
Errata

I present corrections for the submitted version. All changes are enumerated here.
I also included the whole text (corrected version) as it could be possibly more
comfortable for readers.

Table 2.6
Table 2.6 was supplemented by macro-F1 scores, if available. There were also
some mistakes in reported related work, namely some reported numbers were
macro-F1, not weighted. I also added other results from (Klouda et al., 2019),
because the reported ones were worse. Finally, I added (Habernal et al., 2013),
as it is the original paper for used datasets.

Table 2.9
Table 2.9 is changed. There is new column with macro-F1 for all experiments
(supplemented and corrected). I also removed experiment 42 as it was just an
additional experiment does not belonging among others.

Overflowing Picture 1.8
Accidental overflowing of picture 1.8 out form the page is corrected in this version
and I also include the picture here:

Missing Picture in Section 2
I revealed a reference for a missing picture of directory structure on page 61 and
I think it is no longer needed as I simplified the structure in both GitHub and in
attachments to the work.

Attachments Description
Originally, I included also the references to models in GitHub Large Files Storage.
Unfortunately I realized later that I exceeded the quota, so they will not work.
References to models will be available on the main page of GitHub repository.
I also included unfinished version of working example play with models.ipynb.
Working version will be also available on GitHub.



dataset models Acc F1-w F1-m

All Czech
baseline 82.00 70.00 -
(Kyselý, 2017) 67.82 67.00 -
best(16) 84.04 83.86 80.84

csfd

baseline 69.07 69.00 -
Czert - - 84.79
(Habernal et al., 2013) - - 79.00
(Kyselý, 2017)⋆ 71.34 71.00 -
best(16) 84.02 84.00 -
best(69) 84.89 84.87 84.83

mall

baseline 84.72 83.00 -
(Kyselý, 2017) 82.52 81.00 -
(Habernal et al., 2013) - - 75.00
(Klouda et al., 2019)(Bert) 81.00 79.00 -
(Klouda et al., 2019)(SVM) 84.00 82.00 -
best(16) 84.40 84.00 -
best(63) 84.60 84.14 76.85

facebook

baseline 67.30 63.00 -
RobeCzech - - 80.13
(Habernal et al., 2013) - - 69.00
XLM-RoBERTa⋆⋆ - - 82.29
Czert - - 76.55
(Kyselý, 2017) 71.62 71.00 -
best(16) 75.00 74.98 -
best(45) 81.80 81.65 80.11

Table 1: Best results for all datasets and a comparison to previous work. Best(16)
is a best model for joint dataset and best(x) is always the best model for respective
dataset. Numbers in italics are from related work. Related work results except
Czert are 10-fold crossvalidation results. ⋆ (Kyselý, 2017) performs only sentence-
level classification. ⋆⋆ This is the large XLM-RoBERTa model from Straka et al.
(2021), which is four times larger than the BERT base model.

Formal Mistakes
In the version presented in this errata, I also corrected some typographical mis-
takes, e.g., missing citation on page 40 (due to an error in latex source, too wide
text on page 43 or too high table 2.9. These were only small formal corrections,
which only produce more aesthetic text, and does not change substantially the
work.



Dot product with query and normalization
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Figure 1: Self-attention mechanism scheme for one selected query vector. The
result is an embedding, which is improved by the context of the word. This picture
illustrates the result for the embedding of the first word (l1) in a four-word long
text. Input words are denoted as l1 to l4. Keys, values, and a query are all
computed by multiplying the input embeddings by their respective weights (Wk,
Wv, and Wq) before any other operation with them. These weights are trained
during learning. Dot products between every word and every query are computed.
The result is a number for every input word, so four numbers at the end. These
numbers are normalized, so the sum of them is equal to 1. These numbers serve
as a weight (Mx), which indicates the relationship between the query and every
other word. The resulting better embedding for the query is then obtained as a
sum of the word embeddings weighted by these obtained weights.



MODEL EXPE LAYERS LRTYPE Acc F1-w F1-m
1

mBERT

czech

four

isrd
80.89 80.62 76.89

2 zero 49.51 44.67 35.91
3 eng 81.17 80.90 77.45
4 czech

cos
82.56 82.35 79.10

5 zero 53.41 47.64 38.49
6 eng 82.55 82.37 79.12
13

RoBECzech

czech

four
isrd 81.17 80.90 79.65

14 zero 55.31 48.26 38.79
16 czech cos 84.04 83.86 80.72
17 zero 57.64 48.79 39.03
19

mBERT

czech

att

isrd
81.61 81.43 78.02

20 zero 53.92 47.55 38.23
21 eng 81.79 81.32 77.78
22 czech

cos
82.62 82.42 79.11

23 zero 51.99 46.63 37.59
24 eng 82.59 82.36 79.08
31

RoBECzech

czech

att
isrd 83.26 83.18 80.06

32 zero 58.36 50.40 40.89
34 czech cos 83.88 83.68 80.57
35 zero 58.13 50.89 35.71
37 mBERT

facebook

four

isrd 75.30 74.97 35.71
38 cos 76.20 75.89 73.32
41

RoBECzech

isrd 80.10 79.87 77.98
43

cos
81.50 81.37 79.90

44 81.00 80.78 79.02
45 81.80 81.65 80.11
46 mBERT

att

isrd 76.40 75.67 72.68
47 cos 77.20 76.83 74.20
50 RoBECzech isrd 79.60 79.07 76.78
51 cos 80.60 80.38 78.76
52 mBERT

mall

four

isrd 82.80 82.80 74.94
53 cos 84.27 83.88 76.48
56 RoBECzech isrd 83.17 83.37 76.00
57 cos 84.73 84.30 76.95
58 mBERT

att

isrd 83.02 82.90 75.36
59 cos 84.04 83.61 75.94
62 RoBECzech isrd 84.08 83.88 76.18
63 cos 84.60 84.14 76.85
64 mBERT

csfd

four

isrd 80.77 80.83 80.79
65 cos 82.04 82.04 82.01
68 RoBECzech isrd 83.06 83.05 83.00
69 cos 84.89 84.87 84.83
70 mBERT

att

isrd 81.63 81.60 81.57
71 cos 82.20 82.19 82.16
74 RoBECzech isrd 83.13 83.18 83.13
75 cos 84.32 84.32 84.28

Table 2: This table presents complete results on the sentiment task. Presented
metrics are accuracy, macro-F1, and weighted-F1.
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Introduction

Motivation
People think and communicate in natural languages. They express their opinions,
share information and feelings, or persuade others about their ideas, all in natural
languages. In the current era of digital technologies, all this information (sadly
even information people do not share consciously and with the awareness of the
potential risks) are available online. The amount of data is so enormous that it
is not in human power to sort and use them, and that is when Natural Language
Processing (NLP) is a necessary step for further processing by computers. For
these reasons, many NLP use cases exist, for example extracting opinions about
new products (e.g., via sentiment analysis or topic modeling), using chatbots in-
stead of paying employees in a call center, voice assistance for people with hearing
or vision impairment, filtering spam from email, summarizing the content of pa-
pers or finding answers in texts. In recent years, neural networks have achieved
great success in many areas, for example computer vision, speech recognition, or
marketing, and they get to all areas of research and industry. This work applies
the most successful deep learning NLP methods of recent years to Czech Natu-
ral Language Processing tasks: part-of-speech (POS) tagging, lemmatization and
sentiment analysis. First two tasks are low-level tasks used as a part of data
processing pipeline for almost every other NLP tasks. In contrast, sentiment
analysis is an example of a task interesting for end user outside the computer
science field and this task also demonstrates the help of used models in getting
rid of complicated hand-crafted architectures. Tasks were chosen from both se-
mantics and syntax to show how pre-trained multilingual language models can
help with different types of Natural Language Processing (NLP) tasks

Goals of this work
This work aims to improve selected Natural Language Processing (NLP) tasks
for Czech with the use of recently published state-of-the-art (SOTA) techniques,
namely transfer learning of (possibly multilingual) bidirectional language models.
This work uses two pre-trained multilingual models (BERT (Devlin et al., 2019)
and XLM-RoBERTa (Conneau et al., 2019)), that were trained in many languages
including Czech, and a monolingual Czech variant of RoBERTa called RobeCzech
(Straka et al., 2021). Selected tasks are tagging, lemmatization, and sentiment
analysis.

This work builds directly on previous work on tagging and lemmatization
contextualized embeddings (Straka et al., 2019a), uses existing datasets for all
tasks, and aims to reach new state-of-the-art (SOTA) results. In addition to
achieving better results, the aim of this work is also to explore some training
techniques for transfer learning and compare the results, especially the case of
fine-tuning versus full training from the beginning. The last goal of this work is
to produce a set of publicly available models for non-commercial purposes, public
source code and an accompanying text, which can serve as an introduction into
the problem and a basis for further experiments.
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Text structure
The following text is divided into four chapters: First chapter presents the the-
oretical background in NLP and used Artificial Intelligence (AI) methods. This
quite general chapter is followed by a description of all performed experiments,
which is presenting introduction into experiments and thorough description of
each implemented task: definition, previous work, state-of-the-art results, meth-
ods applied in this work, and their results for Lemmatization and part-of-speech
tagging and Sentiment analysis. Implementation details like code overview, third-
party libraries and informations for personal examination and exploration of pre-
sented models can be found in chapter 3. Text is closed by a conclusion with a
summary of contributions and future work proposals.
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1. Theory
This chapter is divided into three parts. The first part introduces basic concepts
of linguistics and natural language processing. With the focus of this work in
mind, deep learning basics are presented in the second part. The third part of
this chapter offers a more detailed explanation of methods directly relevant to
this work (especially the BERT model).

1.1 Linguistics and Natural Language Process-
ing

Natural Language Processing (NLP) can be described as a science at the border
of linguistics and computer science. However, according to (Wilks, 2005), NLP
itself is not a scientific research subject. It is instead a collection of problems,
which can be examined. These tasks are taken from the general linguistics field,
and the goal is to solve (or process) them by computers. The study subject of
linguistics is language and its description. The focus of linguistics can be di-
vided into the following sub-fields: phonetics, phonology, morphology, syntax,
semantics, and pragmatics. This work focuses on morphology (lemmatization,
part-of-speech (POS) tagging) and semantics (sentiment analysis) tasks. A more
detailed description of tasks can be found in the following subsections and dedi-
cated chapters for each task. Apart from the introduction of tasks, this chapter
also includes a brief NLP history overview and a presentation of possible data
sources for NLP training.

1.1.1 Morphology
Morphology studies an internal structure of words. Morphological tasks can be
divided into generative and analytical. Generative tasks for a given word focus on
the generation of word form for a given grammatical category. On the contrary,
analytical tasks try to find e.g. a part of speech tag or grammatical categories of
the given word. Both of these types of tasks are important for NLP.

This work performs two morphological analytical tasks – lemmatization and
part-of-speech (POS) tagging.

Lemmatization Task

Lemmatization task consist of finding a lemma. Lemma is one chosen form of
a word, selected to represent the whole set of all possible word’s forms (such
set is called a lexeme). A convention chooses word form used as lemma – it is
nominative of singular for a noun, an infinitive for a verb, etc.

For example, lexeme for a Czech word jablko is jablko, jablka, jablku, jablkem,
jablek, jablky, jablk̊um, jablkách and the lemma is jablko.
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POS Tagging

POS tagging classifies word into one of the POS categories (like a noun, pronoun,
or verb) (Hladká, 1998). A determination of grammatical categories (e.g., case,
number, or tense) is sometimes also considered as a part of tagging task.

1.1.2 Semantics
Semantics deals with word meaning. This is a more challenging study than mor-
phology, even for humans, let alone for computers. The most important reasons
are that word meaning can be subjective, change during historical periods, a sen-
tence is not a simple sum of meanings of its words, and moreover it is not clear
how to represent meaning in computers.

Semantic analysis can be useful for various tasks, from natural language text
generation to recognizing homonymy1 or polysemy2 of given words. It could solve
sophisticated assignments as answering questions about the input text document,
or help in high-quality translation, finding so-called named entities (like persons,
months, or cites), linking these entities to some knowledge base, or analysing
sentiment (which is one of the tasks solved in this thesis).

Sentiment Analysis

An input of sentiment analysis is a text, and the output is a classification into
one of the categories. In this work, categories are positive, negative, and in some
datasets also neutral, but it is common to use labels like abusive or ironic, too.
As a part of sentiment analysis, the so-called subjectivity can be involved (Mon-
toyo et al., 2012). The subjectivity prediction goal is to classify if the opinion
(both positive or negative) is objective or the author is personally interested, and
has strong emotions about his claims. For example, the following text could be
recognized as objective: ”The sound of this notebook is clear.”, ”The base is not
stable enough.” or even ”An internet connection in this area is bad.” in contrast
with ”I hate the way the new touchpad works.”, which is highly subjective. The
subjectivity of the claim does not depend on its sentiment. This work treat only
positive/neutral/negative classification, not a subjectivity analysis.

1.1.3 Language Data
Data of many kinds can serve as an input into natural language processing, and
this data can be categorized by a form or by source. As for form, we can work
with corpora or datasets of various sizes, containing data from many sources. A
corpus is a large collection of texts, aiming to be a representative sample of a
language. This is not entirely possible, mainly because the selection of examples
in the corpus is limited compared to language diversity. Despite these limitations,
corpora are a valuable source of language information and are widely used in
NLP. The most famous linguistic corpora include the Brown corpus (Francis
and Kucera, 1979) – first electronic corpus mixed from newspaper articles and

1Homonyms are words, which share same spelling or pronunciation, but they have different
meaning.

2Polyseme is a word with many different, but related meanings.
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fiction literature, and PennTreebank (Marcus et al., 1993), which is the first
syntactically annotated corpus, but has quite a domain-limited source – articles
from the Wall Street Journal. Corpora can differ in internal structure. One of
corpora’s type is a treebank. A treebank is a corpus with many possible types of
annotations that uses trees to represent dependencies. An example of such trees
can be seen in figure 1.1 and an example of a treebank is presented in picture 1.2.
A question arises as to what is the difference between a corpus and a ”simple”
dataset. Sometimes these terms can be interchangeable in the sense that the
usage of both can be the same. Both types of data can be used for the same task,
but the difference can be seen in a purpose of a collection. A corpus idea is to
collect a somehow representative sample of a language with annotations on many
levels, which allows the performance of various analysis upon this data. Dataset
is typically created on a restricted domain, and they are annotated for one type
of task, e.g., tweets on US Airlines pages3 or movie reviews4, which are examples
of such sentiment analysis datasets.

shot

I elephant

in

pyjamas my

S

NP VP

V NP

Det N PP

P NP

Det N

I

shot

an elephant

in

my pyjamas

A dependency tree A syntax tree

Figure 1.1: An example of the syntax and dependency tree. The dependency tree,
as the name indicates, describes dependencies between words. Such dependencies
are of various types; for example, an elephant in the example text is a direct object
of the shooting action.
A root of such a tree is typically a predicate of the sentence. On the other
hand, the syntax tree represents the sentence’s syntactic structure according to
the grammar. The root of the tree is sentence, which is split into noun and verb
phrase. These can be further divided into phrases compound from particular
instances of parts of speech (e.g., nouns, adverbs, verbs, prepositions, etc.).
Source: Bird et al. (2009)

Data in both dataset and corpora can come from many written or oral sources.
For example, in machine translation task, documents with many language ver-
sions are appropriate. An example of the use of such multilingual documents
was a project Eurotra (Oakley et al., 1995). Linguistic data can, however, differ

3https://www.kaggle.com/crowdflower/twitter-airline-sentiment
4https://www.kaggle.com/lakshmi25npathi/imdb-dataset-of-50k-movie-reviews
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Figure 1.2: Prague dependency treebank example PDT35 for the sentences:
Grasshoppers are still in the larvae stadium, crawling only. At this time of the
year, it is efficient to fight them using chemicals, but neither the ailing cooperatives
nor private farmers can afford them. Czech: Sarančata jsou doposud ve stadiu
larev a pohybuj́ı se pouze lezeńım. V tomto obdob́ı je účinné bojovat proti nim
chemickými postřiky, ale dož́ıvaj́ıćı družstva ani soukromı́ rolńıci nemaj́ı na jejich
nákup potřebné prostředky. This treebank contains dependency trees, but is is
just one of many possibilities. Prague dependency treebank offers different layers
of annotations. Red strips over words chemický and postřik marks multiword
phrase, conjunction between rolńık and družstvo is expressed as by one type of
nodes, blue lines denotes coreference etc.
Praque dependency treebank data are used for tagging and lemmatization tasks.

