
MASTER THESIS

Bc. Adam Szabó

Low-resource Text Classification

Institute of Formal and Applied Linguistics

Supervisor of the master thesis: RNDr. Milan Straka, Ph.D.

Study programme: Computer Science

Study branch: Artificial Intelligence

Prague 2021

I declare that I carried out this master thesis independently, and only with the
cited sources, literature and other professional sources. It has not been used to
obtain another or the same degree.

I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the
Charles University has the right to conclude a license agreement on the use of this
work as a school work pursuant to Section 60 subsection 1 of the Copyright Act.

In date .
Author’s signature

i

I would like to thank the supervisor of this thesis RNDr. Milan Straka, Ph.D.
for his valuable advice, patience and professional assistance in the elaboration of
this thesis. I would also like to thank Profinit EU s.r.o. for allowing me to work
on this work in their Big Data department and the head of the department, Ing.
Marek Sušický for his expertise. Furthermore, thanks also go to Michal Bláha
for providing the source data needed to create the dataset of contracts. Last but
not least, I thank my parents for their support during my studies.

ii

Title: Low-resource Text Classification

Author: Bc. Adam Szabó

Institute: Institute of Formal and Applied Linguistics

Supervisor: RNDr. Milan Straka, Ph.D., Institute of Formal and Applied Lin-
guistics

Abstract: The aim of the thesis is to evaluate Czech text classification tasks
in the low-resource settings. We introduce three datasets, two of which were
publicly available and one was created partly by us. This dataset is based on
contracts provided by the web platform Hĺıdač Státu. It has most of the data
annotated automatically and only a small part manually. Its distinctive feature
is that it contains long contracts in the Czech language. We achieve outstanding
results with the proposed model on publicly available datasets, which confirms
the sufficient performance of our model. In addition, we performed experimental
measurements of noisy data and of various amounts of data needed to train the
model on these publicly available datasets. On the contracts dataset, we focused
on selecting the right part of each contract and we studied with which part we
can get the best result. We have found that for a dataset that contains some
systematic errors due to automatic annotation, it is more advantageous to use
a shorter but more relevant part of the contract for classification than to take a
longer text from the contract and rely on BERT to learn correctly.

Keywords: text classification, low-resource, BERT

iii

Contents

Introduction 3

1 Theoretical Background 5
1.1 Transformer . 5

1.1.1 Self-Attention . 7
1.1.2 Multihead Attention . 8
1.1.3 Feed Forward Networks . 8
1.1.4 Positional Encoding . 8
1.1.5 Training Procedure . 9

1.2 BERT . 10
1.2.1 Pre-Training . 11
1.2.2 Fine-Tuning . 13
1.2.3 Modifications . 14

2 Datasets 16
2.1 Facebook Dataset . 16
2.2 Czech Text Document Corpus . 18
2.3 Contracts from the Hĺıdač Státu 20

2.3.1 Hĺıdač Státu . 20
2.3.2 Structure of Contracts . 21
2.3.3 Preprocessing the Contract Text 22
2.3.4 Windows Ranges . 23
2.3.5 General Information . 26
2.3.6 Published Version . 32

3 Related Work 35
3.1 Sentiment Classification . 35
3.2 Multi-Label Document Classification 36
3.3 Czert – Czech BERT . 37
3.4 RobeCzech – Czech RoBERTa . 38

4 Training and Results 39
4.1 Metrics . 39

4.1.1 Single-Label Classification 39
4.1.2 Multi-Label Classification 42
4.1.3 k-Fold Cross-Validation . 42

4.2 Our Model . 43
4.2.1 Triangle Schedule . 44

1

4.3 Results . 45
4.3.1 Sentiment Analysis – Facebook Dataset 45
4.3.2 Multi-Label Classification – Czech Text Document Corpus 49
4.3.3 Results on the Contracts Dataset 52

Conclusion 60

Bibliography 62

List of Figures 67

List of Tables 69

List of Abbreviations 70

A Attachments 72
A.1 List of the Categories . 72
A.2 Description of Scripts Used for Creating the Dataset of Contracts. 73
A.3 Description of Scripts for Creating Training Models and Experiments 74

2

Introduction
Nowadays, text classification is an increasingly important part of various systems.
Consider for example spam detection or the increasingly widespread social net-
works and their comments, which are a direct example of sentiment analysis task.
Until recently, similar problems were being solved with methods such as Random
Forest, Support Vector Machines (SVM) [Cortes and Vapnik, 1995] or Maxi-
mum Entropy [Harremoës and Topsøe, 2001]. Research about natural language
processing (NLP) tasks have become even more widespread after the success of
neural networks and has led to the use of deep learning or word embeddings-
based methods. However, in 2018 a new model of language representation called
BERT (Bidirectional Encoder Representations from Transformers) [Devlin et al.,
2018] was presented and has moved almost all the results obtained so far for
NLP to a higher level. Its main difference from the older models is that it was
designed to pre-train deep bidirectional representations from an unlabeled text
by considering both the left and right contexts in all layers [Devlin et al., 2018].
BERT is very easily fine-tuned with only one additional output layer to obtain a
model that overcomes the mentioned older models for NLP tasks. That is why
our goal in this work is to choose the right variant of BERT and fine-tune it well
enough so that we can solve various classification tasks in the Czech language in
the low-resource setting.

Despite the good results of recent years, computers are still struggling with
different language aspects in NLP tasks which are much clearer for humans.
These are, for example, pragmatics, which is formally difficult to characterize,
or linguistic irony, which sometimes makes a problem even for people. Most
of the best results are obtained in popular languages that have very large text
corpora, such as English. There are only a few languages like this, and the rest of
the languages need tools or other resources to overcome this barrier to get good
results in NLP tasks. They are known as low-resource languages and Czech is
one of them.

Our Contribution

In our work, we present the BERT model and the Transformers architecture due
to their use in our model. We use publicly available datasets to determine the
actual performance of our model. The first is a Facebook dataset [Habernal
et al., 2013a], on which we solve the sentiment analysis task and achieve very
good results. Furthermore, we were curious about how powerful our model is,
and we started experimented with amount of training data needed to achieve
similarly good results. We found that to overcome the results on this dataset

3

obtained with older methods such as SVM or Maximum Entropy, we only need
to take a few percents of the training set. To make the task more difficult for
our model, we also replaced certain amount of training and development data by
random incorrect labels.

The second public dataset is the Czech Text Document Corpus, on which we
solve multi-label classification in contrary to the previous dataset solving single-
label classification. The achieved result is to our knowledge the best that has
been measured on this dataset so far. For this reason, we also experimented with
the amount of training data.

These experiments encouraged us to create a third dataset. It is based on a
real problem of the classification of contracts into 105 categories, of which 22 are
the main ones. We obtained the contracts from the Hĺıdač Státu1 web platform,
which automatically classifies these contracts using a keyword method. However,
for this reason it contains only noisy annotations, which contains systematic
classification errors and not random. We further managed to acquire a small
number of manually classified contracts, which form the test set. Since these
contracts are very long documents, mostly in the Czech language, and there is
no similar dataset, we decided to publish it for further experiments. We added
the main categories to the individual contracts in dataset preparation according
to the relevance of the Hĺıdač Státu, and the ranges of the text where there are
the most keywords. A list of keywords that Hĺıdač Státu uses for classification
was also provided to us. We focused on the selection of the amount and the
correct part of the contract, which we present to our model for classification. We
have found that it is not worth using a large amount of text from the contracts
and relying on pre-training the model in this case. The better option is to use a
smaller part of the contract like its subject or the first few hundred tokens of the
contract, which reduces the propagation of systematic errors in our model.

1https://www.hlidacstatu.cz

4

https://www.hlidacstatu.cz

1. Theoretical Background
In this chapter we introduce the pre-trained model, which we use, and its indi-
vidual components. Firstly, we describe the Transformer architecture. It is based
on the mechanism of attention, which completely omits recurrence and convolu-
tions. We describe the essential parts and their operating principle according to
the paper Vaswani et al. [2017]. Secondly, we add more details about the princi-
ple of the operation of Bidirectional Encoder Representations from Transformers
(BERT). The presented principles are mainly based on the paper Devlin et al.
[2018]. If you are familiar with this model, you can safely skip the chapter.

1.1 Transformer

The Transformer architecture is an alternative to a Recurrent Neural Network
(RNN) and also to convolution approaches in sequence representation. For illus-
tration, we have a sequence and either we want to perform sequence-to-sequence
operations to generate another sequence, or we want to represent the elements
of the sequence, or represent the sequence as a whole. Sequential processing of
its elements, as performed by recurrent neural networks, might be too restrictive.
Instead of that, we want to be able to combine sequence elements independently
on their distance. Such processing is allowed in the Transformer architecture,
initially proposed for neural machine translation in Vaswani et al. [2017]. The
foundations are built on the encoder-decoder architecture.

The Figure 1.1 is the main figure in the original paper about Transformer
architecture. Generally, it works very similarly to what originally sequence-to-
sequence architecture did. In the original sequence-to-sequence architecture, we
started with the input sequence. It was processed by the encoder and the encoder
was repeated application of RNN cell. Then we get the decoder in the RNN
architectures. The decoder generated the output sequence which was also passed
on the input but shifted by one. In the decoder we also used RNN cells as the main
architecture and finally, we also used the attention mechanism. The attention
mechanism was used to combine the state of the decoder and the elements from
the encoder. Generally, the Transformer architecture keeps the same overview
settings, but it replaces the RNNs with so-called self-attention.

5

Figure 1.1: Architecture of the Transformer, taken from paper Vaswani et al.
[2017].

In the encoder, the self-attention is followed by a local Feed Forward Network.
In the decoder we use self-attention again, followed by a so-called encoder-decoder
attention, which is like the original attention in machine translation, combining
encoder-decoder representation. They are illustrated in Figure 1.2. As well as
the encoder, the outputs are fed to a feed-forward neural network. The final
linear layer creates the words from a vector of floats produced by the decoder
stack, followed by a softmax layer. The self-attention must attend only to earlier
positions in the output sequence during decoding. This is achieved by masking fu-
ture positions, zeroing their weights out, which is usually implemented by setting
them to −∞ before softmax calculation. We use the self-attention to combine
the value in the sequence and the local feed-forward neural network we use to
perform non-linearities on the individual words.

6

Figure 1.2: Transformer decoder, taken from http://jalammar.github.io/
images/t/Transformer_decoder.png.

1.1.1 Self-Attention

The main goal of self-attention is to allow combining each input word with any
other word in the sequence. We do this by allowing each word to provide three
signs. One sign is the query sign and it represents what a word is searching for.
The other sign, the key sign, indicates what a word is offering. These keys and
queries match together to indicate how much a specific word wants to copy the
information from another. Finally, each word also provides a value sign, which
contain the actual information to be copied (the value that was advertised via
key sign). Concretely, assume that we have the sequence of n words and we
represent those using the input representation matrix X ∈ Rn×d, where d is the
dimension of elements of the input words. We start by computing the so-called
queries Q ∈ Rn×dk , keys K ∈ Rn×dk and values V ∈ Rn×dv from the input word
representation X using a linear transformation as

Q = WQ · X (1.1)
K = WK · X (1.2)
V = WV · X. (1.3)

Then the attention, sometimes called as scaled dot-product attention, can be
computed as

Attention (Q, K, V) = softmax
(︄

QK⊤
√

dk

)︄
V, (1.4)

where d is the dimension of the key vectors.

7

http://jalammar.github.io/images/t/Transformer_decoder.png
http://jalammar.github.io/images/t/Transformer_decoder.png

1.1.2 Multihead Attention

In the self-attention, we choose a single distribution according to which we copy
information. However, performing just one decision where we want to copy the
information from may not be enough. Therefore, we usually extend the self-
attention to a so-called multihead attention, which is illustrated in Figure 1.3.
Instead of using one huge attention, we split queries keys and values into several
groups, compute the attention in each of the groups separately, and concatenate
the results, which are finally passed through a linear transformation.

Figure 1.3: Scaled Dot-Product Attention (left), Multi-Head Attention (right)
consists of several attention layers running in parallel. Taken from paper Vaswani
et al. [2017].

1.1.3 Feed Forward Networks

The self-attention is complemented with a Feed Forward Network layer, which is
fully composed of a connected ReLU layer with four times as many hidden units
as inputs, followed by another fully connected layer without activation.

FFN(x) = ReLU(xW1 + b1)W2 + b2. (1.5)

1.1.4 Positional Encoding

The proposed self-attention layer does not contain any recurrence and any convo-
lution, and therefore it completely ignores word order. Still, the word positions
can naturally be crucial. To make use the order of the sequence in the model,
we need to encode positional information, which was implicit in RNNs. To this
end, Positional Encodings PEs are added to the input embeddings at the be-
ginning of the encoder and decoder stacks. We can obtain PE by using learned

8

embeddings for every position. However, Vaswani et al. [2017] shows how the PEs
can be constructed explicitly using the sine and the cosine functions of different
frequencies:

PE(pos,2i) = sin(pos/10 0002i/d) (1.6)
PE(pos,2+i) = cos(pos/10 0002i/d), (1.7)

where pos is the position and i is the dimension. The PEs have the same dimen-
sion d as the embeddings. Note, that this choice of functions allow the model to
attend to relative positions, since for any fixed k, PEpos+k is a linear function of
PEpos.

1.1.5 Training Procedure

We start by describing Regularization. The dropout is applied everywhere just
before adding the residual connection. Furthermore, the network is regularized
by Label smoothing. For both dropout and Label smoothing, the default weight of
0.1 is used. Note, that using the usual rate of 0.5 for dropout would considerably
decrease the model capacity and hurt performance.

Because the Transformer architecture does not use any recurrent computation,
it allows to train the decoder for all words at the same time. To that end, we
use teacher forcing (the gold labels are used as predictions in the decoder, which
is commonly used in encoder-decoder architectures), and more importantly also
masked attention, which prevents the self-attention and encoder-decoder attention
to attend to later words, which will not be available during prediction. However,
the inference is still sequential.

Training is performed using Adam optimizer [Kingma and Ba, 2014] with
a slightly smaller value for the second momentum decay (β2 = 0.98, smaller
than the default value of 0.999). The learning rate during training decreases
proportionally to the inverse square root of the step number. Furthermore, during
the first warmup steps updates, the learning rate is increasing linearly from zero
to its target value:

1√
dmodel

min
(︄

1√
step num

,
step num

warmup steps
· 1√

warmup steps

)︄
. (1.8)

In the original paper Vaswani et al. [2017], 4000 warmup steps were proposed.

Generally, Transformer provide more powerful sequence-to-sequence architec-
ture and also sequence element representation architecture than RNNs, but usu-
ally requires substantially more data.

9

1.2 BERT

BERT is a shortcut for Bidirectional Encoder Representations from Transformers.
It is a type of language model developed and released by Google in the article
Devlin et al. [2018]. BERT model is based on the Transformer architecture, on
its encoder to be exact. Nowadays, the pre-training approaches are dominating
for generating textual embeddings and word embeddings. The BERT model
computes contextualized representations in a bidirectional way. The concept
of bidirectionality is the main distinguishing feature compared to the previous
model OpenAI GPT [Radford et al., 2018]. It is important but it makes training
difficult.

The BERT model’s input are two so-called sentences. When we say sen-
tences, we do not mean real sentences, but segments of text. The maximum
number of subwords is 512, so these sentences can easily contain hundreds of
words each. The sentences are generally short and this amount of subwords is
sufficient. Representing input words as single tokens has several drawbacks, most
importantly that many words will not be representable. Instead, BERT repre-
sents each word using possibly several subwords, which allows each word to be
represented. Specifically, BERT uses the WordPiece approach [Wu et al., 2016]
for constructing the subword dictionary. Furthermore, when we mention tokens
in the context of BERT, we mean subwords.

