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duced me to xAct software through his lectures at Charles University in winter
term 2019/2020.

ii



Title: Shape of the Kerr gravitational field

Author: Bc. Valeriia Tynianskaia

Department: Institute of Theoretical Physics
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Abstract:

Kerr metric is one of the most well-known and useful exact solutions of Einstein
equations. We study various geometric properties of the Kerr spacetime in order
to gain intuition for its spatial shape. In the review part we summarize basic
features of the Kerr geometry, we write down Carter equations for geodesic motion
in the Kerr spacetime, and we introduce kinematic characteristics of time-like and
light-like congruences, such as expansion, shear and twist.

In the second part of the thesis we calculate scalars for acceleration, expansion,
shear and twist — and plot the corresponding ”equipotential” surfaces — for sev-
eral privileged congruences, namely the Carter observers, the static observers, the
zero-angular-momentum observers, the principal null congruence and the recently
found non-twisting null congruence(s). We also draw surfaces radially equidis-
tant from the horizon and surfaces spatially orthogonal to the PNC and to the
twist-free congruences, as well as the surfaces of constant energy and redshift for
the important time-like congruences.
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Introduction
Albert Einstein published his general theory of relativity in 1915, which, together
with the earlier concepts manifested in special theory of relativity, brought to
light a completely new viewpoint on the theory of gravity. His equations written
in a tensor form connect local geometry represented by a space-time curvature
tensor with the energy, momentum and stress represented by energy-momentum
tensor and, thus, give rise to a geometrical interpretation to the nature of gravity.
General relativity not only brings a geometrical point of view on gravity, but also
generalises Newtonian theory and after many successful probes represents modern
notion of gravity.

Published in an original form, the set of differential equations was presumed
by Albert Einstein himself as hardly solvable, however, shortly after its publica-
tion, the first exact solution has been provided by Karl Schwarzschild in 1916.
The elegance and simplicity of the given solution was truly remarkable. The so-
lution represented vacuum spherically symmetric space-time, where the assumed
symmetry itself helped to significantly reduce the number of equations and pro-
vided a surprisingly simple solution to the remained equations. This approach
introduced a great possibility for solving Einstein field equations by efficient im-
posing different kinds of symmetries whether on metric tensor itself or on other
tensors of general relativity.

In 1963, as a result of imposing a special ansatz on metric tensor, a station-
ary axisymmetric solution that later has been interpreted as a generalization of
Schwarzschild metric to a vacuum space-time with a rotating center, was found
by Roy Patrick Kerr. The Kerr solution is found to be extremely important in
astrophysics, since it involves rotation, an important property of celestial bodies.

Rotation of the central object considerably complicated the surrounding ge-
ometry and introduced some interesting phenomena such as dragging of inertial
frames, the existence of static boundaries in a space-time or others. It also re-
inforced the meaning of coordinates used for solution of Einstein field equations,
which resulted in an appearance of more sophisticated methods for finding general
properties of a space-time independently of coordinates used.

At the beginning of this thesis we will provide a brief overview of a Kerr
solution of Einstein equations and its main characteristics, review some special
observers. In what follows we will focus on finding invariant properties of an
axially-symmetric vacuum space-time using some notions of hydrodynamics ap-
plied to congruences of special observers, find some special surfaces and other
quantities that can be helpful for closer understanding of the geometry of a space-
time.

2



1. The Kerr space-time: an
overview
The Kerr space-time is a vacuum stationary axially-symmetric exact solution
of Einstein field equations characterized by mass M and angular momentum
J = Ma. In this chapter we will provide a brief summary of its basic properties.
We will stick to the convention G = c = 1.

1.1 The Kerr metric in coordinates
Generally, the metric for any stationary orthogonally transitive axially-symmetric,
asymptotically flat space-time can be written in the standard form [1]:

ds2 = −e2νdt2 + e2ψ(dϕ− ωdt)2 + e2µ1dr2 + e2µ2dθ2.

1.1.1 Boyer-Lindquist coordinates
In Boyer-Lindquist coordinates (t, r, θ, ϕ) the Kerr metric reads (see e.g. [2])

ds2 = −∆Σ
A

dt2 + A
Σ sin2θ(dϕ− ωdt)2 + Σ

∆dr2 + Σdθ2

= −
(︄

1 − 2Mr

Σ

)︄
dt2 − 22Mr

Σ asin2θ dtdϕ+ A
Σ sin2θ dϕ2 + Σ

∆dr2 + Σdθ2,

(1.1)

with
Σ ≡ r2 + a2cos2θ,

∆ ≡ r2 − 2Mr + a2,

A ≡ (r2 + a2)2 − ∆a2sin2θ

= Σ(r2 + a2) + 2Mra2sin2θ

= Σ∆ + 2Mr(r2 + a2),

ω ≡ −gtϕ
gϕϕ

= 2Mar

A
.

(1.2)

Hence, the stationary axially-symmetric metric becomes Kerr in Boyer-Lindquist
coordinates if

e2ν = ∆Σ
A
, e2ψ = Asin2θ

Σ ,

e2µ1 = Σ
∆ , e2µ2 = Σ.

From (1.1) it follows that for a = 0 the metric becomes Schwarzschild, for
r → ∞ the metric becomes Minkowski in spherical coordinates, therefore it is
asymptotically flat. For M = 0 in (1.1) the metric reduces to

ds2 = −dt2 + Σ
r2 + a2 dr2 + Σdθ2 + (r2 + a2)sin2θdϕ2,
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which for a ̸= 0 is a flat space-time metric in oblate spheroidal coordinates.
Matrix form of the metric (1.1)

gµν =

⎛⎜⎜⎜⎜⎜⎝
−1 + 2Mr

Σ 0 0 −2Marsin2θ
Σ

0 Σ
∆ 0 0

0 0 Σ 0
−2Marsin2θ

Σ 0 0 Asin2θ
Σ

⎞⎟⎟⎟⎟⎟⎠ , (1.3)

its inverse 1

gµν =

⎛⎜⎜⎜⎜⎜⎝
−1 − 2Mr(r2+a2)

∆Σ 0 0 −2Mar
∆Σ

0 ∆
Σ 0 0

0 0 1
Σ 0

−2Mar
∆Σ 0 0 1−2Mr/Σ

∆sin2θ

⎞⎟⎟⎟⎟⎟⎠ . (1.4)

1.1.2 Kerr-Schild coordinates
The Kerr metric in Kerr-Schild coordinates (T, x, y, z) reads (see e.g.[3]):

ds2 = −dT 2 + dx2 + dy2 + dz2

+ 2Mr3

r4 + a2z2

[︄
dT + r(xdx+ ydy) − a(xdy − ydx)

r2 + a2 + zdz
r

]︄2

, (1.5)

where r satisfies the equation r4 − r2(x2 + y2 + z2 − a2) − a2z2 = 0.
The relation between two sets of coordinates is the following:

dT = dt− 2Mr

∆ dr, dψ = dϕ− 2Mar

(r2 + a2)∆dr,

x =
√
r2 + a2 sinθ cosψ, y =

√
r2 + a2 sinθ sinψ, z = r cosθ. (1.6)

For M = 0 the metric (1.5) becomes Minkowski, thus, Kerr-Schild coordinates
can be considered as a generalization of the Cartesian coordinates. From (1.6):

x2 + y2

r2 + a2 + z2

r2 = 1, x2 + y2

a2sin2θ
− z2

a2cos2θ
= 1.

Thus, in Kerr-Schild coordinates (x, y, z) surfaces r = const are ellipsoids and
θ = const are hyperboloids.

