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Abstract

Past studies suggest that learning a spatial environment by navigating on a desktop computer can
lead to significant acquisition of spatial knowledge, although typically less than navigating in the
real world. Exactly how this might differ when learning in immersive virtual interfaces that offer
a rich set of multisensory cues remains to be fully explored. In this study, participants learned a
campus building environment by navigating (1) the real-world version, (2) an immersive version
involving an omnidirectional treadmill and head-mounted display, or (3) a version navigated on a
desktop computer with a mouse and a keyboard. Participants first navigated the building in one of
the three different interfaces and, afterward, navigated the real-world building to assess information
transfer. To determine how well they learned the spatial layout, we measured path length, visitation
errors, and pointing errors. Both virtual conditions resulted in significant learning and transfer to the
real world, suggesting their efficacy in mimicking some aspects of real-world navigation. Overall,
real-world navigation outperformed both immersive and desktop navigation, effects particularly pro-
nounced early in learning. This was also suggested in a second experiment involving transfer from
the real world to immersive virtual reality (VR). Analysis of effect sizes of going from virtual condi-
tions to the real world suggested a slight advantage for immersive VR compared to desktop in terms
of transfer, although at the cost of increased likelihood of dropout. Our findings suggest that virtual
navigation results in significant learning, regardless of the interface, with immersive VR providing
some advantage when transferring to the real world.
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1. Introduction

Many studies on the cognitive and neural basis of human spatial navigation
involve virtual environments (VEs) rendered on desktop computers. A lim-
itation of these studies is that they provide a limited approximation of the
wealth of multisensory cues available during real-world navigation. Specifi-
cally, free ambulation involves critical body-based cues not represented during
virtual reality (VR) navigation with a joystick on a desktop computer: cues
derived from body turns and movements that displace fluid in our vestibular
system (termed here ‘vestibular cues’) and also affect sensory receptors and
proprioceptors in our body, particularly our legs (termed here ‘proprioceptive
cues’) (Loomis and Beall, 1998; Starrett and Ekstrom, 2018). Vestibular in-
put, though, is critical to our representation of bearing and acceleration, with
lesions to the vestibular nuclei in both rats and humans significantly impairing
navigation (Brandt et al., 2005; Russell et al., 2003; Taube et al., 2013; Vale-
rio and Taube, 2012). Similarly, although less well researched, proprioceptive
cues associated with moving our legs and feet are important for estimating
our velocity and turning angle (Loomis and Beall, 1998) and successful navi-
gation more generally (Chrastil and Warren, 2013; Gallistel, 1990; Matthis et
al., 2018). In particular, the somatosensory responses of the feet are critical
for estimating gait and other important aspects of movement in space, such
as orientation (Lackner and DiZio, 2005; Matthis et al., 2018; Visell et al.,
2011). Others have argued, however, that body-based cues may not all be nec-
essary for normal expression of some forms of spatial representations, such
as topological graph knowledge (Chrastil and Warren, 2015). At present, the
degree to which body-based cues are necessary for spatial learning remains
unresolved.

Immersive VR tools, such as head-mounted displays (HMDs) and omnidi-
rectional treadmills, allow a novel opportunity to study immersive navigation
in the lab and more completely model body-based input in a controlled set-
ting. Specifically, omnidirectional treadmills (see Fig. 1) allow participants to
freely ambulate while wearing an HMD with the full spectrum of rotations
that can render any number of different VEs while presenting them with a
wide field of view (about 100 degrees in the HTC Vive HMD (HTC Corp.,
Taoyuan, Taiwan) in comparison to 60-70 degrees on a desktop monitor).
With these two important components, we can study both enriched visual in-
put (via the HMD) and the effect of enriched body-based cues on navigation
(via the omnidirectional treadmill). Specifically, the omnidirectional treadmill
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Figure 1. Immersive VR treadmill setup. Participant wearing an HTC Vive headset while being
strapped into the omnidirectional treadmill. Participants can rotate 360 degrees and are allowed
independent body and head rotation. Movement is achieved by sliding one’s feet across the
treadmill base.

provides both body and turn input, proprioceptive input from the legs, and so-
matosensory feedback from the feet as participants walk on the surface of the
treadmill. Previous studies investigated navigation by providing participants
with a full range of proprioceptive cues using an HMD and ambulation in a
room (Ruddle and Lessels, 2006). Although omnidirectional treadmills only
approximate the real-world experience (for example, walking on the omnidi-
rectional treadmill does not engage the full range of somatosensory receptors
and muscles compared to stepping in the real world), they have the advantage
of allowing participants to explore environments larger than a VR/AR-enabled
room would offer. Therefore, an important question regards to what extent
information learned in such immersive VR contexts compares to real-world
navigation.

One way to assess how well information acquired during virtual navigation
applies to the real world involves ‘transfer’. This typically involves subjects
first learning environments in a virtual setting and then determining how ef-
fectively participants can apply acquired spatial knowledge to the real world
(Montello et al., 2004; Richardson et al., 1999; Waller et al., 1998; Witmer
et al., 1996). Studies investigating transfer of spatial knowledge acquired in
VR to the real world also suggest advantages for conditions involving some
amount of body-based input. One study by Waller et al. compared continuous
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exposure to an environment on a desktop VE, navigating the same environ-
ment with an HMD with full head control and a joystick, and navigating the
same real-world environment. HMD exploration with full head turning led to
greater transfer than desktop exploration, although real-world navigation led
to the highest transfer (best spatial learning). These findings are similar to
some reported in other past studies (Waller et al., 1998; Witmer et al., 1996;
see also Richardson et al., 1999), suggesting the importance of body-based
cues to navigation and transfer of information to real-world environments. One
possibility, though, is that because these studies did not involve walking in the
VR conditions, the limited proprioceptive cues led to overall poor encoding of
head direction information due to a mismatch with the joystick movements.
Thus, we might expect that the presence of more enriched body-based cues
could lead to better transfer to the real world, an i1ssue we will address in this
study.

In support of the importance of richer body-based cues to navigation, Grant
et al. compared navigation with an HMD, head turns, and walking in place by
shuffling the feet compared to movement with a joystick (Grant and Magee,
1998). While the HMD/walking condition did result in improvements in taking
shortcuts compared to desktop VE, both conditions resulted in worse direc-
tion estimates compared to real-world navigation. One limitation of the Grant
and Magee study, however, is that the seated shuffling movement of the feet
they employed should read out to the proprioceptive system as a net-zero for-
ward translation. In contrast, on an omnidirectional treadmill, standing and
moving the feet in a walking motion should provide a sense of net-positive
forward translation. Thus, while studies of transfer from VR to real-world en-
vironments suggest advantages to some vestibular input rendered by an HMD,
the absence and mismatch, in some cases, with other body-based cues (i.e.,
walking-based input from sensory and muscle receptors) may be a possible
reason for incomplete transfer. Alternatively, it is also possible that visual ren-
dering in VR always limits transfer (Thompson et al., 2004), and thus it is
possible that, even with richer body-based cues, visual rendering always lim-
1ts transfer, to some extent.

In this study, we contrast two different forms of learning in VR and how
they transfer to real-world navigation. As a control comparison and means
of determining the theoretical ‘maximum’ transfer, we included continuously
navigating in the real world for the entire experiment. To avoid issues with
navigating in outdoor environments (trip hazards and environmental complica-
tions, like variable levels of lighting and rain), all testing occurred in a campus
building, the UC Davis Center for Neuroscience (Figs 2, 3). One-third of our
participants navigated through the building on desktop, the second third in im-
mersive VR (i.e., HMD + omnidirectional treadmill), and the final third of
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Figure 2. Illustration of the building layout with six offices (dots with names in blue) and four
pointing locations.

Figure 3. Comparison of the visual and geometrical fidelity for the 3D visualisation. Center for
Neuroscience entrance hall is depicted on the left and the modelled environment on the right.

participants navigated the real-world Center for Neuroscience. After complet-
ing three blocks of navigation (by finding specific targets in the building), all
participants navigated the Center for Neuroscience in the real world. By track-
ing their position in the real-world building using Bluetooth trackers beacons
(Estimote Inc., San Francisco, CA, USA), we were able to determine the devi-
ation of their path from the ideal path they should walk, as well as any errors
in visiting the wrong target.

Our main hypothesis, which we term the body-based enrichment hypoth-
esis, suggests that providing additional body-based cues with an omnidirec-
tional treadmill and HMD should at least partially mimic real-world navi-
gation. In this case, we would predict that transfer should be higher from
immersive VR to the real world than desktop VR. Immersive VR, according to
the body-based enrichment hypothesis, should result in comparable, or maybe
less transfer compared to the real world, depending on the degree to which
participants experience the immersive experience as fully mimicking the real
world. To briefly preface our results, we found that learning in the real-world

© 00 N O 0o b W N =



© 00 N O 0o b W N =

A D D W W W WW W WWWWND DN DMNDDNDDNDDNDDNDDNDDNDDNND S A S dda s a
N = O © 0 N O o A W N = O © 0N O O B WO =2 O © 0N O OGO B WO N = O

MSR (brill2x v1.19) msri1445.tex 2020/01/16 10:12 [research-article] p. 6/25
6 L. Hejtmanek et al. / Multisensory Research 0 (2020) 1-25

setting led to the highest transfer overall, with some evidence for immersive
VR leading to greater transfer than desktop navigation.

2. Methods
2.1. Design Overview

To investigate the effects of learning modality on spatial knowledge acquisi-
tion, we devised an experiment with three different conditions involving active
exploration and ambulation. Participants learned positions of six office doors
(out of a total 32) within the Center for Neuroscience at UC Davis. The reason
we had participants learn the labels on doorways was to avoid them having
to remember objects they could easily see. Participants experienced the same
building either in the real world (i.e., actually navigating the Center for Neuro-
science), in immersive body-based VR with an omnidirectional treadmill (i.e.,
navigating a virtual version of the Center for Neuroscience with an HMD on an
omnidirectional treadmill), or on a desktop computer (i.e., navigating the same
virtual version but on a desktop computer with a mouse and a keyboard). After
three blocks of learning, all participants continued the task in the real world.
Our dependent measures involved (1) normalized walked path distance, which
we assayed in the (a) real world using Estimote Bluetooth trackers and (b) in
VR by recording position (termed ‘path accuracy’); (2) visitation errors, which
were quantified based on visiting the wrong doors; and (3) unsigned pointing
error.

2.2. Walking Task

At the beginning of each walking trial, participants were given the name of
a person whose office they had to find. Instructions were provided by the ex-
perimenter in the real-world condition or displayed in the user interface in the
treadmill VR and desktop conditions. Participants selected the door by walk-
ing directly into it in virtual conditions and standing close and pointing to it
in the real-world condition. Participants were not told which office belonged
to whom, and therefore they had to walk around the building and keep check-
ing doors until they arrived at the correct one. Once they arrived or pointed at
the correct door participants were provided with a new name and a new trial
started. Each office was visited three times in each phase, six times over the
entire experiment. The order in which offices occurred was randomized in a
way such that the order was balanced across all conditions.

2.3. Pointing Task

After finishing three blocks of finding doors (the learning phase), the partici-
pant was either moved (VR and desktop conditions) or walked to two different
viewpoints within the building and asked to point to each office one by one.
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This was repeated once more after the transfer phase, for a total of four point-
ing blocks (24 pointing in total).

