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Introduction
In this thesis, we study how a graph can be extended to a more symmetric larger
graph. We provide several constructions for various subclasses of graphs and
prove bounds on the size of the extended graph.

In order to talk more rigorously about the subject of this thesis, we require
several basic definitions.

Definition 1. A graph G = (V, E) is called a vertex-transitive graph if for every
pair of vertices u, v there exists a graph automorphism f : V → V such that
f(u) = v.

In the language of group theory, an equivalent and more common definition
would be that a graph is vertex-transitive if its automorphism group acts
transitively on its vertices. The action of group G on set X is transitive, if
X is non-empty and if for each pair x, y in X there exists a g in G such that
g · x = y.

Definition 2. Graph H is a vertex-transitive supergraph of graph G if H is a
vertex-transitive graph and G is isomorphic to an induced subgraph of H.

We focus on the construction of vertex-transitive supergraphs, usually with
the goal of minimizing the size of the supergraph. Note that if we only required
G to be a subgraph of H (as opposed to being an induced subgraph) the task
would be trivial as the complete graph on the vertices of G would always satisfy
this property.

In order to construct these graphs, we define a template which lets us take
several copies of the input graph and stitch them together into a vertex-transitive
supergraph. We prove that every vertex-transitive supergraph can be constructed
using a template (possibly first requiring the removal of some extraneous edges).
We provide a construction of a template schema, which lets us prove the following
theorem.

Theorem 3. For every graph G of order n there exists graph H such that H is
a vertex-transitive supergraph of G and is of order 2n−1.

For bipartite graphs, we provide a much more compact construction which
gives us a much tighter bound.

Theorem 4. For every bipartite graph G of order n, there exists graph H such
that H is a vertex-transitive supergraph of G and is of order 2n2.

For general graphs, we also prove a lower bound of (n−1
2 )2 for the order of

vertex-transitive supergraphs. Specifically we prove that for every n ∈ N there is
a graph G such that every vertex-transitive supergraph of G has at least (n−1

2 )2

vertices.
In the second section, we establish how these results could be connected

with complexity theory. We are interested in proving that the problem of
recognizing vertex-transitive graphs is of the same difficulty as the notorious graph
isomorphism problem. This is not achieved in this thesis, although a connection is
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made which would provide full proof if a vertex-transitive supergraph construction
having certain properties is found.

All graphs in this thesis are finite, undirected, and simple unless stated
otherwise.

Figure 1: The grid graph P3 × P4 on the left and the Cayley graph of the group
Z4 × Z5 on the right. The first graph is an induced subgraph of the undirected
version of the second graph and can thus “inherit” the cardinal directions.

Motivation
The motivation behind this thesis is twofold. The original motivation stems from
computational complexity, specifically the relationship of the problem of testing
vertex-transitivity of a graph and the graph isomorphism problem. Construction
of vertex-transitive supergraphs could lead to a possible way to prove that these
two problems might be equally hard. This line of thinking is explored in greater
detail in the second section.

There is also secondary, less-rigorous motivation behind this area of study. If
we are given an infinite grid graph (the product of two infinite path graphs), we
can naturally assign consistent cardinal directions (north, south, east and west)
to each pair of a vertex and an edge incident to it. In this case, the directions can
also be understood as interpreting the graph as the Cayley graph of the group
Z2. Recognizing Cayley graphs therefore seems like a good first step for adding
this structure of directions to an arbitrary graph. However, intuitively we feel
that a finite grid graph (the product of two finite path graphs) should also be
assigned a similar, though incomplete, structure. And yet, this graph is not even
regular and as such it most certainly cannot be a Cayley graph. One way to
repair this issue is to try to look at the graph as a subgraph of some larger graph
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that is indeed a Cayley graph and then retrieve the directional structure from
this supergraph. In the case of a graph Pm × Pn, this would be the Cayley graph
of the group Zm+1 × Zn+1 (see Figure 1).

The property of being a Cayley graph is stronger than just being a
vertex-transitive graph. However, the gap between these two properties is
smaller than it is immediately apparent. A theorem due to Sabidussi states that
vertex-transitive graphs can be understood as a generalization of Cayley graphs.
Specifically in Cayley graphs, vertices correspond to group elements while in
vertex-transitive graphs Sabidussi’s construction uses cosets of a subgroup for
vertices. 1 [7] [9] Therefore, it is not unreasonable to expect that the work done
here on vertex-transitive supergraphs could be extended into a similar study of
Cayley supergraphs.

Preliminaries
The topic of this thesis deals with graph theory, so we will establish some base
graph theory terms. For a deeper overview, we recommend reading common
graph theory introductory literature, for example [3].

Definition 5. A (simple undirected) graph G is a pair (V, E) where V is a set
and E ⊆

(︂
V
2

)︂
. We call V the set of vertices of G and denote it by V (G), similarly

we call E the set of edges of G and denote it by E(G).
When it is clear from the context that we are talking about edges, we shall

also use the notation uv for the edge {u, v}.
The order of G is the number of vertices (i.e. |V (G)|).
We say that graph H is a subgraph of G if V (H) ⊆ V (G) and E(H) ⊆ E(G).
If X ⊆ V (G), we define the subgraph induced in G by X as (X, E(G) ∩

(︂
X
2

)︂
).

We denote this graph by G[X].

Now we shall define the commonly used terms about graph homomorphisms:

Definition 6. Let G and H be graphs and f : V (G) → V (H) a mapping between
them. We say that f is a (graph) homomorphism if {f(u), f(v)} ∈ E(H) for every
edge {u, v} ∈ E(G).

If f has an inverse and that inverse is also a homomorphism, then we call f
a (graph) isomorphism.

We say that graphs G and H are isomorphic if there exists an isomorphism
between them.

If f is an isomorphism F : G → G, then we call it an automorphism.
Automorphisms of graph G form a group with the operation of composition.

We denote this group by Aut(G) and call it the automorphism group of G.

1Given a group G, a subgroup H, and a set D ⊆ G, the Sabidussi graph, Sab(G, H, D), is
the directed graph with vertex set cosG(H) and arc set {(Hx, Hy) : xy−1 ∈ D}. Sabidussi’s
theorem states that all Sabidussi graphs are vertex-transitive and all vertex-transitive graphs
are Sabidussi. It is easy to see that for H being the trivial one element subgroup and D being
a set of generators we get Cayley graphs.
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1. Vertex-transitive Supergraph
Construction

1.1 Basic Results
At a first glance, one might believe that the minimal order of a vertex-transitive
supergraph of some graph G directly depends on the symmetries of G. As a
counterexample, let us consider a path graph Pk+3 with one additional vertex
connected with an edge to the third vertex of the path (see Figure 1.1). For values
k ≤ 3 this graph’s automorphism group is trivial, so the graph is as asymmetric
as possible. And yet, we can create a relatively small vertex-transitive supergraph
consisting of 2k + 8 vertices. That gives us a ratio of 2 between the orders of
the two graphs. As we will see later, achieving a constant ratio is impossible for
common classes of graphs so a ratio of 2 is exceptional.

k

Figure 1.1: A graph with a trivial automorphism group and its vertex-transitive
supergraph.