In oblate coordinates r no longer corresponds to a circumferential radius given
by the area of the surface r = const, t = const. It can be observed from a surface
integral (see also [2])∫︂ 2π

0

∫︂ π

0

√︂
(gθθgϕϕ)r=constdθdϕ =

∫︂ 2π

0

∫︂ π

0

√
Asinθ dθdϕ = 2π

∫︂ π

0

√
Asinθ dθ, (1.7)

which for a > 0 never reduces to 4πr2, even for M = 0.
1Here grr = 1

grr
, gθθ = 1

gθθ
. Other elements gµν are found from an inverse of the matrix(︃

gtt gtϕ

gtϕ gϕϕ

)︃
.
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r0

t
r+r−

Figure 1.1: Causal future of light-cones in regions r < r−, r− < r < r+ and
r > r+

1.2 Main features of the metric

1.2.1 Space-time symmetries
Space-time symmetry means constancy of the metric in the direction of some
vector field, say ξµ. When the symmetries of the space-time itself are in question,
it is instructive to turn to the vanishing of the Lie derivative of the metric tensor.
Lie derivative of the metric tensor is given by

£ξgµν = gµν;κ ξ
κ + ξκ;µgκν + ξκ;νgµκ = ξµ;ν + ξν;µ,

where the first term vanishes because of the vanishing covariant derivative of the
metric. The metric does not change along ξµ, if

£ξgµν = ξµ;ν + ξν;µ = 0. (1.8)

Equation (1.8) is called the Killing equation, and its solution ξµ is called the
Killing vector field.

Given a vector field ξµ = ∂xµ

∂xα = δµα, where xα is some specific coordinate from
a coordinate system adapted to this vector field, for a Lie derivative of any tensor
T along ξµ, it holds (see e.g. [4], Appendix C):

£ξT = T,ν ξ
ν = T,ν δ

ν
α = T,α .

So, for the metric tensor:
£ξgµν = gµν,α.

In order to satisfy Killing equation, and for ξµ to be the corresponding Killing
vector field, gµν,α = 0 must be valid.

The metric (1.1) does not depend on t and ϕ coordinates, thus, vector fields
ξµ(t) = ∂xµ

∂t
, ξµ(ϕ) = ∂xµ

∂ϕ
are Killing vectors as well as any linear combination of the

two with constant coefficients. In addition, there are invariants given by products
of Killing vectors [2]

gtt = gαβξ
α
(t)ξ

β
(t), gtϕ = gαβξ

α
(t)ξ

β
(ϕ), gϕϕ = gαβξ

α
(ϕ)ξ

β
(ϕ)
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The metric in Boyer-Lindquist coordinates shows reflection symmetry with
respect to the equatorial plane θ = π

2 . The metric is also invariant under trans-
formations (a → −a, t → −t), (a → −a, ϕ → −ϕ), from which it can be seen
that a is a parameter responsible for the rotation of a space-time.

1.2.2 Singularities, static limits and light-cones
There are three singularities in the Kerr space-time. As it can be seen from
(1.1), singularities are given by Σ = 0 and ∆ = 0. By calculating Kretschmann
invariant [2]

K := RµνκλR
µνκλ = 48M2

Σ6 (r2 − a2cos2θ)(Σ2 − 16r2a2cos2θ),

it can be deduced which singularity is physical, and which stems from the coor-
dinates used. Hence, Σ = 0 is a true physical singularity, which requires from
(1.2) r = 0 as well as θ = π

2 . Therefore, the singularity at r = 0 can only
be reached from the equatorial plane. For θ other than π

2 , the central point in
Boyer-Lindquist coordinates appears non-singular.

Physical singularity in the Kerr space-time has an interesting feature, it is no
longer a point-like singularity, but a ring singularity. The ring character of the
singularity follows from calculations of its proper radius and a proper area of the
disc r = 0, both calculations give the radius of a singular ring being a.

The coordinate singularities are given by ∆ = 0 and correspond to two hori-
zons

r± = M ±
√
M2 − a2, (1.9)

where for a = M there exists only one horizon (an extreme black hole), for
a > M horizons do not exist (a naked singularity). For 0 < a < M two horizons
are present.

Static limits are defined by gtt = 0, i.e. Σ = 2Mr, and by solving quadratic
equation we have

r = r0,1 = M ±
√
M2 − a2cos2θ. (1.10)

Static limits in the Kerr space-time do not coincide with horizons and are special
surfaces by themselves. Horizons and static limits are arranged as r0 ≥ r+ > r− ≥
r1, static limits touch the horizons only at the axis (θ = 0, π). In figure 1.2 the
Kerr space-time is pictured in Boyer-Lindquist and in Kerr-Schild coordinates.

Since several horizons are present in the metric, we can expect non-trivial
light-cone behaviour in space-time regions r < r−, r− < r < r+ and r > r+.
Investigation of the metric in the radial direction dθ = 0, dϕ = 0, using e.g.
analytical extension with Eddington-Finkelstein coordinates as it is described
in [3], implies that r and t reverse their roles every time radial photons pass
through each of the horizons. The character of causal future of light-cones as
photons radially approach the center is described in figure 1.1.

An interesting situation occurs below the inner horizon, here causal future
points back in the t-direction, so future-oriented causal world lines need not
necessarily end up in a singularity. For the case of an extreme black hole, when
the region r− < r < r+ is reduced to a single horizon, it is possible to stay at a
constant r both below and above such a horizon, see figure 1.1.
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Figure 1.2: Kerr space-time with a spin parameter a = 0.99M , M = 1 in
Boyer-Lindquist coordinates (upper) and in Kerr-Schild coordinates (lower).
Bold black lines correspond to surfaces r0 ≥ r+ > r− ≥ r1. Ellipsoids of
r/M = 0.25, 0.5, 0.75, .. and hyperboloids of θ = 15◦, 30◦, 45◦, .. are represented
by gray faint lines.
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1.3 Stationary circular motion
Since the space-time is axially-symmetric, the only possibility for observers to
remain stationary is to move along with the symmetries of a space-time, i.e. to
perform circular motion with a uniform angular velocity Ω = dϕ

dt on r = const,
θ = const. This kind of motion is characterized by the 4-velocity with Boyer-
Lindquist components (see also [2])

uµ = (ut, 0, 0, uϕ) = ut(1, 0, 0,Ω). (1.11)
From normalization condition gµνu

µuν = −1:
(ut)2(gtt + 2gtϕΩ + gϕϕΩ2) = −1.

Then,
ut = 1√︂

−gtt − 2gtϕΩ − gϕϕΩ2
. (1.12)

Normalized 4-velocity of a circular motion written as a linear combination of
Killing vector fields, i.e. symmetries of a space-time, is [2]

uµ =
ξµ(t) + Ωξµ(ϕ)

|ξµ(t) + Ωξµ(ϕ)|
= ut(ξµ(t) + Ωξµ(ϕ)). (1.13)

The motion is limited by the light-like motion, which is given by the condition
gµνu

µuν = 0. This leads to the quadratic equation
(ut)2(gtt + 2gtϕΩ + gϕϕΩ2) = 0, (1.14)

the solution of which provides us with limits on angular velocity Ω:

Ωmax,min = ω ±
√︄
ω2 − gtt

gϕϕ
= ω ± Σ

√
∆

Asinθ , (1.15)

where central value ω is interpreted as dragging of the surrounding geometry by
the rotating center. From (1.15) it can be seen that at the horizon r+ (∆ = 0),
there exists only one value of angular velocity ΩH , which is interpreted as an
angular velocity of the horizon with respect to an asymptotic inertial frame.