2.4. Building a Realistic 3D Model of the Center for Neuroscience

We built the virtual Center for Neuroscience to scale for rendering in both
immersive VR and on the desktop VE. An example of a viewpoint in the vir-
tual rendition and the real world can be seen in Fig. 3. We set the walking
speed in the desktop so that walking the length of a corridor in the real world
would take the same time as walking the corridor in the desktop version. In
the immersive VR condition, we set the speed so that walking down the cor-
ridor would take approximately the same number of steps in real world as
it did on the treadmill. The experiment was built in Unity3D (Unity Tech-
nologies, San Francisco, CA, USA). The building can be experienced online
at https://hejtmy.github.i0/CFNS-task/. For the virtual conditions in the im-
mersive VR condition, we used the HTC Vive HMD to render the building
and participants moved using the Cyberith Virtualizer omnidirectional tread-
mill (Cyberith GmbH, Herzogenburg, Austria) to provide body-based cues
(Fig. 1). Participants had a full range of rotational motion available to them.
The desktop condition was presented on a 21” monitor (resolution 1920 x
1080) and participants controlled it with a keyboard and a mouse. All par-
ticipants were informed about possible side effects of the VR and in case of
uncomfortable or prolonged dizziness, such participants were dismissed from
the study and their data removed. Participants in the immersive VR condition
in the learning phase were significantly more likely to drop out due to the cy-
bersickness, fatigue, or other factors related to discomfort. We observed this
both during the first [ X2(1, 82) =9.91, p = 0.002] and the second experiment
[x2(1,70) = 14.72, p < 0.001]. Detailed dropout rates for all conditions can
be found in Tables 1 and 2.

Table 1.

Cyber sickness dropout table for Experiment 1 (all retests in the real world): Finished/total
(percent finished). One participant in each group was removed due to recording failure during
analyses, but they finished the experiment without issues. Participants in the immersive VR
condition in the first phase were significantly more likely to drop out [ x2(1,82) =9.91, p=
0.002]

Learning condition Male Female
Real world 4/5 (80%) 19/19 (100%)
Desktop 11/11 (100%) 9/11 (82%)
Immersive VR 9/13 (69%) 12/23 (52%)
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Table 2.

Cyber sickness dropout table for Experiment 2 (all transfer phase in the VR): Finished/total
(percent finished). One participant from the immersive VR group and two from the real-world
group were removed later due to recording failure during analyses, but they finished the exper-
iment without issues and one participant in the immersive VR condition who did not finish did
not disclose their gender. Participants in the immersive VR condition in the first phase were
significantly more likely to drop out [Xz(l, 70) = 14.721, p < 0.001]

Learning condition Male Female
Real world 8/9 (89%) 14/16 (88%)
Immersive VR 8/17 (47%) 13/27 (48%)

2.5. Real-World Tracking

We tracked participants’ position within the building using Bluetooth and a
custom-made app running on the iPhone 6. Participants were given the phone
to hold directly in front of them to track both position and rotations of their
body. As participants walked around the building, the app tracked the strength
of the Bluetooth signal towards the closest beacons and triangulated position
within given building constraints. Participants were accompanied by an ex-
perimenter who provided instructions and feedback during door selection and
noted down errors and special events. For the ambulatory paths travelled in the
real world as well as on the VR treadmill, trajectories were smoothed using a
median value in a 5-s moving window to remove slight jitter introduced by
fluctuating strength of the Bluetooth signal in the real world or the shuffling
of the feet on the treadmill.

2.6. Dependent Measures

We calculated participants’ walked distance in the building, time spent in each
task, and the number of incorrectly visited doors during walking trials. For
the pointing tasks, we calculated unsigned pointing error. The three conditions
were not directly comparable in their measured distance and time, with the
VR trials taking a little bit longer in both time and distance than the real-
world condition. The increased time was due to the novelty of the movement
control that persevered even after the training session. In contrast, the larger
absolute distance was due to differences in tracking precision of the VR and
desktop compared to the real-world setup. We also observed feet shuffling and
occasional small stumbles on the treadmill that added to the absolute walked
distance for immersive VR in comparison to the desktop condition.

We therefore min-normalized the distance travelled and the time. We used
the shortest path for each task (pair of offices, e.g., Jacob to Sarah) that any
participant demonstrated in a single environment (e.g., real world) and then
divided other participants performance in the same task (Jacob to Sarah) and
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in the same environment (real world) by this number. Therefore, we had three
baselines (desktop, immersive VR and real world) for each task (pair of of-
fices). For example, a min-normalized distance value of 2.00 would mean the
participant travelled double the distance than what was the best performance in
each task (pair of offices) and in a certain modality (desktop, immersive VR or
real world). Unless stated otherwise, we calculated all statistics on these nor-
malized measures. We removed trials where distance or time measurements
were more than three standard deviations away from the mean (a total of 1.80
percent of trials).

2.7. Experimental Procedure

Participants walked to six different office doors in the Center for Neuroscience
building at UC Davis, in real or virtual versions. Positions of all the office
doors can be seen in Fig. 2. The task itself consisted of a set of 36 walking tri-
als and 24 pointing trials, separated into two equal phases, the learning phase
and the transfer phase. Each phase had 18 walking trials consisting of three
different blocks (each office visited once per block, three times per phase).
After each phase, participants did a short pointing session of 12 trials (point-
ing to each of the six offices from two viewpoints). In the transfer phase, the
immersive VR and desktop group switched their environment modality to the
real world, whereas the real-world group remained in the same environment.
Each participant, regardless of experimental condition, received a short train-
ing session on the VR treadmill before the learning phase.

Because our initial analyses observations and analyses suggested that par-
ticipants might learn more slowly in VR, we devised a second experiment
to better understand this issue. One group learned the UC Center for Neuro-
science building in immersive VR while the second group learned in the real
world. They both then transferred to immersive VR. Although this experiment
does not directly address our main hypothesis (transfer from immersive/desk-
top VR to reality), this allowed us to assess if the immersive VR can achieve
the same performance given additional time. It also allowed us to look at the
conceptual ‘inverse’ process of transfer.

Schema of the entire procedure can be seen in Fig. 4.

2.8. Participants (Experiment 1)

A total of 82 undergraduate students at the University of California, Davis
participated in the study in exchange for a course credit. Each participant was
randomly assigned a condition and a randomized set of goals before arrival.
Eighteen participants did not finish due to motion sickness and three were
removed due to technical problems with the real-world tracking system. This
resulted in a final sample size of 61 participants (37 female) (age M = 20.42,
SD = 2.16) used for all reported analyses. The participant completion rates for
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18 Walking Trials
Learning phase l

12 Pointing trials

18 Walking Trials
Transfer phase l

12 Pointing trials

Figure 4. Visualisation of the experimental procedure. Session consisted of training, learning
and transfer phases. Both learning and transfer phases included 18 walking trial and 12 pointing
trials.

Experiment 1 are in Table 1. All procedures were approved by the UC Davis
Institutional Review Board (IRB).

2.9. Participants (Experiment 2)

A total of 70 undergraduate students at UC Davis participated in the second
experiment. Twenty-nine participants did not finish due to motion sickness or
other issues with the VR interfaces. Analyses were then conducted on a final
set of 41 (14 female) participants (age M = 19.96, SD = 1.55).

2.10. Analyses

We analysed the data in R (R Core Team, R Foundation for Statistical Com-
puting, Vienna, Austria), with the help of the ez package for ANOVAs and the
ggplot package for plots. Based on our a-priori hypothesis that real world =
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immersive > desktop VR, we performed z-tests uncorrected for multiple com-
parisons. This allowed us to explore whether effects were consistent with
predictions. To determine learning rates (slopes) over the experiment, we per-
formed mixed-model analyses of the entire experiment in MPlus (https://www.
statmodel.com/company.shtml).

3. Results

3.1. Experiment 1: Quantifying Learning Rates Prior to Transfer (Blocks 1
to 3)

We first considered blocks 1-3, when all participants navigated in separate
modalities (i.e., desktop, immersive, or real world). Considering the very first
block of exposure to the environment, we found that participants in the differ-
ent learning modalities did not differ in their performance either in normalized
distance [F (2, 323) = 1.99, mean squared error (MSE) = 16.13, p = 0.139,
¢ = 0.012] nor the number of visitation errors [F(2,363) = 0.10, MSE =
64.52, p =0.903, ﬁG = (0.001]. Some caution is needed, however, with these
comparisons because participant variability was likely high on the first ex-
posure to the environment. The conditions also did not differ in the second
block for normalized distance [F'(2,317) = 0.47, MSE = 4.61, p = 0.627,
ﬁ%; = 0.003] although we saw a significantly lower number of visitation er-
rors for real-world group (M = 4.24) compared to immersive-VR (M =
7.54) [t(249.98) = 4.01, p < 0.001, d = 0.504] and desktop (M = 8.83)
[£(241.41) =5.39, p < 0.001, d = 0.687].

We then compared the last block before transfer (block 3) with inde-
pendent sample #-tests. We found a significant difference in visitation er-
rors between real-world and desktop learning [#(198.7) = 6.84, p < 0.001,
d = 0.896] and real-world and immersive VR learning [#(179.9) =7.40, p <
0.001, d = 0.958], but no difference between desktop and immersive learning
[£(223.1) = 1.44, p =0.150, d = 0.188]. The comparison was the same for
normalized distance: we found a significant difference in distances travelled
in block 3 between real-world and desktop conditions [#(161.80) =1.99, p =
0.048, d = 0.259] and real-world and immersive learning [#(140.58) = 3.09,
p = 0.002, d = 0.389], but no difference between desktop and immersive
learning [7(203.90) = 1.42, p = 0.156, d = 0.187]. These findings indicate
that prior to transfer (blocks 1-3), both immersive VR and desktop resulted in
less spatial knowledge than real-world navigation, particularly for visitation
errors. These findings suggested that participants in both VR conditions ended
the learning phase performing slightly but significantly worse than real-world
participants, particularly for visitation errors.
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Our findings for pointing errors (which were only collected on blocks 3
and 6) echoed the same basic pattern described above for normalized path and
visitation errors. We again observed significant differences between condi-
tions in pointing performance at the end of the first phase [F (2, 729) = 17.78,
MSE = 1412.53, p < 0.001, ﬁzG = 0.047] (Fig. 5c). Specifically, participants
in the real-world learning group (M = 21.93, SD = 26.34) performed signif-
icantly better compared to both the immersive VR group (M = 35.23, SD =
37.48) [t(424.16) = 4.57, p < 0.001, d = —0.414] and the desktop group
(M =41.62, SD = 47.47) [t(342.85) =5.57, p < 0.001, d = 0.523]. Nu-
merically, this trend followed real world > immersive > desktop in terms of
errors, although the differences between desktop and immersive VR were not
statistically significant (p = 0.108). Overall, these findings suggested that par-
ticipants acquired information most readily in the real world, although signif-
icant degrees of learning occurred in all three conditions, with the immersive
condition showing at least numerically better pointing error than desktop.