Let us establish some basic facts about the structure of vertex-transitive
supergraphs. We will often talk about different copies of the base graph in its
vertex-transitive supergraph. We shall now formalize this notion of a copy of one
graph in another.
Definition 7. Given two graphs G and H, an induced embedding of G into H is
a graph homomorphism h : V (G) → V (H) such that h restricted to its image is
an isomorphism. We also denote the set of all induced embeddings of G into H
by IEG,H . Sometimes we use the phrase copy of G in H, by this we mean either
an induced embedding of G into H or its image (the actual induced subgraph of
H isomorphic to G).
Observation 8. If H is a graph and G is isomorphic to some induced subgraph
of H, then there exists at least one induced embedding of G into H.
Proof. Let H = (VH , EH). Then G is isomorphic to H[X] for some X ⊆ VH . We
take this isomorphism h : G → H[X] and extend its codomain to VH . Restriction
back to the set X (the image of h) gives us the original isomorphism.
Lemma 9. Let G = (VG, EG) be a graph and let H = (VH , EH) be a
vertex-transitive supergraph of G. Then for every vertex v ∈ VG and vertex u ∈ VH

there exists an induced embedding h of G into H such that h(v) = u.
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Proof. By the definition of a vertex-transitive supergraph G is isomorphic to an
induced subgraph of H. By applying Observation 8 we get an induced embedding
f : G → H. Now we use the fact that H is a vertex-transitive graph. If we choose
vertices f(v) and u there has to exist an automorphism g : H → H such that
g(f(v)) = u. Thus the first condition is satisfied by the homomorphism g ◦ f and
since g is an isomorphism the second property remains satisfied.

This lemma tells us that each vertex of H plays a role of each vertex of G in
some copy of G. We make extensive use of this fact throughout the thesis. It
can be strengthened showing us that the structure of induced embeddings in a
vertex-transitive graph is very regular:

Lemma 10. If G = (VG, EG) is a graph and H = (VH , EH) is its vertex-transitive
supergraph, then there exists k ∈ N such that for every v ∈ VG, u ∈ VH there are
exactly k induced embeddings h : G → H such that h(v) = u.

Proof. For v ∈ VG, u ∈ VH we define kv,u as the number of induced embeddings
h such that h(v) = u. Our goal is to prove that all kv,u are equal.

We show that for any x, y ∈ VH , v ∈ VG it holds that kv,x = kv,y. Since H
is vertex-transitive, there exists an automorphism f of H such that f(x) = y.
For any induced embedding h such that h(v) = x the composition f ◦ h is an
induced embedding such that (f ◦h)(v) = y. On the other hand, for every induced
embedding h′ such that h(v) = y we get that f−1 ◦ h is an induced embedding
such that (f−1 ◦ h)(v) = x. Therefore, we have a bijection between these two sets
of induced embeddings and kv,x = kv,y.

Since we have shown that for fixed v the values of kv,u are all equal, we denote
this value by kv. Now if we pick a fixed v ∈ VG, then the following holds

| IEG,H | =
∑︂

u∈VH

kv,u = |VH |kv

because for each induced embedding h there exists exactly one u ∈ VH such
that h(v) = u. This yields that for every vertex v of G the following holds
kv = | IEG,H |

|VH | .

This simple result gives us an important insight into the structure of
vertex-transitive supergraphs. If H is a vertex-transitive supergraph of G, then
G occurs as an induced subgraph many times in H. There needs to exist at
least one copy of G in H for each vertex of H. This observation also gives us a
way to talk about constructions of vertex-transitive supergraphs. If we want to
construct a vertex-transitive supergraph of G, we choose a natural number k and
create a graph consisting of k copies of G. Then we take a quotient of this graph
according to some partition that identifies vertices of the copies.

1.2 Templates
In this thesis, we care about the computational aspects of these constructions. We
want to construct vertex-transitive supergraphs in polynomial time. An algorithm
for this kind of construction could in theory analyse the structure of the input
graph and then exploit repeating patterns or other structures in that graph to
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create a small vertex-transitive supergraph. However, this approach is unlikely
to be of much use. We would need to find these possibly useful patterns quickly,
but it seems that this could stray into the territory of the Induced Subgraph
Isomorphism Problem, which is known to be NP-complete or at least the Graph
Isomorphism Problem, which does not yet have a polynomial time algorithm.
Moreover, we expect that for sufficiently large and sufficiently asymmetric graphs
these exploitable patterns are likely absent.

With these arguments supporting us, we adopt an approach in which our
construction does not care about the actual input graph. Instead, we try to
provide a system that gives us a template for each order of the input graph. A
universal template of order n allows us to create a vertex-transitive supergraph
of any graph of order n.
Definition 11. A template of order n is a pair (c, ∼) where c ∈ N and ∼ is an
equivalence relation on the set [n] × [c] such that for every k ∈ [c] there are no
distinct j1, j2 ∈ [n] for which (j1, k) ∼ (j2, k). (In other words, we do not want
two vertices in one copy to merge into one.)

The application of a template T = (c, ∼) to a graph G = ([n], E) is a graph H
constructed in the following way. First we create a graph G′ as c disjoint copies
of G. That is G′ = (V ′, E ′), where V ′ = [n] × [c] and E ′ = {(e1, i)(e2, i)|e1e2 ∈
E, i ∈ [c]}). Then H is the quotient graph we get from G′ by identifying vertices
related by ∼. We are working with simple graphs so multiple parallel edges get
replaced by a single edge. More explicitly H = (V ′/ ∼, {{[u]∼, [v]∼}|uv ∈ E ′}).
We denote this by T (G).

We say that a template T of order n is universal if for every graph G = ([n], E)
the application of the template T to G is a vertex-transitive supergraph of G.

A template T = (c, ∼) of order n is strict if for every pair of distinct k, l ∈ [c]
there exists at most one pair i, j ∈ [n] such that (i, k) ∼ (j, l).

(3, 1)

(1, 2) (2, 2) (3, 2)

(2, 1)

(1, 1) (3,3)

(2, 3)

(1, 3)

(1,4)(2,4)(3,4)

1 2 3

Figure 1.2: Graph P3 on the left, a template of order 3 in the middle and the
application of the template to the graph on the right. The template is drawn with
4 copies of P3, the squiggly edges represent the ∼ equivalence of the template
(omitting transitive edges). Note that the template is neither strict nor universal.

For an example of a template and its application see Figures 1.2 and
1.3. Alternatively we can also describe the application equivalently as: The
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(1,4)

(2,3)

(3,2)

(2,4)

(1,3)
(3,1)

(3,4) (1,2)

(2,1)

(3,3)

(2,2)

(1,1)

1

3

2

Figure 1.3: A universal template of order 3 in the top row. A graph G in
the bottom row on the left with application of the template to G on the right.
Corresponding edges in these two graphs have the same colour.

application of a template T = (c, ∼) to a graph G = ([n], E) is a graph
H = (([n] × [c])/ ∼, EH), where XY is an edge of H if and only if there exist
k ∈ [c] and u, v ∈ VG such that (u, k) ∈ X and (v, k) ∈ Y . This alternative
definition also immediately gives us the following result that we use throughout
the next section.

