

BACHELOR THESIS

Tomáš Čelko

Support for annotating and classifying particles

detected by Timepix3

Department of Software and Computer Science Education

Supervisor of the bachelor thesis: RNDr. František Mráz, CSc.

Study programme: Computer Science

Specialization: IOI

Prague 2021

I declare that I carried out this bachelor thesis independently and only with the cited

sources, literature, and other professional sources.

I understand that my work relates to the rights and obligations under the Act No.

121/2000 Coll., the Copyright Act, as amended, in particular the fact that the Charles

University has the right to conclude a license agreement on the use of this work as a

school work pursuant to Section 60 paragraph 1 of the Copyright Act.

In…...... date............ signature

First and foremost, I would like to express my sincere gratitude towards my thesis

advisor RNDr. František Mráz, CSc. from the Faculty of Mathematics and Physics,

Charles University, for his help and guidance during the work on the thesis.

I would like to thank MSc. Benedikt Ludwig Bergmann, PhD. from the Institute of

Experimental and Applied Physics, Czech Technical University, for his support.

I would also like to express my gratitude towards Declan Garvey for his suggestions

and sharing the essential data which I widely used in the thesis.

Another person I would like to thank is Mgr. Lukáš Meduna from the Institute of

Experimental and Applied Physics, Czech Technical University, for the introduction

into the problem, as well as for creating the application upon which I could build my

thesis.

I am also grateful to my family for their unending support. And last but not least, I

would like to offer my special thanks to my girlfriend Ivana Piačková for the beta-

testing of the software and her encouragement during the writing of the thesis.

2

Title: Support for annotating and classifying particles detected by Timepix3

Author: Tomáš Čelko

Department / Institute: Department of Software and Computer Science Education

Supervisor of the master thesis: RNDr. František Mráz, CSc., Faculty of

Mathematics and Physics, Charles University

Abstract:

Hybrid pixel detectors like TimePix3 can capture gigabytes of data on various

particles in a second. However, in such measurements, a vast majority of these

particles represent already well-known particles. Distinguishing between the types of

particles is the first step in searching for extraordinary particles. It is a non-trivial

task often done by physicists.

Source data consists of clusters that are groups of pixels of the detector hit by a

particle or its secondary particles when the particle decays. Manual processing of the

data to such an extent is inefficient. We created a set of tools for visualizing clusters,

computing properties of clusters, filtering clusters based on their properties, and

training neural network classifiers. Trained classifiers can be merged into a tree

structure, offering a better utilization of unevenly distributed types of clusters.

Based on simulated labeled data, we trained multiple classifiers and evaluated

their performance on the test dataset of clusters.

Keywords: cluster, classification, Timepix3, neural networks

3

Contents

Introduction .. 1

1 Analysis .. 3

1.1 The Medipix family and the TimePix3 detector ... 3

1.2 Input format and calibration .. 5

1.3 Cluster visualization .. 7

1.4 Classification ... 9

2 Goals of the thesis .. 14

3 Cluster processor applications.. 16

3.1 Specification .. 16

3.2 A little about neighboring .. 17

3.3 Calculating the features ... 18

3.4 Cluster Viewer ... 21

3.5 Cluster Filter .. 30

3.6 Description Generator ... 31

3.7 Classifier aplications ... 35

4 Development documentation ... 41

4.1 Cluster Viewer ... 42

4.2 Filter and Description Generator ... 43

4.3 Classifier aplications ... 46

5 Experiments.. 49

5.1 Classifier Parametrization ... 51

5.2 K-Fold cross-validation of single-layered models 54

5.3 Multi-layered classifier .. 55

6 Conclusion ... 59

Introduction

In nuclear physics, there have been many efforts to visualize and detect

elementary particles. For this purpose, various detectors were invented. Several such

detectors are now members of the so-called Medipix detector family [1]. The most

recent member of the family is called the TimePix3 detector. In terms of elementary

particle detection, TimePix3 achieves state-of-art performance. During a specified

timeframe, the detector captures a set of particle trajectories as hits in a 256×256

matrix of pixels. However, in some cases, a single particle emits secondary particles

that can interact. Instead of analyzing pixel hits one by one, we analyze groups of

hits corresponding to its secondary particles – so-called clusters.

So far, there have not been many publications dealing with the processing,

filtering, visualization, or classification of these clusters. In the filtering task, one

needs to make sure the algorithm is fast because the size of the cluster dataset

captured by Timepix3 detector can reach gigabytes of data over a short timeframe.

The classification process can be challenging because the trajectory of the cluster

depends on the angle at which the particle enters the field of the detector.

Furthermore, the distribution of various types of clusters in the standard observation

is usually very uneven. For instance, most of the data received from detectors like

ATLAS [2] contains only simple traces consisting of a few pixels and does not

provide much information for the analysis. This fact causes problems for many

machine-learning-based approaches because the fraction of the rare and more

complicated types of clusters is often very small.

Goals of the thesis

 Our main goal is to create a set of processing tools that would enable

physicists to analyze the clusters and their properties. The input will be a collection

of clusters from the Clusterer application [3]. Firstly we need to provide support for

filtering the clusters based on their attributes. Secondly, we visualize them

individually so that the users can see the cluster as a 2D and 3D image. Because the

number of clusters in some datasets can be overwhelming, another goal is to make a

tool that calculates the properties for the whole collection of clusters. The calculated

2

properties of the clusters enable us to design a neural network-based classifier

capable of classifying various clusters, which is our final goal. Eventually, the

developed classifier could also detect extraordinary clusters, displaying exotic or

even unseen particles.

Thesis layout

 First, in Chapter 1, we will introduce the Timepix3 detector as a member of

the Medipix detector family. Then, we will go over the data format and define

various features of a cluster and the methods of their calculation. After we are

familiar with the features, we discuss the classification task and its difficulties. When

we are done with the analysis part, we specify our goals in a short Chapter 2. Based

on these goals, we implement a solution which is described in detail in Chapter 3.

This chapter contains elementary information about all of the applications that were

created. A more detailed description of our solution can be found in Chapter 4.

Because the classification process can be considered non-deterministic, we will

provide a brief statistical analysis of the results in Chapter 5. In concluding Chapter 6

we summarize the outcomes of the thesis and propose direction how the developed

tools could be further extended.

3

1 Analysis

In this chapter, we discuss the detection of elementary particles with hybrid

pixel detectors, as well as the tools and methods suitable for the analysis of the

detector output. In Section 1.1, we introduce the Medipix detector family. Section 1.2

presents the format of the data from the Timepix3 detector. Then, in Section 1.3 we

move to the visualization of the Timepix3 data, and last but not least, in Section 1.4,

we discuss the classification methods for the groups of elementary particles called

clusters.

1.1 The Medipix family and the Timepix3 detector

It was the 1990's when some of the researchers from CERN (European

Council for Nuclear Research, in French Conseil Européen pour la Recherche

Nucléaire) came with an idea to transfer the devices, primarily developed for

experiments in the Large Hadron Collider (LHC) beyond particle physics. The first

collaboration with such a goal started under the name Medipix1. It was the

collaboration between the University of Freiburg, University of Glasgow, and Napoli

and Pisa Universities together and CERN. So far, there have been four Medipix

collaborations, each with its own specific goals. The chips developed in these

collaborations are known as the members of the Medipix detector family.

The first member of the family was the Medipix1 chip (1997) [4], consisting of

64 × 64 pixels acting similarly to a digital camera – counting the hits of elementary

particles while the shutter is open. A few years later, the Medipix2 chip was

developed, leading to the first Timepix chip (2006) [5] being invented. This was the

first chip that can be programmed to record one of the following properties:

 Particle hit count: The number of hits detected by each pixel in one

tick of the internal clock. (similar to Medipix1)

 Time over the threshold: Each pixel is assigned an energy threshold

level (THL). When a charged particle approaches the pixel, the energy

captured by the pixel rises. The time interval during which the energy

remains above the threshold we call the time over the threshold (ToT).

4

This attribute is often measured as the number of ticks of a detector

clock.

 Time of the arrival: The absolute time since the start of

measurement until the energy threshold level is reached we call the

time of arrival (ToA). Both time over the threshold and time of the

arrival are visualized in the plot in Figure 1.1.

In 2013 the new Timepix3 chip was introduced to the family:

"Timepix3 is a general-purpose integrated circuit suitable for readout of both

semiconductor detectors and gas-filled detectors. Compared to its predecessor

Timepix the circuit has more functionality, better time resolution, and more

advanced architecture for continuous sparse data readout with zero-suppression."

[1]

Zero-suppression means that there is no data output from the detector unless

non-zero energy input is captured. This allows better efficiency in data collecting and

storage but also in data analysis. The device utilizes a 256×256 pixel matrix where

the size of each pixel is 55μm, achieving a time resolution of 1.56ns. The Timepix3

chip is nowadays used in the CERN LHC to detect sets of elementary particles, so-

Figure 1.1 Time of arrival and time over the threshold visualization, graph depicts

dependency of energy on time

5

called clusters. A cluster is formed by traces of particles that either interacted with

each other or one of the particles emitted the other.

1.2 Input format and calibration

Because the output of the Timepix3 chip over some timeframe can contain

multiple clusters, Lukáš Meduna developed the Clusterer application [3] to process

the raw input from the detector and separate the clusters from each other. This means

that instead of processing the data in the raw format, we use the data in the MM

(clustered) format. The MM data format consists of three text files – with extensions

.ini, .cl, and .px.

 Ini file contains the name of the measurement and the names of the

cl and px files associated with the given measurement. By default, this

file expects to find the cl and px file in the same directory where the

ini file is located.

 Cl file consists of the primary data about the cluster collection, where

each line represents a single cluster. A line contains the first time of

arrival of the cluster in ns (since the start of the measurement). This is

 b) a)

Figure 1.2 Trajectories detected by Timepix3 over 1 second (a) and a single cluster consisting of two

particle prajectories (b) [9]

6

followed by the size of a cluster and the number of the line in the px

file (and the number of the byte) where the cluster starts.

 Px file includes data about each pixel in the cluster, namely 𝑥 and 𝑦

coordinates of the pixel, the time of arrival in ns, and the energy in keV.

There are two kinds of MM formats, which only differ in the px file:

 Calibrated data have the structure as displayed in Table 1.1.

 Non-calibrated data are very similar to the calibrated ones, but instead

of the energy attribute in px file, they use the 𝑇𝑜𝑇 attribute.

To determine whether a file is calibrated or non-calibrated, we can open the px file

and look for the last column. If the decimal part of the values is zero in every pixel,

we know we are dealing with non-calibrated data because the 𝑇𝑜𝑇 is measured as a

number of ticks of the detector, which is an integral value. However, if the values

have a non-trivial decimal part that indicates the data is already calibrated.

The calibration is the process of replacing the 𝑇𝑜𝑇 attribute with the

corresponding energy. The energy deposited in the pixel is a function of the 𝑇𝑜𝑇 but

also four other parameters of a pixel, denoted by the letters 𝑎, 𝑏, 𝑐, and 𝑡. These

parameters for each pixel are set up during a calibrating measurement and are usually

stored in separate text files as a 256×256 matrix of decimal numbers. It holds:

File Format Example

ini

[Measurement (or any string ending with a newline char)]

PxFile=[Relative path from the parent directory of .ini to

px file]

ClFile=[Relative path from the parent directory of .ini to

cl file]

Measurement 123

PxFile= Clusters_px.txt

ClFile= Clusters_cl.txt

cl
[First ToA (decimal)] [Pixel Hit Count (integer 0-2

32
)]

[LineOfStart in px file (integer 0-2
32

)] [Byte of start in

px file (integer 0-2
32

)]

12345.647 100 5 30

px
[x coordinate of the pixel (integer 0-255)] [y coordinate

of the pixel (integer 0-255)] [ToA (decimal)] [Energy

(decimal)]

123 128 15540 14.235

Table 1.1 Input MM file format

7

𝑇𝑜𝑇 = 𝑎𝐸 + 𝑏 −
𝑐

𝐸 − 𝑡

In the equation, E represents the energy deposited in the pixel, with a, b, c, and t

being the calibration parameters.

1.3 Cluster visualization

The clusters we obtain from the Clusterer [3] can be represented as a set of

pixels, each with its own value of 𝑇𝑜𝐴 and energy. These pixels can then be

visualized on a 256x256 bitmap, where a pixel is assigned a color according to the

value of the pixels attribute. In this subchapter, we introduce some methods for

further cluster analysis based on its 2D image. These methods include

skeletonization and 𝑧-coordinate calculation.

