a form of linear transformation from
12-bit data to 8-bit data. Many radiologists incorrectly call this function
contrast, but it encompasses both contrast and brightness transformation
and reduction from 12-bit to 8-bit. The function has two parameters: win-

51

Figure 6.2: Example of a window function transformation

dow level and window width. Level is the central point that should be trans-
formed to the half of the target interval (to value 127 in case of 8-bit target
data) and width is the diameter of the source interval. So for example for
parameters L = 50 W = 100 we will transform the interval 0 to 100 to
values from 0 to 255 (the target interval is almost always 0 to 255, because
modern graphics cards and monitors have 8-bit color processing or at least
8-bit input and output – except for some specialized and very expensive
equipment that work with 10-bit colors). See fig.6.2 for a hint how it works.

The window function is not the only transformation that is done on the
data. CImageSet also displays the mask as voxels with different colors (in
our application it is the green color). Mask is there for two purposes:

1. Visually present the result of the segmentation

2. Perform some basic statistical analysis on the masked data

Displaying is very simple. During the last step of the window function
transformation there is an additional condition that checks whether the pro-
cessed voxel is marked in the provided mask. If it is marked, then output
its color partially changed to visually distinguish it from the other voxels.

Statistical analysis (in getMeasurementResult) finds all voxels marked
in the mask and returns their mean value and standard deviation. The
histogram can be obtained from getHistogramFromMask. It works almost
the same way, only the result is a std::vector of quantity values.

52

6.4 User interface layer

6.4.1 Window

User interface is based on 32-bit Windows API. So the basis for the whole
program is a WinMain function that creates the main window and WndProc

function that processes the window messages sent to the main window.

The WndProc does not contain all the code for processing window mes-
sages, for most of the messages there are special functions On. . . (for example
OnCreate, OnPaint, etc.). Class CGlobals holds various state information
about the user interaction (for example which tool is currently used, etc.).
If no files (DICOM data) are opened, then most of the functionality is either
disabled or ignored. All of the functionality can be accessed in the program
menu, the most important features are accessible also through the toolbar.
Usually the user selects a tool in the toolbar, that sends a menu ID message
to OnCommand and if it is a command to change a tool, then the actual tool
is selected in the CGlobals object. OnCommand also processes activation of
various dialog boxes, showing or hiding information displayed in the main
window client area, opening files/directories, starting computations and do-
ing some simple tasks on the result data, such as eroding or dilating.

The rest of the main functionality that is not handled through the
WM_COMMAND message goes through the WM_KEYDOWN, WM_LMOUSEDOWN and
WM_LMOUSEUP and their respective copies for the right mouse button. The
function OnKeyDown processes mostly movement through the dataset with
cursor and PgUp, PgDown keys and changes some predefined parameters for
the window transformation function (see Section 6.3.2 for explanation). All
four OnLMouseDown, OnLMouseUp, OnRMouseDown and OnRMouseUp process
the input from mouse events. These are usually dependent on which tool is
selected from the menu/toolbar and then according to the tool, they per-
form operations such as getting original value at a specified voxel, running
spherical mask computation (explained in Section 6.5), adding or deleting
various control points for computations, etc.

Function OnPaint paints the client area of the main window. It finds
out what should be drawn and what not. The actual drawing begins with
displaying transformed data from CImageSet and then on top of it draws
various other information, such as the position of the other two orthogonal
slices, location of border points for computation, location of user-defined
cutting plane, etc. The mask is not displayed explicitly here, it is already
imprinted in the data obtained from CImageSet.

53

Other functions for processing the window messages are not so important
and are usually self-explanatory, so a look into the code should be enough
for finding out their functionality.

6.4.2 Coordinates transformation

For the sake of user interface we need to be able to transform from screen
coordinates to volume coordinates and back. This is not a difficult transfor-
mation and is used very frequently. So for this we have several functions.

Both overloaded versions of Get3DPositionFromScreen do the same –
compute which point on the screen corresponds to which position in the
volume data. This is used for example when the user clicks somewhere and
we do not care about which slice was hit, but just the final position in the
3D data.

Functions Get2DScreenPosFrom3DMain, Get2DScreenPosFrom3DCutXZ

and Get2DScreenPosFrom3DCutYZ compute the backward transformation.
We have a point in the volume and we want to find out where on the screen
it will project. Each version projects onto a different slice and each has also
an optional output variable that tells us whether the point would project on
the given slice at all.

6.4.3 Dialogs

There is a number of dialog boxes, mostly for debugging purposes. All dialog
boxes have methods for hiding, showing, destroying and some parameters
depending on the type of the dialog.

The most apparent dialog box that is visible almost all the time is
CInfoDialog. This is a simple window with read-only editbox, that dis-
plays various formatted information, such as the size of voxels, results from
computations or some information related to current processing (such as
how many images remain to be loaded or which part of the segmentation is
the application doing right now).

CParamsDialog serves for setting various parameters of the application
or computation methods. Again, it is a small window that contains a number
of edit boxes that show and alter the values of some internal variables.

The remaining dialogs contain basically only canvas, where they output
their information, no controls are present. CGraphDialog displays a graph
of some function f(x), that is quantized in discrete locations with uniform

54

distribution. It is currently used to display the behavior of data when the
user draws a line with the Get Value tool. An example of such graph is in
fig.2.2.

CHistogramDialog is very similar in the sense that it displays some
property of the data. This time it displays a histogram of values marked by
a mask from segmentation. See 3.2 for such a histogram of femoral head.

CVolumeDialog and CPolarDialog both show some data from the seg-
mentation algorithm. This is used for debuging purposes and are usu-
ally used for displaying the cost function in some degree of its creation.
CVolumeDialog displays a small CVolumeSet<T> that contains processed
data during computation, CPolarDialog is capable of displaying a polar
cut (used several times throughout this thesis to present the polar cuts).
They are both unused in the final application, but could be very easily in-
corporated by providing them with relevant data.

6.5 Computation layer

This is the layer, which gets some parameters (depending on which computa-
tion are we performing) and returns a CVolumeSet<unsigned char>, which
is a mask to be used for further display/computation inside the CImageSet

(see Section 6.3.2 for detailed explanation of how the masks are used). We
have two types of computations:

• Spherical computation

• Channeling segmentation

There is also a number of various helper functions, usually specialized
functions for CVolumeSet<T> processing for some known T.

6.5.1 Helper functions

There is a lot of functions beginning with vol. . . , for example volMultiply.
All these functions work with volumetric data, usually saved as floats (that
means CVolumeSet<float>), but some of them are defined for arbitrary data
(for CVolumeSet<T>). They have usually one reference to a target volumeset,
one or more constant references to source volumesets and optionally some
other parameters.