The first token is a special CLS (classification) token, which is added to the
beginning of sentences when they are given to BERT and a SEP (separation)
token ends every sentence. Additionally, a trainable embedding indicates if a
token belongs to sentence A (inclusively up to its SEP token) or sentence B, it
is illustrated on Figure 1.4. When BERT is applied on a down-stream task, it is
pre-trained on raw text and then fine-tuned on the supervised task data.

Figure 1.4: Pre-training procedures for BERT. Taken from Devlin et al. [2018].

10

1.2.1 Pre-Training

The pre-training itself is performed on English on a union of two corpora. The
first is English BookCorpus containing 800 million words and the second one
is English Wikipedia with 2.5 billion words. Totally is just slightly more than
3 billion words. The WordPieces vocabulary with 30 thousands word pieces is
used. During pre-training, quite large batches are used. Each batch contains 256
sequences and each sequence contains two sentences with a total length of 512
subwords. All together there are 128 thousands tokens per batch which is a really
large value. Adam is usually used with learning rate 1e-4 and with linear learning
rate warmup for the first 10 thousands steps but without decay. The network
is trained for 1 million updates and weight decay of 0.01 is used. Similar to the
Transformer architecture dropout of 10% is used on all layers, but the Gaussian
Error Linear Units (GELU) activation is used instead of Rectified Linear Unit
(ReLU). Because the self-attention has quadratic complexity, longer sequences
are more expensive than shorter ones. Therefore, in order to the training be
more efficient, first 90% of the pre-training is performed on sequences of length
128 and only the last 10% use sequences of length 512.

GELU

Following OpenAI GPT [Radford et al., 2018], the BERT model uses GELU
activation. To describe the GELU activation, first consider the ReLU activation
function: if the input is positive, it is multiplied by one, and if the input is
negative, it is multiplied by zero. Dropout actually follows a similar scheme,
either multiplying the input by zero or one, but independently on the input
value, in a stochastic way.

Both these approaches are merged in GELU, where the input value x is mul-
tiplied by m∼Bernoulli(Φ(x)), where Φ(x) = P (x′ ≤ x) for x′∼N (0, 1) is the
cumulative density function of the standard normal distribution. The GELUs
compute the expectation of this value:

GELU(x) = x · Φ(x) + 0 · (1 − Φ(x)) = xΦ(x). (1.9)

BERT model size variants:

• base with 12 layers as seen on Figure 1.5, 12 attention head and hidden size
768, contains more than 110 million parameters total,

• large with 24 layers, 16 attention heads and hidden size 1024, contains more
than 340 million parameters total.

11

Figure 1.5: BERT encoders input, taken from http://jalammar.github.io/
images/bert-encoders-input.png.

To pre-train the BERT model, we do not use two independent left-to-right or
right-to-left language models like Peters et al. [2018] and Radford et al. [2018].
Instead, to pre-train the BERT model we actually combine two objectives. First
is the so-called masked language model, and second is the next sentence prediction.

Masked Language Model
We want to perform the computation in a bidirectional way, so we cannot just
perform language modeling. Language modeling allows us to observe or depend
only on words which we have generated. However, we would like the computation
to also depend on the right context. This means that you can attend to anywhere
in the sentence and you can also attend to yourself. So you can try to predict
the current value copied from the input.

To overcome the problems of a language model approach, the Masked language
model was proposed. In this model, for each sentence we randomly select 15% of
the input words which are masked, and the model tries to predict them. We have
not given the input to the model, and we want to predict them. The problem
is that during inference, we do not want to use any mask and therefore we need
to do it carefully. The 80% of those 15% of the input words are replaced by a
special [MASK] token. However, we need to be prepared for the inference; that’s
why 10% are replaced by a random word. This means the model will encounter a
situation where it needs to compute something which is not masked. The word is
replaced by a random word and because the model needs to consider not believing
the word on input. The last 10% of those 15% are left intact. These we want to
use during prediction when we want to compute representation for every word in
input.

12

http://jalammar.github.io/images/bert-encoders-input.png
http://jalammar.github.io/images/bert-encoders-input.png

Next Sentence Prediction
The goal is to motivate the model to understand the meaning of whole sentences.
One way how to do it can be to classify whether two masked sentences mean
the same or not. On the Figure 1.4 are these sentences shown as sentence A and
sentence B, where A is the paraphrase of B. However, we do not have any data for
such a task, just for the plain text, so instead of solving the paraphrase detection,
Devlin et al. [2018] propose to solve the next sentence prediction problem instead.
The model tries to predict whether the second sentence followed the first one in
the raw corpus. In the training data, 50% of the time the second sentence is the
actual next sentence, and the gold label is true. The remaining 50% of the time,
the second sentence is a random sentence from the corpus and the gold label is
false.

1.2.2 Fine-Tuning

Performing the fine-tuning is actually quite simple. Dropout 0.1 is usually fixed,
small number of epochs (2-4) is usually sufficient and a good learning rate is
usually one of 5e-5, 3e-5, 2e-5. The fine-tuning is straightforward since the pre-
trained BERT model, as described previously, can be fine-tuned on a range of
tasks showed on the Figure 1.6.

Figure 1.6: Showing of fine-tuning BERT on individual tasks. (a) Sentence pair
classification problem, input sentence pairs and output classification labels. (b)
Single sentence classification problem, input sentence, output sentence category.
(c) SQuAD question, find out a few words corresponding to a question from a
paragraph. (d) Sequence labeling problem, labeling each word in a sentence.
Taken from paper Devlin et al. [2018], Figure 4.

13

1.2.3 Modifications

BERT has many different variants and in this section we mention the most es-
sential ones.

mBERT

The multilingual BERT is pre-trained on 102-104 largest Wikipedias, including
the Czech one. Currently are two versions available, the first is the multilingual
cased, which has WordPieces including case and diacritics, and the second is the
multilingual uncased, which has all subwords in lower case and without diacritics.
Surprising is, that even for languages that have only a small percentage of the
training data, it actually works very well. To clarify, only one percent of training
data is in the multilingual BERT for Czech language.

The advantage is that without any explicit supervision, mBERT is able to
represent more than one hundred input languages in a shared space. In the
sentence, mBERT understands that the word dog and the word pes are with the
same meaning without seeing any specific dictionary or any specific information
in the training data. This representation of multilingual language in the same
shared space allows us to perform so-called cross-lingual transfer.

The results of the MultiLingual Question Answering (MLQA) dataset for the
reading comprehension task are published in the paper Lewis et al. [2019], where
a question and an answer needs to be located in the paragraph. Data are available
in 7 different languages. Training the model in English and then running it on
an other different language works comparably to translating the data to English
and then back.

RoBERTa

The RoBERTa model, Robustly optimized BERT approach, was firstly intro-
duced in Liu et al. [2019b].

The next sentence prediction [1.2.1] was originally hypothesized to be an im-
portant factor during training of the BERT model, as indicated by ablation ex-
periments from Devlin et al. [2018]. Later experiments indicated that removing
the next sentence prediction might improve the results. The RoBERTa authors
performed the following experiments:

• Segment-pair: pair of segments with the most 512 tokens in total.

• Sentence-pair: pair of natural sentences, usually significantly shorter than
512 tokens.

• Full-sentences: just one segment on input with 512 tokens, can cross doc-
ument boundary.

14

• Doc-sentences: just one segment on input with 512 tokens, cannot cross
document boundary.

The results of individual experiments are summarized in Table 2 in the paper Liu
et al. [2019b], where we can see the full-sentences approach is pretty good. For
that reason, RoBERTa is trained with dynamic masking full-sentences without
next sentence prediction with 8 thousands minibatches and byte-level BPE (Byte-
Pair Encoding) with 50 thousands subwords.

ALBERT

The ALBERT, A Lite BERT model was proposed in the paper Lan et al. [2019],
with small size of the model in mind. The authors consider three main contribu-
tions to achieve smaller size:

• Factorized embedding parametrization: The authors proposed to rep-
resent the subwords using just embeddings of size E and then using a matrix
of size E × H to generate the corectly-sized embeddings for the first layer.
Originally, in BERT, the subword embeddings had the hidden size dimen-
sion H which resulted into a quite large number of parameters.

• Cross-layer parameter sharing: The parameters of the soft-attention
and the FFN are shared across layers to improve parameter efficiency.

• Sentence order prediction: It is an alternative to next sentence pre-
diction. Is considered to have given two consecutive segments and predict
which one appeared first in the original document.

We recommend to read the original paper Lan et al. [2019] for more details. You
can also find the specific configurations for different versions in Table 1 in the
same paper.

15

2. Datasets
In this chapter, we introduce the datasets used by us. We focus on their origin,
basic statistics and properties. The main difference between them is the length
of their texts. On the other hand, they are all in Czech language. The first two
datasets we use in almost the same form as they are published in the papers
Habernal et al. [2013b] and Král and Lenc [2017]. The third dataset is the most
interesting, because the form we use has not been published anywhere, and is
partly created by us.

2.1 Facebook Dataset

The Facebook dataset was published in 2013 in the paper Habernal et al. [2013b].
As the name suggests, it contains posts from the social network Facebook, espe-
cially from the Czech pages, which have the largest fan base. Individual posts
(10 000) were randomly selected from nine Facebook pages and, of course, they
were anonymized because only text content is used. The pages and their corre-
sponding number of posts are shown in Figure 2.1. The dataset contains 2 587
positive, 5 174 neutral, 1 991 negative and 248 bipolar posts. Bipolar posts will
not be used just like the authors of the paper Habernal et al. [2013b], where they
mention that bipolar posts are completely omitted from all experiments.

In the Figure 2.1 we can also see that the negative posts mainly relate to
pages of telecommunication companies and the positive posts are related only to
perfume or ZOO pages.

Figure 2.1: Sentiment distribution, from paper Habernal et al. [2013b], Figure 1.

16

p n 0
Labels

0
5

10
15
20
25
30
35
40
45
50
55
60
65

Nu
m

be
r o

f t
ok

en
s

mean
median

Figure 2.2: Facebook dataset statistics, distribution posts per labels.

Figure 2.2 shows posts per labels statistics, and we can see that the longest
posts contain 51 to 62 tokens, and that there are just a few of them. On average
are the longest posts negative. The lengths are also symmetrically distributed
for these negative posts because the median is almost equal to the average. On
the contrary, on average are the shortest posts positive. We can also see that the
shortest posts (6 tokens) are present in all labels.

Almost half of the posts are posts with the length of 10 to 18 tokens. Only a
few posts are longer than 45 tokens, as shown in Figure 2.3, where the numbers
of posts for each length are presented.

0 5 10 15 20 25 30 35 40 45 50 55 60 65
Number of tokens in posts

100

101

102

Nu
m

be
r o

f p
os

ts
 (l

og
)

Figure 2.3: Facebook dataset, lengths of posts.

17

2.2 Czech Text Document Corpus

The Czech Text Document Corpus v 2.0 consists of text documents provided by
the Czech News Agency (ČTK) in Czech language. The corpus was published in
2018 in the paper Král and Lenc [2017] and is available at http://ctdc.kiv.
zcu.cz/. Although its basic version 1.0 is from 2013 Hrala and Král [2013], we
mention the properties and statistics from version 2.0 Král and Lenc [2017], which
we use. The train set is the same in both versions. It is intended mostly for the
automatic classification of documents and is available for research purposes. The
main purpose of using this corpus is direct comparison of different approaches to
document classification on Czech data. One document is usually labelled with
more than a single label, so the corpus can be used for evaluation of multi-label
document classification approaches.

1 2 3 4 5 6 7 8
Number of labels

0

500

1000

1500

2000

2500

3000

3500

4000

Do
cu

m
en

ts

2693

3821

2723

1837

656

183
41 1

Figure 2.4: Distribution of documents depending on the number of labels, from
paper Král and Lenc [2017], Figure 1.

Documents belong to various categories, such as politics (pol), criminality
and law (zak), companies (efm). The whole list of categories is shown in Ap-
pendix A.1. One or more categories are assigned to each document. Figure 2.4
shows the distribution of documents depending on the number of labels. We can
see that most documents have two categories and that up to 8 categories can be
assigned to one document. The average number of categories for one document
is 2.55. Total number of categories is 60 of which just 37 most frequent are used
for classification. On Figure 2.5 we can see the distribution of all 60 categories,
where the categories used for classification are marked in orange, and the unused
categories are marked in blue. The authors of paper Král and Lenc [2017] state,
that the reason for reduction of the number of categories is to keep only the
classes with a sufficient number of occurrences for model training.

18

http://ctdc.kiv.zcu.cz/
http://ctdc.kiv.zcu.cz/

po
l

za
k

po
d

ef
m sp
o

m
ag fo

r
ku

l
dp

r
zd

r
m

ak slz sp
l

st
a

en
e

bu
r

ek
l

m
et fin ob
o

de
n pi
t

eu
r

od
b st
r

so
p

ze
m tu
r

sk
o

au
t

bu
p

m
ix pr
g

su
r

m
ed ho

k pt
r

fo
t

bu
k

ch
e

bu
a

na
b

pl
a

bo
s

pr
m tlk va
t

ka
t

slo m
ot dr
e

to
k

ek
o

hu
t

za
h

re
g

ce
n

zb
r

bs
k

sp
c

Categories

0

500

1000

1500

2000

2500

3000

Co
un

t

Figure 2.5: Distribution of categories. The most frequent ones are shown in
orange, other in blue.

The main part of the corpus (Train) contains 11 955 documents and is in-
tended primarily for training and testing. The development set with additional
2 735 documents is also provided and intended for tuning hyperparameters of the
created models. Furthermore, in version 2.0 an annotation on the morphological
layer was added. On the Figure 2.6 we can see the length distribution of the
individual documents. Blue bars reflect the length of documents depending on
the number of words, orange bars reflect it depending on the number of tokens
in the document. The orange bars are more important for our work due to the
length restriction of BERT. Generally, the documents are quite long, they con-
tain on average 255 words. An interesting observation is that more than 2 000
documents contain at most 50 words. The corpus contains a total of 3 505 965
words, of which 50 899 are unique words, and 82 986 are unique lemmas.

0 500 1000 1500 2000
Document lenghts (words/tokens)

100

101

102

103

Nu
m

be
r o

f d
oc

um
en

ts
 (l

og
)

words
tokens

Figure 2.6: Distribution of the document lengths.

19

2.3 Contracts from the Hĺıdač Státu

The mentioned datasets, whether Facebook or Czech Text Document Corpus,
both fit into one BERT window of 512 tokens, except for a negligible number
of documents. The motivation to create a new dataset is, that according to our
knowledge, there is no Czech public dataset focused on long texts suitable for
low-resource text classification. Utilizing the work of Maroušek [2020], who au-
tomatically classified contracts for Hĺıdač státu1 in his Master thesis, we create a
dataset from the publicly available contracts, annotated with the existing anno-
tation pipeline of Maroušek. The process of obtaining and creating a dataset is
shown in Figure 2.7.

API

Contracts

Edits the plain text of
the contract

Keywords

Windows
ranges

Final Contract

Plain text content

Windows ranges

Metadata and
category

Morphodita model

RobeCzech tokenizer

List of unique
keywords

Text

ClickCharts © NCH Software
Free version. Non professional Use Only.
Purchase Upgrade to Professional Version to Remove.

Figure 2.7: Scheme for obtaining final contracts.