Interval Ωmin,max of the allowed angular velocities becomes strictly positive
towards the horizon r+ after reaching r0, where Ωmin = 0:

Ωmin = 0 ⇔ gtt = 0 ⇔ r = r0.

After passing r0, Ωmin increases to positive values for decreasing r making the
whole interval Ωmin,max strictly positive, and thus excluding the possibility to
stay in the ϕ-direction. This is the strongest evidence of dragging, which forces
any observer performing circular motion to move in the ϕ-direction after static
limit r0 was reached (see e.g. [2]).

For velocity (1.11) we can calculate its 4-acceleration:

aµ = uµ,νu
ν − Γρ µσuρu

σ = −Γρµσuρuσ = −1
2(gρµ,σ + gσρ,µ − gµσ,ρ)uρuσ =

= −1
2gσρ,µu

ρuσ = −1
2(ut)2(gtt,µ + 2gtϕ,µΩ + gϕϕ,µΩ2) =

= 1
2
gtt,µ + 2gtϕ,µΩ + gϕϕ,µΩ2

gtt + 2gtϕΩ + gϕϕΩ2 . (1.16)
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From (1.16) it is evident that at, aϕ are zero.
The specific energy and azimuthal angular momentum with respect to infinity

for the circular motion with Ω = dϕ
dt and 4-velocity uµ = ut(1, 0, 0,Ω), are (see

[5])

E := E

m
= −ut = −ut(gtt + gtϕΩ), (1.17)

ℓ := L

m
= uϕ = ut(gtϕ + gϕϕΩ) = utgϕϕ(Ω − ω). (1.18)

1.3.1 Stationary observers in the Kerr space-time
Stationary circular motion follows symmetries of a space-time and is privileged
in that sense. Dragging of inertial frames in the Kerr space-time arises a question
of what it means to stay in this type of geometry. There are several possibilities
for an observer to be considered standing, depending on the point of reference.
Considering different reference points relatively to which observers are viewed as
standing leads to different types of stationary observers.

ZAMO

One possibility to stay is to stay relatively to geometry, which means to orbit
with Ω = ω with respect to infinity. This type of stationary observer is called
ZAMO (Zero Angular Momentum Observer), see e.g.[2]. Indeed, for observers
with Ω = ω, from (1.18) it follows ℓ = uϕ = utgϕϕ(Ω − ω) = 0.

Since uϕ = 0, uµ = (ut, 0, 0, 0) is orthogonal to hypersurfaces t = const (tan-
gent vectors to the latter have non-zero only their spatial components). According
to Frobenius theorem (see e.g. [4]), this implies that ZAMO congruence has zero
vorticity, which we will also verify in the next chapter.

Due to the orthogonality to t = const hypersurfaces, ZAMO congruence is
important in 3+1 formalism for stationary axially-symmetric space-times. Lapse
there is then given by

−N2 = gtt + 2gtϕω + gϕϕω
2 = gtt + gtϕω. (1.19)

Thus, specially for ZAMO, 4-acceleration (1.16) can be written using lapse [2]

aZAMO
µ = N,µ

N
. (1.20)

In Boyer-Lindquist coordinates lapse is given by

N =
√︄

∆Σ
A
. (1.21)

The motion is bounded by light-like motion, so from (1.14), (1.19), (1.15) it
follows that ZAMO are physical only above the horizon, where lapse is positive.

Static observers

Another possibility to stay is relatively to the asymptotic inertial frame, i.e. to
orbit with Ω = 0. This kind of observers is called static observers (see e.g [2]),
they exist only above static limit r0. In equatorial plane θ = π

2 static observers
exist only for r > 2M , which can be observed from (1.14), (1.10).

Static observers have zero shear as it will be calculated later.

9



Carter observers

Special place belongs to observers linked to the curvature structure. Kerr space-
time is of type D according to Petrov classification of space-times (see e.g.[3]),
which means it possesses two principal null directions (PND) kµ, lµ. Congruence
of observers with angular velocity Ω = a

r2+a2 , which perceive PND as purely radial
is called Carter congruence (Carter observers, [2]). For Carter observers it holds

−gtt − 2gtϕΩ − gϕϕΩ2 = Σ∆
(r2 + a2)2 , (1.22)

which implies that they are only physical above the horizon.

1.4 Geodesic motion in the Kerr space-time
As in Schwarzschild, geodesic motion in the Kerr space-time is completely inte-
grable. Since the Kerr metric does not depend on t and ϕ coordinates, it admits
integrals of motion E = −mut, L = muϕ. However, unlike Schwarzschild, the
motion in Kerr is not planar, thus uθ ̸= 0 in general2. It means, that constants
of motion E, L together with normalization condition gµνu

µuν = −1 are not
sufficient for the complete determination of uµ.

It turns out that the Kerr space-time admits a deeper symmetry that allows
additional fourth constant of motion to exist. Additional fourth constant of mo-
tion K was discovered by B. Carter (see e.g. [6], [3]), who found it while showing
the separability of the Hamilton-Jacobi equation. The full set of Carter equations
for the Kerr space-time for geodesics of massive particles reads (see also [2])

m∆Σut = (r2 + a2)R − ∆Θ a sin2θ = AE − 2MraL, (1.23a)

m∆Σuϕ = aR − ∆Θ = 2MraE + (∆ − a2sin2θ) L

sin2θ
, (1.23b)

(mΣur)2 = R2 − ∆(m2r2 + K), (1.23c)
(mΣuθ)2 = K − (ma cosθ)2 − Θ2sin2θ, (1.23d)

where

R = R(r) := (r2 + a2)E − aL,

Θ = Θ(θ) := aE − L

sin2θ
.

For the case of massless particles we write pµ instead of muµ and assume m = 0
on the right-hand side of equations (1.23). Hence, Carter equations for photons

2Equatorial plane θ = π
2 is a special case of motion, where uθ = 0 and the motion is given

by ut, uϕ components together with normalization condition gµνuµuν = −1, the latter would
imply ur component. In this case, constants E, L together with normalization condition would
be sufficient for the description of motion.

10



become

∆Σpt = (r2 + a2)R − ∆Θasin2θ = AE − 2MraL, (1.24a)

∆Σpϕ = aR − ∆Θ = 2MraE + (∆ − a2sin2θ) L

sin2θ
, (1.24b)

(Σpr)2 = R2 − ∆K =
[︂
(r2 + a2)E − aL

]︂2
− ∆K, (1.24c)

(Σpθ)2 = K − Θ2sin2θ = K −
(︄
aEsinθ − L

sinθ

)︄2

. (1.24d)

Special choice K = 0, L = aEsin2θ completely annuls right-hand side of
equation (1.24d) and leads to the set

∆Σpt = E[A − 2Mra2sin2θ] = EΣ(r2 + a2), (1.25a)
∆Σpϕ = E[2Mar + a(∆ − a2sin2θ)] = EΣa, (1.25b)
(Σpr)2 = E2(r2 + a2 − a2sin2θ)2 = E2Σ2. (1.25c)

For the components of pµ from (1.25) it follows

pt = E
r2 + a2

∆ , (1.26a)

pϕ = E
a

∆ , (1.26b)

pr = ±E, (1.26c)

where pr has two solutions of different sign. Solutions with positive sign are
usually denoted by kµ (outgoing) and solutions with negative sign are denoted by
lµ (ingoing). Factor E plays the role of the normalization and can e.g. be fixed
by condition gµνk

µlν = −1. Hence, both congruences outgoing and ingoing read
(see also [2])

kµ = 1
∆(r2 + a2,∆, 0, a), kµ =

(︄
−1, Σ

∆ , 0, a sin2θ

)︄
, (1.27)

lµ = 1
2Σ(r2 + a2,−∆, 0, a), lµ = ∆

2Σ

(︄
−1,− Σ

∆ , 0, a sin2θ

)︄
. (1.28)

Congruences of photons (1.27), (1.28) are called principal null congruences
(PNC) and represent principal null directions (PND), these terms are interchange-
able.

