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Abstract: With the sharp increase in the number of surveillance cameras in public
spaces in recent years, there is a rapidly increasing need for video processing and
analysis without the necessity of human assistance. Computers are able to process
several times more information in much less time than humans. In addition,
thanks to the impressive progress in the field of machine learning algorithms and
artificial intelligence, computer-based video analysis is becoming a common part
of everyday life and is steadily finding its way in various fields. In this thesis,
we design and implement a graphical user interface for the analytical module of
the Videolytics system. We aim to design a graphical user interface consisting of
two parts that is user-friendly and simple. The input part of the interface allows
users to enter complex visual queries and modify query parameters. The second,
presentation part, is focused on the process and logic of working with the results
and their rendering. Additionally, it also allows the export of this data for further
processing by external applications and the import of the post-processed data.
Finally, we show the module in practice and its ways of application in practical
life on the enclosed examples.
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Introduction
Due to the recent development of camera hardware, the importance of video
surveillance cameras is increasing rapidly. Nowadays, they can be found in almost
every public or private space. However, it becomes almost impossible for people
to keep up with these very large amounts of footage. Analyzing data manually
could take hours upon hours and require manpower which is often unavailable
and expensive. That is why the demand for video analytics tools is on the rise.

Moreover, thanks to a significant advancement in the field of machine learning
and neural networks, the task of analyzing a video has become much simpler. The
usage of neural networks replaced old systems utilizing traditional algorithms and
heuristics like Pfinder [1]. Computer vision algorithms are evolving and improving
every year - from traditional histograms of oriented gradients [2] to Fast Feature
Pyramids [3] to Deep Neural Networks (DNNs).

Video analysis can be done either online or offline. The difference between
the two lies in the time of its execution:

• Online analysis is performed in real time, often using a pre-trained neural
network or other machine learning algorithms. A common source of video
footage are the Internet Protocol (IP) cameras, which allow streaming data
via an IP network.

• Offline analysis uses precomputed features of a given video for analyzing
requested patterns. The analysis is not performed in real time and can be
done over any video at any time.

Every analytical tool is based on object detections. Unlike image classification,
in which the main task is to recognize an object on the given image, object
detection is more complex. The algorithm must decide not only about the class
of the object but also about the position within the image. The position of the
detected object in the image is defined by a bounding box - a rectangle drawn
around the given object.

Naturally, detections open up possibilities for motion analysis. One example
is modeling trajectories - a path of detected objects in time as a sequence of
their detections. Trajectories can be clustered and analyzed for understanding
behavioral patterns, the prediction of future movements, or monitoring traffic [4].

Many commercial companies offer analytic tools but we didn’t find many
open-source projects that do so. The main goal of the Videolytics project is to
provide an open-source online analysis, and with the newly implemented analyt-
ical module, offline analysis as well.

Goals
The goal of this thesis is to propose and implement GUI (Graphical User Inter-
face) for the analytical module of the Videolytics project.

We aim to create an interface that is easy to work with and allows users to
easily place visual queries, define query parameters, review, export, and import
results data.
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Structure of the work
We start with a review of some already existing commercial and non-commercial
solutions for video analysis in Chapter 1.

Because the analytical module is a part of a more complex project Videolytics,
in Chapter 2 we present an overview of the Videolytics framework and modules.

Chapters 3 and 4 are dedicated to describing the input interface and the
presentation interface of the analytical module from the user’s point of view.
It does not contain implementation details, rather it explains how queries are
entered and how results can be handled.

In Chapter 5 we present several practical examples of using the analytical
module. We start with a simple example and gradually work our way up to the
harder ones, including exporting results and their post-processing by external
applications.

Finally, in Chapter 6 we discuss the implementation details of our solution.
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1. Related works
Before we begin describing our architecture and its implementation, we first take
a look at related software and projects, which deal with the analysis of video
input.

1.1 Commercial projects
The most prevalent type of software which we were able to find was commercial,
either requiring one-time payment or subscription fees, for which the user receives
a copy of the software, or is eligible to send and request analysis of their video
footage.

1.1.1 Sentinel
Sentinel1 technology by Accuware offers a camera tracking system for human
tracking, counting, and searching in real-time. They only provide API for devel-
opers which has to be integrated into customers’ servers. Artificial intelligence
and neural network algorithms have been used for the development of their sys-
tem.

The system can be used for queue length monitoring, analyzing people’s be-
havior, people searching, people counting and people tracking. They also provide
cross-camera re-identification of people. The recognition of a person is done by
assigning him a unique person ID and a feature vector for encoding his appear-
ance. The actual detection crop is saved into the database along with additional
information as a tracklet with a unique tracklet ID. Feature vectors are used for
the re-identification across multiple cameras (see Figure 1.1).

It is also possible to define geo-fences - imaginary lines. This can be used for
detecting people in restricted areas or monitoring dwell times in some areas. In
case of breaching the defined fence, alerts can be triggered to highlight suspicious
activities.

The output of the system is a CSV file that contains records for each track-
let. Each CSV record includes a timestamp, frame number, person ID, feature
vector, and coordinates. CSV files are created periodically according to the set-
tings. These files can be further processed, e.g. the results can be displayed on a
heatmap.

1.1.2 TimeRethink
TimeRethink2 is a commercial technology that offers an offline analysis of video
footage. Customers send them data and they produce a report according to given
parameters. Longer-term cooperation with customers is expected to improve the
results of the analysis even more.

1https://www.sentinelcv.com/
2https://timerethink.com/
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Their service is aimed at business owners, retailers, or hospitals. The video
archives’ analysis should help businesses increase revenue, minimize loss and theft,
or reinforce health and safety measures.

Their analysis includes detecting and tracking objects and people, monitor-
ing employee attendance, recognition of individuals, analyzing the movement of
people in some area, or analyzing waiting times. The analysis is performed using
unique machine learning algorithms. Screenshots of their system can be found in
Figure 1.2.

1.1.3 Senstar
Senstar3 is a commercial company that provides video analysis in real time. The
data is collected from public IP camera and analyzed by machine learning algo-
rithms. They offer a large variety of analytical tools, including:

• Indoor people tracking. Typical application for indoor people tracking
is detecting people in restricted areas, wrong-way detection, or customer
behavior analysis. It is possible to draw an alarm zone and an alarm is
triggered in case someone is detected within the area. The results of the
analysis could be further processed into heatmaps to visually display pat-
terns.

• Outdoor people and vehicle tracking. The main advantage of outdoor
tracking is that it ignores changes in the scene caused by vegetation move-
ment, shadows, rain, or snow. As well as indoor people tracking, it can be
used for wrong-way detection or to avoid break-ins.

• Crowd detection. Monitoring crowds is essential to ensure security at
public places such as subways or shopping malls. It is also possible to mon-
itor occupancy levels and staff can be notified when the limits are exceeded.

The analysis is based on advanced machine learning algorithms and can be
run locally on each camera, centrally on a video server or hybrid models are also
possible. Screenshots from their products are shown in Figure 1.3.