2.3.1 Hĺıdač Státu

The Hĺıdač Státu project was created in 2016 to unite two original projects,
HlidacSmluv.cz and HlidacEET.cz. Its founder and director is Michal Bláha.2

The objectives of the Hĺıdač Státu are:3

• to make information available about the management of the state and the
self-government clearly and comprehensibly,

• to connect and show the mutual relations between state contracts, public
procurement, companies and companies with each other, subsidies, sponsors

1https://www.hlidacstatu.cz
2https://www.michalblaha.cz/o-mne/
3https://texty.hlidacstatu.cz/o-serveru/

20

https://www.hlidacstatu.cz
https://www.michalblaha.cz/o-mne/
https://texty.hlidacstatu.cz/o-serveru/

of political parties and politics,

• to analyze and to allow the public analyze and look at the data of public
database,

• to increase the control of public funds by the citizen,

• to identify the waste and abuse of power in the organs.

The first step was to download the individual contracts using the REST API
HlidacStatu V2.1.1.4 For each area, we obtained the contract IDs according to
their relevance by using the syntax available as a search help.5 The relevance of
the contracts was determined by the Hĺıdač Státu in its search. We downloaded
the first 1 000 contracts for each area, if it was possible. Some areas did not
contain so many contracts, so in that case, we downloaded them all. The Hĺıdač
Státu divided contracts into 105 areas at the time we were downloading them.
This number has not changed, to our knowledge, while we have been working
on this thesis. Therefore, the total number of categories is 105, 22 of them we
identify as main categories (Table 2.2) and the rest as their subcategories. The
list of categories can be found at the end of this chapter in Table 2.3.

Maroušek [2020] in its classification, which is now used by the Hĺıdač Státu
as a method of keywords, used the specific list of keywords for each area. The
lists contain n-grams for n up to 3. The files of these keywords were provided
by Hĺıdač Státu. We use the list of key n-grams, ignoring the categories, which
was created by combining these files into one and deleting duplicates. The list of
unique keywords contains 49,437 words/n-grams.

2.3.2 Structure of Contracts

Each contract contains a heading that consists of metadata about the contract
and attachments. There may be several attachments, which are files with the
text of the contract. The heading contains two identifiers. One is unique for each
contract record, we call it the identifier of version, and the second is common
to those records that relate to a single contract, we call it the identifier of the
contract. Other mandatory heading parts are just the subject and the date of
conclusion of the contract. Items as the value of the contract or identification of
the contracting parties may be empty in eligible cases. The values of contracts
are listed with VAT and without VAT, and can be displayed in Czech crowns
and also in foreign currency. The contract record structure with UML schema is
shown in the Figure 2.8.

4https://www.hlidacstatu.cz/api/v2/swagger/index
5https://www.hlidacstatu.cz/napoveda

21

https://www.hlidacstatu.cz/api/v2/swagger/index
https://www.hlidacstatu.cz/napoveda

Contract

Subject nonEmptyString
Closing date Date
Contract number Optional[string]
Approved Optional[string]

Header
Name of File String
Hash String
Content String

Attachment

ID data boxes Optional[string]
Name of the subject nonEmptyString
Contract number Optional[string]
Address Optional[string]
Department Optional[string]
Payer/payee Optional[bool]
 true = payer, false = payee

Contracting party

Amount without VAT Decimal
amount with VAT Decimal
Currency String

Value

Linked record

1..*

1..*

0..*

0..*

1 1

1 1

1

0..*

ClickCharts © NCH Software
Free version. Non professional Use Only.
Purchase Upgrade to Professional Version to Remove.

Figure 2.8: Illustrative UML schema of the contract.

In the record, which contains the information about the contracting parties,
it is sufficient if only one contracting party is listed for each contract, it is a
public institution, to which the contract concerns. All other items, such as entity
number, address and data box, may not be shown because they are optional.
Using a linked list, each contract may be associated with other contracts, when
they are related. The text of the contract has to be attached in each attachment
or at least electronic image of the text content of the contract in an open and
machine-readable format Maroušek [2020].

2.3.3 Preprocessing the Contract Text

Our approach to preprocessing was very careful, we only removed what was re-
ally unnecessary. The text content of contracts was previously described in the
subsection 2.3.2, so we know, that it consists of:

• Metadata

• Name and address of the orderer

• Name and address of contractors

• Subject of the contract

• Attachments

For the diversity of future dataset application, we did not decide to combine
all parts into one, but rather to keep them as a separate text parts. We only
connect the attachments into one text part and we perform just a small edit.
In the whole part, we converted all named and numeric characters in the string

22

(e.g., >, >, >, ...) with the use of html.escape() to the corresponding
Unicode characters (Python SW Foundation6).

When we were examining individual parts of the attachments, we found that
they contain quite a lot of continuous strings formed with a single repeated char-
acter. For example, personal data (e.g. a phone number, ...) or similar sensitive
data are anonymized using strings such as ”XXXX” or ”.......” in the text part
of the attachment. These characters like ”X” or ”.” do not generate any word
nor any other important unit in any length, so we decided to simplify them into
a single character: ”XXXXX” → ”X”. We performed this operation to strings
with at least 3 repeated characters. Therefore, ”AA” remains ”AA”, but ”AAA”
we replace with ”A”. We chose to leave at least one character, because it may be
a separation of important text parts in some cases. To further reduce the total
length of the attachment and to normalize them, we also merged several contin-
uous spaces into a single one. We remind that any modification was very careful,
because our goal was to reduce the text part without losing anything important.

2.3.4 Windows Ranges

Our goal was to obtain sufficiently short sections of the contracts, using the men-
tioned list of keywords, to determine to which category the contract belongs. By
short section we mean a maximum of 512 tokens, in order to fit into one section
into the BERT model. Our approach is to use such sections, which contain the
most keywords. We assume such segments would contain the most information
regarding the meaning. The process of creation of these sections is shown in
Figure 2.9 and is described in the next part of the chapter. We first explain the
tools used by ÚFAL, and then a method of selecting the best sections of the con-
tracts, in order to concentrate the contained keywords in the middle of the section.

6https://docs.python.org/3/library/html

23

https://docs.python.org/3/library/html

Lemmatizer

create lemmas
and n-grams

array(start, end)
of lemmas/n-grams

Check keywords

list of words

Word index

list of subwords length
(tokens)

Subwords

list of the best ranges

Get windows

Size and count of windows

Keywords

Morphodita model

Plain text of contract

RobeCzech tokenizer

Requirements

ClickCharts © NCH Software
Free version. Non professional Use Only.
Purchase Upgrade to Professional Version to Remove.

Figure 2.9: Scheme for obtaining windows ranges of the individual contracts.

Lemmatizer

To create lemmas, we use an open-source tool Morphological Dictionary and
Tagger (MorphoDiTa) developed by ÚFAL. It is used for morphological analysis
of natural language texts, performs morphological analysis with lemmatization,
morphological generation, tagging and tokenization. It is distributed as a tool
or library with trained linguistic models. MorphoDiTa achieved state-of-the-
art results with a throughput around 10-200K words per second Straková et al.
[2014] in the Czech language in the year of the article’s publication. Nowadays,
the LemmaTag system Kondratyuk et al. [2018] using RNNs in lemmatization
achieves better results in Czech, but we prefered to use MorphoDiTa, mainly
because it is easy to use.

In lemmatization of the contract, we detected word types using MorphoDiTa,
and we made the same filtering as Hĺıdač Státu does, when it searches for the
keywords. Specifically, we create lemmas only from nouns, adjectives, verbs and
adverbs. Other word types, such as numbers, we replaced with None in lemmati-
zation. We chose this filtering, because the n-grams were formed with these word
types in the list of keywords.

We did not use any available tool to create the n-grams from lemmatized
words, but we implemented it ourselves because it is a straightforward and a
simple process. When we say n-gram we mean meta-words consisting of n con-
secutive words from a given sequence. For a simple example, let’s say that in
our contract is the phrase červené auto (red car), using lemmatization we get
first lemma červené (red), the second lemma auto (car) and by creating n-grams
we get also the 2-gram červené=auto (red=car). When increasing n in the for-
mation of n-grams, we do not lose any information but on the contrary we gain
new. In our case, we created a maximum of 3-grams, as the list of keywords
did not contain longer n-grams than 3-grams. We decided to create the n-grams

24

only from words that are close to each other in the original text of the contracts,
and are not separated by any filtered word type, just like Maroušek [2020]. We
did this mainly for consistency and to avoid the formation of unnecessarily big
amount of n-grams. For example, from the phrase Pěkný, Rychlý a Drahý (Nice,
Fast and Expensive) we created a 2-gram Pěkný=Rychlý (Nice=Fast), but not
the Rychlý=Drahý (Fast=Expensive).

Check Keywords

Let’s remember that using MorphoDiTa, we return the lemma for each word,
and also the range of the lemma. The Check keywords function compares the
keywords with lemmas obtained from the text of contracts and if finds a match
between them, saving the range (start and end position) of the lemma. This
serves as an information, where exactly in the text of the contract an important
word or n-gram is located.

Length of Words

The Word Index function is simple but very important function, which cuts
the entire text of a contract into individual words. Then we further process
these words using the Subwords function by running the RobeCzech tokenizer,7

a RoBERTa-like tokenizer trained solely on Czech texts, obtaining for each word
an array of tokens (without the special tokens like CLS or SEP). We get an array
of tokens for each word after tokenizing. The length of the array corresponds to
the length of word, which is the number of tokens in the array. For example, for
the word ministerstvo (ministry) we get tokens [29506 568 6633], so the length
of word is 3.

Windows

To get the windows we use everything we have already gained, such as the list
of lemmas, the list of their lengths, and the exact location of keywords in the
text of the contract. All of that is used to obtain the potentially best part of the
contract, we hope is the most useful information to help us with the classification.
The process begins with the gradual expansion of the sliding window from the
first position to the required size specified by the maximum number of tokens.
The tokens in the window are represented as a logical mask (1 – keyword, 0 – not
keyword) in window. In practice, this is done by checking the array containing
the lengths of the words and the list of keyword locations in the text. We choose
the window that contains the most keywords. If there is a tie, we decide on
the window that has the most central located keywords. This means that the

7https://huggingface.co/ufal/robeczech-base

25

https://huggingface.co/ufal/robeczech-base

margins should be as large as possible to capture as much context as possible.
Furthermore, we return the N best windows to provide BERT with multiple
segments to process. Once the best window is found, the keywords inside are
deleted and searched again until N windows are found. In our case we return 5
windows with a size of 300 tokens for each contract. If the contract is shorter,
we return the total number of possible windows. We chose the size of 300 tokens
for the following reasons:

• efficiency (if we do not fill BERT with the maximum number of tokens
(512), we can increase the batch size in our configuration),

• reserve (we have the option to add some text to each window).

We complete the whole process of preparing contracts (see the Figure 2.7) by
adding the following information to each contract:

• Label: category of the contract,

• PlainTextContent: text of the contract,

• WindowsRange: list of windows ranges.

2.3.5 General Information

The complete dataset contains a total of 97 493 contracts. First, we downloaded
1 000 contracts for each of 105 categories, if it was possible. These categories are
all shown in Table 2.3, where we show the specific label for each category like the
Hĺıdač Státu. In total, we obtained 96 469 contracts. Then we randomly took
10% from each category, 9 646 contracts, for the develop set, and the remaining
86 823 contracts are the train set. Therefore, the created dataset has balanced
numbers of classes in train and develop set, and thus it does not represent the real
number of contracts in individual categories in the Hĺıdač Státu. Furthermore,
they are very noisy for both train and develop set, so when we try to evaluate the
system, we do not want to achieve 100% because it will not be the best system.
A 100% system would make the same mistakes as the original, which is based on
the keyword method.

Furthermore, we asked the director of Hĺıdač Státu to record the requests
from users for changing the contract category. From these records we created the
test set. In the period from 29 April 2020 to 26 April 2021, 1 024 requests were
recorded, and they form the test set.

26

Name of set Number

Train 86 823
Development 9 646
Test 1 024

Overall 97 493

Table 2.1: Distribution of contracts according to individual sets.

The 22 main categories, marked in Table 2.3, contain contracts that the Hĺıdač
Státu could not categorize more deeply in the main category. In following graphs,
that show the distribution of contracts in the sets, only the main categories are
shown, but they are created from all contracts in main categories and also in
their subcategories. Showing all 105 categories in graphs would be too much and
not clear enough. For a better view, we show the Table 2.2, which contains the
names of main categories in English and also in Czech.

27

Label Name of category (en) Name of category (cz)

0 Other Ostatńı
10000 IT IT
10100 Civil engineering Stavebnictv́ı
10200 Transport and postal services Doprava a poštovńı služby
10300 Machinery and equipment Stroje a zař́ızeńı
10400 Telco Telco
10500 Healthcare Zdravotnictv́ı
10600 Water and food Voda a potraviny
10700 Safety and protective equipment Bezpeč. a ochranné vybaveńı
10800 Natural resources Př́ırodńı zdroje
10900 Energy Energie
11000 Agriculture Zemědělstv́ı
11100 Office Kancelář
11200 Crafts Řemesla
11300 Social services Sociálńı služby
11400 Finance Finance
11500 Legal and real estate services Právńı a realitńı služby
11600 Technical services Technické služby
11700 Science, research and development Věda, výzkum a vývoj
11800 Advertising and marketing services Reklamńı a marketing. služby
11900 Other services Jiné služby
12000 Donations and subsidies Dary a dotace

Table 2.2: Table of main categories.

The following graphs show a few features of the training set. Figure 2.10
shows the number of contracts in main categories. The more subcategories are
in the main category, the more contracts the main category contains. The Other
category contains only one contract in the training set. In the Figure 2.11 we can
clearly see that the contracts are evenly distributed relative to the categories. The
average and the median of contracts in the categories remain at one level except
for slight fluctuations. This graph further shows the boxplot from which it can
be seen, that the contracts are even also in the 4th quartile and that the longest
contract is in the category Transport and postal services. Figure 2.12 shows the
histogram of contracts and we can see that is quite normal with respect to the
length of contracts.

28

Othe
r IT

Civ
il e

ng
ine

eri
ng

Tra
ns

po
rt a

nd
 po

sta
l se

rvi
ce

s

Mac
hin

ery
 an

d e
qu

ipm
en

t
Te

lco

Hea
lth

ca
re

Wate
r a

nd
 fo

od

Sa
fet

y a
nd

 pr
ote

cti
ve

 eq
uip

men
t

Natu
ral

 re
sou

rce
s

En
erg

y

Ag
ric

ult
ure

Offic
e
Cra

fts

So
cia

l se
rvi

ce
s

Fin
an

ce

Le
ga

l a
nd

 re
al

est
ate

 se
rvi

ce
s

Te
ch

nic
al

ser
vic

es

Sc
ien

ce
, re

sea
rch

 an
d d

ev
elo

pm
en

t

Ad
ve

rtis
ing

 an
d m

ark
eti

ng
 se

rvi
ce

s

Othe
r s

erv
ice

s

Don
ati

on
s a

nd
 su

bs
idi

es

Main categories

0

1000

2000

3000

4000

5000

6000

7000

8000

Nu
m

be
r o

f c
on

tr
ac

ts

1

70847130

7941

3591

2684

6030

2059

3824

2434

5014

2706

6650

3513

4815

3654

4503

3248

908 900

7223

911

Figure 2.10: Distribution of number of contracts in main categories – Train set.