Angular velocity of PNC photons is given by Ω = dϕ
dτ

dτ
dt

= kϕ

kt = lϕ

lt
= a

r2+a2 .
Note that Carter observers, whose angular velocity Ω coincides with the angular
velocity of PNC photons, perceive PND as purely radial.

According to the corollary to the Goldberg-Sachs theorem [3], in the type II
space-time the repeated null direction forms a congruence that is geodesic and
shear free. Type II space-time admits one double and two simple principal null
directions, type D admits two double PNDs, so we can expect the corollary to
the Goldberg-Sachs theorem to hold for at least one of the two degenerated null
directions in the Kerr space-time. From normalization chosen in (1.27), (1.28),
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it follows that only vector field kµ forms a congruence that is geodesic and shear
free.

Normalization of energy chosen in (1.27), (1.28) represents one of many pos-
sible choices (see normalization in e.g. [7]). For (1.26) normalization condition
reads gµνkµlν = −2Σ

∆ E, where we have chosen the energy to be E = ∆
2Σ and

multiplied vector lµ by this factor in order to have normalization condition in
the form gµνk

µlν = −1. However, factor ∆
Σ is not a constant factor, so field lµ

is no longer a geodesic (or at least affinely parametrized one) and/or shear free.
Normalization condition gµνk

µlν = −1 is often assumed to hold while working
with tetrad, thus one should keep in mind that depending on energy E chosen in
the solution to Carter equations, one of the vectors of principal null congruence
may not be geodesic (or at least affinely parametrized one) and/or may not have
zero shear.

1.5 Killing tensor
As it was mentioned in the previous section, the existence of an additional con-
stant of motion stems from deeper symmetries of a space-time. This kind of
deeper symmetry for the Kerr space-time is represented by the existence of the
second rank Killing tensor ξµν . The existence of the second rank Killing tensor
itself follows from the existence of the second rank Killing-Yano tensor Yµν [3].

Killing and Killing-Yano tensors of the second rank and higher usually belong
to hidden symmetries of a space-time not only in four dimensions, but also in
higher dimensions as it is discussed in e.g. [8]. In four dimensions and in station-
ary axisymmetric space-time, the second rank Killing tensor ξµν generates the
fourth constant of motion K.

Killing tensors ξα..β are totally symmetric tensors of any rank, which obey
the generalized Killing equation [4]

ξ(α..β;µ) = 0.

Hence, Killing vectors are the simplest Killing tensors, i.e. Killing tensors of the
first rank. A quantity ξµ..νuµ...uν is conserved along geodesics with tangent vector
uµ (for proof see e.g. [3]). Metric tensor is an example of Killing tensor and it
generates the constant of geodesic motion gµνu

µuν = −1.
Killing-Yano tensors are totally antisymmetric tensors of any rank, which

satisfy the Killing equation in a form

Yα..(β;µ) = 0.

Killing tensor is given by the ”square” of Killing-Yano tensors ξµν = YµαYν
α.

Thus, the existence of Killing-Yano tensor implies the existence of Killing tensor.
In the Kerr space-time there exists second rank Killing-Yano tensor Yµν with

non-zero components in Boyer-Lindquist coordinates [2]

Yαr = a cosθ (1, 0, 0,−a sin2θ), Yαθ = r sinθ (−a, 0, 0, r2 + a2),

where α = t, ϕ. Hence, from the relation ξµν = YµαYν
α it follows for Killing

12



tensor components [2]

ξtt = a2

Σ (∆cos2θ + r2sin2θ), ξtϕ = −asin2θ

Σ (Σ∆ + 2Mr3),

ξrr = − Σ
∆ a2cos2θ, ξθθ = r2Σ, ξϕϕ = sin2θ

Σ (r2A + Σ∆a2sin2θ).

Killing tensor in the Kerr space-time with normalization used in (1.27), (1.28),
can be written as

ξµν = 2Σ k(µlν) + r2gµν . (1.29)
For the second rank Killing tensor the conserved quantity along geodesics is
ξµνu

µuν . For test particles the conserved quantity along their world lines is given
by K = ξµνp

µpν , which is exactly Carter constant that is present in Carter equa-
tions and is required for the complete description of geodesic motion in the Kerr
space-time [4].

1.6 Hydrodynamic properties of congruences

Figure 1.3: Schematic picture of deformations carried by the extension scalar
(left), the twist scalar (middle) and the shear scalar (right). Adopted from [3].

In the present section we will focus on how geometry of a space-time affects the
collective properties of a world lines. The collection of curves, which are integral
curves of some smooth vector field uµ, is called a congruence.

1.6.1 Time-like congruences
For the time-like congruences we define a tangent vector field

uµ = dxµ
dτ , (1.30)

where τ is a proper time along the world line xµ(τ). We will also assume normal-
ization condition gµνu

µuν = −1.
Since we are interested in the collective properties of a word lines, we can em-

ploy some concepts familiar from classical hydrodynamics. According to classical
hydrodynamics for the velocity field it holds [2]

uµ;ν = ωµν + σµν + 1
3Θhµν − aµuν , (1.31)

where aµ = uµ;νu
ν is the acceleration of a tangent vector field uµ, ωµν is the

vorticity (twist) tensor, σµν is the shear tensor, Θ is the expansion scalar and hµν

13



is the projection tensor, that at any point projects on the 3-space orthogonal to
the local uµ, given by

hµν = gµν + uµuν . (1.32)
The vorticity tensor (antisymmetric)

ωµν = u[µ;ν] + a[µuν],

the expansion tensor (symmetric)

Θµν = u(µ;ν) + a(µuν),

the expansion scalar
Θ = hµνΘµν = uµ ;µ,

the shear tensor
σµν = Θµν − 1

3Θhµν .

From the above tensors we can build the following scalars [2]

κ2
1 = aµa

µ, (1.33)

ω2 = 1
2ωµνω

µν = 1
2u[µ;ν]u

µ;ν + 1
4κ

2
1, (1.34)

Θ = uµ ;µ, (1.35)

σ2 = 1
2σµνσ

µν = 1
2u(µ;ν)u

µ;ν + 1
4κ

2
1 − 1

6Θ2. (1.36)

Each of the above scalars carries a certain type of information about a congruence.
If we follow a volume element, that confines curves of a congruence, along the
congruence, the volume element can be isotropically expanded (or contracted),
warped (twisted) and/or sheared in the course. These deformations are carried
by the corresponding scalars as schematically pictured in figure 1.3.

1.6.2 Light-like congruences
The case of the light-like congruences should be considered separately, since in
this case it becomes not so clear, which direction is tangent and which is normal.
Projection tensor (1.32) in this case reads

hµν = gµν + kµlν + lµkν , (1.37)

where we introduced two null tangent vector fields lµ, kµ, which together locally
form a plane, and can be normalized, so that gµνkµlν = −1. Projection tensor
(1.37) projects onto a 2-plane normal to both lµ and kµ and represents a 2D
metric in that plane.