3https://senstar.com/products/video-analytics/
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Figure 1.1: An example of the Sentinel system used in a supermarket. Each
recognized person has a unique person ID. Below are displayed search results for
a man with ID 1662. Screenshots from https://www.youtube.com/watch?v=
nuhBnlHKAK0.
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Figure 1.2: Screenshots showcasing the possible usage of the TimeRethink tech-
nology from their website. The first picture shows the detection of people while
recognizing them by name. The second one analyzes the cleaning schedule of the
given area. The third one is a heatmap based on the movement of people.

Figure 1.3: Screenshots of the Senstar products from the promotional videos
found on their website. The first picture shows the usage of the indoor people
tracking along with an alert set to trigger when movement is detected. The
second one shows vehicle tracking. The last one demonstrates crowd monitoring
in a subway.
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1.2 Non-commercial projects
The other part of our findings were non-commercial projects. These were most
often funded by European Union or similar institutions.

1.2.1 P-REACT
P-REACT4 (Petty cRiminality diminution through sEarch and Analysis in multi-
source video Capturing and archiving plaTform) project [5] is a video surveillance
system. The project was partially funded by the European Union’s Seventh
Framework Programme for research, technological development and demonstra-
tion. Its development lasted 2 years and was finished in 2015.

The project’s main objective is to develop a low-cost and effective surveillance
system that analyzes footage and audio to detect petty crimes. It has modular
architecture consisting of local embedded service and cloud service, including
an interface for end-users and a mobile app. Video analysis is done on both,
embedded and cloud levels, and it is focused on detecting abnormal behavior
such as fighting, chasing, or running. Moreover, the video analysis results are
enhanced by an audio analysis. Audio recordings cover a 360-degree area which
means that surveillance system coverage can be extended beyond a camera’s field
of view.

The analysis is performed in two steps: motion is detected first and based on
certain parameters, it is evaluated whether it is unusual or not. If the activity is
considered unusual, an alert is triggered. The system also generates evidence for
these situations that can be viewed by the operators of the system. A screenshot
of the P-REACT user interface is shown in Figure 1.4.

1.2.2 SAVASA
The main goal of the SAVASA (Standards Based Approach to Video Archive
Search and Analysis) project [6] is to develop an interactive video search platform.
It was also funded by the European Union and the project itself took 2.5 years
to develop. The project participated in the TRECVid 20125 in the task of the
interactive surveillance event detection (SED).

The core of the system is formed by algorithms for detecting and tracking
objects, scenario recognition, and event detection. Three main events are sup-
ported - ObjectPut, PersonRuns, and Pointing. These events are identified by
two methods. The first one is based on descriptors from motion trajectories. The
second one use region-based identification with two different configurations.

The algorithm also predicts the most probable place where some event may
occur and create a heatmap accordingly.

The end-user interface (see Figure 1.5) allows to place queries over the video
data and filter the results by different parameters like confidence, level of motion,
or number of people. The results are displayed as animated GIF file pictures.

Unfortunately, the system proved to be very slow for practical use. On the
bright side, it provided authors a new direction to follow in the future.

4http://p-react.eu/
5https://www-nlpir.nist.gov/projects/tv2012/index.html
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1.2.3 VICTORIA
VICTORIA6 (Video analysis for Investigation of Criminal and TerrORIst Activ-
ities) [7] is a project devoted to reasonably speeding up video analysis for Law
Enforcement Agencies.

The system has a modular architecture with one core module which inter-
connects all the other modules and data storage. It is designed to be able to
support an increasing number of videos - it uses so-called big data technologies.
The processed video is divided into smaller parts which are processed in parallel.

For object detection, several complementary approaches for the deep neural
network called YOLO have been used. The YOLO detector has been re-trained
and optimized to detect criminal activities on the modified COCO dataset with
added 81 new classes of weapons.

The VICTORIA system should also support multi-class multi-target tracking
of detected objects across different frames. Since most deep neural networks are
dedicated only to single object tracking, multi-target tracking is hard. Only little
work has been done since the authors encountered several difficulties, e.g. the lack
of relevant training data. They employ two-tracker modules - one is dedicated
to tracking people while the second one tracks cars. Rather than developing
a new multi-class multi-target tracker, they run several instances of the same
single-class tracker module with different parameters. For a practical example,
see Figure 1.6.

Both object detection and target tracking are integrated into the Connected
Vision modular framework [8] which allows processing video analysis tasks dis-
tributively. Each module is an independent web service that collects and processes
data. The system can process real-time camera feed as well as already recorded
videos.

6https://www.victoria-project.eu/
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Figure 1.4: A screenshot of the P-REACT user interface shown in their promo-
tional video, showcasing fighting indoor detection. An alert is sent to the operator
of the surveillance system who decides what to do next. The original video can
be found at https://www.youtube.com/watch?v=ktCY87EwjF0.

Figure 1.5: A screenshot of the SAVASA search user interface is displayed at the
top while the bottom pictures show examples of object tracking, heatmap, and
Pointing event detection, respectively. Source: [6].
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Figure 1.6: Figure showing one use case of the VICTORIA system - track-
ing a person that carries some object of interest. The first picture is the
queried person, the second one is the results of the query - the same per-
son in different places, tracked by multiple cameras. The original picture
can be found at https://www.victoria-project.eu/fileadmin/websites/
victoria/documents/180517-victoria-flyer_6-faces_Final.pdf.
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2. Videolytics overview
The Videolytics1 system was created in 2019 at Charles University by a group
of students under the leadership of prof. RNDr. Tomáš Skopal, Ph.D. It is still
under development at the time of writing this thesis.

The goal is to provide a complex open-source application for the analysis
of video streams. Unlike other similar systems, Videolytics does not rely on
large neural networks focused on a specific problem. Instead, it uses pre-trained
detectors and hand-engineered visual descriptors to build a hierarchical structure
of models to extract features of different types of abstraction [9].

2.1 Framework
The Videolytics software employs a bottom-up design. This vision framework
for feature fusion as described in [10] is constructed in multiple, hierarchically
structured layers. Each layer fuses lower-level features into higher-level features.

The lowest layer denoted the L0 model consists of two sub-modules. Firstly,
the extraction of learned features (e.g. bounding boxes) from detected objects
by deep convolutional neural networks. Secondly, other features that can be
extracted from the raw data (e.g. color histograms).

The layer above the L0 model fuses features from the L0 model into higher-
level L1 model features (e.g. detections are aggregated into trajectories). This
process can be done recursively until we reach the top layer, which represents the
final analytics over features.

All features are stored in the central database which also serves as a source
for the extraction of higher-level features. The full schema is illustrated in 2.1.

This approach has several advantages. It is easily extensible, and a single
pipeline that fuses features based on previous features is enough to build any
level of abstraction we need. Unlike big neural networks, the cost of this process
can be considerably lower.

Figure 2.1: Videolytics vision framework for feature fusion architecture.