Othe
r IT

Civ
il e

ng
ine

eri
ng

Tra
ns

po
rt a

nd
 po

sta
l se

rvi
ce

s

Mac
hin

ery
 an

d e
qu

ipm
en

t
Te

lco

Hea
lth

ca
re

Wate
r a

nd
 fo

od

Sa
fet

y a
nd

 pr
ote

cti
ve

 eq
uip

men
t

Natu
ral

 re
sou

rce
s

En
erg

y

Ag
ric

ult
ure

Offic
e

Cra
fts

So
cia

l se
rvi

ce
s

Fin
an

ce

Le
ga

l a
nd

 re
al

est
ate

 se
rvi

ce
s

Te
ch

nic
al

ser
vic

es

Sc
ien

ce
, re

sea
rch

 an
d d

ev
elo

pm
en

t

Ad
ve

rtis
ing

 an
d m

ark
eti

ng
 se

rvi
ce

s

Othe
r s

erv
ice

s

Don
ati

on
s a

nd
 su

bs
idi

es

Main categories

101

102

103

104

105

106

107

Nu
m

be
r o

f t
ok

en
s

(lo
g)

mean
median

Figure 2.11: Distribution of contracts per categories – Train set.

29

2 3 4 5 6 7
Length of contracts (log10)

100

101

102

103

Nu
m

be
r o

f c
on

tra
ct

s (
lo

g)

Figure 2.12: Histogram of contracts – Train set.

The following graphs show the information about the test set. In Figure 2.13
we can see that the number of contracts in each category is uneven. These
contracts are those that have been misclassified and then corrected by users. It is
surprising that only one main category Natural resources has no representation.
Furthermore, we can see that the most contracts were collected from the Office
category, and that in categories such as Water and food, Agriculture, Crafts and
Science, research and development there are only a few contracts.

Othe
r IT

Civ
il e

ng
ine

eri
ng

Tra
ns

po
rt a

nd
 po

sta
l se

rvi
ce

s

Mac
hin

ery
 an

d e
qu

ipm
en

t
Te

lco

Hea
lth

ca
re

Wate
r a

nd
 fo

od

Sa
fet

y a
nd

 pr
ote

cti
ve

 eq
uip

men
t

Natu
ral

 re
sou

rce
s

En
erg

y

Ag
ric

ult
ure

Offic
e
Cra

fts

So
cia

l se
rvi

ce
s

Fin
an

ce

Le
ga

l a
nd

 re
al

est
ate

 se
rvi

ce
s

Te
ch

nic
al

ser
vic

es

Sc
ien

ce
, re

sea
rch

 an
d d

ev
elo

pm
en

t

Ad
ve

rtis
ing

 an
d m

ark
eti

ng
 se

rvi
ce

s

Othe
r s

erv
ice

s

Don
ati

on
s a

nd
 su

bs
idi

es

Main categories

0

50

100

150

200

250

Nu
m

be
r o

f c
on

tr
ac

ts

11

63 71 74

11 15

47

4
13

0

69

9

239

4

33

108

22

63

9

31

65 63

Figure 2.13: Distribution of number of contracts in main categories – Test set.

30

Figure 2.14 shows that on average the longest contracts are in the Machinery
and equipment category. It is caused by only two very long contracts of identical
length, which are contained in this category. In general, contracts are not as
evenly distributed as in the training set. This is probably due to their specific
choice and the small number of contracts in each category.

Othe
r IT

Civ
il e

ng
ine

eri
ng

Tra
ns

po
rt a

nd
 po

sta
l se

rvi
ce

s

Mac
hin

ery
 an

d e
qu

ipm
en

t
Te

lco

Hea
lth

ca
re

Wate
r a

nd
 fo

od

Sa
fet

y a
nd

 pr
ote

cti
ve

 eq
uip

men
t

Natu
ral

 re
sou

rce
s

En
erg

y

Ag
ric

ult
ure

Offic
e

Cra
fts

So
cia

l se
rvi

ce
s

Fin
an

ce

Le
ga

l a
nd

 re
al

est
ate

 se
rvi

ce
s

Te
ch

nic
al

ser
vic

es

Sc
ien

ce
, re

sea
rch

 an
d d

ev
elo

pm
en

t

Ad
ve

rtis
ing

 an
d m

ark
eti

ng
 se

rvi
ce

s

Othe
r s

erv
ice

s

Don
ati

on
s a

nd
 su

bs
idi

es

Main categories

102

103

104

105

106

107

Nu
m

be
r o

f t
ok

en
s

(lo
g)

mean
median

Figure 2.14: Distribution of contracts per categories – Test set.

2 3 4 5 6 7
Length of contracts (log10)

100

101

Nu
m

be
r o

f c
on

tra
ct

s (
lo

g)

Figure 2.15: Histogram of contracts – Test set.

In the histogram, which is shown in Figure 2.15, we can clearly see long
contracts in the mentioned Machinery and equipment category. The dominant

31

peak represents 37 contracts with a length of 33 636 tokens. However, despite
these few fluctuations, the histogram tends to have a normal distribution.

The reason why we did not present any specific graphs about the develop set
is because they would be similar to those about the training set. As a proof,
we attach the graph for Cumulative Distribution Function (CDF) for all sets in
Figure 2.16. In this graph, we can see from CDF of all three sets (Train, Develop
and Test set) that they have a normal distribution and that the develop curve
copies the training curve.

101 102 103 104 105 106 107

Length of contracts - number of tokens (log)

0.0

0.2

0.4

0.6

0.8

1.0

p

Train
Develop
Test

Figure 2.16: Cumulative distribution functions for all sets.

2.3.6 Published Version

Due to the fact that we will evaluate the classification models of the contracts
on this dataset, it is advantageous to have a permanently publicly available and
citable collection of contracts. Therefore, we decided to save the dataset of con-
tracts created by us in the LINDAT/CLARIN8 repository, with the permission of
Hĺıdač Státu. LINDAT/CLARIN is a language research center providing a tech-
nical background to institutions or researchers to share, create or improve their
tools and also provides data which are used in research in the field of linguistics. It
provides an open repository and archive that is available to any academic. In ad-
dition, storing data in the repository is free, secure and respecting the publication
license we have chosen. We publish the dataset under the license Attribution-
NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0).9 It sets the
following conditions:10

8https://lindat.mff.cuni.cz
9https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode.txt

10https://creativecommons.org/licenses/by-nc-sa/4.0/

32

https://lindat.mff.cuni.cz
https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode.txt
https://creativecommons.org/licenses/by-nc-sa/4.0/

• Attribution – the need to provide a link to the license and whether there have
been any changes. The manner of presentation may be by any reasonable
way other than to indicate that the licensor encourages its use.

• NonCommercial – the published dataset with that license cannot be used
for commercial purposes.

• ShareAlike – all works based on this dataset will have to have this license,
so any derivatives of the dataset will not be able to be used for commercial
purposes.

We publish the dataset of contracts in exactly the final form as we described it in
the previous chapters and it is available in this link: http://hdl.handle.net/
11234/1-3731. The scripts that were used for creating this dataset are available
as attachments to this work and their brief description is in Appendix A.2.

33

http://hdl.handle.net/11234/1-3731
http://hdl.handle.net/11234/1-3731

Label - Name of category (cz) Label - Name of category (cz)
0 – Ostatńı 10900 – Energie
10000 – IT 10901 – Paliva a oleje
10001 – IT Hardware 10902 – Elektricka energie
10002 – IT Software 10903 – Jiná energie
10004 – Opravy, údržba a poč́ıtačové śıtě 10904 – Veřejné služby pro energie
10005 – IT Vývoj 10905 – Voda
10006 – Konzultace a poradenstv́ı 11000 – Zemědělstv́ı
10008 – Internetové služby, servery, cloud 11001 – Lesnictv́ı a těžba dřeva
10009 – IT Bezpečnost 11003 – Zahradnické služby
10100 – Stavebnictv́ı 11100 – Kancelář
10104 – Konstrukčńı a stavebńı práce 11101 – Tisk
10106 – Stavebńı práce pro potrubńı, tele. a el. 11102 – Kancelářské potřeby
10107 – Výstavba a práce pro silnice 11103 – Nábytek
10108 – Stavebńı úpravy pro železnici 11104 – Kancelářské a domáćı spotřebiče
10109 – Výstavba vodńıch děl 11105 – Čistićı výrobky
10111 – Práce při dokončováńı budov 11106 – Nábor zaměstnanc̊u
10114 – Stavebńı služby 11107 – Mobily, smart zař́ızeńı
10200 – Doprava a poštovńı služby 11200 – Řemesla
10201 – Osobńı vozidla 11201 – Oděvy
10202 – Nákladńı nebo speciálńı vozidla 11202 – Textilie
10203 – Hromadná autobus. a vlak. doprava 11203 – Hudebńı nástroje
10205 – Vozidla silničńı údržby a př́ıslušenstv́ı 11204 – Sport a sportovǐstě
10206 – Sanitńı a zdravotnická vozidla 11300 – Sociálńı služby
10208 – Želez. a tram. lokomotivy a vozidla 11301 – Vzděláváńı a školeńı
10210 – Servis a oprava vozidel a př́ıslušenstv́ı 11303 – Zdravotńı péče
10212 – Poštovńı a kurýrńı služby 11304 – Sociálńı péče
10213 – Letecká přeprava 11305 – Rekreačńı, kulturńı akce
10300 – Stroje a zař́ızeńı 11306 – Knihovny, archivy, muzea a jiné
10301 – Elektricke stroje 11400 - Finance
10302 – Laboratorńı př́ıstroje a zař́ızeńı 11401 – Pojǐsťovaćı služby
10303 – Pr̊umyslové stroje 11402 – Účetńı, revizńı a peněžńı služby
10400 – Telco 11403 – Podnik. a manaž. poradenstv́ı
10402 – Śıtě a přenos dat 11405 – Bank. služby, operace, poplatky
10403 – Telekomunikačńı služby 11500 – Právńı a realitńı služby
10500 – Zdravotnictv́ı 11501 – Realitńı služby
10501 – Zdravotnické př́ıstroje 11502 – Právńı služby
10502 – Leciva 11503 – Nájemńı smlouvy
10503 – Kosmetika 11504 – Pronájem pozemk̊u
10504 – Opravy a údržba zdra. př́ıstroj̊u 11600 – Technické služby
10505 – Zdravotnický materiál 11601 – Odpady
10506 – Zdravotnický hygienický materiál 11602 – Čist́ıćı a hygienické služby
10600 – Voda a potraviny 11603 – Úklidové služby
10601 – Potraviny 11700 – Věda, výzkum a vývoj
10602 – Pitná voda, nápoje, tabák atd. 11800 – Reklam. a market. služby
10700 – Bezpeč. a ochranné vybaveńı 11900 – Jiné služby
10701 – Kamerové systémy 11901 – Pohost., ubyt. a maloobch. služ.
10702 – Hasičské vybaveńı, požárńı ochrana 11902 – Služby závodńıch j́ıdelen
10703 – Zbraněy 11903 – Administrat. služby a stravenky
10704 – Ostraha objekt̊u 11904 – Zajǐsťováńı služeb pro veřejnost
10800 – Př́ırodńı zdroje 11905 – Pr̊uzkum veřejn. mı́něńı a stat.
10801 – Chemické výrobky 11906 – Opravy a údržba
10802 – Ṕısky a j́ıly 11907 – Překlad. a tlumočnické služby

12000 – Dary a dotace

Table 2.3: Table of all contract categories

34

3. Related Work
There are many articles about the datasets mentioned in Section 2, especially
Facebook dataset in Section 2.1 and Czech Text Document Corpus dataset in
Section 2.2. In this section, we introduce the articles that worked with these
datasets first. Specifically, for the sentiment analysis of the Facebook dataset, it
is the article Habernal et al. [2013b], and for the Czech Text Document Corpus
the article Lenc and Král [2016]. From the more current articles, we discuss
the article Sido et al. [2021], which works with both of these datasets. Very
important for us is that they used their own variant of the Czech BERT, and
therefore is technologically close to our work. Our goal is to show their approach
and to describe which architectures they use, and to compare our results with
their results. At the end of the chapter, we introduce the concurrent work, which
explains the Czech RoBERTa model that we use. The final version of this article
will be presented in September of this year at the International Conference on
Text, Speech, and Dialogue (TSD), but the pre-print version is already available
in Straka et al. [2021].

3.1 Sentiment Classification

The goal of sentiment classification is to assign the correct polarity to a given text.
Classes such as positive, negative and neutral are usually used as the polarity
indicators. The sentiment classification is also known as the polarity detection
and this term is often used in various articles. We introduce features they used
in the article Habernal et al. [2013b], and how they approached to the dataset.

Text preprocessing begins with tokenization using the Ark-tweet-nlp tool
[Gimpel et al., 2010]. This tool was developed and tested in English, but accord-
ing to their results, it brings satisfying results in Czech as well. Ark-tweet-nlp
tokenizer works well with special characters such as smilies, which are very often
used in comments on social networks. Overall, the choice of tokenization is an
important step because it significantly affects the sentiment analysis Laboreiro
et al. [2010]. The part-of-speech tagging was performed with an internal tool by
using the Prague Dependency Treebank (PDT) [Hajic et al., 2006]. The authors
removed the stop words using the stopword list from Apache Lucene1, but they
left the diacritics unchanged. They found out that only 8% of the comments were
missing. The n-gram features and character n-gram features were used like most
similar works, and the minimum n-gram occurrence was set empirically for both
to 5 to feature space pruning.

1https://lucene.apache.org/core/

35

https://lucene.apache.org/core/

They used two classifiers for evaluation, Maximum Entropy [Harremoës and
Topsøe, 2001] and Support Vector Machines (SVM) [Cortes and Vapnik, 1995].
According to the article, they also tried the Naive Bayes classifier [Vijaykumar
and Vikramkumar, 2014], but did not include it in results because they were
worse than the two mentioned classifiers.

3.2 Multi-Label Document Classification

Multi-label document classification is a variant of classification, where it is pos-
sible to assign more than one label to a document. We focus on the article Lenc
and Král [2016], where they work with Czech Text Document Corpus v 1.0 Hrala
and Král [2013]. The difference between v 1.0 and v 2.0, which we describe in
Section 2.2, is that in v 1.0 the morphological annotation and the development
set is missing. These differences have no effect on the classification, and therefore
we show their overall approach to the task.

At the time of this work, neural networks in the field of natural language
processing (NLP) were very popular, and this popularity still persists. Therefore,
the authors used two different neural networks for classification. The first was a
standard Multi-layer Perceptron (MLP) [Murtagh, 1991], and the second was a
Convolutional Neural Network (CNN) [Fukushima, 2003].

The authors employ a standard Feed-forward Deep Neural Network (FDNN)
[Bebis and Georgiopoulos, 1994] with two hidden layers. The input text is rep-
resented using Bag of Words (BoW) [Wallach, 2006], so each unique word in the
vocabulary is represented with a binary feature indicating its presence in the
input. The size of this vector was limited to the N most common words. The
documents were just slightly preprocessed, including the conversion of all charac-
ters to lowercase, and the replacement of numbers with one common token. The
first hidden layer had 1024 nodes and the second one contained 512 nodes. The
output layer had size 37 (the number of categories). The values of the nodes in
the output layer were thresholded due to the multi-label classification, see the
section 3.2 Lenc and Král [2016] for a full description.

Word preprocessing and dictionary for CNN are used similarly to FDNN. The
input is a sequence of words in the document, which are represented by indexes in
the dictionary. Words that the dictionary does not contain have been deleted from
the documents to shorten them, so the longer documents do not lose too many
words when a fixed length of a document is set. The authors of the network were
inspired by the Kim [2014] network, with the difference that they use uniform size
for convolution kernels with dimension 1. The architecture of the used network
is shown in Figure 3.1.