The scalars formed by expansion, twist and shear should be modified in the
light-like case as follows [3]

Θ = kµ ;µ, (1.38)

ω2 = 1
2k[µ;ν]k

µ;ν , (1.39)

σ2 = 1
2k(µ;ν)k

µ;ν − 1
4Θ2. (1.40)

In the light-like case these scalars are called optical scalars.
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2. Gravitational field of the Kerr
space-time
Hydrodynamic properties of congruences introduced in the previous chapter rep-
resent a powerful tool for building an intuition of how geometry of a space-time
affects congruences of observers. In the present chapter we will examine some
hydrodynamic properties of significant congruences of observers along with other
quantities, which represent characteristics of the Kerr geometry in more detail.1

2.1 Stationary observers

2.1.1 Gravitational field
The magnitude of 4-acceleration κ2

1 in the Kerr space-time quantitatively repre-
sents gravitational field any observer orbiting in the proximity of the Kerr center
would experience. We will find surfaces of constant κ2

1 for stationary observers,
since they play a special role in the Kerr geometry. From (1.16) we know that
aθ, ar are only non-zero components of the 4-acceleration, κ2

1 then reads

κ2
1 = gµνa

µaν = gθθ(aθ)2 + grr(ar)2. (2.1)

For the contravariant components of 4-acceleration it holds

aµ = uµ ;νu
ν = uν(uµ ,ν + Γµ ναu

α) =
= uνuαΓµ να = (ut)2(Γµ tt + 2Γµ tϕΩ + Γµ ϕϕΩ2).

(2.2)

Knowing non-zero components of Christoffel symbols ([9], Appendix A), we can
derive a general formulae for ar, aθ (see also [9])

ar = (ut)2(Γr tt + 2Γr tϕΩ + Γr ϕϕΩ2) =

= (ut)2 ∆
Σ3

[︂
M(2r2 − Σ)(1 − aΩsin2θ)2 − r(ΩΣsinθ)2

]︂
,

(2.3)

aθ = (ut)2(Γθ tt + 2Γθ tϕΩ + Γθ ϕϕΩ2) =

= −(ut)2 sin(2θ)
2Σ3

[︃
2Mr

(︂
a− (r2 + a2)Ω

)︂2
+ Ω2∆Σ2

]︃
.

(2.4)

1The majority of relativistic calculations was performed with the help of xAct set of pack-
ages for Mathematica (Mathematica v.12.0.0 has been used). xAct represents a family of free
packages that enables one to execute tensorial calculations together with index manipulation
in terms of geometrical formulation of General Relativity in Mathematica. A complete doc-
umentation together with installation instructions can be found at xAct’s official web pages:
http://www.xact.es/index.html. In the digital attachments to the current thesis there can
be found an example Mathematica notebook ’example.nb’ from the series of lectures xAct:
tensor analysis by computer 1 presented by Alfonso Garcia Parrado Gómez-Lobo, Ph.D.
at Charles University in winter term 2019/2020, that contains some commented illustrative
calculations carried out in xAct.
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Static observers (Ω = 0)

utSO = 1/
√

−gtt ⇒ (utSO)2 = 1
−gtt

.

Then from (2.3), (2.4) for SO it immediately follows (see also [9])

arSO = ∆χ−2Σ−2M(2r2 − Σ),
aθSO = −Mra2χ−2Σ−2sin(2θ),

where we denoted χ2 = −Σgtt = Σ − 2Mr, [9]. The magnitude of 4-acceleration
(2.1) is then

κ2
1 = Σ−3 (Σ − 2Mr)−2 M2

[︂
∆(2r2 − Σ)2 + (ra2 sin2θ)2

]︂
. (2.5)

Carter observers (Ω = a
a2+r2 )

(utCO)2 = (r2 + a2)2

∆Σ .

From (2.3), (2.4) it follows (see also [9])

arCO = Σ−2
[︂
M(2r2 − Σ) − a2rsin2θ

]︂
,

aθCO = −a2Σ−2sinθcosθ.

κ2
1 then reads

κ2
1 = M2(2r2 − Σ)2 + a2sin2θ(Σa2 − 2Mr3)

∆Σ3 . (2.6)

Zero angular momentum observers (Ω = ω = 2Mar
A )

The 4-acceleration components (2.3), (2.4) for ZAMO appear to be cumbersome,
so we will employ that ZAMO’s 4-acceleration can be calculated from lapse ac-
cording to (1.20). For this purpose we should calculate derivatives of lapse, for
the θ-component it is given by

N,θ = 1
2

(︄
∆Σ
A

)︄− 1
2 ∆(Σ,θA − ΣA,θ)

A2 .

Then, using (1.20) we have

aZAMO
θ = 1

2
Σ,θA − ΣA,θ

ΣA
= 1

ΣA
(︂
−Aa2cosθ sinθ + Σ∆a2sinθ cosθ

)︂
=

= a2cosθ sinθ∆Σ − A
ΣA

= −acosθ sinθ2Mar(r2 + a2)
ΣA

= −acosθ sinθ (r2 + a2)
Σ ω.

Hence,
aθZAMO = −acosθ sinθΣ−2(r2 + a2)ω.
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Calculating arZAMO directly we have

arZAMO = Σ−2A−1
[︃
(r −M)AΣ + Ar(r2 − 2Mr + a2) − ∆Σ

(︂
2r(r2 + a2) − a2rsin2θ +Ma2sin2θ

)︂]︃
=

= Σ−2A−1
[︂
Σ(r2 + a2)2(r −M) + Ar(r2 − 2Mr + a2) − 2r(r2 + a2)∆Σ

]︂
=

= Σ−2A−1
[︂
Σ(r2 + a2)2(r −M) − r(r2 + a2)∆Σ + 2Mr2∆a2sin2θ

]︂
=

= Σ−2A−1
[︃
Σ(r2 + a2)

(︂
(r2 + a2)(r −M) − r∆

)︂
+ 2Mr2∆a2sin2θ

]︃
=

= Σ−2A−1
[︂
ΣM(r2 + a2)(r2 − a2) + 2Mr2∆a2sin2θ

]︂
=

= MΣ−2A−1
[︂
Σ(r4 − a4) + 2r2∆a2sin2θ

]︂
.

For κ2
1 for ZAMO it follows

κ2
1 = M2

Σ2A3

[︃(︂
Σ(r4 − a4) + 2∆a2r2sin2θ

)︂2
+ ∆

(︂
ra2(r2 + a2)sin2θ

)︂2
]︃
. (2.7)

We pictured equipotentials of gravitational field κ2
1 = const for the three types

of rotational parameter a corresponding to a generic black hole (a = 0.99M , two
horizons r+, r−), an extreme black hole (a = M) and a naked singularity (a > M)
for Carter observers, static observers and ZAMO in figures 2.1-2.5.2

For a generic black hole, CO and ZAMO exist only above the outer horizon
r+, while SO exists only above a static limit r0 > r+ (in picture 2.2 region below
the static limit should not be considered).

In the case of an extreme black hole, the space between two horizons reduces
to one single surface - a horizon (as it may be observed from schematical picture
1.1). In this case, the causal future of light cones points upwards in the regions
on both sides of the horizon, which makes possible for observers to exist above
as well as below the horizon. Note that r1 < rH < r0, so static observer exists
only above and below static limits r1, r0 (region between static limits in figure
2.3 should not be considered). Also note that for a = M static limits r1, r0 join
at the axis.