55

volTreshold2DFloodfill is a function with 2 overloads. One is for
filling <unsigned char> masks (this is actually used after segmentation,
when we have the borders of the femoral head and we need to fill the borders
on each slice). The second function with the same name is for creating a
mask based on <float> data. The input is a float volumeset, a seed and
two float limits. All values between these limits are filled with a floodfill
algorithm, so any value below or above these limits is considered as border
voxel. A similar function is volTreshold3DFloodfill, which acts the same
way as the 2D version that works on float data, but this time the floodfill
algorithm is flooding in all three dimensions. This has been used during our
method development to check, whether this kind of filling would be enough
after our preprocessing step. It turned out that it is not enough, so we had
to use our current segmentation.

volGaussfilter. . . are functions for performing the separable Gaussian
filter. Versions with X, Y, Z at the end are 1D filters performed on the
whole data with given mask size. The final volGaussFilter3D calls subse-
quently all these functions to obtain a final gaussian filtered volume.

volClampAndStretch, volMultiply and volLinearCombination per-
form simple operations on one or two volumesets. volClampAndStretch

takes only one volume and transforms linearly all voxels from source interval
to destination interval. All values outside the source interval are transformed
to minimal, resp. maximal value of the destination interval. volMultiply

takes two volumes with the same sizes and multiplies each voxel from one
volume with its counterpart with the same coordinates from the other vol-
ume. And finally volLinearCombination takes two volumes with the same
sizes and three parameters A, B and C. Each voxel from the destination is
computed as follows:

dest(x, y, z) = A · src1(x, y, z) + B · src2(x, y, z) + C

Next two functions are erodeMask4 and dilateMask4. They work on
mask data (i.e. <unsigned char> volumesets) and perform an erosion or
a dilation on a 3D equivalent of a 2D 4-neighborhood (in 3D that may be
called a 6-neighborhood). Erosion just makes the mask smaller, volume
outside its boundaries is defined as 0’s, so voxels right at the border are
cleared and the whole mask is shrunk by one voxel on a 6-neighborhood.
Dilation performs the opposite, the mask grows by one voxel around any
nonzero voxel. However, the physical dimension of the mask volumeset stays
the same, so in the end it fills the whole volume of the volumeset, but does
not continue further nor enlarge the volumeset.

56

6.5.2 Spherical computation

Our whole work was based on the need of MUDr.Horák and MUDr.Vacuĺık,
who were working on a research project concerning the femoral neck fracture
treatment (more in Chapter 1). They provided us with the needed data and
information and we tried to come up with an application that would help
them in their bone density estimation. The ultimate goal was, of course,
complete and precise segmentation of the femoral head. But the medical
team was under time pressure and needed some approximate results as soon
as possible.

So the first idea was to come up with an application, that would have
already some basic user interface and an ability to measure the average
density in a sphere with a user-defined radius. This is simple to code and
also simple to use. The only user input needed is one click representing the
center of the sphere and optionally a change in the sphere diameter.

To unify the computation with our channeling method, the computation
is divided into two parts:

1. Spherical mask preparation

2. Statistical analysis

The second part is the same as with our channeling method, it is done
inside the CImageSet class. The first part is implemented in the class
CSphericalComputation. So the class CSphericalComputation gets pa-
rameters such as voxel dimensions and sphere radius and returns a mask
in appropriately sized CVolumeSet<unsigned char>. It is then transported
through the user interface to CImageSet, its original position is adjusted
according to where the user clicked (for explanation see Section 6.2.1) and
the results are computed.

Advancements have been done to allow some arbitrary and continuous
changing of the diameter. The internal structure for the mask is allocated a
little big larger than needed and then if the diameter is changed, the mask
size remains the same unless the sphere is bigger or by a defined tolerance
smaller than the mask size. This is to prevent many allocations/dealocations
if the sphere has to be changed very frequently. In the end it showed up
that this measurement is usually done on predefined sphere diameters, such
as 20mm and 30mm, so a continuous change was not needed. But it was
pointless to remove this functionality so if there is need, then it can be used
without any alterations.

57

6.5.3 Channeling segmentation

This is the final implementation of our method described throughout this
thesis. Again, it consists of two parts:

1. Segmentation and mask preparation

2. Statistical analysis

The statistical analysis is done exactly the same way as in spherical
computation, only the original position of the processed volumeset does not
have to be manually adjusted, it is obtained during the data reading from
CImageSet and travels through the whole computation along the various
processed volumesets.

The segmentation itself can be further roughly subdivided into three
parts:

1. Parameter setting

2. Data preprocessing

3. Slice-by-slice segmentation

All this is implemented in the class CPolarComputation. This is prob-
ably the most complex class in the project, even more than for example
CImageSet.

The user first sets parameters, such as border voxels, user cutting plane
and computation center. Each change of critical parameter that may change
the preprocessed volumeset data (cutting plane and computation center)
invokes data preprocessing before the first attempt to do segmentation. Each
subsequent attempt to do segmentation without changing mentioned critical
parameters ignores preprocessing and uses old preprocessed data.

Preprocessing (if done) consists of several operations on source CVolumeSet
data:

1. Gaussian filter with a Gauss curve approximation kernel of size 5

2. Computing of a gradient

3. Cost function computation

4. Adjusting the cost function to fall into the interval 0-255

58

5. Gauss filtering of the cost function

6. Combining filtered cost function with a gradient size approximation

7. Another adjusting to interval 0-255

8. Multiply of the result with an artificial channel created by a user-
defined cutting plane

The functions used for this are described in Section 6.5.1. A flag is set
that the data have been correctly prepared and unless the input param-
eters change, no other preprocessing will be necessary during subsequent
segmentations.

The segmentation itself is started by calling a run method. There are
two optional parameters, one defines whether to do all three phases of seg-
mentation (primary control slices, secondary control slices and complete
segmentation) or whether to do only the 1st and 2nd phase (only the control
slices) and if all phases should be done, then if the result should be floodfilled
or should stay only as a border (which is used for debug purposes to see the
actual segmentation result). run then checks whether all needed parameters
of the computation are set (that means at least one primary border point
and the center of computation). Then it clears the result mask and checks
whether the preprocessing step has been done and is up to date (and runs
it if necessary).

When the preprocessing is done, it transforms all three types of border
voxels (primary, secondary and correcting) from global coordinates of the
whole volume to local coordinates inside the source CVolumeSet<float>. If
we have less than one primary border voxel, then no computation is done
and run returns with an error, because we have no starting point.

The segmentation itself is divided into three parts, each part corresponds
to one phase:

1. Segment one or more primary sagittal slices

2. Segment one frontal slice in the middle of the volumeset (the slice that
contains the user selected central point)

3. Segment all axial slices that contain at least one border voxel

The first phase is segmenting the primary control cuts in sagittal slices.
We count all primary border voxels and find all slices that contain at least
one border voxel. For each of those slices we run computeDijkstraInCut,

59

that segments the slice and returns all voxels that represent the path along
the femoral head corticallis (see Section 6.5.4). To the voxels we have ob-
tained from the segmentation, we add the original voxels and then filter
them, so that each voxel is unique (it may happen that two or more pixels
from the polar transformation may project back to one voxel, so for each
such voxel we want only one representant). During the filtering all voxels
are written into the result mask.

With the newly created set of border voxels we run the second phase,
which is segmentation of one central slice in the frontal plane (frontal slice
that contains the central point selected by user at the beginning of parameter
setting). Again, we run the method computeDijkstraInCut on the slice
with all known border voxels excluding correcting voxels for third phase.
Those are primary and secondary user selected border voxels and all result
voxels from the first phase. When this segmentation is done, all voxels are
again merged together and filtered to keep only each unique representant
(and they are also written into the result mask).

After the second phase the segmentation can be stopped (by a parameter
to run), so that the user can check whether these segmentations were done
correctly and correct them if needed. If the user is sure that the computation
of these control slices is alright, the computation is not interrupted and we
continue with the third phase.

The input is all merged and uniquely filtered voxels, both user selected
(all three – primary, secondary and correcting) and those obtained from the
first two phases. The third phase is a little bit more complicated, because
it utilizes parallel processing. The user selects (in Parameters Dialog) how
many threads he wants to use. Array of CPolarComputation::SThreadData
structures is created, which is a structure for communication between the
main thread and the segmentation threads. On each field of this array, we
run a separate thread.

