
Charles University in Prague

Faculty of Mathematics and Physics

MASTER THESIS

Ji°í Zouhar

Regression Testing For zlomekFS

Department of Software Engineering

Supervisor: Doc. Ing. Petr T·ma, Dr.

Study Program: Computer Science

2008

2

I would like to thank my supervisor, Doc. Ing. Petr T·ma, Dr., for his valuable
advice.

I declare that I have written this master thesis on my own and listed all the
used sources. I agree with lending of the thesis.

Prague, April 18, 2008

Contents

1 Introduction 7
1.1 Goals . 8
1.2 Structure of the thesis . 8

2 Filesystem testing 9
2.1 Test types . 10

2.1.1 Speci�cation testing . 10
2.1.2 Api conformity . 10
2.1.3 Functional testing . 11
2.1.4 Benchmarking . 11

2.2 Test format . 12
2.3 Unit based testing frameworks 12

2.3.1 Common principles . 13
2.3.2 Other features . 13
2.3.3 Best practices . 13
2.3.4 Implementations . 14

2.4 Checkpointing . 16
2.5 Logging, tracing . 17

2.5.1 Models . 17
2.5.2 Pitfalls . 18

2.6 Continuous integration . 20
2.6.1 Automation . 20
2.6.2 Distributed testing . 21
2.6.3 Build system . 23
2.6.4 Presentation layer . 23

2.7 Result repository . 23
2.7.1 Data storage . 23
2.7.2 Presentation layer . 24

2.8 Pruning output . 25
2.9 Sandboxing . 25
2.10 Filesystem test patterns . 26

3

4 CONTENTS

2.10.1 FSX . 26
2.10.2 LTP . 27
2.10.3 OpenSolaris ZFS / NFSv4 Test Suite 27
2.10.4 Mongo . 27

2.11 Random workload generation 27

3 The test suite architecture 29
3.1 Programming language . 29
3.2 Used tools . 30

3.2.1 Testing environment . 30
3.2.2 Continuous integration 30
3.2.3 Web result presentation and result repository 31
3.2.4 Logging . 32
3.2.5 C based unit testing . 32
3.2.6 Documentation . 33

3.3 Architecture . 33

4 Implementation details 37
4.1 ZlomekFS changes . 37

4.1.1 Logging . 37
4.1.2 Zfsd status noti�er . 38

4.2 Testing environment . 39
4.2.1 ZfsTest . 40
4.2.2 Failure state data . 41
4.2.3 Reporting and result repository 42
4.2.4 Options . 43
4.2.5 Random workload generation 44
4.2.6 Extendability . 45

4.3 C unit test . 45
4.4 Build system . 46

4.4.1 Standard targets . 47
4.5 Buildbot con�guration . 47
4.6 Typical call sequence . 48

5 Conclusion 51
5.1 Further work . 53

A Coding conventions 55

B Installation 59

C Enclosed CD 69

CONTENTS 5

Název práce: Regression Testing For zlomekFS

Autor: Ji°í Zouhar

Katedra (ústav): Katedra softwarového inºenýrství

Vedoucí diplomové práce: Doc. Ing. Petr T·ma, Dr.

e-mail vedoucího: petr.tuma@m�.cuni.cz

Abstrakt: ZlomekFS je distribuovaný systém soubor· ur£ený k transparentnímu

sdílení adresá°ových strom·. Tato práce popisuje tvorbu systému regresního testování

pro ZlomekFS.

Práce shrnuje metody pouºívané k testování softwaru podobného ZlomekFS a na je-

jich základ¥ vytvá°í samostatný systém regresního testování. Systém sestává z ²esti

£ástí: (1) knihovny pro unit testing kódu psaného v jazyce C, která poskytuje auto-

matické vyhledávání test· s minimalistickým rozhraním, (2) logovacího frameworku

s rozhraním pro jazyky C a Python, který podporuje �ltrování a vzdálené ovládání,

(3) generátoru náhodné zát¥ºe pro vytvá°ení náhodných testovacích sekvencí po-

mocí grafu závislosti s podporou reprodukování a zmen²ování zát¥ºe vedoucí k chyb¥,

(4) systému pro kontrolu testování a hlá²ení výsledk· test·, (5) repozitá°e pro uk-

ládání výsledk· s webovým uºivatelským rozhraním, (6) serveru pro automatické

sestavování a testování.

Klí£ová slova: testování software, extrémní programování, lad¥ní program·

Title: Regression Testing for zlomekFS

Author: Ji°í Zouhar

Department: Department of Software Engineering

Supervisor: Doc. Ing. Petr T·ma, Dr.

Supervisor's e-mail address: petr.tuma@m�.cuni.cz

Abstract: ZlomekFS is a distributed �lesystem for transparent sharing of directory

trees. This thesis describes how regression testing for ZlomekFS was built.

The thesis summarizes software testing methods in the context of ZlomekFS and

proceeds to build an actual testing system for ZlomekFS, consisting of six parts: (1)

a unit testing framework for C code with an automatic test discovery and a minimal-

istic interface, (2) a logging facility with C and Python interfaces, with �ltering and

remote control, (3) workload generator for random test sequences generated from

an operation dependency graph with support for failure reproduction and trace re-

duction, (4) test controlling and reporting framework, (5) test result repository with

web user interface, (6) continuous integration server for automatic builds and tests.

Keywords: software testing, extreme programming, debugging

6 CONTENTS

Chapter 1

Introduction

ZlomekFS is a special distributed �lesystem aimed at transparent sharing of
directory trees between any number of computers (nodes).

A unit of sharing (a local directory) is called a volume. In ZlomekFS, there
are no server and client nodes, the hierarchy is a general graph where every
node can export volumes. Despite this, resulting export hierarchy must be
a tree. When two nodes connect, for unique volume one of them must be
a master providing content and the other a client. This relationship can be
bidirectional (a client for one volume can be the master for another).

A node can cache content of a volume obtained from another node and
provide it to further nodes. This caching is not required, a node can use
remote volume without any local cache too. On one node, all volumes must
be mounted in a tree with one root directory (volume) and other volumes
mounted under the root.

ZlomekFS doesn't require any special layer on the disk, another (arbitrary)
�lesystem is used for storing the cached content. To reduce network bandwidth,
ZlomekFS doesn't handle �les as elementary units, but operates on chunks
(parts of �le with prede�ned size).

For mobile nodes, there are two modes of operation (besides full speed
connection). If there is no connection, the node operates in disconnected mode
(data is served from cache only). Eventually, when the node connects again,
data is synchronized with other nodes. Last mode is slow connection mode,
when, to limit tra�c, only directories and data actually read from �les are
synchronized with the master node. When changes are made to �les in the
disconnected mode, con�icts can arise upon synchronization. In ZlomekFS, a
con�ict is represented as set of �les in a special directory.

Filesystems, same as any other software, can contain bugs. But in case
of �lesystems, there is a bigger-than-usual need for reliability. This is due to
the low-level character of �lesystems: applications depend on bug free work of
components underneath them, and most applications use �lesystems to store

7

8 CHAPTER 1. INTRODUCTION

permanent data. To ensure reliability of a �lesystem, exhaustive testing should
be done to cover as many use-cases of the software as possible. This is not only
convenient for one term development, but also essential when further extension
and development will be done.

However, ZlomekFS lacks any tests, or testing environment. As described,
ZlomekFS is very complex and special �lesystem, and there are only few similar
�lesystems. Because of this, there is need to develop new framework or at least
special tools to allow testing of its special functions. The framework should
be able to provide debugging and tracing information, if bugs are found.

1.1 Goals

Extend the existing ZlomekFS implementation by introducing a regression
testing framework. The framework should be capable of submit both prede-
�ned and random workload to the �lesystem and, either by comparing the
results with the same operations performed over another �lesystem, or by
some other appropriate means, identify �lesystem errors. The identi�cation of
an error should contain both a minimal sequence of steps necessary to repro-
duce the error, and the debugging protocol excerpt relevant to the error. The
framework should include support for generating the debugging protocol and
changing the network conditions.

Make all the developer documentation an integral part of the ZlomekFS
project using appropriate tools such as DoxyGen.

1.2 Structure of the thesis

Chapter 2 describes common techniques used for testing. Basic test types are
listed with their usage and aims. Reasons are given for what tools should be
used for testing, and how they can help debugging.

Chapter 3 summarizes tools used in actual regression testing system for
ZlomekFS, gives reasons for why they were chosen, and list their main features.

Chapter 4 describes internals of the system: changes made in ZlomekFS are
outlined, then component interaction is described, and �nally each component
function is documented.

Chapter 5 summarizes the work done, how goals are met and what new
approaches are used.

Chapter 2

Filesystem testing

In general, testing of a �lesystem is very similar to testing of any other software.
So basic requirements holds, and in addition there are some extra requirements.

To provide best stability of software, tests should cover maximum of its
functionality. By executing these tests, bugs can be found before they can
a�ect real usage. The bigger the coverage is, the smaller is the probability that
bug would stay undiscovered. For failed tests, testing tools should provide as
much information from the time of failure as possible. These data can be later
used to reproduce the failure or at least could be useful for tracing.

In reality, the coverage is often the biggest problem - programmers tend
to omit writing tests, or refuse to write them at all. The cause of this is that
writing tests is uninteresting extra work, sometimes consisting of non-trivial
steps.

To reduce this problem, the test format (Section 2.2) has to be simple,
readable, and user-friendly. To make it even easier to write tests, there is ten-
dency to allow small unit tests as near to actual code as possible (Section 2.3).
If these tests are well written, they can serve as programmer documentation
too.

The output of tests should be accompanied with some state information
from the time of failure. This can be achieved by using some tool for creating
snapshots (Section 2.4), that may or may not support resuming. When auto-
mated test run fails, tester may need to run it again. These reruns may use
snapshots, if the method used for creating them makes the resume possible.

For tracing the code execution, there should be some tracing and logging
tools (Section 2.5). They have to have minimal footprint, but collect as much
information as possible.

During regression testing, tests should be executed automatically in sched-
uled periods (Section 2.6). Results from these runs should be collected and
presented centrally (Section 2.7).

When testing unsafe operation, test execution should be separated from

9

10 CHAPTER 2. FILESYSTEM TESTING

running system. This approach is often called sandboxing (Section 2.9).

For �lesystem testing, it is hard to �nd good testing patterns (Section 2.10)
which will cover all cases that can occur. So it is a good idea to have some
random workload generator (Section 2.11) that would exercise the �lesystem
randomly.

The problem with this approach is that outputs of such testing tends to
be very big, and only a small portion of them is related to the error. To allow
random testing and avoid this unwanted side e�ects, some pruning algorithm
has to be used (Section 2.8).

As the ZlomekFS is a multi-threaded, distributed �lesystem, the suite
should have some support, or at least extensibility to allow control or sim-
ulation of a distributed environment.

2.1 Test types

A �lesystem can be seen as many things, and thus it can be tested from many
points of view. Brief description of general test types follow.

2.1.1 Speci�cation testing

We can look on a �lesystem as on a speci�cation of a way how to store data
and associated metadata on storage media. In this case, we can ask if the
structures speci�ed are su�cient for accessing stored data, if the speci�cation
covers all eventual operations that should be available, and if the transitions
made by operations are sane and leads from a correct state to another correct
state. Speci�cation testing is generally done only once at the beginning, before
actual implementation work is done.

2.1.2 Api conformity

Some �lesystems don't focus on the way how to store data on media but how
to make them accessible. A well-known group of such �lesystems are network
�lesystems. They assume that some other �lesystem does the storage, they
specify only the way how data will be accessible remotely, and put some restric-
tions on the �lesystem behavior. In this case, the particular implementation
is tested if it conforms to the speci�cation. For example, in case of NFS there
are test suites for checking interface stability and protocol conformity [9].

2.1. TEST TYPES 11

2.1.3 Functional testing

Functional testing aims to test actual code if it works as expected and doesn't
contain bugs.

Functional tests can be divided by scope to:

• Unit tests are the smallest tests. They don't test functionality of the
whole application, but test functionality of small pieces of code, ensuring
that the code works as expected. For example, when there is function
for writing to �le, there should be a unit test that will try to write
data through this function and then will check if the data were written
correctly. Main purpose of unit tests is to prevent regressions upon code
refractoring. They test the internal api stability. For best e�ect, they
should cover 100% of code (all code in an application should be executed
upon run of all unit tests). Unit testing should be white box testing -
tester should know how the code is working. For unit testing, there is
no di�erence between testing classic application and �lesystem testing.

• Feature tests are used to check global functionality provided by the
software to its user. This type of tests is very similar to api conformity
testing (Subsection 2.1.2), but in general, they don't have to use user
api. They should cover all use-cases of the software, but not necesarily
all code (yet the untested code may be redundant). Tests of this level
should ensure that the software will work as it is intended to. When
tests are accessing software through general user api without knowledge
of internals (or regardless of the knowledge), it is called black box testing.
For �lesystems, black box testing is often used. One reason for it is that
since user api of all �lesystems is the same (at least basic part), then
these tests can be used for more �lesystems. Second reason is, that
�lesystems are very complex and it is easier to write tests for general
problems (such as race conditions) than searching for special paths in
code that could fail. Actually, these tests for special paths should be
written post-mortem when some bugs are found (to prevent them from
appearing again).