Observation 12. If G is a graph of order n, T = (c, ∼) is a template of order
n, and uv is an edge in T (G), then there exist i, j ∈ V (G) and k ∈ [c] such that
u = [(i, k)]∼ and v = [(j, k)]∼.

We also invoke the application of a template on a graph with a different
vertex set. In that case, let us without loss of generality replace that graph with
an isomorphic graph with the vertex set [n].

The motivation behind the definition of a strict template is that if a template
is strict, then each edge lies in exactly one copy of G. This guarantees us that G
is isomorphic to an induced subgraph of the application of the template to G.
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Observation 13. If T = (c, ∼) is a strict template of order n and G = ([n], E)
is a graph then G is always isomorphic to an induced subgraph of T (G).

Proof. We claim that u ↦→ [(u, 1)]∼ gives us the isomorphism between G and the
subgraph induced by the image of that mapping.

By the condition in the definition of a template, we know that if we have a
pair i, j ∈ [n] such that (i, 1) ∼ (j, 1), then necessarily i = j. So no two of the
vertices from the first copy lie in the same equivalence class of ∼ and therefore
the mapping is injective.

Let H = T (G). Then uv is an edge in H if and only if u = [(i, k)]∼, v =
[(j, k)]∼ for some k ∈ [c] and ij is an edge in G. As a direct consequence we get
that ij ∈ E(G) =⇒ {[(i, 1)]∼, [(j, 1)]∼} ∈ E(H). To prove the other direction,
let us assume for contradiction that ij ̸∈ E(G) and {[(i, 1)]∼, [(j, 1)]∼} ∈ E(H).
By Observation 12 there exists i′j′ ∈ E and k′ ∈ [c] such that (i, 1) ∼ (i′, k′) and
(j, 1) ∼ (j′, k′). Now there are two cases:

k′ = 1: Because ij ̸∈ E(G) either i ̸= i′ or j ̸= j′, without loss of generality
let it be the first case. But then (i, 1) ∼ (i′, 1) and i ̸= i′, which contradicts the
fact that T is a template.

k′ ̸= 1: This directly contradicts the strictness of T .
Thus, G is isomorphic to the image of the mapping defined above.

Thanks to this observation, we only need to ensure that the template
guarantees us a vertex-transitive graph. The definition of a template is motivated
by the Lemma 9 in the sense that we want every vertex-transitive supergraph
of G to be constructible by applying some template to G. Unfortunately, this
statement does not hold as it can happen that the supergraph has extra edges that
are unrelated to the copies of G as can be seen in Figure 1.4. As an example of
this, consider that the prism graph with 2n vertices (Cn×P2) is a vertex-transitive
supergraph of the cycle graph Cn. For odd n the edges connecting the two cycles
in the prism are part of no copy of Cn. But not all hope is lost, if we removed those
problematic edges we would be left with two disjoint copies of Cn. That graph is
clearly still a vertex-transitive supergraph of Cn and is trivially constructible by
a template. We shall formalize this in the following lemma.

Figure 1.4: A prism graph with 10 vertices and two copies of C5 as its induced
subgraphs in red. It can be seen that the black edges do not belong to any other
induced C5 subgraph.
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Theorem 14. Let G = (V, E) be a graph. Then for any graph H that is a
vertex-transitive supergraph of G there exists a template T = (c, ∼) and H ′ a
subgraph of H such that T (G) ∼= H ′. The graph H ′ is also a vertex-transitive
supergraph of G.

Proof. We choose c = | IE{ G, H}|. Let IE{ G, H} = {h1, h2, . . . hc} and also
without loss of generality assume that V (G) = [n].

We define the equivalence ∼ accordingly: For every i1, i2 ∈ [n] and k1, k2 ∈ [c]
let (i1, k1) ∼ (i2, k2) if and only if hk1(i1) = hk2(i2).

The condition we require of ∼ is satisfied because (i1, k) ∼ (i2, k) ⇐⇒
hk(i1) = hk(i2) ⇐⇒ i1 = i2. The last equivalence follows from the fact that
hk is an induced embedding and therefore injective. Now T = (c, ∼) is a valid
template of order n and we can apply it to get H ′′ = T (G).

We now define a mapping f : V (H ′′) → V (H) and prove that it is a
homomorphism and an injection via f([(i, k)]∼) = hk(i). This is a sound definition
because if (i1, k1) ∼ (i2, k2) then by definition hk1(i1) = hk2(i2) and therefore also
f([(i1, k1)]∼) = f([(i2, k2)]∼).

Now we show that f is a homomorphism: Let [(i1, k)]∼[(i2, k)]∼ ∈ E(H ′′).
Then i1i2 ∈ E again by the definition of template application. We know that
hk is an induced embedding and thus also a graph homomorphism, therefore
hk(i1)hk(i2) ∈ E(H). And hk(i) = f([(i, k)]∼), thus f is also a homomorphism.

Next we show that f is injective: If [(i1, k1)]∼, [(i2, k2)]∼ are two distinct
vertices of H ′′ then (i1, k1) ̸∼ (i2, k2) which implies that:

f([(i1, k1)]∼) = hk1(i1) ̸= hk2(i2) = f([(i2, k2)]∼)

Since f is an injective homomorphism, we can choose H ′ as the image of H ′′

under f (selecting only the vertices and edges to which some vertex or edge of
H ′′ maps). When we restrict f ’s image to H ′, it becomes an isomorphism. Note
that f is also surjective on the vertices due to Lemma 9.

We prove that G is isomorphic to some induced subgraph of H ′′ (and thus
also H ′ which is isomorphic). Let us define h : V (G) → V (H ′′) as follows:
h(i) = [(i, 1)]∼. By the definition of template application, we know that h is an
injective graph homomorphism and thus G is isomorphic to a subgraph of H ′′.
Let us prove that it is an induced subgraph by contradiction. Let us assume that
there exists {u, v} ̸∈ E(G) such that {h(u), h(v)} ∈ E(H ′′). Then there need to
exist k ∈ [c] and {u′, v′} ∈ E(G) such that h(u) = [(u′, k)]∼ and h(v) = [(v′, k)]∼.
But by the definition of ∼ this means that h1(u) = hk(u′) and h1(v) = hk(v′).
Both h1 and hk are induced embeddings of G into H that share a pair of vertices
on their images, but hk maps an edge to these vertices and h1 does not. This is a
contradiction, and therefore G is isomorphic to an induced subgraph of H ′′ and
H ′.

Now we shall prove that H ′ is vertex-transitive. Since H ′ and H ′′ are
isomorphic, we instead prove this property for H ′′. Let v1 = [(i1, k1)]∼, v2 =
[(i2, k2)]∼ be two distinct vertices of H ′′. Then by vertex-transitivity of H there
exists g : V (H) → V (H) an automorphism of H such that g(f(v1)) = f(v2).
Given any induced embedding hk the composition g ◦ hk is also an induced
embedding so it is equal to hi for some i ∈ [c]. Note that this induces a
permutation on the set IE{ G, H}, we shall denote this permutation by π. By its
definition it holds that g ◦ hk = hπ(k).
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We use this permutation to define a mapping g′ : V (H ′′) → V (H ′′) and prove
that it is an automorphism of H ′′ and that g′(v1) = v2. Let g′([(i, k)]∼) =
[(i, π(k))]∼.

