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Introduction
As the world tries to deal with global warming, new challenges arise in terms

of running a business. In this work, we discuss company´s obligation to cover re-
leased greenhouse gasses with emission allowances. Namely, we consider company
which produce electric energy in Czech republic. This sector is highly regulated
and since year 2020, companies in European Union in this sector do not get any
allowances for free but they need to buy all of them. There is multiple random
inputs that the company needs to challenge. First, the price of the allowances
which in the past showed great volatility and then the market demand for power.
The allowances might be traded as other assets for example as spots, futures or
options or we can keep them for future use which is called banking.

In this thesis, we are dealing with risk averse company that want to do in
some way optimal decisions so it earns as much as possible while avoiding ex-
tremely risky situations. The allowances are used at the beginning of each year
to cover released CO2 from production. The decision about how many allowances
we want to buy is then changing every year based on the observation of market
development. As the company wants to have everything under control, this leads
us to multistage stochastic optimization problem. Similar models were previously
developed. In [12] a model for a steel company was developed which considers
multiple financial instruments as well as both CER and EUA allowances. This
model is not, however, multistage but it considers only the decision for the fol-
lowing year. Also the CER allowances can no longer be exchange for EUAs ones.
The problem is also discussed in [11] for a steel company. This model is multi-
stage mean-risk model and uses CVAR as the risk measure. It was used as the
base model, applied on a new data from different industrial sectors and further
enhanced. Our model has 5 stages with 4 decision periods about the amount
of production. We have also tried other approaches to risk modelling. The
second model introduces relaxation of strict demand constraint with chance con-
straint formulation. The third model replaces mean-risk model with second order
stochastic dominance program which tries to dominate the benchmark strategy.
The last model does not use risk measure but instead of it, it uses the power
utility function.

The thesis is structured in a following way: In the first chapter, we discuss
the carbon trading, regulations and financial instruments. In the second chapter,
we give the theoretical background which is necessary to construct models in
chapter 3. Here, 4 different models are introduced. In empirical study we first
introduce the data that we will be dealing with, generate scenario trees which
predicts the future development of both prices and market demand. In chapter
5, we connect previous chapters and run models with these data. Finally, we
compare the results and get to some conclusion about the company´s behaviour
under different choices of model parameters and different strategies.
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1. Carbon Trading

Global warming is often discussed topic world-widely. Scientific consensus on
climate states that it is probably caused by greenhouse gasses emissions mainly by
excessive emission of carbon dioxide. CO2 is released by different sources, some
of them are natural like respiration of animals or decaying plants, others are
produced by human activities, mainly threw burning fossil fuels. The ones that
come from nature are removed again by nature itself, but the excess is caused by
human activity. Thus people were in need to find solution how to deal with this
issue. In 1997 the Kyoto Protocol [8] was adopted and came into force in 2005.
It is an international treaty which states emission limitations and guidelines for
originally 37 industrialized countries and European Union countries.

1.1 EU ETS allowances
Kyoto Protocol also suggests some ways for countries to help them meet their

limits. The biggest operating trading scheme for Carbon Trading is the EU emis-
sions trading system (EU ETS) which will be the trading scheme considered in
this thesis. EU ETS is said to be the world’s first major carbon trading mar-
ket. Over 11 000 industrial companies which are based in EU member states and
three EEA-EFTA countries has to cover its greenhouse gasses emissions with EU
allowances (EUA). They have to monitor emissions for calendar year and till the
end of the following April, these has to be covered with EUAs [3]. This trading
system works based on ”cap and trade” system. Cap is set for total amount of
CO2 (and for other greenhouse gasses) which can be produced by all companies
included in heavy energy-using installations in considered countries. Some al-
lowances are given to companies for free others are traded on a market. This
cap and its percentage of allowances given for free are reduced over time. At the
end of each year, a company has to give enough allowances to cover its CO2 pro-
duction. If company has some unused allowances, it can keep them for following
years or trade them to another company.

This system was set up in 2005 and its main goal is to achieve climate-neutral
Europe till 2050. That should be done in 5 phases. As this thesis is written
mainly during year 2021, we are just at the very beginning of phase 4. In this
phase , which will apply between years 2021-2030, the annual cut of allowance
is going to be more progressive than in previous years. Number of allowances in
circulation on market is also regulated and when surplus occurs, there is estab-
lished mechanism called Market Stability Reserve that deals with it and helps to
prevent future market shocks. Another thing worth mentioning for purposes of
this thesis is that EUAs are connected to certain phase. Because of that emis-
sions produced in 2020 cannot be covered with allowances for phase 4. On the
contrary, emissions produced in year 2021 can be covered with allowances from
phase 3. There are some other mechanisms to cover greenhouse gasses emis-
sions. One of them is called clean development mechanism. This mechanism
was developed to support countries not included in Kyoto Protocol agreement
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in emission-reduction projects. From these projects such countries can get CER
credits (Certified Emission Reduction credits) which can be traded on a market.
In the previous phases, companies were allowed to use part of these to cover its
emissions but since phase 4, the usage of international allowances (e.g. CER
credits) is prohibited.

This EU system has also some regulatory measures specific for some indus-
tries. As we are using data from power generator sector from Czech Republic,
these specifics should be mentioned here as power generation sector has many
rules by itself which is understandable as energy sector is responsible for great
part of greenhouse gasses produced in industry. According to [3], all power gen-
erators are obliged to buy all their allowances since 2013 (i.e. since beginning
of phase 3). An exception was given to 10 states, that entered EU in 2004 for
both phases 3 and 4, they can allocate decreasing number of allowances to exist-
ing power plants. 8 out of this 10 states, including Czech Republic, has decided
to use this opportunity in phase 3. Since phase 4, only Bulgaria, Romania and
Hungary have decided to continue in giving allowances for free to power plants.
Consequently, power generators located in Czech Republic has to pay for all al-
lowances they need to cover its emissions production.

1.2 Financial instruments for allowances trad-
ing

Carbon allowances including EUA can be traded in a similar way as other
financial instruments. Each tonne of CO2 must be covered with 1 EUA. They can
be bought either in primary auction or at secondary market. Prices at auction
might differ from those at secondary market, however if the difference is too big,
regulators move its price to be closer to the secondary market one. In this thesis
we will consider the most common ways for trading such as spot trade, futures
and banking. Lets define here this approaches:
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Definition 1.

• spot trade refers to immediate delivery of a financial instrument. Conse-
quently, we do not consider any interest rates or time to maturity.

• futures obligate both buyer and seller to make a transaction on a predeter-
mined date for agreed price.

• options give to a buyer the possibility of buying or selling the underlying
asset for agreed price. Put options give the holder right to buy the asset
for agreed price, call options give them the right to sell the asset for agreed
price.

• banking refers to saving surplus of allowances or credits to cover emissions
in following years

Spot prices can be modeled as time series. Futures might be a good way
to reduce market risk. Probably the most general approach to modelling future
prices is cost-of-carry model which is widely used, as in general the future prices
tends to converge to spot price with closer maturity date. This approach was
also used in for example in [12]. Because of the model complexity and based on
results from [12] we decided not to consider options.
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2. Multistage Stochastic
Programming

The aim of stochastic programming in general is to find optimal solution while
considering uncertainty. While in some cases it is admissible to imagine our world
as deterministic and find answers to our questions without randomness, very often
it would be huge negligence and that found solution might be far from reality.
In this thesis, we need to deal with random prices for allowances, randomness
of demand for company’s product and thus random need of production. In this
chapter we want to build some solid theoretical foundation for understanding
multistage stochastic programming in general to get some better idea of how we
can use it in practice.

2.1 Portfolio Selection Problem
Let’s consider common financial problem of portfolio selection. We own some

capital W0 which we want to invest in some of N assets. These assets has random
return rates Ri, i ∈ {1, . . . , N} per year. We are thinking about investments in
following T = 3 years. At the beginning of the first year, we want to make in some
sense optimal decision of amounts xi,1 invested into each of considered assets. As
one of assets can be money, for invested amounts it holds: W0 = ∑︁N

i=1 xi,1. At
the end of the first year we observe returns Ri,1 (i.e. the actual realizations of
returns). Thus we possess W1 = ∑︁N

i=1 ξi,1 ·xi,1, where ξi,1 = 1+Ri,1 . At the begin-
ning of second year, after observing returns from the first period, we can change
our decision and choose different distribution x2 = (x1,2, . . . , xN,2) of capital W1
into N assets and then again observe returns. After that the whole reinvestment
process is repeated.