2.1.4 Benchmarking

Benchmarking gives an answer to the question �how long it will take� for
every use-case of a �lesystem. Measurements are done on di�erent �lesystem
implementations, or �lesystems with similar purpose. The setup should be
similar for all subjects tested. Most of benchmarking tools assumes that the

12 CHAPTER 2. FILESYSTEM TESTING

implementation is sane and doesn't check results of operations. Their goal is
to compare more implementations or �lesystems.

2.2 Test format

When tests are expected to be executed only manually, the format could
vary and the main requirement is ease of use. On the other hand, when they
have to be executed automatically, then for every format there must be
support in all components of the test suite. Because of this, there is tendency
to minimize the number of formats. This applies on both language of tests
and interface for tests themselves.

The basic choice is to write tests in native language of the application.
Sometimes, embedding tests within application code is supported with some
�ags saying, �this is a test code, it should be executed when testing�. This
allows having tests as close to code as possible. It is ideal for short tests of
functionality of small parts (functions, objects, etc.).

For automated testing, scripting languages are often used to write either
control logic, or everything including tests. Scripting languages are ideal for
the logic because of their �exibility. The reason for writing tests in the same
language as control component is that it makes integration easier.

Another possibility is to have tests in some proprietary format. This
o�ers possibility of de�ning a format that is very suitable for the needs of
particular software, but brings disadvantage of having to change the format
every time new requirement is found. Proprietary format is also often less
compatible with external tools.

Some testing tools use con�guration (tests) in XML, or XML with embed-
ded code. Main reason for XML is possibility to use external tools for editing
tests, or for XML-based transformations. On the other hand, XML is a very
unsuitable format for hand-written code and the DTD of con�guration is often
hard to understand.

2.3 Unit based testing frameworks

Small tests placed near to code tested are often called unit tests. They should
be simple and fast. Sometimes, they are used as programmer documentation
too. Unit testing is based on Kent Beck's testing pattern [24].

2.3. UNIT BASED TESTING FRAMEWORKS 13

2.3.1 Common principles

Every test case is executed separately, test cases have common interface (in
object based languages presented as common super class). The run of single
test case should be independent on other test cases.

Test case may have �xtures - methods to set up environment before test
and clean it up after test. These methods are very often called setup and
teardown. Teardown method is executed regardless of result of test.

Expected problem in test is called failure, non expected problem is called
error.

There is common method of testing if expectations hold. In Smalltalk
by using should and shouldn't blocks, in modern languages by using asserts.
When assertion doesn't hold it is called failure. Errors are mostly represented
by exceptions.

Result of test is a result object.

T est cases are aggregated to test suites that can be aggregated too.

All test cases in test suite are run recursively by calling run on their root
test suite. Returned value is an aggregated Result object.

Unit testing should be automated, independent on human interaction.

2.3.2 Other features

Many unit testing frameworks o�er more elaborated tests structuring and
state handling (�xtures). Very often, tests can be aggregated to classes with
common setup and teardown methods those are run before and after every
single test.

Moreover there can be additional �xture levels for other code units
(depending on programming language these can be class level �xtures, module
level �xtures, package level �xtures, etc.). Setup_ code is run before entering
particular block and teardown_ code is run after leaving particular block of
tests. For example setup_class is run once before running all tests in the class,
and teardown_class is run after all tests have run. Note that this can break
the independency requirement. If �xtures are written for more levels, they run
in cascade.

2.3.3 Best practices

Unit testing is mostly used for testing small pieces of code and thus use
cases are mostly very simple and executions of tests fast.

Unit testing is very often used to watch for regressions, so all tests should
be executed automatically by some tool watching for changes.

14 CHAPTER 2. FILESYSTEM TESTING

There should be maximum possible code coverage done by unit tests.
Every function (method) should have at least one test case, class should have
test suite as counterpart.

2.3.4 Implementations

There is at least one unit testing framework for every programming language
(see [18] for short list).

This section will focus mainly to these written in C (language ZlomekFS
is written in) or python. Aim on python is given by choice of language for
driving component, for reasoning see Section 2.2 and Section 3.1.

Python has Unittest [43] as its standard tool (was called PyUnit [42]
before integration to python standard distribution). The interface is strongly
object oriented, tests must inherit from TestCase class and override speci�c
methods. Doesn't o�er more levels of �xtures. It is very pure reimplementation
of Kent Beck's original Smalltalk framework.

Py.test [13] is an alternative python unit testing framework. It is part of
py.lib library [34], there is �xture support on all levels, it doesn't need to inherit
from any superclass, but �xed naming convention is used instead. Uses the
standard python assert clause to test for failures, handle exceptions as errors.
Moreover, py.test has automated test discovery tool for searching for tests in
directory trees. Test classes can be marked as conditionally disabled depending
on generic boolean expressions. This library has support for generator methods
which allows to yield more tests easily. The py.test most interesting feature
is ease of use. It is possible to just write a function with test in its name
and py.test will collect it, run, and if there is failure or error, the output
and backtrace will be printed in a readable format. Py.test can also take big
advantage from py.lib which o�ers distributed execution through py.execnet,
etc. Whole py.lib is written to be easy to use, but in current implementation
with trade o� con�gurability. Note should be taken, that py.lib was developed
as a grant project, and after grant expiration there were little of improvement
in the project.

Another unit testing framework for python is Nose [41]. O�ers backward
compatibility with standard unittest and some compatibility with py.test li-
brary. It tries to mimic py.test without magic. Nose provides all features of
unittest, moreover it implements py.test's all level �xtures, tests doesn't need
to inherit from a superclass, it has automated test discovery tool, and uses
generators. In addition, Nose is very con�gurable. It has build in support
for changing naming conventions. Tests can have �ags, and it is possible to
de�ne expressions which tests should be run according to these �ags. Nose has
extensible api with plugin support. There are for example plugins for pro�ling,

2.3. UNIT BASED TESTING FRAMEWORKS 15

doctest, code coverage, etc.

Curiosity among unit testing frameworks is MinUnit [26], which is C
based, and consists only from three lines of code (two macros and one def-
inition). It doesn't o�er much, just assert - print message block.

CUnit for Dr.Ando [21] claims to be easy to use C based unit test-
ing framework inspired by cppunit-x (interesting piece of code documented in
Japanese). In fact, it is just another framework which lacks �xtures and o�ers
just test counting beyond MinUnit.

Simple C++ Testing framework [36] is written whole as macros, with
somehow weird syntax. It o�ers basic assertions and test suites. There is no
need to write main function listing all tests, but this is achieved by wrapping
all tests to macros START_TESTS and END_TESTS. Because of this, tests
must be written in one big chunk. Again, tests �les must be compiled and run
by hand. It runs equally in pure C and C++ environment.

CxxTest [49] is C++ based, all tests have to be wrapped to test suite
Classes. This framework has assertions, �xtures, and handle exceptions. Au-
tomated collection is done by python script (simpli�ed C++ grammar is used).
CxxTest may have problems upon linking with pure C based code. It has sup-
port for mocking global functions, but this support works on base of calling
functions in a separate namespace, so it is not pure mock and code has to be
modi�ed to use mocked functions.

CppTest [38] is another C++ based unit test framework with basic fea-
tures such as assertions, �xtures, and test suites. Beyond this, CppTest is
capable of handle and format output, it o�ers api for writing output format-
ters (TextOutput, CompilerOutput, and HtmlOutput formatters are imple-
mented). As for CxxTest, pure C sources must be modi�ed (headers wrapped
in extern C block) to run in CppTest.

CUnit [37] is C based (still C++ compatible), it supports assertions,
suites, test counting, results are stored in global registry, more user interfaces
(for running tests) are implemented.

GUnit [33] is another unit testing framework with assertions, suites and
�xtures. It uses GTK+ libraries (for almost anything). It has gnome and
hildon (embedded) GUI, dedicated logging facility. GUnit doesn't o�er dis-
covery, however compiles suites as dynamically loadable libraries.

RCUnit [29] (C based) supports assertions, suites (called modules), �x-
tures. It has own logging facility, tests can be disabled. RCUnit has docu-
mented interface for writing output handlers. HTML and plain text handlers
are implemented.

Cutee [23] tends to be as simple as possible. Thus it supports only as-
sertions, no �xtures or suites. Tests are collected automatically, yet �les with
tests must be listed in Make�le.

16 CHAPTER 2. FILESYSTEM TESTING

Check [39] provides assertions, suites, and simple �xtures. It forks every
test in separate process, can handle timeouts, output can be printed in plain
text or XML. Has no build or collect helpers, adding test is very annoying.

CuTest [35] from basic features provides assertions and suites. It has
scripted tool for executable generation.

2.4 Checkpointing

Some failures are hard to reproduce thus developers want as much information
about the faulty run as possible. Then, state of the application in time of failure
may be required. In this case, support for creating snapshots (checkpoints) can
be useful.

Moreover, as the sequence to failure can be very long, it can be convenient
to repeat just last part of it, or skip some parts to �nd the shortest run to
bring about the bug. For these reruns, it is best when the consequent runs
have the same start conditions as the �rst one. If resuming from stored state
is possible, then a snapshot should be used as this common start point.

There are many projects trying to create full featured checkpoint / re-
sume support for applications. They can be divided in two groups: user-space
only tools and kernel-based tools. The main problem among them is that none
of them have full support for every resource an application could use. The most
frequently missing features are suspend / resume support for: networking, de-
vices, threads, signal handlers, shared memory, shared objects. Some of them
(BCLR [1], CryptoPID [25], Chpox [45]) seems to have everything needed, but
for the price of many constraints and dependencies. In general, these projects
are useful only in cases when the suspend / resume is vital for application or
system itself.

Other possibility is to use some virtualization tool and run application
(not necessarily test suite) inside virtual machine. Nowadays, there are many
virtualization tools with support for snapshoting (for example openVZ [11],
Vmware [19], Xen [20], Qemu [15]). However, working with virtualization is
fairly complicated and we can't test hardware dependent issues in virtual-
ized environment. Moreover, creating snapshots of whole system can be very
resource-consuming.

The last and easiest possibility is to use just snapshoting without re-
sume and save the snapshots in some easy to read format. For example GDB
gcore [6] command (which creates gdb core dumps) can be used to snapshot
the application.

2.5. LOGGING, TRACING 17

2.5 Logging, tracing

When an error is detected in software, developer needs to have as much in-
formation about the failure as possible. What occurred is nice to know, but
in most cases useless without more details about circumstances. Therefore,
developers use logging and tracing to get some useful information about the
particular run.

By tracing, we mean storing information about call sequence in the pro-
gram. By logging we mean saving information about data changes, or notes
about states of system (inserted by developers). In most cases, these features
can be provided by one tool.

2.5.1 Models

The simplest logging tool used is insertion of direct message prints. Mes-
sages may provide the information needed, but this approach su�ers by not
having centralized control of what has to be printed. This leads to excessive
logging, in which is hard to �nd an useful information, and if we want to avoid
this, it force us to change the code on many places.

So next logical step is to send logging messages (accompanied by impor-
tance level) to some centralized facility. The importance level list is in most
cases directly given in advance. Providing this, it is possible to change the
amount of output centrally and even redirect messages to distinct places.

When simple distinction by importance is not enough, more advanced log-
ging facilities come with tagging of messages. Tags can be �at or of arbitrary
structure. This allows better �ltering of messages of special types.

Other approach to logging is to have more than one logger. In this case,
the tool has frequently producer - consumer based architecture and loggers
are organized to dynamically created hierarchy (a tree). This eases the goal
of having di�erent output locations for di�erent types of messages. On the
other hand, the architecture is not so easy to understand for anybody who
might contribute to the code. Moreover, with more people participating on
development, it is nearly impossible to keep the hierarchy of producers and
consumers used in application sane.

The last approach to logging and tracing is called aspect oriented pro-
gramming. In this case, the logging is not present in the code itself, but it
is separated as an independent concern to aspect - logical de�nition what and
where has to be logged.

18 CHAPTER 2. FILESYSTEM TESTING

2.5.2 Pitfalls

Even if an adequate logging tool is used to debug the software, problems can
arise when the tool is used in some automated stress testing. The amount
of output logs would eventually grow too big for storage capacity, or at
least for the potential reader to deal with. So the automation tool should
be able to communicate with the logging facility and dynamically change the
amount of output according to actual needs. This must be tuned to throw
away the biggest possible portion of unrelated logs, but to preserve the crucial
information for debugging the failure (as the failure could be hard to repeat).
Other possibility (commonly used) is to have a circular bu�er which holds only
latest logs.

There is one more reason that may be considered for muting logging output.
The reason is that logging could slow the application down. To check
how much logging slows down an ordinary application, some measurements
were done.

For testing was used a real application - session server from the SUCKS
[46] project. This application is threaded and accessible by network. Logging
facility was simple centralized logger with prede�ned log levels. Logger was
altered so it has measured time spent by logging. Tests consisted of prede�ned
workload, output was time spent by whole application, time spent in logging
and characters printed. Test cycle was composed of one run of all tests for
every log level and log target. After �nishing, the cycle starts again. This had
been running for approximately thirty hours on two platforms:

1. Intel centrino with core2duo CPU, set to static frequency of 1Ghz with
2GB memory (most unused), running kernel 2.6.20.1 x86_64.