One while cycle runs until all slices are processed and results returned.
It runs as follows:

1. Find the first task that needs computation. If found, mark it.

2. If we have a marked task, find an idle thread and run it. If no idle
thread is found, keep the task for future computation (just forget that
we have found it).

3. If all threads are full or no task needs to be computed and there is at
least one working thread, wait till some thread has finished and store
its result into the result mask.

60

4. If there is nothing to compute and all threads are idle, set a flag for
all threads that they should die, else continue with step (1).

When the while cycle has ended, wait until all threads have ended and
then delete the array of communication structures. This is the end of the
computation, just the result mask is provided to the user and end.

The threads themselves are primitive. They are implemented in a static
method DijkstraProcessingThread. The thread sleeps until it gets ei-
ther data or a flag that it should die. If it gets the flag, it informs the
main thread that it has successfully ended and returns. If it gets data, it
runs computeDijkstraInPolarCut, which is a slightly modified version of
computeDijkstraInCut. More in Section 6.5.4.

6.5.4 Polar Dijkstra

First let’s discuss the polar transformation. For it we have a class CPolarCut.
This is basically a class for containing a 2D image enhanced with methods
for transforming from and to polar coordinates. The image itself is a polar
transformation of some 2D image. We can create it either from an array
of float values or from a specified slice from CVolumeSet<float>. The
parameters of the image transformation is a resolution of the source image, a
resolution in the polar direction, a resolution in the radius direction, starting
angle, angle direction (clockwise or counterclockwise) and whether we want
the result to use nearest filtering or linear filtering from the source image.
The center of the transformation is in the middle of the source image and
radius is so big so that the source for the polar image can be inscribed
within the source image. See fig.6.3 for an example how it works. All the user
defined parameters are stored and can be used for transformation of points to
and from polar coordinates, such as control voxels to polar coordinates and
the result back to spatial coordinates. All the transformations are available
as public.

The Dijkstra’s shortest path search algorithm is then performed on these
polar transformed data. There are several methods that do this. In Sec-
tion 6.5.3 two of those methods were mentioned (computeDijkstraInCut
and computeDijkstraInPolarCut). They are functionally the same, only
the data source for them is different. computeDijkstraInCut takes vol-
umeset as a source. From one specified slice creates a polar cut and calls
the computeDijkstraInPolarCut method. This method then selects all
control border voxels that are present on the specified slice and trans-
forms them to polar coordinates. The voxels are then sorted according

61

Figure 6.3: Example of a polar transformation(α – starting angle, r – radius of
transformation, A – angular resolution, S – samples per radius)

to their angle in spatial coordinates (on fig.6.3 it is the u coordinate).
For each consecutive pair (the last voxel is paired with the first) we run
computeDirectionalDijkstra.

computeDirectionalDijkstra works with the linearly interpolated po-
lar transformation of the cost function and two points – start and end. It
has two parameters that specify which way it should search for the path,
it is able to search along the positive or negative or both directions of the
u axis. We need to search only along the positive u axis, because this is
the way we have sorted our control points. It starts to spread along all the
shortest paths from the starting point and stores two types of results: the
actual shortest path to each visited voxel and a predecessor for each visited
voxel from which was the shortest path. The algorithm can cross along the
u coordinate from one end of the image to the other, but cannot cross the v
borders. When we hit the end point, we finish the computation and back-
trace along the predecessor map back to the starting point and return this
path as the final result.

All such obtained paths are then put together and give us a complete path
around the original slice, which is then returned back to the segmentation
algorithm as the segmentation border.

62

Chapter 7

Results

7.1 Result utilization

Our program is used by MUDr. Horák and MUDr. Vacuĺık on Bulovka Hos-
pital to perform a study project that aims at finding a possible link between
the femoral head bone density and the treatment success. They use the
mean value and standard deviation of our segmented data and try to find a
relationship between these values and the successfulness.

At this moment, no new patients are examined with it, the data they
process are the data of already treated patients and the success and problems
of the surgical operation are already known.

However, MUDr. Horák came with an idea to further utilize the seg-
mented data. When we have the segmentation finished, we can use the data
further for another purposes, not only bone quality analysis. On fig.7.2 we
can see another application of our algorithm. We have performed standard
segmentation as usually, but this time instead of erosion we used dilation
to encase the whole femoral head and removed this data from the volume.
Next we can with some 3D visualization software inspect the inside of pelvic
acetabulum (for example look for possible fractures, etc.).

7.2 Results showcase

A complete segmentation can be seen for example in fig.3.1. For a more
clear representation some sort of 3D data visualization technique is needed.
Fig.7.1 shows how a femoral head can look like. For this image we have used

63

Figure 7.1: A 3D isosurface visualization of a segmented femoral head. Medial
side depression is visible on one side, on the other is clear the user-defined cutting
plane. Rendered with Simple Volume Renderer (2005, S. Stegmaier, [24]).

an isosurface representation.

7.3 Time complexity

The number of control points does not change the time complexity almost
at all. Adding one control point to a slice segmentation is almost for free,
sometimes it can even make the segmentation a little bit faster (but not
much, see Section 5.2.2 for a detailed description of slice processing).

We have performed a number of tests with one dataset segmentation on
a computer with Core2Quad Q6600 2.4GHz. The algorithm is done so that
multiple threads can do the computation at the same time. The times in
tab.7.1 are the times of all slice segmentations excluding the preprocessing.
The graph 7.3 shows the same results.

The preprocessing step is always done in roughly 1.9 seconds on the
Q6600 machine. It has not been done in parallel yet, it is planned as a
future improvement. The process is always the same for any patient, so the
time is almost constant (differences only due to the processor scheduling if
some background processes are running). However, preprocessing is done
only after changing the center of computation or changing the user defined
plane, so it is usually done only once. After that any subsequent segmenta-
tion is done without the preprocessing, that is why we did not include the
preprocessing step in the timings.

64

Figure 7.2: Example of another utilization of our algorithm – removing the femoral
head for a virtual pelvic acetabulum inspection. Rendered with Pre-Integrated
Volume Renderer (2001, K.Engel, [6]).

You can notice that the optimized code does not benefit from additional
threads. This is mainly because our implementation had a parent thread
that was taking care of storing results and the child threads that performed
slice segmentation performed much faster that the parent. So when we used
3 or more threads, the child threads were waiting for the parent thread to
clean up after them. This can be even more enhanced by subdividing the
result storing to individual child threads. This is also an idea for future
work.

65

Type Threads Time.min Time.mean Time.max Time.sd
1 NoOpt 1 18.64 18.69 18.72 0.03
2 NoOpt 2 9.98 10.02 10.05 0.02
3 NoOpt 3 6.93 7.14 7.33 0.16
4 NoOpt 4 5.80 5.85 5.94 0.04
5 NoOpt 5 5.63 5.68 5.72 0.03
6 Opt 1 7.36 7.38 7.42 0.02
7 Opt 2 4.03 4.07 4.15 0.04
8 Opt 3 3.57 3.60 3.65 0.03
9 Opt 4 3.62 3.66 3.73 0.03

10 Opt 5 3.63 3.66 3.68 0.02

Table 7.1: Times needed for compiler optimized and unoptimized segmenation
to run with various thread settings. Preprocessing is not included (always takes
1,9 seconds). Type – differentiates optimized code (Opt) and unoptimized code
(NoOpt). Threads – number of threads used for segmentation. Time.min – mini-
mal time needed for segmentation, in seconds. Time.mean – average time needed,
in seconds. Time.max – maximal time needed, in seconds. Time.sd – standard
deviation of measured times, in seconds.