Skeletonization

Skeletonization of a binary image is defined as the thinning process that

outputs a simpler version of the original image, the so-called skeleton. An essential

requirement for skeletonization is to have the image in binary format – each pixel is

either white or black. Because the image of a cluster is not binary, we assign the

value 1 to each pixel with non-zero energy and a value 0 to a pixel with zero energy.

The skeleton should preserve the original shape of an image. In fact, the definition of

skeletonization is not exact, which means various approaches can be used, each

possibly outputting a unique skeleton, as displayed in Figure 1.3. The skeletonization

process could be helpful when analyzing the clusters because of these advantages:

 The skeleton of the cluster preserves the key information about its

shape.

 Skeleton reduces the number of pixels of the image, making it more

compact in terms of memory consumption.

 Skeleton enables us to view the image as a branched curve in the plane,

which could be helpful for further analysis.

8

Figure 1.3 Skeletons of the letters B, N and Z created by different skeletonization algorithms [6]

3D reconstruction

 Because the Timpix3 detector is capable of capturing the particle energy, we

are able to reconstruct its trajectory in 3D. We can imagine each pixel of Timepix3

detector as a cylinder or a rectangular block of non-zero height. When a particle

traverses the detector, it emits charge carriers (holes) along the way, which drift

toward the electrodes of the detector and cause the pixels to capture some non-zero

energy. However, Timepix3 stores data about the time of arrival which can be used

to estimate the relative 𝑧-coordinate of the particle in the space (relative to the first

registered hit – the pixel with minimal ToA has 𝑧 set to 0). The 𝑧 coordinate is a

function of the relative time of arrival 𝑡𝑟, where 𝑡𝑟 is the difference between the

arrival time of the particular pixel and the minimum time of arrival in the entire

cluster [7]. It holds:

𝒛(𝒕𝒓) =

𝒅

𝑼𝒅

(𝑼𝒅 + 𝑼𝒃) [𝟏 − 𝐞𝐱𝐩 (𝟐 ∗
𝟐𝑼𝒅𝝁𝒉

𝒅𝟐
𝒕𝒓)] (1.1)

Parameters used are the following:

 𝑈𝑏 – depletion voltage that is the minimum voltage at which the bulk of the

sensor is fully depleted,

 𝑈𝑏 – bias voltage, which is the amount of voltage that a detector needs in

order to function [8],

b) c) a)

a) A one-pass thinning algorithm

[24]

b) Fast fully parallel thinning

algorithm [25]

c) The bias-reduced skeleton

algorithm [23]

9

 𝜇ℎ – electrical mobility of a hole, and

 𝑑 – thickness of the sensor.

All parameters are specified at the beginning of the measurement and remain

constant for the whole duration of the measurement.

1.4 Classification

After we are able to visualize clusters and analyze their properties, we can start

focusing on subsequent classification. Firstly we briefly analyze the work done in

terms of cluster classification. Then, we discuss the problems and the choice of the

classifier model. Another topic we examine is the generation of the training data.

Classification of a cluster is a task where we are given a cluster and a set of

possible classes. Based on the cluster, we should predict to which class the cluster

belongs. Ideally, we also want to estimate how sure we are about our prediction and

possibly return the result "unclassified" if we are not confident about the prediction.

So far, there have been a few attempts to classify clusters – one example being

the work Detecting elementary particles with Timepix3 detector [9]. In this work,

the clusters were divided into classes based primarily on their shape. The categories

used in the thesis were the following:

 Dots consist of up to four pixels.

 Heavy blobs come with a round shape with the most energy located in the

center while having a significant halo effect.

 Long gammas tend to have a straight shape and contain only a few pixels

(less than 20 pixels).

 Straight tracks represent tracks of particles with minimum ionization. These

tracks also have a linear shape, but they are longer than long gammas (more

than a hundred pixels).

 Curly tracks are the tracks with the shape of a nonlinear curve.

 Heavy tracks correspond to the heavy ions that traverse the detector at a non-

perpendicular angle. Similar to heavy blobs, heavy tracks leave many halo

effect pixels. These tracks also have a very high total energy.

10

 Dot  Heavy Blob

 Long gamma  Straight track

 Heavy track  Curly track

Table 1.2 Categories of clusters based on their shape

Even though this classification provides valuable information about the shape

of a cluster, mapping these categories to the real particle examples is still non-trivial.

For instance, one particle can have a dot shape when it traverses the detector

perpendicularly. In contrast, if the same particle enters the detector's field in a

direction parallel with the orientation of sensors, it could leave a curly track, as

shown in Figure 1.4.

Figure 1.4 Possible 2D visualizations of an electron

11

 The categories we decided to use for classification were based on the training

data we were provided by Mr. Declan Garveyfrom the Institute of Experimental and

Applied Physics of the Czech technical university. These data were obtained from

the simulations, which could potentially affect the classifier quality on the real (non-

simulated) dataset. The classes of the particles in the data were the following:

 Electron, Pion, and Muon are the particles that have a relatively small total

energy. Often they leave a track with a linear shape and have an energy of

more than 10keV.

 Low energy electron usually has a shape of a dot. These electrons tend to

have a total energy of less than 10keV.

 Proton cluster tends to lead a linear track. Compared to electrons, it usually

has significantly higher total energy and pixel count.

 Helium is a cluster that often comes with a non-trivial halo. Its energy is

mainly concentrated in the center of the cluster.

 Fragment is a cluster that can contain multiple straight and curly trajectories

with high energy.

 Iron cluster is usually round. It differs from helium by its higher energy and

curly trajectories with high energy coming from its center.

 Lead clusters are the largest in our dataset. They often have tens of branches,

the largest pixel count, and energy.

 Electron

 Pion

 Muon  Proton

12

 Helium  Fragment

 Iron  Lead

 Low energy

electron

Table 1.3 Types of the clusters for classification with their examples

Because it seemed to be very difficult to set the criteria for each class

manually, we decided that a machine-learning-based approach could be a good

choice. We chose neural networks as these became very popular when it comes to

solving complex problems, and in many tasks, they achieve state-of-art performance.

When fed with the data, the neural network model can learn from the data features

until it reaches its maximum accuracy. There are many kinds of neural networks, but

we narrowed the choice down to the two primary candidates – the convolutional

neural network (CNN) and the multi-layered perceptron (MLP). The first candidate –

the CNN – is widely used for the 2D image analysis, but it has a couple of drawbacks

for our task. For instance, the cluster would have to be represented as a 2D image

containing both the pixels with non-zero energy and also the ones carrying no

energy. Hence, using CNN could be a little less efficient because CNN processes all

of the given pixels (even though the zero energy pixels provide no information about

the cluster). Considering the fact that we are able to calculate features and work with

13

them instead of the whole set of pixels leads us to the conclusion that we could use

the feature-based MLP model.

Training Data Generation

 Even though we had the data to train our model, the data were separated into

files by particle type and angle of crossing the detector. This format can be great for

viewing and browsing, but it is preferable to have one data source for training

purposes. For that, it is necessary to create an application that processes multiple files

and generates a single training collection suitable for training a neural network.

When creating this application, we need to keep in mind that our dataset is likely to

have an uneven distribution of classes. Unbalanced training data cause many

problems in training classifiers. E.g., let us consider training data with samples from

two classes 𝐴 and 𝐵 where we have 99% of training samples from class 𝐴 and only

1% from class 𝐵. Then a trivial classifier classifying all samples as being from class

𝐴 has high accuracy (99%), but it can not detect any particle from class 𝐵. So we

need to add an option to prepare a balanced training set with an even distribution of

classes.

14

2 Goals of the thesis

Timepix3 detector can produce a vast amount of data on elementary particles.

We aim at supporting physicists working with such data. Based on the observations

from Chapter 1, we can formulate the main goals of the thesis:

 Cluster visualization – The commonly used MM file format (Table 1.1)

provides plenty of machine-readable information about the clusters.

However, it can be difficult for a physicist to extract an intuitive

overview of the cluster dataset from this format. That is why we

decided to set the first goal to design an interactive cluster

visualization tool, which would display various properties of a

single cluster (like a 2D and 3D image of a cluster) while also

displaying a brief overview of the whole dataset.

 Cluster filtering – Because we expect the input data to contain regular

and uninteresting clusters mostly, we might need to select non-trivial

clusters with some prescribed properties, like a minimal number of

pixels. In order to do that, we must create an application for filtering

based on the attributes of a cluster. This application should be

efficient as we expect it to process a large amount of input data.

 Classification – Because of the lack of tools for cluster classification,

we would like to create an interface supporting the classification of

clusters by using some machine-learning methods. Machine learning

is the ability to learn to solve tasks from data. Here we propose to

support the training of classifiers able to classify clusters based on

classified samples. Such an approach has a big advantage as it can be

adapted to different types of particles and different types of data. E.g., if

the particles are detected under new conditions, we could train a new

classifier adapted for the new type of data. In order to develop such a

classifier tool, we set two additional subgoals:

o Data preparation – Before we start with the classification, we

must create an application for preparing the training data

for the subsequent classification.

o Classifier training – Because physicists need to analyze

different kinds of cluster datasets, we would like not only to

15

create a single tool aimed at the classification of the specific

clusters. Instead, we want to create a parameterized interface

for classifier training, which would enable the users to train

and customize the classifier models based on their needs and

the specific dataset.

o Evaluation – To show that our developed tools are applicable,

we will design experiments to evaluate the quality of

classifiers trained on sample data.

16

3 Cluster processor applications

In this chapter, we will describe all of the applications that we created in order

to address the goals specified in Chapter 2. First, in Section 3.1, we go over the brief

specification of the whole solution. Then, in Section 3.2, we introduce several types

of neighborhoods later in Section 3.3, where we describe calculations of cluster

features. Next, in Section 3.4–3.7, we proceed with a more detailed discussion about

each specific application, its functionality, and its essential features.

3.1 Specification

Based on the observations from Chapter 1, we decided to develop a solution

consisting of multiple applications – tools for viewing, analyzing, and classifying the

clusters. We split the solution into multiple applications because this way allows for

better extendability. When some developer comes with a better idea for the

classification, he can still use the rest of our solution and adjust only some part of the

application. Another advantage of this approach is that each user can decide what

functionality is required and download only the specific projects that cover the user's

requirement. These tools are primarily made for physicists and could be divided into

interactive and non-interactive. An interactive tool can be used mainly for the

visualization of one cluster at a time. Non-interactive tools are used for unattended

processing of large datasets:

 Interactive tools:

o ClusterViewer is an application for cluster visualization. The user can

select a dataset containing clusters in MM format and randomly select

and inspect one cluster at a time. ClusterViewer can display both 2D

and 3D visualizations of the cluster and its skeleton. Furthermore, the

viewer can load a trained classifier model and apply it to the selected

cluster. Besides showing properties of the selected cluster, the

application presents histograms of cluster properties from the whole

dataset.

 Non-interactive tools:

17

o ClusterFilterer is a tool for cluster filtering based on its features. The

user selects the desired interval for values of the attributes in a dialog

form, and then the whole collection of clusters is processed at once.

o DescriptionGenerator is a program that processes multiple input files

into one training dataset based on the options selected in a user

interface.

o ClusterClassifier is a console application that applies a trained

classifier on a dataset of clusters in JSON format. The output of the

application is a classification of the whole dataset and splitting the data

into multiple files based on the predicted class attribute.

o ClusterClassifierUI is a user interface where it is possible to train a

classifier when provided classifier configuration parameters and the

training data. Apart from training, the user can also merge trained

classifiers into multi-level classifiers.

o ClusterTrainer is a console application capable of training a classifier

after configuration parameters and training data are provided.

3.2 A little about neighboring

Neighboring of the pixels is an essential term when it comes to 2D image

analysis. In general, two pixels are called neighbors if there is a relatively small

distance between them. To be more specific, there are used two kinds of neighbors:

 8-neighbors of a pixel p

{𝑛0, 𝑛1, 𝑛2, 𝑛3, 𝑛4𝑛5, 𝑛6, 𝑛7}

𝑛7 𝑛0 𝑛1

𝑛6 𝑝 𝑛2

𝑛5 𝑛4 𝑛3

Figure 3.1 8-neighbors

of a pixel p (green

color)

18

 4-neighbors of a pixel p

{𝑛0,𝑛2,𝑛4,𝑛6}

And for future use, we will also introduce another kind of neighbors:

 Y-neighbors of a pixel p

This kind of neighbor has two main variants:

Variant A {𝑛1,𝑛4,𝑛7,} Variant B {𝑛0,𝑛2,𝑛5,}

For each variant, we also consider their symmetric alternatives to

belong to the same variant.