2. Motorola ppc MPC8241 (266Mhz) with 128MB memory, running kernel
2.4.32

Results are summarized in Table 2.1 on the facing page. The �rst column
is logging target (medium to which logs are written), the second column is
actual log level. The �rst column of platform dependent part is how many
microseconds are (in average) spend for printing of one character of log output.
Aliquot part of function calls, conditions evaluation and auxiliary operations
done by logger are included. The second column is percentage from running
time of application, that were spent by logging (in average).

Both platforms behaved equally, the only di�erence was in speed (and for
console prints, we must consider, that Motorola was connected by network and
all console prints must went through ssh). From results we can see that all
logging targets had the same footprint and the only slow target was console

2.5. LOGGING, TRACING 19

Table 2.1: Mean logging load to application

20 CHAPTER 2. FILESYSTEM TESTING

write. For non-blocking targets, the slowdown was in hundredths of per cent
for all log levels.

Conclusion of this (regarding to speed) is that when we don't need to read
the output of application online we can log everything. In case of small storage
capacity, circular bu�er (which can be �ushed to �le only when error occurred)
could be used. Requirement is that �ltering must be possible (Filtering can
be done afterward by user). Another �nding is that on non-blocking media
big part of logging footprint is made by checks if something has to be logged
or not. Thus if minimum slowdown is required, logging should be entirely
removed from binary in compile time. Problem with this is that it makes
changes to binary image, and these changes can lead to di�erent behavior of
erroneous code and a bug could be ireproducible with di�erent logging level.

Other problem, which can arise with logging, is that logging can act as
synchronization primitive preventing some race conditions to appear. Problem
with synchronization can be solved by design of logging facility. The logger
must be designed in way that creates separated resources for every concurrently
running entity in advance, and then the only e�ect done by the logger is
slowdown upon creation of new threads.

2.6 Continuous integration

Existence of tests is not enough to provide stable development cycle. For sta-
bility of project it is vital to test it for errors (run tests) as often as possible,
preferably after each change (commit). The approach when changes are of-
ten merged intomainline is called Continuous integration (a good overview of
this method is in [28]). To achieve regular testing, it is convenient to use some
tool (server) to automate the process. There are many proprietary solutions
and even more opensource solutions. It is interesting how many organizations
deploy their own system (for example Mozilla Foundation uses Tinderbox [16],
Redhat has Frysk [5], ThoughWorks has [40]. Apache foundation has even two
projects - Continuum [47] and Gump [7]).

2.6.1 Automation

The best approach to achieve stable build and check cycle is to automate it.
Some projects use manually driven systems, but there is hazard of human
failure (developer could omit tests, forgot about them or ignore them at all).
In general, tests are run independently on human interaction.

In common, there are two approaches used to achieve automated
build and check:

2.6. CONTINUOUS INTEGRATION 21

First is to use some post commit hooks (we assume that version control
system is used) which execute tests, or launch separate process to execute them
on background. This approach can ensure that no wrong code gets into the
repository - a commit that didn't pass all tests can be rejected.

Running all tests can be relatively long lasting task and therefore environ-
ment is rarely set to execute all tests before commit. Commonly, commit is
delayed only after passing vital tests and more in-deep checking tests are ex-
ecuted afterward in stand-alone process. Implementations using post commit
hooks are often bound to one version control system.

Other option is to not check validity in commit hooks, but use a inde-
pendent service which monitors state of repository and runs tests either for
every change (commit), or on regular basis (night builds). Bene�ts of this ap-
proach are that it doesn't slow down commits, and tools using this approach
have frequently more features and better con�gurability. These solutions are
generally independent on version control system (support for distinct version
control systems is provided by plugins), but sometimes use hooks to get alert
upon change.

Often this combination is used:

• Pre-commit hooks are used to enforce repository rules and coding con-
ventions

• Separate service builds project (upon commit or nightly), and executes
all tests checking if changes don't break something

2.6.2 Distributed testing

Testing doesn't need to be run on the same machine as control service. When
tests doesn't run on the same machine as main continuous server, we call it
distributed testing.

There can be many reasons for distributing:
It is crucial do distribute testing for multiplatform applications. Wrong

code can behave badly only on one of target platforms and therefore testing
on only one platform can leave errors undiscovered. In this case distributed
testing is the only way to cover speci�cs of all platforms. Complementary
approach (run one separate machine with full build and check service for every
platform) is possible too, but managing such system is huge overhead, and
collecting results is also non trivial.

22 CHAPTER 2. FILESYSTEM TESTING

Some tests or projects could be dangerous to system, or the project itself
could be part of base system. These should run in separation of production
system (to not break it), in some sort of sandbox (a part of system with re-
stricted rights). One possibility is to run dangerous tests on separated physical
machines. But this would lead to non-trivial problems with recovery. As virtu-
alization is nowadays easy to deploy, the best way (and in case of base system
parts the only viable way) is to sandbox project testing in a virtual machine.
This must be considered as distributed testing too because the communication
with virtual machine must be done in the same way as if the virtual machine
was in other network. In general, there are less security barriers between
the host machine and the guest machine, but it doesn't a�ect the connection
method itself. For some special cases there can be one more option how to sep-
arate dangerous tests without distributing: to use operating system provided
tools to restring their privileges and resources (for example chroot).commiter

Another reason for running tests on other machine can be resource con-
sumption. As the control system should be visible to wide network (at least
the presentation layer), it is frequently run on production server which hosts
other applications too. In this case it is not good idea to slow down or even
block whole system by testing. Again, tests are given to another machine to
execute.

Sometimes, tests take long time to complete. Then it is convenient to
spread tests over more machines, each running only part of tests. By this
shorter build and check cycle is achieved.

Distribution can be achieved by:
Sending commands through remote terminal. For example on UNIX,

data could be copied to target machine by scp, tests executed through ssh,
and results again retrieved through scp. This is the easiest way used in simple
cases where no synchronization or overview is needed. In general, data doesn't
need to be delivered through the same way as commands. Clients can fetch
them themselves upon test command, or there can be shared network storage
where control server should put data for tests.

Most common way to connect control server with machines executing tests
(sometimes called slaves or bots) is to use remote procedure call. As re-
mote procedure call not only RPC is considered, but any method that allows
execution of code on remote system. There are many remote procedure call
tools such as RPC, CORBA, dcom, python twisted, py.execnet, etc.

Older systems tend to use e-mail communication. It consists of specially
formatted messages sent between master and clients. This approach has many
drawbacks as security problems, frangibility and non-deterministic behavior.

Sometimes, proprietary methods for communication are used. In gen-

2.7. RESULT REPOSITORY 23

eral, they mimic remote procedure call functionality by sending data within
special protocol.

2.6.3 Build system

Because one of build steps can be building the source, there should be support
for build system used by project. Again, many tools are plugin based and have
plugins for most common build systems. Particular set depends on aim of the
tool.

2.6.4 Presentation layer

Pure commit driven environment when commits are delayed after all tests
passed doesn't need presentation layer at all, there is just a message sent
to committer. But as this variant is rare, nearly all automation systems
have presentation layer. This layer mostly serves as noti�er about the server's
status - it shows if the server is actually running anything, and if so, what
is being executed. Short overview of past runs is often provided too. The
complexity vary from simple text (HTML) �le statically served by web
server to rich database backed GUI. Standard tools o�er HTML overview
and detail pages, tools bound to speci�c environment usually provide GUI for
that environment. Very often, there are email or instant messaging noti�ers
too. If there are no other outputs than test count and test results, it tends to
be plain text.

2.7 Result repository

Usual test run produces outputs of many types, beginning with standard out-
puts, going on with operation sequence, debug logs, even including state snap-
shots, core dumps, etc. These is data of very di�erent types. Unless it is
written specially to �t the particular application, the continuous integration
server is often incapable of storage and presentation of all data from tests.
Some continuous integration servers don't have persistent result storage at all.
Because of this, separate result repository is very often implemented.

2.7.1 Data storage

When tests produce only small amount of textual data, log �le can be used.
As the simplest variant, this is often part of continuous integration server.

24 CHAPTER 2. FILESYSTEM TESTING

For complex textual data, databases are used. They provide way to store
both data and relations between them together. The interface of databases is
versatile and easy to use, thus they can be used without modi�cations.

Big binary data such as snapshots are often stored outside databases. Even
though modern databases are capable of storage of them, there is no advantage
since no searching or indexing is available for arbitrary binary data. Because
of this, special binary data (or big data) is stored outside database in �le as
it is. Nevertheless, properties of this data (if any) are still stored to database
to ease searching.

2.7.2 Presentation layer

The easiest way to present test results is to leave them as raw data (as they
are produced by application and test suite). When this approach is used, raw
data is often made available for downloading through simple protocol such
as FTP or remote console. Raw data holds always full information, doesn't
su�er by any losses from transformations. On the other hand, raw data is often
platform dependent and interpretation on the system that have produced them
may be required. Raw data should be in standard format to allow reading with
external tools.

Dynamic web pages are nowadays very used way of presentation, as they
are relatively easy to write. Web pages have big advantage in accessibility -
nearly every computer has a web browser installed and people are used to get
information through these. On the other hand, web pages can hardly display
some debug outputs, such as core dumps, and other binary data. In this
case, binary data should be downloadable for reading through external tools.
Interaction with the web is little bit slower than with local application and
user comfort is worst too.

Even raw data must be interpreted by an application to be presented in
readable form. When there aren't appropriate general tools, they should be
written as a part of test suite. The fact that they must be written is one
big disadvantage by itself. Full featured interpreter of debug data with
presentation layer may consists of the same amount of work as the test suite
itself. Moreover, requirements and dependencies of such application could be
non-trivial and platform independency is hardly to achieve with this approach.
The big advantage of a special application is that as written specially for the
suite it should �t very well the needs.

2.8. PRUNING OUTPUT 25

2.8 Pruning output

When long test (or random test) fails, it could not be clear which step has
caused the failure. So test outputs (debugging info) are needed to locate the
bug. On the other hand, outputs from long and random tests can be huge
(and most of them useless). The goal of pruning output is to provide enough
information to �nd the bug, and at the same time hide useless ballast.

Basically, outputs from testing can be divided to log messages, run back-
trace, and system state snapshots (memory dumps, �lesystem state, etc.).

Data automatically generated is more resources consuming, but as storage
capacity is cheap, we can simply leave all snapshots, or limit space used by
constant and delete old snapshots. On the other hand, we must avoid excessive
slowdown (which in case of core dumps is non-trivial).

As for logs, the problem was described in Section 2.5: when logging doesn't
slow the application down and doesn't change behavior, the best approach is
to log all, store all (or latest), and to provide a tool for �ltering and searching
logs. With this approach, no crucial information is lost by heuristic pruning.
In special cases, like low resource platforms (without storage, extremely slow,
etc.), where wasting can't be a�orded, some heuristic must be used. For system
state this can be the state in time of the failure.

For logs there can be more approaches which can be divided to:

• On-time pruning - the test suite changes log level of the application
according to probability of failure. The question is, how it should know.

• Afterward - log level is constant for test run, logs are stored to a cyclic
bu�er. When a failure occurs, the test suite will trim the bu�er to store
just useful information.

• Re-run - tests are executed with logging on minimal level. When a
failure occur, test suite will rerun the test with more logging around
the failure, possibly skipping some parts of the test (parts of random
generated workload).

2.9 Sandboxing

When tests need more privileges over the hosting environment, or the tested
component itself is part of operating system, there is big probability that
running tests can break something. In this case, tests must be executed
in separation (so called sandbox). It is either a part of system with restricted
access to some resources, or whole separate system.

26 CHAPTER 2. FILESYSTEM TESTING

Obviously, there should be possibility to simply create a new sandbox or
to restore previous state of the sandbox if it was broken by a test.

As we described in Section 2.5, execution protocol (logs) is crucial to track a
failure found by automated testing. Therefore it should be possible to get logs
(and other data) from the sandbox at least after the failure, but preferably to
send them back to the master straight upon generation. This is mostly feature
of the testing framework, but to use it the sandbox must allow communication
with outside.

When testing is distributed (see Subsection 2.6.2), it should be considered
to use the remote machine as the sandbox too. Again, there should be method
to easily restore state of the remote machine when broken by a test. Note that
this would be problematic with real (non-virtualized) hosts.

In Section 2.4 the problem of providing information about test state to
developer was analyzed. If a sandbox is represented by full operating system
then checkpointing of the whole sandbox would be in most cases big overhead.
Still it should be taken into account in some cases. One case where sandbox
snapshots may be convenient is when tests depend heavily on system state or
change system state. Then without system snapshot some information to track
the failure may be missing. Other case when full snapshots may be generated
is when a test has caused system failure (therefore normal snapshot can't be
created).

2.10 Filesystem test patterns

In this section, main functional �lesystem testing tools used in UNIX-like
systems are listed and described.

2.10.1 FSX

Originally written by Apple Computer, Inc. for MacOS and BSD-style operat-
ing systems. Nowadays, there are more versions used, but the main part stays
the same [22].

The test consists of a single source �le written in C, compatible with most
Unix-based operating systems. The test operates on one �le, does a loop with a
random operation in every cycle - one of read, write, truncate, close and open,
map read and map write. Memory mapped operations can be disabled. Checks
in FSX are made by comparison of write bu�er and data read, additional checks
of �le size are made too. A failure report from FSX is a dump of operation
sequence and a bu�er dump.