1http://videolytics.ms.mff.cuni.cz/stream.html
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2.2 Database

A crucial part of Videolytics is its central database. It is a PostgreSQL2 open-
source relational database with native support for geometric types and functions.

It consists of more than twenty tables. Every table has a single-column pri-
mary key and can have foreign keys.

We will briefly describe tables that are essential for our analytical module:

• Frame. Table with information about all frames.

• Detection. Table of all detections from all frames, consisting of identifi-
cation numbers, classes, coordinates, crops, confidence numbers, features,
and frame identification numbers.

• Traj detection. Table of assignments of detections into trajectories.

• Traj. Table holding detections while grouping them by trajectories, in
which rows correspond to trajectories. Each row contains a set of detections
bound to each trajectory.

• Traj model. Table of all trajectories models, having IDs, descriptions, and
feature types.

The schema of the database is shown in Figure 2.2.

Figure 2.2: The ER schema of the database.

2https://www.postgresql.org/docs/
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2.3 Object detection
An essential part of video analysis is object detection. As we mentioned in the
introduction, object detection involves locating and determining the class of an
object within an image. Detection, therefore, consists of two parts - the object
class itself and the so-called bounding boxes, rectangles that define the space
where the object in the image is located. Algorithms for detecting objects are
called object detectors.

Over the decades, object detectors based on deep neural networks have taken
a big leap forward. Initially, two-stage detectors had been used. The neural
network first proposed regions of interest - a section of an image, where an object
could potentially be found. After that, the regions were processed by the image
classifier. A few years later, one-stage detectors were discovered. This approach
skips over the first step. Regions of interest are no longer precomputed and
the detector runs on the whole image, exploring all different possibilities of the
object’s positions [11].

Because Videolytics should be able to process video streams in real time, the
choice of detector is very important. There are only a few detectors that meet
our criteria. The most famous are YOLO (You Only Look Once) [12] and SSD
(Single Shot Detector) [13].

Videolytics uses Single Shot MultiBox Detector. It is a one-stage detector,
which is noticeably faster, and the accuracy of detections is higher. Detailed
description and analysis can be found in [14].

2.4 Modules
Videolytics consist of five modules, namely:

• LivED. Live (realtime) entity detector from streamed video.

• TrajAn. Trajectory analyzer.

• ReID. Object/person reidentification module.

• WebClient. Video stream management, visualization of features from the
database and management of server processes, and other modules.

• Analytical Module. Analytics over data in the database.

Each module (except the analytical one) is independent of the others, and
they are connected via WebClient. All the modules are communicating with
the central database. Thanks to this modular approach, the system is easy to
maintain and each part of it can be optimized effectively.

2.4.1 LivED
The LivED module aims to implement an efficient pipeline for detecting objects
in real-time using an already trained SSD detector. Frames of the video on the
input are decoded, colors are converted to a suitable format and the data is
passed to the detector. Processed data are then written to the database. It uses
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a generic approach and can be easily adapted to newly added functionality. For
more information about the implementation please refer to [15].

2.4.2 TrajAn
TrajAn is a module that aggregates detections into trajectories by applying vari-
ous heuristic methods. The decision-making process is statistical, based on com-
puting weights and confidence that the detection belongs to the given trajectory.
Centroids are generated from the detections, depending on which it is decided
whether the given detection belongs to the trajectory or not. Frame IDs and
directions are also taken into account.

2.4.3 ReID
The main task of the re-identification module is to identify the same entities
across multiple frames and cameras. For this purpose, it uses already generated
detections - cropped image data of detected entities stored in the database. For
more details about the implementation please refer to [16].

2.4.4 WebClient
The goal of the WebClient is to provide a web client module that manages video
stream, visualizes data from the database, and manages server processes and
other modules [17]. It serves both as the main access point for users as well as
the basis for all extension modules, which are integrated into its codebase. A
screenshot of the WebClient app is shown in Figure 2.4.

It runs on the Apache HTTP Server3 and server-side processes are managed
by PHP4 scripts. The client-side app is written in JavaScript and consists of the
main class App and multiple manager classes, including:

• Detection manager. Manages detections fetching and drawing.

• Detection color manager. A part of the detection manager which man-
ages the choice of colors for different classes.

• Trajectory manager. Manages trajectories fetching and drawing.

• Stream manager. Manages initialization, starting, or stopping of the
stream.

• Button manager. Manages button elements on the website.

• Analytics manager. Manages the whole analytical module. It is a part
of the analytical module.

The Videolytics WebClient app supports two video playback modes, differing
in how the generated detections and trajectories are handled:

3http://httpd.apache.org/
4https://www.php.net/
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• Offline mode. Videos are stored on the server disk from which they are
run at the user’s request. Moreover, they have been already processed by
the object detection module, and learned features along with detections are
stored in the database. If trajectories are available, they are stored in the
database as well.

• Real-time simulation mode. Even though the videos are still stored on
the server disk, the application treats it as it is an actual stream happening
in real-time. Detections and trajectories are not exported from the database
but are generated at the moment of playback. Even though they are stored
in the database, they are removed after the user leaves.

2.4.5 Analytical Module
Once detections and trajectories are all stored in the central database, it is desir-
able to be able to further process and filter these based on additional rules and
restrictions. Additionally, we prefer to construct these filters visually via a GUI
rather than writing text-based queries, such as database requests. Finally, we
would like to also visualize the results in a user-friendly format.

The analytical module of Videolytics software aims to tackle exactly this prob-
lem by offering a specialized GUI for configuring and sending queries to the
database as well as rendering the responses (see Figure 2.3).

The analytical module (Analytics tab) is a part of the WebClient described
in 2.4.4. GUI of the analytical module allows user to:

• Place visual queries by drawing spatial predicates (geometrical shapes).

• Specify their parameters (detected objects classes, time interval...).

• Visualize results in different forms (animation, heatmap...).

Because the analysis is performed on the data in the database, it is avail-
able only in the Offline mode of the WebClient. The analytical module will be
described in more detail in the following chapters.

(a) (b)

Figure 2.3: An example of a detection query. The image on the left shows a
screenshot from a stream while the image on the right shows detection crops as
query results.
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2.5 Use cases
Videolytics can be used in a variety of situations where public cameras can be
used, including monitoring suspicious activities, monitoring crowds, or theft pre-
vention.

Thanks to the analytical module, the range of practical applications expand
even more. For example, it is possible to analyze human behavior, movement
of detected objects in time, and more. Practical use examples of the analytical
module and more use cases are described in the Chapter 5.
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Figure 2.4: GUI of the Videolytics WebClient app, displaying precomputed de-
tections and trajectories while playing selected video.
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3. Input interface
The analytical module’s input interface allows users to visually define queries by
drawing multiple types of geometrical shapes - we will refer to them as spatial
predicates. The query can be specified in more detail by choosing desired output
arguments, object detection classes, or time interval. A screenshot of the whole
input interface is shown in Figure 3.3.

In the following sub-chapters, we will describe the operation of the user inter-
face step by step.