9



in quality and length. A relatively new source of data are social networks like
Twitter, Reddit, or Facebook. Data from some social networks (Facebook, Twit-
ter) are very different from traditional sources like scientific papers, newspaper
articles, or books. These data are short snippets of text full of odd characters,
newlines, and ends of lines. They contain pictures, emojis, a mixture of different
languages, slang expressions, and grammatical errors. Furthermore, they are very
short; sometimes, they consist only of one sentence, few hashtags, and a link or
a picture. Because people share their opinions and emotions and are ready to
make their choices according to incoming influences, social networks are for some
areas one of the most important source of information. The big problem while
analyzing this data is their amount. Twitter users, for example, produce about
12 TB of data per day.5 It is impossible to process all the data manually, so this
is one reason for the rising industry importance of natural language processing.

1.1.4 Historical Development
The historical development of computer linguistics was significantly affected by
machine translation (Wilks, 2005). NLP was improved by some of the mile-
stones in machine translation history, therefore its historical development will
be presented as well. First machine translation attempts formally started in
1933 by patents for machine translations (mechanical multilingual dictionaries)
(Hutchins) followed by a big boom of machine translation in the 50s and 60s and
then continued by a slowdown after ALPAC report in 1966 (Hutchins, 1996).

The first solutions to machine translation tasks were based on bilingual dic-
tionaries and sets of rules. This method translated an individual word or a small
group of words with a subsequent improvement of syntax and morphology. The
resulting translation was not good and required lots of human work of expert
linguists. This approach was replaced around the year 1990 by a statistical trans-
lation (Brown et al., 1990). A statistical machine translation’s central idea is a
probability of a translated sentence, given the original sentence. This includes
also a probability of resulting sentence in the target language. This probability
distribution is called a language model, and although it is one of the most aged
ideas in NLP, it is an integral part of current best NLP solutions. Words prob-
abilities were originally computed using frequencies of words or sequences of n
rows (so called n-grams) in large language corpus (Jurafsky and Manning, 2012)
(for more information about probabilistic language models, see subsection 1.2.7).
These methods were quite successful, but they suffered from the curse of dimen-
sionality 6 (Goodfellow et al., 2016, p.450). The next stage of machine translation
(and other NLP tasks) starts with the second wave of neural networks’ popular-
ity (Goldberg, 2015),(Google). There are too many possible words or n-grams of
words, and there is no way to share learned information between similar words
or sequences in statistical methods. A solution to this problem is an invention
of word embeddings (Bengio et al., 2003) (see 1.2.3). Neural language models (a
neural network which learns probabilities of words) obtained even better results

5https://bigdatashowcase.com/how-much-big-data-companies-make-on-internet/
6Curse of dimensionality is a problem connected to the data with many variables. In such

high-dimensional space, distances between samples are so big that it makes really difficult to
distinguish between similar and completely different samples or find some meaningful pattern
in the data.
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(Schwenk et al., 2006). Current natural language processing is built on deep
recurrent neural networks and encoder-decoder architecture, firstly published in
(Cho et al., 2014), (Sutskever et al., 2014) and (Wu et al., 2016).

1.2 Deep Learning
In current times, neural networks are applied to machine translation and almost
any other linguistic tasks. State-of-the-art result for machine translation, senti-
ment analysis, and many others is held by methods based on deep learning.7 Also
the main focus of this work is on neural network methods. For that reason, this
section presents deep learning basics, their usage, and improvements in NLP in
recent years.

1.2.1 Deep Learning History
The history of learning algorithms inspired by a human brain started in the 1940s
under the name cybernetics (Goodfellow et al., 2016; McCulloch et al., 1943).
The first such architecture was a perceptron (Rosenblatt, 1958). Perceptron,
invented in 1958, is the most straightforward neural network with just one layer
serving for binary classification (see figure 1.3). A perceptron’s input is a vector
of features describing an input example, and output is a classification into class
0 or 1.

W1

 W2 

Wn

....

SUM  Result 

X1

Xn

X1

Figure 1.3: A one-layer perceptron architecture. The result is formed by the
application of the activation function on a weighted sum of inputs. Weights are
updated during training till it returns satisfactory results.

There also exists a multi-class version for general classification, but perceptron
also had limitations. The problem of the perceptron was the inability to classify
data that are not linearly separable (Minsky and Papert, 2017) (see figure 1.4),
which led to a lack of interest in artificial neural networks for some period.

7http://nlpprogress.com/
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Figure 1.4: This picture illustrates the XOR problem. Perceptron can find the
correct solution only if the data are linearly separable. It means that they can be
divided by a hyperplane. An example of such two-dimensional data can be seen
in picture A). The dotted line shows a possible border for separation. Picture B)
shows XOR problem. XOR is a logical operation on two boolean variables, which
returns true if one variable is True (1) and the other one is False (0), and returns
False otherwise. Such data cannot be separated by one hyperplane. Linearly
non-separable data can be, for example, separated by an ellipse (picture C).

The era of deep neural networks started around the year 2007 (Goodfellow
et al., 2016) with bigger datasets and greater computational resources. These
two new features opened the possibility of neural network learning without ex-
pertly handcrafted parameters tuning with good results. Many ideas, which are
currently frequently used, are quite old - like backpropagation (Rumelhart et al.,
1986) or even the encoder-decoder architecture (Allen, 1987), (Forcada and Ñeco,
1997). However, they became popular only after the development in other com-
puter science areas (mainly because of more advanced hardware) reached a level
where they can be trained in a reasonable time.

The basic type of a deep Neural Networks (NN) is a multilayer perceptron (see
figure 1.5). It is composed of neurons; every neuron has an activation function,
which is applied to its input. Input to every but the first layer is a weighted
combination of (possibly selection of) neurons from a previous layer. Different
NN types differ by the number and the shape of layers, activation functions, and
connections between neurons (see figure 1.5).
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W0,1,2

W0,1,2

W0,1,3

X1

W0,n,3

Xn

X1

Input layer Hidden layers Output layer

W1,2,1

Figure 1.5: Multilayer perceptron (or feed-forward neural network) is formed of
an input and an output layer and a variable number of hidden layers with different
sizes. In every layer, the chosen activation function is applied to a weighted sum
of inputs from the previous layer. In the illustration, the output is a probability
for each of both classes in binary classification.

The following subsections present some of the key ideas for (not only) NLP and
specifically for BERT. In NLP, the same as in other machine learning methods,
it is necessary to decide how to encode the input to make it processable by
computers, especially which input features are important for the given task and
should be included. These questions are addressed in NLP, among others, by two
techniques: word embeddings (see section 1.2.3) and an attention mechanism
(see section 1.2.4). Word embeddings deal with the representation of words and
their meaning, while the attention mechanism determines which parts of the text
are relevant for a given task. Many machine learning methods are applied to
data with no defined order between samples, like images or descriptions of petals
for each sample flower.8 Language data are, however, different, because their
nature is sequential. Word and sentence ordering is an essential part of the text,
and lack of it can make text absolutely senseless. This problem can be more
or less satisfactorily handled by Recurrent Neural Networks (section 1.2.5) and
Transformers architecture (section 1.2.6). Combining all these methods led to a
BERT models family, which are used in this thesis (see section 1.3).

1.2.2 Machine Learning and Regularization
Machine learning is a computer science field dealing with algorithms, which can
learn from experience and improve themselves. More precisely, ”A computer pro-
gram is said to learn from experience E with respect to some class of tasks T
and performance measure P, if its performance at tasks in T, as measured by
P, improves with experience E.” (Mitchell, 1997). For the techniques examined
in this work, experiences are language data – every single experience is a text.

8https://archive.ics.uci.edu/ml/datasets/iris
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To provide some measure, it is needed to know the ML algorithm’s correct out-
put. Many deep learning methods are constructed as supervised, which means
that every experience has a corresponding label with a correct response (so-called
gold data). Metrics used in this case reflect the portion of correctly predicted la-
bels (Russell et al., 1995). Such data structure is handy for machine learning,
but it is hard to obtain the data in the required amount because they are usu-
ally created manually by humans9. Opposite to this approach are unsupervised
methods, where no labeled data exists, and metrics are based on different result
features (e.g., the compactness of resulting groups). As for tasks, it is possible
to distinguish them by the desired outcome between two basic categories: classi-
fication and regression. The classification consists of sorting data into one of the
predefined classes (e.g., noun, adjective, verb); meanwhile, regression’s goal is to
predict a numerical result (e.g., expected number of borrowed books in a school
library this year).

To be precise, supervised machine learning goal is not to predict all labels
correctly in an example data (it would be enough to memorize them), but to
predict correctly all possible inputs from the same distribution example data are
taken from (find some general features for correct performance). During training,
there can appear a problem called overfitting. As showed in Figure 1.6, overfitting
problem is that the result prediction function practically memorized all training
data examples and can minimize the error on them very nicely, but probably
will not perform well on previously unseen data. A regularization is a tool for
preventing such issues. Well known regularization techniques like lasso regression
(Tibshirani, 1996) or ridge regression (Hoerl and Kennard, 1970), which are used
for linear regression, work by adding some new members into the sum for the loss
function, which should be minimized.

A) Overfitted B) Well-generalized

x

y y

x

Figure 1.6: Figure A) presents overfitting scenario and Figure B) illustrates pos-
sible well-generalized solution for data with two variables.

Another classification regularization method, which is also used in this work,
is label smoothing. Label smoothing (Szegedy et al., 2015) is an idea applicable
to every classification problem, therefore is not limited to an NLP only. In any

9Obviously, if it were already possible to create labels by computers, there would not be
necessary to learn it.
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classification task, training data contains labels of the correct classes. In binary
classification or one-hot encoded labels, correct class is denoted by 1 and incorrect
class(es) by 010. Instead of this, label smoothing applies following formula:

ynew = (1 − ϵ) · y + ϵ/K,

where K is number of classes, y is the original label, ynew is the smoothed label
and ϵ is the weight factor. Label smoothing is used as a cure for overfitting and
overconfidence in the case of use of a softmax as output activation function. Loss
function for softmax classification is:

loss = −
n∑︂

i=1

K∑︂
y=1

p(y | xi)log qθ(yi | xi),

with p(y | xi) being the truth labels’ distribution and qθ(yi | xi) being the pre-
dicted distribution of labels. After substitution of label smoothing:11

lossls = −
n∑︂

i=1

K∑︂
y=1

[(1 − ϵ)p(y | xi) + ϵu(y | xi)]log qθ(y | xi),

for u(y | xi) uniform distribution (can be replaced by 1/K) which gives after
multiplication:12

lossls =
n∑︂

i=1
(1 − ϵ)

[︄
−

K∑︂
y=1

p(y | xi)log qθ(y | xi)] + ϵ[−
K∑︂

y=1
u(y | xi)log qθ(y | xi)

]︄
(1.1)

From equation 1.1 can be seen, then if the network is very confidential about some
prediction, the second part of the loss function is very large, so label smoothing
works as a regularization of overconfidence.

1.2.3 Embeddings
Good performance of NLP models relies on a text representation. What is hypo-
thetically desired is teaching computers to understand the semantics of the lan-
guage. Once the computer has a good representation of what given text means,
it should be easy to answer questions, translate it into another language, etc.
Because NN can work only with a numerical representation of inputs, the sec-
ond requirement upon such language representation is to be numerical. The
straightforward way is to represent input words in one-hot encoding. In one-hot
representation, a single word is represented by a vector, and one is only at the
position of the respective word; all other positions are zeros. Such vector is long
as a number of all possible distinct words, therefore it could be quite large. The
most important problem of one-hot representation is that each two words are
similarly distant from each other. It can be an advantage in some areas, but it is

10One-hot encoding transforms each label into a vector of size K, where n is a number of all
possible classes. Than such vector is zero at all position expect the c-th position, where c is the
correct class.

11 Taken from: https://leimao.github.io/blog/Label-Smoothing/
12see footnote 11.
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not a correct assumption in linguistics. Words can have similar meanings or be
opposite to each other, generally spoken, a distance between them is not uniform.

When compared to one-hot encoding, embeddings (Bengio et al., 2003; Ling
et al., 2016) are better solution for language data. Embedding is also a vector
representing an input word, but in contrast to one-hot encoding, its size does not
depend on the vocabulary size. These embeddings are learned by neural networks
instead of being prepared by humans. They can be learned for every specific task
from scratch, or it is possible to use embeddings trained for usage in many tasks
like in the following cases.

Non-contextualized embeddings

Before contextualized embeddings appeared, pretrained embeddings were created
mainly by Word2Vec (Mikolov et al., 2013), (Turian et al., 2010), (Pennington et
al., 2014), specifically by its two variants: the CBOW and the SkipGram model.
The objective of CBOW model is to predict a missing word from its context,
and SkipGram does precisely the opposite – predicting the context of the given
word. These predicting objectives serve just as a tool for forcing a network to
learn a useful word representation. Embeddings are then input into a network
through a layer with size number of words · embedding size. We still need to
bridge the gap between text and numbers, which is possible to do using one-hot
encoding or simple word numbering as an input into this first embedding layer.
The problem of Word2Vec-like embeddings is that the embeddings depend only
on a few nearest words, but the statistics in the dataset are not explicitly used.
GloVe (Pennington et al., 2014) embeddings, on the other hand, use information
about frequencies of pairs of words in a whole dataset, and are designed to project
word vectors into meaningful vector space.
Embeddings of previously described types use a context of the word – it is, in
fact, the way how they are meant to work. Similar words are supposed to appear
frequently in a similar context. The problem of such embeddings is that an input
word embedding in the first layer of the neural network is computed independently
on neighbor words, so the same word always has the same embedding regardless
of the context. In the case of homonyms, non-contextualized embeddings are
a mixture of all the (possibly very different) meanings, which can lead to poor
results. The main problem for same word embedding in a different context are
homonyms. To solve this problem, contextualized embeddings were developed
providing better results universally (Straka et al., 2019b; Liu et al., 2020).

Contextualized embeddings

Contextualized embeddings were invented in recent years, namely ELMo (Peters
et al., 2018), BERT (Devlin et al., 2019), and XLNet (Yang et al., 2019a). Their
comparison can be found in a subsection 1.3.4. The main difference from non-
contextualized embeddings is that same words obtain different meaning according
to the sentence they are part of. In addition, they also take into account a
larger context than the above-mentioned non-contextual methods. Section 1.2.7
describes the possibilities of involving and training such embeddings in more
detail.
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As embeddings are trained after the input is encoded into one-hot vectors, it
is impossible to use pretrained embedding for the encoding of previously unseen
words. This problem is solved by embeddings of characters or subwords, so that
the whole word embedding can be later a compound of them. Embeddings are
currently the best option of an input representation.

Another problem is recognizing which parts of the input are valid for the given
task. This problem is addressed by the attention mechanism, described in the
following subsection.

1.2.4 An Attention mechanism
Attention mechanism (Bahdanau et al., 2014) is widely used in NLP as a tool
for extracting relevant information from word sequences. For example, when
generating a sentence translation, each word in the target language corresponds
to just a few words in the source sentence, not to a whole sentence. Attention
gives weights to words, which represents this connections (see picture 1.7).
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Figure 1.7: Figure 3 of (Bahdanau et al., 2014) presents the use of the attention
for machine translation. Axis show words of a sentences in English and French.
The importance for a translation between a pair of words is represented by a
lightness (lighter = more important).