2.11. RANDOM WORKLOAD GENERATION 27

2.10.2 LTP

Linux testing project [8] is a collection of test suites for Linux operating system
internals. Tests are compiled programs or scripts, driving is done by control
script. The part dedicated to �lesystems contains previously mentioned FSX
(Subsection 2.10.1) and LTP speci�c �lesystem testing binaries. Checking is
mostly done by comparison between results and expected values. There are
both types of tests: prede�ned loops with random arguments (�le sizes, etc.)
and stress tests consisting of random sequences of operations. No cleanup is
provided. Failure log contains only arguments to last tests. There is a vast
amount of operations implemented.

2.10.3 OpenSolaris ZFS / NFSv4 Test Suite

Very exhaustive test suite for �lesystems on OpenSolaris [10]. There are two
sets of tests: one for NFSv4 and one for ZFS, but techniques used in them are
the same. The only di�erence is that ZFS test suite has extra stress tests.

The system is Make�le driven, tests are generally shell scripts (ksh) with
few support programs and tests that are compiled. Testing is deterministic,
cleanup is done after a set of tests (directory). Errors are printed to stderr.

What should be noted is the coverage of these tests, there are tests for
nearly every operation possible, even for zones, ACL, or redundancy. In the
ZFS part, there are simple stress tests too - prede�ned loops with con�gurable
length.

2.10.4 Mongo

Mongo benchmark [44] is a test program written in Perl, aimed at Linux �lesys-
tem performance and functionality testing (developed by Hans Reiser for reis-
erfs). It is very tightly coupled with linux standard tools and �lesystem usage.
Does everything from mkfs, through mount to classic operations. The version
examined was mainly benchmarking tool, there were no checks if operations
are correct, just that they goes.

2.11 Random workload generation

As described in Subsection 2.1.3, for complex applications (which �lesystems
indeed are) there is problem with de�ning and creating tests that would cover
all use-cases and their combinations. One possibility how to deal with this is to
generate a random workload to the �lesystem that will exercise all operations

28 CHAPTER 2. FILESYSTEM TESTING

available in random order. By this (at least statically), all combinations can
be tested.

The random workload for stress testing must be generated from small
tests (operations, meta tests, atoms). Depending on subject tested, atoms
are either de�ned by tradition (for �lesystem that will be open, read, write,
etc.), or small, well de�ned tests. It is sometimes wanted to group sequence of
atoms to create new (bigger) atom.

Random workload generation has little usage on stateless systems. The
only thing random workload can test on a stateless system is, if it is really
stateless. In general, all possible pairs of operations should cover stateless
system functionality.

In case of stateful systems (and meta tests), not all operations can be
used in any state. So there should be method how to de�ne and check states
and legal transitions. Simple method to allow this is to give to tester a way
to de�ne pre and post run hooks that can initialize state, check transition,
and possibly do cleanup after a test. While approach with pre and post run
hooks is simple yet powerful, there is one issue connected to it. In this system,
tester trades the possibility of using stateful tests for a potential waste of
system resources. When a test expects some state di�erent from actual, it must
either made a state change (non trivial operation out of its scope) or silently
pass without testing and let the system run another test. More sophisticated
system for resolving statefulness is to give to tester a tool for de�ning allowed
transitions between tests. Transitions are often given by a graph (edges
can be allowed transitions or tests).

Sometimes it may be desirable to give some preferences (what should be
tested). For the random workload this means either switching meta tests on
and o�, or giving preferences to tests. When statefulness is not solved or solved
by pre and post hooks, percentage is connected to tests. When transitions are
used, percentage can be either for tests (implicit edges) or for transitions.

Length of random workload can be restricted by:

• Number of meta tests (minimum, maximum, mean)

• Time (resources) used

• By transitions to end point

When user preferences are given, system itself can be simple automata running
on stateful graph.

Chapter 3

The test suite architecture

We want to create a testing framework suitable for testing of userspace �lesys-
tem (which ZlomekFS is). This framework should be able to setup and control
ZlomekFS so that every test run could have the same conditions (or at least
as similar as possible). It should be able to run prede�ned tests and at the
same time allows generation of random workload. For failures, the framework
should collect as much useful information as possible. As for any software,
the architecture of the test suite should be �exible enough to allow further
extensions.

3.1 Programming language

Since ZlomekFS tends to be multiplatform and support more operating systems
(currently only Linux is supported), language which has support for as many
operating systems as possible is needed (or at least for UNIX-like operating
systems). For testing, the language should be �exible enough, but on the other
hand since �le system will be tested, speed must be considered too. Last but
not least need is that the language should allow integration with the existing
code.

We decided to test ZlomekFS through general user api (access to �lesys-
tem) rather than calling directly functions of ZlomekFS code. There were two
reasons for it: to allow internal refractorization of ZlomekFS code without
modi�cations of tests (refractoring could be needed to allow integration with
new operating system), and because of complexity of ZlomekFS code (tests
would have to re�ect this and thus they would incline to be tricky or incor-
rect).

The �rst option is to use pure C, because ZlomekFS is written in it. The
main reason for C is possibility of integration. This is for sure required for
unit tests. But for random workload generation, this requirement is rather

29

30 CHAPTER 3. THE TEST SUITE ARCHITECTURE

weak. As noted before, random workload will be generated through general
user api (�lesystem access). Moreover, it would be good to use some existing
testing framework as base solution and write just ZlomekFS testing speci�c
functionality. But we have not found any suitable framework written in C.

On the other hand, there are several testing frameworks written in python
[14]1, that meet our needs. Compared to C, python is also more �exible lan-
guage. Because of this, python was chosen as main programming language for
driving component. Python can integrate with most compiled languages and
thus not all components must be written in python. Performance critical parts
and integration libraries can be still written in ZlomekFS native language - C.

3.2 Used tools

List of tools �nally used in the regression testing framework follows. For many
parts, there is tendency to reuse existing tools. But for every one, there should
be considered if the work saved by the use of existing tool worth problems
with integration (it is unlike that existing tool would �t exactly into di�erent,
non-trivial project). For external tools with active comunity not only the
work of writing the tool would be saved, but the maintenance of it can be
shared too. Therefore mainly opensource projects with reliable community
were considered.

3.2.1 Testing environment

For very speci�c purpose of testing distributed �le system, no existing suit-
able solution was found. Before writing completely new framework, existing
tool capable of extension was looked for. From general purpose testing tools
written in python, Nose [41] was considered as the most suitable. Moreover,
every feature needed which Nose doesn't implement can be delivered as plu-
gin without modifying Nose core code. Nose plugin architecture was found as
�exible enough for further extending of the test suite too.

3.2.2 Continuous integration

To provide best results, tests should be executed automatically in prede�ned
periods or for every change in code. For this purpose, continuous integration
servers (see Section 2.6) are used.

Buildbot [50] was chosen as continuous integration server.

1Author of this thesis is aware of other scripting languages that could be used. Python

was favored because of personal preferences.

3.2. USED TOOLS 31

It was chosen for these reasons:

• Compatibility with ZlomekFS build system. Buildbot can use shell com-
mands and python code as build steps. It can do output parsing for
con�gure, make and gcc output too.

• It is small and easy to deploy. There is no need to write big XML
con�guration �les to run hello world, buildbot code is relatively small
and easy to read. In comparison with others, buildbot has around 500K,
where other tools can take more than 300M.

• Written in python. Since whole Buildbot is written in python, we can
easily integrate it with other tools used in project (as they are written
in python too).

• Extendable architecture. Buildbot parts are written as objects, so it is
possible to inherit from them and tweak behavior according our needs.

• Support for distributed testing. As ZlomekFS is distributed �lesystem,
the support for distributed testing is essential. Moreover, ZlomekFS
is intended to run on multiple architectures (and in future possibly on
multiple operating systems) which requires distributed testing too.

• Active development. Buildbot is often used and has active community
which ensures that it will be maintained in future too.

3.2.3 Web result presentation and result repository

As noted in Section 2.7, continuous integration servers in general can't store
and present wide spectrum of data that can be generated from testing. This
holds for buildbot too (test results are presented as textual output from com-
mands). This is not enough for two reasons: when failure or error is found,
the textual output may be messy (yet useful in some cases). Bigger problem
is that textual output can't provide enough information and binary data can't
be provided in this way at all.

So there was need for another way to represent test results. Since test
outputs can contain binary data (snapshots, core dumps, �lesystem state, etc.),
the presentation layer should be able to distinguish several types of data and
present them according to type. As data and information for test run are
related to each other, database driven storage was preferred.

The solution used is Django [4]. It is written in python, o�ers object
oriented database abstraction layer and web pages generating tools. Its con-
�guration format is pure python, so it is easy to integrate it with other parts
of project.

32 CHAPTER 3. THE TEST SUITE ARCHITECTURE

3.2.4 Logging

Original approach used for logging in ZlomekFS was direct message prints (see
Section 2.5). This approach is inappropriate for regression testing: there is
no possibility of controlling the output and de�ning what should be logged.
In general, direct message prints are the worst approach too and could be
used only for very small projects where classic logger would be bigger than
the project itself. This is for sure not the case of ZlomekFS, thus we need to
provide new logger.

We need logger with these features:

• It can be controlled externally

• It has simple still full featured interface

• It has to have implementation (interface) for both languages (python and
C)

• The output has to be in parseable and user readable format

This enforces us to write new logger, which will suit best the needs. From
models, we can't use aspect oriented logging, as there is no implementation
of aspects for both languages (and moreover it will be big requirement for
developers to learn aspects). The producer-consumer model seems to be too
complicated as there will be large and non-homogeneous group of developers
working on ZlomekFS.

Thus the logger will be centralized, supporting tags with fast evaluation.
The output will be redirectable to shared resource (shared memory, network
socket) which can be used and controlled by test suite. The format of written
log for failure may be preferably readable by some GUI or web based reader
such as Chainsaw [2], if not possible, user readable output should be used.

3.2.5 C based unit testing

ZlomekFS is very complex and huge project with active development. Thus
there is need to check internal api for stability too. As described in Section
2.3, unit tests can be used to check internal api stability. Moreover, unit tests
have better traceability of bugs than random workload testing (yet they can't
test complex functionality). Therefore it is better to �nd as many bugs as
possible by unit testing.

Unit tests must be written in the language of code tested, thus C based
unit testing tool is needed.

3.3. ARCHITECTURE 33

All existing C based unit testing tools found have one of twomajor prob-
lems (or both).

• Many tools are very complicated and writing simple test for �a + b�
could take �ve minutes.

• C based unit testing tools lack automatic test discovery. Thus tests
must be listed somewhere and collected manually (even in case of hier-
archies). The best solution found is heuristic search by grep.

Since integration of external tool to project is non-trivial and writing of simple
C based unit testing is relatively easy, new C based unit testing library
was implemented.

3.2.6 Documentation

For the programmer documentation, the best approach is to write it as close
to the documented code as possible. This provides better maintainability,
but with the documentation only within code, there could be problem to �nd
particular information. Because of this, export to more user friendly format
should be provided. To allow export of the documentation to external format
(that should be more readable and may support searching), it must be written
in a format recognized by some tool. Consequently, the choice of actual tool
gives the format for documenting the code.

For documenting C code, DoxyGen [48] was chosen. Main argument was
that ZlomekFS is documented in DoxyGen. Secondary, DoxyGen is nowadays
nearly standard tool for documenting C code.

For Python code, DoxyGen has some support, but the support is problem-
atic, needs usage of import �lters such as Doxypy [30], and even then results
are not ideal. There is standard docstring format for python [27], but it doesn't
support more than plain-text formatting. Another option is to use some non-
standard documentation tools for python (most of them are listed in PEP256
[31]). Their problems are mainly enumerated in the list.

Finally, reStructuredText Docstring Format [32] was chosen. Main
reason was that Nose [41] uses this format, secondary reStructuredText is easy
readable in Pydoc [12] output and there are HTML formatting tools too.

3.3 Architecture

There are four applications used in testing: ZlomekFS daemon, Django (TestRe-
sultStorage), Nose, and Buildbot .

34 CHAPTER 3. THE TEST SUITE ARCHITECTURE

ZlomekFS daemon uses Syplog library to log debug messages, D-bus
listener to notify about its status and Fuse library to integrate with linux ker-
nel. Upon start, Syplog and zfsd reads con�guration from program arguments.
While zfsd is running, D-bus listener waits for connections through D-bus. If
message or request is received, it is served either by Syplog (change of logging
settings) or by zfsd status noti�er (returns status of daemon).

Inside of any C code, unit tests can be written using Zen-unit library
interface. When zfsd is executed with libzenunit.so library loaded (given by
LD_PRELOAD), all Zen-unit based tests are found and executed. Results
are printed to stdout, error messages to stderr.

All C code should be documented using Doxygen. Html documentation
can be generated by calling make doc in root directory of particular project.

TestResultStorage should run on master machine, it provides web based
user interface for result repository. Results are committed into repository
directly (without usage of TestResultStorage process). Programmer documen-
tation for TestResultStorage is again written directly to code, user should read
it through pydoc.

When Nose is run, it loads plugins, searches for tests and executes all tests
found. It is used to execute tests of all types (ZlomekFS stress and normal
tests, Zen-unit based C tests, and unittest based tests of python components).