36

Figure 3.1: Architecture of the convolutional network. Taken from Lenc and Král
[2016], Figure 1.

The Figure 3.1 shows the input vector of word indices of length L (fixed
length used to represent documents). The second layer is the embedding layer
and because of that the document is represented as a matrix. Other layers are a
convolutional layer and then a max pooling layer, and output is connected to the
output layer. At the end, similar to FDNN, the outputs are thresholded. Further
details can be found in the Section 3.3 of Lenc and Král [2016].

3.3 Czert – Czech BERT

At the beginning of this year, the first Czech monolingual models based on the
BERT and ALBERT architectures were released at the University of West Bo-
hemia in Plzeň. They presented two models Czert-A and Czert-B, which were
pre-trained on more than 340 000 sentences. This number is really large, as it is
50 times more compared to multilingual models in which the Czech language is
also present. Specifically, they used the Czech national corpus [Křen et al., 2016],
the Czech Wikipedia corpus and their own crawled Czech news. WordPiece was
used as the tokenizer [Wu et al., 2016].

The Czert-A model is the smaller one with 12M parameters and is similar
to the standard ALBERTBASE. For this reason is also faster. The differences
from ALBERTBASE are that they used the WordPiece tokenizer, they used batch
size 2 048 due to cluster limits, and they used their own task to predict the next
sentence.

The Czert-B is larger, contains 110M parameters, and has exactly the same
configuration as BERTBASE with increased batch size to 2 048. Both Czert models
were trained using learning rate 1e-4 with a linear decay using the Adam optimizer
[Kingma and Ba, 2014]. More details and a full description can be found in the
paper Sido et al. [2021].

37

3.4 RobeCzech – Czech RoBERTa

RobeCzech is a Czech contextualized model based on Transformer Architecture
(Section 1.1) and trained only on Czech data. Actually, we can say that it is the
Czech version of RoBERTa [Liu et al., 2019b]. This model is similar to the already
mentioned Czert-B model, in both cases it is a Czech contextualized model, and
they have similar number of parameters – RobeCzech has 125M and Czert-B has
110M. The difference is that RobeCzech is based on RoBERTa, and Czert-B is
based on BERT. For this reason, we can expect better results, because there
is a significant difference in results in English version between them, Liu et al.
[2019b]. Publicly available Czech texts were used to train RobeCzech, consisting
of whole documents, with almost 5G words. Texts sources were:

• corpus of contemporary written Czech – SYN v4 [Křen et al., 2016],

• collection of articles from newspapers and magazines – Czes [Czes, 2011],

• larger documents from the Czech part of the web corpus – W2C [Majlǐs,
2011],

• texts taken from the Czech Wikipedia.

These texts are then tokenized into subwords using a byte-level BPE tokenizer.
The Fairseq library [Ott et al., 2019] with a batch size 8 192 and with a maximum
length of each sample 512 tokens was used for training. Adam was used as the
optimizer. The learning rate has been used with warmup with the maximum
learning rate set to 7 ·10−4. The whole description of the training process and the
results of RobeCzech in comparison with several multilingual and Czech-trained
models are available in the article Straka et al. [2021].

38

4. Training and Results
In this chapter, we introduce and explain the metrics that we use to evaluate the
performance of the models. Then we present our model in detail, give reason for
the choice of the pre-trained type of BERT model, and present all the features
that we have experimentally found to help improve the performance of the model.
In the last part, we present our experiments with the results and with the spe-
cific values of hyperparameters for the models, which we trained with all datasets
mentioned in Chapter 2. In each of the resulting experiments on the mentioned
datasets, we also present the previously published results. Without the compar-
ison, we would not be able to decide whether our model is well designed and
powerful enough.

4.1 Metrics

Correct evaluation of learned models is one of the most important tasks in pat-
tern recognition. Especially performance metrics are essential for classifying,
evaluating the quality of teaching methods and learned models. Therefore, in
this section, we present and explain the metrics, which we use for evaluating
our results. Classification methods are categorized into single-label or multi-label
classification based on the association of the labels to the input samples. All the
mentioned metrics have in common that they are based on a threshold value and
a qualitative understanding of error. These measurements are used when we want
the model to minimize the number of errors. For this reason, these metrics are
often used in many direct applications of classifiers [Ferri et al., 2009].

4.1.1 Single-Label Classification

Single-label classification associates the input samples to a unique target label
from a set of disjoint labels [Er et al., 2016] and is divided into binary classification
and multi-class classification [Tsoumakas and Katakis, 2006]. If the input data
is categorized into one of two classes, it is a binary classification. If the input
data corresponds to one of more than two target labels, it is the multi-class
classification.

Binary Classification

Let’s present the binary classification, which is the most basic classification and
forms the essential requirement that is necessary for the classification method
[Er et al., 2016]. In binary classification, the input data samples are categorized
into one of two classes. Therefore, each input data prediction has to fall into

39

one of the categories: correctly/incorrectly classified input A – (True A/False A),
correctly/incorrectly classified input B – (True B/False B), Figure 4.1.

Figure 4.1: An illustrative example confusion matrix for binary classification.
There are two true classes true and false. The output of the predicted class is A
or B.

Definitions often include notation without using the specific classes, which is
also marked in Figure 4.1 and looks like:

• True Positive – (TP),

• True Negative – (TN),

• False Positive – (FP),

• False Negative – (FN),

The result of this classification is called a confusion matrix.

• Accuracy (Acc) is the safest and the simplest measure to evaluate the
classifier. It expresses how correct the predictions of the model are, or, on
the contrary, how incorrect is the classification [Ferri et al., 2009].

Acc = |TP | + |TN |
|TP | + |TN | + |FP | + |FN |

(4.1)

• Precision (Prec) expresses the ratio of correctly predicted positives in all
predicted positives.

Prec = |TP |
|TP | + |FP |

(4.2)

• Recall (Rec) is an additional metric of accuracy and expresses the ratio
of all positives that were correctly predicted.

Rec = |TP |
|TP | + |FN |

(4.3)

40

• F1 score (F1), also known as the F-measure, expresses the harmonic av-
erage of precision and recall in the range from 0 to 1.

F1 = 2 · Prec · Rec

Prec + Rec
(4.4)

Furthermore, we have to emphasize that the correct choice of metric is very
important, and that the metric will change when we exchange the True/False
classes. Overall, selecting a metric for a task determines what is actually opti-
mized. For example, the F1 metric is often used in competitive tasks because it
is a compromise between the best precision and the best recall.

Multi-Class Classification

Multi-class classification means that the input data corresponds to one of more
than two target labels. It can be classified into three groups:

• extended methods from binary classification,

• decomposition to binary classification methods,

• hierarchical classification methods [Er et al., 2016].

Figure 4.2: Confusion matrix for N -class classification. We can obtain the four
different classification results: True Negative – TN (orange), True Positive – TP
(green), False Negative – FN (red) and False Positive – FP (dark red).

In binary classification, it matters which class is selected as positive, otherwise
a problem with asymmetry may occur. To prevent this problem, multi-class
classification can be used. In the section on binary classification, we have shown
the confusion matrix for two classes, and now we extend this approach to the

41

classification of N classes. The formulas of individual notations, TP, FP, TN,
FN, remain the same as in binary classification. Figure 4.2 shows an example of
the confusion matrix for the classification of N classes, which shows the mentioned
notations (TP, FP, TN, FN) for classification of class B at position [B, B]:

• TP – the value of the green field (the [B, B] position),

• FP – the sum of the dark red fields (the column B without the TP field),

• FN – the sum of the red fields (the row B without the TP field),

• TN – the sum of the orange fields (everything else without the column B
and the row B).

Macro-F1 (macro-averaged metric, macro-recall) is an often used but very sim-
ple way for obtaining one value for the metric of multiple classes. It is calculated
as an arithmetic mean of the individual classes. It treats all classes equally, ie. in
the case of underrepresented class, the metric will affect the model to pay more
attention to that class.

Micro-F1 (micro-averaged metric, micro-recall) is also an often used but not
as much as the F1 macro method. It is also the way for obtaining one value
for the metric of multiple classes and is calculated as a weighted average of the
individual classes. It is recommended especially when we want to optimize the
overall accuracy of the model.

4.1.2 Multi-Label Classification

In contrary to the single-label classification, in the multi-label classification each
input sample can be assigned multiple labels from a set of target labels. The
number of target labels corresponding to each input do not have to be fixed, and
may change dynamically [Er et al., 2016]. We consider the multi-label classifica-
tion to be a generalization of multi-class classification, where we actually want
to categorize one instance into exactly one class of more than two classes. The
multi-label classification has no limit on how many classes an instance can be
assigned to.

4.1.3 k-Fold Cross-Validation

The cross-validation method solves the problem of overlapping test sets in testing
by validation with repetition [Berrar, 2019]. In k fold cross-validation, the dataset
is divided into k disjunct parts of approximately the same size. Only one of these
parts is used as a validation set in each iteration and the other k − 1 parts are

42

used for training [James et al., 2013]. This iteration is repeated, until each part
is used as a validation set. The total performance of this method is obtained
as the average of k performance measurements on the individual validation sets
[Berrar, 2019]. Only one parameter, k, need to be selected, it is typically 5 or 10.
The advantage of the method is a relatively accurate estimate of the classification
performance because each part of the dataset appears in both the training and
the test set. On the other hand, the disadvantage is the increase of required
computation resources. The k-fold cross-validation can be described with the
following pseudocode:

1. The dataset is shuffled randomly.

2. The dataset is divided into k approximately equal parts.

3. For each obtained part:

• The remaining k − 1 parts are taken as a training set.
• The model is trained on the training part and evaluated on the vali-

dation part.
• We remember the evaluated score and we no longer need the model.

4. The final evaluation is made by averaging the obtained score evaluations.

4.2 Our Model

When choosing a pre-trained model, we first considered the multilingual XML-
RoBERTa large model [Liu et al., 2019b]. In the initial experimental demo tasks
we achieved very good results. The problem was with its size because we did not
have enough resources for using it in the resulting model. We ran the demo tasks
on publicly available graphics processing units (GPUs) from Google Colabora-
tory – Colab1, where we did not have a stable access to the required number of
GPUs needed for the XML-RoBERTa large model. Our resources were limited
with the resources from the Artificial Intelligence Cluster (AIC) ÚFAL, where we
had access to eight GeForce GTX 1080 graphics cards, each with 8GB of RAM.
For this reason, we decided to use a smaller, but comparably powerful, Czech
RoBERTa – RobeCzech model [Straka et al., 2021] (more in the Section 3.4)
with appropriately performed fine-tuning. RobeCzech clearly outperforms all
known similar-sized models, and improves the state-of-the-art results on most
NLP tasks we evaluated. Only the already mentioned XML-RoBERTa large
overcomes RobeCzech on some tasks, but it is four times as large.

We do not use the officially released checkpoint of RobeCzech from https:
//huggingface.co/ufal/robeczech-base, because it was not available at the

1https://colab.research.google.com/notebooks/intro.ipynb

43

https://huggingface.co/ufal/robeczech-base
https://huggingface.co/ufal/robeczech-base
https://colab.research.google.com/notebooks/intro.ipynb

time we performed the experiments. Instead, we use a development version of the
model, which achieves very similar results according to the internal evaluation of
the model’s authors.2

Our model starts with a text classification architecture using the RobeCzech
model, which is based on the BERT encoder (Section 1.2). Then follows the
activation function which is activated with a softmax or a sigmoid function. The
choice depends on the number of classification classes, which can be assigned.
The softmax we use for a single-label classification and the sigmoid for multi-
label classification. This layer processes the obtained embedding of the given text
from the CLS token embedding from the last layer. In our model, we use Adam
optimizer algorithm with default parameters (β1 = 0.9, β2 = 0.999) [Kingma and
Ba, 2014] with a batch size in the range from 8 to 64. The choice of a specific
batch size is determined by the limit of capacity of used GPUs. We use two GPUs
in parallel, using a distributed mirrored strategy from TensorFlow [Abadi et al.,
2015], due to the possibility of using a larger batch size for training.

We train only the classifier with the default learning rate of 1e-3 to optimize
the parameters in the first epoch or first two epochs. We can imagine this process
as freezed BERT encoder in the first epoch or first two epochs. The training itself
then begins from the second or third epoch, where the whole model is updated.
We use the triangle schedule (Section 4.2.1), in which a certain number of epochs
form a warm-up and the remaining epochs form a linear decay. This fully linear
optimization in both directions was inspired by Liu et al. [2019b], where it was
used in training models using RoBERTa for tasks such as the SQuAD or the Gen-
eral Language Understand Evaluation (GLUE). The specific number of epochs
for warm-up, the type of metric in the evaluation and other hyperparameters will
be present later in the evaluation of the results of each task.

We use early stopping as a regularization technique to prevent pre-training
of the model. The early stopping technique consists of monitoring the perfor-
mance of the model on the development set after each epoch, and conditionally
terminating the training by performing validation, Géron [2019].

All used scripts for training and evaluation are included in this work as at-
tachments and their brief description is in Appendix A.3.

4.2.1 Triangle Schedule

The triangle schedule is divided into two parts which are warm-up and linear
decay.

Warm-up is the phase at the beginning of training where we start with a
learning rate of 0 and increasing it linearly over several iterations or epochs until

2Personal communication with the authors.

44

we reach a predetermined size of the learning rate (the peak learning rate). In
other words, it is a linear increase in learning rate depending on the number of
epochs and updates, [Liu et al., 2019a, Peltarion, 2021].

Linear decay is the second part of the triangle schedule, which linearly reduces
the learning rate by the same decrement in each update, Peltarion [2021].

Figure 4.3: Illustration of a triangle decay with the peak learning rate set to
1e-5 at 0.5. Figure is taken from https://peltarion.com/static/triangle_
decay_learning_rate_schedule_a.png.

The ratio between these phases is variable, but usually the linear decay phase
forms a much larger part of the whole training. The aim of the triangle schedule is
to enable the model to continuously adapt to the given better parameters, before
performing larger number of parameter updates.

4.3 Results

4.3.1 Sentiment Analysis – Facebook Dataset

We evaluate the sentiment analysis on the Facebook dataset [Habernal et al.,
2013a] which we described in more detail in Section 2.1. The published dataset
contains only one large set of data and does not contain a test set. Therefore, we
divided the whole dataset into the train, development, and test sets preserving
the original dataset class distribution, similarly to Sido et al. [2021].

We described the basis of our model in the previous Section, but we fine-
tuned it specifically for this classification. We tried many configurations, we
experimented with the batch size between 16, 32 and 64. We got a slightly better
result and the training was faster with batch size 64. When selecting the learning
rate peak, we tested 5e-6, 1e-5, 2e-5, 3e-5 and 5e-5. We also looked for the
best ratio between warm-up and linear decay and we opted for 1:9. We set the
number of output neurons according to the number of classes, in this case it is
3. We use the softmax activation for the output layer, due to the fact that it is
classified using only a single class. We used cross-entropy as a loss function. The

45

https://peltarion.com/static/triangle_decay_learning_rate_schedule_a.png
https://peltarion.com/static/triangle_decay_learning_rate_schedule_a.png

final setting of the hyperparameters can be found in Table 4.1. We evaluate the
performance using both accuracy metric and macro F1 score, in order to be able
to relevantly compare with other published results.

Batch size 64
Learning rate peak 1e-5
Dropout 0.1
Epochs 50
Frozen epochs 1
Warmp-up 10%
Number of labels 3

Table 4.1: Table of hyperparameters for fine-tuning.