When the task is question answering, attention can help a model focus on a
relevant part of the text, where the answer is located (dos Santos et al., 2016).

The same idea can be applied to computer vision, where it imitates human
behavior. Humans also focus on (or attend to) just a few parts of their visual
input when they are, for example, recognizing things in pictures. Modification to
an attention concept, called self-attention (Cheng et al., 2016), deals with rela-
tionships inside one part of the text (e.g., a sentence). This variant of attention
does not connect one part of the text (like a question) to another distinct part
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of the text (like an answer), but only models relationships inside one part. For
more explanation, see figure 1.8.

Dot product with query and normalization

M1 M2 M3 M4

I1 I2 I3 I4

××××

+

Keys

Values

Output

I1 I2 I3 I4
Query

I1

Wk1 Wk2 Wk3 Wk4

Wv1 Wv2 Wv3 Wv4

Wq4

Figure 1.8: Self-attention mechanism scheme for one selected query vector. The
result is an embedding, which is improved by the context of the word. This picture
illustrates the result for the embedding of the first word (l1) in a four-word long
text. Input words are denoted as l1 to l4. Keys, values, and a query are all
computed by multiplying the input embeddings by their respective weights (Wk,
Wv, and Wq) before any other operation with them. These weights are trained
during learning. Dot products between every word and every query are computed.
The result is a number for every input word, so four numbers at the end. These
numbers are normalized, so the sum of them is equal to 1. These numbers serve
as a weight (Mx), which indicates the relationship between the query and every
other word. The resulting better embedding for the query is then obtained as a
sum of the word embeddings weighted by these obtained weights.

An improvement to the self-attention – multihead attention (Vaswani et al.,
2017) also tries to model relationships between the words in the same sequence.
As it is multiheaded, it can, for one word, pay attention to more words (or their
parts) (see figure 1.9).
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Figure 1.9: Figure 2 from (Vaswani et al., 2017) describes the attention mech-
anism used in Transformers. Scaled Dot-Product Attention, as authors call it,
is basically the same architecture as described in the previous figure (1.8). The
dimension of values (dv) is different from query and keys dimensions (dk). As the
normalization serves scaling (division by the number of input dimensions) and
than softmax function, which ensures the sum of all weights to be equal to one.
Multi-head attention just perform Scaled Dot-Product Attention in parallel and
result is then concatenated.

1.2.5 Recurrent Neural Networks
Text sequences can be very long, and related words often have a long distance in
between. This fact places challenging demands on neural networks because such
data structure differs from most other NN applications, where input samples
are independent, and order does not matter. Text size can also lead to vanish-
ing/exploding gradients because information should be carried for many steps,
leading to many multiplications of very small or big numbers in neural networks.

Based on the above mentioned, the construction of neural networks than can
capture natural language structure requires solving two issues:

• input should be understood by the network as a sequence,

• there must be a possibility to use information from other parts of the sen-
tence (and not to forget them).

The first problem was solved by simple Recurrent Neural Networks (RNN). To
represent an ordering and a continuity of input words, basic RNN takes the output
for previous word as a part of input for the next word (see figure 1.10).
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Figure 1.10: Basic Recurrent neural network architecture is showed on the left
side of the figure. It is composed by one rnn cell which recurrently uses in-
formations from previously seen input. X is the input of the cell, e.g. a
word, O is the output for the given word (e.g. its translation or next word
prediction), V is the state passed into another time step. For better illustra-
tion of working in the time, RNN can be visualised as a chain of cells con-
nected by a result of previous cell as can be seen on the left side of the fig-
ure. Source: Picture from https: // medium. com/ deeplearningbrasilia/
deep-learning-recurrent-neural-networks-f9482a24d010 .

The latter problem needs a more complicated approach. There are three
attempts to solve this short memory of RNN cells – Gated Recurrent Unit (GRU)
(Cho et al., 2014), Long Short Term Memory (LSTM) (Hochreiter and Urgen
Schmidhuber, 1997) and Transformers architecture (Vaswani et al., 2017) with
an attention mechanism.

Both LSTM and GRU uses an idea of gating. Term gate refers to a weight
(multiplication factor) for previous informations and new input. Gate determines
which information from previous words should be remembered and which should
be forgotten. For regulating the memory, the gate is formed by the sigmoid
activation function, ranging from 0 to 1 and presenting a portion of remembered
information. Previous information is encoded in a cell state and a hidden state,
both passed from cell to cell (with the application of the gates). Comparison of
both architectures can be found in figure 1.11.
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Figure 1.11: Comparison of LSTM and GRU architecture. xt is the current input
(current word), Source: http://dprogrammer.org/rnn-lstm-gru.
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LSTM

LSTM cell uses three gates: input, output and forget gate. Every gate is com-
posed by a sigmoid function with an actual input and a previous hidden state as
inputs. Forget gate filters information from previous cell state. Input gate decides
which parts of input will affect the results. Output gate then selects which part
of the result will be actually part of a result. Detailed description can be seen on
Figure 1.12.
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C) Output gate

Figure 1.12: An architecture of the LSTM cell, epsecially its gating mechanism. A
LSTM cell carry through the time, in addition to a hidden state, also a cell state,
which serves as a long-term memory. A forget gate is responsible for choosing
the amount of cell state, therefore the information from previous inputs, to be
preserved. It uses sigmoid function which returns the output between 0 and 1.
An input gate controls the addition of new information from the input to the
memory. An output gate produces the output hidden state which is passed to the
next cell.

GRU

GRU also uses gates: reset gate and update gate. The reset gate is responsible
for how much of the previous state will take in the new state. The update gate
serves as a weight for a combination of previous and current states, which form
the new output. For more details see Figure 1.13.
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Figure 1.13: An architecture of the GRU cell. An update gate (A) computes how
much of previous information should be passed to next cell based on previous
hidden state and the current time input. A reset gate (B) uses the same formula
(although the input and the previous hidden state have different weights) but
serves to a different purpose – it decides which to forget. (C) previous hidden
state is weighted by the reset gate before concatenating with current input and
normalized via tanh function (to be between −1 and 1) Finally, new hidden state
is computed as an affine combination of previous hidden state and ”normalized”
hidden state from previous step.

1.2.6 Transformers
The Transformers solve the same problem as RNNs,s but propose a different
architecture. The Tranformers architecture was proposed in 2017, in a paper
Attention Is All You Need (Vaswani et al., 2017), and essentially depends on
a self-attention mechanism (see subsection 1.2.4). Tranformers uses encoder-
decoder architecture, which was simultaneously published in 2014 by (Cho et al.,
2014), (Sutskever et al., 2014) and (Wu et al., 2016). This architecture serves
to processing of variable-length sequences. Encoder and decoder are connected
by a vector of fixed size (context vector), which aims to be a good representation
of the input. The encoder reads its input and tries to learn such weights that
the encoder’s final representation of the input contains all important information.
This context vector serves as an input into the decoder, which tries to reconstruct
the best results. This architecture was first used for machine translation, so the
decoder’s output, in this case, is a sentence in the target language with the same
meaning as an original input (see figures 1.14 and 1.15).
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Figure 1.14: This picture describes design of one encoder-decoder block in detail.
Every encoder layer consist of self-attention and feed-forward layer supplied with
normalization and residual connections. Source: http://jalammar.github.io/
illustrated-transformer

Figure 1.15: In transformers, encoder and decoder parts are both composed by
many of block of respective types. The input goes first through a series of encoders
and than the output of encoder part is put into every decoder in the decoder part.
source: http://jalammar.github.io/illustrated-transformer/
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The self-attention mechanism is supposed to select the most important words
to be focused on and used in many places – for the input of every encoder layer, for
the input of every decoder layer (although masked), and also between encoder and
decoder. On the decoder side, the self-attention layer is masked so the decoder can
”see” just the previous words (there are −∞ values in the positions on the right
or the current positions). For a representation of word position in a sentence (as
it is not an RNN cell and it can process all words simultaneously), Transformers
use position embeddings, which are trained to represent the sentence’s ordering.

1.2.7 Transfer learning
Transfer learning is a very important idea because it allows, as the name suggests,
to transfer learned knowledge between different tasks. Reusing the knowledge can
lead to lower training times with fewer demands on technical resources (GPU,
CPU) and training data size. It even allows to successfully apply automatic
processing into domains where labeled data are not available by transferring the
knowledge from another domain with enough training examples. In addition,
usage of underlying common knowledge between different tasks can also improve
the results of learning algorithms on each task. One of the first big successes of
transfer learning comes from the computer vision field by using models pretrained
on ImageNet (currently also on other datasets). ImageNet (Russakovsky et al.,
2015) is a big dataset of pictures. Every picture is labeled by one of a thousand
classes. Many large deep models were trained on this dataset and then applied
to different computer vision tasks with a great success (Huh et al., 2016).

Following the taxonomy in figure 1.16, currently most important transfer
learning applications in NLP falls into sequential transfer learning category. Ma-
chine learning models are first trained on a training objective, and the trained
result is then used for a wider set of tasks.
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Figure 1.16: Figure from (Ruder et al., 2019) offers possible taxonomy for transfer
learning. Following definiton in (Pan and Yang, 2010), transfer learning’s goal is
to improve the performance on task T1 from domain D1 by learning knowledge on
task T0 from domain D0. Domain is defined as D = χ, P (X), where X ∈ χ, χ is
a feature space and P (X) is a marginal probability distribution over the feature
space. Transfer learning allows the use of trained models on tasks with different
sets of labels or different input data’s nature. Input data can vary in the source
they come from (wikipedia text versus a novel or a social network posts), they
can learn from different features (e.g. different languages) or the distribution of
classes is different than it was in the training data (so some highly presented
classes in training data are rare in this new task and others are quite common
but previously not seen too many times).

For natural language processing, transfer learning is currently mainly repre-
sented by contextualized embeddings obtained from pretrained language mod-
els. The embeddings are not important only because it solves the problem of
homonyms, but also because they are believed to store knowledge independent of
any language (Feijo and Moreira, 2020; Hewitt and Liang, 2020). Contextualized
embeddings can be obtained by both supervised or unsupervised learning (Liu
et al., 2020). This work focuses on unsupervised learning, as it is currently a
promising field according to recent results, and because unsupervised learning
does not depend on large manually created datasets.13 Supervised methods use
machine translation, which is the classic NLP task, but also on natural language
inference or other tasks with the potential to capture general knowledge about
language.

13This is a slight terminological inaccuracy. In section 1.2.2, unsupervised learning was
defined as a task, where data does not contain the correct answer. BERT and derived models,
however, use pre-training tasks, where the input does not need the manual annotation, but
in training itself, individual experiences are provided with the correct answer. Better term
introduced by Yann LeCunn https://twitter.com/ylecun/status/1123235709802905600?
lang=cs is self-supervised.
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Unsupervised learning tries to learn a language model – a probability distri-
bution over a sequence of tokens given by the following equation:

p(t1, t2, ..., tN) =
N∏︂

i=1
p(ti|t1, t2, ..., ti−1)

(Liu et al., 2020), where (t1, t2, . . . , tN) is a sequence of tokens. To reduce this
problem, it is possible to consider only fixed size sequences of n − 1 previous
words for every word probability called n-grams (Bengio et al., 2003). To achieve
the goal of learning a language model, one can use many different tasks, which
are believed to force the network to learn useful knowledge about language. First
attempts were made with autoencoders (read the text, encode it and try to decode
it back) (Dai and Le, 2015) and machine translation (Ramachandran et al., 2017),
but later papers come with better architectures and various new objectives, which
are described later in section 1.3. There are generally two ways to transfer the
learned knowledge (Feijo and Moreira, 2020): extract some representation from
the model and use it in another model without changes, or modify a model by
changing the task-specific layers (so-called head) and fine-tune the whole newly
created model for a specific task. There is also a possibility to combine both
approaches and, at first, take static features as an input for training, and then
when the head starts to perform well, fine-tune the whole model with this better
head, so the original weights converge more efficiently to the wanted solution.
More detail are offered in section 1.3.3.

1.3 BERT and its descendants
The methods described in previous section are utilized in the BERT-like mod-
els, which belong into a family of contextualized embeddings together with e.g.,
Contextualize Word Vectors (CoVe) (McCann et al., 2017; Peters et al., 2017),
ELMo (Peters et al., 2018), Flair (Akbik et al., 2018), and series of Genera-
tive Pretrained Transformers (GPT) models (Radfort et al., 2018; Radford Alec
et al., 2019; Brown et al., 2020). These models are important steps in NLP
progression, which led to BERT family of models. BERT, representing a very
effective contextual embeddings, demonstrated better ability to capture language
knowledge and constitute an important milestone in the NLP.

First attempts to contextual embeddings appeared with two models: the first
(CoVe; (McCann et al., 2017)) uses supervised machine translation and the sec-
ond (Peters et al., 2017) uses unsupervised language modeling. Both these models
are used for extracting embeddings. These embeddings are concatenated to the
non-contextual embeddings (i.e., GloVe) for the target NLP tasks. CoVe uses
a machine translation task (it needs a parallel bilingual dataset) and biLSTM
encoder-decoder architecture. The biLSTM are LSTMs, which process text in
both directions. CoVe, therefore, uses supervised learning, in contrast to the
following presented models, which took the path of unsupervised learning, as
learning from the raw text has a considerable potential due to easy access to
a large amount of unlabelled text data (in opposite to labelled datasets, where
there is almost always not enough data). Peters et al. (2017) use an unsupervised
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method – language modeling and a concatenation of forward and backward RNN
(similarly to CoVe, but uses both GRU and LSTM depending on the task). Both
models use last layer as an embedding representation.

ELMo is third in the series of biLSTM architecture models and builds on Peters
et al. (2017), but it uses a deeper representation of words. Embeddings are
created from a weighted combination of all network layers (in the original ELMo,
there are only two layers). This deeper combination was led by the assumption
that different network layers are capturing different (but valuable) knowledge.
Experiments with weights showed that lower layers tend to capture syntactic
information and therefore are more important for syntactic task, while higher
layers are important for semantic tasks.

Flair also uses unsupervised LM, but the smallest unit of the input is an char-
acter, not a word. Flair models the n-th character’s probability given the previ-
ous characters in the probabilistic description of language modeling. An output
is again a word embedding, but this time combined from a representation of its
characters. The authors chose this approach to eliminate problems with unknown
words.

GPT by OpenAI (actually in version 3) also uses language modeling for pre-
training, but the difference is this time in the architecture. Instead of the LSTM-
based RNN network, GPT variants use the decoder part of the Transformer
architecture and the attention mechanism. GPT also presents deeper architecture
than all previously presented methods. GPT 2 version proposes 4 model sizes,
with the smallest one having 12 layers and the deepest one 48 layers. Each layer
is a Transformer decoder with self-attention as described in section 1.2.4. GTP
is deeper than ELMo and others, but only considers a left context of the word,
as the text is processed sequentially in only one direction.

1.3.1 BERT
On top of all previously mentioned contextual embedding models stands the Bidi-
rectional Encoder Representations from Transformers (BERT) (Devlin et al.,
2019) with the depth comparable to GPT 2, but using a different part of a Trans-
former architecture. It uses modified pre-training tasks compared to other classi-
cal language modeling and has a context from both sides. BERT is a pre-trained
language model that is fine-tuned for many other tasks, so it is an example of the
transfer learning (see section 1.2.7). To train a language model, original BERT is
trained on two tasks – next sentence prediction and masked language modeling.
BERT is proceeding both sides context simultaneously, and due to architecture, in
every layer every Transformer block potentially has information from every other
block (and thus from every other word). That is why BERT is called deeply
bidirectional or non-directional (because there is no right-to-left or left-to-right
direction of processing). BERT is very successful in solving NLP tasks, although
it was surpassed in many tasks by later derived models. The second part of its
popularity is the transfer learning feature of BERT. Resulting BERT model can
be used for almost every NLP task just by changing the classification head. The
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authors published pre-trained models for English and later also for Chinese and
multilingual model and other monolingual models were also published by other
authors.14 Training of the language model requires a considerable amount of data
and computational resources, but it is needed to be done just once. When the
model is trained, it can be used for many tasks by changing the classification head
and training only newly added layers or training all layers (but only for a few
episodes and with smaller data) and still performing on a state-of-the-art level.