In the case of a naked singularity, only static limits remain and they are
represented by a single surface surrounding the central singularity. As in previous
cases, static observer exists only above static limits, so the region inside a toroidal
surface representing static limits should not be considered in figure 2.5.

2We choose M = 1 in all figures, so M stands for a scale parameter.
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Figure 2.1: Equipotentials of gravitational field κ2
1 = const with rotational pa-

rameter a = 0.99M , M = 1 for CO (upper) and ZAMO (lower) in the Kerr-Schild
coordinates (

√
x2 + y2 =

√
r2 + a2 sinθ, z = r cosθ). Constant values for equipo-

tentials are chosen with the step exp(0.25n), n in [−30, 6].
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Figure 2.2: Equipotentials of gravitational field κ2
1 = const with rotational param-

eter a = 0.99M , M = 1 for SO(upper) and with a = M , M = 1 for CO(lower).

19



0 1 2 3 4 5
x
2
+ y

20

1

2

3

4

5

z

ZAMO, a=1

0 1 2 3 4 5
x
2
+ y

20

1

2

3

4

5

z

SO, a=1

Figure 2.3: Equipotentials of gravitational field κ2
1 = const with rotational pa-

rameter a = M , M = 1 for ZAMO(upper) and SO(lower).
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Figure 2.4: Equipotentials of gravitational field κ2
1 = const with rotational pa-

rameter a = 1.4M , M = 1 for CO(upper) and ZAMO(lower).
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Figure 2.5: Equipotentials of gravitational field κ2
1 = const with rotational pa-

rameter a = 1.4M , M = 1 for SO.
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2.1.2 Energy at infinity, redshift
Specific energy at infinity is given by E = −ut = −ut(gtt + gtϕΩ). Let us find
surfaces of constant E for stationary observers. Specific energy at infinity for
stationary observers is

ESO = −gttut =
√

−gtt =
(︄

1 − 2Mr

Σ

)︄ 1
2

= 1
utSO

. (2.8)

EZAMO = N2ut = N =
√︄

Σ∆
A

= 1
utZAMO

. (2.9)

ECO =
√︄

∆
Σ . (2.10)

Surfaces E = const for stationary observers given by (2.8), (2.9), (2.10) are
pictured in figures 2.6 - 2.8.

Following [10], we also can introduce the redshift potential ϕ by

e2ϕ = 1/(ut)2,

where for stationary observers it holds 1/(ut)2 = −gtt − 2Ωgtϕ − Ω2gϕϕ. Hence,
using (2.8), (2.9) for SO and ZAMO and (1.22) for CO, we have

e2ϕ
SO = −gtt =

(︄
1 − 2Mr

Σ

)︄
,

e2ϕ
ZAMO = Σ∆

A
,

e2ϕ
CO = Σ∆

(r2 + a2)2 .

Equipotential surfaces e2ϕ = const for CO, ZAMO and SO are pictured in figures
2.9 - 2.11. Surfaces e2ϕ = const for CO, ZAMO and SO coincide with the level
sets of the relativistic potential for static congruences defined in terms of [10]
pictured in figure 3(c) [10] for the Kerr space-time. This supports the suggestion
that Carter observers, static observers and ZAMO represent different concepts of
standing in the Kerr space-time.

Relativistic redshift between any two observers is defined by

ν˜︁ν = eϕ(r̃,θ̃)

eϕ(r,θ) . (2.11)

Redshift between two stationary observers, one of which stands, i.e. is static, at
spatial infinity (−gtt |∞ = 1) is given by

ν∞

νr
= eϕ

eϕSO |∞
= 1/ut√

−gtt |∞
= 1
ut
, (2.12)

Redshift at infinity (2.12) for stationary observers ZAMO and SO coincides with
their specific energy at infinity (2.8), (2.9). Therefore, pictures 2.7, 2.8 also
describe surfaces of constant redshift at infinity for ZAMO and SO.
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Figure 2.6: Surfaces E = const for Carter observer (CO), a = 0.99.
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Figure 2.7: Surfaces of E = const for ZAMO, a = 0.99
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Figure 2.8: Surfaces of E = const for SO, a = 0.99
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Figure 2.9: Surfaces e2ϕ = const for CO, a = 0.99
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Figure 2.10: Surfaces e2ϕ = const for ZAMO, a = 0.99
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Figure 2.11: Surfaces e2ϕ = const for SO, a = 0.99
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2.1.3 The expansion, twist and shear scalars
Let us examine other scalars that describe hydrodynamic properties of congru-
ences for CO, ZAMO and SO. The expansion scalar is zero for all stationary
observers (as it may be observed from (1.35) and the components of 4-velocity
(1.11)). For the purpose of calculation of the remaining scalars, we will em-
ploy xAct package for Mathematica in order to perform corresponding covariant
derivatives from (1.34), (1.36). Mathematica notebooks containing calculations
can be found in the digital attachment to the current thesis.

Carter observers (CO)

The shear scalar for CO reads

σ2
CO = a2 r2 sin2θ

Σ3 .

The twist scalar for CO reads

ω2
CO = ∆ a2 cos2θ

Σ3 .

Surfaces of a constant shear and twist scalars σ2
CO = const, ω2

CO = const for CO
are pictured in figures 2.12, 2.13.

Zero angular momentum observers (ZAMO)

The twist scalar came out zero, ω2
ZAMO = 0, as it was expected for ZAMO congru-

ence, since ZAMO are orthogonal to hypersurfaces t = const. The shear scalar
for ZAMO reads

σ2
ZAMO =

a2M2sin2θ
[︂
18r6 + 2a4Σ − 12a2r2Σ − 3a2r4(cos2θ − 7) − 4a4Mr3Σ−1sin2(2θ)

]︂
2(ΣA)2 .

Surfaces of a constant shear scalar σ2
ZAMO = const are pictured in figure 2.14.

Static observers (SO)

Static observers have no shear scalar, σ2
SO = 0, but a non-zero scalar for twist.

The twist scalar reads

ω2
SO =

a2M2
[︂
Σ2sin2θ + 4r2cos2θ(∆ − a2sin2θ)

]︂
Σ3(∆ − a2sin2θ)2 .

Surfaces of a constant twist scalar, ω2
SO = const, are pictured in figure 2.15.
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Figure 2.12: Surfaces σ2
CO = const, a = 0, 99.

0 1 2 3 4 5
x
2
+ y

20

1

2

3

4

5

z

Carter, twist

Figure 2.13: Surfaces ω2
CO = const, a = 0, 99.
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Figure 2.14: Surfaces σ2
ZAMO = const, a = 0, 99.
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Figure 2.15: Surfaces ω2
SO = const, a = 0, 99.
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2.2 Surfaces equidistant from the horizon. Killing(-
Yano) tensor invariants
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Figure 2.16: Surfaces l(r, r+) = const, a = 0.99.

Let us find surfaces of equal distance from the outer horizon r+. For this purpose
we will calculate a proper distance from the horizon to some reference r and then
numerically find surfaces, which are equally distant from the horizon. A proper
distance to the outer horizon from some radius r is given by

l(r, r+) =
∫︂ r

r+

√
grrdr′ =

∫︂ r

r+

√︄
r′2 + a2cos2θ

r′2 − 2Mr′ + a2 dr′. (2.13)

In the special case of equatorial plane θ = π
2 , the result of the integration

given by (2.13) can be written relatively simple

l(r, r+) |θ= π
2

=
∫︂ r

r+

r′
√
r′2 − 2Mr′ + a2

dr′ =
[︂
M ln(

√
∆ + r′ −M) +

√
∆
]︂ ⃓⃓⃓⃓⃓
r

r+

=

= M ln
⎛⎝√

∆ + r −M√
M2 − a2

⎞⎠+
√

∆.