3.1 Video selection
Firstly, a video must be chosen. Currently, 8 sample videos are listed and more
are expected in the future. After clicking on the name of the video, a reference
frame is loaded from the server, which serves as a guide for drawing predicates
and showing results.

3.2 Query type
The analytical module works in two modes:

• Detections mode. The results of the queries are detections.

• Trajectories mode. The results of the queries are trajectories.

Modes can be switched using radio buttons. Visual comparison between these
two modes can be found in Figure 3.1.

Figure 3.1: Visual comparison between the results of the detections (left) and the
trajectories (right) mode.
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3.3 Entering predicates
Each query consists of spatial predicates - basic building blocks of the analytical
module.

3.3.1 Drawing predicates
The first step in entering a visual query is to draw a spatial predicate. One can
choose from multiple shapes - lines, polygons, or circles. A directed line is also
supported in trajectories mode.

Drawing is started by clicking on the reference frame image. Locking angles
is possible by holding the Shift key while dragging the mouse on the image.

New predicates are automatically listed and selected in the predicates table.
Selected predicates are highlighted with a different background color. Selecting
multiple predicates can be done by clicking while holding the Ctrl or Shift key.

3.3.2 Removing predicates
Selected predicates can be removed by clicking on the Remove selected predicates
button. To delete all predicates, click on the Remove all predicates button.

3.3.3 Actions
Each predicate has its own action. The goal of action is to define the role of the
predicate in a query. Available actions depend on the mode of the module and
drawn shape.

Available actions in detections mode:

• Contains. Return all detections contained in the given predicate.

• None. Given predicate will not be used in a query.

Available actions in trajectories mode:

• Intersects. Return all trajectories that intersect the given predicate.

• Contains. Return all trajectories that are contained by the given predicate.
Not available for a line.

• Go in. Return all trajectories that start outside the predicate and end
inside. Not available for a line.

• Go out. Return all trajectories that start inside the predicate and end
outside. Not available for a line.

• Active. Action associated with directed line, querying all trajectories in
the given direction.

• None. Given predicate will not be used in a query.
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3.3.4 Combining predicates
The next step is to decide how drawn predicates should be combined. This is
done by setting an appropriate logical operator. An example is shown in Figure
3.2.

By default, and (logical conjunction) is used, meaning that the results should
include detections/trajectories in the intersection of the predicates.

It can be switched to or (logical disjunction), representing a union of the
results from every predicate.

(a) Predicates combined with and. (b) Predicates combined with or.

Figure 3.2: Examples of the same predicates but combined with different opera-
tors.

3.4 Query parameters
Next, we define query parameters. By defining parameters, we specify more
precisely what interests us - classes of detected objects, time interval, or columns
from the database that should be retrieved.

3.4.1 Choosing select arguments
By select arguments, we mean names of columns from the database. In the
case of only showing the number of results, it is sufficient to check the Count
checkbox element. Otherwise, one can choose which pre-defined argument should
be included in the results:

• Class. Show classes in the results.

• Frame ID. Show IDs of frames.

• Timestamp. Show timestamp.

• X. Show x coordinate of detection centroid.

• Y. Show y coordinate of detection centroid.

Since trajectories are made of thousands of detections, it is impossible to
return information about all detections. Therefore in the trajectories mode, only
class argument is supported. On the other hand, trajectory model, first frame
and last frame are returned automatically for every trajectory query.
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The choice of arguments is particularly important if the results are to be
further processed.

3.4.2 Choosing classes
By classes, we mean the class of detected objects. In this part, the user can
choose which classes are relevant for his query and select them accordingly.

Common classes used in our system are:

• Person

• Motorcycle

• Car

• Truck

• Train

• Bicycle

• Bus

At least one class must always be selected to create a valid query.
Please note that classes are dependent on the video. Checkbox with class

options is dynamically loaded when selecting a video.

3.4.3 Time interval
Lastly, it is possible to determine the time interval by specifying the start and
end time by dragging sliders on the HTML range element.

3.5 Database communication
Because we are focusing only on the user interface, we do not work directly with
the database. Query generation and execution are performed by scripts written by
another student. Therefore, we will not describe generating queries or technical
details of communication with the database.

3.5.1 Passing data to the database
After clicking on the Generate & Execute query button, the internal state of the
module is updated and sent as a JSON to a script generating a query.

3.5.2 Prefetch mode
Due to long response and downloading times in case of bigger queries, we added
a functionality called prefetch mode, which is used to fetch all the necessary
data instead of requesting it on demand. This results in a longer initial waiting
time but enables the user to use the requested data without any delay once it is
downloaded and saved into memory.
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Figure 3.3: Whole input interface of the analytical module embedded into the
Videolytics WebClient.
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4. Presentation interface
The more interesting part of the analytics module is the visualization of query
results.

After loading results, a generated query is displayed in the textbox area and
results are listed in the results table. A screenshot of the whole input interface is
shown in Figure 4.3.

4.1 Draw results mode
The first step is to determine in what form the results should be displayed. There
are two options:

• Draw bounding boxes. While drawing only detection bounding boxes is
easy and less data demanding, it does not provide all the information about
given detection. However, in some situations it is enough e.g. if a user is
only interested in the placement of detected objects.

• Draw actual crops. Drawing actual crops of detected objects is more
complex and provides additional information about the appearance of the
object. On the other hand, it demands more resources to store all the
information.

One can choose whether actual crops from the original video or only bounding
boxes of detections should be drawn by setting the Draw crops switch accordingly.
For visual comparison see Figure 4.1.

Figure 4.1: Difference between the crops mode (left) and the bounding boxes
mode (right) for detections.
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4.2 Results visualization
There are several methods to visualize the results. These methods can be static
(drawing results on canvas) or dynamic (animation). Supported visualization
methods are described in the following sections.

4.2.1 Visualization of all results
Visualization of all results is done by clicking on the Draw all results button.
If crop mode is off, all of the bounding boxes are drawn on top of each other.
Because the number of results is usually high, it is more efficient and visually
pleasing not to draw everything in the crop mode. That’s why users can choose a
maximum number of crops to draw, ranging from 10 to 500. Then a representative
set of crops is created and only these crops are drawn.

4.2.2 Visualization of selected results
It is common for a user to want to see only some specific results. Hence clicking
on the results table row automatically plots the given result. Multiple results can
be drawn at the same time by holding the Shift key. Again, the appearance of
the drawn result depends on the crop mode turned on/off.

4.2.3 Clearing drawings
Drawn results can be removed by clicking on the Clear drawings button.

4.2.4 Animating results
Another form of visualization of results is its animation - creating the impression
of movement from static pictures. As these pictures should create a comprehen-
sive animation, it is necessary to order them by the time of appearance (in our
case the ID of the frame) and in the trajectories mode by trajectory IDs as well.

4.2.5 Results aggregation
So far we have described drawing of the individual detections/trajectories based
on the data from the database.

It is also possible to aggregate the results in some way and create new infor-
mation about the data. One example is a heatmap - an image that uses different
color intensities to show frequencies of an event.