We are trying to make an optimal decisions which will lead to maximal value
of expected utility U of our final wealth W3.

maxE[U(WT )] (2.1)

The value of our final wealth WT depends on previous investment decisions and
returns realizations xt, ξt, t ∈ {1, . . . , T} as WT = ∑︁N

i=1 ξi,T xi,T . To stress that
decisions made at the end of each stage depends on observed returns the following
notation x[t] = xt(ξ[t]), where ξ[t] = (ξ1, . . . , ξt) might be useful. Under this
notation we can rewrite 2.1 as stochastis programming problem:

max E[U(WT )|ξ[T −1]]. (2.2)

Constraints for this optimization problem are model specific and are stated later
in chapter 3. As one can see, decision made in each stage should only depend on
already observed process realizations but not on future. This condition is called
the nonanticipativity condition and it is one of the basic characteristic constraints
in multistage stochastic programs.
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In general as the multistage stochastic program with T stages we are consid-
ering some random process {ξt}T

t=0 which realizations are trajectories and with
some decision vector process x = {x0, . . . , xT } that is measurable function of ξ.
Then we can use the formulation of general multistage stochastic program which
was stated e.g. in [7].

min
x0∈X0

f0(x0, ξ0) + E
[︃
inf
x[1]

f1(x2, ξ2) + E
[︃
· · · + E

[︃
inf
x[T ]

fT (xT , ξT )
]︃]︃]︃

(2.3)

where ft, t ∈ {0, . . . , T} are continuous functions such that the expected values
in 2.3 are finite.

2.1.1 Utility Functions

Previously we have mentioned the utility function for which we want to find
the optimal values. Very often we are dealing with risk averse investor which
typically requires as much profit as possible while minimizing the risk. One
possible approach is with common utility functions such as power utility function,
or the exponential one. Traditional approach to investors risk aversion modeling
is using utility functions. We can define the utility function in the following way:

Definition 2. Let U : I → R is continuous and non-decreasing function on
I ⊆ R. Then the function u is called the utility function.

As we mainly want to consider globally risk averse investor, we will work with
the utility functions which are strictly concave. One of the most commonly used
utility functions is the power utility function u(w) = w1−γ

1−γ
and chosen parameter

γ ≥ 0, γ ̸= 1. In the reference literature this parameter is usually chosen as 3
or 4. For γ = 4 we can use the formula 2.1 and get the optimization problem
rewritten as

maxE
[︄

W −3
T

−3

]︄
= E

[︄
−1

3W 3
T

]︄
Another common example is the exponential utility function with parameter δ > 0
for risk averse investor which in general take the form u(w) = −e−δw. This
utility function is often used when dealing with normal distribution of the random
variable w. In terms of the formula 2.1 for δ = 1 it takes the form

maxE
[︂
−e−WT

]︂
.

2.2 Risk Measures

Nowadays we developed multiple risk measures and often we want them
to meet certain conditions. Let´s consider random variable Z = Z(ω), X =
X(ω), Y = Y (ω) which are random outcomes from a sample space (Ω, F), where
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ω ∈ Ω and F is its σ-algebra. According to [2] we define risk measure as func-
tion ρ which maps Z into extended real line R. For p ∈ [1, ∞). We denote
Z = Lp(Ω, F , P ) the functions of random variables Z, X and Y for which the risk
measure ρ(·) is defined. From this definition we assume that random variables
has finite p − th moment. w.r.t. probability measure P .

One of typical approaches for using risk measures to select optimal portfolio
is considering mean-risk models ,which, as the name suggests, are models which
connect expected value of losses and selected risk measure which is in compli-
ance with the initial motivation for developing risk measures. There are several
risk measures that are typically used such as variance, standard deviation, semi-
deviation, value at risk, conditional value at risk and others. There exists a group
of risk measures which behave in some way better and are usually preferably used
in practice. These measures are called coherent risk measures and we can define
them as:

Definition 3. Risk measure ρ is called coherent risk measure, if for random loss
X, Y ∈ Z, where X ⪰ Y denotes the pointwise order, it satisfies conditions :

1. ρ(tX + (1 − t)Y ) ≤ tρ(X) + (1 − t)ρ(Y ), ∀X, Y ∈ Z, ∀t ∈ [0, 1] is called
convexity condition

2. if X ⪰ Y then ρ(X) ≤ ρ(Y ) is called monotonicity condition

3. if a ∈ R then ρ(X + a) = ρ(X) + a is called translation equivariance

4. if t > 0 then ρ(tX) = tρ(X) is called positive homogeneity.

For more details and further properties see [2].

2.2.1 CVaR

As an example of coherent risk measure, which we are going to work with
later, we define Conditional Value at Risk. This measure is also known as Mean
Excess Loss or Tail VaR. Under CVaRα one can understand the expected value
of loss which will happen in (1 − α) · 100% cases. Formally we can define it in a
following way:

Definition 4. Let X be a random loss. Then Conditional Value-at-Risk is defined
as:

CVaRα(X) = inf
a∈R

{︃
a + 1

1 − α
E[X − a]+

}︃
for α ∈ (0, 1) where [·]+ denotes positive real number.

As previously mentioned, we can use it in some general mean-risk model which
for losses Y and portfolio weights x has the form

min
x

(1 − λ)E[Y T x] + λCVaRα(Y T x) (2.4)

Another advantage of using CVaR for optimization problem is that when
used in linear program it keeps the linearity and so it is not computationally
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that demanding as many others risk measures. If we consider some discrete ran-
dom distribution with s ∈ {1, . . . , S} scenarios which are gained with respective
probabilities ps, then this risk measure might be rewritten in the following linear
programming form :

min a + 1
1 − α

S∑︂
s=1

psz
s

s.t. zs ≥ xT Y s − a

zs ≥ 0

(2.5)

2.3 Chance Constraint

Sometimes it might be convenient or even necessary to deal with random
variable also in the model constraints. In some cases we will need some stochastic
constraint (of which we know its distribution) to be fulfilled in all cases. This
might be however sometimes too strict and we might not found any solution. Or
in other cases we do not mind to risk a little and so we can be comfortable with
some small chance that the constraint would not state. In these cases, we can
use the so called chance constraint. In general the optimization problem with a
joint chance constraint for random vector Z and decision vector x takes a form:

min c(x) (2.6)
s.t. P [Z : x ∈ X (Z), j ∈ J ] ≥ 1 − ϵ (2.7)

where X (Z) = {x ∈ X0 : hj(x, Z) = 0∀j, gk(x, Z) ≤ 0∀k} is nonempty set,
c : Rn → R, hj(x, Z), gk(x, Z) are model constraints, K, J are index sets, Z
is s dimensional random vector and 0 ≤ ϵ ≤ 1 is parameter that regulates the
probability that we want this constraint to be fulfilled.

In practice, to be able to computationally solved chance constrained problems,
when dealing with discrete distribution, we take advantage of mixed integer pro-
gramming which is based on the following theorem:
Theorem 1. Let f, g(·, Z) : Rn → R be real functions, X ⊆ Rn and Z be
real random vector, with finite discrete distribution z1, . . . , zM with probabilities
p1, . . . , pM ,

∑︁M
m=1 pm = 1 then for ϵ ∈ (0, 1) small then if we are dealing with

chance constraint program:
min c(x)
s.t. P [g(x, Z) ≤ 0] ≥ 1 − ϵ

which can be rewritten to mixed integer programming as:
min c(x)

s.t
M∑︂

m=1
pmym ≥ 1 − ϵ

g(x, zm) ≤ C(1 − ym) m = 1, . . . , M

ym ∈ {0, 1} m = 1, . . . , M

x ∈ X

9



where C ≥ maxm=1,...,M supx∈X g(x, zm)
More exhaustive informations to this theorem and other relationships might

be found for example in [4].