3.2. Transfer Effects (Block 3 to Block 4)

The critical area of interest in our study related to how participants transferred
information from VR modalities to the real world. We addressed this issue by
directly comparing normalized distance and visitation errors on the last block
before the transfer phase (block 3) with the first block of the transfer phase
(block 4). Visitation errors and normalized distance were each entered into a 3
(Learning Condition: real world, desktop, immersive VR) x 2 (Block: block 3,
block 4) mixed-measures ANOVA. For visitation errors, there was a main ef-
fect for block [F(1,58) =42.67, MSE = 2.19, p < 0.001, f]é =0.112], a
main effect of condition [F'(2, 58) = 13.66, MSE = 10.61, p < 0.001, ﬁé =
0.281] and a condition by block interaction effect [ F'(2,58) = 9.22, MSE =
2.19, p < 0.001, ﬁG = 0.052]. For normalized distance, there was a main ef-
fect of condition [F (2, 58) = 6.65, MSE = 0.90, p = 0.003, ﬁé =0.110], but
no effect of block [F(1,58) =2.61, MSE =0.78, p =0.111, 5 = 0.020] and
the interaction also failed to reach significance [= F (2, 58) = 1.89, MSE =
0.78, p = 0.161, n; = 0.029]. These findings suggest that only visitation
errors showed a significant improvement during transfer, unhindered by the
change of modality, although the transfer modality (desktop vs immersive vs
real world) impacted the degree of transfer.

We then ran pairwise ¢-tests to compare the improvement in normalized dis-
tance and visitation errors change from block 3 to block 4. For visitation errors,
there were significant changes for all conditions, with effect sizes higher (in
other words, more transfer) for going from the immersive VR to the real world
(d = 1.33) compared to desktop to the real world (d = 0.56) (see Fig. 6a and
Table 3). Here, a larger effect size means a greater reduction from block 3 to
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Figure 5. (a) Average number of visitation errors per block in the learning phase (blocks 1
to 3) for Experiment 1, split by learning condition (SEM error bars). (b) Average normalised
distance per block in the learning phase (blocks 1 to 3) for Experiment 1, split by learning
condition (SEM error bars). (c) Average absolute pointing error at the end of the learning phase
for Experiment 1, split by learning condition (SEM error bars).
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Figure 5. (Continued.)

4 and thus more transfer, suggesting that the immersive conditions resulted in
greater transfer. Note that while the effect sizes were lower for real world to
real world (d = 0.55); this was likely because participants in this condition
were already significantly better at real-world navigation by block 3 (0.91 er-
rors on average compared to 5.47 in VR and 4.46 on the desktop), and thus
had less to learn. In contrast, for normalized distance, there were no signifi-
cant changes from block 3 to block 4 (see Fig. 6b and Table 4). These findings
suggest a slight advantage for transfer from immersive VR compared to the
desktop.

Because an important goal for similar projects is to study participant’s per-
formance after being trained under different conditions of immersion, we
compared performance in the first block of transfer (block 4). Because all
participants navigated the real building during block 4, this also allowed us
to control for potential differences between learning conditions and remove
potential confounds for block 3 to block 4 comparisons. During block 4, we
observed significant differences in visitation errors when comparing real world
to the desktop [#(130.84) =5.21, p < 0.001, d = 0.709] and immersive VR
groups [1(141.81) =3.74, p < 0.001, d = 0.491]. In this case, greater effect
sizes between conditions mean a greater difference, i.e., a larger discrepancy
between real world and desktop than real world and immersive VR. This
suggests again that the immersive condition was closer in terms of transfer,
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Figure 6. (a) Average number of visitation errors in blocks 3 and 4 (last learning block to first
transfer block), split by learning condition (SEM error bars). (b) Average normalised distance
in blocks 3 and 4 (last learning block to first transfer block), split by learning condition (SEM
error bars).
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Table 3.
Visitation error improvements across the three learning conditions from block 3 to block 4 —
all conditions transfer to the real world in block 4

Learning condition M SD Mgisg  df t p d 95% CI
Real world
Block 3 0.91 3.27 0.64 21 2.56 0.018 055 0.12,1.17
Block 4 027 1.70
Desktop
Block 3 446  4.65 1.35 18  2.44 0.025 0.56 0.19,2.52
Block 4 3.11  5.62
Immersive VR
Block 3 547  6.00 3.34 19 597 <0.001 1.33  2.17,4.51
Block 4 213  5.22
Table 4.

Normalized distance improvements across the three learning conditions from block 3 to
block 4 — all conditions transfer to the real world in block 4

Learning condition M SD Mgige  df t p d 95% CI
Real world

Block 3 1.36 075 —-0.15 21 —-1.17 025 —-0.25 —-041,0.12
Block 4 1.51 0.87

Desktop

Block 3 .72 173  -070 18 —-1.79 0.090 —-041 —1.53,0.12
Block 4 2.18  2.02

Immersive VR

Block 3 213 252 0.04 19 0.16 0.877 0.04 —0.55,0.63
Block 4 1.96  2.09

based on effect sizes, to the real world than desktop. A similar relation-
ship was observed in normalized distance, with participants’ learning in the
real world performing better than on desktop [#(118.02) = 2.95, p = 0.004,
d = 0.446] and immersive VR, although this comparison failed to reach sig-
nificance [7(119.40) = 1.96, p = 0.052, d = —0.292]. Note, however, that
immersive and desktop VR did not differ for either dependent measure [visi-
tation errors: £(228.45) = 1.38, p =0.168, d = 0.181] or normalized distance
[£(181.98) =0.72, p = 0.472, d = 0.106]. Given that the effect sizes sug-
gested larger differences for desktop VR vs real world compared to immersive
VR vs real world, our findings again point to a slight advantage for immersive
VR in terms of transfer.
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3.3. Final Performance (Block 6)

To understand how the learning modality affected the last block performance,
we compared dependent measures on the 6th block, after each group had fin-
ished three blocks of navigation in the real world. Because we also collected
pointing accuracy on the final block, we also included this measure. In the final
testing block (block 6), we found no differences among the groups in either
visitation errors [F(2,363) = 1.67, MSE = 3.33, p = 0.191, 5z = 0.009]
nor pointing performance [F(2,726) = 1.56, MSE = 982.05, p = 0.210,
N5 = 0.004]. These findings suggested that by the 6th repetition, all groups
had reached comparable levels on visitation errors and pointing accuracy.
We did find, however, a small but significant difference in normalized dis-
tance when comparing all three conditions in an ANOVA [F(2,255) = 3.21,
MSE = 0.10, p = 0.042, g, = 0.025]. Specifically, by the last block, we
found that the real-world group (M = 1.25, SD = 0.19) performed better than
immersive VR group (M = 1.37, SD = 0.38) [#(102.13) =2.55, p =0.012,
d = —0.426], but not better than desktop group (M = 1.28, SD = 0.37)
[£(131.62) =0.90, p =0.369, d = 0.135]. For visitation and pointing errors,
these findings support the idea that all participants reached the same level of
knowledge by the last block. For normalized distance, our findings suggest
that real-world learning continued to confer an advantage.

3.4. Modelling Changes Over All Six Learning Blocks

Although we performed ¢-tests earlier based on our a-priori hypotheses, as
explained in the introduction, we thought it also important to look at whether
subjects learned over the entire experiment. We employed a mixed-effects lin-
ear model over all six learning blocks, which involved looking at changes
in normalized distance and visitation errors as separate dependent measures
for Experiment 1. For visitation errors and normalized path, all three condi-
tions showed significant negative slopes over six blocks of learning, indicating
that all three conditions resulted in improvements in learning (desktop — real
world, immersive VR — real world, and real world — real world; Supple-
mentary Table S1). For visitation errors, we observed an interaction effect
[difference in slopes: #(3565) = 5.38, p < 0.0001] while for normalized path,
there was no significant difference in slopes. The interaction effect suggested
that the conditions were learned at different rates across the three conditions,
which were explored earlier with ¢-tests.

3.5. Experiment 2: Comparing Transfer of Real World to Immersive VR

Findings from Experiment 1 suggested that the VR interfaces, particularly
the treadmill, might be difficult for participants to learn as quickly as the
real world. Experiment 2 assessed the ‘opposite’ transfer (both conditions
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transferred to the immersive VR) and we therefore investigated differences
between the two learning conditions (real world, immersive VR) in the last
(6th) block using t-tests. The conditions did not differ in normalized dis-
tance [7(152.12) = 0.88, p = 0.378], visitation errors [7(228.89) = 0.29,
p = 0.771, d = 0.037], nor pointing error [#(485.14) = 0.17, p = 0.863,
d = —0.016]. These findings suggested that both immersive VR and real-
world learning lead to the same eventual performance when transferring to
immersive VR. Comparing both conditions immediately after transfer to the
immersive VR (block 4), we found a trending relationship in average visitation
errors [1(240.09) = 1.90, p = 0.058, d = 0.242], with the real-world learning
group committing fewer errors (M = 3.28) than the immersive VR learning
group (M = 4.31), but no difference for normalized distance [7(241.53) =
0.46, p =0.647, d = 0.059].

We then compared all conditions from Experiment 1 (real world, immersive
VR and desktop transferring to the real world) and Experiment 2 (real world
and immersive VR transferring to the immersive VR). We found a significant
effect of condition on final normalized distance [F (4, 498) = 3.68, MSE =
0.19, p = 0.006, f]%; = (0.029], with Tukey post-hoc tests revealing a signifi-
cant difference between the real world to immersive VR group vs immersive
VR to real world (p < 0.001) (see Fig. 7a and Table 5). No other compar-
1sons reached significance for normalized distance. For visitation errors, we
found significant differences between conditions in the last block across exper-
iments [F(4,607), MSE = 4.62, p < 0.001, i;; = 0.181]. Tukey’s post-hoc
tests suggested that the difference was due to the transfer phase modality, e.g.,
participants in Experiment 1 who learned the real-world condition in the trans-
fer phase always performed better than participants in Experiment 2, who had
immersive VR in the transfer phase (see Fig. 7b and Table 5).

Together, these results are consistent with our earlier findings suggesting
that real-world navigation, particularly real world to real world navigation,
conferred a ‘transfer’ advantage compared to all VR conditions. These find-
ings also reinforce the idea that, despite capturing some aspects of real-world
navigation, the treadmill interface failed to fully substitute for it. The findings,
however, argue against the idea that our results are an artefact of difficulty with
the treadmill interface, as participant clearly learned and transferred informa-
tion from the real world to immersive VR and vice versa.