Heatmap is a great tool to get an idea of the density and way of moving
entities within the video. In combination with spatial predicates, it creates a
very powerful tool for quick and easy analysis of specific areas or time slots on
video. In addition, the heatmap is transparent, i.e. it provides this information
based on a reference frame, thus providing an intuitive view of the situation
without restrictions. For example, one can immediately see the busiest sections
of the square (see Figure 4.2), the most visited restaurants, or the most attractive
monuments, without any additional data analysis.
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Heatmaps for both detections and trajectories are supported and can be drawn
by clicking on the Draw heat map button. In addition, a heatmap with a reference
frame can be exported.

Figure 4.2: An example of a detections heatmap. The highest density of detec-
tions is at the tram stop.

4.3 Exporting results

We are aware that our analytics module does not provide answers to every users’
question. That’s why it could be useful to export results and process them with
external tools. One can choose from three options:

• Export CSV. Results are exported as a CSV file. CSV files can be easily
imported as SQL tables to a database which creates space for even more
complex post-processing of the data.

• Export JSON. Results are exported as a JSON file. JSON is another
common data format that is supported by many data processing tools.

• Export image. Drawn results along with drawn predicates are exported
as a PNG file. Can be used as a visual reference of the exported data in
JSON or CSV files.

Export of the files is done by clicking on the Export (desired format) buttons.
Along with the results, a file with metadata containing information about the
internal state of the analytical module is automatically exported. This file is used
to restore the internal state of the analytical module when importing results.
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4.4 Importing results
Importing results can be useful when re-examining the results of a query that has
been generated in the past or visualizing results that have been post-processed
by external applications.

There are two ways to import results:

• Import results only. If only the results file is uploaded, it is not possible
to determine for sure what type of results it contains, and also it is not
possible to draw predicates that belong to the results. If one does not
supply the metadata file, the video from which the results are must be
selected manually.

• Import results along with metadata. When importing metadata along
with results, metadata makes it possible to redraw predicates of the results
query. Examining the imported results is therefore much more enjoyable.

Data can be imported by clicking on the Import data tab in the Analytics
menu.
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Figure 4.3: Whole presentation interface of the analytical module embedded into
the Videolytics WebClient.
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5. Usage evalation
In this chapter, we will demonstrate the practical use of our analytical module
on example queries.

5.1 People crossing a square
In this example, we will show multiple queries regarding people crossing a square.

5.1.1 Trajectory count query
We start with a simple question: How many people cross the square in the
time interval of three minutes?

Placing a query

As described in Chapter 3, firstly we have to select a video. We chose a video that
was filmed in Malostranske sq., Prague. After the reference frame has loaded, we
can start drawing predicates. In our case, only one single line across the square
with intersects action will do the trick.

Next, we set parameters for the query. Because we want to know how many
people crossed the square, simple detections do not provide enough information
and we have to use trajectories. Since we only want to know the number of
people, we check count. We are interested in trajectories that belong to people.
That’s why we check only person class. Lastly, we set the time interval from
10:00 to 10:03 as the required three-minute interval.

The parameters of the query are now set and we can proceed to its generation
and execution.

Analysis of results

After the query is generated and executed, the given query is displayed in the
textbox area and the results are listed below.

In our case, the answer to our query is number 64. We can conclude that dur-
ing the three-minute interval, specifically from 10:00 to 10:03, 64 people crossed
the square. Parameters and results are displayed in Figure 5.1.

5.1.2 Trajectory visualization query
We have already found out that 64 people crossed the square. Now we are inter-
ested in the visualization of the actual trajectories.

Placing a query

To be able to draw trajectories, we need to uncheck the count checkbox and check
class checkbox. Then we can generate and execute this new query.
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Figure 5.1: Visualization of query parameters and the results for the number of
people that crossed the square.

Analysis of results

Now we will focus on what can we do with the listed results.

• Visualizing given trajectories. Firstly, we will examine individual re-
sults separately by clicking on their row. That results in selecting the given
trajectory and its visualization.

• Animation. One might ask whether the trajectories can be visualized more
interactively. The answer to that question is animation. By clicking on the
Animate button, an animation is played based on the selected results.

• Visualizing all. After that we would like to display all trajectories by
clicking on the Draw all results button. All results of our query are displayed
in Figure 5.2.

• Aggregating results. After we have seen all trajectories, we might ask
questions about the patterns that people make while walking. Is there
any spot they stop on for a while? Which part of the square will
most people walk through?
Answers to these questions can be provided by a heatmap. A screenshot
of the described heatmap can be found in Figure 5.3. In our case, we can
see that multiple people stayed for a while near the tree on the left side.
In the screenshot, this place is marked with a green rectangle. From the
heatmap we can conclude that people tend to pass the square uniformly.
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Figure 5.2: Visualization of all trajectories from the results.

Figure 5.3: Visualization of trajectory heatmap. The green rectangle indicates
an area where people often stop.
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5.1.3 Directed trajectory query
For the last query, we want to show people who cross the square in the
middle and walk towards the Charles Bridge. The Charles Bridge is not in
the field view of our camera but we know that it is situated on the right, towards
the upper right corner.

Placing a query

For this query, we have to delete the line predicate and draw a directed line in
the given direction and set its action to active. All other parameters can stay
the same.

Analysis of results

As a result, we obtain five suitable trajectories in the direction that are close
enough to the drawn predicate line. The results can be examined the same way
we did in the previous query. A screenshot of the results is shown in Figure 5.4.

Figure 5.4: Visualization of trajectories in the given direction.
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5.2 Coffee shop and the tram stop nearby
So far we have demonstrated placing simple queries with only one single predicate.
However, it is possible to form more complex queries with more predicates.

Again, we will work with the video of Malostranske sq. This time, imagine
that the cafe on the corner of the building on the right required analysis on how
many people get off the tram and go straight to buy a coffee.

Placing a query

The answer to this question can be modeled by examining trajectories. For this
task, we have drawn two predicates. Firstly, a polygon which delimits the area
in front of the cafe. We want to display trajectories that start somewhere else and
end in this area, therefore the action is set to go in. The second predicate is a line
drawn along the tram stop. We set the action for the line to intersects. Because
we have more than one predicate, we need to decide which logical operator to use
to combine them. In our case, we have to use and in order to formulate our query
correctly. The procedure for selecting parameters is the same as in the previous
queries except that we set the time interval for five minutes (the maximum length
of the video).

Analysis of results

We generate and execute our query to find out that two people meet the require-
ments (see Figure 5.5). However, we cannot guarantee that these two people
really bought a coffee. Ideally, there should be done further analysis from the
cameras in the cafe. Regardless it gives us some estimate that the cafe can take
advantage of.

Figure 5.5: Results of the coffee shop query - two people that came from the tram
stop to the area in front of the cafe.
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5.3 A popular time to visit a monument
For the last example, we want to know the busiest times when most people visit a
certain monument. In our case, we are interested in analyzing the number of
people detected in front of the Prague Astronomical Clock at different
times. Our analysis will cover only a small time span because we have available
only a 30-minute video that was recorded in the evening.