Equidistant surfaces from the outer horizon l(r, r+) = const are pictured in figure
2.16.

As we have mentioned in the previous chapter, the Kerr space-time possesses
Killing-Yano and Killing tensors of the second rank, from which we can built
invariants. Invariants from Killing tensor ξµν = YµαYν

α are

gµνξµν = 2(r2 − a2 cos2θ), ξµνξµν = 2(r4 + a4 cos4θ).
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Invariants for Killing-Yano tensor Yµν are3

Y µνYµν = 2(r2 − a2 cos2θ), ∗Y µνYµν = 4ar cosθ.

2.3 Optical scalars
In the case of light-like congruences, scalars for the expansion, twist and shear are
called optical scalars. In this section we will explore optical scalars on example
of two light-like congruences.

2.3.1 Principal null congruence (PNC)
First we choose principal null congruence (PNC) given by (1.27), (1.28). PNC
has zero scalar for shear σ2

PNC = 0 (due to Goldberg-Sachs theorem). The expan-
sion ΘPNC and twist ω2

PNC scalars calculated from (1.38), (1.39) with the help of
Mathematica are (see also [7])

ΘPNC = 2r
Σ , ω2

PNC = a2 cos2θ

Σ2 .

Surfaces ΘPNC = const, ω2
PNC = const are pictured in figures 2.17, 2.18.

2.3.2 Twist-free congruence
For the second example of light-like congruence, we consider a congruence defined
by Carter constant K = a2E2 and L = 0, which according to [11] defines twist-
free null geodesic congruence. From Carter equations we can determine its exact
components in the same way as it has been done for PNC earlier from (1.25),
(1.26). Carter equations (1.24) for the twist-free congruence read

∆Σpt = AE, (2.14a)
(Σpr)2 = (r2 + a2)2 E2 − ∆a2E2, (2.14b)
(Σpθ)2 = a2E2 − a2E2sin2θ = a2E2cos2θ, (2.14c)
∆Σpϕ = 2MraE. (2.14d)

By solving these equations we have the following relations for the components
of the congruence

pt = A
∆Σ E, (2.15a)

pr = ±

√︂
(r2 + a2)2 − ∆a2

Σ E, (2.15b)

pθ = ±a cosθ
Σ E, (2.15c)

pϕ = 2Mra

∆Σ E. (2.15d)

3Having a totally antisymmetric tensor Tµ1...µk
(2≤k≤4). The (pseudo-)tensor

∗T α1...α4−k := 1
k! ϵ

α1...α4−kµ1...µk Tµ1...µk
is called its Hodge dual [2].
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Note how both the θ and r-components in (2.15) have two solutions. Two
solutions for the radial component define outgoing kµ and ingoing lµ congruences
in the radial direction, same as it was for PNC. With double solution for the
θ-component, however, we have two versions of this congruence that are equally
valid - one with positive θ-component and one with negative θ-component for the
definite choice of sign r.

In order to use relations (1.38), (1.40) for the calculation of the expansion
and shear for the twist-free congruence, we will assume normalization condition
kµlµ = −1. From the normalization it follows for energy E = ∆Σ

2A . In the same
way as it has been done for PNC in (1.26), we will multiply the ingoing congruence
lµ with the factor E = ∆Σ

2A and use factor E = 1 for the outgoing congruence kµ.
In total, the twist-free congruence reads

kµ = 1
Σ

(︄
A
∆ ,

√︂
(r2 + a2)2 − ∆a2,±a cosθ, 2Mra

∆

)︄
,

kµ =
(︄

−1, 1
∆
√︂

(r2 + a2)2 − ∆a2,±a cosθ, 0
)︄
,

lµ = 1
2

(︄
1,−∆

A

√︂
(r2 + a2)2 − ∆a2,±∆

A
acosθ, ω

)︄
,

lµ = Σ∆
2A

⎛⎜⎝−1,−

√︂
(r2 + a2)2 − ∆a2

∆ ,±a cosθ, 0

⎞⎟⎠ ,

(2.16)

with ω = 2Mra
A .

Two equivalent options for the outgoing twist-free congruence are

kµθ+ = 1
Σ

(︄
A
∆ ,

√︂
(r2 + a2)2 − ∆a2, a cosθ, 2Mra

∆

)︄
,

kµθ−
= 1

Σ

(︄
A
∆ ,

√︂
(r2 + a2)2 − ∆a2,−a cosθ, 2Mra

∆

)︄
.

(2.17)

Analogously it would be for the ingoing congruence.
Let us picture kµθ+ , kµθ−

congruences. For this purpose we will need to find
their integral curves. Within the (r, θ) meridional plane, integral curves for kµθ+ ,
kµθ−

are given by the equation

dr
dθ = ±

√︂
(r2 + a2)2 − ∆a2

a cosθ , (2.18)

with plus or minus sign corresponding to the plus or minus version of the con-
gruence. By numerical integration of (2.18) we obtain integral curves for kµθ+ , kµθ−

congruences. Integral curves for congruences kµθ+ , kµθ−
are pictured in figures 2.19,

2.20. Note how the outgoing kµθ+ congruence starts at the axis and the outgoing
kµθ−

congruence starts at the singularity.
From (1.38), (1.40) we find the expansion and shear optical scalars for both

versions of the congruence. The expansion scalar ΘTF for the twist-free (TF)
congruence is given by

ΘTF =
(Ma2 + a2r + 2r3) ± a cos2θ sinθ−1

√︂
(r2 + a2)2 − ∆a2

Σ
√︂

(r2 + a2)2 − ∆a2
. (2.19)

33



0 1 2 3 4
x
2
+ y

20

1

2

3

4

z

Figure 2.19: Integral curves for kµθ+ congruence, a = 0.99

0 1 2 3 4
x
2
+ y

20

1

2

3

4

z

Figure 2.20: Integral curves for kµθ−
congruence, a = 0.99

34



0 1 2 3 4 5
x
2
+ y

20

1

2

3

4

5

z

Expansion, θ+

Figure 2.21: Surfaces ΘTF = const for kµθ+-congruence, a = 0.99.
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Figure 2.22: Surfaces σ2
TF = const for kµθ+-congruence, a = 0.99.
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Figure 2.23: Surfaces ΘTF = const for kµθ−
-congruence, a = 0.99.
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Figure 2.25: Globally orthogonal surfaces to the twist-free kµθ+ congruence (blue
line marks the horizon), a = 0.99.

Sign option in (2.19) corresponds to plus kµθ+ or minus kµθ−
version of the

twist-free congruence.
An expression for the shear scalar calculated with xAct is rather long and

complicated, so we will not quote a formula for it here, but plot it directly. Sur-
faces of the constant optical scalars ΘTF = const, σ2

TF = const for the plus/minus
versions of the congruence are pictured in figures 2.21, 2.22, 2.23, 2.24.

2.4 Globally orthogonal surfaces to the light-
like congruences

2.4.1 PNC
From the previous section we learned that PNC has a non-zero twist and, thus,
according to Frobenius theorem, there do not exist 3D hypersurfaces globally
orthogonal to that congruence. Nevertheless, there may exist 2D surfaces globally
orthogonal to PNC. Indeed, (1.37) defines a 2D metric on a surface orthogonal
to the congruence, our task will be to find a surface r = r(θ) corresponding to
that particular 2D metric.