3.3 Calculating the features

A cluster can be defined as a set of pixels, each containing information about

its 𝑥 and 𝑦 coordinates, 𝑇𝑜𝐴, and energy. Apart from these explicit features, we also

analyze the implicit features of the cluster, like pixel count and the cluster's total

energy. This is the critical point of all our following work and also the main topic of

this subchapter. We briefly discuss the features and the information they indicate

𝑛7 𝑛0 𝑛1

𝑛6 𝑝 𝑛2

𝑛5 𝑛4 𝑛3

Figure 3.2 4-neighbors

of a pixel p (green

color)

𝑛7 𝑛0 𝑛1

𝑛6 𝑝 𝑛2

𝑛5 𝑛4 𝑛3

𝑛7 𝑛0 𝑛1

𝑛6 𝑝 𝑛2

𝑛5 𝑛4 𝑛3

Figure 3.3 Y-neighbors -

variant A (green color)

Figure 3.4 Y-neighbors

- variant B (green

color)

19

about the cluster. The properties we can calculate range from straightforward to more

sophisticated. The most important features are the following:

 Total, average and maximum energy, the standard deviation of energy, and

low energy pixels count provide information about the energy distribution of

pixels in a cluster. The total energy of a cluster is defined as the sum of the

energies of each pixel in the cluster. A pixel is considered to have low energy

if its energy is less than 10keV.

 Pixel count attribute reflects the size of a cluster.

 Width (diameter) and convexity attributes are both based on the convex hull

of a cluster. Let 𝑉1, 𝑉2 … 𝑉𝑛 denote the vertices of the convex hull of a cluster.

Then the convexity is defined as follows:

𝐶𝑜𝑛𝑣𝑒𝑥𝑖𝑡𝑦 =
𝑃𝑖𝑥𝑒𝑙 𝑐𝑜𝑢𝑛𝑡

𝐴𝑟𝑒𝑎 𝑜𝑓 𝑡ℎ𝑒 𝑝𝑜𝑙𝑦𝑔𝑜𝑛 𝑉1𝑉2…𝑉𝑛

The convexity of a cluster provides us the information about its shape

because the more complicated clusters usually tend to have a concave shape.

In contrast, the simple ones are often more convex. Width, also commonly

known as the diameter, is defined as max𝑖∈1..𝑛
𝑗∈1..𝑛

𝑑(𝑉𝑖, 𝑉𝑗) where d represents

the distance between given vertices. For the function d, we chose to use the

Euclidian distance in a plane: 𝑑(𝑉𝑖, 𝑉𝑗) = √(𝑥𝑖 − 𝑥𝑗)2 + (𝑦𝑖 − 𝑦𝑗)2 where

𝑉𝑖 = (𝑥𝑖 , 𝑦𝑖) is a pixel with the coordinates 𝑥𝑖 and 𝑦𝑖.

 The standard deviation of the ToA captures the information about the

timespan of a cluster. Another option would be to use the difference of the

𝑇𝑜𝐴𝑚𝑎𝑥 − 𝑇𝑜𝐴𝑚𝑖𝑛. This, however, has a disadvantage because, in a cluster,

there are often a few pixels that show extreme values of ToA. The standard

deviation is considered to be "more resistant" to these outlier pixels and

provides a reasonable estimate of the timespan of the cluster.

 Vertex count, Crosspoint count, and Branch Count reflect the possible

number of particles in a cluster and the shapes of the trajectories in the

cluster. A pixel is considered to be a vertex if it only has one neighboring

pixel in the cluster.

20

Crosspoints are the pixels where the

trajectories of different particles meet.

These pixels we find as the ones with non-

zero energy and with three or more 4-

neighbors or there is any Y-neighbourhood

(among four rotations of both Variant

A and Variant B) in which the pixel has

three neighbors. Crosspoints of a set 𝐶 are

denoted by 𝐶𝑟𝑜𝑠𝑠(𝐶). Figure 3.5 shows a

cluster with four crosspoints.

Because we do the branch analysis iteratively from the center, we define the

term branch found at the k-th iteration instead of a simple branch. A

branch found at the 𝑘-th iteration is a set of pixels defined as follows: Let P

denote a set of pixels in a cluster C. Let 𝐺 = (𝑃, 𝐸) denote a graph with the

set of vertices 𝑃 and the set of edges 𝐸 such that there exists an edge between

pixels 𝑝1 and 𝑝2 in 𝐸, if 𝑝2 is an 8-neighbor of 𝑝1. Then we say 𝑃 is a branch

found at the 𝑘-th iteration if and only if its corresponding graph 𝐺 is a path, 𝑃

has the maximal possible size, and at least one of the following conditions

holds:

1. 𝑘 = 0 (base step of the definition), or

2. none of the pixels in 𝑃 are part of any of the previous 𝑘 − 1 branches

in 𝐶 (inductive step of the definition)

Figure 3.5 A cluster with four

crosspoints (pink color)

21

Figure 3.6 Branches of a cluster found at different iterations have different color

3.4 Cluster Viewer

In this subchapter, we will discuss all the features of the application for cluster

visualization – ClusterViewer. This application contains tools to display and

analyze properties of a cluster. The features range from a simple 2D image to a 3D

image and the analysis of the particle class.

Input

 Input for the ClusterViewer application is a single ini file in the MM file

format (described in Table 1.1). The ini file is selected via the user interface using

either a dialog window or by typing the path to the file. Another option is to load a

file in JSON file format, which is an array of objects (clusters). This file format is an

output of the DescriptionGenerator application and can also be an output of the

ClassifierForClusters program. Each of the objects in the JSON array must

contain three specific keys in order to be successfully loaded. These are:

 ClFile – a relative path to the cluster cl file, starting from the directory

where the output file is located (it is recommended to not move the created

output file in order to track the original cl file successfully),

Branch found in the second

iteration

Branches found in the third

iteration

Branch found in the first

iteration

22

 PxFile – a relative path to the cluster px file (similar to ClFile), and

 ClIndex – index of the given cluster in the cl file.

 Once the file is successfully loaded, we can proceed to the other tools.

2D view

To get a better overview of the cluster

dataset, we decided to create a 2D image of the

cluster's energy. The primary purpose of the

image is to visualize the cluster as a bitmap,

assigning colors based on the energy of the

pixels. The viewer contains a 2D image that is

represented as a 256×256 bitmap. In the cases

when the same pixel is hit multiple times in a

cluster, we decided to display the hit with the

highest deposited energy. Because the low-

energy pixels prevail in most clusters, we chose

to map energies to color space logarithmically, which seemed to distinguish the

energies without the need for a wide range of colors. For a more complicated cluster,

this could also distinguish between halo pixels and the "real" particle trajectory.

Users can navigate through the currently loaded collection of clusters by clicking

Previous and Next buttons or typing in the index of a cluster and clicking the

Find button. Using the mouse wheel is also possible to zoom in the 2D view of the

cluster based on the position of the mouse pointer.

Collection Histogram

Another feature of the application is computing and presenting the

Collection Histogram. That is the histogram of the currently loaded collection

of clusters, representing the distribution of clusters with respect to PixelCount.

Figure 3.7 Cluster visualization indicating the

halo pixels (yellow)

23

The default option will display the histogram based on the cluster's pixel

count, but the program can be easily extended to display the histogram of any feature

computable for each cluster.

Pixel Histogram

 Pixel Histogram works similarly to the Collection Histogram,

except for the fact that it depicts the histogram of the pixels in the currently loaded

cluster. The default displayed property of the pixel is its energy. This histogram

could be helpful when classifying given cluster because similar classes tend to have a

similar energy distribution.

Figure 3.9 Histogram of pixels in a single cluster based on the energy of each pixel

Figure 3.8 Histogram of the clusters with respect to their pixel count

24

3D Visualization

Based on the ToA feature of the cluster, we calculated the 𝑧 coordinate

according to the formula (1.1) for the dependency of the ToA from the 𝑧 coordinate

of the pixel. This way, we transformed two-dimensional points into three-

dimensional, which we then showed visually as a 3D scatter plot. For a better

viewing experience, we added an option to rotate the image around the x and y axes.

Figure 3.11 3D visualization of the cluster with linear

trajectory from Figure 3.10
Figure 3.10 2D visualization of the cluster with

linear trajectory

Figure 3.12 2D visualization of the cluster with

multiple branches

25

Skeletonizer

Skeletonization, as introduced in Section 1.3, simplifies the cluster while

maintaining its geometric properties. Therefore, we apply it as the first step in

extracting the possible particle trajectories in a cluster. To find a skeleton of a

cluster, we decided to modify Zhan-Shuen's algorithm for thinning binary digital

patterns [10] in the following way:

Algorithm 3.1 Skeletonization of a cluster

 Function Skelet(𝑆,𝑡)

𝑅, 𝐷1, 𝐷2 ← ∅

 𝑅, 𝐷1, 𝐷2 ← ∅

𝑆 is a set of pixels

 1. 𝐷1, 𝐷2 ← ∅

2. do

3. For each pixel 𝑝 in 𝑆

#first sub-iteration

4. If 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝐴(𝑆, 𝑝) and 𝑝. 𝑒𝑛𝑒𝑟𝑔𝑦 < 𝑡

If condition(S,p) and p.energy<t

5. 𝐷1 ← 𝐷1 ∪ {𝑝}

6. 𝑆 ← 𝑟𝑒𝑚𝑜𝑣𝑒𝐴𝑛𝑑𝑆𝑝𝑙𝑖𝑡𝐸𝑛𝑒𝑟𝑔𝑦(𝑆, 𝐷1)

7. For each pixel 𝑝 in 𝑆

#second sub-iteration

8. If 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝐵(𝑆, 𝑝) and 𝑝. 𝑒𝑛𝑒𝑟𝑔𝑦 < 𝑡

9. 𝐷2 ← 𝐷2 ∪ {𝑝}

10. 𝑆 ← 𝑟𝑒𝑚𝑜𝑣𝑒𝐴𝑛𝑑𝑆𝑝𝑙𝑖𝑡𝐸𝑛𝑒𝑟𝑔𝑦(𝑆, 𝐷2)

11. while 𝐷1 ∪ 𝐷2 ≠ ∅

12. return 𝑆

Variables and functions used in skeletonization

𝑆 The set of pixels remaining in the skeleton

 𝐷1, 𝐷2 Sets of pixels to delete after each sub-iteration

𝑁(𝑝, 𝑆) The set of 8-neighbors of 𝑝 in 𝑆

𝑛𝑖(𝑝, 𝑆) true if the 𝑖-th neighbor of 𝑝 in 𝑆 has non-zero

energy; for numbering the neighbors

see Figure 3.14

𝑝. 𝑒𝑛𝑒𝑟𝑔𝑦 The energy of the pixel 𝑝

Figure 3.13 3D visualization of the cluster with

multiple branches from Figure 3.12

26

𝑡 Chosen threshold energy

𝑟𝑒𝑚𝑜𝑣𝑒𝐴𝑛𝑑𝑆𝑝𝑙𝑖𝑡𝐸𝑛𝑒𝑟𝑔𝑦(𝑆, 𝐷) Remove the pixels in 𝐷 from 𝑆 one by one

and split their energy evenly across their

neighbors in 𝑆

𝐾01(𝑝, 𝐶) Each neighbor 𝑛𝑖 of a pixel 𝑝 is assigned a value

0, if 𝑛𝑖 . 𝑒𝑛𝑒𝑟𝑔𝑦 = 0, and 1 otherwise.

𝐾01(𝑝, 𝐶) is then the number of 01 occurrences in

the sequence of neighbors of 𝑝 in 𝐶

(𝑛0, 𝑛1, 𝑛2, 𝑛3, 𝑛4, 𝑛5, 𝑛6, 𝑛7, 𝑛0) as displayed in

Figure 3.14. Each neighbor 𝑛𝑖 is assigned a value

0 if 𝑛𝑖.energy = 0 and 1 otherwise.

𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝐴(𝑆, 𝑝) |𝑁(𝑝, 𝑆)| > 1 and |𝑁(𝑝, 𝑆)| < 7

and not(𝑛0(𝑝, 𝑆) and 𝑛2(𝑝, 𝑆) and 𝑛4(𝑝, 𝑆))

and not (𝑛2(𝑝, 𝑆) and 𝑛4(𝑝, 𝑆) and 𝑛6(𝑝, 𝑆))

and 𝐾01(𝑝, 𝑆) = 1

𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝐵(𝑆, 𝑝) |𝑁(𝑝, 𝑆)| > 1 and |𝑁(𝑝, 𝑆)| < 7

and not(𝑛0 (𝑝, 𝑆) and 𝑛2(𝑝, 𝑆) and 𝑛6(𝑝, 𝑆))

and not (𝑛0(𝑝, 𝑆) and 𝑛4(𝑝, 𝑆) and 𝑛6(𝑝, 𝑆))

and 𝐾01(𝑝, 𝑆) = 1

Table 3.1 Description of functions and variables used in Algorithm 3.1.

In the first sub-iteration of Algorithm 3.1, we remove pixels

with energy lower than the threshold which are either east or south

boundary point, or a point in the northwest corner of the cluster

(represented by conditionA). On the contrary, in the second sub-

iteration, we remove points on the north and west boundaries and

the points on the cluster's southeast corner (represented by

conditionB). We repeat the process while at least a single pixel

was deleted in any of the iterations. The whole skeletonization

process consists of using Algorithm 3.1 twice. The first time with

value 𝑡 set to 10 keV and 𝑆 set to all pixels in cluster and then we

Figure 3.14 Example

of pixel p with

𝑲𝟎𝟏 = 𝟑 (the number

of times the color

changes from white to

green in the ordered

sequence of its

neighbors). White

color means 0, and

green means 1.

𝑛7 𝑛0 𝑛1

𝑛6 𝑝 𝑛2

𝑛5 𝑛4 𝑛3

27

repeat the process with 𝑡 set to infinity and 𝑆 set to the return value from the first

iteration of the skeletonization algorithm. As a result, the first iteration aims to

remove the halo effect of the low-energy pixels while still preserving the shape. The

halo effect is created when the particles of a cluster have high energy, so apart from

the real position of the particle also neighboring pixels capture non-zero energy. The

second iteration of the algorithm with 𝑡 = ∞ behaves the same as the original

version of Zhan-Shuen's algorithm [10]. A different approach would be to filter the

low-energy pixels right away, but that does not guarantee that the cluster remains

connected, which is a problem for future branch analysis.

The application can also apply skeletonization to the currently viewed cluster.

In contrast to the original thinning algorithm, our modified algorithm preserves more

information about the shapes of high-energy trajectories. The differences in the

output of the original skeletonization algorithm and our modification can be seen in

Figure 3.15, Figure 3.17, and Figure 3.16.

Center Finder

When analyzing the shape of a cluster, it could be useful to know where the

center of the cluster event is. The center is usually the point with high energy located

at the intersection of the visible trajectories (if there is any). If we manage to find this

point correctly, we could then start analyzing each trajectory starting from the core

pixel of a cluster event. However, this task proved to be quite challenging, especially

for the complicated clusters, because there can be multiple points with a high energy

level lying at the intersection of the trajectories. For this task, we proposed an

algorithm based on the energy of the pixel and its surrounding pixels: Let 𝐶 denote

an arbitrary set of pixels and let 𝑆𝑐(𝑝) be the set of pixels surrounding the pixel

Figure 3.16 Skeletonized

cluster (modified Zhan

Shuen's algorithm)

Figure 3.17 Skeletonized

cluster (original Zhan

Shuen's algorithm)

Figure 3.15 Orginal cluster

28

𝑝 ∈ 𝐶 excluding the pixel 𝑝 (possibly 𝑆𝐶(𝑝) = {𝑛 ∈ 𝐶| 0 < 𝑑(𝑛, 𝑝) < 𝜀} where 𝑑

can be the Euclidian distance and 𝜀 = 3). Then, we define the weighted surrounding

energy of a pixel 𝑝 ∈ 𝐶 with the weight 𝑤𝐶 as 𝐸𝑆𝐶
(𝑝, 𝑤𝐶) = 𝑤𝐶 ∑ 𝐸(𝑛)𝑛∈𝑆𝑐

 with

𝐸(𝑛) being the energy of a neighboring pixel 𝑛. For each pixel, the surrounding

energy is used to calculate the center cost function.

Let 𝐶 represent the set of pixels of a cluster and let 𝑇 denote its skeletonized

version. The center cost function is defined as follows:

𝑓(𝑝) = 𝐸𝑆𝐶
(𝑝, 𝑤𝐶) + 𝐸𝑆𝑇

(𝑝, 𝑤𝑇) + 𝑤𝑝𝐸(𝑝)

In our algorithm, we set 𝑤𝐶 = 1, 𝑤𝑇 = 1.5, 𝑤𝑝 = 1.5. Then the center pixel of a set

of pixels 𝐶 is computed simply as:

𝑝𝑐𝑒𝑛𝑡𝑒𝑟 = {

𝑎𝑟𝑔𝑚𝑎𝑥𝑝∈𝐶𝑟𝑜𝑠𝑠(𝐶)(𝑓(𝑝)) if 𝐶𝑟𝑜𝑠𝑠(𝐶) ≠ ∅

𝑎𝑟𝑔𝑚𝑎𝑥𝑝∈𝐶(𝑓(𝑝)) otherwise

Branch Analyzer

 Branch analysis is the process of finding the branches in a cluster. We say the

branch 𝑠 is a subbranch of the branch 𝑏, if it starts in one of the crosspoints of branch

𝑏. To analyze the branches, we proposed the following algorithm:

Algorithm 3.2 Branch analysis

 function BranchAnalysis(𝐶) # 𝐶 is the set of pixels in a cluster

1. 𝑈 ← 𝑆𝑘𝑒𝑙𝑒𝑡(𝐶), 𝑠𝐶 ← 𝐶𝑒𝑛𝑡𝑒𝑟(𝑆), 𝐵𝑠 ← ∅

2. do

3. 𝐵 ← 𝐺𝑒𝑡𝐵𝑟𝑎𝑛𝑐ℎ(𝑈, 𝑠𝐶 , 𝐶𝑟𝑜𝑠𝑠(𝑈), 𝑚𝑎𝑥𝐷𝑒𝑝𝑡ℎ)

4. 𝐵𝑠 ← 𝐵𝑠 ∪ {𝐵}

5. 𝑈 ← (𝑈 − 𝐵. 𝑇𝑜𝑡𝑎𝑙𝑃𝑜𝑖𝑛𝑡𝑠) ∪ {𝑠𝐶}

6 while (|𝐵. 𝑇𝑜𝑡𝑎𝑙𝑃𝑜𝑖𝑛𝑡𝑠| > 𝑡𝑟𝑖𝑣𝑖𝑎𝑙𝐵𝑟𝑎𝑛𝑐ℎ𝑆𝑖𝑧𝑒)

7. 𝐴𝑑𝑑𝑀𝑖𝑠𝑠𝑒𝑑𝐶𝑟𝑜𝑠𝑠𝑝𝑜𝑖𝑛𝑡𝑠()

8. 𝐵𝑠 ← 𝑆𝑜𝑟𝑡𝐵𝑦𝑃𝑜𝑖𝑛𝑡𝑠𝐶𝑜𝑢𝑛𝑡𝐷𝑒𝑠𝑐(𝐵𝑠)

9. foreach pair (𝐵1, 𝐵2) in 𝐵𝑠

10. if(𝐴𝑛𝑔𝑙𝑒𝑂𝑓𝑆𝑝𝑙𝑖𝑡(𝐵1, 𝐵2) < 𝑒𝑝𝑠𝑖𝑙𝑜𝑛𝐴𝑛𝑔𝑙𝑒)

11. 𝑀𝑒𝑟𝑔𝑒𝐵𝑟𝑎𝑛𝑐ℎ𝑒𝑠(𝐵1, 𝐵2)

12. break()

13. return 𝐵𝑠

29

Algorithm 3.3 Get Branch function

 function 𝐺𝑒𝑡𝐵𝑟𝑎𝑛𝑐ℎ(𝑈, 𝑠𝐶 , 𝑈𝐶𝑟𝑜𝑠𝑠, 𝑑)

1. 𝐵 ← 𝐹𝑖𝑛𝑑𝐿𝑜𝑛𝑔𝑒𝑠𝑡𝑃𝑎𝑡ℎ𝐵𝐹𝑆(𝑈, 𝑠𝐶)

2. 𝐿𝐶𝑟𝑜𝑠𝑠 ← (𝐵 ∩ 𝑈𝐶𝑟𝑜𝑠𝑠) − {𝑠𝐶}

3. 𝑃𝑐𝑙𝑜𝑠𝑒𝑇𝑜𝑆𝑡𝑎𝑟𝑡 = 𝑁(𝑠𝐶) − 𝐿𝐶𝑟𝑜𝑠𝑠

4. 𝑃𝐹𝑜𝑟𝑏𝑖𝑑 = ((𝐵 − 𝐿𝐶𝑟𝑜𝑠𝑠) ∪ 𝑃𝑐𝑙𝑜𝑠𝑒𝑇𝑜𝑆𝑡𝑎𝑟𝑡 ∪ {𝑠𝐶})

5. 𝑈𝑛𝑒𝑤 = 𝑈 − 𝑃𝐹𝑜𝑟𝑏𝑖𝑑

6. If (𝑑 > 0)

6. foreach 𝑝𝐶𝑟𝑜𝑠𝑠 in 𝐿𝐶𝑟𝑜𝑠𝑠

7. 𝐵. 𝑎𝑑𝑑𝑆𝑢𝑏𝐵𝑟𝑎𝑛𝑐ℎ(𝐺𝑒𝑡𝐵𝑟𝑎𝑛𝑐ℎ(𝑈𝑛𝑒𝑤, 𝑝𝐶𝑟𝑜𝑠𝑠, 𝑈𝐶𝑟𝑜𝑠𝑠, 𝑑 − 1))

8. return 𝐵

Variables and functions used in Algorithm 3.2 and Algorithm 3.3

𝑈 The set of points we can use for the branch analysis

𝑠𝐶 The start point of the current branch

𝑈𝐶𝑟𝑜𝑠𝑠 All crosspoints

𝑑 Maximal depth of the algorithm search

𝑆𝑘𝑒𝑙𝑒𝑡(𝐶) The result of the skeletonization algorithm

(Algorithm 3.1)

𝐶𝑒𝑛𝑡𝑒𝑟(𝐶) The center of a cluster 𝐶

𝑅𝑒𝑚𝑜𝑣𝑒𝐷𝑢𝑝𝑙𝑖𝑐𝑎𝑡𝑒𝑠() Removes duplicate points (comparison by 𝑥 and 𝑦

coordinates)

𝐵. 𝑇𝑜𝑡𝑎𝑙𝑃𝑜𝑖𝑛𝑡𝑠 Union of all points of all subbranches of 𝐵 with

itself

𝑀𝑒𝑟𝑔𝑒𝐵𝑟𝑎𝑛𝑐ℎ𝑒𝑠(𝐵1, 𝐵2) Merge two longest branches into a single branch

𝐹𝑖𝑛𝑑𝐿𝑜𝑛𝑔𝑒𝑠𝑡𝑃𝑎𝑡ℎ𝐵𝐹𝑆() It numbers the pixels using BFS from the start of the

branch and returns the path from the pixel with the

highest number to the start of the branch

𝑚𝑎𝑥𝐷𝑒𝑝𝑡ℎ Maximal depth of the algorithm, the number of

times GetBranch can be called recursively,

effectively speeds up the calculation on large

clusters

𝑡𝑟𝑖𝑣𝑖𝑎𝑙𝐵𝑟𝑎𝑛𝑐ℎ𝑆𝑖𝑧𝑒 The size of a branch which is too small to provide us

any information (less than 2 pixels)

𝑆𝑜𝑟𝑡𝐵𝑦𝑃𝑜𝑖𝑛𝑡𝑠𝐶𝑜𝑢𝑛𝑡𝐷𝑒𝑠𝑐() Sorts branches by their size in descending order

𝐴𝑛𝑔𝑙𝑒𝑂𝑓𝑆𝑝𝑙𝑖𝑡(𝐵1, 𝐵2) The angle between the branches (up to the first 10

points of the branch are approximated using linear

regression, and then the angle is calculated between

the lines from the regression)
Figure 3.18 Variables and functions used in branch analysis algorithms

30

To find branches in Algorithm 3.2, we first compute the skeleton and the center

of a cluster. Then, we find a path to the most distant point from the center in the

skeleton using a breadth-first search. While we are searching for the path to the most

distant point, we also find the crosspoints on that path, which we use for the

recursive analysis of the sub-branches. Before calling the recursive function for

finding the branches, we need to temporarily remove the points in the skeleton,

which are already part of some branch (to make sure the same points do not belong

to more branches). The recursion is stopped if there are no crosspoints in the current

branch or the depth of the recursion is higher than the maximal allowed depth. We

also used this algorithm (Algorithm 3.2) to analyze branches in the

ClusterViewer application. We analyze the given cluster and search for possible

trajectories of various particles captured in the cluster. These trajectories – branches

– are then distinguished by their colors. A branch is considered to be the main branch

if it starts in the center of a cluster. Each branch can also have its subbranches, which

are denoted by the lighter version of their parent's branch color. For an example of

the branch analysis on a non-trivial cluster, see Figure 3.19 and Figure 3.20.