In this example, we will demonstrate data acquisition using the analytical
module, their export, and their post-processing by other applications.

Placing a query

Firstly, we select a video from the Old Town sq., Prague where the Astronomical
Clock is located. This time we work with detections. We draw a polygon in
front of the Clock and set the action to contains. For parameters, we check all
the checkboxes for select arguments and we choose person class. Since we want
to analyze the busiest times throughout the day, we set the time interval for the
entire duration of the video. Visualization of the query parameters is shown in
Figure 5.6.

Of course, we could place multiple queries querying the number of people
while manually shifting the time interval and writing down the results. However,
we assume that we are analyzing a large amount of data and manual interval
shifting would take lots of manual work.

Working with results

After the query is generated and executed, we obtain 215768 detections. We
export these results as a CSV file and import the data to an external SQL tool.

We use the following SQL statement which outputs counts of grouped data
by timestamp in chronological order:
SELECT time , COUNT (*) AS count
FROM data
GROUP BY time
ORDER BY time

Next, we copy the output of this SELECT statement and process it by Google
Sheets1. By creating a histogram from the aggregated data, we can easily visually
observe at which times does the number of people present peaks, and when, on
the other hand, it is the lowest. The histogram is shown in Figure 5.7.

1https://www.google.com/sheets/about/
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Figure 5.6: The polygon predicate indicating the place in front of the Astronom-
ical Clock and query parameters used for the visit analysis query.

Figure 5.7: Post-processed query results and the histogram based on this data.
We observe that the most detections were recorded at around 18:21:33. The hour
difference between the web page and the results occurred because the time on the
web page is adjusted according to the user’s time zone, while the time records in
the database are determined by the actual time when the video was recorded.
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5.4 Other practical use cases
To complete this chapter, we present questions that could be answered either by
the analytical module itself or by post-processing the exported results in the SQL
environment:

• Which restaurants/bars are the most visited? Which restaurants/bars are
the most visited during the evening?

• Which roads/crossroads/traffic lights often form traffic jams?

• Show critical places where traffic accidents often occur (i.e. some cars are
not moving while others pass by).

• Are there overcrowded parking lots? Are there unused parking spaces?

• Is there a public transport connection that is useless at a certain stop (i.e.
hardly ever someone gets on/gets off)?
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6. Solution analysis
In this chapter, we will analyze our implementation of the graphical user interface
for Videolytics.

6.1 Used languages
The graphical user interface of the analytical module is a part of the Videolytics
WebClient and shares the same architecture. Therefore the choice of the pro-
gramming language was pretty straightforward - it is written in JavaScript.

Javascript

Javascript1 is a programming language commonly used for developing web pages
but it is also used in many non-web applications.

JavaScript runs on the client’s web browsers. This reduces the load on the
server because many user requirements can be handled by JavaScript, without
the need to be sent to the server.

It is an interpreted language - there is no need to wait for the source code
to be compiled. Instead, an interpreter in the web browser reads the code and
interprets it line by line. In more modern browsers, JIT (Just In Time) compilers
are used - the compilation of the JavaScript code is done during the execution of
the code.

While no compile time is a huge advantage, interpreted language has its down-
side - the code cannot be optimized in compile time. Unlike server-side scripting,
JavaScript is strongly dependent on the client’s hardware. Computationally in-
tensive web pages could become too difficult to handle for the client’s machine.

Another disadvantage of JavaScript is that different browsers can interpret
JavaScript code differently. To ensure proper execution everywhere, it must be
tested on each browser.

JavaScript libraries

There exist over 1 million libraries which makes JavaScript versatile for every
task. In our implementation, we use:

• jQuery2. jQuery is a library that simplifies HTML document traversal and
manipulation as well as event handling and much more. It is the most used
JavaScript library and it is used on almost every web page.

• jQuery UI3. jQuery UI is a library built on top of jQuery providing GUI
(Graphical User Interface) widgets for easy creation of responsive web pages.

1https://developer.mozilla.org/en-US/docs/Web/JavaScript
2https://api.jquery.com/
3https://api.jqueryui.com/
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6.2 Internal structure
Designing a web user interface means working with various HTML elements -
radio buttons, check-boxes, switches, intervals, and buttons. These elements
have to react to changes made by the user accordingly. Every change of state
fires an event. Functions, that respond to events are called event handlers.

The Videolytics WebClient consists of one HTML web page. It is built around
the main class App which has several managers - classes, that manage different
parts of the web application. A brief description can be found in 2.4.4. We will
focus on the Analytics Manager, which takes care of everything related to video
analysis.

6.2.1 Drawing predicates
Firstly, we will describe the process of drawing predicates and its implementation.

Canvases

The first task is to create an environment for drawing. We use the HTML canvas
element which is commonly used for drawing graphics. Namely, we use multiple
stacked canvases:

• Image canvas. Image canvas is a canvas that is used for displaying refer-
ence frame images. Reference frames are stored on the server and loaded
on every selection of a video.

• Interactive canvas. It serves as an intermediate layer that only reflects
the current user actions. It is refreshed at each update, and any finished
changes are immediately moved to a newly generated predicate canvas as
the interactive canvas is cleared for the next interaction.

• Predicate canvases. Predicate canvases for each drawn predicate. Using
one canvas for one predicate makes it easier to delete selected predicate or
change the opacity of drawn predicates e.g. for predicates with action set
to none.
Each predicate canvas has its unique ID referencing its predicate. In case
of change/deletion of the given predicate, canvas with its ID is found and
changed/deleted.
We suppose that the number of drawn predicates will not be high enough
to slow down the web page.

• Results canvas. Results canvas is meant for plotting detection bounding
boxes or trajectories.

• Crop canvas. Crop canvas is used for displaying detection crops.

• Export canvas. Auxiliary canvas that is created for merging all canvas
in order to export reference frame with predicates and drawn results. It is
deleted after the export is finished.
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Event handlers

Due to the fact that all predicates defined within Videolytics behave differently,
we need to listen to the changes made in the selection of mentioned predicates and
behave accordingly. Due to that, the type of event handler for user interaction
with the canvas has to be updated dynamically as well. Upon selecting a different
predicate in the predicates menu, the listeners are updated, and an appropriate
set of drawing listeners is selected.

We use two types of event handlers for every predicate:

• On mouse down handler. Handler that handles the mousedown event.
Handling this event includes starting drawing the selected predicate shape
on the interactive canvas if the drawing process has not yet begun or end
drawing and store drawn shape otherwise.

• On mouse move handler. Handler that handles the mousemove event.
Handling includes update interactive canvas based on the user mouse moves.

Storing predicates

The analytics module supports four types of predicates:

• Line.

• Polygon.

• Circle.

• Directed line.

After drawing, the predicate must be saved for further interactions with it
(e.g. action change) and for passing data to generate a query. Every predicate is
stored as a JavaScript Object with properties specific to each type of predicate.
Some examples are shown in Figure 6.1.