We started by analyzing the dependence of the accuracy of the system on the
size of the train set on this dataset. This means that we randomly took a certain
amount of data from the original train set, and trained the model on that reduced
train set. The development and test set we left intact. We reduce the amount
of train set by 10% in the first run. The results are shown in Table 4.2. We can
see that even though we trained the model with only 10% of the data from the
original training set, the resulting performance (Acc = 78.9, F1 macro = 77.08)
is still competitive, given that the model performance is still better than most
published results, see Table 4.4. For this reason, we decided to continue reducing
the amount of training data by 1%, until we trained the model with only 1% of
the training data from the original train set. We can see in Figure 4.4 that the
breaking point for the Facebook dataset is at 10% of the training set, and then
the performance starts to decrease rapidly.

1% 2% 3% 4% 5% 6% 7% 8% 9%

Acc 53.9 61.4 67.8 71.0 71.8 73.4 74.1 76.8 76.9
F1macro 48.36 55.81 65.96 69.98 71.09 72.36 72.42 74.10 75.22

10% 20% 30% 40% 50% 60% 70% 80% 90%

Acc 78.9 78.4 79.5 80.1 78.8 80.9 82.3 81.8 81.8
F1macro 77.08 76.70 77.41 77.81 76.90 78.72 80.49 79.25 79.97

100%

Acc 82.6
F1macro 81.13

Table 4.2: Results with respect to the amount of training data.

46

0 10 20 30 40 50 60 70 80 90 100
Quantity of train data (%)

45

50

55

60

65

70

75

80

85

Va
lu

e
(%

)

Acc
F1 macro
Czert-B
MaxEnt

Figure 4.4: Graph of results with respect to the amount of training data.

Our next experiment on this dataset was to study the dependence of the ac-
curacy of the system on the quality of the train set. By quality we mean the
correctness of annotation. Reduction of data quality was achieved by adding a
random noise of a certain amount to the train and the development set. In this
case we also left the test set untouched. By adding noise we mean changing a label
to any other incorrect label. In the case of a positive label, there was a random
change to neutral or negative. We trained models using train sets where we were
reduced the quality of data gradually by 5%. In the most extreme case, we added
a noise up to 80% of the train and development set. The performance of the
model keeps quite high until the noise of 20%, with accuracy being reduced only
by 1.1%-1.7% compared to the initial value. The effect can be nicely observed
in Figure 4.5. Another drop occurs between 25% and 45% of noisy level. Sur-
prisingly, the performance of the model is relatively even in this range, but with
a more significant decrease compared to the original performance. The biggest
drop in performance occurs after the 60% of noisy data, where the performance
starts to be very unstable and considerably worse. However, we can state that
the model we built on the Facebook dataset with the 45% noisy data achieves
results that still exceed some published results obtained with methods, such as
SVM or Maximum Entropy, see Table 4.4. Table 4.3 shows all measured values
at a certain amount of data noise.

47

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80
The percentage of noisy in the train data

5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90

Va
lu

e
(%

)

Acc
F1 macro
Czert-B
MaxEnt

Figure 4.5: Graph of results due to the amount of noisy data.

5% 10% 15% 20% 25% 30% 35% 40%

Acc 80.8 79.7 79.1 79.7 75.2 74.5 77.1 74.9
F1macro 78.79 77.50 76.99 77.40 72.46 71.45 74.95 72.87

45% 50% 55% 60% 65% 70% 75% 80%

Acc 75.5 66.7 70.4 57.2 30.6 28.9 11.7 12.8
F1macro 71.87 61.01 65.33 41.28 26.40 26.70 9.26 12.97

Table 4.3: Results due to the amount of noisy data.

In Table 4.4 we show our achieved overall result in comparison with models
that have comparable size or that are in the original published article of this
dataset. We note that the results obtained using the Czert models are the averages
of six experiments and in the case of RobeCzech it is a 10-fold cross-validation.

Method F1macro

SVM [Habernal et al., 2013b] 68.0
MaxEnt [Habernal et al., 2013b] 69.4
Czert-A [Sido et al., 2021] 72.47
Czert-B [Sido et al., 2021] 76.55
RobeCzech [Straka et al., 2021] 80.13

Our model 81.13

Table 4.4: Results for sentiment analysis in Facebook datasets.

48

4.3.2 Multi-Label Classification – Czech Text Document
Corpus

We took the Czech Text Document Corpus dataset described in Section 2.2 to
verify our model for multi-label classification. We start again from our already
mentioned model (Section 4.2) with the appropriate fine-tuning. We use sigmoid
in this case as the activation function in the output layer and we employ the binary
cross-entropy function as a loss function. The BERT is limited to a maximum
sequence length of 512 tokens, so we had to reduce some documents because
they were longer. During the experiment we found that if we use the whole 512
tokens, we cannot set the batch size to a correspondingly large value because
of the capacity of the GPUs, and therefore the overall result was unnecessarily
worse. Specifically, we were able to use a maximum batch size 8 (with 2 GPUs
in parallel as mentioned earlier). For this reason, we tried using less tokens from
the text to be able to increase the batch size. We decided for the first 300 tokens
from each document and for the maximum batch size, which we could set, which
was 16. Compared to the sentiment analysis task, we increased the learning rate
a bit, as well as the ”freezing” of BERT was to increased to 2 epochs, allowing
the classifier to train longer, because there are more categories now and we do
multi-label classification. The final hyperparameters are shown in Table 4.5.

Batch size 16
Learning rate peak 2e-5
Dropout 0.1
Epochs 50
Frozen epochs 2
Warmp-up 10%
Number of labels 37

Table 4.5: Table of hyperparameters for fine-tuning.

We use 5-fold cross-validation for this experiment and the micro F1 score
metric to evaluate the performance of the model. The results of the individual
folds are shown in Table 4.6. The average of them (89.46) is our overall result for
this experiment, and this value we compare with other published results on this
dataset in Table 4.7.

fold 1 fold 2 fold 3 fold 4 fold 5

F1micro 89.73 89.58 89.79 89.26 88.93

Table 4.6: Results of individual folds.

49

Method F1micro

MLP [Lenc and Král, 2016] 83.9
CNN [Lenc and Král, 2016] 84.7
Czert-A [Sido et al., 2021] 82.27
Czert-B [Sido et al., 2021] 85.06

Our model 89.46

Table 4.7: Results for Multi-label classification in Czech Text Document Corpus.

We remind that both Czert models used the maximum capacity of BERT
sequence length (512 tokens). Thus, we have decided well that we prefer the
batch size over the use of the maximum amount of text, as we exceed the best
state of the art by more than 4%.

We again studied the dependence of the model performance on the size of the
training set. For performance reasons, we no longer use 5-fold cross-validation
in this case. We start from fold 1 and thus the initial train set as well as other
development and test sets are from fold 1. We reduced the size of the training
set by 10% in each measurement. The results from each measurement are shown
in Table 4.8. We can see from them that a larger drop in model performance for
this dataset occurs earlier than with the Facebook dataset. We have a decrease
of about 4% at 30% amount of training data. The Facebook dataset had similar
decrease at 10% of the amount of training data. Furthermore, it can be seen that
this first fold is competitive even with 30% of the training data, in comparison
with the overall results shown in Table 4.7. We visually show these results in
Figure 4.6, where we can nicely see that if we discard 20% of the training data
and train only with the remaining 80%, we still get a result above 89% and the
decrease from the original value is minimal. In general, we get the result of over
80% even with 20% of the training data, and then the performance of the model
begin to decrease rapidly.

10% 20% 30% 40% 50%

F1micro 69.36 81.45 85.40 86.45 87.50

60% 70% 80% 90% 100%

F1micro 87.24 88.41 89.15 89.33 89.73

Table 4.8: Results with respect to the amount of training data.

50

0 10 20 30 40 50 60 70 80 90 100
Quantity of train data (%)

50

55

60

65

70

75

80

85

90

95

Va
lu

e
(%

)

F1 micro
Czert-B
CNN

Figure 4.6: Graph of results with respect to the amount of training data.

51

4.3.3 Results on the Contracts Dataset

In this section, we focus on the evaluation of the contracts dataset that we created
and presented in Section 2.3. Please note that this dataset has only an automatic
annotation of the train and development sets. Because the development set is
quite large, we use only 10% of the original development set for performance
reasons. We are aware that this dataset contains a certain amount of data noise,
which is why we trained our model in a sentiment analysis task even on random
noisy data. That experiment showed that our model can handle quite a lot of
noise in the data. For this reason, our currently used model and hyperparameters
are based on the settings of the model that we used in the sentiment analysis task.
We only changed the number of neurons in the output layer due to the different
number of categories, and batch size, which we tried to use the maximum amount
that GPU memory capacities allowed us. We also trained everything with batch
size 8, which was the maximum amount which we were able to use in any case, for
a correct comparison of the experiments. Each epoch consists of 20 000 randomly
selected contracts for performance reasons. The used hyperparameters are shown
in Table 4.9.

Batch size 8, 16, 32
Learning rate peak 1e-5
Dropout 0.1
Epochs 50
Contracts per epoch 20 000
Frozen epochs 1
Warmp-up 10%
Number of labels 22, 105

Table 4.9: Table of hyperparameters for fine-tuning.

This dataset is interesting because the individual contracts are much longer
than the documents or comments classified by us in previous experiments. There-
fore, we focused here on experiments about the selection of a specific part of con-
tracts and the number of windows used in BERT. For this reason, we recorded the
parts of the contracts, where the most keywords are located, during creation of
the dataset. They are the mentioned windows, the ranges containing the largest
number of keywords used during automatic classification.

The texts from contracts used in the experiments are as follows:

• metainfo (recipient, sender and subject of the contract),

• subject of the contract,

52

• first 400 tokens of the contract,

• first 500 tokens of the contract,

• first window,

• first two windows,

• all windows.

We remind that selected windows of the contracts are sorted according to the
number of keywords they contain, so that the first window contains the most
keywords. When using several windows at the same time during training, all
windows are classified separately, and the result category is determined according
to the average of the predictions of the individual windows.

The mentioned used parts of the contracts we also combined with each other.
Specifically, the metainfo and the subject of the contract are shorter parts of the
contracts, and contain brief and specific information from the contract. Therefore,
we decided to perform experiments, in which we add them individually to the
beginning of the already selected and mentioned parts of the contracts. This
means, for example, that we add the subject to the beginning of each window,
when we were using all windows. In the case we exceeded the limit of 512 tokens,
we used only the first 512 tokens. The total number of configurations in terms
of the use of contracts parts and batch size was 25, so we performed 25 different
experiments. Their results are shown in Table 4.10, in which we also present
the evaluation on main categories for each experiment. Subsequently, we were
interested how big is the difference in evaluation on the main categories between
the training on all 105 categories and just 22 main categories. For this reason,
we performed five experiments, where our model was trained only on the main
categories. The results are presented at the end of Table 4.10.

53

Text Accuracy Batch
content All categories Main categories size

Dev Test Dev Test

Metainfo 60.37 34.28 - 53.03 8

Subject 55.81 33.89 - 54.59 8
52.18 36.04 - 54.88 16
47.93 35.45 - 61.23 32

1. 400 tokens of text 63.49 35.16 - 52.25 8
63.07 35.84 - 53.13 16

1. 400 of (subject + text) 64.63 37.99 - 55.96 8
63.07 36.72 - 55.27 16

1. 400 of (metainfo + text) 65.66 37.99 - 56.45 8
63.28 37.79 - 57.03 16

1. 500 tokens of text 64.83 36.13 - 51.95 8

1. 500 of (subject + text) 57.88 32.91 - 52.05 8

1. 500 of (metainfo + text) 63.80 36.33 - 55.08 8

1. window 66.29 34.57 - 52.25 8
65.04 35.74 - 52.34 16

Subject + 1. window 67.12 37.60 - 55.37 8

Metainfo + 1. window 68.57 37.01 - 55.57 8

1-2. windows 46.58 25.20 - 35.64 8
46.37 28.91 - 40.33 16

Subject + 1-2. windows 43.88 26.66 - 39.45 8

Metainfo + 1-2. windows 46.99 26.27 - 36.52 8

All windows 29.56 19.24 - 32.03 8
33.09 22.27 - 35.74 16

Subject + all windows 31.85 19.43 - 28.22 8

Metainfo + all windows 34.44 19.63 - 27.73 8

Metainfo - - 76.97 54.79 8

Subject - - 65.77 63.67 32

1. 400 of (metainfo + text) - - 78.63 54.59 8

Metainfo + 1. window - - 81.33 56.93 8

Metainfo + all windows - - 47.51 41.31 8

Hĺıdač Státu 100 17.87 100 32.03 -

Table 4.10: Overall results of contracts.

54

Keep in mind that our goal is not to achieve 100% on the development set in
interpreting the results as Hĺıdač Státu. In that case we would make the same
classification errors as them. We do not know exactly how many contracts Hĺıdač
Státu classifies incorrectly. Based on our experiment about the data noise in the
sentiment analysis task (Section 4.3.1), we expected that we would be able to
eliminate some amount of bad classification to a certain amount of data noise.
However, it is important to remind that there we classified into three classes and
all the errors in the data were made randomly.

Results on All Categories

The best results from training on all categories in terms of the text part of the
contract we achieve on the first 400 tokens of contracts starting with the subject
or metainfo of the contract. Specifically, the best achieved value is 37.99%, see
Table 4.10. However, it is unfair to compare with Hĺıdač Státu on the test set, be-
cause there are mainly those contracts that they classified incorrectly, and in some
sense this type of contracts was difficult for them. We calculated the Pearson’s
and Spearman’s correlation coefficients for better interpretation of the results on
the development set, they are shown in Table 4.11. Pearson’s correlation coeffi-
cient describes a linear relation between two values, Spearman’s corresponds to
a non-linear correlation, which only needs to be monotonous. The correlations
between development and test results in training on all categories are very high
in both cases. Pearson’s correlation coefficient is 0.94, which is considered as a
very high dependence. Figure 4.7 shows a scatter plot that indicates the relation
between development and test results, and shows a positive correlation, which
means that both variables tend to increase in correlation. Based on these corre-
lations, we can trust more the results on the development set and thus the better
the value on the development set, the better the overall model. The best result
on the development set is 68.57% and the corresponding value on the test set is
37.01%, which is also almost the best result, and this further convinces us that
the correlation makes sense.

Type of Correlation
correlation All categories Main categories

Pearson’s 0.94 0.64
Spearman’s 0.84 0.30

Table 4.11: Table of corellations with Pearson and Spearman correlation coeffi-
cients.

55

30 35 40 45 50 55 60 65 70
Accuracy of develop set

20.0

22.5

25.0

27.5

30.0

32.5

35.0

37.5

Ac
cu

ra
cy

 o
f t

es
t s

et

Figure 4.7: Scatter plot indicating the relation between the accuracy development
set and the test set on all categories. It can be seen from the graph that there is a
positive correlation between these variables. The relation between these variables
seems to be linear.

Results on Main Categories

We saw from the Facebook dataset results that the coincidence can be removed
quite well by our model. In this case, however, we most likely have systematic
errors in the contract classification. It relates also with the method of using
keywords for classifying contracts used by Hĺıdač Státu. Our model could not
deal with these systematic errors easily and learned to classify according to that
error as well. To indicate that there are systematic errors in the date, consider the
achieved results using the Subject of 35.45% (classification of all categories) and
if the results are evaluated on the main categories, we get 61.23% and thus the
difference is almost 26%. When we take the results obtained with Metainfo + 1.
window 37.01% (classification of all categories) and its corresponding evaluation
on the main categories 55.57%, the difference is 18.56%. This suggests that if we
overfitted on some subcategory, we would have chosen the right main category
anyway, but this did not happen, so the systematic errors are more likely at the
level of main categories.