The core of BERT algorithm is based on these three features

• two unsupervised objectives for pre-training,

• input embeddings,

• encoder part of the Transformers architecture,

and all of them will be described in the following sections.

Input embeddings

BERT uses the concatenation of three types of embeddings as an input represen-
tation – token embeddings, position embeddings, and segment embeddings.

Figure 1.17: An input is represented using three kinds of embeddings for every
input word. Every sequence is also marked off by beginning and ending markers
(CLS and SEP token), which are also encoded using a combination of all three
embedding stypes. Source: (Devlin et al., 2019).

Token embeddings The BERT model input can be one or two sequences (not
necessarily two sentences, but, e.g., also paragraphs).15 All words are split into
tokens and converted into embeddings with the use of a pre-trained embeddings
model. One word can be tokenized into more tokens because BERT uses Word-
Piece embeddings (Wu et al., 2016). WordPiece pre-trained embedding algorithm
was originally created for the task of Google voice search for Asian languages,

14Some published models implemented in the popular Python library Tranformers from Hug-
ginFace, can be found here: https://huggingface.co/models.

15Different terminology is used here than in the original paper. In (Devlin et al., 2019),
sentence is a term for a whole part of input (fist or second), while a term sequence is used for
whole BERT input compound of one or two sentences.
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and is designed to minimize the number of word tokens. WordPiece model was
not pre-trained as a part of BERT paper experiments, but represented a quite
interesting solution, so that the idea will be briefly explained here.

It is impossible to prepare embeddings for every possible word in a language,
because this would cause an intractably long embedding size. Every word, which
is not a part of the selected embedding set, is encoded in the same way (as an
unknown word). This situation is not desired because we lose information about
words. WordPiece deals with this problem in the following manner: In the first
iteration of training, the model creates embeddings only for characters. In every
other iteration, some existing model words are concatenated together in a way
that causes the highest likelihood of the input text. As a result of this method,
some words will be embedded as one word, and some will be split into more
tokens, as can be seen in figure 1.18.

Zvedněte .zavolejteatelefon

SEP

168101 102260491035414320516 46810 23134 52623 119

CLS z ##volezaa##ved ##nete telefon ###jte .

Zvedněte telefon a zavolejte.

Figure 1.18: This figure illustrates a transformation of one input sentence (from
PDT3) to suit BERT input expectations. The sentence is divided into words
and then into tokens from WordpPiece tokenizer vocabulary. Accents may be
removed depending on the used model. The sentence is decorated with special
CLS and SEP tokens to mark the beginning and the end of the sentence. All
tokens are then converted into numbers.

Three other tokens are added after this step – CLS and SEP. CLS token is
added at the beginning of the input and is used as the first sequence embedding for
classification tasks (as sentence analysis). SEP token separates both sequences
and is also appended at the end. Whole input transformation can be seen on
figure 1.17.

Position embeddings All input tokens are processed simultaneously. That is
the reason why BERT is often called undirectional rather than bidirectional. This
feature causes an absence of information about the order of tokens. However,
the nature of the language is sequential. A bunch of words without an order
has no language meaning, and capturing this problem led to recurrent neural
networks at the first place. In BERT there is no recurrent cell, so instead, position
embeddings are used to solve this problem. They have the same shape as token
embeddings (and as segment embeddings), and they are learned the same way
as other embedding layers. The original BERT’s maximum input size is 512, so
this embedding layer should represent positions from 1 to 512. This learning is
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BERT Base BERT Large
L 12 24
H 768 1024
A 12 16

Total Parameters 110M 340M

Table 1.1: Difference between base and large version of BERT model, as published
in (Devlin et al., 2019).

different from the original Transformer architecture, where the position was also
encoded as embeddings, but the embeddings were fixed, not learned.

Segment embeddings These embeddings indicate whether a token belongs to
the first or second part of the input. They have the same shape as position and
token embeddings, and they are also learned. Because BERT input can consist
of at most two parts, segment embeddings encode whether the token belongs to
the first or the second part.

Architecture

BERT adapts encoder part of the architecture from the original Transformers pa-
per (Vaswani et al., 2017) (see section 1.2.6). BERT uses its encoder architecture
for each layer, so L encoder layers are followed with one fully connected layer for
a specific task (see figure 1.19).
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Figure 1.19: A figure inspired by (Ganesh et al., 2020) describes the BERT
architecture in detail.

Original paper proposes two main architecture hyperparameters versions, base
and large (see table 1.1), depending on the number of layers (L), the size of the
hidden layer (H), and several heads in multi-head self-attention (A). Output
before the classification head is a vector of size H for each of the input words.
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Pre-training tasks

BERT is pretrained on two unsupervised tasks – Next Sentence Prediction (NSP)
and Masked Language Model(MLM). These two tasks were selected because
BERT’s authors believe they force language models to learn general and valuable
knowledge about language.

Next Sentence Prediction The input of the BERT model for this task is
two sentences, A and B. In 50% of cases, sentence B is the sentence that follows
sentence A in the source text. Otherwise, it is a random sentence from the corpus.
A goal of the task is to decide whether the sentence B is the following one or a
random one, i.e., binary classification. The motivation for this task is a need to
represent relationships between sentences, not only between words. Experiments
in (Devlin et al., 2019) showed its usefulness for text tasks as question answering.
Sentence-level classification with BERT, as in the case of NSP, can be performed
by using the last hidden representation of the CLS token (the first token of every
input example) as an input into classification layer. Authors assumed that this
token could work as a summary of the whole sentence, although later work has
shown better approaches, i.e., (Liu et al., 2019).

Masked Language Modeling Masked Language Modeling, or in other words
Cloze task (Taylor, 1953), consist of prediction of some missing words in the text.
In BERT’s case, its implementation follows: 15% of tokens in each sequence are
chosen. For each of these chosen tokens, there is an 80% chance to be replaced by
a MASK token, a 10% chance to be replaced by a random token, or it will remain
unchanged with a 10% probability. This masking method ensures that the model
will try to predict tokens not only in MASK token presence. For backpropagation,
only predictions of the selected 15% tokens are taken into account. Prediction
is made by a softmax function, whose input is the last hidden representation of
the respective token, and the softmax layer outputs a probability distribution for
predicting every possible word.

1.3.2 Derived models
After BERT, many other models built on similar architecture appeared. They all
aim to improve the original BERT model in (at least) one of these three ways:

• A higher efficiency – original BERT models were trained for about four
days on 4/16 TPU for base and large version respectively, and are quite
memory intensive. Many methods for shortening the training time, memory
consumption, or inference time, while preserving results, were successfully
implemented - some of them even outperformed SOTA results set by BERT.

• An extension of applicability – BERT model works well for tasks requiring
sentence or token classification, but is unable of language generation. The
original model also does not offer a possibility of connecting knowledge out
of the processed text. Both of these problems were explored with well-
performing adjusted model architectures as a result (Zhang et al., 2019).
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• Results improvements – Larger models, longer training times, more data,
better pre-training objectives, and evolved architecture can lead to a signif-
icant improvement. Some models only demonstrate scalability with more
data, while others win over BERT with more creative pre-training tasks or
with a combination of many changes. There is another reason behind these
models. It is not completely clear why BERT should work so well, so many
authors offer a deep study of individual BERT components’ impact on the
performance, theoretical explanations, and possible improvements (Yang et
al., 2019b; Liu et al., 2019).

The most famous and important BERT’s derivates are presented in more detail
in the following paragraphs.

XLNet (Yang et al., 2019b) solves two theoretical BERT’s problems:

• MASK token, used in BERT’s MLM objective, never occurs in real texts.
Therefore, training data are substantially different from desired practical
use; and

• BERT uses an assumption of independence between MASK tokens, given
the unmask words, which does not hold. There definitely could be a strong
relationship between two masked tokens in the sequence, even if they are
not near each other. Moreover, it is desired for the model to learn such
relationships.

XLNet presents three basic differences from BERT: presents a new training objec-
tive (permutation language modeling), uses Transforemers-XL (Dai et al., 2019)
architecture instead of original Transformers encoders, and uses two-stream self-
attention. The latter is a consequence of the used objective, which is briefly
explained now. XLNet uses permutations of input sequence’s tokens to model
each token’s probability, given the rest of the sequence (bidirectionally). To put
it simple, a few of every possible permutation are selected, and then the model
learns the probability of the word depending on the previous words in the per-
muted sentence. As any words are masked, we need to hide the content (segment
and token embeddings) of the chosen token from the network, and keep position
information. Two-stream self-attention processes these two kinds of information
separately, so it is possible to mask out content information. XLNet presents
new state-of-the-art results over previous BERT achievements – with the best
models (trained on more data than BERT and four times more training time)
and comparable settings (both model and training data sizes).

ERNIE (= Enhanced Language Representation with Informative Entities
(Zhang et al., 2019)) enriches BERT with knowledge graphs. This contains
knowledge presentation and a selection of objective, which is be able to work
with knowledge as well as language information. As for encoding, ERNIE finds
all named entities, links them into the knowledge graph, encodes knowledge graph
using knowledge embeddings, which forms the input into ERNIE. BERT archi-
tecture with Transformer encoders is supplemented with knowledge encoders (K-
encoders) stacked on the top of text encoders (T-encoders), and the output of the
whole model are embeddings for words and entities. The pre-training objective
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for language is the same as for BERT (NSP and MLM). The authors also present
MLM-like objective for knowledge: masking of entities. This model outperforms
BERT on knowledge-based tasks (entity typing and relation classification) and
achieves results comparable to BERT on other NLP tasks.

RoBERTa (= Robustly optimized BERT approach (Liu et al., 2019)) falls
into the third category of BERT family. Great improvements are the result of a
thorough exploration of choices made for the original BERT model. RoBERTa
uses larger models with more training data (145 GB of uncompressed text, much
more than BERT, which uses only 16 GB) and longer training time, and offers at
least a partial explanation of the influence of architecture, training settings, and
objectives on BERT’s success. The main differences from BERT are:

• removing NSP objective, which surprisingly increases the performance,

• FULL-SENTENCES sampling from the dataset: Every input sample con-
tains full sentences sampled sequentially from data till the maximum size
(512) is reached. Samples may cross boundaries of documents,

• bigger batch size (2, 048 comparing to 256 of BERT)

• byte-level tokens encodings instead of WordPiece, with larger vocabulary
size,

• dynamic masking: masks are not selected in advance before pre-training,
but always created before data enters the model.

The resulting architecture is better than BERT, even trained on the same amount
of data for the same amount of time.

UNiLM (= Unified Language Model (Dong et al., 2019)) enables BERT to
generate text. Model architecture corresponds to BERTlarge, but it combines
bidirectional BERT training with objectives strengthening usage of a left con-
text, which is important for language generation, and the model also utilizes
NSP. The following rule selects the training objectives: 1/3 of the time, MLM
objective (same as BERT) is used, 1/3 of the time the model uses sequence-
to-sequence language modeling (using previous sentence and all words from left
context), and unidirectional language modeling (right-to-left and left-to-right)
objectives are used with 1/6 probability. Results are comparable to BERT, with
no significant improvement, but the model is able to reach new state-of-the-art
on several language generation tasks.

ELECTRA (= Efficiently Learning an Encoder that Classifies Token Replace-
ments Accurately (Clark et al., 2020)). ELECTRA presents both more efficiency
in training time and improvement on the pre-training task. The problem of
BERT’s MLM task as identified by ELECTRA is its waste of training data. As
BERT masks 15% of tokens and only these tokens serve for model training, almost
85% of training data are unused. To solve this problem, ELECTRA proposes a
new training task, which is defined over all input tokens – selected tokens are
replaced by their alternatives (generated by an additional small network), and
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the goal for each token is to decide whether it is an original or a replaced to-
ken. Therefore, the model has two parts – generator and discriminator (loosely
inspired by Generative Adversial Networks). It significantly decreases training
time, because data are used more efficiently. Even with shorter training time,
ELECTRA outperforms both XLNet and RoBERTa.

T5 (= ”Text-to-Text Transfer Transformer” (Raffel et al., 2019a)) is another
approach to language generation and also another deep study of various param-
eters’ influence. The training objective is similar to BERT; 15% of tokens are
chosen and replaced with the mask token. One change is presented – the au-
thors show that it is useful to select whole spans of the text of length three, and
replace them with one mask token, rather than randomly selecting only words.
Final architecture implements encoder-decoder pattern with five different model
sizes. Only the two largest models achieved results comparable to BERT, and,
in the case of the largest one, even outperformed previous state-of-the-art. T5
model uses text-to-text input format. Text-to-text format means that every in-
put and also every output is in the text form. This is natural for some tasks like
question answering or translation, but here also tasks with another output type
are converted into text, and the format is unified for all tasks. The unified format
allows the same architecture and training for all tasks and also easy multi-task
training.

BART (= Bidirectional and Auto-Regressive Transformers) (Lewis et al., 2019)
is an improvement over BERT, which offers generalization upon previous BERT-
like models in terms of training objective and architecture. BART presents the
good result in both classification and text generation tasks. BART, similarly to
T5, implements encoder-decoder architecture, in this case uniting bidirectional
encoder (like BERT) with left-to-right decoder (same as GPT). The main benefit
of the BART architecture is that it allows arbitrary noising of the input text.
Encoder first processes the noised input, and then decoder tries to reproduce
the original (not damaged) text. Among many studied possible noises, sentence
shuffling and text infilling proves to be the best, although the performance of var-
ious pre-training objectives varies for different tasks. The first objective changes
the position of sentences. Text infilling replaces a randomly chosen span of text
with the MASK token. The span’s size is chosen from Poison distribution with
λ equal to 3 (in contrast to T5, where the size was fixed) and can be zero. Size
is comparable to BERT (10% more parameters). It reaches the performance of
BERT and RoBERTa for comparable tasks,and presents a new state-of-the-art in
language generation tasks.

Compression of BERT In addition to models mentioned above, there is a
wide range of compression efforts. In Ganesh et al. (2020), authors offer an
overview of possible compression methods:

• data quantization: using fewer bits to represent weights,

• various types of pruning: removing less important weights or components
(encoder layers, attention heads),
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• knowledge distillation: involving the large model as a teacher and a smaller
model (possibly with completely different architecture) as a student. Stu-
dent model can learn to imitate different settings of the teacher model (i.e.,
encoder outputs or output logits),

• architecture compression: sharing some weights across the model or de-
creasing the vocabulary size of embeddings.

This study shows a possibility of reducing BERT to the quarter of the original size,
while preserving performance. One of the famous smaller models is ALBERT (=A
Lite BERT (Lan et al., 2019)). ALBERT uses two reduction techniques – reduces
the size of the embedding matrix by approximating it with two smaller matrices,
and parameters sharing across the layers. In addition, ALBERT presents a mod-
ification to the NSP objective: sentence-order prediction (SOP). An input into
this tasks consists of two sentences and the goal is to predict, whether they are
in the correct ordering.

1.3.3 How to use language models
For using BERT-like models in new tasks, there are three possible ways (Liu et
al., 2020):

• feature-based: one data pass through BERT to generate embeddings,

• fine-tuning: add new classification head(s) and train the whole model,

• adapter methods: adding task-specific layers between BERT layers and
train them for target tasks with other BERT layers frozen (Stickland and
Murray, 2019).

In the first case, the model is used only once to generate embeddings for all input
data. These embeddings are stored and later fed to any other NLP model like
regular embeddings. Technically, this can be achieved by stacking the second
model on the top of BERT and freeze (disable training) the BERT layers, but it
would be time and memory more consuming. This method is valid, and the results
will be more likely improved by using BERT embeddings over non-contextualized
embeddings. Even the BERT paper study shows that using a concatenation of
the last four layers can achieve comparable performance to fine-tuned BERT,
but this method still seems to lose some potential of language representations
compared to learning the model on specific task (Sun et al., 2019).