7.4 Segmentation results

We have segmented 30 different patients. If the fracture was very clear, we
segmented only the fractured femur, if the fracture was barely visible or we
could not find it at all, we performed segmentation of both legs. The actual
results are displayed in table 7.2.

We can summarize that 35% of femoral heads were segmented using
only 1-3 control points (see for example fig.7.4). 14% of them need 11 to
20 control points, 6% needed more than 20. 45% of femoral heads needed
4-10 points. Only one patient was not correctly segmented (that result is
included between those that needed more than 20 control points).

Patient number 27 needed around 20 control points and even then we
did not reach a precise segmentation (fig.7.5 shows the beginning of the
segmentation process). This patient had very unclear corticallis over a large
area, so we were basically painting it again with control points and even six
segmented primary slices were not enough. The segmentation algorithm had
a tendency to stick with pelvic corticallis. This fact fortunately implies that
we cannot find the corticallis because it is too similar to the trabecular bone,
so that including this part of the corticallis in the statistical computation

66

Figure 7.3: Times needed for compiler optimized and unoptimized code to run
with various thread settings on a Core2Quad Q6600 2.4GHz. Times used are from
table 7.1.

does not spoil the result by more than a few HU units (which is good enough
for us).

However, the opposite problem when we segment less than we should
segment introduces a more significant error. One slice that leaves out part
of the bone introduces a hole in the final segmentation twice as big as the
erosion diameter (because of the erosion). So it is important to look for
these places and correct them, because such a volume may already bring
a significant error to the final bone quality analysis. All femoral heads we
have segmented either did not suffer this problem or that problem was easily
corrected by one or several correcting control voxels.

It is possible for each of those patients to do much worse segmentation
by choosing inconvenient primary slices and control points. The right ones
are more or less guessed by experience, the user needs to have some practice
with the program to make the right decision. We have not measured the
time needed for a user that has enough computer and medical knowledge,
but is inexperienced with our method and application to become familiar
with it. But a rough guess is to do several (5-10) segmentations and the
user will be able to guess the right points. This process may take about half
an hour to one hour. The more segmentations the user does, the better the

67

Patient Hip bone Time[m:s] Pri Sec Corr
1 Left 3:45 10 0 2
2 Left 2:09 2 1 10
3 Left 1:18 1 0 2
3 Right 1:57 2 1 3
4 Right 1:30 2 0 0
5 Right 2:55 6 0 0
6 Left 3:09 9 2 0
6 Right 1:35 4 0 0
7 Right 2:02 5 0 0
8 Left 2:37 5 0 5
9 Right 1:25 2 0 0

10 Right 2:14 4 0 0
11 Right 2:12 7 0 0
12 Left 2:20 1 2 5
13 Right 2:52 8 0 0
14 Left 2:42 2 1 2
15 Left 3:22 2 1 8
16 Right 2:31 3 0 5
17 Left 1:16 1 0 0
17 Right 1:40 2 0 0
18 Left 1:20 2 0 0
18 Right 1:11 1 0 0
19 Left 1:11 1 0 0
20 Left 1:36 1 2 0
21 Left 3:12 8 1 0
22 Left 6:00 19 0 4
23 Right 2:35 3 1 2
24 Left 2:45 9 0 0
25 Left 1:45 2 0 0
26 Left 3:22 4 1 3
26 Right 2:34 4 1 5
27 Left 2:56 20 0 0
28 Right 2:25 2 1 0
29 Right 1:36 1 1 0
30 Left 2:25 3 1 7

Table 7.2: Summary of segmentations of 30 patients. Patient – ID of a patient.
Hip bone – shows whether the left or right leg was segmented. Time – time in
minutes:seconds needed for complete segmentation including data loading and
checking the result. Pri – number of primary control voxels for sagittal plane
segmentation. Sec – number of secondary control voxels for frontal plane segmen-
tation. Corr – number of correcting control voxels for axial plane segmentation.
(Note: The right leg of the patient is displayed on the left part of the screen and
vice versa. This is because the axial CT slices can be imagined as being looked
at from below.)

68

probability of successful segmentation in a few clicks.

The timings in table 7.2 of the segmentations are measured roughly from
the moment the user selects a directory with DICOM files to the moment a
final result is obtained by performing final morphological adjustments. So
the time includes:

1. Initial loading

2. Quick examination of the patient and finding the broken bone

3. Selecting central point and user-defined cutting plane

4. Performing initial segmentation of primary and secondary slices

5. Performing complete segmentation of the whole femoral head

6. Adjusting and adding additional primary and secondary slices and
repeating complete segmentation until it is correctly segmented

7. After each segmentation quick examination and error searching

8. Final morphological adjustments

Segmentation that needed only one control point can be seen in figure 7.4.
Segmentation of hard to segment data is in 7.5. Even though the segmenta-
tion looks almost fine after a few clicks, even after more than 20 clicks there
are still errors. The average segmentation process can be seen on figures 7.6
and 7.7. Figure 7.6 shows segmentation of a primary and secondary slice (in
this case there is a problem with the structure of the trabecular bone that
confuses the algorithm, so more than one control points are needed for a
successful segmentation). Figure 7.7 shows additional primary slices added
in places with the biggest error. Several additional primary slices (in this
case two) are usually enough to provide an amount of information needed
for a successful segmentation process in axial slices. The axial slices can be
corrected as well, but in this case segmenting two primary slices was enough
to lead to a successful segmentation.

Note: The colors in the segmentation images are as follows:

• Greyscale – Original CT data

• Green – Mask representing segmentation result

• Yellow line – User cutting plane

69

• Yellow cross – Primary slice control border points

• Dark blue – Control points of the user cutting plane

• Orange – Central point of computation

• Red – Position of user point of view

Figure 7.4: Complete segmentation in one click. This is one of our best and
fastest results. The corticallis structure is well visible. Upper image shows the
primary border voxel placement in the sagittal plane (yellow cross in lower right
part) and both sagittal and frontal control segmentations. Lower image shows
segmentation after the third phase with slice-by-slice segmentation in axial plane,
postprocessing has been applied (3x erosion).

70

Figure 7.5: Example of hard to segment data and its segmentation. This femoral
head was not segmented correctly even after using around 20 control points. You
can notice that the algorithm on this dataset has a strong tendency to stick with
the pelvic corticallis in the sagittal slice, because the femoral corticallis is locally
almost invisible. In axial slices the algorithm escapes in both directions – to
the trabecular bone or to the pelvis. Images from top left to bottom right: (a)
After setting the first control point – the algorithm escaped to pelvis. (b) Needed
control points to correct the slice segmentation. (c) Sagittal slice only a few voxels
away from the first one – notice the holes in the segmentation, these are the most
dangerous ones, because they form considerable errors after erosion. (d) Trying
to add another primary slice for the segmentation of (c) – small yellow crosses are
control points from another slice, the control point added in (d) is the bigger one
(one of the topmost). For a successful segmentation of this slice we would need
another 5-10 points, such as in (a). This correction must be done many times
either in sagittal or axial plane to do a correct segmentation for this patient.