3.5 Cluster Filter

After we created ClusterViewer application, we noticed that a vast majority

of the clusters only had a few pixels. In order to find some non-trivial clusters, we

created ClusterFilter application. It consists of a simple user interface, where a

user selects the ini file and the upper and lower bound for the attributes of a cluster,

see Table 3.2. After that, only the clusters which fit into the interval (lower bound,

Figure 3.20 Original cluster before

branch analysis
Figure 3.19 Cluster after branch analysis,

each branch with its distinct color (pink

points are the cross points where the

branches split)

31

upper bound) are selected and

written into a new cl file.

During the process, px file is not

copied. Instead, the former px

file is used, so this newly created

cl file only provides "a new

view" into the original px file.

In order to speed up the

computation, we implemented

the lazy evaluation, which means

that after some filtering

condition for the cluster fails, the rest is not evaluated. Attributes are calculated in

order from the easiest to calculate to the most expensive. This implies that setting

some easy-to-compute attribute to a narrow interval could greatly decrease the

computation time, so we recommend doing so any time it is possible.

3.6 Description Generator

The DescriptionGenerator is the application for preparing data (the

features of a cluster) for the consequent training of the machine-learning-based

classifier model. The application requires the data to be in the MM (clustered) format

Table 1.1. We also made the algorithm extendable to more features without requiring

a lot of programming.

Input selection

First, a user selects and loads one or more ini files via the dialog window. All

of the currently loaded files are displayed in the UI, as shown in Figure 3.21.

Each such loaded ini file is called a partition. A partition can be assigned a

class name, which is an editable field in the left column of the displayed table. These

partitions are later grouped based on the class names to form the classes. The class

Table 3.2 User interface of the filterer - setting the lower and

upper bound for filters

32

Figure 3.22 Check boxes with cluster features in the

Cluster Filter application

names are compared as strings, so one needs to keep in mind the names are case-

sensitive. Apart from choosing input files, a user must also select the name for the

output file.

Feature selection

After the files are selected, a user

can choose which attributes will be

calculated by selecting the corresponding

item in the displayed list of features. The

algorithm is designed only to calculate

the features that are selected. Even

though more features might provide

more information about the cluster,

adding features could also increase the

algorithm's time complexity and,

therefore, the duration of the whole

calculation. We calculate features for

each cluster from the input and store

them into a single file in the JSON file

format. The feature calculation

complexities can be split into four

categories:

1. Expensive:

 BranchCount,

 Branches.

2. Less expensive:

Figure 3.21 Loaded ini files into the DescriptionGenerator

33

 Width,

 Convexity,

 RelativeHaloSize.

3. Inexpensive:

 TotalEnergy, MaxEnergy, AverageEnergy,

 VertexCount, CrosspointCount, RelLowEnergyPixels,

 StdOfArrival, StdOfEnergy.

4. Cheap:

 Class, PxFile, ClFile,

 PixelCount, ClIndex.

Note: The complexity factor should be considered only if the input data are large.

Distribution selection

Before processing, we need to select the distribution of samples in the output.

For that, we set the last parameters:

 Class distribution (even / proportional): When choosing even, each of

the classes will have the probability 𝑝(𝑐𝑙𝑎𝑠𝑠) =
1

Number of classes
 to be the

next class in the output samples. If the option proportional is chosen,

each class will have the probability of being the next to process proportional

to its count in the input samples:

𝑝(𝑐𝑙𝑎𝑠𝑠) =
∑ |𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛|𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 ∈ 𝑐𝑙𝑎𝑠𝑠

∑ ∑ |𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛|𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 ∈ 𝑎𝑛𝑦𝑐𝑙𝑎𝑠𝑠𝑎𝑛𝑦𝑐𝑙𝑎𝑠𝑠 ∈ 𝑐𝑙𝑎𝑠𝑠𝑒𝑠

where |𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛| is the number of samples (clusters) its cl file.

 Partition processing order (serial / parallel): Let 𝑃1, 𝑃2, … 𝑃𝑛 be a list

of partitions containing samples of some class in the order they were listed

in the input selection table. After selecting serial, the samples for the

class will be selected serially from 𝑃1, then form 𝑃2 and so on until from 𝑃𝑛.

When parallel partition processing order is selected, the first sample is

selected from 𝑃1 and 𝑖-th sample is selected from 𝑃(𝑖 𝑚𝑜𝑑 𝑛)+1. Note: This

34

order is only the order of samples inside the class, keep in mind that each

class is distributed by the previous parameter – Class distribution.

 Ending condition (first class / last class / first

partition): This condition determines when the processing should

terminate. By choosing the first class option, the algorithm ends when

all the samples of any of the classes are fully processed. When last

class is selected, the program selects samples until all samples for all

classes are processed before terminating. If the user chooses the first

partition option, the program finishes as soon as all samples from any

of the class partitions are outputted.

 Align class: When we set the optional parameter – align class – to the name

of some of the classes in the loaded files, then the termination of the

algorithm is only based on partitions of this align class and on the ending

condition. All the other classes are meanwhile processed but with the

following adjustment. When a partition of the non-align class is fully

processed, it is not removed from the list, but it is only reset and will be

processed once again from the beginning. This means only the align class is

being depleted while the others are repeatedly looping over their data.

 Even though the first three parameters might actually seem useful at first glance, one

might wonder about the usefulness of the align class parameter. When we want to

achieve even class distribution during training, we have two possible options:

 Undersampling [11] – reducing the size of the majority class, and

 Oversampling – reusing the minority class more times.

One can notice that when choosing even class distribution (with an ending

condition on the first-class) and no align class, this is an example of undersampling.

In contrast, if the align class is set, that can be considered an implementation of the

oversampling for classes with a smaller extent than the align class and

simultaneously as undersampling for classes with a greater extent than the align

class. After all these necessary steps are completed, the user can click the Process

button, which starts the processing and writing the output in a JSON text file, see

Figure 3.23.

35

3.7 Classifier aplications

When we have the training data prepared by the

Description Generator application, we can start focusing on developing

the tools for cluster classification.

For this purpose, we designed three applications:

 ClassifierUI,

 ClassifierTrainer, and

 ClassifierForClusters.

Each of these applications uses

the same type of neural network

classifier model – a Multi-layered

perceptron (MLP) [12]. A multi-layered

perceptron is a kind of neural network.

Its architecture is shown in Figure 3.24.

It consists of multiple layers, where

each layer contains some non-zero

number of neurons. The first layer of

neurons is called the input layer, and the

last layer is known as the output layer

(the layers in between are called
Figure 3.24 MLP architecture – circles represent neurons,

lines correspond to the edges between them [12]

Figure 3.23 An example of calculated features for a single cluster

36

hidden layers). Each neuron is connected with all neurons in the previous layer and

the next layer via edges (an edge from neuron 𝑖 in a layer to neuron 𝑗 in the next level

is assigned some real number – weight 𝑤𝑖,𝑗). During the classification, we set the

values of the neurons in the input layers and start updating neurons in the hidden

layers from left to right. A single update operation consists of setting the neuron 𝑛𝑖,𝑗

(𝑗-th neuron in the 𝑖-th layer 𝑙𝑖) as follows: 𝑛𝑖,𝑗 = 𝑓(∑ 𝑤𝑖,𝑗𝑛
|𝑙𝑖−1|
𝑗=1) where 𝑓 is known

as the activation function. The output layer is updated as the last, and from this layer,

the output of the whole network is retrieved.

This type of model has many learning parameters that can affect how quickly

the model learns and how robust the model is (as displayed in Table 3.3).

NN attributes and learning parameters

name [any string] – used as a unique classifier identifier

validAttributes [array of ClusterAttibute object] – sets the attributes of a

cluster used during the learning process

layerSizes [array of positive integers] – represents the sizes of the

hidden layers

activationFunction ["relu", "sigmoid"] – sets one of the two currently

supported activation functions

learningAlgorithm ["backProp", "leven-marq"] – chooses either the

Backpropagation or Levenberg-Marquardt learning

algorithm

epochSize [positive integer] – the number of samples used in a single

training epoch, known by the term batch size

learningRate* [real number between 0 and 1] – the base step size in the

gradient descent learning algorithm [13] (lower values =

slow learning, higher values = possibly no convergence)

momentum* [real number between 0 and 1] – a learning parameter

that aims to speed up the convergence by setting the

current step as a linear combination of the gradient and

the previous step

37

evaluationMultiClasses* [array of pairs ([string], [array of strings])] – maps the

prediction classes in the array (the second element of the

pair) to a new class name (the first element of the pair)

for the evaluation process (for example, if our classifier

predicts classes 𝐴, 𝐵 and 𝐶, we might want to analyze

how well the classifier did at splitting 𝐴 class from the

rest (using the accuracy)), so we map [(𝐴,[𝐴]),(𝐵𝐶,

[𝐵, 𝐶])

usedTrainDataSize* [a real number between 0 and 1] – the proportion of data

used for training (the remaining data are used for testing)

printInterval* [positive integer] – the frequency of printing the training

error of the neural network to the console during learning

Table 3.3 Attributes and learning parameters of the classifier model stored in a config file (json),

* = field is not obligatory

EvaluationMultiClasses can be considered a non-standard parameter, so we present

an example of how it might be useful. Suppose we want to train a classifier that gets

the classes 𝐴, 𝐵, and 𝐶 on the input. Its role is to separate class 𝐴 from the class

𝐵 ∪ 𝐶. Then, when we are generating the training dataset, we might want to preserve

even distribution between the classes 𝐴, 𝐵, and 𝐶. Hence, we create the training data

that include all these three classes and train a classifier on those (the classifier will

use all of the classes 𝐴, 𝐵 and 𝐶). However, when we are evaluating this classifier,

we should be more interested in the "quality" of the split between the classes 𝐴 and

𝐵 ∪ 𝐶, rather than taking the split between 𝐵 and 𝐶 into account. For that specific

case, we use the EvaluationMultiClasses parameter.

Classifier UI and Classifier Trainer

The ClassifierUI is an application that aims to provide two main

functionalities – classifier training and classifier merging. ClassifierTrainer is

a console application that also provides classifier training (the same as the

ClassifierUI) but offers the option to run the learning process from the script

without manual interaction. Because the training process is the same in the console

application as in the UI, we will not discuss it separately.

38

Classifier Training – The application trains a new classifier model based on

the training data and the learning parameters provided by the user. Some parameters

like the minimal accuracy can be set directly via the UI, but most of the learning

parameters are set in a JSON config file, which must be loaded into the UI before

learning starts. Optionally we can also load an already trained classifier model, and

in this case, the training starts with this model instead of creating a new MLP by a

random initialization of the neural network. By clicking Train Classifier, we

start the learning process. Then, the data is randomly split into training and test set

according to the learning parameter (by default, 90% are used for training, 10% for

testing). Information about the error rate on the currently processed epoch is

displayed in the console window. When the training is completed, the model is tested

on the test data. To present the quality of the classifier, we used the confusion matrix

[14] – a matrix 𝐶 where its element 𝐶𝑖,𝑗 is the number of clusters that belong to the 𝑖-

th class and were labeled by the classifier as the 𝑗-th class. So ideally, we want to

have the most cluster examples on the diagonal of the matrix. The result of the

training process is what we call a simple classifier, and it is stored in two

files with the suffixes .csf and .csf_support. We decided to use two files

because of the problems with storing all of the classifier data into a single file (a

more detailed description of the problem is provided in Chapter 4.3). These two files

should be in the same directory and preserve the same name at all times (they only

differ in suffixes).