2.4 Second Order Stochastic Dominance

While considering more portfolios with stochastic variables, sometimes we do
not require to reach its best possible value in the terms of some risk measure
but we would rather our considered portfolio to be better than some other one.
The one which we want to beat is called benchmark strategy. There are multiple
approaches in which we can measure whether or not our strategy is better than
the benchmark one. Lately stochastic dominance measures became very popular.
Usually we speak about first order and second order stochastic dominance. For
exhaustive definition see [2]. For our case we choose to use second order stochastic
dominance which can be defined as:
Definition 5. Let FrT λ(y) be cumulative distribution function for portfolio with
weights λ and random returns r. Let τ be weights of benchmark portfolio. We
say that portfolio λ dominates τ by the second-order stochastic dominance when

F
(2)
rT λ(y) ≤ F

(2)
rT τ (y), y ∈ [a, b]

where F (2)
z (y) =

∫︁ y
−∞ Fz(x)dx and [a, b] ⊆ R. Second order stochastic dominance

of portfolio λ to portfolio τ is denoted as rT λ ⪰SSD rT τ .

In case of the second order stochastic dominance portfolio selection problem
is equivalent to risk averse attitude of the investor. When considering scenarios,
at each time period we can act as when dealing with discrete distribution. In this
case, following Theorem 2 might be helpful.
Theorem 2. Let X and Y be a random variables with univariate discrete dis-
tributions with M atoms which on its probability space attains values X1 ≤ X2 ≤
. . . , ≤ XM and Y1 ≤ Y2 ≤ . . . , ≤ YM respectively. Then following equivalency
states:

F
(2)
X (z) ⪰SSD F

(2)
Y (z) ⇐⇒

m∑︂
i=1

Xi ≥
m∑︂

i=1
Yi m = 1, . . . , M

Another theorems which captures the second order stochastic dominance and
can be very useful in scenario approach is using CVaR for which holds:

rT λ ⪰SSD rT τ ⇐⇒ CV aRα(−rT λ) ≤ CV aRα(−rT τ)

Then based on [6] theorems 3 and 4 states:
Theorem 3. For α ∈ ⟨ k

M
, k+1

M
⟩ and α ̸= 1 where k is the index of the k-th smallest

element of the scenarios generated from univariate distribution with M atoms of
random variable X i.e. X1 ≤ X2 ≤ . . . , ≤ Xk, . . . , ≤ XM then it holds

CV aRα(X) = (Xk+1) + 1
(1 − α)M

T∑︂
i=k+1

(Xi − Xk+1)

for k ∈ {1, . . . , M − 1} and CV aR1(X) = XM

10



Theorem 4. Let X and Y be random variables with discrete univariate distribu-
tions with M atoms which take values Xm and Ym, m ∈ {1, . . . , M} respectively,
then

X ⪰SSD Y ⇐⇒ CV aRα(−X) ≤ CV aRα(−Y ) ∀α ∈
{︃

0,
1

M
, . . . ,

M − 1
M

}︃

2.5 Scenario Trees

Until now, we did not specified distribution or ways of modelling stochas-
tic process {ξt}T

t=1. As one can imagine, if we would consider some continu-
ous distribution, as it can be suitable for random market returns, it might be
very difficult to find optimal solution. Because of that, one of the widely used
techniques is to generate scenario trees. We can think of it as the continuous
distribution which we consider as known (otherwise we can use some approxi-
mation for example based on previously observed values). Let us consider now
that we can invest either in stocks or keep our wealth in a bank. For this case,
we have n = 2 possible options of wealth distribution at each time period. We
have some primary observations of considered stock on a market and we no-
ticed that its return rate R1 is either -0.1 or 0.2 with probability distribution
P [R1 = −0.1] = p11 = 0.4 , P [R1 = 0.2] = p12 = 0.6. On our bank account, we
have an interest rate R2 = 0.04 which will stays unchanged for at least following
4 years, thus P [R2 = 0.04] = p2· = 1. Under these distributions, we are consid-
ering only two possible combinations for returns ξit = Rit, either ξ1

t = (0.9, 1.04)
with probability p1 = 0.4 or ξ2

t = (1.2, 1.04) with probability p2 = 0.6. We can
now look at scenario tree in figure 2.1. As one can observe, with two children
from each node, with T = 3 we are dealing with 23 = 8 scenarios which suggests
that with each additional time period, problem became much more complex and
computationally difficult to find its solution.

W0

W1

W2

W3

p 1
ξ
1

W3

p
2ξ 2

p 1
ξ
1

W2

W3

p 1
ξ
1

W3

p
2ξ 2

p
2ξ 2

p 1

ξ 1

W1

W2

W3

p 1
ξ
1

W3

p
2ξ 2

p 1
ξ
1

W2

W3

p 1
ξ
1

W3

p
2ξ 2

p
2ξ 2

p
2

ξ 2

Figure 2.1: Scenario tree (T=3)
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As one can notice from the 2.1, each node at time 0 < t < T has exactly
one ancestor node at time t-1 and multiple children nodes. For root t=0, there
is no ancestor and multiple children and for all leaves t=T we have exactly one
ancestor and no children. This is the general definition of scenario tree structure.
In general, it might happen that 2 nodes at time t has the same value but they
are separate because they have different history. As scenario we mean one path
from root node t=0 to some leaf t=T, i.e. each scenario represents history of the
random process {ξt}T

t=1.

2.5.1 Generating Scenario Trees

Multiple approaches to generating scenario trees might be found in a litera-
ture. As the first step, we need to fit the distribution of the data process. This
might be some ARCH or GARCH models, ARIMA models, binomial or trinomial
models, random walks adopted in Monte Carlo generators. According to [7] with
models time discretization, or calibrated models one can generate arbitrarly many
sample paths ω. We can also assume that these sample paths are equiprobable.

As the next step, we want to delineate the number of stages and the so-called
branching scheme, which tells us with how many children we deal with for each
node. In some cases, the time period of each stage is given naturally as we can
change our decision once a year, in other cases we have to figure out the most
suitable time length for each stage. This also suggest that between each two
stages might be different time period. One option is to use clustering method.
One of the very popular way is the K-means clustering. In this algorithm, the K
stands for the number of desired clusters also, which in our case corresponds to
Kt preselected number of scenarios at time t. Each cluster has than one centroid,
which is the referential point to which the algorithm assign closest points in the
sample space. The problem is, that the number of points that are assigned to
each cluster is not given and so one cluster might include hundreds of points and
another one is going to include only the centroid itself. When using for generating
scenario tree, this might be very inconvenient as the nodes in scenario tree gain
significantly different probabilities. This problem solved new approach to K-
means clustering called constrained K-means clustering which was introduced in
[1]. With this approach we try to solve non-linear mixed-integer program:

min
C∈RKxM ,Z∈{0,1}NxK

1
2

N∑︂
i=1

K∑︂
k=1

zi,k||xi − ck||22 (2.8)

s.t.
N∑︂

i=1
zi,k ≥ nk, k ∈ {1, . . . , K} (2.9)

K∑︂
k=1

zi,k = 1, i ∈ {1, . . . , N} (2.10)

where xi are the row vectors of sample data matrix XNxM , matrix Z = (zi,k)N,K
i,k=1,1

is the matrix of binary variablech which codes to which cluster (or to which cen-
troid ck,m) is the data sample assign and k ∈ {1, . . . , K} is the minimum size of
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each cluster. For each time period, we run the clustering algorith separately.

If we are dealing with Markov structure of data of the form ξt = Pξt−1 + vt,
we can discretize the distribution of random disturbations vt and the rest is de-
terministic. We can also consider the case where the transition matrix P depends
on time t. In [7] a reader can find more exhaustive explanation of commonly used
technique which is called sequential importance sampling.

Another one very common technique for generating scenario trees is also
matching moments of distribution or some other statistical properties. As stated
for example in [7], it can be proven that for m admissible values of moments,
the discrete distribution with those moments exists and its support has at most
m + 2 distinct values.

2.5.2 Scenario Trees Dimensionality Reduction

In some cases we need further reduction of the scenario trees, usually when
the computation power is not big enough. There are several techniques which
might be used for scenarios reduction, one of the most popular techniques is the
single node reduction algorithm which was developed in [10] and further extended
in [9] which introduce the following 4-step algorithm:

1. for each pair of nodes (i,j) which has the same parent calculate ϵi,j = pi||ξi −
ξj||+ 2pipj

pi+pj
where pi is the absolute probability of the node i and ξi its value.

2. find the smallest ϵi,j for which we denote (k, l) the values of a pair (i, j).

3. set the node k instead of node j as the parent of children’s of node l. and
set pk = pk + pl, remove node l.

4. repeat whole process until we get desired number of scenarios.

To sum it up, the whole idea is to measure the distance between each pair
of two nodes that came from the same parent and reduce its count to desired
number. In the equiprobable scenario tree, the algorithm above becomes even
easier as pi = pj = 1

M
where M is the count of nodes for that time.