4. Discussion

In our experiment, we were able to directly compare acquisition of spatial
knowledge in three different modalities: navigating the real world, navigating
an immersive virtual interface involving walking on a treadmill and viewing
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Figure 7. (a) Mean normalised distance in the last block (block 6) for each combination of learn-
ing phase (blocks 1-3, bottom labels) and transfer phase (blocks 4—6) conditions. (b) Average
number of visitation errors made in the last block (block 6) for each combination of learning

phase (blocks 1-3, bottom labels) and transfer phase (blocks 4-6) conditions.
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Table 5.
Mean normalised distances and visitation errors in the last transfer block for both experiments.
Standard deviation in parentheses

Learning condition Transfer condition Last block mean Last block mean
normalised distance visitation errors
Real world real world 1.25(0.19) 0.04 (0.19)
Desktop real world 1.28 (0.37) 0.31 (1.51)
Immersive VR real world 1.37 (0.38) 0.45 (2.82)
Immersive VR immersive VR 1.20 (0.7) 2.25(2.28)
Real world immersive VR 1.14 (0.22) 2.34 (2.82)

the environment on an HMD, and navigating the same environment on a desk-
top computer with a joystick. We investigated how navigating in these three
different conditions ‘transferred’ spatial knowledge to the same real-world en-
vironment. To fully capture the transfer process, we employed two different
dependent measures interspersed with each of the six different blocks, visita-
tion errors (visiting the wrong door) and normalized path; we also employed
one dependent measure every three blocks, pointing error. For the first three
blocks of learning prior to transfer, our findings show an advantage for real-
world navigation compared to both immersive VR and desktop navigation on
all three dependent measures. These findings suggest that participants learned
the most information during real-world navigation, although, in all cases, they
also showed improvements on visitation errors and normalized distance over
the first three blocks in the two virtual navigation conditions, suggesting they
acquired spatial information effectively from these two modalities as well.
After completing the first three blocks of navigation in a specific modal-
ity, participants transferred to the real world. Particularly for visitation errors,
we found differences as a function of modality. While both virtual conditions
showed less transfer to the real world than prior real-world navigation, we ob-
served a greater decrease in visitation errors (higher effect size) during transfer
for the immersive VR compared to the desktop condition. We also found that
immersive VR resulted in numerically lower pointing errors after three blocks
of navigation than desktop VR (Fig. 5¢), although the different was not statis-
tically significant. These findings are consistent with the idea that immersive
technologies, particularly those capturing rotational and somatosensory cues
associated with walking, lead to some improvements in learning compared to
desktop VE (Chrastil and Warren, 2013; Grant and Magee, 1998; Klatzky et
al., 1998; Ruddle and Lessels, 2006; Waller et al., 2004). At the same time,
we did not find differences in transfer for normalized distance. We measured
normalized distance using positional information in virtual conditions and
Bluetooth tracking using an iPhone in the real world. Comparing normalized
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distance from the second experiment involving navigating in the real world
and transferring to immersive VR (or continuously navigating in immersive
VR) similarly showed no differences in normalized distance, although contin-
uous navigation in the real world did show an advantage over any navigation
involving immersive VR.

Comparing the results from both experiments, we established that all learn-
ing conditions reached comparable levels of performance in the end. But we
also observed that visitation errors in the last block were lower in the real
world than in immersive VR. Also, participants learning in immersive VR
and transferring to the real world demonstrated worse walking performance
than participants transferring to immersive VR from the real world. Our find-
ings therefore corroborate and elaborate on previous studies (Farrell et al.,
2003) which suggest that path and directional knowledge can be learned and
transferred from VR, in many cases, quite effectively for building-sized envi-
ronments, although real-world navigation still confers some advantages.

The effects we observed in terms of learning rates and transfer were more
pronounced for visitation errors than normalized path. Why would we see dif-
ferences in memory for specific doors for the different virtual conditions but
less so, and not at all in some cases (transfer metric) for path error? Notably,
the environment we tested was a medium sized campus building, the Center
for Neuroscience. It is possible that the paths were relatively easier for subjects
to master, and thus if we had a used a larger-scale environment, we might have
seen differences in the distances of paths walked. Similarly, directional knowl-
edge could be acquired with sufficient exposure to the building, regardless of
the interface, consistent with past findings comparing desktop and real-world
navigation (Richardson et al., 1999). Visitation errors, in contrast, which in-
volved remembering specific locations and names within the building, were
arguably more sensitive measures of learning. This is because subjects not
only needed to remember a specific location (a door) but also what name was
associated with that door. Indeed, for visitation errors, when participants trans-
ferred from immersive VR to the real world we found some evidence for the
expected differences as a function of modality: real world > immersive VR >
desktop VE. We note, however, that it is possible that if we had used a larger-
sized environment, differences would have been evident in normalized path
error and directional knowledge as well.

There are two important implications. For building-sized environments, our
findings, similar to past studies that compared desktop and real-world navi-
gation (but not immersive VR), suggest that significant spatial learning can
indeed take place in VR. Particularly for the accuracy of paths to targets, often
taken as a measure of environment-specific knowledge (Newman et al., 2007),
our findings demonstrate that subjects can readily acquire such knowledge re-
gardless of the modality. Because we only collected pointing performance on
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the third and sixth blocks (to avoid disrupting subjects from the VR inter-
faces to have them point) we cannot say whether transfer might have differed
for pointing performance throughout the learning process. Rather, whatever
knowledge was needed for the real task could be learned either in the virtual
conditions or rapidly acquired in the real world. This also suggests, however,
that both immersive VR and desktop VE generally mimic sufficient cues, par-
ticularly visual ones, to allow subjects to acquire spatial knowledge regardless
of testing modality.

The second implication is that, for arguably more sensitive measures, such
as visitation errors, the ‘immersiveness’ of the modality can impact trans-
fer and knowledge. As discussed previously, we suspect that visitation errors
overall required more intimate memory for the spatial layout, and thus the im-
mersive VR interface did confer a slight advantage over the desktop interface
for this dependent measure. Similarly, for pointing error, rotational cues in
immersive VR would confer an advantage. Notably, however, the real-world
condition continued to perform better than the two virtual interfaces. This sug-
gests that real-world navigation continues to capture cues that we could not
fully emulate in VR. One reason for this might relate to encoding specificity
(Tulving and Thomson, 1973), i.e., that learning will be better for conditions
that more fully recapitulate visual and other multisensory cues in the ‘encoded’
condition compared to those that do not. Although our design did not allow us
to specifically investigate this issue, we speculate that visual (i.e., the render-
ing of depth and other visual cues in VR), somatosensory, and proprioceptive
cues, particularly related to movements of the legs and feet, could have po-
tential implications for this difference (Matthis et al., 2018). Another factor
might be ‘presence’ (Kiryu and So, 2007), i.e., the sense that the other VR
interfaces do not involve the same rules and contingencies as the real world
(e.g., collisions). As VR technology improves and better approximates real-
world experiences, future studies will be better able to address this issue as
well.

Because of the difficulty of directly comparing virtual and real-world nav-
igation, our setup necessarily involved some limitations. We employed a
between-subjects design to try to limit any effect of re-exposure to an envi-
ronment, although one limitation with between-subjects designs is increased
variance due to employing different subjects in each condition. It is possi-
ble that a within-subject design could have picked up more subtle differences
in the efficiency of walked paths. For immersive VR, we did find increased
incidence of cybersickness and dizziness. Possibly, even low levels of discom-
fort in participants who completed the study could have limited the efficacy
of immersive VR, to some extent. This is also a potential drawback of using
the immersive VR as a replacement for desktop navigation. Although immer-
sive VR can bring certain benefits to spatial acquisition, some participants
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might be less likely to finish it. The specific reasons for cybersickness and
potential ways to diminish it are therefore important to address in future stud-
ies, although we expect such issues to be less of a factor as the technology
continues to improve. Finally, our use of a campus building could have po-
tentially obscured differences, particularly in path efficiency, that would have
been present during navigation of larger-scale space. Past studies have shown
differences in how participants learn different scales of spaces (Meilinger et
al., 2016; Montello, 1998; Starrett and Ekstrom, 2018; Starrett et al., 2019).
It is quite possible that if participants had to navigate longer distances, such
as would be required for a park or city, we would have seen an advantage for
immersive over desktop VE.

5. Conclusion

Our results support the view that both immersive VR and desktop navigation
are effective spatial learning tools, and, given time, participants readily acquire
useable spatial representations in both modalities. Our findings also suggest,
however, that immersive technologies confer a slight advantage for when task-
ing more sensitive measures, like remembering the location of a specific office,
although this might be at the cost of an increased dropout.
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1 Abstract

Human perception and cognition are based predominantly on visual information processing.
Much of the information regarding neuronal correlates of visual processing has been derived
from functional imaging studies, which have identified a variety of brain areas contributing to
visual analysis, recognition and processing of objects and scenes. However, only two of these
areas, namely the parahippocampal place area and the lateral occipital complex, were verified
and further characterized by intracranial electroencephalogram (iIEEG). iEEG is a unique
measurement technique that samples a local neuronal population with high temporal and
anatomical resolution. In the present study, we aimed to expand on previous reports and
examine brain activity for selectivity of scenes and objects in the broadband high-gamma
frequency range (50 - 150 Hz). We collected iEEG data from 27 epileptic patients while they
watched a series of images, containing objects and scenes, and we identified 375 bipolar
channels responding to at least one of these two categories. Using K-means clustering, we
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delineated their brain localization. In addition to the two areas described previously, we
detected significant responses in two other scene-selective areas, not yet reported by any
electrophysiological studies; namely the occipital place area and the retrosplenial complex.
Moreover, using iIEEG we revealed a much broader networks underlying visual processing
than that described to date, using specialized functional imaging experimental designs. Here
we report the selective brain areas for scene processing include the posterior collateral sulcus
and the anterior temporal region, which were already shown to be related to scene novelty and
landmark naming. The object-selective responses appeared in the parietal, frontal, and
temporal regions connected with tool use and object recognition. The temporal analyses
specified the time course of the category selectivity through the dorsal and ventral visual
streams. The receiver operating characteristic analyses identified the parahippocampal place
area and the fusiform portion of the lateral occipital complex as being the most selective for
scenes and objects, respectively. Our findings represent a valuable overview of visual
processing selectivity for scenes and objects based on iEEG analyses and thus, contribute to a
better understanding of visual processing in the human brain.

2 Introduction

Scene and object visual perception form the fundamentals of our understanding of the world
around us. Scenes can be understood as a view of space within which we can move and act,
while objects are individual parts of these scenes that we can manipulate. Early functional
imaging studies revealed preferential responses to scenes in brain areas along the collateral
sulcus, designated the parahippocampal place area (PPA) (Epstein and Kanwisher 1998;
Aguirre et al. 1998; Ishai et al. 1999). Another scene-responsive region was described in the
retrosplenial-medial parietal region (O'Craven and Kanwisher 2000), named the retrosplenial
complex, or medial place area (MPA) to avoid confusion with the retrosplenial cortex
(Epstein and Baker 2019). Preferential responses to scenes have also been described in the
occipital cortex, in the proximity of the transverse occipital sulcus (Nakamura et al. 2000;
Hasson et al. 2003). Originally, this region was labeled anatomically as the TOS by the sulcus
name, but it was later renamed the occipital place area (OPA) to stress its functional
localization (Dilks et al. 2013). In contrast, visual perception of everyday objects evokes a
larger hemodynamic response than the perception of scrambled objects in the lateral occipital
cortex extending to the posterior lateral and the basal temporal regions. This area was
originally described as the lateral occipital complex (LOC) (Malach et al. 1995), and later
subdivided into two functional portions (Grill-Spector et al. 1999): the posterior (labeled
LO), and the anterior, localized in the posterior fusiform gyrus (labeled pFs). Nevertheless,
scene and object perception are highly interconnected; object perception is dependent on
scene context, and the incorporated objects influence scene recognition (Brandman and
Peelen 2017).