Classifier cascading – When we have multiple simple classifiers, we might

want to concatenate them into a single classifier with a tree-like structure. This can

be especially useful when building a classier for unbalanced classes. Instead of

training one complex classifier, we can split the task into building several simple

classifiers and then combine them into a complete classifier. Such modular classifier

has additional good properties. We can concentrate on training simple classifiers for

the most important classes, each of the simple classifiers can be retrained separately

for the other simple classifiers, and its training can be much faster than training a

large monolithic classifier. Let, e.g., classes 𝐴 and 𝐵 are rare while classes 𝐶 and 𝐷

are more abundant in our data. Because when we have classes with little training data

(Classes 𝐴 and 𝐵) as displayed in Figure 3.25, we can create a root classifier trained

39

Root
Classifier

Class A Class B Class C+D

Classifier
1

Class C Class D

on an evenly distributed dataset by undersampling the larger classes (Class 𝐶 and 𝐷).

However, undersampling means not using some part of the training data, which

could negatively affect the model's accuracy. Because it is possible to have more

than one level, we can train another classifier on the larger dataset (of Classes 𝐶 and

𝐷), which enables us to:

 use most of the training data for learning, and

 preserve the even distribution of classes among each level of the tree,

which is preferred when training many machine-learning based

classifiers

Via the UI, it is possible to create a cascade classifier with a maximum of four

levels. On each level, there can be a single classifier at most. This is because it can

be quite complex to build an arbitrary tree via the UI, and also, we expect this

version to be sufficient for most cases. With a little programming, the user can build

any classifier tree by simply connecting the nodes.

 To merge classifiers into a cascade classifier, the user imports the trained

model, and if it is not the final layer, the user also specifies the split class,

which is the name of the class that the classifier on the next layer will further

Figure 3.25 Example of a multi-layered classifier with two layers (Root classifier and Classifier 1)

40

process. This means that if we input 𝑛 simple classifiers for merging, we should also

input 𝑛 – 1 corresponding split classes. Then the name of the output is selected, and

when the cascading is completed, two output files are created - .csf and

.csf_support files.

Classifier For Clusters

The ClassifierForClusters is a console application. It can classify the

given collection of clusters and produce an output based on its parameters when it is

provided a trained classifier model and the cluster data in JSON format. There are

three possible types of output:

 Frequencies: The application prints the key-value pairs of the name of

the class and its frequency in the data.

 Classes: The program outputs a single JSON file for each of the

classes, which contains the clusters that were predicted to belong to the

particular category. When calculating the expected class, we apply the

softmax function to the output layer of the network to convert the

neuron values into probabilities of each class. In case we have 𝐾 output

neurons (classes), the output is computed as

𝑠𝑜𝑓𝑡𝑚𝑎𝑥: ℝ𝐾 → [0,1]𝑘 and 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑥)𝑖 =
𝑒𝑥𝑖

∑ 𝑒
𝑥𝑗𝐾

𝑗=1

 The cluster is unclassified if the most probable class is assigned a

similar probability as the second most probable class.

 Specials: When this option is selected, the program's output is similar

to the Classes option, but additionally, it outputs a file where all the

unclassified clusters that match specific criteria (potentially rare

clusters) are stored. These criteria select the clusters with more than

four branches and at least 100 pixels. Changing the criteria is simple

but requires a slight modification of the source code.

41

4 Development documentation

In this chapter, we will discuss the technical part of the solution

ClusterProcessor. We will have a brief look into the implementation and the main

objects and methods used in the solution. This section is primarily aimed at the

developers who would like to find out how our solution works and those who plan to

extend this solution in any way.

Technology

The framework we decided to use for the solution is .NET Framework and

Windows Forms. The reason for that is simply because my primary programming

language is C#, and I consider Windows Forms to be a reasonable choice for creating

Graphical User Interface. However, WinForms does not support all features we

required, so we need the following external libraries:

 Chart Director [15] – a 3D graphical plotting library,

 Json.Net [16] – a library (NuGet package) used for serialization and

deserialization from the JSON file format, and

 Accord.Net [17] – a machine-learning framework (NuGet package) we use to

classify the clusters.

Solution structure

The whole solution represents a set of tools for cluster processing. The solution

is structured into multiple separate projects mostly for two reasons:

1. Users can choose which parts of the solution they need and use only those.

2. This way the whole solution can be easily extended by modifying only one

project and reusing the rest of the solution. The projects in the solution can be

divided into three layers according to their dependencies, as shown in Figure

4.1.

42

4.1 Cluster Viewer

Even though the whole cluster viewer project consists mainly of the event

handlers for the application's buttons, it uses some features from the

ClusterCalculator, which are worth noting from the software engineering

perspective.

Browsing Cluster Collection

Browsing of the collection of clusters is controlled via buttons. Because the

size of the dataset a user might be browsing can be huge (millions of clusters), we do

not have a chance to load the data into operating memory, but we need to search for a

specific cluster sequentially each time we click previous. There is an option to use

caching of the recently viewed clusters. We tested the browsing on the files with

large cl files (roughly ten million clusters) and did not notice any significant issue

(sequential browsing is done only on the cl file, which is usually significantly

smaller than the px file). Because of that, we decided not to try optimizing browsing

any further. Browsing is implemented by ClusterInfoCollection

:IEnumerable.

Cluster

Viewer

Cluster

Calculator

Classifier

Trainer

ClassifierFor

Clusters

Descr

Generator

Cluster Filter ClassifierUI

Cluster

Experiment

Figure 4.1 Dependency structure of the ClusterProcessor

solution

43

Skeletonization

Skeletonization is the process of finding the skeleton of a binary image. For

this purpose, we proposed Algorithm 3.1. As the thinning process returns non-trivial

data for bigger clusters, we optimized the algorithm for clusters with more than 100

pixels. This is because the asymptotic complexity is only relevant for bigger clusters.

The key is to use a well-fitting data structure. Throughout the algorithm, we perform

two operations most often. The first one is .Contains(), which means 'does the

specific pixel have a non-zero energy ?' and the second one is .Delete() which is

setting the energy of a specific pixel to 0. An ideal option for these operations seems

to be an array of 256×256 = 65 536 pixels, which can effectively do both these

operations in constant time. The problem is that this approach would lead to huge

performance issues as most of the clusters are smaller than 100 pixels, and the

overhead of the array with 65 536 items would take much time. Using the list

collection List<T> from the standard library, we get rid of this problem. On the

other hand.Contains() and .Delete() require time linear with respect to the

length of the list. That is why we chose to use HashSet<T>, which has similar

memory usage as List<T> but both.Contains() and .Delete() are done in a

constant time. In case we would need another performance boost, the whole

algorithm can be almost trivially parallelized.

4.2 Filter and Description Generator

Both ClusterFilter and DescriptionGenerator calculate the features

for many clusters, so we decided to analyze them together. The applications can run

on a specific collection for a potentially long time, so performance seems to be a

good factor we should focus on and optimize.

Complexity

The iteration process over the cluster collection uses

ClusterInfoCollection, and as we need to process every item in the

44

collection, there is not much to be optimized. Let p denote the size of the px file and

𝑐 the size of the cl file. The iteration process has a linear time complexity with

respect to 𝑐. The calculation of an attribute value depends on the particular attribute.

Asymptotic time complexities with respect to the number 𝑛 of pixels of a cluster are

shown in Table 4.1.

ATTRIBUTE ASYMPTOTIC TIME COMPLEXITY

PixelCount, ClIndex,

PxFile, ClFile, Class

𝑂(1): These attributes are present when loading the

cluster – no computational overhead.

TotalEnergy, MaxEnergy,

AverageEnergy,

RelLowEnergyPixels,

StdOfEnergy, StdOfArrival

𝑂(𝑛): Calculating these properties only requires an

iteration over each pixel in the cluster. Therefore,

we obtain the linear complexity.

Width, RelativeHaloSize,

Convexity, VertexCount,

CrossPointCount

𝑂(𝑛𝑡 + 𝑛𝑙𝑜𝑔 𝑛): Because all of these attributes

require skeletonization of the cluster, we need to

analyze Algorithm 3.1. Each skeletonization

iteration consists of iterating over 𝑂(𝑛) pixels and

there are 𝑡 iterations, where 𝑡 is the thickness of the

cluster. (Note: Convexity and Width attribute also

require convex hull calculation, which is done in

𝑂(𝑛 log 𝑛), which affects the asymptotic

complexity)

BranchCount, Branches 𝑂(𝑛2) originally, 𝑂(𝑛) after update: When we look

at Algorithm 3.2, we can notice the following:

 The time complexity of the breadth-first

search [18] is linear with respect to the

number of pixels.

 The branch count could be at most linear

with respect to the number of pixels.

Thus, we can estimate the worst-case complexity by

𝑂(𝑛2). In contrast, we usually do not need to

45

analyze the cluster much further if we already have

hundreds of its longest branches. Because of that,

we set the upper bound for branch count to be 40.

We also set the depth of the calculation, so the

algorithm ignores the branches that are nested more

than four times. Even though this restriction doesn't

provide us a complete branch analysis, in most

cases, it is sufficient and provides a significant

performance boost to 𝑂(𝑛). (Note: From the real

(non-asymptotic) observed calculation time, it is

still the most expensive calculation.)

Table 4.1 Time complexity of the feature calculation

To sum up, the total complexity of the filtering process is

 𝑂(∑ 𝑛𝑘𝑡𝑘 + 𝑛𝑘 log 𝑛𝑘 𝑐
𝑘=1) where 𝑛𝑘 is the number of pixels and 𝑡𝑘 is the thickness

of 𝑘-th cluster (when taking the updated branch analysis into account).

Adding new features

To add a new feature to DescriptionGenerator, a user needs to follow these

steps:

1. Add the name of the attribute to the enum ClusterAttribute to the

ClusterCalculator project.

2. Add a case to the switch section of the CalcAttributes method of the

DefaultAttributeCalculator with your attribute and its calculation and

store the value to the dictionary attributePairs to an index attribute

(attributePairs[attribute] = calculated_value).

3. In the DescriptionGenerator project, update the UI – add a checkbox to

the other attributes with the same name as the enum you added in step 1

(because the string-enum conversions are done automatically).

46

4.3 Classifier aplications

In this chapter, we discuss the process of cluster classification from a

developer's point of view. We introduce some fundamental objects used in the

classification process. Then we also mention a simple guide on how to build your

own classifier.

Classifier objects

Interface IClassifier is an interface that provides required methods for a

classifier model (e.g., .Classify(), .StoreToFile(), .LoadFromFile())

Interface ILearnableClassifier : IClassifier represents an interface

that extends the IClassifier by adding support for training (.Train() method)

Class NNClassifier : ILearnableClassifier is a basic classifier based

on a multi-layered perceptron NN,

Class MultiLevelClassifier : IClassifier represents a classifier

created by cascading more NNClassifiers,

Class ClassPrediction – an object that represents the prediction calculated by

the classifier, apart from the name of the predicted class, also contains the

probabilities of how confident the classifier is about each class (implemented via the

softmax function).

Building your tree classifier

 When you want to build a MultiLevelClassifier you first need to create

a NNClassifier, which can be done two ways:

a) from the ClassifierUI, or

b) using a console application ClassifierTrainer.

After we have all of the NNClassifiers prepared, we can start with

merging. There is a possibility to cascade classifiers in the ClassifierUI, but it

only allows a single classifier on each level. Still, it is possible to build any classifier

tree, by the following steps (an example of how we the classifiers are cascaded in the

47

current implementation can be seen in the method .FromDefault() of the class

MultiLevelClassifier):

1. Create new instances of NNClassifier and call.LoadFromFile() and

create a new instance of MultiLevelClassifier.

2. Wrap the simple classifiers into the class ClassifierNode and the root

classifier into the ClassifierRoot.

3. Connect the nodes, starting from the bottom of the tree, by calling

parentClassifier.Descendants.Add(splitClass,

sonClassifier).

4. After all of the previous steps are done, set the root by calling the method of

the MultiLevelClassifier - SetRoot(classifierRoot)

Serialization

Each classifier that is created can also be stored in a file for future use. This

process is called serialization and is done using the Newtonsoft library. When we

were implementing the serialization of both NNClassifier and

MultiLayeredClassifier, we needed to set all of the property modifiers to

public so they can be visible for the serializer. Another problem is that the network

itself (from the Accord.Net library) cannot be serialized using the Newtonsoft library

because of compatibility issues. That is the main reason why as a result, each

classifier is stored in two files (.csf and .csf_support). The .csf file contains a

serialized Network by the serialization tools of the Accord.Net library. In contrast,

the .csf_support file contains the whole NNClassifier object except for the

network itself (serialized by the Newtonsoft library).