First we prove that g′(v1) = v2:

g′(v1) = g′([(i1, k1)]∼) = [(i1, π(k1)]∼
g′(v1) = v2 ⇐⇒ [(i1, π(k1)]∼ = [(i2, k2)]∼ ⇐⇒ hπ(k1)(i1) = hk2(i2)

hπ(k1)(i1) = g(hk1(i1)) = g(f([(i1, k1)]∼)) = g(f(v1)) = f(v2) =
= f([(i2, k2)]∼) = hk2(i2)

Now we prove that g′ is a homomorphism, let u1u2 ∈ E(H ′′) where u1 =
[(j1, l)]∼, u2 = [(j2, l)]∼. By the construction of H ′′, if u1u2 is an edge in H ′′

then j1j2 must be an edge in G. And conversely, if j1j2 is an edge in G, then
[(j1, π(l))]∼, [j2, π(l)]∼ = g′(u1), g′(u2) is an edge in H ′′.

Finally, we prove that g′ is injective (and therefore also bijective). Due to
Lemma 9 for each v ∈ V (H) there are i ∈ [n], k ∈ [c] such that v = hk(i). For
such vertex it holds that:

f(g′(f−1(v))) = f(g′([(i, k)]∼)) = hπ(k)(i) = g(v)
And since f , f−1 and g are all bijections g′ must also be a bijection which

completes our proof that g′ is an automorphism of H ′′.

Due to this lemma, we will from now on assume that all vertex-transitive
supergraphs we encounter can be constructed by applying a template. We can
do this because we generally care about minimizing the order (and possibly size)
of the supergraph and the previous lemma says that if the current supergraph is
not constructible by a template, then some subgraph of it is.

We would like to give a way to construct a small vertex-transitive supergraph
of any graph G. However, a template of order n can only be applied to graphs of
order n. To give a construction applicable to any graph we will need a template
of order n for each n ∈ N.

Definition 15. A sequence T = (Ti)∞
i=1 is a template schema if Ti is a template

of order i for every i ∈ N. The application of T to a graph G = ([n], E) is defined
as Tn(G), we denote the application by T (G).

We say that a template scheme T = (Ti)∞
i=1 is universal if Ti is universal for

every i.
Likewise, we say that it is strict if Ti is strict for all i.

Our goal is to provide a universal template schema that constructs reasonably
small vertex-transitive supergraphs for every graph. To determine how good a
template is we need some way to measure this quantity. Note that the order of
the graph constructed by applying a template does not depend on the edges of
the input graph, because it is equal to the number of equivalence classes of ∼.
We assign the sequence of the orders of the constructed graphs to each template
schema. In general, we care about the asymptotic behaviour of this sequence.
For example if we mention a template schema T = ((ci, ∼i))∞

i=1 produces graphs
of quadratic order we mean that the sequence (|([i] × [c])/ ∼i |)∞

i=1 ∈ O(n2).
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1.3 Construction for General Graphs
We have not yet been successful in providing a universal template schema that
would produce graphs of polynomial order. But as a partial result, let us provide
an exponential template schema. In the definition of a template we have used the
set [c] to index the copies of the input graph. This simplifies the definitions, but
can become unwieldy. In the following section, we commonly use different index
sets, we implicitly assume that a bijection with the set [c] is used when required.

We now describe the template Tn = (2n−1, ∼) of order n. As mentioned, we
replace the index set [2n−1] with the set C = {X ⊆ [n] : |X| is even}. Then
(v1, X1) ∼ (v2, X2) if and only if X1△X2 = {v1, v2}.

Observation 16. Let Tn be defined as above, let G be a graph of order n and let
H = Tn(G). Then |H| = 2n−1.

Proof. Each vertex of H corresponds to an equivalence class of ∼. Let us define
l : V (H) → {A ⊆ [n] : |A| is odd} in the following way: If u ∈ V (H) and
(v, X) ∈ u then let l(u) = X1△{v1}. We prove that this is a bijection with the
(2n−1)-element set.

We claim that this definition is sound. Let us have (v1, X1), (v2, X2) ∈ u, then
by the definition of ∼ we have X1△X2 = {v1, v2} = {v1}△{v2}. By rearranging
this equality we get X1△{v1} = X2△{v2}.

We prove injectivity of l similarly: Let us have l(u1) = l(u2), then there exist
(v1, X1) ∈ u1 and (v2, X2) ∈ u2 such that X1△{v1} = l(u1) = l(u2) = X2△{v2}.
This gives us that X1△X2 = {v1, v2} which once again proves (v1, X1) ∼ (v2, X2)
and therefore u1 = u2.

The set C was defined to only contain subsets of [n] which are of even size so
X1△{v1} is always odd. To finally prove that l is surjective let us have A ⊆ [n]
of odd size. Then For any v ∈ [n] we have l([v, A△{v}]) = A. This concludes
the proof as l provides a bijection of V (H) with a 2n−1-element set.

We use the mapping l to label the vertices of applications of Tn. This gives
us an interesting duality between the index set C containing all even subsets of
[n] and the codomain of l containing all odd subsets of [n]. One way to think
about is duality is to imagine both vertices of the template application and the
copies of G indexed by C as vertices of an n-dimensional hypercube. We will not
give an explicit proof, but the automorphisms we use in the following theorem
are reflections of this hypercube.

Theorem 17. The template schema T = (Tn)∞
n=1 with Tn as above is universal.

Proof. We prove that Tn is universal for each n ∈ N. We start with the proof of
vertex-transitivity.

Let n ∈ N, G = ([n], E) a graph, H = Tn(G) and u1, u2 ∈ V (H). We claim
that H is vertex-transitive. We define a mapping f : V (H) → V (H) such that
f(v) = l−1(l(v)△l(u1)△l(u2)). Note that both |l(u1)| and |l(u2)| are odd so
|l(v)△l(u1)△l(u2)| is also odd and the application of l−1 is valid. We know that
f is a bijection, because it is its own inverse as the symmetric differences cancel
out for f(f(v)):
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f(f(v)) =
l−1(l(v)△l(u1)△l(u2)△l(u1)△l(u1)△l(u2)△l(u2)△l(u1)△l(u2)) =

l−1(l(v)) = v

Finally f(u1) = l−1(l(u1)△l(u1)△l(u2)) = u2. In order to show that f is an
automorphism, we also define a permutation g : C → C in a similar way g(X) =
X△l(u1)△l(u2). Now if uv ∈ E(H), then there exists j ∈ C such that u =
[(u′, j)]∼, v = [(v′, j)]∼ and u′v′ ∈ E(G). Then also {[(u′, g(j))]∼, [(v′, g(j))]∼} ∈
E(H).

l(f(u)) = l(u)△l(u1)△l(u2) = l([(u′, j)]∼)△l(u1)△l(u2) =
= {u′}△j△l(u1)△l(u2) = {u′}△g(j) = l([(u′, g(j))]∼)

The same holds for v and v′ so if uv is an edge then f(u)f(v) is also an edge and
thus f is an automorphism.