There are �ve plugins used in Nose. ZfsStressGenerator plugin is used
to �nd meta-tests and generate random workload from them. This random
workload is then given as test to nose to execute. ZenPlugin is used to
search for Zen-unit tests. It uses Zen-unit library to search for tests in all
passed binaries and libraries. Then these tests are executed and results re-
ported through Nose (triggers ZfsReportPlugin). ZfsCon�g plugin is used
to load user de�ned con�guration �les. It loads given �les into objects and
passes these objects to tests. In speci�ed moments (for example upon failure)
SnapshotPlugin creates snapshots of test state. Plugin only triggers events
and stores generated snapshots - the snapshoting intelligence must be provided
by the implementation of test. When a test �nishes, ZfsReportPlugin col-
lects all information about the test run (snapshots, result, time elapsed) and
commits them into TestResultStorage.

When a test for ZlomekFS is run by Nose, it forks zfsd instance. Dur-
ing execution, it can communicate with the daemon through D-bus retrieving
status of daemon or changing logging settings. When test �nishes, the zfsd
instance is destroyed.

On all machines involved to testing, there must be Buildbot running. On
master machine, it waits for changes in source repository. When a change is
detected, master sends commands to slave machines, waits for end of their ex-
ecution and retrieves results (only return code and textual outputs from tests,

3.3. ARCHITECTURE 35

snapshots and other status data are handled by plugins and TestResultStor-
age. On slave machines, the Buildbot process is waiting for master commands,
executes them and sends results back to master. Main commands are fetching
of code, building of binaries (rpms), execution of Nose (tests), and cleaning up.
Simple results (return code and textual outputs) are then provided through
web interface by Buildbot process on master machine. The interface shows
both results of �nished commands and actual status of all slaves.

All python code is documented in reStructuredText format, pydoc should
be used to read this programmer documentation.

36 CHAPTER 3. THE TEST SUITE ARCHITECTURE

Chapter 4

Implementation details

This chapter describes key implementation details of the regression testing
suite. It is not intended as programmer documentation. Programmer docu-
mentation is present directly in code (with possibility of export). Only general
features and concepts are written up here.

4.1 ZlomekFS changes

4.1.1 Logging

Original message printing system of ZlomekFS (two verbosity levels, hard-
coded) was replaced with new logger (Syplog) developed specially for ZlomekFS.

The logger allows programmer to print formatted messages into log. To
distinguish severity of messages (and �lter by it), Syplog (the new logger)
supports eleven log levels. A log level is 32bit unsigned integer (typedef)
which represents severity of message. Log levels are de�ned by macro constants
(from LOG_EMERG to LOG_LOOPS). For example, message logging data
input from user should be logged on log level LOG_DATA, message informing
about system failure should be logged on log level LOG_ERROR. There is
conversion function available to convert log levels to user-readable strings.

Similary to log levels, �ltering by concerns can be done by facilities. A
facility is either a part of application (d-bus service, logger, cache) or a logi-
cal domain going through all components (threading). Facilities are distinct
one-bit �ags that can be OR-ed. Log message can be labeled as belonging to
any number of facilities. For example message notifying about acquirement
of mutex for d-bus socket should be logged as belonging to facility FACIL-
ITY_THREADING and to facility FACILITY_DBUS. Then, this message
will be logged if at least one of these facilities is set as to be logged. Again,
there is conversion function to convert facilities to user-readable strings.

37

38 CHAPTER 4. IMPLEMENTATION DETAILS

When message is send to logger, its log level and facility set are compared
with current settings of logger. If severity of message (log level) is greater than
logger's and at least one facility of message is set to be logged then message is
written into log. Otherwise it is discarded. Both log level and facility set used
for �ltering can be altered in run-time.

Output from the logger can be written to �le or shared memory and the
api is open for extension such as socket write. Output format can be user
readable strings, or raw memory dumps. For all formats and output targets,
there are both writer and reader support, so transformations between formats
are trivial.

Initial logger settings are read from program arguments (an array of
strings with given array size). The logger ignores unknown options, so direct
con�guration from command line is possible (and currently used).

To allow integration with external driving component (Nose testing envi-
ronment) there is D-bus [3] control api implemented. This allows adjustment
of both log level and facility set from either control component or tests. For fur-
ther integration with driving component, there is full-featured python wrapper
for Syplog generated by swig.

Log level and facility sets can be extended by listing constants for new
log levels and facilities in header �les. Output formats and targets are de�ned
by static structures holding pointers to functions with speci�ed behavior. New
formats and targets can be added by implementing given function set and
providing description structure. For further reference, see DoxyGen documen-
tation of the Syplog library.

4.1.2 Zfsd status noti�er

The driving component of tests needs to know in which state ZlomekFS dae-
mon is (starting, running or terminating). Without this information, some
heuristic assumptions may be done leading to false failures or invalid reports.
To accommodate this need, D-bus [3] listener was added to zfsd.

The D-bus component of ZlomekFS consists of two parts:

• D-bus provider - stateful service which manages initialization of D-
bus, listening loop and termination of D-bus connection. Doesn't serve
messages.

• D-bus message handlers. Set of functions describing zfsd speci�cs -
naming and signal handlers.

4.2. TESTING ENVIRONMENT 39

Integration of these two components with ZlomekFS daemon (zfsd)
is following:
On beginning, zfsd creates and initializes D-bus provider handler (structure).

Then, it registers zfsd D-bus message handlers by calling dbus_provider_add_listener.
Currently, the Syplog D-bus service is implemented in way compatible with
zfsd D-bus provider, thus another
dbus_provider_add_listener is called for Syplog service. After all needed lis-
teners are registered, zfsd calls dbus_provider_start. This starts new thread
which listens for messages and forwards them to registered handlers. Finally,
when zfsd is terminating, dbus_provider_end is called.

When ZlomekFS D-bus service is running, any other application (with ad-
equate rights) can ask for ZlomekFS daemon status.

For future, there are plans for remote zfsd control mechanism. Main
intention of it should be to allow user initiated synchronizations, mode changes
(slow connection, fast connection), etc. These should be implemented either
as another set of message handlers or by extending the current zfsd message
handler.

As the test driving component is written in python, there is python client
module for this api too. The client module is automatically generated by swig,
so there should be no problems upon extending the service.

4.2 Testing environment

Main component driving tests and controlling ZlomekFS daemon is imple-
mented as Nose [41] plugins. Nose is a python unit testing framework, but it
has very powerful plugin system so that it was possible to extend it to allow
testing of �lesystem operations, even random workload generation.

To Nose, plugins must be provided as python classes, listed as setuptools
entry points under nose.plugins.0.10. They should inherit from
nose.plugins.Plugin class, but it is not mandatory. Each plugin must imple-
ment some basic methods (such as con�gure, options, help). Then a plugin
can de�ne hooks for speci�c conditions. For ZlomekFS testing, we use mainly
want and loadTestsFrom hooks to load tests from special sources (for exam-
ple saved failure sequences), startTest, handleFailure, handleError, addFailure,
addError and addSuccess hooks to control execution of tests, and few other
miscellaneous hooks for minor �xtures. Nose itself and its plugins read con-
�guration from environment variables and command line options. Command
line options have superior priority.

Plugins mostly provide general functionality needed for testing and global
state handling. Test speci�c con�guration and setup must be implemented in
test classes (ZlomekFS state handling is provided by base test class).

40 CHAPTER 4. IMPLEMENTATION DETAILS

Settings for plugins can be given by command line options, but preferred
way is to store them as environment variables. Environment variables are
used to pass values between components (plugins) too. This way is used to
ensure that all tests within one batch will be reported properly. To ease re-
peated runs with the same con�guration, support for pro�les is implemented.
If environment variable PROFILE_NAME is found, system will try to load
module with given name and read environment variables from it.

4.2.1 ZfsTest

Where Nose plugins provide general functionality needed for testing, there
control of zfsd (ZlomekFS userspace daemon) from python is implemented in
ZfsProxy class (which is then used by tests to interact with the daemon). This
class provides methods for starting zfsd, status queries, Syplog control, sane
zfsd terminating and locked daemon killing. Tests are methods, grouped to
classes with common setup and teardown methods.

Nose provide test �xtures (see Section 2.3) on all levels. For ZlomekFS
testing purposes, all tests are for simplicity wrapped to classes. Then for
normal tests, the setup of ZlomekFS daemon is done in test class setup method
(run before each test) and the teardown (shutdown and cleanup) is done in
teardown method (run after each test method). For stress testing, the setup is
done in setupClass method (run once before all tests in class) and the teardown
is done in teardownClass method (run once after all tests in class). How random
workload is actually generated is described later in Subsection 4.2.5.

If a special con�guration is needed by test, it should be written into a �le
in format recognized by python Con�gParser. Then, name of the �le should be
listed in used pro�le in the ZFS_CONFIG_FILE environment variable. The
ZfsCon�g plugin will then load all these �les and pass them as object to tests.
By this approach, it is possible to have multiple con�gurations for a test and
specify by pro�le, which has to be used.

When writing new tests, normal ZlomekFS tests should inherit from class
ZfsTest (which implements basic �xtures for zfsd). New �lesystem daemon is
started for every test. Stress test classes listing meta tests should inherit
from class ZfsStressTest (which runs all tests on single instance of zfsd).

For distributed testing, there are wrappers for remote ZfsProxy and File
objects (to ease communication with remote system and performing actions on
it). Communication is done through twisted perspective broker. Twisted [17]
is used as RPC because there is direct support for it in Nose.

Example distributed test is represented by TestClientServer. On remote
system used in test there should be remoteZfs.py script running. It runs
twisted reactor and listens for incoming connections.

4.2. TESTING ENVIRONMENT 41

TestClientServer is stress testing meta class, thus all setup is done in se-
tupClass method. Con�guration for local and remote ZfsProxy is stored in �le
zfs_client_server_con�g, con�gurations for ZlomekFS daemons are in �les lo-
calZfsMeta.tar and remoteZfsMeta.tar. These options are provided to test by
ZfsCon�g plugin.

The local ZfsProxy instance (local zfsd) is initialized in the same way as
it would be in case of non-distributed testing. The remote ZfsProxy instance
(remote zfsd) is initialized through calls performed on wrapper object. Tests
then open local �les as usual and remote �les by calls to RemoteControlWrapper
object (returning remote �le instance wrapper).

In this manner, any topology of ZlomekFS providers and clients can be
made. There should be remoteZfs.py running on every machine used in test-
ing except master. On the machine where Nose will run, there should be
con�guration �le for ZfsCon�g plugin and on every peer there should be con-
�guration tarball. Test setup then connects to all machines, con�gures their
zfsd and following testing operates on local and remote �le wrappers.

Since there are multiple machines involved in distributed testing, synchro-
nization of versions of libraries and scripts must be handled. Currently buildbot
is used for this.

When a failure is detected, state of both local and remote ZlomekFS dae-
mon is provided as usual by snapshot method.

In�nite testing loops are handled by insecticide in the same way as other
tests. The only di�erence is, that there should be special pro�le for in�nite
testing, since normal testing should not run for such a long time.

4.2.2 Failure state data

In order to �nd and �x bug causing faulty behavior, developer need data
describing the failure. In general, the trickier it is to cause the failure, the
more data is needed. In this aspect, random workload testing is one of the
most problematic approaches. Sometimes, it is not possible to reproduce the
failure. So exhaustive tracing and state information for the failure is needed.

ZfsProxy class sets environment for zfsd to create a core dump upon crash.
If a crash is recognized, this core dump is collected and appended to the
snapshot. If zfsd is running while the snapshot is created, a core dump of the
running process is created instead.

When a test fails or an error is detected, snapshotPlugin creates a snap-
shot of prede�ned components. Snapshot plugin can be con�gured to create
a snapshot before test and after successful test too, but while zfsd core dump
has more than 150Mb, it takes non-trivial amount of time to create it (and
thus it is disabled by default).

42 CHAPTER 4. IMPLEMENTATION DETAILS

By default, snapshot will consist of:

• Snapshot of ZlomekFS cache (�lesystem)

• Snapshot of �lesystem to which comparisons are made

• Zfsd log output

• Nose log output

• Test instance

• ZfsProxy instance

• Zfsd core dump

• Zfsd stdout and stderr

• Python exception and backtrace (if any)

Developer can specify any further data to include to snapshots by overriding
snapshot method of a test class. Method gets SnapshotDescription instance
as argument. SnapshotDescription class has methods for appending primitive
types, python objects, �les and directories. Every entry in a snapshot has
unique name, type and description. Primitive types are stored in memory,
bigger data on disk. For purpose of reporting, a snapshot can be packed
into single �le that will contain both data and their descriptions. For further
reference see python documentation for insecticide/snapshot.py.

4.2.3 Reporting and result repository

As noted in Section 2.7, results of tests (especially failed) should be accom-
panied by (failure) state information and backtrace. For these data, there is
result repository implemented.

Basic data about test result and relations are stored inMySQL database.
Only failure state snapshot (content is listed in Subsection 4.2.2) is stored as
a �le in separate directory. For the snapshot, only its �lename and relation to
a test is stored to the database.

Since result repository and database are running on master, there must be
method how to send snapshot to master too. Currently, �le transfer between
slave and master must be handled externally. Preferred method how to handle
this is to map storage directory (for example /var/lib/TestResultStorage/data)
between master and slave by NFS (in case of separate hosts) or by method
provided by virtualization software (if master and slave are virtualized on the
same machine).