71

Figure 7.6: Example of an average segmentation process, first control slices. It
is normal that there is a significant error after setting the first control point.
However, placing 1-3 additional points usually converges to an almost perfect
result. Images from top left to bottom right: (a) One click in sagittal plane.
(b) Two clicks in sagittal plane – still with significant error. (c) Three clicks in
sagittal plane – only a minor error. (d) Four clicks in sagittal plane – correct
result for this slice.

72

Figure 7.7: Example of an average segmentation process, correcting segmentation
errors by introducing one or more additional primary control slices into segmen-
tation from fig.7.6. In this case two additional primary control slices are needed
for a correct segmentation. Images from top left to bottom right: (a) Found a
sagittal plane that intersects many wrong axial segmentations. (b) Repaired by
adding another primary sagittal segmentation with one border voxel. (c) Found
another error, this time smaller. (d) Repaired with 2 new primary control voxels.

73

Chapter 8

Conclusion

We have presented a novel method based on a combination of several existing
methods with some advancements in preprocessing of our own. The most
difficult part for the implementation (if we consider only the segmentation
method, not the user interface) is definitely the Dijkstra’s shortest path
search algorithm, which is not overly complicated. In this sense we can
state that we have found a working method, that is much easier than many
existing algorithms, both in the sense of actual program implementation and
debugging (here we can compare it to various deformable models algorithms)
or in the sense of the first-time data preparation (compared to registration
and atlas-based segmentations).

A significant advantage of our algorithm is that we are able to do segmen-
tation without previous estimation of bone positions. That enables segmen-
tation of dislocated femur as well as some complicated fractures. That would
be very difficult using some sort of algorithm that relies on the estimated
structure (such as atlas-based segmentation).

The time complexity of the algorithm is quite low. Although it is not a
realtime algorithm, it runs in a reasonable time of around several seconds
(for the whole segmentation), one slice segmentation can be considered as a
realtime performing algorithm) on a mid-level modern PC. With the advance
of modern multicore processors that enter the price level of a normal home
PC component this algorithm can be parallelized to utilize this architecture
and becomes almost realtime.

The algorithm performs quite well for an average CT dataset, it takes
about 3-10 control points to completely segment a femoral head with bro-
ken femoral neck and the segmentation is done in about 1,5 to 3 minutes
including loading and visual error checking. There are also many patients

74

that can be segmented in 1-3 control points, although less common.

During testing segmentations 97% of patients were correctly segmented
(only one was unsuccessful, but the error was not significant for the final
statistical analysis).

Our application was used in the RTG clinic of the Bulovka hospital by
MUDr. Horák for bone quality estimation during a research project that
tried to find a relationship between trabecular bone density and suitability
of a patient for screw treatment of a femoral neck fracture.

8.1 Discussion and future work

There are patients that cannot be segmented so well. A major problem for
this algorithm (and also many others) is a barely visible cortical bone of the
femur and very significant pelvic corticallis. This leads all algorithms that do
not incorporate the information about pelvis into confusion. The algorithms
have tendency to consider the pelvic corticallis as the femoral corticallis.
This may be a major problem for usage that needs precise segmentation
(for example pelvic acetabulum inspection, see fig.7.2). But for statistical
bone analysis this is not such a big problem, it introduces an error to the
computation, but this error is in the order of several Hounsfield units and
the smallest difference we are interested about is in the order of tens of HU.
This small error is an implication of the reason why this error happens –
the corticallis is too similar in density to the trabecular bone. So we cannot
precisely find it, but on the other hand it does not spoil the result too much.

Another problem (although not so common), is when the corticallis is
too thick and does not create a bump in the data, but rather a step between
two almost homogenous areas (low density – internal organs, fat, muscles. . . ,
high density – homogenous bone). This inhibits the ability of our prepro-
cessing step to highlight the corticallis. Fortunately this happened in our
data only at about two patients and even then the bone is not so homoge-
nous as to completely hide the cortical part, so one or two additional control
points lead the algorithm successfully along the corticallis. So the algorithm
may exhibit errors along this part of the bone, but they can be corrected
by additional control points. Of course it happens also in the case of some
other patients as well, but in a less significant way and many times no addi-
tional information is necessary to lead the segmentation correctly, because
the neighborhood of the corticallis is much less like our model of corticallis.

During the error inspection it is important to look for places where the

75

segmented region does not contain the whole bone, because even one slice
that makes a hole in the segmentation introduces a very significant error
after the erosion during postprocessing. This error may influence the final
statistical analysis because a large part of the bone is missing. On the other
hand, solitary slices that segment much larger area than the bone are simply
discarded after the first or second erosion, so it is important to correct them
correctly only in the case more of them are close to each other.

If we do not want to change the algorithm at all, there is definitely some
space for algorithm parameters optimization. Tweaking the equation for
corticallis enhancement function and selecting proper coefficients for the fi-
nal linear combination of corticallis enhancement method and gradient size.
However, this preprocessing step is usually good enough, so it may be ad-
visable to spend effort rather on the segmentation step.

The segmentation step can utilize an information about the smoothness
of the path (we chose not to use this information, because there are some
places like the small depression on the medial side of the femoral head that
need sharp and correct segmentation, but on the other hand smoothness
may help us keep the path on the corticallis in cases it has tendency to
escape to pelvis.

Next topic is to exhibit some more coherency between individual slices.
The final segmentation in axial slices has usually good results, but in the
case of about 1 to 5 slices from the usual number of 50 to 80 slices per femoral
head, there is tendency to escape the corticallis path and follow some other
locally significant feature and the doctor has to correct these results. Maybe
some fuzzy channel addition to slices that stick out of the others may help
this.

Another idea is to completely replace the segmentation step with some-
thing more robust. As has been mentioned, our polar cut shortest path
search algorithm was chosen because of its nice properties as easy imple-
mentation and quick debugging. The preprocessing step in our method has
also some interesting properties and is able to transform very unclear and
hard-to-segment data into quite clear data that can be used for many other
segmentation methods. So utilizing our preprocessing in a completely dif-
ferent segmentation algorithm is possible.

Also the parallelism of our algorithm was not completely exhausted.
There is still a lot of room for parallelization of the preprocessing step and
improvement of the parallelization of the segmentation step.

76

Appendix A

User manual

A.1 Program overview

The program implements our method described in this thesis and several
other features. The goal was to present our method to a radiologist that has
already a good knowledge of the DICOM file format, is able to work with
some other program for CT data examination and has enough knowledge
about for example the window function and other techniques needed for this
type of work.

The overall layout of the program is not completely polished to look as
a professional commercial program, but we tried to do it as user friendly as
possible. On the other hand effort to do the user interface was not given at
the cost of the actual method implementation. The basic process of both
spherical segmentation and channeling segmentation can be done without
entering the program’s menu. All necessary controls are on the toolbar
(fig.A.1). The program’s menu duplicates the function of the toolbar and
adds some other features (such as for debugging).

The toolbar is divided into five separate groups. The first group contains
only the command Open. . . . The second group contains all necessary tools
for working with DICOM data. The third group contains commands for
starting channeling segmentation. The fourth group is only a button for
eroding the surface of the segmented data by one voxel over a 6-neighborhood
and finally the last group contains a button for exiting the program.

77

Figure A.1: Program toolbar and menu.

A.2 Study examination

A.2.1 Opening the study

The basic need for the function of the program is that the study is stored
in one directory, the DICOM files themselves are alphabetically sorted and
no other files are present in that directory. This is the way most of the CT
scanners save these files when exported, but if it happens that more studies
are merged into one directory, then some means of separating them is needed
(we used for example DicomWorks, see [4]).