We define h : G → H as h(v) = [(v, ∅)]∼. This is a graph homomorphism
by the construction of H. For contradiction let uv ∈ E(H), u = [(u′, ∅)]∼,
v = [(v′, ∅)]∼ and u′v′ ̸∈ E(G). Then there have to exist u′′v′′ ∈ E(G), j ∈ C
such that u = [(u′′, j)]∼ and v = [(v′′, j)]∼. We know that j ̸= ∅, (u′′, j) ∼ (u′, ∅)
and (v′′, j) ∼ (v′, ∅). By the construction of Tn this means that j△∅ = {u′, u′′} =
{v′, v′′}. From this we get that u′ = v′′ and v′ = u′′, which is a contradiction
because u′′v′′ ∈ E(G) and u′v′ ̸∈ E(G). So G is an induced subgraph of H.

As a corollary, we shall now prove Theorem 3.

Theorem 3. For every graph G of order n, there exists graph H such that H is
a vertex-transitive supergraph of G and is of order 2n−1.

Proof. Let us be given a graph G of order n. By Theorem 17 we know that the
template schema T = (Tn)∞

n=1 defined as above is a universal template schema.
Therefore, by definition of a universal template schema T (G) is a vertex-transitive
supergraph of G.

By Observation 16 T (G) = Tn(G) is of order 2n−1.

1.4 Lower Bound for General Graphs
The construction we provided creates graphs of exponential size, which is much
larger than what we would hope for. If we are not able to provide a more compact
solution, we will at least give a bound on how low we can go.

Theorem 18. For every n ∈ N there exists a graph G of order n such that for
every vertex-transitive supergraph H of G it holds that |H| ≥ (n−1

2 )2

Proof. Let us be given n. For now we will only consider even n and let N = n
2 .

Our graph G will be constructed as the disjoint union of graphs G1 = KN and
G2 = {[N ], ∅}. Note that this means that H is also a vertex-transitive supergraph
of G1 and G2. We shall use this fact and work with induced embeddings of G1 and

13



G2 directly instead of explicitly stating that we are working through the proxy
of induced embeddings of G.

Let H be the vertex-transitive supergraph of G with the least number of
vertices. We will count | IEG,H | in two ways.

Let G′
1 be an induced subgraph of H isomorphic to G1. Then by Lemma 10

for every u ∈ V (G′
1) and v ∈ V (G2) there exist exactly k induced embeddings

h : G2 → H such that h(v) = u. If we do this for all choices of u and v, we
do not count any induced embedding twice because G1 and G2 can share at
most one vertex due to their opposite nature. This gives us a lower bound of
| IEG,H | ≥ |V (G′

1)||V (G2)|k = N2k.
If we fix v ∈ V (G), Lemma 10 tells us that for every u ∈ V (H) there are

exactly k induced embeddings h such that h(v) = u. Clearly, this counts every
induced embedding exactly once as they all map v to exactly one vertex. So we
get | IEG,H | = k|H|.

Combining these two results we get:

k|H| ≥ N2k

|H| ≥ N2

|H| ≥
(︃

n

2

)︃2

For odd n we remove one vertex and proceed via the same argument which
now gives us |H| ≥ (n−1

2 )2.

1.5 Bipartite Graphs
Let us now redirect our attention to the class of bipartite graphs, where our results
are more exciting. In this section, we show a template schema that is universal for
bipartite graphs. It can be intuitively understood that finding smaller universal
schemata should be simpler for bipartite graphs than for the general case. This
is because each bipartite graph has a large independent set, so two copies of
the input graph can have a large overlap which should lead to a more compact
packing of them. In order to make use of this fact, we need a slightly modified
version of the template defined above as we need to restrict the application, so it
does not mix the two graph parts together.

Definition 19. A bipartite template of order n is a pair (c, ∼) where c ∈ N and ∼
is an equivalence relation on the set {−1, 1} × [n] × [c], such that for every k ∈ [c]
there are no distinct j1, j2 ∈ [n], s1, s2 ∈ {−1, 1} for which (s1, j1, k) ∼ (s2, j2, k).

The application of a bipartite template T = (c, ∼) to a bipartite graph G
with parts A = {−1} × {1, 2, . . . , k} and B = {1} × {k + 1, k + 2, . . . , n} is
a graph H constructed in the following way. First we create a graph G′ such
that V (G′) = {−1, 1} × [n] and (s1, v1)(s2, v2) ∈ E(G′) if and only if either
(s1, v1)(s2, v2) ∈ E(G) or (−s1, v1)(−s2, v2) ∈ E(G). Then we create a graph
G′′ as c disjoint copies of G′. That is G′′ = (V ′′, E ′′) where V ′′ = V (G′) × [c]
and E ′ = {(e1, i)(e2, i)|e1e2 ∈ E(G′) ∧ i ∈ [c]}). Then H is the quotient graph
we get from G′′ by identifying vertices related by ∼. Or explicitly H = (V ′/ ∼
, {([u]∼, [v]∼)|uv ∈ E ′}). We denote this by T (G).
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We say that a bipartite template T of order n is universal if for every bipartite
graph G with parts A, B such that |A| = |B| = n the application of the template
T to G is a vertex-transitive supergraph of G.

A bipartite template T = (c, ∼) of order n is strict if for every distinct k1, k2 ∈
[c] there exists s ∈ {−1, 1} such that whenever (s1, i1, k1) ∼ (s2, i2, k2), then
s1 = s2 = s.

It can be easily seen that each bipartite template of order n can be interpreted
as a template of order 2n by a bijection between {−1, 1} × [n] and [2n]. Once
again, we adopt the convention that if G has a different vertex set then we replace
it with an isomorphic graph with the required vertex set (note that we require one
part be of the form of (−1, ·) and the other of the form (1, ·)). Note that T (G) is
also a bipartite graph with a similar way of recognizing the parts. If [(s, i, (l, r)]∼
is a vertex, it is in the left part if s = 1, otherwise (when s = −1), it is in the
right part. The motivation behind strictness is again that it guarantees us that
G is an induced subgraph of T (G). In a strict bipartite template two copies of G
can either overlap by their left parts or their right parts but not both.
Theorem 20. Let T = (c, ∼) be a strict bipartite template of order n and G a
bipartite graph with parts A = {−1} × {1, 2, . . . , k} and B = {1} × {k + 1, k +
2, . . . , n}, then G is always isomorphic to an induced subgraph of T (G).
Proof. The graph G′ from the definition of the application of a bipartite template
is just two disjoin copies of G so G is clearly an induced subgraph of G′. We claim
that (s, u) ↦→ [(s, u, 1)]∼ gives us the isomorphism between G′ and the subgraph
induced by the image of that mapping.

By the condition in the definition of a bipartite template, we know that for
any i1, i2 ∈ [n] and s1, s2 ∈ {−1, 1} if (s1, i1, 1) ∼ (s2, i2, 1) then i1 and i2 must
necessarily be equal. So no two of the vertices from the first copy lie in the same
equivalence class of ∼ and therefore the mapping is injective.