The 2D metric orthogonal to PNC defined by (1.27), (1.28) reads

dS2 = sin2θ

Σ
[︂
(r2 + a2)dϕ− a dt

]︂2
+ Σdθ2. (2.20)

We wish to embed this surface in the hypersurface t = const of the Kerr
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space-time. The t = const space is decribed by the metric

dσ2 = grrdr2 + gθθdθ2 + gϕϕdϕ2, (2.21)

and restriction to any given axisymmetric surface r = r(θ) means that dr in the
metric should be expressed as follows

dr ≡ dr(θ) = dr
dθ dθ.

Hence, the metric given by (2.21) becomes

dσ2 = grr
(︂

dr
dθ

)︂2
dθ2 + gθθdθ2 + gϕϕdϕ2 =

[︃
grr

(︂
dr
dθ

)︂2
+ gθθ

]︃
dθ2 + gϕϕdϕ2. (2.22)

A surface r = r(θ) is the surface in question. Hence, knowing the exact metric
on the two dimensional surface, we can demand metrics (2.20) and (2.22) to equal,
equate them, and then, by comparing coefficients standing at dθ2 and integrating
the resulting equation for dr

dθ , we can obtain a surface r = r(θ).
By comparing coefficients standing at dθ2 in metrics (2.20) and (2.22), we

can easily observe that dr
dθ = 0, which means that the two dimensional surface

orthogonal to PNC is r(θ) = const. Surfaces r = const in Kerr-Schild coordinates
are plotted as ellipsoids r = 0.25, 0.5, 0.75, .. in the lower panel of figure 1.2.

2.4.2 Twist-free congruence
In the same way we can find a two dimensional surface globally orthogonal to the
twist-free congruence. First, we should derive a 2D metric given by (1.37), orthog-
onal to the congruence. Since the twist-free outgoing congruence can be found in
two variations kµθ+ and kµθ−

, an ingoing version of each congruence should be its
opposite not only in r, but also in θ-direction. Hence, for the outgoing congruence
kµθ+ its ingoing counterpart would be lµθ−

, and for the outgoing congruence kµθ−

its ingoing counterpart would be lµθ+ . From (1.37) for the 2D metric orthogonal
to each version of the twist-free congruence it follows

dS2 = A sin2θ

Σ (dϕ− ωdt)2 + Σ
A

[︃
a cosθ dr ∓

√︂
(r2 + a2)2 − ∆a2 dθ

]︃2
, (2.23)

where minus/plus sign in square brackets belongs to kµθ+/kµθ−
version of the con-

gruence. Equating metrics (2.22) and (2.23), for the coefficients standing at dθ2

we have[︃
grr

(︂
dr
dθ

)︂2
+ gθθ

]︃
dθ2 = Σ

A

[︃
a cosθ dr ∓

√︂
(r2 + a2)2 − ∆a2 dθ

]︃2
,[︃

grr
(︂

dr
dθ

)︂2
+ gθθ

]︃
dθ2 = Σ

A

[︃
a cosθ dr

dθ ∓
√︂

(r2 + a2)2 − ∆a2
]︃2

dθ2,

grr
(︂

dr
dθ

)︂2
+ gθθ = Σ

A

[︃
a cosθ dr

dθ ∓
√︂

(r2 + a2)2 − ∆a2
]︃2
,

Σ
∆A

[︂
(r2 + a2)2 − ∆a2

]︂ (︂
dr
dθ

)︂2
± 2Σ

A
a cosθ

√︂
(r2 + a2)2 − ∆a2

(︂
dr
dθ

)︂
+ Σ∆

A
a2 cos2θ = 0,⎡⎣√︄ Σ

∆A

√︂
(r2 + a2)2 − ∆a2

(︂
dr
dθ

)︂
± a cosθ

√︄
Σ∆
A

⎤⎦2

= 0.

(2.24)
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Figure 2.26: The dependence of the radial coordinate rS on θ for a surface with
constant mean curvature H = −0.150 (bold line) along with the plot of the mean
curvature H of a surface with constant r = 5.190 (dotted line). Adopted from
[12].

Solution for dr
dθ is

dr
dθ = ∓ ∆ a cosθ√︂

(r2 + a2)2 − ∆a2
, (2.25)

where minus/plus sign belongs to kµθ+/kµθ−
version of the congruence.

By numerical integration of (2.25), we can obtain orthogonal surfaces to both
versions of the twist-free congruence. Globally orthogonal surfaces to the kµθ+

version of the twist-free congruence are plotted in figure 2.25.

2.5 Remark on the radial coordinate
At the end we would like to mention the article [12], where authors have studied
mean curvature H of surfaces r = const and surfaces defined by constant mean
curvature H = const. In their research, authors proved that surfaces H = const
given by constant mean curvature are only slightly different from surfaces r =
const, which is demonstrated in figure 2.26 reproduced from [12].

This is an important result in terms of our understanding of meaning of the
r-coordinate in Boyer-Lindquist coordinates. As it follows from integral (1.7)
calculated as a surface integral at t = const, r = const, r no longer stays for
surface radius as it was in spherically symmetric Schwarzschild. Nevertheless, we
still understand the Boyer-Lindquist radius r as defining ”spherical” surfaces in a
reasonable approximation. The observation that the surfaces H = const are very
close to r = const supports such a view.
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Conclusion
In the current thesis we have studied different aspects of the Kerr geometry in
Boyer-Linquist coordinates. In the first chapter we reviewed fundamental prop-
erties of the Kerr metric, which describes vacuum stationary axisymmetric solu-
tion to Einstein equations, such as symmetries, metric singularities, static limits.
The rotation of the center introduces the phenomenon of dragging of inertial
systems by the geometry, which forces us to introduce different possibilities for
observers to be non-orbiting in such a situation. We reviewed special congruences
of observers, i.e. Carter observers, static observers and zero angular momentum
observers (ZAMO), which represent different notions of standing in the Kerr ge-
ometry. In the remaining of the first chapter we also mentioned geodesic motion
in the Kerr space-time, defined principal null congruence (PNC) and introduced
hydrodynamic characteristics of time-like and light-like congruences.

In the second chapter we have calculated and verified formulae of the 4-
acceleration components for stationary observers given in [9]. With these formulae
in hand, we have calculated and plotted surfaces of the constant magnitude of 4-
acceleration for stationary observers, which gave us an idea of how these observers
are attracted by the center. We have plotted equipotentials of the magnitude of
aµ for the three types of black holes - a generic black hole, an extreme black hole
and a naked singularity. We have continued by evaluating equipotential surfaces
of hydrodynamic scalars for stationary observers and verified that e.g. ZAMO
have zero vorticity as it has been expected, since this congruence is orthogonal
to hypersurfaces of t = const. In what follows we have also calculated invariants
given by Killing and Killing-Yano tensors, plotted surfaces of constant energy
with respect to infinity and surfaces of the same radial distance from the horizon.

In the last sections we have probed optical scalars for two light-like congru-
ences, one of which was principal null congruence and the other was twist-free
congruence given by [11]. The twist-free congruence demonstrated an interest-
ing pattern, due to its non-zero θ-component, this congruence is split into two
congruences by the sign of θ, i.e. the congruence with positive sign of θ and
the congruence with negative sign of θ. We have found that integral curves for
the twist-free congruence with positive sign of θ start at the axis and integral
curves of the twist-free congruence of negative sign start at the singularity. We
have also found two dimensional orthogonal surfaces for the null congruence and
for the twist-free congruence. In the final remark we have pointed out that the
r-coordinate in Boyer-Lindquist coordinates is a meaningful choice of a radial
coordinate.
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