Overfitting is best seen with the text Metainfo + 1. window in main cate-
gories, where we reached 81.33% on development, which is the greatest value we
achieved, see Table 4.10. If we did not have the test set, we would choose this
model. However, the model reaches only 56.93% on the test set, which is not the
best performance in main categories. It illustrates that the result on the devel-
opment set in training on main categories does not correlate as strongly with the
results on the test set as in the previous case.

56

The fact that we achieve the best results on the main categories using the
text part of contracts with only the subject (61.23% and 63.67%) also indicates
that the original classification has systematic errors. With such a small amount
of text as the subject of the contract, our model is weaker and cannot remember
the mistakes made by their classification system because those mistakes cannot
be observed just from the subject. If our model sees more text from the contract,
can also learn to make mistakes, and then make them.

If we look at the correlations of results trained on main categories, we can
see in Table 4.11 that Pearson’s coefficient is 0.64 and Spearman’s is only 0.3,
which are considered to be medium to slight dependence. We achieved the best
result of 63.67% but its development value (65.77%) is the second worst of 5
measurements. Figure 4.8 shows a scatter plot of the relation between results on
the development set and the test set showing a positive correlation, but compared
to Figure 4.7, less correlation of the result can be seen.

50 55 60 65 70 75 80
Accuracy of develop set

45

50

55

60

Ac
cu

ra
cy

 o
f t

es
t s

et

Figure 4.8: Scatter plot indicating the relation between the accuracy development
set and the test set on main categories.

Confusion Matrix of the Main Categories Prediction

We show the confusion matrix for the best evaluation for the main categories in
Figure 4.9. We achieve 0% in two categories for two different reasons. In the
first case, it is the category 0 – Other, which is represented in the training set
with only one contract, and therefore our model could not learn to classify this
category. In the second case, it is the category 10800 – Natural resources, which
has no representation in the test set. It also follows from the fact that it has 0%
values in the whole row of the matrix. Categories that our model classifies the
best are 11600 – Technical services and 10900 – Energy. Both achieve almost

57

90%. The biggest misclassification of one category into another occurs in the
category 11700 – Science, research and development, where we classify 1/3 of the
contracts into the category 10000 – IT. Furthermore, we misclassify mostly the
categories 11800 – Advertising and marketing services and 12000 – Donations
and subsidies. Both we classify evenly into several other categories.

0
10

00
0

10
10

0
10

20
0

10
30

0
10

40
0

10
50

0
10

60
0

10
70

0
10

80
0

10
90

0
11

00
0

11
10

0
11

20
0

11
30

0
11

40
0

11
50

0
11

60
0

11
70

0
11

80
0

11
90

0
12

00
0

Predicted label

0

10000

10100

10200

10300

10400

10500

10600

10700

10800

10900

11000

11100

11200

11300

11400

11500

11600

11700

11800

11900

12000

Tr
ue

 la
be

l

0% 9% 0% 9% 0% 0% 0% 0% 9% 0% 18% 0% 9% 9% 0% 18% 9% 9% 0% 0% 0% 0%

0% 57% 2% 3% 3% 14% 0% 0% 3% 0% 0% 2% 8% 2% 0% 2% 0% 2% 2% 0% 2% 0%

0% 0% 69% 3% 1% 3% 0% 0% 0% 0% 1% 1% 4% 6% 4% 0% 3% 3% 0% 0% 1% 0%

0% 1% 3% 73% 1% 0% 0% 1% 4% 1% 1% 0% 1% 0% 1% 0% 0% 4% 0% 0% 7% 0%

0% 0% 0% 9% 55% 9% 0% 0% 9% 0% 0% 0% 0% 0% 0% 0% 18% 0% 0% 0% 0% 0%

0% 7% 7% 0% 0% 67% 0% 0% 7% 0% 0% 0% 0% 0% 0% 0% 0% 7% 0% 0% 7% 0%

0% 2% 2% 11% 2% 2% 53% 0% 2% 6% 0% 0% 6% 6% 2% 0% 0% 0% 0% 0% 4% 0%

0% 0% 0% 0% 0% 0% 0% 75% 0% 25% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

0% 8% 8% 8% 0% 0% 0% 0% 38% 0% 0% 0% 0% 23% 0% 0% 8% 8% 0% 0% 0% 0%

0% 0%

0% 0% 0% 0% 1% 0% 1% 0% 1% 0% 88% 0% 0% 6% 0% 0% 0% 1% 0% 0% 0% 0%

0% 0% 0% 11% 0% 0% 0% 0% 0% 0% 0% 78% 0% 0% 0% 11% 0% 0% 0% 0% 0% 0%

0% 3% 1% 0% 1% 0% 2% 0% 2% 0% 0% 0% 83% 0% 2% 0% 0% 0% 0% 0% 3% 0%

0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 25% 75% 0% 0% 0% 0% 0% 0% 0% 0%

0% 3% 0% 0% 0% 0% 0% 0% 3% 0% 0% 3% 27% 6% 42% 0% 3% 0% 0% 0% 12% 0%

0% 4% 12% 2% 0% 1% 0% 0% 1% 0% 1% 4% 0% 0% 0% 60% 16% 0% 0% 0% 0% 0%

0% 0% 9% 9% 0% 0% 0% 0% 0% 0% 9% 9% 0% 0% 5% 5% 55% 0% 0% 0% 0% 0%

0% 0% 2% 3% 0% 0% 2% 2% 0% 0% 2% 2% 0% 0% 0% 0% 0% 89% 0% 0% 0% 0%

0% 33% 0% 0% 11% 0% 0% 0% 0% 0% 0% 0% 0% 0% 11% 11% 0% 0% 11% 0% 22% 0%

0% 13% 3% 3% 0% 0% 0% 3% 0% 0% 0% 3% 19% 13% 3% 0% 3% 0% 0% 16% 19% 0%

0% 5% 23% 2% 3% 2% 3% 0% 3% 2% 0% 2% 3% 2% 0% 3% 0% 0% 0% 0% 49% 0%

0% 3% 3% 0% 5% 2% 2% 0% 2% 0% 0% 0% 6% 13% 11% 19% 6% 2% 0% 0% 13% 14%
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Figure 4.9: Confusion matrix of main categories (text content: subject).

Experiments with the Amount of Contract Texts

Selecting the text using windows is beneficial only if we use the first window. It
can be seen in cases of selecting the (Subject or Metainfo) + 1st window. If we
compare the results obtained from the First 400 tokens (of Subject or Metainfo +
text), we see that the results on the development set are slightly better. A small
part of this improvement may be due to the fact that the first window tends to be
at the beginning of the contract, and then these two choices overlap. Furthermore,
the first window often has much more keywords compared to the other windows
in the contract. This relates to the fact that the rest of the contract is more
general. For this reason, using multiple windows at once does not work properly,
as they are often too general and make the overall classification average worse.
We can see that from the results in a gradual deterioration when using more and

58

more windows. The worst results are achieved with the use of all windows, and
therefore, we recommend using only the first window for classification or possibly
using only the subject itself.

Selecting the batch size

For the batch size, we noticed an improvement with a larger choice only in eval-
uation of main categories. The best result are achieved with batch size 32. The
batch size was not that important when classifying into all categories. The best
results of classification into all categories was achieved with batch size 8.

Manual Evaluation Main Categories on the Development Set

Out of curiosity, we performed a manual evaluation of the main categories on the
development set, specifically on 100 contracts. We compared the predictions on
the development set obtained by our model using the Subject as a text content
of the contract (we achieved the best result on the main categories with this
configuration) and the predictions of the Hĺıdač Státu. The prediction successes
with the corresponding standard deviations obtained using a bootstrap resam-
pling with 100 000 samples are shown in Table 4.12. The contract sometimes
belong to several categories or the categories may overlap, so it was difficult to
determine whether the predictions were right. In such cases, we accepted both
categories.

Prediction Result Standard deviation

Subject 69 ± 4.63
Hĺıdač Státu 62 ± 4.86

Table 4.12: The success of predictions on the development set with the corre-
sponding standard deviations.

59

Conclusion
The goal of this thesis was to evaluate the text classification in low resource
settings, and to analyze the accuracy of the model depending on the size and
quality of training data. When we were choosing the datasets, we focused on
Czech texts. We used our model, which uses the pre-trained RobeCzech model,
for all measurements and experiments.

We measured the performance of the model depending on the quality of train-
ing data on the Facebook dataset, where we found that our model handles quite
well 20% of noisy data with a decrease in performance of less than 3%. Further-
more, up to the noise of 45% of training data, we achieved stable results above
71%, with which we still surpass the results obtained with methods such as SVM
or Maximum entropy. A big drop in performance occurred after 60% of the data
was noisy. When examining the size of the training data needed to achieve good
results, we found that we only need to take 4% of the training set, and train the
task on it to overcome the results obtained by older methods. To compare with
more modern techniques such as Czert, we need to take only 10% of the training
data and we get better results.

Another dataset, on which we analyzed the required size of training data
during training, was Czech Text Document Corpus. We evaluated the multi-label
classification on this dataset. We found that the larger decrease in performance
occurred only when training with 20% or less data, and until then, the overall
evaluation decreased only slightly. Until we used less than 30% of the training
data, we achieved better results than have been published so far, including those
obtained with modern techniques. Our result obtained on the whole set of training
data is 89.46%, and to our knowledge, we set a new state-of-the-art result on this
dataset.

The last dataset, on which we evaluated the text classification, focuses on
long texts of contracts and was partially created by us. We classified contracts
in this dataset into 105 categories or into 22 main categories. In both cases,
we tried to understand the obtained results, and we experimented with choosing
the right part and size of the text of contracts. We have found that for the
classification of main categories is better to take only the subject of the contract
without additional text, which we assume to prevent copying of systematic errors
from the automatic annotation of contracts. When classifying into all categories,
the advantage of the window selection of the text of the contract created by us
partially occured, but we achieved the best results with the selection of the text,
where we used the beginning of the contract with the subject or metainfo.

60

Future work

One of the benefits of this work is the creation of a new dataset of Czech con-
tracts, which was non-public up to now, so it would be useful to continue with
the complex research of possibilities of choosing the right part of contracts for
classification. We would recommend to try different shifts of the obtained win-
dows or to create new windows with different sizes, because the window size was
set just to 300 tokens in our case. Last but not least, the obtained windows could
be tested in different positions. It would be also interesting to try training on the
obtained predictions, so-called self-training, to partially eliminate the systematic
errors.

61

Bibliography
Czes, 2011. URL http://hdl.handle.net/11858/

00-097C-0000-0001-CCCF-C. LINDAT/CLARIAH-CZ digital library at
the Institute of Formal and Applied Linguistics (ÚFAL), Faculty of Mathe-
matics and Physics, Charles University.

Mart́ın Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,
Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin,
Sanjay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael
Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh
Levenberg, Dandelion Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris
Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal
Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas,
Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and
Xiaoqiang Zheng. TensorFlow: Large-scale machine learning on heterogeneous
systems, 2015. URL https://www.tensorflow.org/. Software available from
tensorflow.org.

George Bebis and Michael Georgiopoulos. Feed-forward neural networks. IEEE
Potentials, 13(4):27–31, 1994.

Daniel Berrar. Cross-validation. Encyclopedia of bioinformatics and computa-
tional biology, 1:542–545, 2019.

Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine learn-
ing, 20(3):273–297, 1995.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-
training of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805, 2018.

Meng Joo Er, Rajasekar Venkatesan, and Ning Wang. An online universal clas-
sifier for binary, multi-class and multi-label classification. In 2016 IEEE Inter-
national Conference on Systems, Man, and Cybernetics (SMC), pages 003701–
003706. IEEE, 2016.

César Ferri, José Hernández-Orallo, and R Modroiu. An experimental comparison
of performance measures for classification. Pattern Recognition Letters, 30(1):
27–38, 2009.

Kunihiko Fukushima. Neocognitron for handwritten digit recognition. Neuro-
computing, 51:161–180, 2003.

62

http://hdl.handle.net/11858/00-097C-0000-0001-CCCF-C
http://hdl.handle.net/11858/00-097C-0000-0001-CCCF-C
https://www.tensorflow.org/

Aurélien Géron. Hands-on machine learning with Scikit-Learn, Keras, and Ten-
sorFlow: Concepts, tools, and techniques to build intelligent systems. O’Reilly
Media, 2019.

Kevin Gimpel, Nathan Schneider, Brendan O’Connor, Dipanjan Das, Daniel
Mills, Jacob Eisenstein, Michael Heilman, Dani Yogatama, Jeffrey Flanigan,
and Noah A Smith. Part-of-speech tagging for twitter: Annotation, features,
and experiments. Technical report, Carnegie-Mellon Univ Pittsburgh Pa School
of Computer Science, 2010.

Ivan Habernal, Tomáš Ptáček, and Josef Steinberger. Facebook data
for sentiment analysis, 2013a. URL http://hdl.handle.net/11858/
00-097C-0000-0022-FE82-7. LINDAT/CLARIAH-CZ digital library at the
Institute of Formal and Applied Linguistics (ÚFAL), Faculty of Mathematics
and Physics, Charles University.

Ivan Habernal, Tomáš Ptáček, and Josef Steinberger. Sentiment analysis in czech
social media using supervised machine learning. In Proceedings of the 4th work-
shop on computational approaches to subjectivity, sentiment and social media
analysis, pages 65–74, 2013b.

Jan Hajic, Jarmila Panevová, Eva Hajicová, Petr Sgall, Petr Pajas, Jan
Štepánek, Jǐŕı Havelka, Marie Mikulová, Zdenek Zabokrtskỳ, Magda Ševcıková-
Razımová, et al. Prague dependency treebank 2.0. CD-ROM, Linguistic Data
Consortium, LDC Catalog No.: LDC2006T01, Philadelphia, 98, 2006.

Peter Harremoës and Flemming Topsøe. Maximum entropy fundamentals. En-
tropy, 3(3):191–226, 2001.

Michal Hrala and Pavel Král. Evaluation of the document classification ap-
proaches. In Proceedings of the 8th International Conference on Computer
Recognition Systems CORES 2013, pages 877–885. Springer, 2013.

Gareth James, Daniela Witten, Trevor Hastie, and Robert Tibshirani. An intro-
duction to statistical learning, volume 112. Springer, 2013.

Yoon Kim. Convolutional neural networks for sentence classification. CoRR,
abs/1408.5882, 2014. URL http://arxiv.org/abs/1408.5882.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980, 2014.

Daniel Kondratyuk, Tomáš Gavenčiak, Milan Straka, and Jan Hajič. Lemmatag:
Jointly tagging and lemmatizing for morphologically-rich languages with brnns.
arXiv preprint arXiv:1808.03703, 2018.

63

http://hdl.handle.net/11858/00-097C-0000-0022-FE82-7
http://hdl.handle.net/11858/00-097C-0000-0022-FE82-7
http://arxiv.org/abs/1408.5882

Pavel Král and Ladislav Lenc. Czech text document corpus v 2.0. arXiv preprint
arXiv:1710.02365, 2017.