While some of the regions responding selectively to scenes and objects are well documented
in functional imaging studies, they are only partially supported by direct intracranial EEG
(1IEEG) recordings with high (milliseconds) temporal resolution and, in the implanted areas
with a high anatomical resolution. The selectivity for scenes, around 250-300 ms after
stimulus presentation, has been confirmed in the parahippocampal gyrus for both local field
potentials and single-unit activity (Mormann et al. 2017), and also along the collateral sulcus
near the parahippocampal/lingual boundary in the broadband gamma range (Bastin et al.
2013a; Bastin et al. 2013b). However, confirmation of the scene selectivity of the MPA and
OPA, by iEEG analysis is lacking. Nonetheless, selective activity, associated with scene
presentation, has been described in the hippocampus for both the firing rate and local field
potential (Kraskov et al. 2007). Responses to objects within the fusiform portion of the LOC
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area (pFs) were described in an early electrocorticography study with a larger N200
component in the inferior lingual, fusiform, and inferior occipital gyri (Allison et al. 1999)
and later in an iEEG study for broadband gamma activity (Vidal et al. 2010). Single unit
object-selective activity from the LO, with a delay of about 225 ms after the stimulus, was
reported in a recent study using microelectrode grids (Decramer et al. 2019).

Most functional imaging studies focusing on scene and object perception reported the
properties of the PPA, MPA, OPA, and LOC areas. However, other brain regions involved in
scene and object processing have been identified using specific experimental fMRI designs.
Structures of the anterior part of the medial temporal lobe, hippocampus, and
parahippocampal gyrus, seem to be more active for novel, rather than familiar scenes
(Rombouts et al. 2001; Kohler et al. 2002). Also, similarly to the PPA area, the anterior
hippocampal region showed higher activation for scenes than for objects (Kohler et al. 2002).
On the other hand, the naming of unique landmarks seems to be associated with the left
temporal pole (Tranel 2006). Other cortical areas are involved in the visual processing of
objects, depending on their type. Passive viewing of familiar tools is connected with higher
activity in the premotor cortex and the inferior frontal gyrus (Grafton et al. 1997). The activity
of the premotor cortex, together with the middle temporal gyrus and intraparietal sulcus, was
increased during presentation of novel manipulatable objects after training (Weisberg et al.
2006). In contrast, recognition of familiar objects has been associated with higher activity in
the inferior frontal gyrus, along the occipitotemporal sulcus and anterior parts of the fusiform
and parahippocampal gyri (Bar et al. 2001) and perirhinal cortex (Clarke and Tyler 2014).

In our study, we aimed to identify the brain networks and anatomical areas facilitating scene
and object processing using iEEG. To this end, we examined recordings from 27 epilepsy
patients implanted with intracerebral electrodes while they were engaged in a simple visual
detection task with stimuli including pictures of scenes and objects. In the analysis, we
focused on the broadband gamma activity (BGA, 50-150Hz) responses, correlating with both
the fMRI BOLD signal (Mukamel et al. 2005; Ojemann et al. 2009) and local neuronal firing
rate (Manning et al. 2009; Hammer et al. 2016). We analyzed the iEEG data to identify the
category-selective processing within a few hundred milliseconds after stimulus onset and
employed the K-means clustering algorithm to group the localization of category-selective
responses without any prior neuroanatomical assumptions. Using ROC analysis we evaluated
the degree of discrimination between both categories. Our results confirm the scene
responding PPA and object responding LOC areas, similarly to previous iEEG studies (Bastin
et al. 2013a; Decramer et al. 2019). Furthermore, we describe electrical activity in two scene-
selective areas, the OPA and MPA, not yet reported by electrophysiological studies. In
addition, our results reveal a much broader network for scene-selective processing in the
anterior temporal lobe, as well as for object-selective processing in the parietal, frontal, and
temporal cortices.

3 Methods

3.1 Patients and recordings

Twenty-seven patients (15 women, median age 30 years, range 17-48 years, education level: 3
primary school, 20 secondary school, 3 college) with drug-resistant epilepsy investigated
before epilepsy surgery, were recruited from the Motol Epilepsy Center in Prague. For precise
localization of the seizure onset zone, the patients underwent intracranial EEG recordings
(1IEEG), and stereoencephalography, employing stereotactically implanted multi-contact
electrodes. Recording sites were selected solely according to clinical indication with no
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reference to the presented experiment. This study was approved by the Ethics Committee of
Motol University Hospital and all patients gave their informed consent to participate. All
patients had normal or corrected to normal vision.

3.2 Electrode implantation

11 to 15 semi-rigid electrodes per patient were implanted intracerebrally, and positioned
dependent on the suspected origin of their seizures. Each electrode had a diameter of 0.8 mm
and consisted of § to 18 contacts of 2 mm length, 1.5 mm apart (DIXI Medical Instruments).
Electrode contacts were identified on patient postimplantation CT and coregistered to
preimplantation MRI. The contact anatomical positions were visually verified by an
experienced neurologist. The brain was normalized to Montreal Neurological Institute (MNI)
space using standard Statistical Parametric Mapping algorithms (SPM 12) and all contacts
were localized in the standard MNI space. The iIEEG signal was recorded using a video-EEG
monitoring system (Natus NicoleteOne in 22 or Natus Quantum in five patients). The data
were sampled at 512, 2048 or 8000 Hz, using reference electrodes located in the white matter.

3.3 Stimuli and Task

All the patients voluntarily participated in a series of experiments focused on visual
recognition and spatial orientation. The results we present here were obtained from a task
exploring visual recognition of four categories of objects, designed according to the
previously published PPA localizer (Vidal et al. 2010; Bastin et al. 2013b). The task lasted
approximately 25 minutes and consisted of 650 pictures in total. We used pictures of three
categories: scenes (referred to as 'Scenes'), small objects of daily life (referred to as 'Objects'),
and faces (see Figure 1). This study focuses on responses to Scenes and Objects only. The
pictures were selected from the Bank of Standardized Stimuli (BOSS) (Brodeur et al. 2010)
and the SUN Database (Xiao et al. 2010). To control for a potential decrease in attention,
patients were instructed to press a button each time a picture of a fruit or vegetable appeared
on the screen (fourth category, visual oddball paradigm). Each category consisted of 100
different pictures (except fruits/vegetables with 25 different pictures), each repeated twice,
with a pseudorandom number of other pictures in-between. All stimuli were grayscale
squares, 11 cm wide, with normalized average luminance and contrast by ImageMagick®
software. Stimuli were presented for a duration of 300 ms every 1100 ms in blocks of 5
pictures interleaved by 3-s pause periods to rest the eyes. Patients reported the detection of a
target (fruit/vegetable) by pressing the space-bar on a keyboard and were given feedback on
their performance (number of correct responses and their average reaction time) after each
block. The analysis was only performed on trials in which participants did not press a key.

Visual stimuli were delivered on a 15.6 inch TFT notebook monitor with a refresh rate of 60
Hz, using the PsychoPy 1.84 environment (Peirce et al. 2019). The monitor was positioned
about 60 cm from the subject's eyes, making the stimuli cover 10 deg of the visual field. We
synchronized stimulus presentation and the EEG recording, using TTL pulses sent to the EEG
acquisition PC with each stimulus.

3.4 Data Analysis

Time-frequency analyses of the EEG data were performed using a custom package (freely
available at https://github.com/kamilvlcek/iEEG scripts/releases/tag/v1.1.0) in MATLAB 9.4
(Mathworks, Inc.). The data were resampled to 512 Hz unless recorded at this frequency, and
channels with obvious artifacts were excluded. From the EEG recording of the whole
experiment, bipolar derivations were computed between adjacent electrode contacts to
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suppress contributions from distant neuronal assemblies and further assumed that the bipolar
EEG signals can be considered as originating from a cortical volume centered between the
two contacts. We refer to the bipolar contact pairs further as 'channels'. The time-frequency
analysis was focused on a broadband gamma activity (BGA, 50-150 Hz). Instantaneous
amplitude was estimated using the following procedure (similar to Bastin et al. 2013a): the
entire recording dataset was band-pass filtered (3rd order Butterworth filter, zero phase shift)
in consecutive non-overlapping 5 Hz frequency bands in the broad gamma range (e.g., 50-55,
55-60, ..., 145-150 Hz). For each band, we extracted the amplitude envelope using a Hilbert
transform. The obtained envelope was down-sampled to 64 Hz. For each frequency band, the
envelope was then divided by its mean value over the entire recording session, channel-wise,
to whiten the EEG power spectrum and compensate for the frequency 1/f-power decay of
EEG signals (Miller et al. 2009). This yielded 20 amplitude time-series between 50 and 150
Hz (one for each frequency band), which were subsequently averaged together and multiplied
by 100 to obtain a single time-series of BGA power for each channel expressed in percent of
the mean value. This signal was then epoched into data segments between -200 and 800 ms
relative to the stimulus onset. The mean of the prestimulus interval (-50 to 0 ms) was
subtracted from each epoch to remove signal changes independent of the respective stimulus.
For each channel independently, epochs containing interictal epileptiform discharges
identified by a spike detector implemented in MATLAB (Janca et al. 2015) were excluded
from further analysis.

The BGA responses were used to identify channels selective for each stimulus category for
further analysis, as follows. For all recorded EEG channels, we calculated the average BGA
during the prestimulus interval (-200 — 0 ms) for all trials of the respective category and
compared it with all time points between 0 and 800 ms post-stimulus using the two-sided
Wilcoxon rank-sum test corrected for multiple comparisons across the time dimension and
across all channels with a false discovery rate (FDR) procedure (Genovese et al. 2002). As a
conservative estimate, we used a sliding window of six samples (93.75 ms) with the highest p-
value. If there was a significant difference at any time point relative to the baseline for a
selected stimulus category, the channel was considered as responding to that category.
Channels that showed a significant response to any of the two categories (Scenes, Objects)
were considered to be 'active channels'. After exclusion of channels localized in the white
matter or heterotopic cortex or with a response containing obvious artifacts or appearing too
late (still increasing at 800 ms, therefore with an impossible to determine magnitude for our
epoch length), these channels were subject to further analysis.

To evaluate the differences in response between the two categories, we compared each
channel response in both categories for all time points using the same procedure as above.
The two-sided Wilcoxon rank-sum tests comparing the response to both categories were
computed for all recorded EEG channels and all post-stimulus time points, and again FDR
corrected for multiple comparisons across all channels and across the time dimension. A
channel with a significant difference in its response to both categories was considered
category-selective, either Scene- or Object-selective. The latencies of these effects were
compared using two complementary methods. First, we compared the time course of each
channel response to both stimulus categories by averaging the response over 100-ms time bins
(similar to Bastin et al. 2013a). These means were then analyzed using a three-way repeated
measure ANOVA (stimulus category vs. time bins vs. brain region/cluster) with post hoc
Tukey HSD test and are reported with the effect size (%). Second, we used three measures of
the temporal dynamics of the channel selectivity (all in ms): (1) The 'time of discrimination'
(tsig) 1s the the first time point when the difference in response to both categories reached the
significance level. (2) The ‘length of discrimination’ (/ensig) is the total length of significant
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difference in response to both categories. Finally, (3) the ‘time of maximal discrimination’
(290) is the time when the difference in power change in response to both stimulus categories
reached 90% of its maximum for the first time. As this last measure (#90) is computed from
the difference magnitude , and not time course of significance as tsig and /ensig, it can
occasionally give distinct results.

To compare the magnitude of the individual channel responses, we calculated the maximum
positive power change for each channel for both stimulus categories. This value is referred to
as 'response magnitude' in the following text. ANOVA with post hoc Tukey HSD test was
used to compare this value between groups of channels and is reported with the effect size
(). x* was used to test the unequal distribution of channel selectivity between the brain
regions. In all statistical tests, we used the significance level of p<0.05.