Speaking about fine-tuning, there are many decision to be made, i.e., how to
choose learning rate, whether to train all layers together or freeze some of them,
if it is beneficial to use regularization, which layers to choose as an input into
task-specific part of model, and many others. There is no guaranteed way, and
it could also depend on the task type (sentence vs. token classification), but few
typical possibilities, which usually work well, exist, and we now describe the main
choices together with the commonly used approaches.
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Sequence vs. Token Classification

Tasks which BERT can naturally solve fall into two categories – sequence classifi-
cation and token classification. The majority of papers seem to focus on sequence
classification of sentences or larger text parts, e.g., sentiment analysis, natural lan-
guage inference, question answering, sentence similarity, etc. Token classification
tasks classify each input token, i.e., word, word part, or punctuation mark. The
type of task influences the resulting architecture and also brings various problems.

How to get knowledge from BERT?

Which information from BERT should go to classification layers is the fundamen-
tal question when designing a model. From the horizontal point of view, the CLS
token is mostly used for a sequence classification, but utilizing some combination
(e.g., concatenation, mean) of all sequence tokens is also possible (Rogers et al.,
2020). Token classification uses an analogical approach – taking the first token
of the word or combining all word’s tokens seem both to work well with little to
zero impact on the result (Kondratyuk and Straka, 2019; Kitaev et al., 2018). As
for the vertical combinations, the original BERT paper proposes taking the last
layer’s representation of respective token(s). Furthermore, the combination of
the last four layers is also used (the best option in Sun et al. (2019) was the max
function). Generally spoken, usage of more layers proves to be advantageous,
and it is possible to let the choice of layers to be learned (Yang and Zhao, 2019;
Kondratyuk and Straka, 2019).

Learning dynamics

For the learning process itself, the first big question is whether to apply more
pre-training, either on data for the task, domain or at least data for the same
task as it showed to be beneficial (Sun et al., 2019). More technical details to be
decided are the following:

Classification Heads It is possible to add only one simple classification head
on the top of the BERT model, or maybe employ the more sophisticated network,
e.g., some previous SOTA network, with BERT improving its inputs.

Layers Training Is it better to train the whole model, only some layers, or
should it be dependent on the epoch number? Choosing the suitable scheme can
improve the model and prevent catastrophic forgetting (Liu et al., 2020). One
of the applicable approaches, proposed initially for different models than BERT,
is gradual unfreezing (Howard and Ruder, 2018; Chronopoulou et al., 2019). As
initially proposed, layers are unfrozen one by one during the training, e.g., one
layer is added after each epoch. Because the last layers of the model contain the
less general information (Howard and Ruder, 2018; Yosinski et al., 2014), it is
appropriate to start with the last layer(s) and leave the other layers frozen. After
some training, when the model is not a random mess and returns quite decent
results, deeper model layers are further trained (fine-tuned) for few episodes and
a significantly lower learning rate. This training practice’s motivation is the belief
that the original language model captured many generally applicable information
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about the language, and is better than random initialization. Because the model
is large and supervised data are usually not so big, it is undesirable to train
the whole model, as it can take a long time to convergence, and randomly mess
up with the trained model’s knowledge. After the first training phase, however,
the classification head knows the right direction, figuratively speaking, and with
a small learning rate, the goal is to customize the language model a bit the
for current task. In addition to gradual unfreezing, it is possible to divide the
model only into two parts (BERT part and task-specific part) and train them
gradually (Kondratyuk and Straka, 2019). Multi-stage layerwise training (Yang
et al., 2020), designed for BERT, proposes training the output layer with only one
encoder layer at a time, which leads to 25% faster training with good performance.

Learning rate Right learning rate choice can significantly improve the result.
Absolute value of the learning rate for fine-tuning BERT usually lies between
3 × 10−6 and 5 × 10−5 (Devlin et al., 2019; Virtanen et al., 2019), (Kittask et
al., 2020) as the higher learning rate can cause catastrophic forgetting (Sun et
al., 2019). Together with its size, learning rate distribution over time and layers
is important. Assigning lower learning rate to lower model layers corresponds
to the same assumption as in the case of freezing the lower layers, i.e., it is de-
sired to preserve the general information learned during pre-training, and it con-
tributes to good results (Howard and Ruder, 2018; Sun et al., 2019), (Kondratyuk
and Straka, 2019). Learning rate scheduling as slanted triangular learning rate
(Howard and Ruder, 2018), inverse square root decay (used in (Kondratyuk and
Straka, 2019; Raffel et al., 2019b) or linear decay (used in (Liu et al., 2019; Clark
et al., 2020)) is an essential component of a successful training.

Last, is is also possible to select between different optimizers and different
batch sizes. Optimizer seems not to be the most significant part of the decision, as
most papers typically do not discuss this choice. Although, in (Chronopoulou et
al., 2019), authors present the usage of two different optimizers for different layers
– SGD for pre-trained model layers in order to preserve the learned knowledge,
and Adam (Kingma and Ba, 2015) for the task-specific layer to support faster
learning. BERT proved to be nicely scalable in selecting the batch size, and and
usually the bigger the batch size the better the results (Liu et al., 2019).

1.3.4 Why BERT works?
It is quite common for deep learning architectures that the reason why they work
(especially why they work so well compared to other possibilities) is not visible at
first sight. The last part of this chapter focuses on some insight into the language
models’ functionality. When it comes to examining the inner working of BERT
and similar models, two questions arise:

• What does the model know about the language?

• Where exactly in the model is all possessed knowledge stored?

What BERT knows about language?

There are several approaches to research the extent of information that BERT has.
The experiments with shuffling or deleting some word show that BERT probably
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does not rely too much on syntactic information (Ettinger, 2019; Rogers et al.,
2020), although it is present there to some extent, as it is possible, for example,
extract syntactic trees (Rosa and Mareček, 2019). BERT also contains semantic
information of various types. Specifically, experiments indicate a presence of
entity types, relations, or semantic roles (Tenney et al., 2019b). BERT possibly
”knows” something about the real world, but is not able to perform complex
reasoning above it (Rogers et al., 2020).

Where is knowledge stored?

While searching for the information encoding, it is possible to focus on attention
heads or activations in layers. Tenney et al. (2019a) shows that different tasks
are solved using different layers, specifically syntactic information is captured by
lower layers (or middle layers; Rogers et al., 2020), and semantic information
is spread over all layers. The inputs of the last BERT layer (usually used for
downstream tasks) serve well as word embeddings, which corresponds with finding
the clusters of these embeddings according to word meaning (Rogers et al., 2020).
The last layers of BERT are also more task-specific, which leads to possible better
transferability of middle layers. For attention heads, many papers show that
original architecture with sixteen-headed multi-head attention is not optimal, and
many heads can be removed in pre-trained models without losing the performance
(Michel et al., 2019), which leads to a decrease of inference time. Even a reduction
to only one head does not lead to a significant decrease in performance. However,
a presence of more heads is better justified during pre-training, at least in early
epochs, when the pruning of heads can decrease the performance significantly
(Michel et al., 2019). Even though some heads can be redundant, other heads
seem to capture specific syntactic relations, e.g, ”objects of verbs, determiners of
nouns, objects of prepositions, and coreferent mentions” according to Clark et al.
(2019). The same authors also show that CLS token representation in the last
layer attends to all words in the sequence, which justifies using these outputs for
sequence classification.

Research of BERT’s knowledge representation and storage, together with dis-
coveries presented in the BERT-inspired models, agree that the original architec-
ture leaves a lot of room for improvement or reduction, and that ”BERT language
skills are not as impressive as they seem” (Rogers et al., 2020).
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2. Experiments
This chapter describes all experiments and their results. The first part is dedi-
cated to presentation of different experiement hyperparameters, that are in many
cases common to all tasks, followed by the description of each task and a discus-
sion of results.

2.1 A description of training hyperparameters

2.1.1 General experiment setup (EXPE)
Training is performed in one of the following settings:

• base: Baseline implementation (described separately for each task, typi-
cally without using advanced language models).

• ls: This setup uses same setting as baseline implementation but with label
smoothing.

• embed: BERT-like language model is used only to generate static embed-
dings in advance. Non-BERT part of the model is trained with BERT layers
frozen (pre-trained, not changed during training).

• full: This options means training the whole model from the beginning (in
contrast to fine option), but the classification head is not simplified (in
contrast to simple option).

• fine: Fine-tuning consist of dividing the training time into two parts. First
part of training is same to embed setting. In the second part, the whole
model is trained together (as in full).

• simple: Model architecture is reduced to BERT layers with a simple classi-
fication head. This is a basic setting for all sentiment analysis experiments.1

2.1.2 Training data
Tagging and lemmatization tasks use the same set of data for all experiments, so
there is no need for separate description. Sentiment analysis task, however, uses
three possible options as a selection of training data:

• mall—facebook—csfd: Model is trained and evaluated on the (sub)set
of Czech datasets.

• zero: Model is trained on English sentiment analysis dataset, but evaluated
on Czech data.

• eng: Model is trained on the combination of Czech and English training
data (and evaluated again on the Czech data).

1For tagging and lemmatization, all previously mentioned EXPE setups are performed with
more sophisticated classification head than in simple version.
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2.1.3 Learning rate scheduling type (LRTYPE)
Most experiments are expected to perform better with some kind of learning rate
scheduling. This work implements three types of learning rate scheduling:

• simple Simple option indicates no more complex learning rate scheduling
than setting different learning rates for different epochs in advance.

• isrd isrd means inverse square root learning rate decay defined by formula:

1/
√

n,

where n is the current iteration.

• cos: Another learning rate scheduling used in this work is cosine decay,
which applies the following formula:

lr = lri
min + 1

2

(︄
lri

max − lri
min

)︄(︄
1 + cos

(︄
Tcurr

Ti

π

)︄)︄
,

where lri
min is the range of the learning rate, Tcurr is the current epoch

number, and Ti is the number of epochs after which the learning rate is
restarted, i.e. increased to the lri

max value and Tcurr is reset to 0.

Both cos and isrd are combined with warmup. Learning rate is linearly increas-
ing for first k steps (one epoch in all experiments) from zero to the value in
hyperparameters and than starts the decay.

2.1.4 Model layers selected for embeddings (LAYERS)
As discussed in the previous chapter, it is unclear how to extract best embeddings
from the language model, especially which layers to take into account. According
to the results published in (Devlin et al., 2019; Kondratyuk and Straka, 2019),
we consider the following two promising approaches:

• four: Last four layers of the model are averaged to obtain final embeddings.

• att: Layer attention performs weighted sum of all model layers, and the
weights are trained during training together with the rest of the model.

Experiments are also performed with different learning rates (LR), batch size
(BATCH), and a number of epochs (EPOCH). Technical details needed for run-
ning scripts with the right arguments can be found in chapter 3.

2.1.5 Metrics
Metrics used for evaluation in this work are accuracy and F1 score. Accuracy
is a percentage of correctly classified samples out of all samples, and it is the
basic metric for all classification tasks (not only in this thesis). Accuracy can be
sometimes misleading (Davis and Maiden), and there exist other metrics that can
better reflect experimenter’s goals. One of them is F1 score, which is used together
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with accuracy for evaluation of sentiment analysis task due to comparability of
results. F1 score is defined in terms of precision and recall. Precision

precision = TP

TP + FP

2 express credibility of a positive result, e.g., if positive result means a need
of surgery, it is definitely unwanted to have low precision and perform many
dangerous and expensive surgeries unnecessarily. Recall, defined as:

recall = TP

TP + FN
,

, on the other hand tells us how many positives are captured. For example: How
likely I am to be pregnant with a negative pregnancy test? F1 score formula for
binary classification is than defined as

F1 = 2 · precision · recall

precision + recall
.

For multi-class classification, precision and recall needs to be redefined. F1 score
can be computed per-class (for every class, binary classification of being in the
class is taken). Per-class scores can be combined in one of following ways:

• macro-F1: average of per-class scores,

• weighted-F1: average as before, but weighted by the number of samples in
each class,

• micro-F1: equals to accuracy.

2TP stands for true positive = number of samples correctly labelled as 1, FP (=false posi-
tives) are incorrectly labelled as 1, FN (=false negatives) is defined similarly.
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2.2 Lemmatization and part-of-speech tagging
Lemmatization and POS tagging tasks are categorized as morphological analy-
sis, share the same architecture and trained network and they will be described
together in this section.

2.2.1 Task Definition
POS tagging
input: a sequence of words
output: tag (for each word), which contains not only part-of-speech (e.g. noun,
pronoun, punctuation mark) but also other morphological analysis (case, tense,
etc) corresponding to 15-places morphological tagging system by Hajič (2004).
Description of each position can be found in table 2.1.

Lemmatization
input: a sequence of words
output: lemma (for each word) – a base form of a given words, for example nomi-
native of singular for nouns or infinitive for verbs. In this work, lemmatization is
treated as a classification problem with classes coresponding to generating rules
which transform an input word into target lemma. For example of such rules see
figure 2.1.

Metrics Accuracy is used for the evaluation and is reported separately for
several options – only tags/lemmas, accuracy of joint classification of tags and
lemmas, and also all three variants with an usage of a morphological dictionary
(this option is described in more detail in 2.2.3).

Figure 2.1: Table 1 from (Straka et al., 2019c) presents 10 most common lemma
generating rules in English EWT corpus. Each rule has two parts – a casing
script for transforming uppercase and lowercase letters, and an edit script. The
edit script can transform prefix, suffix, or also a root of the word. It uses the
Wagner–Fischer algorithm (Wagner and Fischer, 1974), which finds the longest
commont substring between the word and its lemma. Resulting rule is the shortest
edit script converting the word into the lemma. More information can be found
in (Straka et al., 2019c).
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Position Name Description
1 POS Part of speech
2 SubPOS Detailed part of speech
3 Gender Gender
4 Number Number
5 Case Case
6 PossGender Possessor’s gender
7 PossNumber Possessor’s number
8 Person Person
9 Tense Tense
10 Grade Degree of comparison
11 Negation Negation
12 Voice Voice
13 Reserve1 Reserve
14 Reserve2 Reserve
15 Var Variant, style

Table 2.1: Czech morphology developement is dated from 1989 (Hajič, 2004)
and in description of words uses 15-places morphological tags as described in
this table taken from https://ufal.mff.cuni.cz/pdt2.0/doc/manuals/en/
m-layer/html/ch02s02s01.html. For more detailed description or for explo-
ration of predictions given by this work is recommended to use website of Insti-
tute of Theoretical and Computational linguistics: http://utkl.ff.cuni.cz/
˜skoumal/morfo/?pos=11&val=1, although they use slightly different set with
additional 16 position.

2.2.2 Related Work
Tagging

This work aims to improve previously published SOTA results for contextual-
ized embeddings in Czech lemmatization and tagging (Straka et al., 2019a) and
(Straka et al., 2021). POS tagging (for English) is dated back to 1971 with first
rule-based approach on Brown Corpus (Greene and Rubin, 1971). Good results in
POS tagging were achieved after year 2000 using both classical machine learning
methods like Hidden Markov Models (Brants, 2000) or Support Vector Machines
(Giménez and Màrquez, 2004), and perceptrons/neural networks (Collins, 2002).
Actual English SOTA known to me is presented in Flair model (Akbik et al.,
2018).3 It is necessary to note that early papers had POS tagging defined differ-
ently than it is in this thesis. They focused only on selecting part of speech (noun,
verb, etc...), meanwhile the later works (including this thesis) present complex
morphological analysis.