4.2. TESTING ENVIRONMENT 43

Access to the database is provided through Django api. Schema of the
database is given by classes (descendants django.models.Model), one class rep-
resents one table. Table columns are given by attributes of corresponding class,
each attribute de�ning one column. Queries to database can be done by calling
�lter method of special class attribute named objects. Results are represented
as (lazy) sets of objects, where for each column in given table the object has
corresponding attribute.

We use TestRun table to store information about executions of single tests,
TestRunData table to hold auxiliary information about tests executions - back-
traces, exceptions, �le names of snapshots. Set of TestRuns that were executed
together are connected by BatchRun. BatchRun is represented as table, where
one row holds common attributes for one set of tests such as name of the ma-
chine that executed these tests, pro�le name, repository branch and revision.
Project and pro�le details connected to BatchRun are represented as foreign
keys to tables Project and Pro�leInfo (because they repeat a lot).

Settings of result repository are stored in TestResultStorage/settings.py. On
master, access should be con�gured to use local database. On slaves, developer
should alter their TestResultStorage settings to use master's database.

The testing environment (Section 4.2) is driven by Nose. We use its plugin
interface to hook particular events during testing. To report results of tests,
we use addFailure, addError and addSuccess hooks. Reporting to TestRe-
sultStorage is done by zfsReportPlugin which uses ReportProxy class as
wrapper around BatchRun instance.

When there is an unhandled system error (python Exception), it is caught
by outer try-except block and reported to the repository too.

The result repository has dynamic web interface which consists of listing
pages for tests and batches (with simple �ltering options), detail pages for test
run, batch run, and project list page. If a snapshot is available for the test run,
it can be downloaded from test run detail page. Older results can be deleted
from administration interface (and there is script for automatic cleanup of
obsolete entries provided).

To use central result repository, all tests must be executed under Nose and
zfsReportPlugin must be enabled.

4.2.4 Options

Test set for execution can be �ltered in three ways:

• By passing list of �les (modules, classes, tests), that should be run
(disables search)

• By nose.attrib plugin. User can de�ne expression that must evaluate to
True for given attributes of a test. For example expression 'not disabled '

44 CHAPTER 4. IMPLEMENTATION DETAILS

will discard tests where test.disabled exists and evaluates to True. Tests
loaded from saved path ignore this �ltering.

• By name regular expressions. By default, test name must match
regular expression (?:^|[\\b_\\./-])[Tt]est) to be executed. But this
expression is con�gurable through NOSE_TESTMATCH environment
variable.

ZfsCon�g plugin provides user-de�nable con�guration �les straight to tests.
List of con�guration �les (in de�ned format) can be passed to plugin. Plugin
will read them, convert to a python object, and pass this object to all tests.

To handle deadlocks and in�nite loops in both zfsd and malformed tests,
there is timed decorator by which timeout for test and handler function to
execute when time runs out can be set. Current implementation of handler
will send SIGABRT to zfsd causing termination with core dump generated.

4.2.5 Random workload generation

For �lesystem, it is very hard to de�ne all possible use-cases that it could be
used in. Moreover, the ZlomekFS daemon is stateful, using non-trivial caching
mechanism. Because of this, some failures could appear only in case of very
speci�c workload to �lesystem. Since it is nearly impossible to write (all)
such workloads by hand, the best approach how to test as many use-cases as
possible is to generate random workload.

Generation of a random workload to the �le system (stress testing) is done
by zfsStressGenerator plugin. User must de�ne so called meta-tests, basic
operations, from which workload will consist. The random workload is gener-
ated by graph walk. By default, full graph with even edge scores will be used,
but user can de�ne the dependency graph by himself.

Format for meta-tests is identical with normal test, meta-tests intended
to be used together must be listed in one test class (as python has multiple
inheritance allowed, this should be no problem).

If there are dependencies between meta tests (such as that open �le
test should run before read from �le test), they can be de�ned by a graph. The
graph format is python dictionary where key to dictionary is meta-test name
and value stored is list of oriented edges originating in the meta-test. Edge
is de�ned by the target meta-test name and by edge score. Score is arbitrary
positive number, bigger number means bigger probability to use that edge.

Meta-test chain will terminate, if meta-test with no successor is hit, or
there can be terminating probability de�ned. Hard length limit of meta-test
chain can be de�ned by plugin option.

4.3. C UNIT TEST 45

If stress test fails, the path which has caused the failure is saved into �le
for further usage. By default, saved paths aren't committed into repository,
but it can be speci�ed to do so.

A failed test is represented by path through the graph of allowed transitions
from starting operation to operation where failure has been detected. In most
cases, the failure was not caused by the last operation, but by the previous
sequence. As the sequence was randomly generated, we can assume, that there
are redundant operations in it and only part of it is actually needed to cause
the failure. Thus it is logical to strip the failed sequence to see, if a shorter
test sequence would cause the failure too. After a failure, zfsStressGenerator
plugin try to do so either by �nding shortest path through the graph, or by
disabling operations (meta tests), or by skipping parts of failed walk.

4.2.6 Extendability

Extending tests should be pretty straightforward. As python is object oriented
language, inheritance should be used.

If new features are needed on the level of driving component (Nose), they
should be delivered as new plugins. Plugins are nearly independent, just the
ordering of their execution should be preserved. Execution order is given by
plugin's class attribute score ascending. See [41] for further information.

4.3 C unit test

As described in Section 2.3, unit tests are small tests written often directly to
code of application to test functionality of small parts. They can be useful as
programmer documentation too.

Unit tests must be written in the language application is written in, so
Nose can't be used here. We have not found satisfactory C based unit testing
library, thus new unit testing library (Zen-unit) was developed.

The library has very minimalistic api consisting of single �le with four
de�nes:

1. ZEN_TEST macro used to declare test header

2. ZEN_ASSERT to test conditions in tests

3. PASS which is value that should be returned from passing tests.

4. FAIL which is value that should be returned from failing tests. FAIL
is recommended return value but any test returning value di�erent from
PASS is considered failed.

46 CHAPTER 4. IMPLEMENTATION DETAILS

To make the unit testing framework easier to use, we want to avoid the need
for manual registration or listing of individual tests. The framework therefore
scans all binaries for symbols exported by the ZEN_TEST macro and execute
associated test functions. Search for tests is done using libelf, tests are looked
for in dyntab and symtab of binary and all libraries linked to it. Shared
libraries can be tested by linking through LD_PRELOAD to zentest binary.

There were more options to use for test collection:

• To use user listed tests in some type of #ifdef declared main. This doesn't
remove the need of hand written list of tests, and moreover creates some
di�culties in main source �le.

• To use full C grammar to search for tests in source �les and to generate
the main �le. This removes the need of tests listing, but requires full C
parser.

• To use some C preprocessor to generate simply parseable overview (XML)
and generate test list from them. This possibility was not fully explored,
but was considered far more complicated that binary format based dis-
covery.

For integration with nose, we use parsing of test output. Generation of test
lists or test libraries (through swig) was considered, but found as redundant
overhead.

4.4 Build system

To ease the task of building code into binary format and the task of installation,
nearly all projects use so called build systems. Wihthout build system, pro-
grammer must write every single step to build binary manually. Build system
is generally a tool, that automates these steps. Still programmer must de�ne
dependencies and describe steps in some meta language that build system un-
derstands. Actual binary is then build by calling build system's binary de�ning
which step (target) should be build. Where basic tools provide just possibility
of de�ning steps and dependencies there more advanced tools provide inte-
gration with actual operating system, installation and packaging beyond basic
functionality.

Original build system of ZlomekFS was make. For just building, it was
adequate, but there were issues with supporting installation on di�erent plat-
forms. Thus it was replaced with automake which can handle these platform
dependent problems (for example di�erence between library directory on 32bit

4.5. BUILDBOT CONFIGURATION 47

system and 64bit system). Hence for C based components autoconf, au-
tomake, and libtool are used. For python based components setuptools
are used. Setuptools are extension of python's standard build system. Setup-
tools are used mainly because of Nose, which requires usage of entry-points
(registry-like tool of setuptools) for listing of plugins. For better compatibility
with other tools, setuptools were wrapped into make system (actual work is
done by setuptools, make only redirects calls).

Target audience of both ZlomekFS and regression testing framework uses
mainly Redhat or Fedora based systems. To ease installation and upgrades,
it was decided to provide automatic build targets for RPM packages. For
other systems, .tar.gz source packages can be generated.

4.4.1 Standard targets

All components understand following make targets:

• all - build all binaries and libraries

• doc - build documentation

• dist - build .tar.gz source package

• rpm - build all available rpm packages (source, doc, binary)

• clean - remove generated data

• test - run available tests

4.5 Buildbot con�guration

To provide stable development cycle, tests should be executed automatically,
on regular basis. As described in Section 2.6, continuous integration servers
are used to ful�ll this requirement. They either watch for changes in source
code and build and test the software for every change, or build and test it
periodically (for example every night - so called night builds). We have chosen
buildbot [50] as continuous integration server for ZlomekFS (for reasoning see
Subsection 3.2.2).

In buildbot, basic unit is a build step (typically one shell command, for
example make all). Build steps are grouped to sequences. A sequence is called
builder. Typical builder represents sequence of building a single application,
testing it and cleanup for the application (for example builder for Zen-unit
library is following sequence of steps: checkout source, con�gure automake,
make rpm (contains make all), install rpm, run tests and upload rpm to server).

48 CHAPTER 4. IMPLEMENTATION DETAILS

Watching for source code changes is done by a change source, which in case
of ZlomekFS polls its svn repository for changes every minute. To de�ne
what should be done (which builders should be run) when actual change in
code is detected, schedulers are used. A scheduler de�nes set of paths inside
repository and set of builders that should be run when these paths change
(again, scheduler for Zen-unit watches for changes in zen-unit subdirectory of
actual branch and execute Zen-unit's builder upon change).

For ZlomekFS, buildbot is con�gured to create builder for every component
on every host. Thank to build system uni�cation, the build step sequence is
equal for all components except ZlomekFS: it goes update - build - make rpm -
install - test - upload. For ZlomekFS, the test step is separated since it should
run only on one bot (others are used as peers for distributed testing).

Change source is SVN polling, schedulers are con�gured to wait some time
after change before corresponding builder is run.

Test driving (Nose) was included in way, that doesn't need any external
con�guration, only Django (result repository) needs to have
DJANGO_SETTINGS_MODULE present in environment, so it is exported
in start time of buildbot.

For in�nite testing loops it was decided to run them outside of buildbot.
Running them inside buildbot would generate long progress bars displacing
other build results from view. Since there can be only one ZlomekFS daemon
running at the time, synchronization to avoid collision was needed. Thus in
every ZlomekFS build, there is a step signaling in�nite loop controller to pause
run (before buildbot cycle) and step signaling to unpause run (after buildbot
cycle).

4.6 Typical call sequence

When testing is invoked (through buildbot or manually by make test), the
cooperation and calls between components are as follows.

First component used is nose wrapper, which loads pro�le, creates
BatchRun object, and commits them to TestResultRepository. Then, control
is passed to Nose (environment and command line options are preserved).

Nose parses environment variables and command line options and con-
�gures enabled plugins according to them. At this time, initialization
phases of SnapshotPlugin, ZfsCon�g plugin, ZfsStressGenerator, ZfsReport-
Plugin are executed. ZfsCon�g plugin tries to load con�guration �les for tests
(that contain for example paths for zfsd and zfsd con�guration). Snapshot-
Plugin ensures that required directories for snapshots exists. ZfsReportPlugin
calls TestResultRepository fetching previously created BatchRun.

After initialization phase, nose will search for tests. Standard tests are

4.6. TYPICAL CALL SEQUENCE 49

handled directly by nose, plugins are not involved in this process. When �le
with meta class is found (or directly passed), ZfsStressGenerator will load all
tests from it to cache them and block their normal execution. The same is
done for saved path �les. If binary �le (or library) is found, ZenPlugin will try
to execute it as zen test suite - that means executing it with LD_PRELOAD
of libzenunit.so. Then output is parsed and if there were test run, ZenPlugin
will create report for it.

Before the execution of tests begins, ZfsStressGenerator will append Con-
textSuite containing stress tests into main ContextSuite of Nose.

Then, execution phase is reached. For every ContextSuite (TestCase) its
context is initialized. In initialization, ZfsCon�g plugin passes Con�g-
Parser object (representation of con�g �les) to test. In case of classic (non
stress) test, initialization of zfsd is done in setup and teardown methods in
scope of method. In case of stress test, initialization of zfsd is done in setup-
Class and teardownClass - methods in scope of class �xtures. In setup and
teardown methods of stress test, there is only check, if zfsd is still running and
if not, exception is raised.

Initialization of zfsd is encapsulated into ZfsProxy object, consists of:
unpacking con�guration, reading con�guration and fork of actual zfsd (passing
given parameters). After fork, there is wait loop where proxy object tries to
connect to zfsd through d-bus and check if it has started correctly. Eventually,
when something goes wrong, exception is raised.