For opening a study, select Open. . . on the toolbar. A dialog box appears
to load a file. Go into the directory where the actual .dcm files are stored
and select any of them and press Open (or an equivalent in your system
language). An Info box appears and the program now parses the whole
directory and looks for all files that can be loaded as DICOM files. The
screen after loading may look like fig.A.2.

Figure A.2: Program layout after loading a DICOM directory.

78

The info box in the middle of the screen displays all information that can
be described as text. That means various information about the properties
of the loaded data, results from computations, active window function, time
needed for last channeling segmentation or a context information that dis-
plays a line of text dependent on current activity (for example number of
currently viewed axial slice, phase of data processing or segmentation, etc.).

Behind it there is the client area divided into three parts. The left half
is the axial slice. The right half is divided into upper and lower quarter,
upper quarter is the frontal slice and lower quarter is the sagittal slice. All
these show 12-bit data from the DICOM set processed by a window function
into displayable grayscale 8-bit images and various other information with
colored lines and pixels displayed on top of it.

Note: all interaction with mouse and keyboard must be done when the
main window has focus. When another window has focus, for example the
info or other dialog, all mouse and keyboard interaction goes to that dialog
and is usually discarded.

A.2.2 Toolbar

For examination, we need only three buttons from the toolbar: Get value,
Set WL and Center.

Get value is a tool for getting a value in Hounsfield units at the point
where the user clicks with left button. Choose this tool in the toolbar and
then click anywhere in the client area (on any of the three slices). The result
is displayed in the info area as Active value. If you click outside the defined
area, active value displays undefined HU.

Set WL is a tool for manual setting the window function (there is also
a possibility for setting one of preset window functions, see Section A.2.3).
Click on the Set WL tool, then left click and drag the mouse inside the
client area. Dragging along the X axis changes the width of the window
function, dragging along the Y axis changes the level of the window function
(parameter explanation is in Section 6.3.2).

Center is a tool for setting the center of all three slices. Select Center
in the toolbar, then click anywhere in the client area (any of the three
slices). The program automatically finds out the 3D coordinates where did
the user click and centers all three slices on this position. For example if you
roll through the axial slices to the femoral head and then select the center
position inside the femoral head, then both frontal and sagittal slices will

79

recompute as centered on the femoral head. This tool also sets the center
for the channeling computation.

A.2.3 Keyboard

Keyboard commands are very simple and are only for examination purposes.

Arrow Up, Arrow Down, PageUp and PageDown are for movement through
the axial slices. Arrow up/down are for moving to the previous and next
axial slice. PageUp and PageDown jump over 10 slices in the same direction
as arrow keys.

F2 - F9 and F11 - F12 are for selecting preset window functions:

F2 – W:256 L:127 – debug for viewing the values 0-255

F3 – W:350 L:40 – chest

F4 – W:350 L:1 – abdomen/pelvis

F5 – W:1200 L:-600 – lungs

F6 – W:80 L:40 – brain

F7 – W:2500 L:480 – bones

F8 – W:350 L:90 – head/neck

F9 – W:1500 L:400 – bones

F11 – W:800 L:250 – angio

F12 – W:800 L:100 – angio

The only keys left are Escape for exiting the application and I for dis-
playing and hiding information about the examined patient.

A.2.4 Mouse

Mouse is used for almost all interaction, the whole application can be con-
trolled only with mouse. It is important that the main window has focus,
otherwise all mouse interaction goes to another window (for example dialog
windows).

80

Basic interaction is with mouse wheel. For mouse wheel is important also
the position of the cursor. If the cursor is above the axial slice or outside the
main window, then mouse wheel controls the active axial slice. Rolling the
wheel up goes to previous slices, rolling it down goes to next slices. If the
cursor is above the frontal or sagittal slice, the wheel controls the respective
slice the same way (wheel up goes to previous, wheel down goes to next slices
in the series in given direction). In this sense the mouse wheel duplicates
the functionality of up/down arrow keys and PageUp and PageDown keys.

Next possibility to move even faster through the data is by using the
vertical scrollbar. The scrollbar represents the stack of axial slices. So intu-
itively by dragging the scroll box we move to the respective axial slice.

A very fast way to look at the femoral head may look like this:

1. Open DICOM series

2. Drag the scroll box to about 2
3

length of the scrollbar (that is approx-
imately the position of the femoral head in most of the studies)

3. More precisely hit the center of the femoral head with rolling the mouse
wheel when the mouse is hovering above the axial slice

4. Select Center tool in the toolbar

5. Click in the middle of the femoral head displayed on the axial slice

6. Now all three slices should display a slice through the femoral head

A.3 Spherical segmentation

Spherical segmentation was the first feature implemented in this program,
because MUDr. Horák and MUDr. Vacuĺık needed at leat a rough approx-
imation of the complete segmentation as soon as possible. It is also very
simple and since the first version the user interface for this changed a little
bit to better suit the doctor’s needs.

There are predefined two diameters of spheres – 2cm and 3cm (they are
in Parameters Dialog given as radii 1cm and 1.5cm, see Section A.5.3 for
more reference on parameters).

Spherical segmentation is done by selecting tool Sphere 1 or Sphere 2 in
the toolbar, then clicking anywhere in the client area. Sphere 1 is usually
2cm in diameter, sphere 2 is usually 3cm. On the clicked spot a spherical

81

Figure A.3: Example of a spherical segmentation.

mask of given size is created and also displayed. All voxels that fall within
this mask are computed and their mean value and standard deviation are
written in the Info Dialog under their respective names.

Both spherical measurements also change the point of view in the data,
that means that they center all three slices on the sphere. You can see
how the program centers the data and a spherical segmentation example on
fig.A.3.

A.4 Channeling segmentation

Channelling segmentation is the main part of the whole program and is the
actual implementation of the method described in this thesis. The method
consists of three phases, two of which are performed at the same time. The
first phase segments several primary slices in the sagittal plane, second phase
segments one secondary slice in the frontal plane. These two phases are
performed at once. The third phase segments each axial slice that has some
seed points from the first two phases and fills the result, so that the final
volume is a solid, not only a border. For details read Chapter 5 for theoretical
background and Section 6.5.3 for implementation details.

For a successful segmentation look into Appendix B for a quick guide
with images on how to do the channeling segmentation. If the segmentation

82

went well and was correctly done, after eroding you can see the result of the
segmentation in the Info Dialog as the mean value and standard deviation.

A.5 Other program features reference

A.5.1 Patient info

Patient info is written in green letters in the upper left corner of the client
area. You can notice this in most example figures throughout this thesis.
We are using anonymized data, so the name is represented by a number.
The second line is the ID of the patient. In our case it is the same number
as the ”name” of the patient. But in case the doctor uses this on real data,
both these lines display actual information about the patient. This feature
was incorporated on request by MUDr. Horák.

A.5.2 Menu

Menu contains mostly the same functionality as the toolbar and adds a num-
ber of various debugging features not directly needed for the segmentation
process done in a hospital.

File menu

Open . . . – Opens a directory containing a DICOM study – the same
as Open. . . in toolbar.