Michal Křen, Václav Cvrček, Tomáš Čapka, Anna Čermáková, Milena Hnátková,
Lucie Chlumská, Tomáš Jeĺınek, Dominika Kovář́ıková, Vladimı́r Petkevič,
Pavel Procházka, Hana Skoumalová, Michal Škrabal, Petr Truneček, Pavel
Vondřička, and Adrian Zasina. SYN v4: large corpus of written czech, 2016.
URL http://hdl.handle.net/11234/1-1846. LINDAT/CLARIAH-CZ digi-
tal library at the Institute of Formal and Applied Linguistics (ÚFAL), Faculty
of Mathematics and Physics, Charles University.

Gustavo Laboreiro, Lúıs Sarmento, Jorge Teixeira, and Eugénio Oliveira. Tok-
enizing micro-blogging messages using a text classification approach. In Pro-
ceedings of the fourth workshop on Analytics for noisy unstructured text data,
pages 81–88, 2010.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush
Sharma, and Radu Soricut. Albert: A lite bert for self-supervised learning
of language representations. arXiv preprint arXiv:1909.11942, 2019.

Ladislav Lenc and Pavel Král. Deep neural networks for czech multi-label docu-
ment classification. In International Conference on Intelligent Text Processing
and Computational Linguistics, pages 460–471. Springer, 2016.

Patrick Lewis, Barlas Oğuz, Ruty Rinott, Sebastian Riedel, and Holger Schwenk.
Mlqa: Evaluating cross-lingual extractive question answering. arXiv preprint
arXiv:1910.07475, 2019.

Liyuan Liu, Haoming Jiang, Pengcheng He, Weizhu Chen, Xiaodong Liu, Jianfeng
Gao, and Jiawei Han. On the variance of the adaptive learning rate and beyond.
arXiv preprint arXiv:1908.03265, 2019a.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi
Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov.
Roberta: A robustly optimized bert pretraining approach. arXiv preprint
arXiv:1907.11692, 2019b.

Martin Majlǐs. W2C – web to corpus – corpora, 2011. URL http://hdl.handle.
net/11858/00-097C-0000-0022-6133-9. LINDAT/CLARIAH-CZ digital li-
brary at the Institute of Formal and Applied Linguistics (ÚFAL), Faculty of
Mathematics and Physics, Charles University.

Jakub Maroušek. Automatická klasifikace smluv pro portál hlidacsmluv.cz. Mas-
ter’s thesis, Univerzita Karlova, Matematicko-fyzikálńı fakulta, Katedra soft-
warového inženýrstv́ı, Praha, 2020.

64

http://hdl.handle.net/11234/1-1846
http://hdl.handle.net/11858/00-097C-0000-0022-6133-9
http://hdl.handle.net/11858/00-097C-0000-0022-6133-9

Fionn Murtagh. Multilayer perceptrons for classification and regression. Neuro-
computing, 2(5-6):183–197, 1991.

Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan, Sam Gross, Nathan Ng,
David Grangier, and Michael Auli. fairseq: A fast, extensible toolkit for se-
quence modeling. In Proceedings of NAACL-HLT 2019: Demonstrations, 2019.

Peltarion. Learning rate schedule, 2021. URL https://
peltarion.com/knowledge-center/documentation/modeling-view/
run-a-model/optimization-principles-(in-deep-learning)
/learning-rate-schedule.

Matthew E Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher
Clark, Kenton Lee, and Luke Zettlemoyer. Deep contextualized word represen-
tations. arXiv preprint arXiv:1802.05365, 2018.

Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Improving
language understanding with unsupervised learning. Technical report, OpenAI,
2018.

Jakub Sido, Ondřej Pražák, Pavel Přibáň, Jan Pašek, Michal Seják, and Miloslav
Konoṕık. Czert–czech bert-like model for language representation. arXiv
preprint arXiv:2103.13031, 2021.

Milan Straka, Jakub Náplava, Jana Straková, and David Samuel. Robeczech:
Czech roberta, a monolingual contextualized language representation model.
CoRR, abs/2105.11314, 2021. URL https://arxiv.org/abs/2105.11314.

Jana Straková, Milan Straka, and Jan Hajič. Open-Source Tools for Morphology,
Lemmatization, POS Tagging and Named Entity Recognition. In Proceedings of
52nd Annual Meeting of the Association for Computational Linguistics: System
Demonstrations, pages 13–18, Baltimore, Maryland, June 2014. Association
for Computational Linguistics. URL http://www.aclweb.org/anthology/P/
P14/P14-5003.pdf.

G Tsoumakas and I Katakis. Multi-label classification: An overview, dept. of
informatics. Aristotle University of Thessaloniki, Greece, 2006.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you
need. arXiv preprint arXiv:1706.03762, 2017.

B Vijaykumar and Trilochan Vikramkumar. Bayes and naive-bayes classifier.
Computer Science & Engineering. Rajiv Gandhi University of Knowledge Tech-
nologies Andhra Pradesh, India, 2014.

65

https://peltarion.com/knowledge-center/documentation/modeling-view/run-a-model/optimization-principles-(in-deep-learning)/learning-rate-schedule
https://peltarion.com/knowledge-center/documentation/modeling-view/run-a-model/optimization-principles-(in-deep-learning)/learning-rate-schedule
https://peltarion.com/knowledge-center/documentation/modeling-view/run-a-model/optimization-principles-(in-deep-learning)/learning-rate-schedule
https://peltarion.com/knowledge-center/documentation/modeling-view/run-a-model/optimization-principles-(in-deep-learning)/learning-rate-schedule
https://arxiv.org/abs/2105.11314
http://www.aclweb.org/anthology/P/P14/P14-5003.pdf
http://www.aclweb.org/anthology/P/P14/P14-5003.pdf

Hanna M Wallach. Topic modeling: beyond bag-of-words. In Proceedings of the
23rd international conference on Machine learning, pages 977–984, 2006.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le, Mohammad Norouzi,
Wolfgang Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey,
et al. Google’s neural machine translation system: Bridging the gap between
human and machine translation. arXiv preprint arXiv:1609.08144, 2016.

66

List of Figures

1.1 Architecture of the Transformer, taken from paper Vaswani et al.
[2017]. 6

1.2 Transformer decoder, taken from http://jalammar.github.io/
images/t/Transformer_decoder.png. 7

1.3 Scaled Dot-Product Attention (left), Multi-Head Attention (right)
consists of several attention layers running in parallel. Taken from
paper Vaswani et al. [2017]. 8

1.4 Pre-training procedures for BERT. Taken from Devlin et al. [2018]. 10
1.5 BERT encoders input, taken from http://jalammar.github.io/

images/bert-encoders-input.png. 12
1.6 Showing of fine-tuning BERT on individual tasks. (a) Sentence

pair classification problem, input sentence pairs and output clas-
sification labels. (b) Single sentence classification problem, input
sentence, output sentence category. (c) SQuAD question, find out
a few words corresponding to a question from a paragraph. (d) Se-
quence labeling problem, labeling each word in a sentence. Taken
from paper Devlin et al. [2018], Figure 4. 13

2.1 Sentiment distribution, from paper Habernal et al. [2013b], Figure 1. 16
2.2 Facebook dataset statistics, distribution posts per labels. 17
2.3 Facebook dataset, lengths of posts. 17
2.4 Distribution of documents depending on the number of labels, from

paper Král and Lenc [2017], Figure 1. 18
2.5 Distribution of categories. The most frequent ones are shown in

orange, other in blue. 19
2.6 Distribution of the document lengths. 19
2.7 Scheme for obtaining final contracts. 20
2.8 Illustrative UML schema of the contract. 22
2.9 Scheme for obtaining windows ranges of the individual contracts. . 24
2.10 Distribution of number of contracts in main categories – Train set. 29
2.11 Distribution of contracts per categories – Train set. 29
2.12 Histogram of contracts – Train set. 30
2.13 Distribution of number of contracts in main categories – Test set. 30
2.14 Distribution of contracts per categories – Test set. 31
2.15 Histogram of contracts – Test set. 31
2.16 Cumulative distribution functions for all sets. 32

67

http://jalammar.github.io/images/t/Transformer_decoder.png
http://jalammar.github.io/images/t/Transformer_decoder.png
http://jalammar.github.io/images/bert-encoders-input.png
http://jalammar.github.io/images/bert-encoders-input.png

3.1 Architecture of the convolutional network. Taken from Lenc and
Král [2016], Figure 1. 37

4.1 An illustrative example confusion matrix for binary classification.
There are two true classes true and false. The output of the pre-
dicted class is A or B. 40

4.2 Confusion matrix for N -class classification. We can obtain the four
different classification results: True Negative – TN (orange), True
Positive – TP (green), False Negative – FN (red) and False Positive
– FP (dark red). 41

4.3 Illustration of a triangle decay with the peak learning rate set to 1e-
5 at 0.5. Figure is taken from https://peltarion.com/static/
triangle_decay_learning_rate_schedule_a.png. 45

4.4 Graph of results with respect to the amount of training data. . . . 47
4.5 Graph of results due to the amount of noisy data. 48
4.6 Graph of results with respect to the amount of training data. . . . 51
4.7 Scatter plot indicating the relation between the accuracy develop-

ment set and the test set on all categories. It can be seen from the
graph that there is a positive correlation between these variables.
The relation between these variables seems to be linear. 56

4.8 Scatter plot indicating the relation between the accuracy develop-
ment set and the test set on main categories. 57

4.9 Confusion matrix of main categories (text content: subject). . . . 58

A.1 List of the categories, from paper Král and Lenc [2017], Table 3. . 72

68

https://peltarion.com/static/triangle_decay_learning_rate_schedule_a.png
https://peltarion.com/static/triangle_decay_learning_rate_schedule_a.png

List of Tables

2.1 Distribution of contracts according to individual sets. 27
2.2 Table of main categories. 28
2.3 Table of all contract categories . 34

4.1 Table of hyperparameters for fine-tuning. 46
4.2 Results with respect to the amount of training data. 46
4.3 Results due to the amount of noisy data. 48
4.4 Results for sentiment analysis in Facebook datasets. 48
4.5 Table of hyperparameters for fine-tuning. 49
4.6 Results of individual folds. 49
4.7 Results for Multi-label classification in Czech Text Document Cor-

pus. 50
4.8 Results with respect to the amount of training data. 50
4.9 Table of hyperparameters for fine-tuning. 52
4.10 Overall results of contracts. 54
4.11 Table of corellations with Pearson and Spearman correlation coef-

ficients. 55
4.12 The success of predictions on the development set with the corre-

sponding standard deviations. 59

69

List of Abbreviations
AIC Artificial Intelligence Cluster. 43

ALBERT A Lite BERT. 15, 37

BERT Bidirectional Encoder Representations from Transformers. iii, 3, 5, 10,
11, 12, 13, 14, 15, 19, 20, 23, 26, 35, 37, 38, 39, 44, 49, 50, 52, 67

BoW Bag of Words. 36

BPE Byte-Pair Encoding. 15

CDF Cumulative Distribution Function. 32

CNN Convolutional Neural Network. 36

FDNN Feed-forward Deep Neural Network. 36, 37

FFN Feed Forward Network. 6, 8, 15

GELU Gaussian Error Linear Units. 11

GLUE General Language Understand Evaluation. 44

GPU graphics processing unit. 43, 44, 49, 52

mBERT multilingual BERT. 14

MLP Multi-layer Perceptron. 36

MLQA MultiLingual Question Answering. 14

MorphoDiTa Morphological Dictionary and Tagger. 24, 25

NLP natural language processing. 3, 36, 43

PDT Prague Dependency Treebank. 35

PE Positional Encoding. 8, 9

ReLU Rectified Linear Unit. 8, 11

RNN Recurrent Neural Network. 5, 8, 9, 24

RoBERTa Robustly optimized BERT approach. 14, 15, 35, 38, 43, 44

70

SQuAD Stanford Question Answering Dataset. 13, 44, 67

SVM Support Vector Machines. 3, 4, 36, 47, 60

ÚFAL Institute of Formal and Applied Linguistics. 23, 24, 43

71

A. Attachments

A.1 List of the Categories

Figure A.1: List of the categories, from paper Král and Lenc [2017], Table 3.

72

A.2 Description of Scripts Used for Creating
the Dataset of Contracts.

The scripts are presented in the order in which was creating the dataset.

• categoriesCZ.json – Json file with all labels and names of the categories.

• notations of files.txt – Name list of the categories used for naming the
obtained contracts.

• get contracts.py – Obtaining contracts according to their relevance in the
categories from the Hĺıdač Státu portal.

• all keywords uniq.txt – List of keywords used for obtaining windows
from the text of the contract.

• robeczech tokenizer.py – Tokenizer used for obtaining the subwords.

• lemmatizer.py – Script for obtaining the lemmas from the text and for
creating the n-grams from obtained lemmas.

• json parser.py – Parsing the .json contract record. It allows us to re-
turn content of used objects, such as subject, recipient and the text of the
contract.

• windows.py – Obtaining individual windows from the text of the contract
with the content of as many keywords as possible. Keywords are centralized
in the center of the window.

• create pre final dataset.py – Preparation of the contracts into the final
form by adding the label, plaintext of the contract and windows to each
contract.

• final contracts dataset.sh – Script for AIC cluster used for automatic
preparation of final contracts.

• merged json files.sh – Merging all acquired contracts into one .jsonl file.

• create sets for training.py – Creation of the training and development
sets.

73

A.3 Description of Scripts for Creating Training
Models and Experiments

Facebook Dataset

• sentiment analysis model.py – Script for training the model.

• text classification dataset.py – Preparation of data and loading data
for training.

• robeczech tokenizer.py – Tokenizer used for obtaining the subwords.

• create amount of train data.py – Creation of training data with differ-
ent amounts of posts from the original training set.

• create noisy data.py – Creation of training data with different amounts
of data noise.

• evaluate predict file.py – Calculation of the evaluation from the ob-
tained predict file.

Czech Text Document Corpus

• cz corpus model.py – Script for training the model.

• cz corpus text classification.py – Preparation of data and loading data
for training.

• robeczech tokenizer.py – Tokenizer used for obtaining the subwords.

• create amount of train data.py – Creation of training data with differ-
ent amounts of documents from the original training set.

• merged txt files.py – Merging individual text files of documents into one
text file.

• preprocessing dataset.py – Preparation of the acquired text file for
training. Reduction of the documents to a length of 300 tokens. Creating
folds for training.

Contracts Dataset

• contracts classification model.py – Script for training the model.

• contracts classification dataset.py – Preparation of data and loading
data for training.

74

• evaluate and confusion matrix.py – Evaluation of the predicted file
and obtaining the confusion matrix for main categories.

75

	Introduction
	Theoretical Background
	Transformer
	Self-Attention
	Multihead Attention
	Feed Forward Networks
	Positional Encoding
	Training Procedure

	BERT
	Pre-Training
	Fine-Tuning
	Modifications

	Datasets
	Facebook Dataset
	Czech Text Document Corpus
	Contracts from the Hlídač Státu
	Hlídač Státu
	Structure of Contracts
	Preprocessing the Contract Text
	Windows Ranges
	General Information
	Published Version

	Related Work
	Sentiment Classification
	Multi-Label Document Classification
	Czert – Czech BERT
	RobeCzech – Czech RoBERTa

	Training and Results
	Metrics
	Single-Label Classification
	Multi-Label Classification
	k-Fold Cross-Validation

	Our Model
	Triangle Schedule

	Results
	Sentiment Analysis – Facebook Dataset
	Multi-Label Classification – Czech Text Document Corpus
	Results on the Contracts Dataset

	Conclusion
	Bibliography
	List of Figures
	List of Tables
	List of Abbreviations
	Attachments
	List of the Categories
	Description of Scripts Used for Creating the Dataset of Contracts.
	Description of Scripts for Creating Training Models and Experiments