Figure 6.1: Examples of structures for line and circle predicates.
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6.2.2 Communication with the database

Again, we must note that the actual generation of queries and communication
with the database is the work of another student. We will focus more on the
design of communication with the database.

Internal state

To generate a query, it is necessary to pass all relevant information to the gener-
ator. Because the generator assumes JSON file as an input, all important data
are kept in a JavaScript object which can be easily converted to JSON.

Properties of the internal state include:

• Camera ID. ID of the currently chosen camera. Because we work in the
offline mode, in our case this is the ID of the currently selected video.

• Mode of the analytics manager. We support detections and trajectories
mode, based on the user input.

• Trajectory model. Trajectory model that is currently selected. Works
only in trajectories mode.

• Selected arguments and selected classes. Lists of checked arguments
and classes.

• Time interval. Two dates from the interval element (from-to) in the ISO
standard format.

• Count. Boolean whether only the final count of results or every result
should be sent back.

• Predicates. List of predicate objects.

• Logical operator for combining predicates. Can be and or or.

When needed, the internal state object is converted to JSON and passed to
the generator to generate a query. Generated query is then executed by the
executor. Both generator and executor are the work of another student and will
not be discussed.

Database response

We assume that the received response is a JSON file. Once the response from the
executor is received, it is parsed to a JavaScript Object and stored. The parsed
object is then used for creating an HTML table that lists results. Due to the fact
that the number of results tends to be really high, only the first 500 results are
shown. Otherwise, the web page becomes laggy and slow.

44



Further communication with the database

It may be necessary to communicate with the database again when working with
the results, especially when drawing results. For drawing detections, it is neces-
sary to know the boundaries of bounding boxes. Moreover, we need to have the
actual RGB data of the detected object for drawing detection crops. The same is
true for trajectories - in order to draw a trajectory accurately, we need to know
its individual points.

There are two options how to ask for additional information:

• Ask for information about all the results. This can be done by using
almost the same query we have already used - with predicates. All we need
to do is query different arguments that are essential for drawing.

• Ask for information about some results. In some cases we are only
interested in information about certain results. Therefore it is possible to
query information using IDs of the results.

The usage of these two approaches depends on the situation. Generally, for
querying information about a small number of results, the IDs approach is used.
Otherwise, we query all by using predicates. This also implies that the IDs must
be returned in every response.

Additional information is queried only when needed. Before drawing a re-
sult, it is always checked whether the necessary information is already cached in
memory. If not, it is queried from the database.

A schematic description of communication with the server and the database
can be found in Figure 6.2.

Storing results

The choice of data storage structure is crucial for the speed of the visualization
results. Initially, results were stored in an array. However, querying additional
data on only some results and associating the response with given results took
too long.

Due to that, we had to switch to a different way of storing data which is more
effective. We opted for a JavaScript Object representation with detection/trajec-
tory IDs as keys and the detection/trajectory JavaScript Objects as values.

This representation has the main advantage that access to the detection/tra-
jectory data with a given ID is possible at a constant time. This allowed us to
significantly speed up the storage of new data and thus speed up the visualization
of results.

45



Figure 6.2: A schema of communication with the server and the database.
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6.2.3 Drawing results
The presentation part of our graphical interface deals with the processing of
results and their drawing on the canvases. In the following paragraphs, we will
describe its implementation.

Drawing bounding boxes

The easiest and the most basic way to plot detections is to draw bounding boxes.
For that, we need to know their dimensions and positions. In our case, four
corner points (left, right, top, bottom) of the bounding boxes are stored in the
database and need to be retrieved. To draw bounding boxes, we must query
this information based on whether all bboxes should be drawn or not. More
information about queries can be found in 6.2.2. Detection bounding boxes are
then drawn on the results canvas as rectangles. Bbox detection drawing uses
already defined methods from the Detection manager.

Drawing crops

Drawing actual crops of the detected object is a more complex task. We need
not only the dimensions and positions of the bboxes but also the crop data itself.
Crops are stored in the database as hexadecimal bytes in the RGB representa-
tion. To draw crops, we must query the dimensions and the crop data from the
database.

The next step is to transform the data to a form that can be used with the
HTML canvas element. For that, we need an array of RGBA bytes. Therefore
the string has to be sliced and the alpha component has to be added and set to
FF as a fully opaque color. Then we can put the crop data on the crop canvas.

The last thing that has to be solved is the dimension of the canvas. In HTML
canvas, it is important to note that there is a crucial difference between dimen-
sion (width, height), and their style counterparts. Whereas width and height
attributes in canvas determine its resolution, width and height specified in style
determine only its size on the screen.

In WebClient, all canvases are styled to the same dimensions for obvious
reasons. However, because of different ways of interacting with different sets of
canvases, some canvases may require different resolutions.

For historical reasons, all original canvases used within the WebClient had a
fixed size of 1280x720. These dimensions have been uniformly used for the video
player, canvases visualizing reference frame image, as well as others.

These dimensions, however, are an issue when trying to draw crops within the
canvas. Crops are made directly by cutting out a specific part of the video at
specific times, and therefore their position and dimensions are directly dependent
on the dimensions of the video itself. This video is played within a video player,
which only uses style width and height, and is resized to fit the player. Canvas,
on the other hand, has to conform to this size, otherwise inconsistencies happen
when trying to put an image on canvas with a different size, which is to be
expected.
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Therefore, there are two possible ways to fix this issue:

• Set the attribute size of canvas which draws crops to the same
size. This would result in a canvas with a possibly different size than the
original video. Crops would then have to be adjusted by translating and
stretching or shrinking them internally.

• Use canvases with different attribute size. Use attributes that corre-
spond to the size of the original video. This way we can avoid changing the
crops in any way. They can be simply converted and inserted without any
additional steps.

We chose the second approach for multiple reasons. First, the second option
requires less code on our side. The algorithm for resizing canvas to fit the style
dimensions is already implemented in the native code of JavaScript. Additionally,
the first option is a lossy and fairly complex conversion. In case of resizing the
crops to the canvas with smaller dimensions, the crops can become blurry, and
unless we save both original and resized crop in memory, any change would require
running the complex procedure again (or in case of getting the larger version of
the crop from the smaller one, completely impossible).

Drawing trajectories

Each trajectory can be represented as a set of points that form a curve. As well
as for detections, all data about trajectories are stored in the database and are
queried on demand.

To draw a trajectory we use already existing methods from the WebClient
Trajectory manager.

Drawing of trajectories is done by initiating a timeout loop. In each iteration,
all trajectories are filtered based on their starting and final frame ID for the
specific model. All trajectories starting after or finishing before the current frame
are discarded, and the ones left are drawn.

In cases when the current frame ID is irrelevant, such as during analytics when
the stream is not running, the trajectories are drawn by disregarding the time and
instead are drawn fully for the whole duration of the video. Based on fps, each
trajectory is then drawn by a sequence of curves, where points are interpolated
and smoothed based on their recent history and future.

Drawn results

The module keeps track of currently drawn results by updating an array of de-
tections/trajectories IDs.