One of the first automatic tagging experiments in Czech are described in
(Hladká, 1998), which also shows differences between languages with rich inflex-
ion (as Czech, but also Finnish or Turkish) and ones with simpler morphology
(for example English or Spanish). Languages with complicated morphology have
incomparably larger set of possible tags – English has less then one hundred of

3More detailed overvirew of English tagging can be found here: https://aclweb.org/aclwiki/
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possible tags, Czech has almost 4, 000 tags. Current SOTA results for tagging
(and lemmatization) are presented in (Straka et al., 2021), which uses Czech
version of RoBERTa model – RobeCzech. This is the model also used for some
experiments in this work and, as expected, yields the best results. RobeCzech
is based upon previous successful morphological analysis with contextual em-
beddings and BERT-like models (Straka et al., 2019c), (Straka et al., 2019b),
(Straka et al., 2019a), (Straka, 2018) (all lastly mentioned models also achieved
great results in lemmatization).

Although tagging is mostly considered to be a classification into predifined
set of tags, the sets themselves can vary. Penn treebank uses a tagset of 54
different tags, which presents parts of speech and additional information like
tense or number.4 There are some differences between this tagset and other
English datasets or taggers (e.g., TreeTagger (Schmid, 1995) or CLAWS tagset
(Chapelle, 1988)). All English tagsets are really small compared to languages like
Czech or Turkish. As mentioned before, Czech uses 15-positioning tags, which is
a natural solution for such type of languages. These positions can be predicted
together or for each position separately. The first approach creates big tagset
but guarantees consistency among positions (e.g. there will be no tense for a
noun or a case for a verb). In the case of separate prediction, each position
can be treated as a classification problem separately, which causes problems,
because the individual parts of tag are not independent. Better approach is to
use sequence-to-sequence modelling (Sutskever et al., 2014), which outputs the
tag as a sequence of positions and takes into account previously generated position
as in (Malaviya et al., 2019).

Lemmatization

Lemmatization (both Czech and English) has undergone a similar development as
tagging, starting with rule-based approaches and statistical approaches (Plisson
et al., 2004), continuing with neural networks and recently achieving good re-
sults with BERT-like models (Kondratyuk and Straka, 2019). Lemmatization is
typically performed as a sequence-to-sequence model, therefore it takes a word as
a sequence of characters and produces a new sequence of characters, which is the
lemma. This approach is teoretically better than classification into rules, because
it is possible to generate every existing lemma. However, it can generate simply
every possible character sequence, which may not be an existing word. Lemma-
tization as a classification task into edit scripts set firstly appeared in Chrupala
et al. (2008) and was explored further by Straka (2018). Sequence-to-sequence
model can be also used for production of edit rules (same rules as used in this
work)(Chakrabarty et al., 2017), (Müller et al., 2015) and (Yildiz and Tantuğ,
2019).

2.2.3 Dataset and Preprocessing
Dataset for these tasks is taken from data of Prague Dependency Treebank (PDT)
(PDT35), version 3.5 from year 2018. Data consists of sentences with lemmas
and tags. For ambiguous words, data contain all possible analyses, which were

4see: https://www.sketchengine.eu/penn-treebank-tagset/
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generated using morphoDita (Straková et al., 2014) and morphological dictionary
(Hajič and Hlaváčová, 2016) (described later).5 For example, Czech word ”psa”
has one possible lemma (”pes”) but two possible tags, because it could be one
of two possible grammatical cases – genitive or accusative. Input data for such
word looks as follows:

psa pes NNMS2-----A---- NNMS4-----A----.

Data contains about 1,600 unique tags and about 1,500 different lemma rules.
The number of lemmas is significantly smaller than a number of unigue lemmas
(72, 000) (Straková et al., 2014) or tags, because words with similar morphological
function have same way of creating lemma from the word, e.g. words malého
(=little, accusative, sg, m.,) and červeného (=red, accusative, sg, m.,) have the
same lemma rule:

↓ 0;d¦---+ý+-+1.

Dataset is originally divided into tree parts - train, development and test,
which is also used in this work. Input sentences are preprocessed as follows:

• mapping characters and words into numbers – Mapping words/characters,
which were found in train dataset into integers (from one to the number
of unique words). This means that the network has no information about
words/characters which appears only in test or development dataset. All
newly appeared words/characters are mapped into one same number (typ-
ically 0) for UNK token/character.

• tokenization – Tokenizer for corresponding BERT-like model transforms
input words into tokens. Each word is transformed into one or more strings,
which are converted into numbers. This serves as an input into BERT part
of the model. To create these input embeddings, the whole sentence for
each word is needed as the same words can have different representation in
different contexts. More information can be found in section 1.3.1.

2.2.4 Architecture and Experiments
The model for lemmatization and tagging is build upon a model (and a code) for
previous work on Czech NLP processing with contextual embedding (Straka et
al., 2019a). Data preprocessing is taken over from the paper as well as the struc-
ture of the lemmatizer and the tagger network, which is extended by BERT-like
models, hoping for improvements. Previous work showed that training tagging
and lemmatization together in one network can be mutually advantageous, so
both of these analyses are an output of one network, and are trained jointly.
Detailed visualisation of network architecture can be found in figure 2.2.

The architecture of the network can be divided into three parts – inputs,
optional RNNs, classification head:

5genarator of analyses is available online: https://lindat.mff.cuni.cz/services/
morphodita/.
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Figure 2.2: Tagging and lemmatization joint model architecture.
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Inputs An input set of the network consists of five different input types – char-
acters (charseqs), words (charseq ids), correct responses (word ids), pretrained
embeddings, and possibly precomputed BERT embeddings (depending on the
experiment type). Two other types of embeddings are created before the fur-
ther processing of inputs by RNN cells: character-level embeddings and another
word embeddings that are, in contrast to BERT and pretrained embeddings, also
trained during the training process.

RNN cells Character-level embeddings are further processed via 1 layer of
Gated Recurrent Unit (GRU) and all inputs (or their embeddings) are processed
by recurrent part of network (specifically by three layers of Long Short-Term
Memory (LSTM) cells).

Classification head(s) After the processing by recurrent neural networks, net-
work employs two separate classification heads, one for tagging and another for
lemmatization. Both heads use dense layer with tanh activation function to allow
task-specific non-linear transformation as used in (Straka, 2018) and a softmax
function for obtaining the probability distribution over target classes. Lemmatiza-
tion, however, presents another change – addition of character level data without
RNN processing, that are used together with the rest of the values as an input
into the softmax following (Straka, 2018), as it leads to better performance of
lemmatization in the case of shared network between both tasks.

Morphological Dictionary All classification can be done with or without use
of a morphological dictionary MorfFlex (Hajič and Hlaváčová, 2016), that can
provide possible pairs tag-lemma. If used, the generated tag and lemma is a pair
with maximal likelihood, but chosen just from the dictionary. This leads to more
consistent results.

Experiments

This part uses all main experiment types as decribed in 2.1: base, ls, embed,
fine, simple, and full. Three BERT-like models are used for experiment setup:

• multilingual BERT (mBERT) (Devlin et al., 2019),

• XLM-RoBERTa (Conneau et al., 2019),

• RobeCzech (Straka et al., 2021).

XLM-RoBERTa and mBERT are trained on 100/104 different languages including
Czech. RobeCzech is a recently published version of RoBERTa, trained only on
Czech data. XLM-RobERTa is used only for embedding and one version of fine-
tuning, and this model was omitted in other experiements because of weak results
and high computational complexity. There exists another monolingual Czech
model, Czert (Sido et al., 2021), which uses the original BERT architecture and
was outperformed by RobeCzech (Straka et al., 2021).
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A selection of layers is made in both ways – last four layers (four) and learning
of weighted sum of all layers (att). The layer attention is made only for the fine-
tuning setup, and as the weighted sum does not show a significant benefit, mean
of the last four layer is the only method used for other experiments.

Learning rate is used as usual for each type of task and three different learning
rate schedules were applied in each combination of hyperparameters: cosine decay
(cos), inverted square root decay (isrd) and a one epoch warm-up followed by a
constant learning rate (warmup) inspired by (Kondratyuk and Straka, 2019) and
(Howard and Ruder, 2018). For embed experiments, warmup is replaced by a
simple division of training into two parts with different learning rates.

hyperparametr value
beta 2 0.99
optimizer Adam
cle dim 256
dropout 0.5
label smoothing 0.3
rnn cell LSTM
rnn cell dim 512
rnn layers 3
we dim 512
word dropout 0.2
batch size 64

Table 2.2: Hyperparameters of tagging and lemmatization common to all exper-
iments (if they make sense in the context of experiments).

Batches have size 64, given by the compromise between the pursuit of rela-
tively big batch size and computational resources. Summary of hyperparameters,
which do not differ across experiments is presented in table 2.2. Other hyperpa-
rameters for each experiment are in table A.1.

Reimplementation of (Straka et al., 2019b) without any BERT-like model
incorporation serves as a baseline.

2.2.5 Results and Discussion
Best presented model (experiment no. 18) achieved the same or better results
than the current state-of-the-art tagging and lemmatization results (table 2.3).
Complete results are in table 2.4. Experiment tl 18 is the version with fine-tuning,
Czech monolingual model, RobeCzech, and without layer attention, although
the difference from comparable experiment with layer attention is insignificant
and can be just accidental. The dominance of the Czech model was expected
and additional expert knowledge contained in the complicated architecture was
also assumed to be better. Experiments also showed that fine-tuning approach
achieves better results than full training from the beginning. This may be due
to the choice of hyperparameters, especially the learning rate, but the standard
ones were selected, implying that at best, it is more difficult to find the right
parameters forfull and simple variants. Although simple experiments presents
standard approach of using pretrained BERT models, they turned out being less
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successful even than embed experiments, that are faster to train and less memory
intensive.

Experiment Without Dictionary With Dictionary
Tags Lemmas Both Tags Lemmas Both

(Straka et al., 2019a) 97.94 98.75 97.31 98.05 98.98 97.65
StrakaC 97.67 98.63 97.02 97.91 98.94 97.51

RobeCzech 98.43 98.79 97.83 98.50 99.00 98.11
baseline 97.04 98.56 96.41 97.31 98.83 96.90
emb(12) 98.38 98.79 97.80 98.48 98.99 98.10
best(18) 98.50 98.80 97.90 98.57 99.00 98.19

Table 2.3: Straka2019C is a comparable solution (BERT embeddings only) from
(Straka et al., 2019a) to emb, which was transformed into Tensorflow 2 in this
work as a baseline. Emb is a solution with static BERT embeddings and best(18)
is the best resulting model in this thesis (experiment id = 18).

Error Analysis

This section offers a little exploration of differences in error across models. This
comparison includes three models:

• tl 18 – the best model in tagging and lemmatization,

• tl 3 – the best model with mBERT,

• tl 1 – the baseline model with label smoothing.

best vs. baseline The best model (tl 18) improves prediction in 3, 247 tags
and is worse in 421 tag predictions. More than 80% of newly correctly predicted
tags are composed by three parts of speech: NN (noun), AA (adjective), and RR
(preposition). Table A.2 presents improved tags with a frequency at least 10.
The most frequent tag ( NNIS1-----A----) presents proper names of places (e.g.
Jersey, Tenesee), but we can see that other frequent tags are nominatives and
accusatives of masculinum, singular, inainamate (cs: rod mužský neživotný) or
femininum, plural. These two cases have the same form for mentioned categories,
so they are indistinguishable without context, and that is where BERT showed
to be very useful. The same situation is with adjectives, again mostly nominative
or accusative of the same form, for example words daľśı (following) or st́ınový
(shadowy). The third category are prepositions that can be connected with both
accusative and dative as na (on), or o (about).

mBERT vs. RobeCzech Best mBERT is better in 468 tags and worse in
1, 703 tags than the best model. The most frequent tags improved by tl 18 are
similar to previous comparison. Nominative and accusative are again the most
common cases improved, but the differences between these two models are not so
significant. This results in verbs appearing higher in the table of most frequent
tags, although the absolute value of better predictions on verbs is similar to
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Model EXPE EP LAYERS LR Lemmas Tags Both
Raw Dict Raw Dict Raw Dict

0 NA base A NA simple 98.58 98.81 97.05 97.31 96.43 96.9
1 NA ls B NA simple 98.55 98.81 97.12 97.34 96.51 96.94
2

mBERT

embed

B four simple 98.69 98.93 97.83 97.98 97.17 97.58
3 C four cos 98.74 98.95 97.91 98.04 97.28 97.63
4 C four isrd 98.73 98.94 97.89 98.02 97.28 97.61
5

xlm-Roberta
B four simple 98.57 98.8 97.33 97.54 96.68 97.12

6 C four cos 98.6 98.83 97.45 97.62 96.81 97.21
7 C four isrd 98.59 98.83 97.44 97.61 96.81 97.2
8

RoBECzech
B four simple 98.77 98.97 98.38 98.48 97.78 98.08

9 C four cos 98.79 98.99 98.38 98.48 97.80 98.10
10 C four isrd 98.78 98.98 98.4 98.48 97.8 98.09
11

mBERT

fine

D four simple 98.69 98.93 97.84 97.99 97.21 97.59
12 E four cos 98.72 98.95 97.97 98.08 97.33 97.68
13 E four isrd 98.68 98.9 97.72 97.86 97.09 97.46
14

xlm-Roberta
D four simple 98.62 98.84 97.72 97.9 97.07 97.48

15 E four cos 98.67 98.9 97.95 98.09 97.32 97.69
16 E four isrd 98.63 98.85 97.66 97.83 97.03 97.41
17

RoBECzech
D four simple 98.78 98.98 98.46 98.55 97.86 98.16

18 E four cos 98.80 99.00 98.50 98.57 97.90 98.19
19 E four isrd 98.76 98.95 98.33 98.41 97.72 98.02
20

mBERT

fine att

D att simple 98.67 98.91 97.76 97.92 97.13 97.52
21 E att cos 98.72 98.95 97.98 98.1 97.34 97.69
22 E att isrd 98.67 98.91 97.69 97.85 97.05 97.45
23

xlm-Roberta
D att simple 98.6 98.81 97.62 97.77 96.96 97.35

24 E att cos 98.67 98.89 97.91 98.06 97.29 97.66
25 E att isrd 98.65 98.86 97.65 97.81 97.03 97.41
26

RoBECzech
D att simple 98.77 98.97 98.38 98.47 97.79 98.08

27 E att cos 98.8 98.99 98.47 98.54 97.88 98.16
28 E att isrd 98.77 98.96 98.33 98.41 97.72 98.01
29

mBERT

simple

F four warmup 98.17 97.32 96.46
30 G four cos 98.15 97.39 96.47
31 G four isrd 98.13 97.12 96.29
35

RoBECzech
F four warmup 98.49 98.28 97.41

36 G four cos 98.46 98.30 97.39
37 G four isrd 98.59 98.27 97.53
38

mBERT

full

F four warmup 98.16 98.86 97.35 97.79 96.46 97.34
39 G four cos 98.04 98.85 97.36 97.81 96.3 97.34
40 G four isrd 98.22 98.86 97.34 97.73 96.46 97.29
44

RoBECzech
G four warmup 98.49 98.95 98.21 98.34 97.38 97.93

45 G four cos 98.25 98.95 98.17 98.33 97.08 97.89
46 G four isrd 98.55 98.99 98.19 98.35 97.39 97.95

Table 2.4: This table presents complete results for tagging and lemmatizationt
tasks. Column EP presents number of epochs and corresponding learning rates
are explained in Attachement A.1

previous comparison. In both situations, improved verbs predictions relate mostly
to verbs with the same form in singular and plural of the third-person, e.g. vyváž́ı
(exports) or stoj́ı (stands). The complete table of the most frequent tags is
available in table A.3.
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2.3 Sentiment Analysis
As stated in Veselovská (2017): ”Sentiment analysis, also known as opinion min-
ing, is an automatic detection of a positive or negative polarity, or neutrality of
... a text sequence”, which is exactly as the sentiment analysis is understood in
this work. There are, however, some other definitions consisting of e.g. opinion
extraction, irony, or stance (Montoyo et al., 2012) and sentiment analysis can
also continue with e.g., opinion extraction. Another tasks related to sentiment
analysis is subjectivity analysis (whether the presented opinion is objective or
highly subjective), which is also not included in this work, mainly because of
the lack of labelled data for Czech. It is possible to analyze individual expres-
sions, sentences, or whole documents (Veselovská, 2017). This thesis focuses on
the document-level classification, which has many real-life use cases and Czech
training data are available.