In next phase, tests are executed. Each test is considered as passing if
there is no exception raised. There are two types of exceptions distinguished.
If the exception is of type AssertionException (raised by assert clause), test is
considered as failed. Other exceptions are handled as not-expected, thus error
is reported. Tests can modify zfsd behavior by calls on ZfsProxy instance,
for example there is possibility to change log level or facility set (this can be
convenient in tests of special scope - if test is aimed to locking problems, it
can constrain log messages those related to threading only).

If failure or error is detected, SnapshotPlugin will create snapshot of
failed test where arbitrary data de�ned by developers is appended in test class
instance snapshot method. In current implementation of ZfsTest class it means
test object, test data, ZfsProxy object, zfsd and nose log �les, zfsd core dump,
ZlomekFS cache directory, zfsd stdout and stderr. In case of comparing tests
the directory on compare �lesystem is appended. In case of stress test, call
sequence is stored too.

Reporting of classic test is handled by ZfsReportPlugin which creates
TestRun object with appropriate parameters and commits it to TestResult-
Storage. If test has failed, ZfsReportPlugin will append failure data (snapshot,
backtrace, exception) to TestRunData. Stress tests are handled and reported by

50 CHAPTER 4. IMPLEMENTATION DETAILS

ZfsStressGenerator plugin. This special case is separated to prevent multiple
reports of the same call sequence.

After stress test failure, ZfsStressGenerator can try to prune the call
sequence and put it back to test queue. This is done only given number of
times, then the last failure (some pruned sequences may not fail) is stored by
ZfsStressGenerator to saved path �le and reported.

When all tests have run, control is passed to nose wrapper, which �nal-
izes BatchRun - sets its duration and result. If there is exception that is
not handled in nose, it is caught by wrapper and reported as system failure in
current BatchRun.

Chapter 5

Conclusion

Goal of this thesis was to extend existing ZlomekFS implementation by provid-
ing regression testing framework which would �t its special needs. After explo-
ration of ZlomekFS, there was clear need of logging facility and remote state
discovery to allow reliable testing. From research done on related projects,
it was decided to create new logger and make status information available
through d-bus.

As basic regression testing framework, existing solution (Nose) was used. It
was extended by plugins to support new types of tests and to provide required
features.

Under it, prototypes of tests were created. First type of tests identi�es
problems of �lesystem by performing operations on second, reliable, �lesystem
and by comparing results. Second test type identi�es errors by checking, if
behavior of �lesystem is as expected (data read is the same as written, ...).
For distributed testing, basic remote objects were provided as wrappers for
python twisted perspective broker objects.

By ZfsStressGenerator plugin, possibility to generate random workload to
�lesystem was provided. This plugin can be constrained to generate valid
sequences of operations only. Plugin can prune sequence to �nd minimal se-
quence needed to reproduce the error. Failed sequences are saved for further
usage.

Snapshoting plugin o�ers chance to have as much state information and
trace protocol as possible to ease debugging of the problem which has caused
the failure. Current implementation provides core dump of daemon, log �les,
sequence which has caused the error, cache content, comparison �le system
snapshot (if used), and python component state. Snapshot plugin can include
most data types that can be required when debugging, thus tester can easily
de�ne other data to include to snapshots.

Currently, changes of network conditions are possible only by inserting
special rules into iptables. The changes of network conditions are mainly aimed

51

52 CHAPTER 5. CONCLUSION

to check behavior in disconnected or slowly connected state. For future, there
is d-bus interface prepared to allow direct changes to ZlomekFS state without
changing network conditions (which could be useful in real usage too). When
there will be need to provide network protocol robustness testing, it will need
usage of sophisticated external tool which is beyond scope of this thesis.

It is possible to use this system for testing of any other �lesystem. Espe-
cially in case of a userspace based �lesystems, the modi�cation needed would
be only change of daemon binary and �lesystem settings (which would be ob-
viously di�erent). If �lesystem would have kernel component (especially in
case of full kernel based �lesystems) kdump integration for snapshoting state
of �lesystem in case of failure will be needed.

For unit testing of small parts of code (whitebox testing), small library for
C was written. This library, called Zen-unit, has very intuitive interface, but
what is special about it is that it has automatic test discovery. This allows
thing common in scripting languages, but rare in compiled ones: to write tests
anywhere in code without listing them in some central block.

Developer documentation for C code was written in DoxyGen and there
is build target for generating HTML documentation available (moreover RPM
packages with documentation can be build too). For python, language provided
__doc__ attributes with prede�ned syntax was used.

Beyond scope of this thesis, short installation guide for ZlomekFS and
example con�guration were made (there were need to extract these information
from previous thesis text and create functional con�guration by experiments
before). To ease installation and management, project was splitted to smaller
parts and packaging was provided.

Upon beginning of work on this thesis, ZlomekFS was running on very
problematic kernel module and the basic functionality wasn't bug-free. Since
then, ZlomekFS was modi�ed (as part of other thesis) to use fuse based in-
tegration with linux kernel and some bugs were �xed. Nowadays, the basic
functionality seems to be bug-free (among other things, author of this thesis
has tried to run all �lesystem testing tools available alongside with this thesis
framework simultaneously on single ZlomekFS instance to bring about a failure
with no success). Upon testing on inserted bugs, the output of framework were
as expected, all bugs were found, pruning of random workload were producing
very short sequences preserving faulty behavior (for example on bug that has
caused failure upon sixth write, sequence of about hunderedth tests generated
originally were shortened in about twenty cycles to eight steps - generate �le
name, open �le and six writes). Note should be taken that the framework is
mostly responsible for support facilities and random workload handling. The
detection of failures depends always on implementation of particular test.

5.1. FURTHER WORK 53

5.1 Further work

ZlomekFS network communication and request handling is multi-threaded.
This is �ne for real usage, but in case of testing it makes it hard to reproduce
error since the way dispatch of request is done depends on switching of threads.
Number of threads used is now hardcoded in source code. Thus, for further
testing it would be better to change ZlomekFS to allow con�guration of the
number of threads in runtime (restring it to smallest number possible).

Currently, ZlomekFS sets connection mode (full, slow connection, or dis-
connected) on startup by measuring connection speed by ping messages. This
is inconvenient for real usage (user can't set up mode by himself). For testing,
connection mode can be forced by �rewall rules, but it is super�uously tricky.
Thus external control of connection speed (for example through d-bus) should
be added.

For saved paths, there is only the sequence of tests saved. In most cases,
this is su�cient to reproduce failure. But in case of testing behavior of con�ict
solving, the results depends on data written to actual �les. Thus in future there
should be support for saving testing data alongside with test sequences. This
feature must have support in suite, but main work should be done by tests,
because only tests themselves understands their data (and they may di�er
a lot between tests). Preferred method how to implement this is to provide
another hook method to store data (like snapshot method of test class) and
pair function to load them.

Main goal of this thesis was to provide regression testing framework capable
of testing special features of ZlomekFS. This goal was met and example tests
were implemented too. Despite this, for full coverage of ZlomekFS function-
ality there should be more tests implemented (for example there are no tests
for capabilities, con�ict resolution, slow connection mode, synchronization in
complex hierarchies, etc). The framework supports testing of these features,
the problem is that there is no speci�cation of how ZlomekFS should behave in
complex situations. Thus full analysis and speci�cation of ZlomekFS behavior
should be made before testing complex use-cases of ZlomekFS.

54 CHAPTER 5. CONCLUSION

Appendix A

Coding conventions

C based code

For code in C, original formatting from ZlomekFS was adopted.

Identi�ers are in lower case, words separated by underscore.

uint32_t log_level;

De�nes (macros) are in upper case, words separated by underscore.

#define MY_MACRO_CONSTANT 5

Typedefs are in lower case with su�x _t.

typedef uint32_t fibheapkey_t;

Braces around code block should be on new lines, indentation level as
previous code.

syp_error set_log_level (logger target, log_level_t level)

{

target->log_level = level;

return NOERR;

}

Braces around function arguments should be separated from function
name by one space, if argument list is multiline, ending brace should be right
after last argument (on same line).

55

56 APPENDIX A. CODING CONVENTIONS

syp_error send_uint32_by_function (uint32_t data,

syp_error (*function)

(int, uint32_t, const struct sockaddr *, socklen_t),

const char * ip, uint16_t port);

Indentation should be two spaces per level.

syp_error dbus_disconnect(DBusConnection ** connection)

{

if (connection == NULL)

return ERR_BAD_PARAMS;

if (*connection == NULL)

return ERR_NOT_INITIALIZED;

dbus_bus_release_name (*connection,

SYPLOG_DEFAULT_DBUS_SOURCE, NULL);

dbus_connection_unref(*connection);

*connection = NULL;

return NOERR;

}

Operators should be separated from arguments by one space on both
sides.

file_position += bytes_written;

Comments have one space between comment mark and comment text.
They are on line before code they are describing.

/*! Structure holding logger state and configuration. */

typedef struct logger_def

{

/// input - output medium definition struct

struct medium_def printer;

File names consisting from more words should have dash between words.

control-protocol.h

57

Python code

For code in python, formatting from Nose [41] was adopted.
Identi�ers ah are in CamelCase, class names with �rst letter in upper

case, instance names with �rst letter in lower case.
Indentation should be four spaces per level.

class DependencyGraph(object):

graph = None

currentNode = None

randomGenerator = SystemRandom()

def equals(self, graph):

return self.graph == graph.graph and \

self.currentNode == graph.currentNode

def initRandomStartNode(self):

self.restart(self.randomGenerator.choice(

self.graph.keys()))

Braces around function arguments should be right after function name.
Arguments should be separated by one space.

def testLocal(self, empty):

assert self.buildGraphsAndCompare(

reference = self.nonUniformGraph,

buildMethod = GraphBuilder.USE_LOCAL,

methods = self.nonUniformMethods)

Operators should be separated from arguments by one space on both
sides.

file_position += bytes_written;

Documentation comments should have one space between comment
mark and comment text. They should be on line after element they are de-
scribing.

58 APPENDIX A. CODING CONVENTIONS

def isMetaClass (self, cls):

""" Tests if class is meta class (should contain meta

tests)

:Parameters:

cls: class object to check

:Return:

True if is metaclass, False otherwise

"""

Code comments should have one space between comment mark and com-
ment text. They should be on line before code they are describing.

def countNiceElements(list):

""" Count elements which are nice :) """

count = 0

for element in list:

if isNice(element):

count += 1

return count

Appendix B

Installation

This guide is based on clean Fedora 8 installation, installation to other systems
may be di�erent. In example, buildmaster has IP 192.168.16.253, buildslave
has IP 192.168.16.252 and development system has IP 192.168.16.241. We
assume that buildslave has basic development packages (such as gcc) installed.
Note that routing description is not included. Routing should be set if domain
names are used (in build system con�guration or remote testing).

Development system may not be part of buildbot network, but the expe-
rience is much better if it is because then package versions on it will be the
same as on buildslave.

Buildmaster

Create user account under which buildbot will run.

useradd -d /home/buildmaster -s /bin/bash buildmaster

Then, install external packages and tools.

yum install buildbot python-sqlite2 mysql-server \

MySQL-python screen

Install TestResultStorage. Django in version version 0.97 (pre) is required.

rpm -ivh python-django-snapshot-*.rpm \

TestResultStorage-*.rpm

Set mysql to start on boot and start it.

/sbin/chkconfig mysqld on

/etc/init.d/mysqld start

59

60 APPENDIX B. INSTALLATION

Change root password for mysql.

/usr/bin/mysqladmin -u root password 'secret'

/usr/bin/mysqladmin -u root -h 192.168.16.253 password 'secret'

Create database for TestResultStorage.

echo '

CREATE DATABASE trs character set utf8;

GRANT all ON trs.* TO nose@localhost IDENTIFIED BY 'secret';

GRANT all ON trs.* TO nose@192.168.16.252 IDENTIFIED BY 'secret';

GRANT all ON trs.* TO nose@192.168.16.241 IDENTIFIED BY 'secret';

FLUSH PRIVILEGES;

'| mysql �user=root �password=secret

Setup TestResultStorage to use local mysql database with right credentials.

...

DATABASE_ENGINE = 'mysql'

DATABASE_NAME = 'trs'

DATABASE_USER = 'nose'

DATABASE_PASSWORD = 'secret'

DATABASE_HOST = 'localhost'

DATABASE_PORT = �

...

Figure B.1: TestResultStorage/settings.py (buildmaster)

Create TestResultStorage tables.

cd /usr/lib/python2.5/site-packages/TestResultStorage

python manage.py syncdb

Checkout (export) buildmaster's con�guration

su buildmaster

cd /home/buildmaster

svn export \

61

http://shiva.ms.mff.cuni.cz/svn/zzzzzfs/\

branches/zouhar/buildbot/buildmaster \

zlomekfs

Setup buildmaster to allow client connections and to start www server
on right port (next two Figures). Note that if svn url or branching schema
changes, they should be tweaked too.

WAIT_BEFORE_BUILD = 1

c['slaves'] = [BuildSlave("misc", "secret"),

BuildSlave("zen", "secret")]

c['slavePortnum'] = "tcp:9989"

c['projectName'] = 'ZlomekFS'

c['projectURL'] = 'http://dsrg.mff.cuni.cz/~ceres/prj/zlomekFS'

c['buildbotURL'] = 'http://192.168.16.253:8010'

svnurl = 'https://shiva.ms.mff.cuni.cz/svn/zzzzzfs'

...