Let H = T (G). Then v1v2 is an edge in H if and only if v1 =
[(s1, i1, k)]∼, v2 = [(s2, i2, k)]∼ for some k ∈ [c] and (s1, i1)(s2, i2) is an edge
in G′. As a direct consequence we get that (s1, i1)(s2, i2) ∈ E(G′) =⇒
{[(s1, i1, 1)]∼, [(s2, i2, 1)]∼} ∈ E(H). To prove the other direction, let us assume
for contradiction that
(s1, i1)(s2, i2) ̸∈ E(G′) and {[(s1, i1, 1)]∼, [(s2, i2, 1)]∼} ∈ E(H). By
Observation 12 there exist (s′

1, i′
1)(s′

2, i′
2) ∈ E(G′) and k′ ∈ [c] such that

(s1, i1, 1) ∼ (s′
1, i′

1, k′) and (s1, i1, 1) ∼ (s′
2, i′

2, k′). The graph G′ is bipartite with
one part of the form (1, ·) and the other of the form (−1, ·) so s′

1 ̸= s′
2. Now there

are two cases:
k′ = 1: Because (s1, i1)(s2, i2) ̸∈ E(G) either (s1, i1) ̸= (s′

1, i′
1) or (s2, i2) ̸=

(s′
2, i′

2), without loss of generality let it be the first case. But then (s1, i1, 1) ∼
(s′

1, i′
1, 1) and (s1, i1) ̸= (s′

1, i′
1) which contradicts the fact that T is a template.

k′ ̸= 1: Then (s1, i1, 1) ∼ (s′
1, i′

1, k′) and (s2, i2, 1) ∼ (s′
2, i′

2, k′) for s2 ̸= s1.
But the definition of a strict bipartite template mandates that s1 = s2 = s′

1 = s′
2

which is a contradiction.
Thus, G′′ is isomorphic to the image of the mapping defined above which is

an induced subgraph of H.

Analogously to the definition of a template schema we define a bipartite
template schema.
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Definition 21. A sequence T = (Ti)∞
i=1 is a bipartite template schema if Ti is a

template of order i for every i ∈ N. The application of T to a bipartite graph G
with n vertices is defined as Tn(G), we denote the application by T (G).

We say that a bipartite template scheme T = (Ti)∞
i=1 is universal if Ti is

universal for all i.
Likewise, we say that it is strict if Ti is strict for all i.

In the rest of the section, we describe a bipartite template schema that
produces graphs of quadratic size. We denote this schema by T = (Tn)∞

i=n,
we now proceed to define Tn = (n2, ∼). As previously we describe the template
using the index set C = Z2

n instead of [n2]. The definition of ∼ follows.

(1, i1, (l, r1)) ∼ (1, i2, (l, r2)) ⇐⇒ r1 + i2 ≡ r2 + i1 (mod n)
(−1, i1, (l1, r)) ∼ (−1, i2, (l2, r)) ⇐⇒ l1 + i2 ≡ l2 + i2 (mod n)

Pairs of elements not matching the previous declaration are not related by ∼.
For an example usage of this template refer to Figure 1.5.

Theorem 22. The bipartite template schema T defined above is a universal
bipartite template schema.

Proof. Let G be a bipartite graph with parts A = {1} × {1, 2, . . . , k} and B =
{−1} × {k + 1, k + 2, . . . , n} and H = T (G) = Tn(G).

First we show that the template schema is strict. Let us have two distinct
pairs (l1, r1), (l2, r2) ∈ C. If neither l1 = l2 nor r1 = r2 then there’s no pair
(s1, i1, (l1, r1)) ∼ (s2, i2, (l2, r2)) according to the definition. Otherwise, either
l1 = l2 in which case the first part of the definition and s1 = s2 = 1 or r1 = r2 in
which case similarly s1 = s2 = −1.

By Theorem 20 G is isomorphic to some induced subgraph of H. In order to
prove that H is vertex-transitive we first define several mappings and prove that
they are automorphisms.

The first automorphism swaps the parts of the bipartite graph H. We define
f : V (H) → V (H) as f([(s, i, (l, r))]∼) = [(−s, i, (l, r)]∼. It is easy to see that f
is well-defined and a bijection (as it is its own inverse). Furthermore, it follows
from the definition of bipartite template application that (s1, i1)(s2, i2) is an edge
in G′ if and only if (−s1, i1)(−s2, i2) is an edge. Since f only does this operation
on all the copies of G′, it is an automorphism.

The second automorphism is g : V (H) → V (H) defined as follows:

g([(s, i, (l, r)]∼) = [(s, i, (l + 1, r))]∼

It can be easily seen that g is well-defined. Moreover, gn(x) = x so g has to
be a bijection. And as g only permutes the copies of G′ it is a homomorphism.
The formal proof follows exactly the same pattern as many already presented, so
we omit it here.

Now let u1, u2 ∈ V (H) and u1 = [(s1, i1, (l1, r1))]∼, u2 = [(s2, i2, (l2, r2))]∼. We
construct an automorphism h as a composition of f and g such that h(u1) = u2.

First let h1 = gi2−i1f ◦ gl2−l1 . Then h2 = h1 ◦ f if s1 = −1 and h2 = h1
otherwise. Finally, h = f ◦ h2 if s2 = 1 and h = h2 otherwise.
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From now on without loss of generality s1 = 1 and s2 = −1 and h1 = h, if
that is not the case then the construction of h and h2 fixes this.

h(u1) = h([(1, i1, (l1, r1))]∼) = gi2−i1([(−1, i1, (l2, r1))]∼) =
= [(−1, i1, (l2 + i2 − i1, r1))]∼ = [(−1, i1 + i2 − i1, (l2, r1))]∼ =

= [(−1, i2, (l2, r1))]∼ = u2

As a corollary, we shall now prove Theorem 4.

Theorem 4. For every bipartite graph G of order n there exists graph H such
that H is a vertex-transitive supergraph of G and is of order 2n2.

Proof. Let us be given a bipartite graph G of order n. By Theorem 22, we
know that the template schema T = (Tn)∞

n=1 defined as above is a universal
template schema. Therefore, by definition of a universal template schema T (G)
is a vertex-transitive supergraph of G.

Next, we prove that T (G) = Tn(G) is of order 2n2. Vertices of this graph
are the equivalence classes of ∼. This equivalence relation is defined on the
(2n3)-element set A = {−1, 1} × [n] × Z2

n so we only need to proof that each
equivalence class contains n elements. Let us have (1, i1, (l1, r1)) ∈ A. Then by
the definition of ∼ we have (s, i2, (l2, r2)) ∼ (1, i1, (l1, r1)) if and only if s = 1,
l1 = l2, and r1 + i2 ≡ r2 + i1 (mod n). Clearly this linear congruence equation
has exactly n solutions because r1, i1 are fixed and given any i2 ∈ [n] we can
choose r2 = r1 + i2 − i2. The case for s = −1 is analogous. This proves that the
equivalence class has n elements which completes the proof.
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Figure 1.5: An example of a universal bipartite template. Original graph G is
at the top, below that follows the modified version in which the left and right
part is interchangeable. The third graph is the final result which is isomorphic
to three disjoin copies of C6. A copy of the intermediate graph is placed between
each pair of the three-vertex groups in the figure.