We used K-means clustering with cityblock distance metrics to segment the MNI locations of
the category-selective channels, as implemented with the 'kmeans' function in Matlab,
according to a procedure published previously for iEEG data (Engell and McCarthy 2014).
Using silhouette analysis, we estimated the optimal number of clusters, with all channels
being closest to the assigned cluster centroid and most far from others. If these clusters were
unstable (i.e., with different centroid positions or different assignment of channels to clusters)
over several runs of 'kmeans', we lowered their number until a stable solution was reached. To
increase the cluster stability, we implemented a recent seed initialization method (von
Luxburg 2010). Because of the rather low number of category-selective channels, the right
and left hemisphere channels were pooled together by using absolute values of MNI 'x'
coordinates. Therefore, each cluster can contain both left and right hemisphere channels.

To assess the response selectivity for individual stimulus categories, we used a receiver
operating characteristic (ROC) binary classifier from signal detection theory (Green and
Swets 1966). The area under the curve (AUC) index was estimated from the response size to
Scenes and Objects for each time point for each channel. For channels responding more to
Scenes than Objects, we evaluated the power to discriminate Scenes from Objects and vice
versa.

4 Results

4.1 Behavioral results

The patients mainly responded correctly to fruits or vegetables (error rate 5.3 + 1.9%) and did
not respond to other categories (error rate 0.78 + 0.2%). The average response time for fruits
or vegetables was 542 + 13 ms.

4.2 Significantly activated channels

Overall, 2707 bipolar channels (Figure 2) were obtained from the 27 patients, with more
recording sites being in the right hemisphere (64%) than the left. A significant response to at
least one category, Scenes or Objects, relative to the baseline (-200 to 0 ms, relative to
stimulus onset), was identified in 448 (16.5%) channels. Of these, 73 were excluded due to;
white matter or heterotopic cortex localization, the response being an artifact or appearing too
late (see Methods). The remaining 375 channels constitute the basic set for the analysis. Out
of these, 71 were labeled 'epileptic', i.e. either located in the seizure onset zone or manifesting
high interictal epileptiform activity. To compare epileptic and non-epileptic channels we used
two-way ANOVA for the channels, which responded to both Scenes and Objects, with the
Scene vs. Object response as repeated measures factor. To compare the response time of the
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individual channel responses, we calculated the time in ms when the positive power change
for both stimulus categories reached 90% of its maximum for the first time. We found no
difference in the response magnitude (F(1,175)<=0.001, p=0.98, 1°<0.01) or the response
time (F(1,175)=1.060, p=0.31, 1°<0.01). Similarly, two-way ANOVA for the channel
responding to either Scenes or Objects, with the Scene vs. Object as a factor, did not reveal a
significant difference in response magnitude (F(1,194)=0.368, p=0.54, n°<0.01) nor response
time (F(1,194)=1.66, p=0.20, 1°<0.01). Despite the epileptic activity, these channels seemed
to be functional and the epileptic activity did not correlate with our visual oddball paradigm.
The epileptic channels were therefore included in the analysis. Note, however, that all epochs
showing epileptic activity were excluded (see Methods).

Of the 375 channels, relative to the baseline, the highest number of channels (177, 47%)
responded to both categories, 123 channels (33%) responded to Objects exclusively and 75
(20%) to Scenes only. The mean responses to each stimulus category are shown in Figure 3.
The channels responding to both Scenes and Objects (see Figure 3C) showed larger response
magnitude and faster time of discrimination than channels responding only to Scenes (see
Figure 3A, magnitude, t-test: t(250)=4.58,p<0.001; zsig, t-test: t(250)=6.57,p<0.001), or only
to Objects (see Figure 3B, magnitude: t-test: t(298)=6.68,p<0.001; tsig, t-test:
t(298)=8.57,p<0.001). On the contrary, the response magnitude and time of response was
similar for channels responding only to Objects (magnitude 43%; time 146 ms) and only to
Scenes (magnitude 42%, t-test: t(176)=0.47, p=0.63; tsig 152 ms, t-test: t(176)=1.03, p=0.30).
Also, channels responding to both Scenes and Objects responded similarly to both categories
(magnitude: Scenes 21%, Objects 20%, t-test: t(196)=0.58, p=0.55; tsig : Scenes 245 ms
Objects 244 ms, t-test: t(196)=0.04, p=0.97).

Subsequently, we mapped the distribution of all these channels to anatomical regions of
interest (ROIs) in the cortex. We grouped the anatomical location of the active 375 channels
into the following 11 brain regions (see also Figure 4 and 9): (1) OC - occipital cortex (but
without primary visual cortex) including the OPA (36 channels), (2) PHLG -parahippocampal
and inferior lingual gyri, including the collateral sulcus and the PPA (57 channels), (3) FUG -
fusiform cortex without the lateral bank of the collateral sulcus (17 channels), (4) RSC -
retrosplenial cortex, superior lingual gyrus and precuneus including the MPA (25 channels),
(5) PC - parietal cortex, other parts of the superior parietal lobule and inferior parietal lobule
(46 channels), (6) HIP - hippocampus (22 channels), (7) LTC - lateral temporal cortex -
superior, middle and inferior temporal gyrus (69 channels), (8 ATC - anterior temporal cortex
- amygdala, entorhinal gyrus, temporal pole (28 channels), (9) FC - frontal cortex (61
channels), (10) INS - insula (6 channels) and (11) CC - cingulate and paracingulate cortex (8
channels).

These regions differed in the average time course of their response (see Figure 5). A three-
way repeated-measures ANOVA (stimulus category vs. time bin vs. brain region) for all
channels showed a significant effect of all factors and interactions (the three-way interactions:
F(80, 2912)=6.71, p<0.001, n>=0.16), except the main factor of stimulus category. Figure 5
shows the differences in response to both categories for all time bins brain labels, with
marked significance. Channels in two regions responded more to Scenes than Objects; in
PHLG from 100 to 400 ms and in RSC from 200 to 600 ms (post hoc test on the three-way
interaction). Channels in the other three regions responded significantly more to Objects than
Scenes (FUG, 100-600 ms; LTC, 200-500 ms; FC, 200-500 ms)

4.3 Selectivity of channels to Scenes and Objects and its cortical distribution
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To evaluate the channel response selectivity, we directly compared responses to Scenes and
Objects, at all time points after the stimulus presentation and within the epoch. Most channels
(217, 58%) did not show significant differences between the two categories. However, 92
(25%) channels responded to Objects significantly more than to Scenes and 66 (18%)
channels responded significantly more to Scenes than to Objects.

Scene and Object selectivity were not evenly distributed in the brain regions (x*(9,
N=158)=55.40, p<0.001). The Scene-selective channels were localized predominantly in the
PHLG (30%), RSC (24%), OC (11%), ATC (11%) and HIP (11%) regions, while the Object-
selective channels were mainly in the LTC (27%), PC (2015%) and FC (12%) regions. From
another point of view, the HIP (7 of 9 channels), RSC (16/17) and PHLG (18/28) region
predominantly contained the Scene-selective channels, while more Object-selective channels
were observed in the FC (11/12), LTC (25/28), PC (18/22) and FUG (10/13) regions. As the
INS region contained only one Object-selective region and the CC region did not contain any
category-selective regions, both were excluded from further analyses. Visual inspection of the
distribution of Scene- and Object-selective channels in the brain suggested differences in their
mediolateral and anteroposterior position (see Figure 8). Analyzing the MNI coordinates, we
found that the Object-selective channels were located more laterally (with a larger absolute
MNI 'x' coordinate, t(156)=8.35, p<0.001) and more anteriorly (with a larger MNI y
coordinate, t(156)=2.01, p<0.05) than the Scene-selective channels.

Temporal dynamics of selective channels in anatomical regions

One of the advantages of i(EEG analysis is the possibility to analyze the precise temporal
dynamics of Scene and Object selectivity. Initial information about the response time course
we revealed using analysis of response differences in 100-ms time bins. Two, three-way
repeated measures ANOVAs (stimulus category vs. time bin vs. brain region) for Scene- and
Object-selective channels showed a significant effect of all factors and interactions (both
three-way interactions: F(56,456/656)>3.3, p<0.001, n*>0.2). Figure 6 shows the differences
in response to both categories for all time bins and brain labels, with marked significance. For
the Scene-selective channels (post hoc test on the three-way interaction), the first difference in
response to Scenes and Objects was in PHLG (100 to 200 ms), followed by OC and RSC
(200 to 300 ms). In the HIP region the selectivity emerged later (300 to 400 ms). As for the
duration of the difference in the significance, the longest difference was in the PHLG and
RSC region (400 ms) and shortest in the HIP (100 ms). For the Object-selective channels, the
post-hoc test revealed the first significant differences in response to Objects and Scenes in
OC, PHLG and LTC (100 to 200 ms), followed by PC, FUG and FC (200-300 ms) regions.
The longest difference was in the LTC region (500 ms), followed by PHLG, OC, FUG and
LTC regions (400 ms) and shortest in PC (300 ms) region.

To specify the time course of category selectivity with a higher time resolution, we used three
measures based on our BGA sampling frequency (64Hz, see Figure 7). First, we compared the
time of discrimination (zsig) for regions with at least two channels in both channel groups
(i.e., excluding RSC and FC). A two-way ANOVA (brain region vs. category) on the time of
discrimination did not reveal a significant effect of the category (F(1,114)=0.12, p=0.73), and
the interaction was close to significance (F(6,114)=2.11, p=0.06). However, we found
differences between the brain regions by two separate one-way ANOV As for both categories,
including the RSC and FC regions (see Table 2 for individual values). The time of
discrimination of Scenes from Objects in the PHLG region was earlier than in the MTL and
HIP regions (F(7,57)=4.20, p<0.001, n*=0.34, post hoc both p<0.05). In contrast, the time of
discrimination of Objects from Scenes was the earliest in the OC region and latest in the FC



361  region, later than in the FUG region (F(7,83)=4.21, p<0.001, 1°=0.26, post hoc all p<0.05).
362  Concerning the length of discrimination (/ensig), similar analysis revealed longer period of
363  significant difference in PHLG than ATC regions (F(7,57)=3.28, p<0.01, n7=0.29, post hoc
364 p<0.01), but no differences between regions in Object-selective channels (F(7,83)=2.16,

365  p=0.05,1°=0.15, post hoc all p>0.05). There were also no differences between the regions in
366  the time of maximal discrimination (¢90). In general, these results parallel and confirm those
367  using 100-ms time bins, with some exceptions in Object-selective channels. These channels in
368 the FC regions showed a significant difference between the response to Objects and Scenes
369  from the 200-300 ms time bin, but its time of discrimination for Objects was around 350 ms.