Figure B.2: master.cfg

...

basedir = r'/home/buildmaster/zlomekfs'

configfile = r'master.cfg'

...

Figure B.3: buildbot.tac (master)

Set buildbot to start on boot, for example by adding crontab entry.

62 APPENDIX B. INSTALLATION

...

@reboot make start -C /home/buildmaster/zlomekfs

@reboot screen -d -m -S \

TestResultStorage python \

/usr/lib/python2.5/site-packages/TestResultStorage/manage.py \

runserver 192.168.16.253:8020

0 2 * * * /home/buildmaster/cleanup.py

Figure B.4: buildmaster.cron

Setup automatic cleanup of old data. It can be done by cleanup.sh located
in misc directory in repository.

svn cat \

https://shiva.ms.mff.cuni.cz/svn/zzzzzfs/\

branches/zouhar/misc/cleanup.py \

> /home/buildmaster/cleanup.py

chmod +x /home/buildmaster/cleanup.py

Set cron to execute this script every day on 2 a.m. (second line in previous
Figure)

Start buildmaster.

make start -C /home/buildmaster/zlomekfs

Open ports 3306, 8010, 8020, 9989 (or other, if setting in master.cfg is dif-
ferent) on �rewall. Rules below are only examples, they should be pernament
(for example written in /etc/syscon�g/iptables).

/sbin/iptables -A RH-Firewall-1-INPUT -m state �state NEW \

-m tcp -p tcp �dport 8010 -j ACCEPT

/sbin/iptables -A RH-Firewall-1-INPUT -m state �state NEW \

-m tcp -p tcp �dport 8020 -j ACCEPT

/sbin/iptables -A RH-Firewall-1-INPUT -m state �state NEW \

-m tcp -p tcp �dport 9989 -source 192.168.16.0/24 -j ACCEPT

/sbin/iptables -A RH-Firewall-1-INPUT -m state �state NEW \

-m tcp -p tcp �dport 3306 �source 192.168.16.0/24 -j ACCEPT

63

This is all except for �le transfers. If you want to use nfs for �le transfers,
use nfs con�guration below.

Set data directory to be exported.

/var/lib/TestResultStorage/data \

192.168.16.252(fsid=0,rw,root_squash,sync) \

192.168.16.241(fsid=0,rw,root_squash,sync)

Figure B.5: /etc/exports

Tell portmap to allow connections to services.

portmap: 192.168.16.241 , 192.168.16.252

lockd: 192.168.16.241 , 192.168.16.252

rquotad: 192.168.16.241 , 192.168.16.252

mountd: 192.168.16.241 , 192.168.16.252

statd: 192.168.16.241, 192.168.16.252

Figure B.6: /etc/hosts.allow

Set mount daemon to use speci�c port - needed for �rewall settings.

...

MOUNTD_PORT=32773

...

Figure B.7: /etc/syscon�g/nfs

Open ports on �rewall. Note that you must make this rules pernament for
example through system-con�g-�rewall.

/sbin/iptables -A RH-Firewall-1-INPUT -m state �state NEW \

-m tcp -p tcp �dport 2049 -j ACCEPT

/sbin/iptables -A RH-Firewall-1-INPUT -m state �state NEW \

-m udp -p udp �dport 2049 -j ACCEPT

/sbin/iptables -A RH-Firewall-1-INPUT -m state �state NEW \

64 APPENDIX B. INSTALLATION

-m tcp -p tcp �dport 111 -j ACCEPT

/sbin/iptables -A RH-Firewall-1-INPUT -m state �state NEW \

-m udp -p udp �dport 111 -j ACCEPT

/sbin/iptables -A RH-Firewall-1-INPUT -m state �state NEW \

-m udp -p udp �dport 32773 -j ACCEPT

Run nfs and make it start upon boot.

/sbin/service nfs start

/sbin/chkconfig nfs on

Buildslave

First, install required packages. Note that not all are available from Fedora
repositories. For i386 and x86_64 architecture they can be found on thesis cd.

yum install buildbot python-sqlite2 MySQL-python \

kernel-devel dbus dbus-devel libtool autoconf \

automake gettext gettext-devel \

python-setuptools python-nose pyflakes screen

rpm -ivh python-django-snapshot-*.rpm \

libelf0-0.8.10-*.rpm libelf0-devel-0.8.10-*.rpm \

TestResultStorage-*.rpm py25_pysvn_svn144-*.rpm

Install packages from all components. This can be skipped, but when
further builds will go in wrong order, dependency problems could arrive.

rpm -ivh zen-unit-*.rpm syplog-*.rpm pysyplog-*.rpm \

zlomekfs-*.rpm zfsd-status-*.rpm TestResultStorage-*.rpm \

insecticide-*.rpm

Note that installation of packages may require removal of previously in-
stalled ones (for example fuse).

Restart D-bus to use new con�guration (allow syplog and zfsd communi-
cation).

/etc/init.d/messagebus restart

65

Change TestResultStorage settings to store results on buildmaster.

...

DATABASE_ENGINE = 'mysql'

DATABASE_NAME = 'trs'

DATABASE_USER = 'nose'

DATABASE_PASSWORD = 'secret'

DATABASE_HOST = '192.168.16.253'

DATABASE_PORT = �3306'

...

Figure B.8: TestResultStorage/settings.py (buildslave)

If you use nfs for �le transfers, set nfs mount.

...

192.168.16.253:/var/lib/TestResultStorage/data \

/var/lib/TestResultStorage/data nfs defaults 0 0

...

Figure B.9: /etc/fstab

Create directory for builds and fetch con�g.

mkdir -p /var/buildbot

cd /var/buildbot

svn export \

https://shiva.ms.mff.cuni.cz/svn/zzzzzfs/\

branches/zouhar/buildbot/buildslave \

zlomekfs

Change buildbot con�guration to connect to master and use actual creden-
tials.

66 APPENDIX B. INSTALLATION

...

basedir = r'/var/buildbot/zlomekfs'

buildmaster_host = '192.168.16.253'

port = 9989

slavename = 'zen'

passwd = 'secret'

...

Figure B.10: buildbot.tac (slave)

If in�nite testing loop should run on host, checkout its testing con�guration.

cd /var/buildbot

svn checkout \

https://shiva.ms.mff.cuni.cz/svn/zzzzzfs/\

branches/zouhar/zlomekfs/tests/nose-tests \

zfsTests

Open zfsd port on �rewall to allow comunication between nodes.

/sbin/iptables -A RH-Firewall-1-INPUT -m state �state NEW \

-m tcp -p tcp �dport 12323 -j ACCEPT

On remote zfs provider, open listening port on �rewall.

/sbin/iptables -A RH-Firewall-1-INPUT -m state �state NEW \

-m tcp -p tcp �dport 8007 -j ACCEPT

Con�gure buildbot to start on boot, and if host should do in�nite testing
loop, con�gure start on boot too (for example via crontab).

...

@reboot buildbot start /var/buildbot/zlomekfs

@reboot screen -d -m cd /var/buildbot/zfsTests \

&& ./infiniteControl.sh run

Figure B.11: buildslave.cron

Start buildbot and in�nite testing loop on.

67

buildbot start /var/buildbot/zlomekfs

cd /var/buildbot/zfsTests

screen -d -m ./infiniteControl.sh run

On Slaves acting in remote testing as slave ZlomkeFS providers, lines

screen -d -m ./infiniteControl.sh run

should be replaced with

screen -d -m ./remoteZfs.py

(we want to run control on one slave and remote zfs on others).

Development system

When installing on development system without need of automatic builds, just
install required packages and build projects in correct order.

All components except ZlomekFS can be tested without install (make test).
The reason why this is not possible for ZlomekFS is need of fuse build, which
is integrated and needs to create device links, install kernel modules etc.

If you want environment as close to buildslave as possible, you can install
your system in the same way as is described in Subsection B. But even in
this case development should be done without buildbot checkouts. Changing
buildbot checkouts could lead into con�icts in automatic builds.

To not spoil central TestResultRepository with your builds, create your own
TestResultRepository on local machine (create mysql database) and report into
it. This should be done in case of slow connection to master too. Running
automatic tests without ZfsReportPlugin is discouraged - there would be little
backtrace provided in that case.

68 APPENDIX B. INSTALLATION

Appendix C

Enclosed CD

Data on enclosed CD is structured to directories as follows:
dist - distribution packages
doc - programmer documentation generated by doxygen
rpms - non standard rpm packages needed to install thesis and thesis rpms
src - sources exported from the repository
thesis - text of this thesis

69

70 APPENDIX C. ENCLOSED CD

Bibliography

[1] Berkeley lab checkpoint/restart (blcr).
http://ftg.lbl.gov/CheckpointRestart/CheckpointRestart.shtml.

[2] Chainsaw. http://logging.apache.org/log4j/docs/chainsaw.html.

[3] D-bus. http://www.freedesktop.org/software/dbus/.

[4] Django. http://www.djangoproject.com.

[5] Frysk. http://sourceware.org/frysk/.

[6] gcore. http://sourceware.org/gdb/.

[7] Gump. http://gump.apache.org/index.html.

[8] Linux test project. http://ltp.sourceforge.net/.

[9] Nfs testing tools. http://wiki.linux-
nfs.org/wiki/index.php/Testing_tools.

[10] Opensolaris zfs test suite. http://opensolaris.org/os/community/zfs/zfstestsuite/.

[11] Openvz. http://openvz.org.

[12] Pydoc. http://docs.python.org/lib/module-pydoc.html.

[13] The py.test tool and library. http://codespeak.net/py/dist/test.html.

[14] Python. http://www.python.org.

[15] Qemu. http://fabrice.bellard.free.fr/qemu/.

[16] Tinderbox. http://www.mozilla.org/tinderbox.html.

[17] Twisted project. http://www.twistedmatrix.com.

[18] Unit testing frameworks list. http://www.testingfaqs.org/t-unit.html.

71

72 BIBLIOGRAPHY

[19] Vmware server. http://www.vmware.com/products/server/.

[20] Xen. http://www.xensource.com/.

[21] Toshikazu Ando. Cunit for mr.ando.
http://park.ruru.ne.jp/ando/work/CUnitForAndo/html/.

[22] Jr. Avadis Tevanian. Fsx (�le system excerciser).
http://www.freebsd.org/cgi/cvsweb.cgi/src/tools/regression/fsx/.

[23] Stefano Barbato. C++ unit testing easy environment.
http://codesink.org/cutee_unit_testing.html.

[24] Kent Beck. Simple smalltalk testing:with patterns.
http://www.xprogramming.com/testfram.htm.

[25] Bernard Blackham. Cryopid - a process freezer for linux.
http://cryopid.berlios.de/.

[26] John Brewer. Minunit - a minimal unit testing framework for c.
http://www.jera.com/techinfo/jtns/jtn002.html.

[27] Guido van Rossum David Goodger. Pep-0257, docstring conventions.
http://www.python.org/dev/peps/pep-0257/.

[28] Martin Flower. Continuous integra-
tion. http://www.martinfowler.com, 2006.
http://www.martinfowler.com/articles/continuousIntegration.html.

[29] Jerrico L. Gamis. Robust c unit. http://rcunit.sourceforge.net.

[30] Philippe Neumann Gina Haussge. Doxypy. http://code.foosel.org/doxypy.

[31] David Goodger. Pep-0256, docstring processing system framework.
http://www.python.org/dev/peps/pep-0256/.

[32] David Goodger. restructuredtext markup speci�cation.
http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html.

[33] Peter Hagg. Gunit. https://garage.maemo.org/projects/gunit.

[34] Philipp von Weiterhausen Holger Krekel, Jens-Uwe Mager. py.lib library.
http://codespeak.net/py/dist/index.html.

[35] Asim Jalis. Cutest: C unit testing framework.
http://cutest.sourceforge.net/.

BIBLIOGRAPHY 73

[36] JevonWright. Simple c++ testing framework.
http://simplectest.sourceforge.net/.

[37] Anil Kumar. Cunit - a unit testing framework for c.
http://cunit.sourceforge.net/index.html.

[38] Niklas Lundell. Cpp test. http://cpptest.sourceforge.net.

[39] Arien Malec. Check: A unit testing framework for c.
http://check.sourceforge.net/.

[40] Alden Almagro Paul Julius and col. Cruise control.
http://cruisecontrol.sourceforge.net/index.html.

[41] Jason Pellerin and col. Nose - alternative unit testing for python.
http://python-nose.googlecode.com.

[42] Steve Purcell. Pyunit - the standard unit testing framework for python.
http://pyunit.sourceforge.net/.

[43] Steve Purcell. Unittest api. http://docs.python.org/lib/doctest-unittest-
api.html.

[44] Hans Reiser. Mongo. http://namesys.com/benchmarks/mongo_readme.html.

[45] Olexander Sudakov. Chpox: transparent checkpointing and restarting of
processes on linux clusters. http://freshmeat.net/projects/chpox/.

[46] SUCKS team. Somewhat usefull camcorder system, 2007.
http://urtax.ms.m�.cuni.cz/prk/.

[47] The Continuum team. Continuum.
http://maven.apache.org/continuum/.

[48] Dimitri van Heesch. Doxygen. http://www.stack.nl/ dimitri/doxygen/.

[49] Erez Volk. Cxxtest. http://cxxtest.sourceforge.net/.

[50] Brian Warner. The buildbot. http://buildbot.sourceforge.net/.