Another method for scenario tree dimension reduction is called nodal cluster-
ing and it was introduced in [9] where all details can be found. In summary we
want to first define the structure of the final scenario tree (i.e. reduced number
of nodes in final scenario tree for each time period) and then for each tree level
merge the pair of the closest nodes into new one and reduce them into one so we
end up with the desired number of clusters.

There are several others algorithms for scenario tree reduction which might
be found for example in [9].
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3. Models
The company has to decide about its total production for the next yaer at

each time t = 0, . . . , T − 1. They can decide how much electric energy should be
produced in considered time period by which of n ∈ N different types of power
generators. In this section we build base model which is further compared to some
of its variations. This model is mainly based on [11] but with some modifications
as we are considering different phase and different industrial sector.

3.1 Base Model
The decision about the volume of production for time period [t, t + 1)

can be viewed as xt = (xt1, . . . , xtN)T . These decisions are made for time t ∈
{0, . . . , T −1}. There are some limitations for how much energy is each generator
type able to produce. These are given as production limits w = (w1, . . . , wN)T

which are supposed to be constant in all considered time periods. As the facto-
ries are not able to plan the production higher than its capacity, naturally we
get the limit (3.3) xt ≤ w. The first stochastic variable we are going to con-
sider is the total market demand dt that does not depend on a source by which
the energy was produced. Based on this definition, we want condition (3.2)∑︁N

n=1 xtn ≤ min(dt+1|dt) to be fulfilled as we do not want to produce in total in
all kinds of power generators more than the demand will be. For simplicity of this
basic model, let us view margins on energy µt = (µt1, . . . , µtN)T as deterministic
vector for time t. As one can notice, this margin vector is dependent on chosen
power production source as the production costs differ.

Until now, we have mentioned only factors and variables independent of CO2
emissions. For each type of power generator we want to consider the produced
amount of CO2. The vector of this greenhouse gas production per unit of energy
is denoted as h = (h1, . . . , hN)T . At time t we hold certain amount of allowances
et which is the resulting amount of allowances after covering emissions produced
in time interval [t − 1, t) . This amount is given as et = et−1 + st + ∑︁

0≤τ<t f t
τ −

hT xt−1 for t ∈ {1, . . . , T} (3.6) where f t
τ and st denote the amount of futures

with maturity at time t and the amount of spot allowances, respectively. For
simplicity we suppose that this company is just starting and so at time t = 0
we have e0 = s0 as we consider that no allowances from past are available and
no futures have maturity date at time 0. Another assumption is that no short
selling is allowed and that in each time period we need to cover all emissions with
allowances which results in conditions st, et, f t+1

t , . . . , fT
t ≥ 0, t ∈ {0, . . . , T}

(3.11). As goal of this model is to minimize costs with some preferences of risk
aversion, we also need to include prices of spot allowances pt and prices of futures
qt+1

t , . . . , qT
t , which we consider as stochastic parameters. If the company needs

more allowances than they can buy on spot with its production profit and that
they are possessing at that moment (thanks to banking or futures), they have
the option of taking a loan with interest rate ρ. When they have some profit
which is not used to buy allowances, the company get the same interest rate ρ
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from saving that amount of money. Now we have everything to form the equation
for considered cash flows zt. As mentioned above, we consider time t = 0 as the
start of this company and so z0 = −p0s0. For t ∈ {1, . . . , T} the equation is
zt = mT

t xt−1 − ptst − ∑︁T −1
τ=0 qt

τ f t
τ + ρct−1 (3.10), where ct = ∑︁t

s=0 zs (3.9) is the
amount of wealth, which could also be negative, gained up to time t. To sum it
up, the model can be expressed as:

min Vλ(−z0, . . . , −zT ) (3.1)

s.t.
N∑︂

n=1
xt ≤ min(dt+1|dt) 0 ≤ t ≤ T − 1 (3.2)

xt ≤ w 0 ≤ t ≤ T − 1 (3.3)
xt, st, f t+1

t , . . . , fT
t ∈ Ft 0 ≤ t ≤ T − 1 (3.4)

e0 = s0 (3.5)
et = et−1 + st +

∑︂
0≤τ<t

f t
τ − hT xt−1 1 ≤ t ≤ T (3.6)

s0 ≥ 0 (3.7)
z0 = −p0s0 (3.8)

ct =
t∑︂

s=0
zs 1 ≤ t ≤ T (3.9)

zt = µT
t xt−1 − ptst −

t−1∑︂
τ=0

qt
τ f t

τ + ρct−1 1 ≤ t ≤ T (3.10)

st, et, f t+1
t , . . . , fT

t ≥ 0 0 ≤ t ≤ T (3.11)

We require the nonanticipativity condition to be fulfilled which is done thanks
to equation (3.4) where F stands for filtration defined as Ft = σ((πτ )τ≤t) and
πt = (dt, pt, qt) for t ∈ {1, . . . , T}. The decision criterion Vλ, where λ stands for
risk aversion parameter, is for basic model considered as mean-multiperiod CVaR
which results in decision criterion defined as:

Vλ(−z0, . . . , −zT ) = (1 − λ)E[
T∑︂

t=0
−(1 + ρ)T −tzt] + λR(−z0, . . . , −zT ) (3.12)

R(−z0, . . . , −zT ) =
T∑︂

t=0
(1 + ρ)T −tE[CVaR(−zt|Ft−1)] (3.13)

To be able to find the solution in some reasonable time we need to rewrite
it using scenario tree with M scenarios which speeds up a lot the time needed
for computation. To be able to derive the final form of this optimization model,
we need also notation for set of nodes at time t. Assume that at time t we are
dealing with set Kt = {1, 2, . . . , Kt} of nodes and that |Kt| = Kt. For the last
time period T it states |M | = KT . Then in combination with the definition 4
of CVaRα(−zt) while considering the univariate distribution of nodes in scenario

15



trees, we can apply following transformations:

(1 − λ)E[
T∑︂

t=0
−(1 + ρ)T −tzt] + λ

T∑︂
t=0

(1 + ρ)T −tE[CVaR(−zt|Ft−1)] =

= −(1 − λ)(1 + ρ)T z0 − (1 − λ) 1
M

M∑︂
m=1

(1 + ρ)T −1z1m+

+ (1 + ρ)T −1

⎡⎣λa0 + λ

1 − α

K1∑︂
k1=1

1
K1

[−z1k1 − a0]+
⎤⎦

... − (1 − λ) 1
M

M∑︂
m=1

zT m +
⎡⎣λ

KT −1∑︂
kT −1=1

aT −1kT −1 + λ

1 − α

KT∑︂
kT =1

1
KT

[−zT kT
− aT −1kT

]+
⎤⎦

In the equation above the term at−1kt represents the solution of formula in defi-
nition 4 for parents of the nodes Kt. Then using the form (2.5) we arrive to this
final optimization model:

min − (1 − λ)(1 + ρ)T z0 + λ

M

T −1, M∑︂
t=0, m=1

(1 + ρ)T −t−1utm+

+
⎡⎣ T, M∑︂

t=1, m=1
(1 + ρ)T −t(λ − 1

M
ztm + λ

(1 − α)M btm)
⎤⎦

s.t. btm ≥ −ztm − ut−1m 1 ≤ t ≤ T

btm ≥ 0 0 ≤ t ≤ T − 1
N∑︂

n=1
xtmn ≤ dt+1m′ 0 ≤ t ≤ T − 1

xtmn ≤ wn 0 ≤ t ≤ T − 1
e0 = s0

etm = et−1m + stm +
∑︂

0≤τ<t

f t
τm − hT xt−1m 1 ≤ t ≤ T

s0 ≥ 0
z0 = −p0s0

ctm =
t∑︂

s=0
zsm 1 ≤ t ≤ T

ztm = µT
t xt−1m − ptmstm −

t−1∑︂
τ=0

qt
τmf t

τm + ρct−1m 1 ≤ t ≤ T

st, et, f t+1
t , . . . , fT

t ≥ 0 0 ≤ t ≤ T

and the nonanticipativity conditions for xt, st, f t
τ , bt, ut

Where all above must stay for ∀m ∈ {1, . . . , M}, n ∈ {1, . . . , N}, and ∀m′ :
xtm = xtm′ .
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3.2 Model with Chance Constraints
In the base model we are using the constraints with the demand which is

considered as stochastic. This limit might be too strict and we might be willing
to consider more relaxed version with only probabilistic constraint. The equation
3.2 can be rewritten as P (xt ≤ (dt+1|dt)) ≥ (1 − ϵ) (in words we want to be sure
that for at least in 1 − ϵ · % cases the final production will be fully used as the
market demand will be higher). Here, based on the results which are derived
in chapter 5, we suppose that if we decide to produce more than the observed
demand in the next time period, we will not use the rest of produced energy
from coal which will lower our income and because we have already payed for
the production, we need to substract the costs γ1 which is the cost for 1kWh
production from coal power generator. If we denote the cumulative distribution
function of dt as G(x), the inequality can be rewritten as:

1 − G(xt) ≥ 1 − ϵ

G(xt) ≤ ϵ

With this new approach, the final volume of sold products might be differ from
the final production and it rather attains value of min[∑︁N

n=1 xtn, (dt+1|dt)]. After
implementing this probabilistic approach to the model, we get :

min Vλ(−z0, . . . , zT ) (3.14)
s.t. G(xt) ≤ ϵ 0 ≤ t ≤ T − 1

(3.15)
xt ≤ w 0 ≤ t ≤ T − 1

(3.16)
xt, st, f t+1

t , . . . , fT
t ∈ Ft 0 ≤ t ≤ T − 1

(3.17)
e0 = s0 (3.18)
et = et−1 + st +

∑︂
0≤τ<t

f t
τ − hT xt−1 0 < t ≤ T

(3.19)
s0 ≥ 0 (3.20)
z0 = −p0s0 (3.21)

ct =
t∑︂

s=0
zs 1 ≤ t ≤ T

(3.22)

zt = µT
t xt − (µt1 + γ1)[xt1 − dt+1]+ − ptst −

t−1∑︂
τ=0

qt
τ f t

τ + ρct−1 1 ≤ t ≤ T

(3.23)
st, et, f t+1

t , . . . , fT
t ≥ 0 0 ≤ t ≤ T

(3.24)

Where Vλ(−z0, . . . , −zT ) is defined in the same way as in the base model 3.1.
Here we will take advantage of the theorem (1) with sufficiently big constant C
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and in the combination of scenario trees we get:

min Vλ(−z0, . . . , −zT )

s.t.
M∑︂

m=1

1
M

ytm ≥ 1 − ϵ 0 ≤ t ≤ T − 1

xtm − dt+1m ≤ C(1 − ytm) 0 ≤ t ≤ T − 1
ytm ∈ {0, 1} 0 ≤ t ≤ T − 1
xtmn ≤ wn 0 ≤ t ≤ T − 1
e0 = s0

et = et−1m + stm +
∑︂

0≤τ<t

f t
τm − hT xt−1m 0 < t ≤ T

s0 ≥ 0
z0 = −p0s0

ct =
t∑︂

s=0
zsm 1 ≤ t ≤ T

ztm = µT
t xtm − (µt1 + γ1)[xtm1 − dt+1m′ ]+ − ptmstm− 1 ≤ t ≤ T

−
t−1∑︂
τ=0

qt
τmf t

τm + ρct−1m

st, et, f t+1
t , . . . , fT

t ≥ 0 0 ≤ t ≤ T

and the nonanticipativity conditions for xt, st, f t
τ , yt

Where all above must stay for ∀m ∈ {1, . . . , M}, n ∈ {1, . . . , N}, and
∀m′ : xtm = xtm′ . With this approach, we can observe the effect of this con-
straint and its dependency on ϵ parameter in following chapters.

3.3 Model with Second Order Stochastic Dom-
inance

As another approach we apply the second order stochastic dominance. We
would like that our profit is at each time period better than chosen benchmark
strategy in the sense of second order dominance. As our benchmark strategy we
choose multiperiod strategy which is based on the assumption that in each time
period we need the production to be lower than minimal demand. This produc-
tion at time t is then distributed between power generators so each one runs with
the same ratio of its maximal capacity (i.e. when the minimum of dtm at time
t is rt, then the vector of benchmark portfolio production is rt(w1

W
, w2

W
, . . . , wN

W
),

W = ∑︁N
i=1 wi and it should also hold that rt = min[dtm]). We also consider

only buying spot allowances only in the amount which is exactly needed to cover
emissions rt and so st = hT xt, e = 0. For its corresponding cash flows it holds
: zt = mT

t µ − ptst + ρct−1. Based on [6] we can use the equivalent definition of
stochastic dominance based on CVaR value which is mentioned in the previous
chapter. Also based on the definition of CVaR in definition 4 we can rewrite the in-
equality CV aRα(−zt|Ft−1) ≤ CV aRα(−zt|Ft−1) as mina

{︂
a + 1

1−α
E[zt − a]+

}︂
≤
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CV aRα(−zt|Ft−1) .This inequality holds if and only if there exist a ∈ R for which
it holds. For a finite number of scenarios M which has the same probability, we
arrive to the inequality a + 1

1−α

∑︁M
m=1

1
M

[ztm − a]+ ≤ CV aRα(−zt|Ft−1). To ar-
rive to the linear programming form of the inequality, we can introduce additional
variables ytm and so we get three inequalities:

a + 1
1 − α

M∑︂
m=1

1
M

ytm ≤ CV aRα(−zt|Ft−1), ztm − a − ytm ≤ 0, ytm ≥ 0.

When we implement all changes we arrive to final optimization problem:

min 1
M

[
T, M∑︂

t=0, m=1
−(1 + ρ)T −tztm]

s.t.
N∑︂

n=1
xtmn ≤ dt+1m′ 0 ≤ t ≤ T − 1

xtmn ≤ wn 0 ≤ t ≤ T − 1
e0 = s0

et = et−1 + stm +
∑︂

0≤τ<t

f t
τ − hT xt−1m 0 < t ≤ T

s0 ≥ 0
z0 = −p0s0

ctm =
t∑︂

s=0
zsm 0 ≤ t ≤ T

ztm = µT
t xt−1m − ptmstm −

t−1∑︂
τ=0

qt
τmf t

τm + ρct−1m 1 ≤ t ≤ T

st, et, f t+1
t , . . . , fT

t ≥ 0 0 ≤ t ≤ T

a + 1
1 − α

M∑︂
m=1

1
M

ytm ≤ CV aRα(−zµt|Ft−1) 0 < t ≤ T

ztm − a − ytm ≤ 0 0 ≤ t ≤ T

ytm ≥ 0 0 ≤ t ≤ T

and the nonanticipativity conditions for xt, st, f t
τ ,

Where all above must stay for ∀m ∈ {1, . . . , M}, n ∈ {1, . . . , N},
∀α ∈ {0, 1

M
, . . . , M−1

M
} and ∀m′ : xtm = xtm′ .
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3.4 Model with Utility Function
Instead of using mean-risk model approach, we can try to use the power

utility function as we suggest in previous chapter. We would like to solve:

max E
[︄
− 1

3W 3
T

]︄
(3.25)

s.t. xt ≤ dt+1 0 ≤ t ≤ T − 1 (3.26)
xt ≤ w 0 ≤ t ≤ T − 1 (3.27)
xt, st, f t+1

t , . . . , fT
t ∈ Ft 0 ≤ t ≤ T − 1 (3.28)

e0 = s0 (3.29)
et = et−1 + st +

∑︂
0≤τ<t

f t
τ − hT xt−1 0 < t ≤ T (3.30)

s0 ≥ 0 (3.31)
z0 = −p0s0 (3.32)

ct =
t∑︂

s=0
zs 1 ≤ t ≤ T (3.33)

zt = µT
t xt−1 − ptst −

t−1∑︂
τ=0

qt
τ f t

τ + ρct−1 1 ≤ t ≤ T (3.34)

st, et, f t+1
t , . . . , fT

t ≥ 0 0 ≤ t ≤ T (3.35)

WT = [
T∑︂

t=0
−(1 + ρ)T −tzt] (3.36)

Again, rewritten with using scenarios, it takes the form:

max
−1
M

M∑︂
m=1

[︄
1

3W 3
T m

]︄

s.t.
N∑︂

n=1
xtmn ≤ dt+1m′ 0 ≤ t ≤ T − 1

xtmn ≤ wn 0 ≤ t ≤ T − 1
e0 = s0

etm = et−1m + stm +
∑︂

0≤τ<t

f t
τm − hT xt−1m 0 < t ≤ T

s0 ≥ 0
z0 = −p0s0

ctm =
t∑︂

s=0
zsm 1 ≤ t ≤ T

ztm = µT
t xt−1m − ptmstm −

t−1∑︂
τ=0

qt
τmf t

τm + ρct−1m 1 ≤ t ≤ T

st, et, f t+1
t , . . . , fT

t ≥ 0 0 ≤ t ≤ T

WT m = [
T∑︂

t=0
−(1 + ρ)T −tztm]

and the nonanticipativity conditions for xt, st, f t
τ
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Where all above must stay for ∀m ∈ {1, . . . , M}, n ∈ {1, . . . , N}, and ∀m′ :
xtm = xtm′ .
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4. Data
For our models which are stated in previous chapter, we need to collect several

data for empirical study. We choose to use T = 4. For this study we are using
publicly available data. As studied company we have chosen one of the main
producer of electric energy in Czech republic. This company owns power plants
which runs on coal, nuclear power, wind, photovoltaic energy and water and will
be indexed based on table 4.1.

energy type index
coal 1

nuclear 2
hydro 3

photovoltaic 4
wind 5

Table 4.1: Power plants indices.