In case some result should be deleted, its ID is deleted from this array, and
result canvases are cleared. Then the results whose IDs are contained in this
array are redrawn.

Animation

Creating the illusion of movement is possible by drawing and deleting detections
at small intervals. Firstly, all data needed for drawing an animation must be
queried.
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In the case of animating detections, detections with the same frame ID are
drawn at the same time.

However, the question is how trajectories should be animated. There are two
options:

• Animate each trajectory individually. By sequentially animating indi-
vidual trajectories, we effectively increase the time necessary for rendering,
as the same time frame has to be animated for each obtained trajectory.

• Animate trajectories by frame IDs. Animating trajectories by frame
IDs first results in blinking images, which look unnatural.

Because of that, we have to first group the crops by frame IDs and animate
the group as a whole. In such a way, we obtain natural and well-formed animation
for trajectories.

Heatmap

In order to render a heatmap based on drawn predicates, we have to process a
large amount of data as effectively as possible. These data can vary in size, which
also has to be taken into account.

During development, we tried multiple methods of drawing heatmaps. One
such method was by drawing semi-transparent ellipses at the positions of indi-
vidual detections. The ellipses had a radial gradient, which resulted in smooth
shading of the final heatmap. However, this method had bad performance due to
repeatedly drawing shapes on canvases with complex structures.

Due to that, we selected another approach. Instead of drawing a heatmap
directly, we first generate an image internally, each pixel having a value equal to
the number of detections intersecting it. This internal image is then normalized,
formatted, and finally passed in the canvas as an ImageData object, which results
in only a single update of the canvas internal data. This method performed better,
reducing the processing time significantly. The visual comparison between these
two approaches is shown in Figure 6.3 and Figure 6.4.

6.2.4 Exporting results

Exporting results data

Our module supports exporting data as JSON and CSV files. Because the query
results from the server are in JSON format, no big conversion is required when
exporting data as JSON. On the other hand, the data must be converted to an
appropriate format when exporting as CSV.

However, because we want to keep the arguments entered by the user, we must
export the data without additional information for drawing. This information
must first be filtered out before the data can be exported.

Along with the results, a metadata JSON file containing the internal state of
the application is exported as well.
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Exporting reference frame

The export of the reference frame is done by creating an auxiliary canvas. Next,
all predicate canvases, the reference image canvas, as well as canvases holding
result crops or bounding boxes, are merged, and the resulting image is exported.

6.2.5 Importing results
As well as for export, JSON and CSV files with results data are supported for
import. Metadata can be imported as a JSON file.

In the process of parsing imported files, it is verified whether the contents of
the files meet the basic criteria for result files. Next, the internal state is restored
from the metadata file (if this file was provided) and the results are listed in the
results table.
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Figure 6.3: A visual example of the initial implementation of the heatmap. Apart
from being slow, it did not use color normalization - some areas are too dark.

Figure 6.4: A visual example of the new and better implementation of the
heatmap. Colors are normalized and the heatmap is more pleasant to look at.
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Conclusion
Our work was focused on the analytical module for the Videolytics system. We
mainly dealt with the design and creation of the graphical user interface. The
implementation of this interface provides the user with an efficient and user-
friendly tool for querying, processing, reviewing, and exporting requested data as
well as their import back to the application.

• In Chapter 1 we have reviewed multiple projects from different backgrounds
that are dealing with video analysis.

• We have described the framework that the Videolytics system is based on
in Chapter 2. We also provided a brief overview of approaches towards
object detection and the choice of detector for Videolytics. We have pro-
vided a description of existing modules. We ended the chapter with a short
description of possible practical use cases.

• In Chapters 3 and 4 we have proposed and analyzed the graphic user inter-
face for the analytical module from the user’s point of view. We explained
its operation including entering queries and working with the results.

• Chapter 5 was reserved for the presentation of practical examples that can
be analyzed by our module. We showed a variety of queries and explained
what can be done with the results, including their post-processing by ex-
ternal applications.

• Lastly, in Chapter 6 we have discussed the implementation of the user
interface from the programmer’s point of view. We have described some
obstacles we have encountered during the implementation and the solutions
we used to overcome them.

Future work
The potential of Videlytics is great and offers plenty of room for further develop-
ment. Another module dedicated to detecting crowds is expected to be added in
the near future. Regarding the analytical module future work and improvements,
we would suggest:

• More options for combining predicates. Currently, it is possible to se-
lect a logical operator to combine predicates, and this operator will be used
to combine all predicates. It would make sense to extend this functionality
with the ability to define exactly when to use which operator.

• Optimizing detection crops size. The largest bottleneck of the analyt-
ical module is the data download time from the server. This time could be
reduced especially when downloading crops by compressing the data to a
lower quality instead of using the resolution from the original video.
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• Heatmap that distinguishes object classes. The current implemen-
tation of the heatmap does not take into account the classes of detected
objects. Their color differentiation could be an interesting way to improve
it and provide the user with an even better visual view of the analyzed
situation.

• Better import file validation. Because the validation of imported files is
only very basic so far, it is necessary to make a better validator that better
detects invalid files.

• Event detection. Using trajectories, it would be possible to create a
higher abstraction of the analytical module that would be able to detect
certain actions based on trajectory analysis.
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List of Abbreviations
• IP camera - Internet Protocol camera

• GUI - Graphical User Interface

• UI - User Interface

• bbox - bounding box

• YOLO detector - You Only Look Once detector

• SSD detector - Single Shot Detector

• ID - Identification Number

• JSON - JavaScript Object Notation

• CSV - Comma-Separated Values

• HTML - HyperText Markup Language

• RGB - Red-Green-Blue color model

• RGBA - Red-Green-Blue-Alpha color model

• fps - frames per second

59



60


	Introduction
	Related works
	Commercial projects
	Sentinel
	TimeRethink
	Senstar

	Non-commercial projects
	P-REACT
	SAVASA
	VICTORIA


	Videolytics overview
	Framework
	Database
	Object detection
	Modules
	LivED
	TrajAn
	ReID
	WebClient
	Analytical Module

	Use cases

	Input interface
	Video selection
	Query type
	Entering predicates
	Drawing predicates
	Removing predicates
	Actions
	Combining predicates

	Query parameters
	Choosing select arguments
	Choosing classes
	Time interval

	Database communication
	Passing data to the database
	Prefetch mode


	Presentation interface
	Draw results mode
	Results visualization
	Visualization of all results
	Visualization of selected results
	Clearing drawings
	Animating results
	Results aggregation

	Exporting results
	Importing results

	Usage evalation
	People crossing a square
	Trajectory count query
	Trajectory visualization query
	Directed trajectory query

	Coffee shop and the tram stop nearby
	A popular time to visit a monument
	Other practical use cases

	Solution analysis
	Used languages
	Internal structure
	Drawing predicates
	Communication with the database
	Drawing results
	Exporting results
	Importing results


	Conclusion
	Bibliography
	List of Figures
	List of Abbreviations