Export 3D data to RAW . . . – This is an additional feature, that
takes the currently loaded DICOM study and sets all voxels be-
hind the user plane to 0, all voxels marked by a mask to 0 and all
other voxels converts with the current window function to 8-bit
values and stores it in the current directory in a format suitable
for Preintegrated volume renderer, [6]. This is in a state of de-
bugging, so no dialog box for storing location is opened and the
data are stored as two files in the directory we were loading the
data from. This feature is not considered final.

Exit – Exits the program.

Dialogs menu (more about each dialog box in Section A.5.3):

Show info box – Shows an info dialog box that displays various in-
formation and segmentation results.

83

Show parameters box – Shows a dialog box for editing parameters
such as the diameter of the spherical segmentation, number of
computational threads, etc.

Show graph – Shows a window with a graph representing a line be-
tween two points during dragging the Get Value tool.

Show volume set – Shows a window that displays a CVolumeSet,
currently unused

Show polar cut – Shows a window that displays a CPolarCut, cur-
rently unused

Show histogram – Shows a window that presents a histogram com-
puted from the most recently segmented data (histogram repre-
sents only the segmented data).

Tools menu:

Get value – Selects tool Get Value for immediate 12-bit value getting.

Set computation center – Selects tool Center for setting point of
view in the data and at the same time setting the computational
center for channeling segmentation.

Adjust window function – Selects tool Set WL for setting window
transformation function.

Set cut plane – Selects tool Cut for setting user-defined cutting plane
for the femoral neck.

Get sphere 1 – Selects tool Sphere 1 for spherical segmentation, de-
fault diameter 2cm.

Get sphere 2 – Selects tool Sphere 2 for spherical segmentation, de-
fault diameter 3cm.

Set primary border points – Selects tool Border for setting and
removing primary border points for sagittal slices segmentation.

Set secondary border points – Selects tool Border 2 for setting
and removing secondary border points for frontal slice segmenta-
tion.

Set correcting border points – Selects tool Correcting for setting
and removing correcting border points for final axial segmenta-
tions.

Compute all phases – Invokes computation of all segmentation phases
(sagittal, frontal and all axial slices) and final filling of the seg-
mented volume.

84

Compute first phase – Invokes computation of control slices seg-
mentation (sagittal and frontal slices segmentation).

Erode mask – erodes (reduces) the segmented mask by one voxel
over a 6-neighborhood.

Dilate mask – dilates (enlarges) the segmented mask by one voxel
over a 6-neighborhood.

View menu:

Show cut plane – Shows/hides dark blue points representing the
user-defined cutting plane control points.

Show cut halfspace – Shows/hides yellow line representing the user-
defined cutting plane.

Show display position – Shows/hides red lines representing the po-
sition of other two slices in each displayed slice.

Show mask – Shows/hides segmented mask (works on mask from
both spherical and channeling segmentation).

Show dragged line – Shows/hides a line between which was dragged
the mouse using the Get Value tool (values on this line are then
sent to the Graph Dialog).

Show info – Shows/hides basic information about the patient (name,
ID).

Help menu:

About – Shows a dialog box informing about the author and current
version.

A.5.3 Dialog boxes

Except for Info Dialog (which is displayed automatically), all other dialog
boxes are only for debugging purposes. They show various information about
the data properties or are able to display intermediate results of various
computations.

Info Box is the most important dialog in the program. It displays the
following information (given by the order they are written in the dialog):

Resolution – The resolution of the slices, a typical value is 512x512x12,
that means one slice has resolution 5122 and each voxel is stored with
12 bits.

85

Voxel size – The size of one voxel, given in millimeters, typically around
0.6x0.6x0.5.

W – Window function width.

L – Window function level.

Active value – Value stored in a voxel where user clicked with the Get
Value tool.

Mean value – Mean value of all voxels from a segmentation.

Standard deviation – Standard deviation of all voxels from a segmenta-
tion.

Time – Time needed for last channeling segmentation excluding the pre-
processing step.

Number of borders – Gives the numbers of primary, secondary and cor-
recting control voxels used for the last channeling segmentation.

Message – Displays various information, either about the loading or an
information about the segmentation process, etc.

Parameters Box is a dialog for changing several program parameters.
These parameters mean:

Measurement radius in cm – Sets the radius of tool Sphere 1 for spher-
ical segmentation.

Measurement 2 radius in cm – Sets the radius of tool Sphere 2 for spher-
ical segmentation.

File cache size – Number of axial slices that are kept in memory. Do not
change this value unless you know what you are doing, may lead to
program instability.

Number of threads – Number of threads that run in parallel during the
channeling segmentation. An optimal value is number of processors
plus one (3 for dual core, 5 for quad core processors)

Graph window shows a graph of actual values obtained from dragging the
Get Value tool in the axial slice. Bottom of the window represents -1023,
top of the screen represents 3095. This is for debug purposes only.

86

Volume set dialog can display a small volume from the program. It
is filled with data only during specific actions inside the program, mostly
displays nothing. If some data are displayed, then mouse wheel is for mov-
ing through these data, left click switches between XY , XZ and Y Z cuts
through these data.

Polar cut dialog is for debug displaying of some specific polar cut from
the computation phase. Currently unused.

Histogram window displays the histogram of segmented data. This is
for bone quality analysis described in Section 3.4. A very simple way to
present this window is: open this window in menu, then select tool Sphere
1 or Sphere 2 and click anywhere in the CT data. The histogram window
should display the histogram of the segmented data. Try experimenting with
sphere position. This histogram also displays the result of our channeling
segmentation the same way as spherical segmentation.

87

Appendix B

Quick guide

This chapter is for easy and quick explanation of channeling segmentation
process in our application.

B.1 Open DICOM study

Run the program and then select Open. . . in the toolbar. In the Open dialog
box (fig.B.1) go into the directory of target patient pelvis study, select any
file and press Open.

Figure B.1: Open dialog. Find directory with patient study, select any file and
press Open (or equivalent in your language).

88

B.2 Set center of computation

When the data is loaded, press F7 or F9 to adjust the window function for
bone inspection (for better clarity). Then scroll through (either by mouse
wheel or by dragging scroll box to around two thirds of the scrollbar length)
to find the femoral head. Then choose tool Center in the toolbar and click
approximately in the middle of it on the axial slice (fig.B.2). Then correct
the position on sagittal and frontal slices, so that it is approximately in the
geometrical center.

Figure B.2: Choose center of computation on axial slice. Then correct the position
on frontal and sagittal slices.

B.3 Set user-defined cut

Scroll through the data to upper part of the femoral head and find the place
where the femoral neck ends. This is an ideal place to set the first two
control points of the user-defined cutting plane (see fig.B.3). Then scroll
to lower part of the femoral head, and place the third control point of the
cutting plane (fig.B.4).

B.4 Segmenting the primary slices

Go back approximately to the center of the computation. The primary
segmentation is in the sagittal plane, several sagittal slices can be segmented.

89

Figure B.3: Setting the first two control points of the user defined cut plane.

Figure B.4: Setting the third control point of the user defined cut plane.

So select Border tool in the toolbar and click once on the femoral corticallis
in the sagittal plane and click on First phase in the toolbar to check, whether
the result is alright. If it is wrong, correct it with additional border points
(fig. B.5). You can always check the result by running First phase.

When the first primary slice is done, check whether the secondary seg-
mentation went correctly – it is done always after the primary segmentation.
The only secondary slice has such position that it contains the center of com-
putation. If there are errors, you can correct them by selecting Border 2 and
clicking on the wrong parts (fig.B.6). Again, you can check the result with
First phase tool in the toolbar.