We are using the sum of maximal production of instances in each category as our
maximum allowed production w = (w1, . . . , w5)T in kWh/year unit. Notice that
the highest production limits are in Czech republic for nuclear power and coal.
On the contrary the capacity for using wind as the energy source is very limited.

energy source production limit [kWh]
1 30856320000
2 37606140000
3 16802353224
4 1097132398
5 71004600

Table 4.2: Maximum annual production limit for each power plant type

The coefficients h = (h1, . . . , h5) of released CO2 for one kWh in tons was
collected from ipcc.ch from where we are using median estimation which can be
found in table 4.3. It is noticeable that the volume of CO2 when using coal is
significantly higher than the other values. On the contrary, using nuclear power
or wind energy is the most efficient way in terms of produced greenhouse gasses
which needs to be covered with allowances.

As our selected company has its primary business in Czech republic, for es-
timation of market demand we use CR electric energy consumption time series
from czso.cz to predict future demand. For estimation of margins for each power
plant type, we use difference between time series of energy prices and LCOE es-
timates (for more detailed info see [5]). As the margins are time dependent, we
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energy source CO2 production [tCO2/kWh]
1 0.0082
2 0.00012
3 0.00024
4 0.00048
5 0.00012

Table 4.3: Median of tons of CO2 produced by each power plant type for 1 kWh.

estimate the future values which are in table 4.4 and are considered as determin-
istic. In general, the margins on nuclear energy are the lowest and those on wind
energy are the highest. Also notice that over the course of time, the margins are
predicted to be lower.

energy source time 0 time 1 time 2 time 3 time 4
1 0.098 0.092 0.088 0.084 0.081
2 0.053 0.050 0.047 0.044 0.042
3 0.129 0.123 0.119 0.115 0.113
4 0.093 0.088 0.084 0.080 0.077
5 0.144 0.139 0.134 0.131 0.128

Table 4.4: Predicted margins on energy.

4.1 Prices Simulations
The spot prices of EUA were downloaded from SENDECO2.com, where daily

prices from year 2014 till the end of 2020 are available for modelling. When
we look on the prices in 4.1 , we can see great growth since 2018. Because of
unstable behavior, we decide to model monthly average returns rather than prices
itselves. On this dataset we use one of the most common techniques for time series
prediction to model future price development which is ARIMA models. ARIMA
models in general take a form We have also tried to fit the GARCH(1,1) model
but all coefficients are insignificant and so we have decided to use only ARIMA
model. ARIMA(p,d,q) in general takes a form:

(1 −
p∑︂

i=1
ΦiL

i)(1 − L)dXt = δ + (1 +
q∑︂

i=1
θiL

i)ϵt

where L is the lag operator,Φi are parameters of autoregressive part, θi are pa-
rameters of moving average part, ϵt is white noise and d is the level of differencing.

Based on Augmented Dickey-Fuller test which results in p-value < 10−5 there
is no need for differencing of the time series of spot returns. Based on ACF, PACF
and AIC which can be seen in figure 4.2 we find out that the simple MA(1) model
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fits the best. The resulting model for spot returns rt, from which the prices were
calculated, is of form:

rt = 0.028 + ϵt + 0.3099ϵt−1

After fitting this model, we use Monte Carlo simulations to generate multiple
scenarios on which we use clustering to generate nodes for scenario tree.

Figure 4.1: Development of EUA spot price over last 6 years.

As we are working with yearly time periods, we use this time series for calcu-
lating multiple scenarios of spot prices for the end of following years and generate
scenario tree. As our root with known demand and prices we choose the begin-
ning of the year 2021. From each node there is 10 leaves for following 4 years (i.e.
10 nodes for year 2022, 100 for 2023, 1000 for year 2024 and 10 000 for 2025).
This give us scenario tree with 104 = 10 000 scenarios.The resulting tree can be
seen in figure 4.3. One can notice that the predicted prices are volatile which is
in compliance with the observed time series.

In table 4.5 we can notice that the mean value is slightly increasing over time
but also the volatility grows so the minimal values is actually decreasing with
each following time period. The median is not growing and neither decreasing.

For futures prices prediction we use data from Barchart.com with cost-of-carry
model in the form of f τ

t = expa(τ−t)+ϵtst where a is real parameter and ϵ1, ϵ2, . . .
are centered mutually independent random variables. For easier estimation of the
parameter, we can use log-future-spot spread where yt,τ = log(f τ

t )− log(st) which
follow linear regression model yt,s

s−t
= a + ν where ν is white noise. After fitting

we get the value of a = 0.00000779 and for simplification, we assume ν = 0.
Then we use scenario tree 4.3 and compute with this equality the future prices.
Their descriptive statistics can be found in table 4.6. Notice also that we want
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Figure 4.2: spot returns, ACF and PACF

time period mean std min 25% 50% 75% max
0 32.54 0.00 32.54 32.54 32.54 32.54 32.54
1 32.13 3.33 26.87 29.70 31.81 34.19 38.84
2 33.03 4.62 22.38 29.81 32.83 35.85 45.11
3 33.96 5.89 20.00 29.73 33.59 37.70 53.14
4 34.93 6.95 15.90 29.96 34.32 39.21 66.47

Table 4.5: Mean, standard deviation and quantiles
of predicted spot prices for each time period.

to consider only those futures that have an expiration date as the last considered
time period.

4.2 Market Demand Simulation
Lastly, we need to create a model for demand prediction. We consider yearly

data for electricity demand in the Czech republic as the closest approximation
as the considered company majority market is in the Czech republic. The time
series which can be seen in figure 4.4 we would say that the series is not stationary.
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Figure 4.3: Predicted scenarios for EUA spot prices.

time maturity time mean std min 25% 50% 75% max
0 1 32.63 0.00 32.63 32.63 32.63 32.63 32.63
0 2 32.73 0.00 32.73 32.73 32.73 32.73 32.73
0 3 32.82 0.00 32.82 32.82 32.82 32.82 32.82
0 4 32.90 0.00 32.91 32.91 32.91 32.91 32.91
1 2 33.61 5.49 18.52 29.79 33.07 36.54 64.12
1 3 33.71 5.51 18.57 29.87 33.17 36.65 64.30
1 4 33.80 5.52 18.62 29.96 33.26 36.75 64.48
2 3 33.60 5.49 16.36 29.79 33.10 36.57 60.76
2 4 33.70 5.51 16.40 29.87 33.19 36.67 60.93
3 4 33.60 5.46 17.23 29.79 33.13 36.54 62.56

Table 4.6: Mean, standard deviation and quantiles
of predicted futures prices for each time period and maturity date.

Similar to the spot returns investigation, we use the augmented Dickey-Fuller
test to find out that the recommended differencing is 2, then we use ACF and
PACF figures to estimate AR and MA levels which results in ARIMA(2,2,0)
model. After fitting we get a model for demand dt of the form:

dt = 0.0485dt−2 − 0.0365dt−4 + ϵt

Again, we use this model to simulate monte carlo process and clustering to
create a prediction for each node of decision tree. We also try to investigate
correlation between the demand and yearly returns on emission allowances. We
find out that the correlation is 0.09 and so we consider the series as independent
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Figure 4.4: Development of electricity demand over last 12 years.

when building the scenario tree.