Selecting uncommon clusters

One of the ultimate goals of the classification could be finding uncommon

clusters. The selection of such clusters is implemented directly in the classification

process. ClassPrediction contains the method .CalcConfidence(), which

calculates the certainty of the prediction based on the output neuron values from the

48

network. This method serves to detect unclassified clusters. Let 𝑝𝑚𝑎𝑥 denote

maximal probability we obtain from applying softmax to the output layer and let

𝑝𝑚𝑎𝑥2 be the second maximal probability. We consider a cluster to be unclassified if

the difference 𝑝𝑚𝑎𝑥 − 𝑝𝑚𝑎𝑥2 < 𝜀, where we set 𝜀 = 0.05. During the classification,

the method .CheckSpecialClusters() is called, which takes the unclassified

cluster and decides if it can be considered an extraordinary cluster (it checks if it is

unclassified and has more than 100 pixels and more than 3 branches). Both

.CalcConfidence() and .CheckSpecialClusters() are marked as virtual so

that they could be potentially reimplemented simply by inheritance. This is also

where we see a chance for improvement and extension of the program.

49

5 Experiments

During the work on the thesis, we created several classifier models tested them

on real datasets. For that, we designed a couple of scenarios where we compare our

approach with the alternatives and analyze the results. In all experiments, we will

classify the clusters in the same base set of classes (displayed i

Table 1.3): electron, muon, pion, proton, helium, fragment, iron, low energy

electron, and lead. Apart from the mentioned classes, we also added a new artificial

class elPi0. This class represents electrons and muons that traversed the detector

perpendicularly, which we believe are extremely difficult to distinguish because they

both only consist of very few pixels and have similar energy.

To perform all of the experiments, we prepared the following single-layered

types of models:

1. 𝑆𝑙𝑒𝑎𝑑 – classifies the particles into lead particles and the rest. This classifier

was trained on roughly 80000 clusters.

2. 𝑆𝑓𝑟_ℎ𝑒_𝑓𝑒 – separates fragments, helium, and iron from each other and the rest.

The dataset for this classifier consists of 450000 clusters.

3. 𝑆𝑙𝑒_𝑝𝑟 – separates low-energy electrons from protons and the rest. The total

number of clusters we used during the training is more than one million.

4. 𝑆𝑒_𝑚_𝑝_𝑒𝑝 – splits clusters into four classes – electrons, muons, pions, and the

artificial class elPi0. It is trained on the dataset of approximately 500000

clusters.

5. 𝑆𝑎𝑙𝑙 – splits clusters into all categories directly (including the artificial

category elPi0) and is trained on roughly 100000 clusters.

During the training of the mentioned classifiers, we used the values of parameters as

shown in Table 5.1. In all classifiers except for 𝑆𝑓𝑟_ℎ𝑒_𝑓𝑒 we only used a single

iteration over the training set. The classifier 𝑆𝑓𝑟_ℎ𝑒_𝑓𝑒 required 3 iterations to

converge.

50

validAttributes TotalEnergy, AverageEnergy,

MaxEnergy, PixelCount, Convexity,

Width, CrosspointCount, VertexCount,

RelativeHaloSize, BranchCount,

StdOfEnergy, StdOfArrival and

RelLowEnergyPixels

layerSizes [13, 13]

learningAlgorithm backProp

epochSize 8

learningRate 0.6

momentum 0.5

activationFunction sigmoid

Table 5.1 Base model parameters of 𝑺𝒍𝒆𝒂𝒅, 𝑺𝒇𝒓_𝒉𝒆_𝒇𝒆 , 𝑺𝒍𝒆_𝒑𝒓, 𝑺𝒆_𝒎_𝒑_𝒆𝒑 and 𝑺𝒂𝒍𝒍 classifiers

For each classifier we trained in the experiments, we made sure the learning

process was completed – this was done by observing the training error during the

learning. If the training error of the classifier stops decreasing, the training can be

stopped. As an example, we plot the error of a single classifier during the training,

which is displayed in Figure 5.1.

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6Training error

Epoch count

Figure 5.1 Training mean square error with respect to epoch count

51

Using the single-layered classifiers and given training data distribution (the

clusters with similar frequency in the training dataset are on the same level), we also

constructed the multi-layered classifier 𝑀𝑎𝑙𝑙 as displayed in Figure 5.2.

Figure 5.2 Multi-level classifier 𝑴𝒂𝒍𝒍 structure

In order to measure the quality of a classifier, we define the accuracy of a

classifier 𝐶 on the dataset 𝐷 as 𝐴𝑐𝑐𝐷(𝐶) =
number of correctly classified examples

number of all classified examples
.

5.1 Classifier Parametrization

Each single-layered classifier trained via our solution has multiple parameters,

as shown in Table 3.3. In this experiment, we modified the values of some of these

parameters and compared the results. As a base model for this experiment, we used

the classifier 𝑆𝑓𝑟_ℎ𝑒_𝑓𝑒.

Because there are many possible parameters to modify and training of multiple

classifiers on large datasets is time-consuming, we chose to modify only a few

parameters:

 learning rate

 momentum, and

 the number of layers of the neural network

𝑆𝑙𝑒𝑎𝑑

lead 𝑆𝑓𝑟_ℎ𝑒_𝑓𝑒

frag he fe 𝑆𝑙𝑒_𝑝𝑟

low_elect proton 𝑆𝑒_𝑚_𝑝_𝑒𝑝

electron muon pion elPi0

52

To demonstrate the significance of the learning parameters, we decided to try

six scenarios (every scenario was tested on ten newly trained classifiers 𝑆𝑓𝑟_ℎ𝑒_𝑓𝑒),

where we used the same test dataset for each scenario:

1. Low learning rate and momentum

 learning rate: 0.1, and

 momentum: 0.1.

Result: average normalized test accuracy of the model: 0.86.

Interpretation: First, we need to note that the dataset we use for training

this network is large (almost 500 000 clusters). This means that despite

low values of learning rate and momentum (slow learning), the classifier

had enough time to converge to a reasonable accuracy.

2. Medium learning rate and momentum

 learning rate: 0.5, and

 momentum: 0.5.

Result: average normalized test accuracy: 0.90

Interpretation: These values of parameters showed the best convergence

speed and accuracy. This is the reason why we use these values as the

defaults in our experiments.

3. High learning rate and momentum

 learning rate: 1, and

 momentum: 1.

Result: average normalized test accuracy: 0

Interpretation: When we set the values of learning parameters too high,

we can notice that a divergence occurs, which causes the classifier to

produce unusable results. In our case, it caused all predictions to be

unclassified.

53

4. Small number of hidden layers

 A single hidden layer with one neuron.

Result: an average normalized test accuracy: 0.67

Interpretation: Using a smaller network usually implies faster learning,

but tiny networks do not perform very well on more complex problems.

5. Medium number of hidden layers

 Two hidden layers with 13 neurons each.

Result: an average normalized test accuracy: 0.90

Interpretation: This configuration seems to provide a classifier with the

best accuracy for our task. We can observe that the network is large

enough to capture the various relationships of the features and small

enough to learn reasonably fast.

6. Higher number of hidden layers

 Three hidden layers with 13 neurons each.

Result: an average normalized test accuracy: 0.25

Interpretation: We can notice that the accuracy is low. This could be

because the network is too deep for our task and our chosen activation

function (sigmoid function [19]), and therefore, it learns very slowly.

To sum up, the results of the training depend on the values of learning

parameters. Changing just a single parameter of the network to an extremal value can

cause the learning algorithm not to converge, so one needs to be careful when setting

the values of parameters. There are some recommendations on how the parameters

can be set to achieve convergence in most of the cases:

 The more data we have for training, the deeper neural network we might

need to use.

 First, we start with low values of learning rate to prevent divergence, and

then we can try to increase it to reach convergence faster.

 When we are using the sigmoid activation function with backpropagation,

we can try networks with only a few layers because training a deeper

54

network can be very slow with this algorithm. In contrast, when using

rectified linear unit [20] activation function, we can also try deeper

architectures of neural networks.

However, there is no general rule on how to set the parameters to get the best

accuracy. For our specific task, the parameters we used were the best we came up

with, but we do not claim that these parameters are the best possible. Similarly, each

classification problem might require different values of training parameters to get the

optimal accuracy.

5.2 K-Fold cross-validation of single-layered models

Because the training of the classifier is, in general, a non-deterministic

procedure, we should also test the training method and how often the classifier

training is successful. Another property we might be interested in is the variance of

these results, which was investigated in the following experiment. One of the most

commonly used methods for training evaluation is the 𝑘-fold cross-validation [21].

There, the data is randomly partitioned into 𝑘 folds and the classifier is trained 𝑘

times. In the 𝑖-th validation run (𝑖 = 1, … , 𝑘), the 𝑖-th fold is used for testing after

training the classifier on the data from the remaining 𝑘 − 1 folds. We performed 6-

fold cross-validation on the dataset and obtained results (accuracies) as shown in

Table 5.2.

55

Val_run\classifier 𝑺𝒍𝒆𝒂𝒅 𝑺𝒇𝒓_𝒉𝒆_𝒇𝒆 𝑺𝒍𝒆_𝒑𝒓 𝑺𝒆𝒍_𝒎𝒖_𝒑𝒊_𝒆𝒍𝑷𝒊

1. fold 0.987 0.921 0.951 0.705

2. fold 0.979 0.922 0.950 0.747

3. fold 0.981 0.912 0.957 0.733

4. fold 0.990 0.938 0.938 0.740

5. fold 0.977 0.938 0.943 0.741

6. fold 0.986 0.900 0.959 0.740

Mean 0.983 0.922 0.950 0.734

Std deviation 0.002 0.027 0.001 0.006

Table 5.2 Results of the cross-validation of a single-layered model

The results of the 6-fold cross-validation indicate that our classifiers have a

stable performance (relatively low standard deviation). We can also notice that the

categories electron/muon/pion have lower accuracies which could mean that these

categories are challenging, if not impossible, to classify correctly with high accuracy.

5.3 Multi-level classifier

The concept of a multi-level classifier is something we use in this thesis

frequently. But how does it perform in comparison with a single-level classifier on

the real data?

In order to compare these two classifiers, we trained ten single-level 𝑆𝑎𝑙𝑙

models and ten multi-level 𝑀𝑎𝑙𝑙 classifiers on a similar amount of data and compared

the results on the test dataset.

The best 𝑆𝑎𝑙𝑙 model accuracy was 0.61 (mean 0.52), while the best accuracy of the

𝑀𝑎𝑙𝑙 model reached 0.82 (mean 0.80). We also estimated the variance of 𝑆𝑎𝑙𝑙 to be

0.0038 while the variance of 𝑀𝑎𝑙𝑙 was only 0.0001. Confusion matrices of these

models can be seen in

Table 5.3 and

Table 5.4. In the tables, it is visible that the particle distribution in the test set is very

uneven. However, this is not a problem because we can normalize each value by

56

dividing it by the sum of its row. After rerunning the experiment and computing the

normalized confusion matrix, we obtain the best relative accuracy of 0.85 for 𝑀𝑎𝑙𝑙

model and 0.59 for 𝑆𝑎𝑙𝑙 model.

Based on the results of the experiment, we conclude that the accuracy of the

multi-level classifier was significantly higher than the single-level model with both

classifiers using similar architectures of the neural networks. One reason why there is

such a difference could be the fact that multi-layered models do not suffer from

undersampling (and oversampling) as much as single-level models. Another reason

could be the scaling – each single-level classifier scales its inputs (linear Min-max

scaling [22]) into the range (0,1), which means having a type of a cluster with very

high energy causes the scaling to scale most of the other cluster energies very close

to 0, which makes them difficult to separate. In contrast, the multi-level classifier we

built first processes the bigger cluster types with higher energy (first layer) and then

proceeds to smaller cluster types with less energy which causes the scaled values to

be more evenly spread in the interval (0,1). An important note – by no means we

state that the multi-level architecture of the classifier is always better than single-

level architecture. It might depend on the type of the classifier and the training data,

but in our case, the differences were significant.