18



2. Connections to Complexity
Theory
Definition 23. The Graph Isomorphism Problem is a decision problem in which
we are given two graphs G1, G2 on the input, and we accept the input if and only
if G1 ∼= G2.

The original motivation for this thesis lies in the area of complexity theory.
The graph isomorphism problem is of great theoretical and practical interest.
From the theoretical standpoint, this problem is one of the few that have not
been ruled out as being a part of the complexity class NP-intermediate. That
is the problem lies in the class NP, but there is no known polynomial algorithm
for it nor is there a proof that it is a NP-hard problem. The best known result
due to Babai gives a quasi-polynomial time complexity algorithm[1]. If it is the
case that P ̸= NP then by Ladner’s theorem[6] the class NP-intermediate is
non-empty. Therefore, it is only natural that problems equally difficult as the
graph isomorphism problem have been studied. This study has given rise to the
complexity class GI.

Definition 24. GI is the class of decision problems for which a polynomial-time
Turing reduction to the graph isomorphism problem exists.

Analogously to the definitions of NP-hard and NP-complete problems there
are definitions of GI-hard and GI-complete problems.

Definition 25. A decision problem A is GI-hard if for any problem from GI
there exists a polynomial-time Turing reduction to the problem A. If A is both
GI-hard and lies in GI we say that A is GI-complete.

Many problems are known to be GI-complete — isomorphism problems of
other structures than graphs such as finite automata or lattices, isomorphism of
subclasses of graphs such as bipartite Euler graphs or chordal graphs. However,
there are only a few known problems in this class that are not isomorphism
problems of mathematical structures. Among these there is for example the
problem of testing for the self-complementarity of a graph.[10][8][2]

A good candidate for GI-complete problems seems to be recognizing various
properties tied to graph automorphisms. Properties describing some degree of
symmetry of a graph specifically could be useful since most notions of symmetry
are intrinsically linked to graph automorphisms. When it comes to graphs, there
is a wide range of these properties. In this thesis, we have focused primarily on
vertex-transitivity which is among the weaker of those properties.

Definition 26. The vertex-transitivity problem is a decision problem in which
the input is a graph and we accept it if and only if it is vertex-transitive.

The graph isomorphism problem on the class of vertex-transitive graphs is
a decision problem in which we get two vertex-transitive graphs G1, G2 on the
input and we accept the input if and only if G1 ∼= G2. If the input graphs are
not vertex-transitive the result is undefined.
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The labelled graph isomorphism problem is a decision problem in which we
are given two vertex-labelled graph G1, G2 on the input, and we accept the input
if and only if there is a label preserving isomorphism between them.

Theorem 27. The vertex-transitivity problem lies in the complexity class GI.

Proof. We provide a polynomial time Turing reduction to the labelled graph
isomorphism problem. That problem is well known to be GI-complete[10].

Let G be the input graph. Given a vertex u ∈ V (G) let’s define a
vertex-labelled graph G′

u as G with labelling l′
u : V (G′

u) → {0, 1}.

l′
u(v) =

⎧⎨⎩1, if v = u

0, otherwise

Now we iterate through all pairs of vertices u, v ∈ V (G). We use the labelled
isomorphism problem oracle to ask about G′

u and G′
v. If they are rejected we also

reject.
If we do not reject after iterating through all pairs of vertices we accept.
By the construction of the labelling it is clear that isomorphisms between G′

u

and G′
v correspond exactly to the automorphisms of G that map u to v. From

this it follows that checking if there exists such isomorphism for every pair of
vertices solves our problem.

Note that while the previous proof uses the labelled isomorphism oracle
quadratically many times we could reduce this to just a linear amount of uses.
Instead of trying all pairs u, v we would fix u and check all v. This is sufficient
because given vertices v and w we can create an automorphism mapping v to
w by composing the inverse of the automorphism mapping u to v with the
automorphism mapping u to w.

Next we shall prove that recognizing and checking isomorphism of
vertex-transitive graphs are two equally hard problems.

Theorem 28. The graph isomorphism problem on the class of vertex-transitive
graphs is polynomially convertible to the vertex-transitivity problem.

Proof. We are solving the graph isomorphism problem on the class of
vertex-transitive graphs using an oracle which solves the vertex-transitivity
problem. Let G1 and G2 be vertex-transitive graphs. If they have a different
number of vertices or if only one of them is connected we reject the input. Now
without loss of generality assume both are connected. If they are not, we take
their complements. We construct graph H as the disjoint union of G1 and G2.
We use the vertex-transitivity oracle on H and accept if and only if the oracle
accepts its input.

First we prove that if we accept then the graphs are isomorphic. If we accept
then the vertex-transitivity oracle accepted H as vertex-transitive. Therefore, for
some v1 ∈ V (G1), v2 ∈ V (G2) there exists an automorphism f of H which maps
v1 to v2. Since both G1 and G2 are connected this means that f [V (G1)] = V (G2).
This together with the fact that |V (G1)| = |V (G2)| and the fact that f is injective
means that f restricted to G1 is an isomorphism between G1 and G2.

Next we prove that if the graphs are isomorphic we accept the input.
Isomorphic graphs are of the same order and are either both connected or both
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disconnected so the early rejection cannot happen. Thus we need to prove that
under the assumption of G1 and G2 being isomorphic H is vertex-transitive. If we
are given v1, v2 ∈ V (G1) by vertex-transitivity of G1 there exists an automorphism
f of G1 which maps v1 to v2. We can extend this automorphism to H by having
it be identity on vertices of G2. Similarly, we cover the case v1, v2 ∈ V (G2). The
only case left is the two vertices being in different components of H. Without loss
of generality v1 ∈ V (G1), v2 ∈ V (G2). Due to G1 and G2 being isomorphic there
exists an isomorphism g : G1 → G2. By vertex-transitivity of G1 there exists an
automorphism f of G1 which maps v1 to g−1(v2). Again we extend f to H as
before and extend g to H by g(v) = g−1(v) for v ∈ V (G2). Composing g ◦ f gives
us an automorphism of H for which (g ◦ f)(v1) = g(f(v1)) = g(g−1(v2)) = v2.
This concludes the proof of H being vertex-transitive so it gets accepted by the
oracle.

Checking connectedness, making a graph complement and creating a disjoint
union of graphs can all be done trivially in linear time.

The graph isomorphism problem on the class of vertex-transitive graphs is not
currently known to be GI-complete1.[2] We have not been successful at proving
that this is the case. However, we shall provide an approach which could lead
to a proof of this statement if a construction of vertex-transitive supergraphs
satisfying some properties is ever found.

Let us first describe the yet unfound vertex-transitive supergraph construction
which would be necessary for the proof of GI-completeness. Let it be a mapping f
which given a graph G outputs f(G) a vertex-transitive supergraph of G. In order
for it to be useful in the complexity theory arguments it needs to be computable
in polynomial time. Moreover, in order not to require pre-existing canonical
labelling (which would imply fast solution to the graph isomorphism problem)
we also require that G ≃ H ⇐⇒ f(G) ≃ f(H) for any graphs G, H.