Figure 4.5: Predicted scenarios for market power demand.

In figure 4.5 we can see that the scenarios are less volatile compare to prices
some greater volatility is observed for the last time period which again is in
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compliance with the observed values 4.4. We observe growth in mean value, in
the maximum value and in median. Notice also, that the minimum value grows
except for last time period where the scenario tree include possibility of downfall.

time mean std min 25% 50% 75% max
0 67.19 0.00 67.19 67.19 67.19 67.19 67.19
1 70.45 0.05 70.38 70.41 70.45 70.49 70.56
2 73.86 0.28 73.25 73.63 73.86 74.10 74.51
3 77.27 1.53 73.05 76.18 77.29 78.35 82.14
4 80.69 6.78 55.97 76.13 80.64 85.27 105.69

Table 4.7: Mean, standard deviation and quantiles
of predicted market demand in [kWh/year 10−9] for each time period.

As the last step we randomly pair the generated prices with demand to get
the final scenario tree where each node consists of generated values for demand,
price of spots, and futures for next time periods which we are considering.
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5. Results
In previous chapters, we have developed multiple models and introduced

data that we are working with. Here we would like to compare results for each
of them. We want to compare the decisions and final wealth on different risk
aversion levels (i.e. different values of parameter λ) in the base model. After this
investigation, we want to also compare other models with this one. We use GAMS
Python API for running models in Jupyter notebooks. As we are dealing with
the count of bought allowances our models are mixed=integer problems. The
base model is a linear mixed-integer problem as well as the chance constraint one
and the second order stochastic dominance one. They were solved with CPLEX
solver. The last problem is nonlinear problem and so it resulted in mixed=integer
nonlinear programming. This was solved with KNITRO solver. Our models have
a common parameter ρ which is the interest rate. In all models, we choose to
use it with value ρ = 0.03. All models which use the conditional value at risk
were run with α = 0.05. In table 5.1 you can see the approximate time to find
the optimal solution (note that the second order stochastic dominance problem
and utility problem was solved on reduced scenario tree). Note also, that the run
time for base model was highly dependent on the λ parameter choice, the higher
the λ the longer run time and so in table 5.1 is provided time interval.

model run time [h]
base model 0.1-0.5

chance constraint model 0.4
second order stoch. dominance model 0.2

utility model 3.1

Table 5.1: Running time to find optimal solution for each model

5.1 Base Model Dependency on Risk Aversion
In the base model, the risk aversion is controlled with the parameter λ ∈ [0, 1]

in the equation 3.12. Remember that the risk aversion in the base model is
modeled by CVARα on random losses {−zt}T

t=1 which are given as the sum
of expenses on allowances, interests from previous periods (either as loan or
profit) and profit from energy sales.We generate the results of base model for
λ ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}. With higher values of λ, the
company is more risk averse.

First we look into which power sources are preferable in each time period. For
better visibility we choose to use logarithmic scale of produced energy for each
year in graphs 5.1, 5.2, 5.3, 5.4 and 5.5. We can notice that over the course of
time, for all values of λ the model advise to use the full capacity w for all power
plants types except for the coal ones. This is due to the controversial behaviour
as the margins on coals are high but the amount of CO2 produced is also much
higher as we saw in the table 4.3. At time 0 the higher the λ the more we should
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use this power source. As we can see from figure 5.1 the company starts to use
coal from level λ > 0.2. On the contrary for the other time periods, for λ = 0.1
we always choose to use coal as well at least in some scenarios and we choose
to use it as much as the demand limitation for the total produced energy allows
us for λ = 0.9. In the figure 5.5 we can see the sum for all decision periods of
average values. Here we can get to the conclusion that for levels of risk aversity
λ ∈ {0.1, 0.2} the company is under some scenarios willing to use more coal power
generators than for λ ∈ {0.3, . . . , 0.7} and that if the company is very risk averse
than under majority of scenarios, it is willing to use this source which gives it the
certain high margin for one unit of produced energy.

Figure 5.1: Produced energy volume on different levels
of risk aversion at time zero

We should also check the behaviour in the terms of bought futures and spots
over time based on how risk averse the investor is. In figure 5.6 one can notice
that under all values of λ except for λ = 0.1, the company always decides to
bought vast majority of its allowances at time t = 0. This is probably due to its
concerns about growing spot prices (see table 4.5). In the cases of λ = 0.1 and
λ = 0.2, on average, it rather invests to futures which we can see in figures 5.7.
In the first figure, we see that the company buy most of future allowances at time
0, 2 and 3 for both λ = 0.1 and λ = 0.2 and from the second figure, we can see
that most of this allowances are with maturity at time period 3 and 4. There we
can also notice that for any other values of λ it choose not to bought futures. It
is most likely because of the amount of bought spot allowances in the first time
period which will cover also the following time periods and so the company is
certain that without the allowances price development, it is going to have enough
to cover the production. We should also remind that in cases of λ ∈ [0.3, 0.7] the
company is not using the coal as the energy source and so it is going to need much
less allowances than in other cases as the coal power plants produce much more
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Figure 5.2: Produced energy volume on different levels
of risk aversion at time one.

Figure 5.3: Produced energy volume on different levels
of risk aversion at time two.

CO2 than other sources (see table 4.3). That is noticeable from the total amount
of allowances which the company bought over the full 4 years. We can see that
with only very low use of coal as energy source, it is enough for the company to
buy spot allowances in the very beginning to have enough for last 4 years.

Finally we want to know the average value of total wealth gained over all time
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Figure 5.4: Produced Energy Volume on Different Levels
of Risk Aversion at Time Three.

Figure 5.5: Sum of Produced Energy Volume on Different Levels
of Risk Aversion over time.

periods. On the first sight in figure 5.8 we can see that the behaviour in terms
of cashflows follows what we mentioned above. The company which has very low
risk aversion wants to have immediate profit and so for all time periods it decides
to behave in a way that on average it has positive cashflows. As the company is
more risk averse, it prefers to ensure that it is going to have enough allowances
to cover its planned production and so it is willing to go into red numbers which
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Figure 5.6: Average amount of bought spot allowances
based on time period.

might be covered with the loan for very low interest rate ρ = 0.03 not to have to
risk price development in following years. In conclusion, its expected total wealth
can be seen in figure 5.9. From which we can see that for λ < 0.8 the average
wealth is the same and the only difference is whether the company decides to
rather not to produce coal and not to have to risk the price development or it
takes the risks and on average it seems to be convenient strategy in terms of the
final wealth. For much more risk averse companies with λ ≥ 0.8 the average final
wealth is lower because the company choose not to take the risk of price volatility
and also the uncertainty of market demand development.
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Figure 5.7: Average amount of bought futures allowances
based on time period.

5.2 Chance Constraint Model
In this section we want to compare the difference in behaviour of base model

and the model with chance constraint for different values of its parameter ϵ.
These two models have the same objective function and the only differences are
in constraints. The first difference is in equation 3.23 where we suppose that if
some produced energy is not sold due to low demand, it is the energy from coal
power generator. So we need to subtract the margins on unsold part of produced
energy and also the costs for production γ1. As we previously mentioned, these
costs were taken from [5].

Another difference is in the terms of the chance constraint from equation 3.15
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Figure 5.8: Average amount of cashflows over time

Figure 5.9: Average amount of cashflows in total.

which regulates the count of scenarios in which the demand constraint (i.e. the
constraint which ensures that the production cannot be higher than all possible
future demand values in following time period) might be violated. The allowed
percentage of violated constrained is regulated with parameter ϵ.

We test this model with parameter λ = 0.9. We test to run the chance con-
strained model with the parameter ϵ ∈ {0.1, 0.3, 0.5, 0.7} to see the results in
comparison to the base model. Surprisingly, we found out that the effect of lim-
itation on demand has no effect on cash flows for λ = 0.9. Here you can see
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Figure 5.10: Sum of Produced Energy Volume on Different Levels
of Risk Aversion over time.

several figures. In the figure 5.10 one can see that the only difference between
base model and the model with chance constraint is in terms of production in coal
power plants which in base model is slightly lower and in nuclear power which is
slightly higher. This is natural consequence of allowing to produce more as the
margins on coals are higher. The same results for all tested values of ϵ can be
made also observed in figure 5.12.

Figure 5.11: Average amount of bought futures
allowances based on time period.

In figure 5.11 we can see again that the behaviour is the same independently
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of setting of parameter ϵ.