90

Figure B.5: Primary segmentation in sagittal plane. Done with tool Border from
the toolbar.

Figure B.6: Secondary segmentation in frontal plane plane. Done with tool Bor-
der 2 from the toolbar. This is only for correcting errors, secondary segmentation
is run always after the first and mostly without errors or with only minor correc-
tions needed.

B.5 Complete segmentation

When the primary segmentations are done, you can proceed with the whole
segmentation. This is simply done with clicking on All phases in the toolbar.
The result can be seen in fig.B.7. Now it is important to check on axial
slices each segmented slice of the volume whether it has been done correctly.
Quickly scroll through all the axial slices containing the femoral head and

91

Figure B.7: Final segmentation. In this case correct, but if needed, can be cor-
rected on individual axial slices with tool Correcting.

you should be able to visually distinguish correctly segmented slices from
the ones with errors.

In our case no errors were found, but it may happen (and it mostly does)
that there are errors. They may origin in a strong trabecular bone structure
or weak corticallis. In that case, check how many slices are affected. If it
is only a singularity in one or two slices, select tool Correcting and click on
each of those slices on places where it needs correction (in axial plane) and
then check result with All phases whether it is enough.

If the error propagates along the sagittal direction into more slices, it
is advisable to use another sagittal segmentation. Easily move the mouse
pointer over the sagittal slice and then scroll with mouse wheel the sagit-
tal plane into the position of those errors. Then perform another primary
segmentation as described in Section B.4 and shown in fig.B.5. Then again
check with First phase until this new primary segmentation is correct, then
perform full segmentation with All phases and continue this way until the
whole volume is correctly segmented.

B.6 Postprocessing

When the femoral head is correctly segmented, press several times the Erode
tool to remove the corticallis (around 2x-3x). When this is done, the final
result is displayed in the Info Box. If you eroded too much, just press All
phases to return to the original segmentation.

92

Appendix C

Contents of DVD

bin – Executable version of our program

data – Samples of pelvic CT scans saved in DICOM format

doc – PDF and PS versions of this thesis

src – Source files needed for compiling the application

libs – Library files of DCMTK 3.5.4, both debug and release versions

res – Resource files

src – Application C++ source code including headers for DCMTK
3.5.4

testing – Debug directory for testing

93

Bibliography

[1] Čihák, R.:Anatomie 1, Grada Publishing, 256-266, Praha, 2001

[2] DCMTK: DICOM Toolkit, http://dicom.offis.de/, 2007

[3] DICOM: Digital Imaging and Communications in Medicine,
http://medical.nema.org/, 2008

[4] Puech, P., Boussel, L.: DicomWorks, http://dicom.online.fr/,
2008

[5] Dungl P., a kolektiv: Ortopedie, Grada Publishing, 917-949,
Praha, 2005

[6] Engel, K., Kraus, M., Ertl, T.:High- Quality Pre-Integrated Vol-
ume Rendering Using Hardware-Accelerated Pixel Shading, Pro-
ceedings of the ACM SIGGRAPH/EUROGRAPHICS workshop
on Graphics hardware, Los Angeles, 2001

[7] Ferda, J., Novák, M., Kreuzberg, B.:Výpočetńı tomografie,
Galén, 2002

[8] Gonzales, R.C., Woods, R.E.: Digital Image Processing, Third
edition, Prentice Hall, Upper Saddle River, NJ, 2008

[9] Gonzales, R.C., Woods, R.E., Eddins, S.L.: Digital Image Pro-
cessing Using MATLAB, Prentice Hall, Upper Saddle River, NJ,
2004

[10] Haralick, R.M., Shapiro, L.G.:Image segmentation techniques,
Comput. Vis. Graph. Im. Proc., 29, 100-132, 1985

[11] Kass, M., Witkin, A., Terzopulos, D.:Snakes: Active contour
models, International Journal of Computer Vision, 1(4): 321-
331, 1988

94

[12] Kraj́ıček, V.:Měřeńı objemu v 3D datech, Diploma thesis, Fac-
ulty of Mathematics and Physics, Charles University, Prague,
2007

[13] Kraj́ıček, V., Pelikán, J., Horák, M.: Measuring and segmenta-
tion in CT data using deformable models, WSCG, 15:149, 2007

[14] Lakare, S.:3D Segmentation Techniques for Medical Volumes,
State University of New York at Stony Brook, 2000

[15] Liu, H.K.:Two and Three Dimensional Boundary Detection,
Computer Graphics and Image Processing, 6: 123-134, Apr. 1977

[16] Maintz,J.B.A.,Viergever,M.A.:A Survey of Medical Image Regis-
tration, Medical Image Analysis, 2: 1-36, 1998

[17] Pettersson, J., Borga, M., Knutsson, H.:Some Issues on the Seg-
mentation of the Femur in CT Data, Linköping University, De-
partment of Biomedical Engineering & Center for Medical Image
Science and Visualization, Linköping, Sweden

[18] Pettersson, J., Knutsson, H., Borga, M.:Automatic Hip Bone
Segmentation Using Non-Rigid Registration, Linköping Univer-
sity, Department of Biomedical Engineering & Center for Medi-
cal Image Science and Visualization, Linköping, Sweden

[19] Pham, D.L., Xu, C., Prince, J.L.: A Survey of Current Methods
in Medical Image Segmentation, Annual Review of Biomedical
Engineering, Baltimore, 1998

[20] Pohle, R., Toennies, K.D.: Segmentation of medical images using
adaptive region growing, Otto-von-Guericke University, Magde-
burg, 2001

[21] Rohlfing, T., Brandt, R., Menzel, R., Maurer, C.R.Jr.: Segmen-
tation of Three-dimensional Images Using Non-Rigid Registra-
tion: Methods and Validation with Application to Confocal Mi-
croscopy Images of Bee Brains, Medical Imaging 2003: Image
Processing, San Diego, 2003

[22] Sahoo, P.K., Soltani, S, Wong, A.K.C.:A survey of thresholding
techniques, Comput. Vis. Graph. Im. Proc., 41, 233-260, 1988

[23] Sezgin, M., Sankur, B.:Survey over image thresholding techniques
and quantitative performance evaluation, Journal of Electronic
Imaging 13(1), 146-165 (January 2004), 2004

95

[24] Stegmaier, S., Strengert, M., Klein, T., Ertl, T.:A Simple and
Flexible Volume Rendering Framework for Graphics-Hardware-
based Raycasting, Proceedings of Volume Graphics 2005, Stony
Brook, New York, USA, 187-195, 2005

[25] Szeliski, R.:Bayesian modeling of uncertainty in low-level vision,
International Journal on Computer Vision, 5: 271-301, 1990

[26] Terzopulos, D., Fleischer, K.:Deformable models, The Visual
Computer, 4(6): 306-331, Dec 1988

[27] Xuan,J., Adali, T., Wang, Y.:Segmentation of Magnetic Reso-
nance Brain Image: Integrating Region Growing and Edge Detec-
tion, Proceedings of the 1995 International Conference on Image
Processing, 1995

[28] Zhang, Y., Matuszewski, B.J., Shark, L.K.:A Novel Medical Im-
age Segmentation Method using Dynamic Programming, Medical
Information Visualization – BioMedical Visualization, 2007

[29] Zhang, Y., Qu, H., Wang, Y.:Adaptive Image Segmentation
based on Fast Thresholding and Image Merging, Proceedings
of the 16th International Conference on Artificial Reality and
Telexistence–Workshops, 2006

96