370 4.4 MNI based clustering of channel selectivity for Scenes and Objects

371  The 11 anatomical brain regions did not adequately portray the distribution of response

372 selectivity seen (see Figure 8 and Figure 9). To further summarize the category-selective
373  channel locations and avoid any prior assumptions of anatomical localization, we used the K-
374  means clustering algorithm (Engell and McCarthy 2014, see Methods for more details). The
375  K-means algorithm, explaining 70.9% of the total spatial variance, segmented the 66 Scene-
376  selective channels by their MNI coordinates to seven clusters (marked as S1-S7, see Table 1,
377  Figures 8 and 10). The centroids of these clusters were localized to the following structures:
378  the posterior angular and medial occipital gyrus (S1), the posterior collateral sulcus at the
379  junction with the lingual sulcus (S2), the lingual and fusiform gyrus along the middle

380  collateral sulcus (S3), the parahippocampal and fusiform gyrus along the anterior collateral
381  sulcus (S4), the precuneus (S5), the superior lingual gyrus and precuneus next to the

382  retrosplenial region (S6), the anterior hippocampus (S7). Based on the anatomical position
383  and MNI coordinates, the S1 cluster partially overlapped with the OPA, the S3 cluster with
384  the PPA, and the S6 cluster with the MPA.

385  Similarly, we used the K-means algorithm to further specify the locations of the 92 Object-
386  selective channels. The algorithm segmented these channels to seven clusters (marked as O1-
387 07, see Table 1, Figures 8 and 10), explaining 70.7% of the total spatial variance. The

388  centroids of these clusters were localized in: around the posterior inferior temporal sulcus
389  (0O1), the orbitofrontal gyrus (O2), area around the anterior end of the collateral sulcus (O3),
390 the anterior part of the fusiform gyrus (O4), the posterior part of the angular gyrus (O5), near
391 the anterior intraparietal sulcus (O6) and near the inferior frontal sulcus(O7). The clusters O1
392  and O3 partially overlapped with the LOC area, its posterior (LO) and anterior (pFs) portions,
393  respectively (but see Discussion).

394 Temporal dynamics of selective channels in MNI based clusters

395  We aimed to compare the temporal characteristics of the Scene and Object selectivity in the
396  clusters with the anatomically defined regions. Similarly to brain regions above, we started
397  with the analysis of response differences in 100-ms time bins. Two three-way repeated

398  measures ANOVAs (stimulus category vs. time bin vs. cluster) for Scene- and Object-

399  selective channels showed a significant effect of all factors and interactions (both three-way
400 interactions: F(48,472/680)>3.7, p<0.001, n2>0.2). The differences in response to both

401  categories for all time bins and brain labels, with marked significance, can be seen in Figure
402  11. For the Scene-selective channels, the post hoc test on the three-way interaction revealed
403 the first difference in response to Scenes and Objects in S2 and S3 clusters (100 to 200 ms),
404  followed by S1, S4, S5 and S6 clusters (200 to 300 ms), with the last cluster S7 (300 to 400
405  ms). The cluster with the longest difference between both categories was S3 (500 ms), while
406  the shortest one was cluster S4 (100 ms). For the Object-selective channels, the post hoc test
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revealed the first significant differences in response to Objects and Scenes in clusters Ol and
03 (100 to 200 ms, followed by O4, OS5 and O7 (200-300 ms), with the last cluster O6 (300-
400 ms). The cluster with the longest difference between categories was O6 (600 ms),
followed by O1 and O7 (400 ms).

To specify, with a higher time resolution, how the category selectivity develops in clusters,
we again used three measures based on our BGA sampling frequency (64Hz, see Figure 12).
We compared them by separate one-way ANOV As for both groups of clusters (see Table 2
for individual values). The time of discrimination (zsig) of Scenes from Objects in the S3
cluster was earlier than in the S6 and S7 clusters (F(6,59)=5.28, p<0.001, n2=0.35, all post
hoc p<0.01). The length of discrimination (/ensig) was longer in the S3 cluster than in the S4
and S7 clusters (F(6,59)=4.61, p<0.001, n*=0.32, all post hoc p<0.05). The time of maximal
discrimination (¢90) was shorter in S4 cluster than S6 and S7 clusters and in S3 th in S6
cluster (F(6,59)=3.58, p<0.005, 1°=0.27, all post hoc p<0.05). In Object-selective channels,
the time of discrimination (zsig) was the earlier in the O1 than in O7 cluster (F(6,85)=3.72,
p<0.005, 1°=0.21, both post hoc p<0.05). The length of discrimination (lensig) was similar in
all clusters (F(6,85)=2.22, p=0.05, n°=0.14, no post hoc p<0.05), while the time of maximal
discrimination (290) was shorter in O1 cluster than O4 and O7 clusters (F(6,85)=4.18,
p<0.001, 1°=0.23, both post hoc p<0.05).

These results again closely parallel and confirm the results from the analysis using 100-ms
time bins, with some exceptions in object clusters. The O7 cluster showed a significant
difference between the response to Objects and Scenes from the 200-300 ms time bin, earlier
than cluster O6, but its time of discrimination was around 350 ms, while in cluster O6 the tsig
was below 300 ms. Besides, cluster O3 showed the longest difference in response to both
stimulus categories, 400 ms longer than cluster O6, but there were no differences in the length
of discrimination (/ensig) between the clusters.

Interestingly, we found more diverse measures of temporal dynamics in the MNI based
clusters than in the anatomical brain regions. The time course in the S3 cluster, overlapping
the PPA area, was similar to the PHLG region, with an early start and long discrimination
between Scenes and Objects. This discrimination started late with a late maximal difference in
the cluster S6, with a centroid near retrosplenial region, but these differences we did not find
in the RSC region, including the retrosplenial cortex and precuneus. The time of
discrimination in cluster S7, with a centroid near the anterior hippocampus, was late, similarly
to the HIP region, but with also the late time of maximal discrimination, which was not
paralleled in the HIP region. Also, the cluster S4, with a centroid near anterior collateral
sulcus, showed the fastest time of maximal discrimination and short time of discrimination of
Scenes from Objects, with no similar characteristics in any of the anatomical regions.
Concerning the Object clusters, we found a fast time of discrimination and time of maximal
discrimination in cluster O1 near the posterior inferior temporal sulcus, partially overlapping
with the LO area, similarly to OC region (but with no 790 difference). Late discrimination was
also found in the O7 cluster with a centroid near inferior frontal sulcus, paralleled in the FC
region, which, however, included more channels. The cluster O4, with a centroid near anterior
fusiform gyrus, showed late category discrimination, not different from the O7 cluster, in
contrast to the FUG region with faster category discrimination than the FC region. Finally, the
cluster O3 near middle fusiform gyrus, partially overlapping with the pFs area, shower a very
long time of difference in response to both stimulus categories in the time bins analyses, with
no such long time of difference in any of the anatomical regions.

4.5 ROC analysis of the stimulus categories discrimination
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Finally, we were interested in how reliably we could distinguish if the stimulus was Scene or
Object from the single-trial individual channel responses. To this end, we used a ROC
analysis to illustrate how well the responses of the two categories were separated, for a series
of BGA magnitude thresholds (for a similar procedure see Bastin et al. 2013a). The ROC area
under the curve (AUC) is a summary measure of the separation across all thresholds levels.
We computed the AUC values for all post-stimulus time samples, for the separation of Scenes
from Objects, as well as Objects from Scenes, and compared the maximal AUC values
between the seven brain regions with more than two Scene- as well as Object-selective
channels . The two-way ANOVA (brain region vs. category) revealed significant differences
between the brain regions (F(76,114)=3.83, p<0.005, n°=0.17), and significant interaction
(F(76,114)=2.61, p<0.05, n2=0.12) with no differences between categories (Figure 13A). The
post hoc test of the brain region factor showed that category discrimination was better for
channels in the PHLG region than for the channels in the ATC and HIP regions (all p<0.05) in
Scene-selective channels. In contrast, the FUG regions shower better category discrimination
than PC (p<0.05) in Object-selective channels. Then, in a similar way, we also compared the
maximal AUC values for the Scene and Object clusters, using two independent one-way
ANOVAs (Figure 13B). The discrimination of Scenes from Objects was better for channels in
the S3 cluster than in clusters S1 and S7 (F(6,59)=3.81, p<0.005,1’=0.30, both post hoc
p<0.05). Similarly, the discrimination of Objects from Scenes was better for channels in the
O3 cluster than channels in any other Object cluster (F(6,85)=4.28, p<0.001,1°=0.23, post hoc
all p<0.05), except O2 and O6.

This good discrimination corresponds well with the position of the S3 and O3 clusters near
the PPA and the anterior portion of the LOC (pFs), respectively. In parallel, the PHLG and
FUG regions showed the best discrimination for Scenes and Objects, respectively.

5 Discussion

Our study provides a broad survey of the human cortex, searching for regions that respond in
a category-selective fashion to scenes or objects with BGA power increase. We did not
restrict our analysis to previously identified category-selective regions of interest, but instead
tested all implanted areas for any scene or object-selective regions, whether previously
identified or not. Our results reveal much broader brain networks involved in scene and object
processing, than previously reported from functional imaging studies with similar
experimental designs. Besides the visual perception areas in the ventral stream, we found
significant activity in areas previously reported to be associated with scene novelty, scene
construction, object recognition and object tool use. Taking advantage of the fast temporal
resolution of iEEG, we used two complementary methods to analyze the time course of
discrimination of object from scenes of vice versa. Employing ROC analysis, we also showed
how reliably the analyzed areas discriminate between scenes and objects.

While almost half of the active channels responded to both categories with increased BGA
power, a significant proportion of them were selective for either scenes or objects. Channels
responding to scenes more than objects comprised 18% of all active channels. Most functional
imaging studies have defined the PPA, MPA, and OPA as regions selective for the scenes and
landscapes, when contrasting their responses to object stimuli (Epstein and Kanwisher 1998;
O'Craven and Kanwisher 2000; Nakamura et al. 2000). In our study, using intracranial EEG
data, we confirmed these three regions to be scene-specific. Most of our scene-selective
channels were localized in the PHLG region, in the RSC and in the OC regions. However, we
also found numerous scene-selective channels in other, previously unreported, brain areas,
especially in other parts of the temporal lobe (the HIP and ATC regions), with most channels
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in the hippocampus being selective for scenes. In addition, scene-selective channels were also
localized in the parietal, frontal, and lateral temporal cortices.

Channels selective for objects constituted 25% of all active channels. Their position was
generally more lateral and anterior compared to the scene-selective channels; most were
found in the LTC, PC and FC regions , but object-selective channels were also apparent in the
FUG, PHLG and OC regions. This distribution corresponded with the results of another
human intracranial study (Vidal et al. 2010). The object selectivity in the LTC and FUG
regions overlapped with the LOC area, defined by functional imaging studies.

5.1 Areas selective for scenes

To further summarize the channel locations, we segmented them into spatially defined
clusters, seven with both scene-selective and object-selective channels, and identified the
locations of the cluster centroids.

The first scene-selective region to be described was the PPA (Epstein and Kanwisher 1998;
Aguirre et al. 1998), which typically includes portions of the posterior parahippocampal,
anterior lingual, and medial fusiform gyri (Epstein and Baker 2019), along the collateral
sulcus. Our S3 cluster was localized to an area with similar MNI coordinates to the PPA
recently published location (Spiridon et al. 2006). It almost completely included channels
only in the PHGL region. According to our ROC analysis, the degree of discrimination of
scenes from objects was largest in this cluster, approaching 0.8. Another functionally defined
scene-selective area, the MPA, was described near the cingulate gyrus (O'Craven and
Kanwisher 2000), mostly comprising the retrosplenial cortex and the anterior precuneus.
These data agree with the localization of our S6 cluster in the RSC region, specifically in the
precuneus and the superior part of the lingual gyrus near retrosplenial cortex, along the banks
of the parietal-occipital sulcus. The third most commonly reported scene-selective region is
the OPA in the occipital lobe (Nakamura et al. 2000; Hasson et al. 2003), typically near the
transverse occipital sulcus. Originally labeled the TOS, it was later renamed the OPA (Dilks
et al. 2013) to emphasize its functional localization. Our S1 cluster was localized to a similar
area, in the middle occipital gyrus, also encompassing channels in the posterior angular gyrus.
It included channels from OC and also PC regions. Surprisingly, the degree of discrimination
(i.e., the average maximal AUC value) of scenes from objects in this cluster was below 0.7,
significantly lower than in the cluster S3.