Figure 5.12: Average amount of cashflows in total.

Based on these results we can assume that the demand is very stable and does
not play much role in company´s decisions.
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5.3 Second Order Stochastic Dominance Model
In this model instead of using conditional value at risk in objective function we

want to rather have the results stochastically dominate some benchmark portfolio
and the objective function is defined only as the expected value of losses over time.
The approach to generate this portfolio has been already explained in chapter 3.
For running this model we need to use the tree dimensionality reduction. We use
nodal clustering method and for each time period, we want to end up with the
half of the original nodes. This means that we get resulting 5000 scenarios.
As the clustering method, we use constrained K-means clustering which was
introduced in formula 2.8 thanks to which we can easily reach to reduced scenario
tree that is still balanced with univariate distribution of prices and demand values.
Distribution of prices and demand for this reduced scenario tree can be seen in
tables 5.2, 5.3 and 5.4. Comparing to the full scenario tree, we can see that
the descriptive statistics for distribution of prices (both spot and futures which
was again calculated using cost-of-carry model) is almost the same. In case of
demand, we can notice even lower values of volatility.

time period mean std min 25% 50% 75% max
0 32.54 0.00 32.54 32.54 32.54 32.54 32.54
1 32.13 3.21 27.77 30.14 31.81 33.65 37.26
2 33.03 4.55 24.42 29.76 32.88 35.95 44.21
3 33.96 5.83 20.89 29.76 33.54 37.54 52.56
4 34.93 6.89 17.59 30.02 34.41 39.24 64.43

Table 5.2: Mean, standard deviation and quantiles
of predicted spot prices in reduced scenario tree.

time maturity time mean std min 25% 50% 75% max
0 1 32.63 0.00 32.63 32.63 32.63 32.63 32.63
0 2 32.73 0.00 32.73 32.73 32.73 32.73 32.73
0 3 32.82 0.00 32.82 32.82 32.82 32.82 32.82
0 4 32.91 0.00 32.91 32.91 32.91 32.91 32.91
1 2 33.64 5.42 19.0 30.23 33.15 37.22 61.26
1 3 33.74 5.44 19.05 30.31 33.25 37.33 61.44
1 4 33.84 5.45 19.1 30.4 33.34 37.43 61.61
2 3 33.62 5.44 17.64 30.10 33.15 37.22 60.12
2 4 33.71 5.46 17.69 30.19 33.25 37.33 60.29
3 4 33.56 5.38 17.68 30.03 33.12 37.22 64.61

Table 5.3: Mean, standard deviation and quantiles
of predicted futures prices in reduced scenario tree.

In this model we are using benchmark portfolio which should be stochastically
dominated. As we mentioned in section 3.3, the portfolio was generated to reach
the overall minimum demand in our scenario tree and the distribution of power
generators in it is given as ratio of maximal production for that specific power
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time mean std min 25% 50% 75% max
0 67.19 0.00 67.19 67.19 67.19 67.19 67.19
1 70.45 0.03 70.42 70.44 70.45 70.46 70.51
2 73.86 0.22 73.38 73.70 73.85 74.19 74.32
3 77.27 1.12 74.19 76.45 77.23 78.05 80.43
4 80.69 4.87 63.02 77.37 80.66 83.94 97.16

Table 5.4: Mean, standard deviation and quantiles
of predicted market demand in [TWh/year] in reduced scenario tree.

plant over the total production. At each time, this production needs to be fully
covered with allowances. This results in productions which can be seem in table
5.5. Notice that the production of energy using coal is very high in comparison
to base model results.

energy source production
1 23986780864.84
2 30642087128.32
3 14265756258.16
4 941771319.82
5 51771966.62

Table 5.5: Production in each time period for benchmark portfolio.

The expected cash flows under each scenarios of spot prices are given in the
table 5.6. See that the strategy is quite similar to highly risk averse company
in base strategy as it decides to spend significant amount at the beginning and
profit later.

Firstly, we compare the total average energy produced by each type of power

time cash flow
0 -7149653430.0
1 -3633728160.0
2 692723697.0
3 4510751240.0
4 472626978.0

Table 5.6: Cash flows for benchmark portfolio.

plants under the base strategy with λ = 0.9, the benchmark strategy and the
dominating strategy. In figure 5.13 we can see that the benchmark model pro-
duce more energy using coal than the other two models. Stochastically dominat-
ing strategy produces the least energy from coal. In the other types of power
sources, all models performs pretty much similar.
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Figure 5.13: Average Energy produced based on model and energy source.

Dominating strategy is able to stochastically dominate the benchmark one
thanks to using futures. As we can see in graph 5.14, it is the only strategy that
uses them.

Figure 5.14: Allowances purchase for different strategies.

In terms of wealth, we can see in figure 5.16 that the dominating strategy
keeps its cashflows stable over time in contrary to base strategy and benchmark
which both are willing to go to red numbers at the beginning.

This behaviour results in significant difference between the dominating model
and the other two models.

To sum it up, the dominating strategy takes advantage of avoiding using coal
in most of the scenarios which results in lower need of allowances and it also takes
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Figure 5.15: Average amount of cashflows over time

Figure 5.16: Average amount of cashflows in total.

advantage of using futures.

5.4 Model with Utility Function
In this section we want to evaluate the results for model where instead of

mean-risk stochastic problem we are dealing with maximization of expected value
of risk averse utility function which was stated in section 3.4. The model form
was stated in the previous chapter. To evaluate this model, we use the same
reduced scenario tree as for second order stochastic dominance model and so all
details regarding this reduce tree can be found in section 5.3.
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In this model, we can see quite different behaviour in terms of choice of power
plants from which we want to produce the energy. In figure 5.17 we can notice
that actually the company decides to invest into coal power plant in all considered
time periods. Also notice that in comparison to base strategy this results into
less using all other sources.

Figure 5.17: Average Energy produced based on energy source.

As we can see from table 4.3 using of coal will result into need of more al-
lowances as it produces the highest amount of CO2 for 1 kWh production. This
we can observe in figures 5.18 and 5.19 where the company needs significantly
more allowances both from spots and futures in comparison to all previous strate-
gies. Notice also that the amount of spot allowances that are bought on average
in the last time period is very high. The other risk averse strategies from previous
models tried to avoid buying spots in the last time period as the volatility and
the chance that the price will grow is too risky.

In figure 5.20 we can see that all average cash flows are in red numbers which
is only confirmation of what we have mentioned above. To sum it up, it seems
that this model is not that risk averse as the previous ones which results to take
the risk in allowances price development and on average, it does not payoff.
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Figure 5.18: Spot Allowances purchased over time.

Figure 5.19: Average amount of bought futures
allowances based on time period.
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Figure 5.20: Average amount of cashflows over time
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Conclusion
This thesis developed multiple models which reflect risk aversion of company

and should protect the company from undesired loses while still generating suffi-
cient profit.

We have discussed different approaches to modelling risk aversion, we showed
how to generate scenario tree and how to reduce its dimensionality. We also
explained how the market with allowances works and what are the current regu-
lation for energy sector.We explained the multistage stochastic models and how
to use them when working with scenarios.

Then several models were developed and tested in empirical study. The base
model with CVAR limit has shown dependency on the risk aversion level and we
found out that most changes are done in terms of using the coal as power source
and in using futures. Another significant difference was in terms of time period
where the company decides to buy allowances. The chance constraint model
shows that when using simplification in terms of average margin on energy, the
market demand does not play huge role as the chance constraint does not ef-
fect the results. There is possibly space for some further development as we can
make some assumption about how much from each generator will be used and
from which the energy will be left. For second order stochastic dominance model
we had to use scenario reduction. Then we have compared results for similarly
behaving base model, the benchmark model and our stochastically dominating
model. Here again, further test might be run for different benchmark choices. We
might also consider first order stochastic dominance instead of the second order
stochastic dominance.

From this work, several other modifications might be derive. One might use
different risk measure instead of CVAR, e.g. it might be used VAR or stan-
dard deviation or mean absolute deviation. Another modification might be in
terms of using options as financial derivative. Several test regarding the scenario
tree dimensions and differences between reduction techniques can also be nice
enhancement of this work. The power utility function can be replaced with ex-
ponential one, discussed the choice of its parameter and the effect on results and
compared with power utility function.

In conclusion, our suggestion is to use the base model because of this rela-
tively short run time (when compared to the rest of tested models). and easy
risk aversion control with parameter λ.
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