True\Pred lead frag he fe prot low_e elPi0 pion muon electr uncl

lead 283 0 0 9 0 0 0 0 0 0 0

frag 17 362 31 200 64 0 0 0 0 0 10

he 1 1537 2321 4392 830 3 17 0 0 1 206

fe 3 2 0 1769 0 0 0 0 0 0 0

prot 0 550 126 94 31011 152 2860 67 408 414 315

low_e 0 0 0 0 83 1525 1291 28 29 37 7

elPi0 0 20 0 0 721 43 4640 78 130 278 221

pion 3 10 0 0 326 28 1233 4106 238 2835 90

muon 11 102 11 0 678 11 624 30 1303 126 104

electr 46 390 0 0 2806 80 3301 1235 2527 4167 448

uncl 0 0 0 0 0 0 0 0 0 0 0

Table 5.3 Confusion matrix of the model 𝑺𝒂𝒍𝒍 with the best accuracy in the experiment (uncl represents

unclassified clusters)

57

True\Pred lead frag he fe prot low_e elPi0 pion muon electr uncl

lead 287 0 0 5 0 0 0 0 0 0 0

frag 22 609 44 1 0 0 0 0 0 0 8

he 1 1295 7899 1 37 8 0 2 0 0 65

fe 2 9 0 1749 0 0 0 0 0 0 14

prot 1 173 1528 0 33111 236 139 102 426 207 74

low_e 0 0 0 0 36 2771 14 16 40 16 107

elPi0 0 0 0 0 176 51 7886 36 406 402 43

pion 0 0 3 0 55 186 37 5051 97 41 30

muon 0 0 0 0 71 38 29 112 2469 264 17

electr 0 0 0 0 681 180 3002 406 3543 7050 138

uncl 0 0 0 0 0 0 0 0 0 0 0

Table 5.4 Confusion matrix of the model 𝑴𝒂𝒍𝒍 with the best accuracy in the experiment (uncl represents

unclassified clusters)

The best classifier

Apart from the classifiers we trained for the experiments, we also repeated the

process multiple times, iterating over the training set, and this way got a model with

better results than the models trained in the experiments. When we ran this classifier

on the test dataset and normalized the confusion matrix, we reached an accuracy of

0.875 (87.5%). The normalized confusion matrix for this classifier is displayed in

Table 5.5. We also decided to save this model for future use - it is stored in the files

bestClassifier.csf and bestClassifier.csf_support, which are a part

of the presented solution.

58

True\Pred lead frag he fe prot low_e elPi0 pion muon electr uncl

lead 0.921 0.034 0 0.044 0 0 0 0 0 0 0

frag 0.004 0.888 0.102 0 0 0 0 0 0 0 0.004

he 0 0.054 0.94 0 0 0 0 0 0 0 0.002

fe 0 0.006 0 0.976 0 0 0 0 0 0 0.016

prot 0 0.004 0.022 0 0.933 0.006 0.006 0.01 0.004 0.009 0.001

low_e 0 0 0 0 0.005 0.957 0.012 0.011 0.004 0.008 0

elPi0 0 0 0.001 0 0.032 0.032 0.897 0.007 0.029 0.015 0.003

pion 0 0 0 0 0.007 0.006 0.002 0.821 0.044 0.109 0.007

muon 0 0 0 0 0.011 0.011 0.024 0.006 0.841 0.102 0.003

electr 0.003 0 0 0 0.016 0.011 0.026 0.163 0.198 0.571 0.008

uncl 0 0 0 0 0 0 0 0 0 0 0

Table 5.5 Normalized confusion matrix of the best trained model

59

6 Conclusion

The main focus of the thesis was to implement a set of tools for processing the

clusters from the Timepix3 chip in the MM data format. We had to create an

interactive tool for cluster visualization and non-interactive tools for cluster filtering,

training data generation, and cluster classification with an option for training new

classifiers according to the user's needs. We consider all of these goals to be

successfully completed.

Attribute calculation

As one of the essential tasks in our project was analyzing the clusters, we

proposed and implemented several attributes of a cluster. These attributes were

designed to provide a more compact representation of clusters and allow for a

simpler distinction between various types of clusters. Calculation of some of these

features relies on an image skeleton where we suggested a slight modification of the

Zhan-Shuen's algorithm. Arguably the most interesting part of the feature calculation

was the branch analysis, where we introduced a new algorithm based on the breadth-

first-search.

Visualization

We created a project for cluster visualization that provides 2D and 3D image

representations of a cluster. Apart from that, the application also displays a histogram

of the energy of the pixels in the currently viewed cluster as well as the histogram of

the pixel count for the whole cluster collection. By using feature calculation, we are

also able to show cluster attributes to the user. It is also possible to load a trained

classifier into the viewer and use the classifier directly inside the viewer to predict

the cluster's class.

Classification

One of the most challenging tasks in the whole thesis was cluster classification.

Firstly, we created a tool for feature-based training data generation in JSON format.

A new type of multi-level classifier architecture was proposed. It consists of

60

connecting the results of multiple classifiers into a tree-like structure. Then, we

implemented an application that is capable of training a simple neural network

classifier based on the parameters selected by the user that could reflect the expected

distribution of the cluster classes in a dataset. These classifiers can then be stacked

into a multi-layered classifier. To present the functionality of the training application,

we created a multi-level classifier model for classifying the real existing dataset of

clusters.

Future research

Because each tool is implemented by a separate application, it should not be

difficult to extend our solution in many ways. As one of the most promising

extensions, we see experimenting with different cluster features and examining their

internal dependencies to provide the best possible accuracy in classification. Another

important extension of our application could be the reimplementation of the function

for selecting rare unclassified clusters based on the new features like the number of

branches with length (or energy) above a given threshold. In the end, all of these

steps could bring us closer to the ultimate goal – reliable detection of exotic particles.

61

Bibliography

[1] CERN – Timepix. [Online] [Cited: April 1, 2021.]

https://kt.cern/technologies/timepix3.

[2] The ATLAS detector. [Online] [Cited: April 4, 2021.]

https://atlas.cern/discover/detector.

[3] Meduna, Lukáš. Multifile-Clustering application. IEAP Software Repository.

[Online] [Cited: September 10, 2020.] https://software.utef.cvut.cz/.

[4] Medipix1. [Online] [Cited: March 15, 2021.]

https://medipix.web.cern.ch/medipix1.

[5] Llopart, X., et al. Medipix2, a 64k pixel read out chip with 55 /spl mu/m square

elements working in single photon counting mode. 2001 IEEE Nuclear Science

Symposium Conference Record (Cat. No.01CH37310). 2001, Vol. 3, pp. 1484-

1488.

[6] A universal algorithm for image skeletonization and a review of thinning

techinques. Saeed, Khalid, et al. 2, s.l. : University of Zielona Góra, 2010,

International Journal of Applied Mathematics and Computer Science, Vol. 20,

pp. 317-335.

[7] 3D track reconstruction capability of a silicon hybrid active pixel detector.

Bergmann, Benedikt, et al. 421, s.l. : Springer, 2017, The European Physics

Journal C, Vol. 77. 9 pages. 6.

[8] Silicon detectors. [Online] [Cited: April 21, 2021.]

https://indico.cern.ch/event/124392/contributions/1339904/attachments/74582/

106976/IntroSilicon.pdf.

[9] Meduna, Lukáš. Detecting elementary particles with Timepix3 detector.

Charles University. 2019. Master thesis.

[10] A Fast Parallel Algorithm for Thinning Digital Patterns. T. Y. Zhang, C. Y.

Suen. 3, s.l. : Association for Computing Machinery, 1984, Communications of

ACM, Vol. 27.

[11] An Application of Oversampling, Undersampling, Bagging and Boosting in

Handling Imbalanced Datasets. Yap, B. W., et al. [ed.] T. Herawan, M. Deris

and J. Abawajy. s.l. : Springer, 2014. Proceedings of the First International

Conference on Advanced Data and Information Engineering (DaEng-2013).

Vol. 285.

[12] Artificial neural networks (the multilayer perceptron)—a review of applications

in the atmospheric sciences. Gardner, M. W. and Dorling, S. R. 14-15, s.l. :

Elsevier, 1998, Atmospheric Environment, Vol. 32.

[13] Ruder, Sebastian. An overview of gradient descent optimization algorithms.

[Online] [Cited: February 4, 2021.] https://arxiv.org/pdf/1609.04747.pdf.

[14] Confusion Matrix. [Online] [Cited: March 28, 2021.]

https://en.wikipedia.org/wiki/Confusion_matrix.

[15] Chart Director library. [Online] Advanced Software Engineering Ltd. [Cited:

October 17, 2020.] https://www.advsofteng.com/download.html.

[16] Json .NET library. [Online] [Cited: April 4, 2021.]

https://www.newtonsoft.com/json.

[17] Accord .NET Framework. [Online] [Cited: January 17, 2021.] http://accord-

framework.net/.

62

[18] Bundy, Alan and Wallen, Lincoln. Breadth-First Search. Catalogue of Artificial

Intelligence Tools. s.l. : Springer, 1984.

[19] Han, J. and Moraga, C. The influence of the sigmoid function parameters on

the speed of backpropagation learning. [ed.] F. Sandoval and J. Mira. rom

Natural to Artificial Neural Computation. 1995, Vol. 930, p. Springer.

[20] Hara, K., Saito, D. a Shouno, H. Analysis of function of rectified linear unit

used in deep learning. 2015 International Joint Conference on Neural Networks

(IJCNN). 2015, s. 1-8.

[21] Cross-validation. Berrar, D. s.l. : Elsevier, 2018, Encyclopedia of

Bioinformatics and Computational Biology, Vol. 1, pp. 542-545.

[22] Feature scaling. [Online] [Cited: February 27, 2021.]

https://en.wikipedia.org/wiki/Feature_scaling.

[23] Chen, Yung-Sheng . The use of hidden deletable pixel detection to obtain bias-

reduced skeletons in parallel thinning. Proceedings of 13th International

Conference on Pattern Recognition. 1996, Vol. 2, pp. 91-95.

[24] A one-pass thinning algorithm and its parallel implementation. Chin, Roland

T., et al. 1, 1987, Computer Vision, Graphics, and Image Processing, Vol. 40,

pp. 30-40.

[25] Fast fully parallel thinning algorithms. Guo, Zicheng and Hall, Richard W. 3,

s.l. : Elsevier, 1992, Computer Vision and Image Understanding, Vol. 55, pp.

317-328.

63

List of Tables

Table 1.1 Input MM file format ... 6

Table 1.2 Categories of clusters based on their shape ... 10

Table 1.3 Types of the clusters for classification with their examples 12

Table 3.1 Description of functions and variables used in Algorithm 3.1. 26

Table 3.2 User interface of the filterer - setting the lower and upper bound for filters

 .. 31

Table 3.3 attributes and learning parameters of the classifier model stored in a config

file (json), ... 37

Table 4.1 Time complexity of the feature calculation ... 45

Table 5.1 Base model parameters of Slead, Sfr_he_fe , Sle_pr, Se_m_p_ep and Sall

classifiers .. 50

Table 5.2 Results of the cross-validation of a single-layered model 55

Table 5.3 Confusion matrix of the model Sall with the best accuracy in the

experiment (uncl represents unclassified clusters) ... 56

Table 5.4 Confusion matrix of the model Mall with the best accuracy in the

experiment (uncl represents unclassified clusters) ... 57

Table 5.5 Normalized confusion matrix of the best trained model 58

file:///D:/source/repos/Celko2020/ClusterProcessor.docx%23_Toc73040352
file:///D:/source/repos/Celko2020/ClusterProcessor.docx%23_Toc73040352

64

Attachments

The attachments, which are part of a digital archive, are the following:

A. ClusterProcessor - user documentation

ClusterProcessor user documentation consists of the user guide and tutorials

with examples of how to use the applications that are part of the solution.

B. ClusterProcessor - solution

ClusterProcessor solution is a Visual Studio 2019 solution that contains the

source code of all the tools we implemented for cluster processing.

C. ClusterProcessor – executables

This is a set of (compiled) Windows executable files with all implemented

tools.

D. ClusterProcessor – demo data

Demo data folder contains small sample data intended mainly for getting

familiar with the implemented tools. Bigger data, including the data used for

training the classifiers, can be found on the following link:

https://drive.google.com/file/d/1E-JktJcJUhtpoxCup-

CKJfSb75yH5Jpw/view?usp=sharing.

https://drive.google.com/file/d/1E-JktJcJUhtpoxCup-CKJfSb75yH5Jpw/view?usp=sharing
https://drive.google.com/file/d/1E-JktJcJUhtpoxCup-CKJfSb75yH5Jpw/view?usp=sharing