2.3.1 Task definition
Sentiment analysis
input: sequence of sentences (a whole post or comment, depending on the source)
output: prevailing sentiment of the input from categories: neutral, positive, neg-
ative.

Metric For evaluating performance, two metrics are used: weighted-F1 score
and accuracy. Accuracy is a standard metric for classification and weighted-
F1 allows better comparability and also provides additional insights into models
evaluation.

2.3.2 Related Work
As every languge-related task, sentiment analysis is best explored for English.
It is possible to derive sentiment by supervised learning (typical are Support
Vector Machines or Maximum Entropy classifier) or using rule-based approach –
vocabulary of emotionally coloured words, emoticons etc (Çano and Bojar, 2019;
Veselovská, 2017). BERT-like models were succesfully used to improve result for
sentiment analysis task on English (Devlin et al., 2019) and also other languages,
for example Estonian (Kittask et al., 2020), Indonesian (Putra et al., 2020) ,or
Italian (Pota et al., 2021).

There are not so many attempts to sentiment analysis in Czech in comparison
to English, however some attempts were made with both neural networks and
traditional machine learning - Naive Bayes Classifiers, Support Vector Machines,
and Maximum-Entropy-based classifiers (Veselovská, 2017). A thorough study of
supervised machine learning methods on mall and facebook dataset is offered in
Çano and Bojar (2019). For a practical use, Žižka and Dařena (2010) present
automatic sentiment prediction of unlabelled text based on a small set of labelled
patterns via searching similarities. As the neural networks dominate in many NLP
taks, they are also applied in sentiment analysis. One of the first attepts to apply
neural networks on Czech sentiment is described in Lenc and Hercig (2016), which
evaluates besides others all three datasets used in this work on document-level
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sentiment analysis. Kyselý (2017) perform sentiment analysis using embeddings
and convolutional neural network on multidimensional embedding, which is quite
unusual as CNNs are typically used for image processing. Kyselý (2017) use same
three datasets, but classify only on sentence-level (they filter out longer samples),
which is simpler as longer texts tend to be more inconsistent about sentiment
(Veselovská, 2017). Libovický et al. (2018) present state-of-the art results in three
Czech NLP tasks including sentiment analysis. They use only CSFD dataset with
resulting accuracy 80.8%, which is comparable to previous SOTA (Brychćın and
Habernal, 2013). The second mentioned paper uses quite complicated method for
classification incorporating the fact of which movie is reviewed, while Libovický et
al. (2018) use only bidirectional LSTMs with multiple attention heads following
state-of-the-art results on English (Lin et al., 2017). There are five previous
works know to me, which involves BERT-like models in Czech sentiment:

• XLM-Roberta applied on all three datastets trimmed to 128 characters6

• Klouda et al. (2019) apply multilingual BERT on the mall dataset with
resulting accuracy about 81%, which did not outperform the naive Bayes
classifier baseline with 84% accuracy,

• Sido et al. (2021) present monolingual Czech model Czert, based on BERT
and ALBERT models, and evalutes it on csfd and facebook datasets with
new state-of-the-art results,

• Straka et al. (2021) publish another monolingual model, based on more
succesfull RoBERTa model, and surpassed Czert on the facebook dataset.

2.3.3 Dataset and Preprocessing
Four main Czech datasets with sentiment annotation are available: news from Ak-
tualne.cz (aktualne) (Veselovská, 2017), user reviews from MALL.cz (mall), film
reviews from csfd.cz (csfd), and posts from Czech branch pages on facebook.cz
(facebook) (the last tree datasers are introduced in Habernal et al., 2013). As
aktualne dataset turned out to be problematical because the text were ambigu-
ous even for annotators, and its authors later used other mentioned datasets
(Veselovská, 2017), this work also focuses only on the three other data sources
– mall, csfd and facebook.7 Some experiment are also performed with in-domain
training on English data. The imdb dataset8 is used for this purpose. This dataset
contains movie reviews from the biggest movie rating website imdb.com. This
leads to some problems described later in this section, because English dataset
contains only binary classification (positive/negative). Table 2.5 summarizes each
dataset. We randomly split all dataset into train, development, and test datasets
with the same labels distribution as the original datasets, similarly to Sido et al.
(2021).

As can be seen in figure 2.3, distribution of labels differs among datasets.
Moreover, figure 2.4 shows that the resulting dataset is highly unbalanced, which

6http://www.janpalasek.com/sentiment-analysis-czech.html
7All three datasets are all available here: http://liks.fav.zcu.cz/sentiment/
8https://www.tensorflow.org/datasets/catalog/imdb_reviews
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Figure 2.3: Distribution of positive/neutral/negative labels in each dataset.

may causes divergence during training. Due to the big part of labels being pos-
itive, many learning strategies end with predicting only positive class, i.e., 55%
accuracy, so unfortunately learning nothing.

2.3.4 Experiments and Architecture
The main division of experiments is by the input dataset – each of Czech models
separately and one joint dataset consisting of all Czech datasets, i.e., four different
datasets. All variants perform both layers attention and an average of last four
layers. As for the learning rate, all experiments were made with learning rate
3 · 10−5, and there are always two types of learning rate decay – cosine and
inverse square root decay.

The network architecture is much simpler than in the tagging and lemmati-
zation task, and corresponds to simple setting of these tasks – only BERT-like
model and a classification head consisting of a dense layer with softmax activation
function.

Baseline for these models is a Naive Bayes Classifer (NB) with term frequency–
inverse document frequency (tf–idf) representation. tf–idf for a word is defined
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Figure 2.4: Percentage and absolute values of labels in all three Czech datasets
together.

length labels domain

mall 145306
positive
neutral
negative

domestic appliance reviews

csfd 91304
positive
neutral
negative

movie reviews

facebook 9752
positive
neutral
negative

brand pages of e.g. shops or mobile network
providers

imdb 25000 positive
negative movie reviews

Table 2.5: Three Czech datasets (mall, facebook, csfd) and one English (imdb)
are used for training in this work.

in this way: tf stands for a term frequency

tf = word occurences

number of words in document

and this is count over the whole dataset, while idf is inverse document frequency

idf = number of documents

number of documents with word
.

The Idf acts as an evaluation of the importance of the word. The result is then:

tf − idf = tf · idf.
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This representation serves as an input into Naive Bayes Classifier. Naive Bayes
Classifier (NB; Duda et al., 1973), a probabilistic model, which models proba-
bility of the class k given the data features xi: p(Ck|x1, ..., xn) and uses naive
assumption of features to be conditionally independent given the class Ck.

2.3.5 Results and Discussion
Models based upon RoBECzech not only outperformed the baseline, but also
achieved new state-of-the-art results in all three datasets as can be seen in table
2.6. Complete results can be seen in table 2.9. The best model for each dataset
was the one trained on that dataset, although model trained on joint datasets
performed comparable to single-data model on csfd and mall. For facebook, joint
model was worse by 9%. This can be caused by the a difference in distribution of
labels between datasets. Facebook dataset has the most different label distribution
in comparison to all czech together (mostly neutral posts vs. mostly positive, see
figure 2.3 and figure 2.4).

Following Kyselý (2017), resulting models are evaluated on five different Czech
sentences to manifest the differences between models (table 2.7). It can be seen
that predicting neutral vs. negative is still tricky for models, which can be also
seen in confusion matrices (table 2.8). Confusion matrices shows that predicting
neutral is complicated in general, meanwhile models have learned to distinguish
well between positive and negative sentiment. Table 2.7 also shows that csfd
model is quite different from the rest. It is probably caused by the difference in
the training data nature.

Because the BERT model was trained on multilingual data, it is naturally not
so good in a language sparsely presented in its training data. When transferring
the learned knowledge to Czech sentiment task, we actually want to improve
model in two ways: teach it something more specific about the given task, i.e.,
sentiment, and improve its knowledge about the used language (Czech in this
case). By using Czech sentiment dataset, both aspects are incorporated into
training. To obtained better results and following Putra et al. (2020), we also
included English sentiment dataset imdb during training. The idea behind is that
BERT is quite good in English and maybe can learn useful knowledge about the
given task from data in a more familiar language. In the table of results there
are two additional experiment types – zero and eng. Zero stands for zero-shot
and the model is trained only on English data, but evaluated on the joint Czech
dataset. This, of course, does not returns results competitive to models trained
on Czech data, however table 2.10 shows that zero models actually learned some
useful knowledge about the task, which they could apply to Czech data. Zero(2)
improved by 40% after training on English data only. Zero(35) is the model
with RobeCzech, therefore it has the better prior knowledge of Czech, but it can
also be improved by training on English data within the task. In Putra et al.
(2020), authors use this approach because of the lack of the data in Indonesian,
so they divided training into two parts. Firstly, they train models with different
approach including zero-shot, and then they chose the best model for fine-tuning
on Indonesian data. As we have the Czech monolingual BERT-like model, we
did not continue by fine-tuning the zero experiments, because they did not seem
promising.
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dataset models Acc F1-w F1-m

All Czech
baseline 82.00 70.00 -
(Kyselý, 2017) 67.82 67.00 -
best(16) 84.04 83.86 80.84

csfd

baseline 69.07 69.00 -
Czert - - 84.79
(Habernal et al., 2013) - - 79.00
(Kyselý, 2017)⋆ 71.34 71.00 -
best(16) 84.02 84.00 -
best(69) 84.89 84.87 84.83

mall

baseline 84.72 83.00 -
(Kyselý, 2017) 82.52 81.00 -
(Habernal et al., 2013) - - 75.00
(Klouda et al., 2019)(Bert) 81.00 79.00 -
(Klouda et al., 2019)(SVM) 84.00 82.00 -
best(16) 84.40 84.00 -
best(63) 84.60 84.14 76.85

facebook

baseline 67.30 63.00 -
RobeCzech - - 80.13
(Habernal et al., 2013) - - 69.00
XLM-RoBERTa⋆⋆ - - 82.29
Czert - - 76.55
(Kyselý, 2017) 71.62 71.00 -
best(16) 75.00 74.98 -
best(45) 81.80 81.65 80.11

Table 2.6: Best results for all datasets and a comparison to previous work.
Best(16) is a best model for joint dataset and best(x) is always the best model
for respective dataset. Numbers in italics are from related work. Related work
results except Czert are 10-fold crossvalidation results. ⋆ (Kyselý, 2017) performs
only sentence-level classification. ⋆⋆ This is the large XLM-RoBERTa model from
Straka et al. (2021), which is four times larger than the BERT base model.

Input joint mall facebook csfd
Rozbila se po prvńım použit́ı, je na hovno.
It broke after the first use, it is shitty. Neg Neg Neg Neut

Rozbila se až za rok.
It broke after a year of use. Neg Neg Neg Neut

S manželem jsme si v́ıkend moc užili.
Me and my husband enjoyed the weekend. Pos Pos Pos Pos

Ok, ale nic zaj́ımavého.
Ok, but nothing interesting. Neut Neg Neg Neg

super zbož́ı
super product. Pos Pos Pos Neut

Table 2.7: Evaluation of models on four Czech sentences. mall model was not
included as a separate option, as the best model is the joint one.

57



Combined datasets (16) mall (63)
Predicted labels Predicted labels

Tr
ue

la
be

ls neut neg pos neut neg pos
neut 7027 885 2025 neut 2896 199 1696
neg 1122 4783 307 neg 344 1082 132
pos 1279 207 18857 pos 932 54 14461

csfd (69) facebook (45)
Tr

ue
la

be
ls neut neg pos neut neg pos

neut 3600 685 170 neut 440 41 51
neg 603 3769 241 neg 57 135 7
pos 146 225 4257 pos 23 3 243

Table 2.8: Confusion matrices for best model in each category.

Model Acc F1
zero(2) before training 21.33 14.68
zero(2) after training 49.51 44.67
zero(35) before training 34.78 31.80
zero(35) after training 58.13 50.89

Table 2.10: Results of selected zero-shot experiments.
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MODEL EXPE LAYERS LRTYPE Acc F1-w F1-m
1

mBERT

czech

four

isrd
80.89 80.62 76.89

2 zero 49.51 44.67 35.91
3 eng 81.17 80.90 77.45
4 czech

cos
82.56 82.35 79.10

5 zero 53.41 47.64 38.49
6 eng 82.55 82.37 79.12
13

RoBECzech

czech

four
isrd 81.17 80.90 79.65

14 zero 55.31 48.26 38.79
16 czech cos 84.04 83.86 80.72
17 zero 57.64 48.79 39.03
19

mBERT

czech

att

isrd
81.61 81.43 78.02

20 zero 53.92 47.55 38.23
21 eng 81.79 81.32 77.78
22 czech

cos
82.62 82.42 79.11

23 zero 51.99 46.63 37.59
24 eng 82.59 82.36 79.08
31

RoBECzech

czech

att
isrd 83.26 83.18 80.06

32 zero 58.36 50.40 40.89
34 czech cos 83.88 83.68 80.57
35 zero 58.13 50.89 35.71
37 mBERT

facebook

four

isrd 75.30 74.97 35.71
38 cos 76.20 75.89 73.32
41

RoBECzech

isrd 80.10 79.87 77.98
43

cos
81.50 81.37 79.90

44 81.00 80.78 79.02
45 81.80 81.65 80.11
46 mBERT

att

isrd 76.40 75.67 72.68
47 cos 77.20 76.83 74.20
50 RoBECzech isrd 79.60 79.07 76.78
51 cos 80.60 80.38 78.76
52 mBERT

mall

four

isrd 82.80 82.80 74.94
53 cos 84.27 83.88 76.48
56 RoBECzech isrd 83.17 83.37 76.00
57 cos 84.73 84.30 76.95
58 mBERT

att

isrd 83.02 82.90 75.36
59 cos 84.04 83.61 75.94
62 RoBECzech isrd 84.08 83.88 76.18
63 cos 84.60 84.14 76.85
64 mBERT

csfd

four

isrd 80.77 80.83 80.79
65 cos 82.04 82.04 82.01
68 RoBECzech isrd 83.06 83.05 83.00
69 cos 84.89 84.87 84.83
70 mBERT

att

isrd 81.63 81.60 81.57
71 cos 82.20 82.19 82.16
74 RoBECzech isrd 83.13 83.18 83.13
75 cos 84.32 84.32 84.28

Table 2.9: This table presents complete results on the sentiment task. Presented
metrics are accuracy, macro-F1, and weighted-F1.
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3. Implementation analysis
The main purpose of this chapter is to offer the technical description of the code
accompanying this work for better reproducibility and possible further experi-
ments on every of the presented tasks. This chapter describes an implementation
of all language models, other related code, and also presents all used libraries and
technologies.

All code forms an attachment of this work and is also publicly available
on GitHub.1 Experiment were performed on the Artificial Intelligence Cluster
(AIC)2 provided by the Institute of Formal and Applied Linguistics, Charles
University.3

3.1 Code description
This section describes the code – technologies and hardware used for experiments,
where to find the scripts for replicating the experiments, and how to run them.

3.1.1 Technologies description
All code is implemented in Python (v3.6.9). Python is a popular language for
machine learning, because of easy use and many available libraries, which allows
to focus on high-level problem solving instead of technical details. All depen-
dencies and used libraries are listed in the /code/requirements.txt file, but we
also mention the most important libraries explicitly.

TensorFlow and Keras

The main library used for developing deep learning models in this work is Tensor-
flow (Abadi et al., 2015). This library provides lots of tools for machine learning,
especially for neural networks. Keras is a wrapper library over Tensorflow and
provides easy use of the most common machine learning scenarios (Chollet, 2015).
Tensorflow together with PyTorch (Paszke et al., 2019) is probably the most fre-
quently used library for deep learning, both providing similar functionality. The
reason behind this choice of Tensorflow is the fact that this thesis builds on the
previous work and uses code developed in Tensorflow.

