
Debugging large programs is a complex and time-consuming task, which has not been
fully automated yet. Given a runtime error, the developer must first reproduce it. He
then has to find the root cause of the error and create a proper bug fix. Automation
can make this process significantly more efficient by reducing the amount of code the
developer has to look through.

The goal of this thesis is to propose and discuss automated techniques for reducing a
given failing program into its minimal runnable subset. We introduce three methodologies
that are practical for program reduction. The automatically minimized program must
result in the same runtime error as the original program. The process of minimization
focuses on producing optimal results for the domain of small and simple applications.

All three techniques are implemented using Clang LibTooling, a library for standalone
Clang tools. In the thesis, we explain the inner workings of each implementation and
discuss their limitations. Implementations are benchmarked on a set of C and C++
source files. Performance is evaluated with respect to the size of the generated output
and the algorithm’s running time.

1