It is relatively easy to find an polynomial time injective mapping between
general graphs and bipartite graphs, so it is sufficient to define f just for bipartite
graphs and then extend this via the injective mapping. Considering the previous
section this seems like a good result. However, the last requirement of f we stated
is not satisfied by the bipartite construction provided in this thesis. It can be
easily seen that this construction depends on the ordering [n] of vertices and is
invariant only under its cyclic rotations.

1However, some subclasses are easily recognizable. For example circulant graphs are
recognizable in polynomial time.[4]
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Conclusion
We have been able to provide an exponentially-sized vertex-transitive supergraph
construction. For bipartite graphs we have been able to improve this result
considerably by making the resulting supergraph of quadratic size. A quadratic
lower bound has also been proven for general graphs. Moreover, the template
schema system and properties proven about it here could be of use in possible
future research into this area.

The original ambitious goal of proving that recognizing vertex-transitive
graphs is GI-complete has not been achieved. However, we hope that groundwork
laid out in this thesis brings us at least a few steps closer to this goal.

Future Work
As stated previously, the most significant avenue of future research is proving
that vertex-transitive graph recognition is GI-complete. We believe that given a
sufficiently well-behaved construction of (bipartite) vertex-transitive supergraphs,
this could be proven using methods outlined in the second section.

However, the failure to provide this result in this thesis leads us to hypothesize
that this construction might not be possible via the template schema approach
used in this thesis. It might be worthwhile to make attempts to develop an
argument proving that this particular class of supergraph construction is futile
for this task. We have briefly explored group-theoretic means of proving this, but
concluded that further research is out of the scope of this thesis.

Both lower and upper bounds on the order vertex-transitive supergraphs also
leave room to improve. For general graphs the gap between the quadratic lower
bound and the exponential upper bound is almost certainly improvable. On
the other hand, we have not been able to find any non-trivial lower bound for
bipartite graphs. Considering the quadratic lower bound on general graphs it is
not unreasonable to expect bipartite graphs to have a similar bound which would
solidify the quadratic construction as asymptotically optimal.

Finally, the methods used here could be adapted to stronger notions of
graph symmetry. It is known that via a Kneser graph construction every
graph has a symmetric supergraph.[5] This is once again an exponential
construction and could likely be improved upon. Constructions for Cayley
supergraphs, arc-transitive supergraphs or k-transitive supergraphs have not yet
been attempted at all according to our research.
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[1] László Babai. Graph isomorphism in quasipolynomial time. In Proceedings of

the Forty-Eighth Annual ACM Symposium on Theory of Computing, STOC
’16, page 684–697, New York, NY, USA, 2016. Association for Computing
Machinery. ISBN 9781450341325. doi: 10.1145/2897518.2897542. URL
https://doi.org/10.1145/2897518.2897542.

[2] Kellog S Booth and Charles J Colbourn. Problems polynomially equivalent
to graph isomorphism. Computer Science Department, Univ., 1979.

[3] Reinhard Diestel. Graph Theory (Graduate Texts in Mathematics). Springer,
August 2005. ISBN 3540261826. URL http://www.amazon.ca/exec/
obidos/redirect?tag=citeulike04-20&path=ASIN/3540261826.

[4] S Evdokimov and Ilia Ponomarenko. Circulant graphs: Recognizing and
isomorphism testing in polynomial time. St. Petersbg. Math. J., 15:813–835,
01 2003. doi: 10.1090/S1061-0022-04-00833-7.

[5] P. Hamburger, A. Por, and M. Walsh. Kneser representations of graphs.
SIAM Journal on Discrete Mathematics, 23(2):1071–1081, 2009. doi: 10.
1137/080722898. URL https://doi.org/10.1137/080722898.

[6] Richard E. Ladner. On the structure of polynomial time reducibility. J.
ACM, 22(1):155–171, January 1975. ISSN 0004-5411. doi: 10.1145/321864.
321877. URL https://doi.org/10.1145/321864.321877.

[7] Robin Langer. Symmetric Graphs and their Quotients. arXiv e-prints, art.
arXiv:1306.4798, Jun 2013.

[8] Gary L. Miller. Graph isomorphism, general remarks. Journal of Computer
and System Sciences, 18(2):128–142, 1979. ISSN 0022-0000. doi: https://doi.
org/10.1016/0022-0000(79)90043-6. URL https://www.sciencedirect.
com/science/article/pii/0022000079900436.

[9] Gert Sabidussi. Vertex-transitive graphs. Monatshefte für Mathematik, 68:
426–438, 1964. URL http://eudml.org/doc/177267.

[10] V. N. Zemlyachenko, N. M. Korneenko, and R. I. Tyshkevich. Graph
isomorphism problem. Journal of Soviet Mathematics, 29(4):1426–1481,
May 1985. ISSN 1573-8795. doi: 10.1007/BF02104746. URL https:
//doi.org/10.1007/BF02104746.

23

https://doi.org/10.1145/2897518.2897542
http://www.amazon.ca/exec/obidos/redirect?tag=citeulike04-20&path=ASIN/3540261826
http://www.amazon.ca/exec/obidos/redirect?tag=citeulike04-20&path=ASIN/3540261826
https://doi.org/10.1137/080722898
https://doi.org/10.1145/321864.321877
https://www.sciencedirect.com/science/article/pii/0022000079900436
https://www.sciencedirect.com/science/article/pii/0022000079900436
http://eudml.org/doc/177267
https://doi.org/10.1007/BF02104746
https://doi.org/10.1007/BF02104746


List of Figures

1 The grid graph P3 × P4 on the left and the Cayley graph of
the group Z4 × Z5 on the right. The first graph is an induced
subgraph of the undirected version of the second graph and
can thus “inherit” the cardinal directions. . . . . . . . . . . . 3

1.1 A graph with a trivial automorphism group and its
vertex-transitive supergraph. . . . . . . . . . . . . . . . . . . . 5

1.2 Graph P3 on the left, a template of order 3 in the middle
and the application of the template to the graph on the right.
The template is drawn with 4 copies of P3, the squiggly
edges represent the ∼ equivalence of the template (omitting
transitive edges). Note that the template is neither strict nor
universal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 A universal template of order 3 in the top row. A graph G in
the bottom row on the left with application of the template to
G on the right. Corresponding edges in these two graphs have
the same colour. . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4 A prism graph with 10 vertices and two copies of C5 as its
induced subgraphs in red. It can be seen that the black edges
do not belong to any other induced C5 subgraph. . . . . . . . 9

1.5 An example of a universal bipartite template. Original graph G
is at the top, below that follows the modified version in which
the left and right part is interchangeable. The third graph is
the final result which is isomorphic to three disjoin copies of
C6. A copy of the intermediate graph is placed between each
pair of the three-vertex groups in the figure. . . . . . . . . . . 18

24


	Introduction
	Motivation
	Preliminaries

	Vertex-transitive Supergraph Construction
	Basic Results
	Templates
	Construction for General Graphs
	Lower Bound for General Graphs
	Bipartite Graphs

	Connections to Complexity Theory
	Conclusion
	Future Work

	Bibliography
	List of Figures