Transformers

As mentioned in other part of text, this work reuse pretrained language mod-
els based on BERT. Transformers library from Hugging Face(Wolf et al., 2019)
contains many variants of pretrained BERT models and tools for their usage as
tokenizers or learning rate schedulers.

1https://github.com/flower-go/DiplomaThesis
2https://aic.ufal.mff.cuni.cz/
3https://ufal.mff.cuni.cz/home-page
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Pandas

Pandas library (Reback et al., 2020) serves well for data analysis as it provides
data structures like DataFrame, which provides named columns, advanced data
indexation, selection, merging, joining, reshaping and other functionality similar
to tools provided by e.g., SQL databases. It does not only provide a rich set of
tools, but they are also developed with an emphasis on performance.

Scikit-learn

Scikit-learn (Pedregosa et al., 2011) is another useful Python library specialized
on machine learning. In contrast to TensorFlow, scikit-learn focuses on classi-
cal machine learning, not on neural networks, providing all important variants
of machine learning models as well as supporting tools for training, e.g., cross
validation or various metrics.

Numpy

Numpy (Harris et al., 2020) is a library providing powerful multidimensional
arrays with many predefined operations. It is fast and it is a de-facto standard
library for numerical operations over number arrays.

Jupyter Notebook

Jupyter notebook (Kluyver et al., 2016) is a web application for development. In
this work, Jupyter notebook is used for providing the trained models for explo-
ration. Jupyter suits well for this purpose because it, in addition to a possibility
of running a separate parts of code in different cells, also supports visualisations
and Markdown formatted text and it can be useful especially for explanatory
purposes.

3.1.2 Code Structure
Each task has code in a separate directory. All code for tagging and lemmatization
is placed in the folder morphodita research. Main files are morpho tagger 2.py
and bert fine-tuning simple.py, which serves for running all experiments re-
lating to tagging and lemmatization. Script arguments are described in more
detail in tables 3.1, 3.2 and 3.3.

Sentiment analysis experiments (in folder sentiment) can be run using
sentiment analysis.py with arguments as described in tables 3.1 and 3.4.

3.1.3 Working example
The best model is publicly available in the Git repository4 and licensed under the
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International Li-
cence.5 If you want to try the model prediction or see a working example of usage
of such models, you can use a public Google Colaboratory (Bisong, 2019) Jupyter

4https://github.com/flower-go/DiplomaThesis/tree/master/code/
morphodita-research/models

5https://creativecommons.org/licenses/by-nc-sa/4.0/
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Argument Values Description
accu int Accumulation of gradient. Effec-

tive batch size is batch size times
accu.

batch size int Batch size (without accumula-
tion).

bert string Name of the bert model (from the
HuggingFace library) or path to
the model.

checkp String Name of the saved model weights.
Saving weights is used instead of
saving he whole model.

debug 0/1 Debug mode loads small debug
data if available.

label smoothing decimal number Coefficient for label smoothing.
dropout float Dropout amount applied on vari-

ous places of the network.
epochs ”x:l1,y:l2” This will perform x epochs with

learning rate l1 and y epochs with
learning rate l2.

layers None/”att” If ”att”, all BERT-like model lay-
ers are combined with learned
weights.

warmup decay None
/”i:x”/”c:x”/”n:x”

If not None, training will incor-
porate inverse square root decay,
cosine decay, or warm-up for x
episodes.

fine lr float Different learning rate for the
classification head.

Table 3.1: A list of arguments common to all scripts.

notebook, which downloads all necessary data and returns predictions for a given
text. This notebook si available here: https://colab.research.google.com/
github/flower-go/DiplomaThesis/blob/master/PlayWithModels.ipynb.
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Argument Values Description
beta 2 float An argument for the optimizer.
cle dim int Dimension of character-level em-

beddings.
exp string Name of logs files.
factors ”Lemmas,Tags” Factors to be predicted – Lem-

mas, Tags, or both.
word dropout float Probability of masking a word in

the sentence during training.

Table 3.2: A list of arguments common to both scripts for tagging and lemmati-
zation.

Argument Values Description
data string Input data directory. Data are

supposed to be divided into train,
dev and test .txt files.

char dropout float Dropout for characters.
embeddings string Path to pre-comuputed embed-

dings to use.
factor layers int Number of dense-and-dropout

blocks for each of factors.
lemma re strip string Regular expression for suffix to be

stripped from lemma.
lemma rule min int Minimal occurences to keep a

lemma rule.
predict string Produce only a prediction with

the model from the path given in
this argument.

rnn cell ”LSTM”/”GRU” Type of RNN cell to use.
rnn cell dim int Dimension for RNN cells.
rnn layers int Number of recurrent cell layers.
we dim int Dimension of trainable word em-

beddings.
bert model string Trained checkpoint for loading.

Training will continue from this
checkpoint.

test only string Path to the model, which will
be loaded and weights will be
printed.

Table 3.3: A list of arguments specific to morpho tagger 2.py, with detailed
description.
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Argument Values Description
datasets {”mall,csfd,facebook”} Names of the input Czech

datasets, separated by comma.
english float A percentage training data which

should be taken from the English
IMDB dataset.

freeze 0,1 Value 1 means that BERT layers
will not be trained.

seed int Inicialization of random seed.
kfold ”k:i” Data will be splitted into k folds

and the i-th fold will be used for
evaluation. It serves for running
k-fold cross-validation in parallel
runs.

Table 3.4: Arguments for sentiment analysis.py script.
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Conclusion
In this thesis, we implemented Czech part-of-speech tagging, lemmatization and
sentiment analysis with the usage of Bidirectional Encoder Representations from
Transformers-like architectures. We achieved state-of-the-art results in tagging
(accuracy 98.57%) and lemmatization (accuracy 99.00%) and joint accuracy of
these two tasks 98.19%, which presents the error reduction of 67% for tagging ac-
curacy and 53% for lemmatization accuracy compared to previous publicly avail-
able model (Straková et al., 2014).6 We also presents new state-of-the-art results
in sentiment analysis on two used datasets – mall and csfd. We also explored var-
ious training techniques and showed the good performance of static embeddings
compared to any further training of BERT models. This thesis also examines
types of errors BERT helps to solve. All code, text and best models are publicly
available on GitHub: https://github.com/flower-go/DiplomaThesis.

Future Work

The BERT-like models ale able to transfer knowledge even across very differ-
ent languages, and also previous work suggest, that training on languages from
similar family can improve results in all included languages (Arkhipov et al.,
2019), therefore one possible improvement can be in both pre-training the new
BERT-like model (similarly to (Straka et al., 2021)) on joint dataset for i.e.,
Czech, Slovak and Polish, or use such multilingual data for task-specific training,
for example in sentiment analysis. In addition, results with large XLM-Roberta
suggests that selecting this architecture for pretraining could be advantageous de-
spite computational demands. Sentiment analysis data are quite small, although
they could be retrieved from pairs (review – star rating) and many Czech compa-
nies have access to such data. Experiments with tagging and lemmatization also
show good results of precomputed embedding approach. The question therefore
arises as to whether it would not be better to simply add precomputed BERT
embeddings into existing sentiment analysis solutions.

6The best publicly available model is to our best knowledge available at https://ufal.mff.
cuni.cz/morphodita/users-manual#czech-morfflex-pdt_model, which has 95.55% tagging
and 97.96% lemmatization accuracy.

65

https://github.com/flower-go/DiplomaThesis
https://ufal.mff.cuni.cz/morphodita/users-manual#czech-morfflex-pdt_model
https://ufal.mff.cuni.cz/morphodita/users-manual#czech-morfflex-pdt_model


Bibliography
[PDT35 ] : PDT 3.5 Main page. – URL https://ufal.mff.cuni.cz/pdt3.5

[Abadi et al. 2015] Abadi, Mart́ın ; Agarwal, Ashish ; Barham, Paul ;
Brevdo, Eugene ; Chen, Zhifeng ; Citro, Craig ; Corrado, Greg S. ;
Davis, Andy ; Dean, Jeffrey ; Devin, Matthieu ; Ghemawat, Sanjay ;
Goodfellow, Ian ; Harp, Andrew ; Irving, Geoffrey ; Isard, Michael ;
Jia, Yangqing ; Jozefowicz, Rafal ; Kaiser, Lukasz ; Kudlur, Manjunath ;
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[Hladká 1998] Hladká: Part of Speech Tags for Automatic Tagging and
Syntactic Structures 1. 1998. – Forschungsbericht

[Hochreiter and Urgen Schmidhuber 1997] Hochreiter, Sepp ;
Urgen Schmidhuber, J J.: Long short-term memory. URL
http://www7.informatik.tu-muenchen.de/{˜}hochreithttp://www.
idsia.ch/{˜}juergen, 1997 (8). – Forschungsbericht. – 1735–1780 S

[Hoerl and Kennard 1970] Hoerl, Arthur E. ; Kennard, Robert W.: Ridge
Regression: Biased Estimation for Nonorthogonal Problems. In: Technometrics
12 (1970), Nr. 1, S. 55–67. – ISSN 15372723

[Howard and Ruder 2018] Howard, Jeremy ; Ruder, Sebastian: Universal
language model fine-tuning for text classification. In: ACL 2018 - 56th Annu.
Meet. Assoc. Comput. Linguist. Proc. Conf. (Long Pap. Bd. 1, 2018

70

https://books.google.cz/books?id=VznTygAACAAJ
http://www.aclweb.org/anthology/W13-1609
https://books.google.cz/books?id=sB63AAAACAAJ
https://books.google.cz/books?id=sB63AAAACAAJ
http://hdl.handle.net/11234/1-1834
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
http://www7.informatik.tu-muenchen.de/{~}hochreithttp://www.idsia.ch/{~}juergen
http://www7.informatik.tu-muenchen.de/{~}hochreithttp://www.idsia.ch/{~}juergen


[Huh et al. 2016] Huh, Minyoung ; Agrawal, Pulkit ; Efros, Alexei A.:
What makes ImageNet good for transfer learning? 2016. – Forschungsbericht

[Hutchins ] Hutchins, John: Two precursors of machine translation: Art-
srouni and Trojanskij. – URL https://citeseerx.ist.psu.edu/viewdoc/
download?doi=10.1.1.14.2564{&}rep=rep1{&}type=pdf. – Zugriffsdatum:
2020-10-23

[Hutchins 1996] Hutchins, John: ALPAC: the (in)famous re-
port. The MIT Press, 1996. – Forschungsbericht. – 131–135 S.
– URL https://books.google.com/books?hl=cs{&}lr={&}id=
yx3lEVJMBmMC{&}oi=fnd{&}pg=PA131{&}dq=alpac+report{&}ots=
se2vhONMHp{&}sig=ByL2IgJLxRwF3f6n9bqOPFx88r4

[Jurafsky and Manning 2012] Jurafsky, Dan ; Manning, Christopher: Nat-
ural language processing. In: Instructor 212 (2012), Nr. 998, S. 3482

[Kingma and Ba 2015] Kingma, Diederik P. ; Ba, Jimmy L.: Adam: A method
for stochastic optimization. In: 3rd Int. Conf. Learn. Represent. ICLR 2015
- Conf. Track Proc., International Conference on Learning Representations,
ICLR, dec 2015. – URL https://arxiv.org/abs/1412.6980v9

[Kitaev et al. 2018] Kitaev, Nikita ; Cao, Steven ; Klein, Dan: Multilingual
Constituency Parsing with Self-Attention and Pre-Training. In: ACL 2019 -
57th Annu. Meet. Assoc. Comput. Linguist. Proc. Conf. (2018), dec, S. 3499–
3505. – URL http://arxiv.org/abs/1812.11760

[Kittask et al. 2020] Kittask, Claudia ; Milintsevich, Kirill ; Sirts, Kairit:
Evaluating Multilingual BERT for Estonian. In: arXiv (2020), oct. – URL
http://arxiv.org/abs/2010.00454

[Klouda et al. 2019] Klouda, Ing K. ; Langr, Lukáš ; Daniel Vašata, Ing:
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A. Attachements

A.1 Learning Rate for Tagging and Lemmatiza-
tion

A 40:1e-3,20:1e-4
B 40:1e-3,20:1e-4
C 60:1e-3
D 40:1e-3,20:1e-4,2:2e-5
E 60:1e-3,5:3e-5
F 20:2e-5
G 20:3e-5

Table A.1: Legend for table 2.4.
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A.2 The Most Frequent Tags Improved by the
Best (tl 18) Model

Freq Tag Freq Tag
163 NNNXX-----A---- 27 AAMS1----1A----
151 NNIS1-----A---- 25 NNMP4-----A----
130 NNIS4-----A---- 22 NNNP1-----A----
122 NNNS4-----A---- 22 NNFS6-----A----
103 NNFP1-----A---- 21 NNFXX-----A---8
99 NNMS1-----A---- 20 NNNS6-----A----
84 NNFP4-----A---- 19 PDNS1----------
83 NNNS1-----A---- 19 J,-------------
72 NNMS4-----A---- 19 AAIP4----1A----
69 AAIS4----1A---- 18 NNNS3-----A----
68 NNFS1-----A---- 18 AAFS4----1A----
64 AAFP1----1A---- 17 AAFS1----1A----
62 AAIS1----1A---- 16 PDNS4----------
60 NNFS4-----A---- 16 NNNP4-----A----
58 RR--4---------- 16 NNIS3-----A----
56 NNFS2-----A---- 15 AANP1----1A----
54 RR--6---------- 14 Jˆ-------------
48 NNNS2-----A---- 13 NNIP7-----A----
48 NNMS2-----A---- 13 NNFP2-----A----
47 VB-P---3P-AA--- 13 Cn-S1----------
47 NNIP1-----A---- 12 P7-X4----------
47 AANS4----1A---- 12 NNIS2-----A----
43 Db------------- 12 AAMP2----1A----
42 NNIP4-----A---- 11 RR--2----------
38 VB-S---3P-AA--- 11 NNMS3-----A----
38 NNFS3-----A---- 11 AGFP1-----A----
35 AANS1----1A---- 11 AAXXX----1A----
35 AAFS2----1A---- 11 AAMS2----1A----
35 AAFP4----1A---- 11 AAFS3----1A----
33 AAIP1----1A---- 10 NNFXX-----A----
28 NNFS7-----A---- 10 AAMP4----1A----

Table A.2: Most frequent tags, which were correctly predicted by tl 18, but in-
correctly by tl 1 (=baseline).
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A.3 The Most Frequent Tags – the Best Model
vs mBERT

Freq Tag Freq Tag
70 NNIS1-----A---- 23 Db-------------
69 NNNS4-----A---- 23 AAFS2----1A----
55 NNIS4-----A---- 22 RR--6----------
55 NNFP1-----A---- 22 NNIP1-----A----
45 NNNS1-----A---- 21 NNFS3-----A----
45 NNFS1-----A---- 20 AANS1----1A----
38 NNMS4-----A---- 16 AAIP1----1A----
38 NNFP4-----A---- 15 NNNS3-----A----
37 AAFP1----1A---- 15 NNFXX-----A---8
36 NNFS2-----A---- 15 NNFS7-----A----
34 NNFS4-----A---- 15 AAFP4----1A----
32 VB-S---3P-AA--- 13 PDNS1----------
30 AAIS1----1A---- 13 NNIS3-----A----
29 VB-P---3P-AA--- 13 AAIP4----1A----
28 RR--4---------- 12 PDNS4----------
27 NNNXX-----A---- 11 NNNS6-----A----
27 NNMS2-----A---- 11 AAFS4----1A----
27 AAIS4----1A---- 10 NNMP4-----A----
26 NNNS2-----A---- 10 J,-------------
26 AANS4----1A---- 10 AAXXX----1A----
25 NNMS1-----A---- 10 AAMS1----1A----
23 NNIP4-----A----

Table A.3: Most frequent tags, which were correctly predicted by tl 18, but in-
correctly by tl 3 (= best model with mBERT).
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