Many scene-selective channels in our study were localized to the HIP region, forming about
half of the S7 cluster, together with the ATC region. The hippocampus has not been routinely
described as a scene-selective region; however, its association with scene processing is well
known. An early PET study showed anterior hippocampal activation in response to novel
scenes and also a larger response to scenes than to objects in a scene-learning task (Kohler et
al. 2002). Another element of the hippocampus, the presubiculum/parasubiculum, was also
found to be active during scene recall and imagination (Zeidman et al. 2015). Selectivity for
spatial layouts has been described for about 30% of hippocampal neurons (Kreiman et al.
2000). The scene construction theory even proposes the main hippocampal function to be the
facilitation of scene construction (Hassabis and Maguire 2009). As our task included a series
of one hundred unique scenes, each repeated twice, it may have induced hippocampal activity
due to estimating the novelty of the scene, although this was not the subjects' task. The
individual hippocampal units seem to be highly selective in their responses, even within a
category (Mormann et al. 2008), possibly explaining the lack of hippocampal activation
revealed by many visual perception fMRI studies. The degree of discrimination of scenes
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from objects in the cluster S7 was the lowest one, significantly lower than of the cluster S3,
between a little higher discrimination in the HIP region and lower in the ATC region.

Another scene-selective area in our experiment was the region along the anterior collateral
sulcus, mostly comprising the anterior parahippocampal, fusiform, and entorhinal cortex. The
channels in this area formed the S4 cluster and were dispersed over PHLG, FUG, HIP and
ATC regions. This area, together with the anterior hippocampus, was described to be more
active in a scene recall task during correct judgments about scene novelty (Rombouts et al.
2001). Its activation in our experiment could, therefore, be connected to the novelty of half of
the presented scenes and a weak familiarity with the other half.

The largest BGA responses 1, were found in the S2 cluster containing five channels from three
patients in the posterior lingual gyrus, at the junction of the collateral and lingual sulcus. In
spite of this large response, the discrimination of scenes from objects was rather low. The
channels in this cluster were located more posteriorly than the most recent probabilistic
localization of the PPA area (Weiner et al. 2018). T

The last scene-selective area was localized around in the posterior precuneus (cluster S5).
The precuneus activity in scene object discrimination could be associated with its role in
spatial attention and its shifts (Cavanna and Trimble 2006), which are more probably in
spatial scenes than single objects without background. Besides, the precuneus is involved in
spatial judgments using egocentric reference frame and translation between egocentric and
allocentric coordinates (Moraresku and Vicek 2020; Byrne et al. 2007), which are also the
processes more likely to occur when viewing spatial scenes than centered single objects.

5.2 Areas selective for objects

Functional imaging studies defined the lateral occipital complex (LOC) as an area responding
more strongly to photographs of everyday objects than shapeless textures (Malach et al.
1995). It covers a large area from the lateral occipital cortex to the posterior temporal regions,
both ventral and lateral. Subsequently, it was subdivided into two areas discriminated by their
functional properties (Grill-Spector et al. 1999). Using the fMRI adaptation paradigm, the
authors showed that while the more posterior part (named LO) distinguishes between the
same object being translated or transformed in size, the anterior portion in the fusiform gyrus
(named pFs) preferentially displays position and size invariant responses.

The O1 and O3 clusters in our analysis were localized to a similar area. Cluster O1 was
comprised of channels around the anterior occipital sulcus, in the middle and superior
temporal, middle occipital, inferior temporal gyri, and also the temporo-occipital transition
zone and posterior angular gyrus. It included mostly channels in the LTC region. It was,
therefore positioned slightly more anteriorly than the fMRI localized LO area near the lateral
occipital sulcus. Cluster O3 was localized more anteriorly, covering channels mostly in the
posterior part of the fusiform gyrus, but also in the inferior temporal gyrus, corresponding to
the pFs area. Channels in this cluster were dispersed mostly over the FUG, PHLG and LTC
regions. They showed superior object-scene discrimination, agreeing with its previously
reported strong shape selectivity (Grill-Spector et al. 1999). An earlier human iEEG study
demonstrated a BGA response selective for tools localized to a similar area (Vidal et al.
2010). A large number of object-selective channels in the O4 cluster was also positioned in a
more anterior temporal area, comprising anterior parts of the parahippocampal gyrus,
entorhinal and perirhinal cortex, temporal pole and also the inferior temporal gyrus (PHLG,
LTC and ATC regions). A similar area in the temporal pole responded to the familiarity of
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faces and scenes in an early PET study (Nakamura et al. 2000), suggesting its connection to
recognition memory. Moreover, the perirhinal cortex seems to represent object-specific
semantic information, as documented by an fMRI study (Clarke and Tyler 2014). This study
also showed the gradient of semantic specificity along the ventral stream, increasing
anteriorly. Object recognition was also associated with brain activity in the anterior regions of
the temporal lobe in another fMRI study (Bar et al. 2001). The contrast of successful to
almost successful object recognition revealed activity in the anterior parahippocampal gyrus
(besides activation of the LOC area), close to our O4 cluster. The same contrast also showed
activity in the inferior frontal gyrus, which, according to an earlier publication, reflects the
general effort, semantic analysis, and/or general feedback processes (Bar et al. 2001). We
found a number of similarly localized object-selective channels in the O7 cluster. The activity
of channels in these two clusters could reflect object recognition described in the above-
mentioned studies. An important distinction between the objects and scenes in our test was
that the objects were all familiar from everyday life, in contrast to the scenes, which were
selected to be generally unfamiliar. Therefore, the results could reveal sites responding to
familiarity instead of the object specifically.

Another important characteristic of all object stimuli in our test was that they could be
grasped and manipulated by hand, as we excluded any pictures containing furniture or
animals. This difference relative to the scene stimuli seems to manifest in the activity of brain
areas related to tool use. Several such brain regions were revealed by an fMRI study, where
subjects learned how to manipulate novel objects and were scanned during their visual
presentation both before and after the training (Weisberg et al. 2006). This training increased
activity in four areas: mainly the fusiform gyrus (LOC area), but also the middle temporal
gyrus, the left intraparietal sulcus, and the left premotor cortex. These areas correspond to the
location of object-selective channels in our data: the O3 cluster in the fusiform gyrus,
mentioned above and O5 in the posterior part of the angular gyrus. . The areas around the
intraparietal sulcus, mainly posterior, have been associated with object graspability. In one
study, the activity in the posterior intraparietal sulcus was induced by the presentation of both
tools and graspable objects, relative to animals (Mruczek et al. 2013). An additional area,
devoted to the execution and observation of tool action is anterior supramarginal gyrus (Orban
and Caruana 2014), overlapping with next cluster O6 in our data. In a meta-analysis of seven
PET studies, tools activated the left posterior middle temporal region and to a lesser degree,
the supramarginal gyrus (Devlin et al. 2002). In an earlier PET study (Grafton et al. 1997),
passive viewing of familiar tools was connected with activation of the premotor cortex, and
also the left inferior frontal gyrus, which formed the majority of channels in cluster O7 in our
data.

A small cluster O2 of three channels also appeared in the orbitofrontal gyrus. Orbitofrontal
cortex is known to be involved in reward learning and decision making (Rolls 2004), but it
was also shown to be activated by confidently identified visual objects bearing meaningful
associations in humans (Chaumon et al. 2013). The orbitofrontal cortex also appeared in the
contrast of recognized and unrecognized objects in an fMRI study (Bar et al. 2001).

5.3 Temporal scheme of processing

Using the results of two complementary analyses of the temporal dynamics of scene and
object discrimination, we can discuss the overall scheme of these two categories processing.
We recorded the first discrimination of Scenes from Objects in the PPA (cluster S3 and the
PHLG region) at 164 ms after the stimulus. It was also the longest one in our data, with the
length of discrimination of 338 ms (or spanning for 400-500 ms according to the 100-ms time
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bin analysis). The onset was close to the latency of discrimination between buildings and non-
building objects (170 + 34 ms) seen in broadband gamma of a previous iEEG study focused
on the PPA (Bastin et al. 2013b). The length of this effect was also similar to the length of
discrimination in our data, lasting until about 550 ms and was also consistent with another
intracranial EEG study documenting multiple processing stages in the PPA (Bastin et al.
2013a). The latency of response in our data was also similar to the onset of scene-selective
responses previously observed in the parahippocampal LFP (Mormann et al. 2017). Higher
stages of visual scene processing in the ventral cortex were estimated to occur at a similar
time (141 ms) by a classification analysis on MEG data, although early visual areas
discriminated individual scene images before 100 ms (Cichy et al. 2017). A more posteriorly
located cluster S2 in the posterior lingual gyrus showed similarly early but shorter scene-
object discrimination.

Next, the discrimination of scenes from objects appeared in several areas of both the ventral
and dorsal visual streams. Ventrally, the cluster S4 near the anterior collateral sulcus showed
only short duration difference between scenes and objects, at 211 ms after the stimulus.
Dorsally, scene-object discrimination appeared in two areas, first close to transverse occipital
sulcus near the OPA area (cluster S1) at 242 ms and second in the posterior part of precuneus
(cluster S5) at 215 ms. The onset latency in cluster S1 was markedly longer than the onset of
discriminated scene layout appearance in the OPA in an fMRI-MEG study (60 ms)
(Henriksson et al. 2019). According to this and another study (Kamps et al. 2016), the OPA is
specialized in discrimination of spatial boundaries (see also Julian et al. 2018). All our scene
stimuli were mainly outdoor views of landscapes and buildings with indistinct spatial
boundaries, possibly explaining the long latency of OPA scene-object discrimination. But,
similarly late responses, with a latency around 300 ms, were observed for scene presentation
using MEG (Sato et al. 1999), with one of the sources estimated to be a parieto-occipital
junction, close to our S1 cluster.

This time range over 200 ms is in agreement with the scalp EEG experiment focused on
temporal dynamics of scene processing. The P2 component, peaking at 220 ms, was described
as an ERP marker for scene processing (Harel et al. 2016), showing the earliest discrimination
between scenes and both objects and faces. In a follow-up parallel ERP and fMRI study, this
component was localized to the scene-selective areas, OPA and PPA (Kaiser et al. 2020). But
surprisingly, cluster S3 in our data, localized to the PPA, showed earlier discrimination at
164ms. Kaiser et al. (2020) also described earlier discrimination of spatially intact scenes
starting at 55ms and localized to V1, close to the time of discrimination of global scene
properties at 84ms in Oz channel in scalp EEG study (Lowe et al. 2018). Results in this time
range below 100 ms support conclusions from an earlier iEEG study showing decoding of
five visual categories at around 100 ms after the stimulus (Liu et al. 2009). In the data set of
the current study, none of the active channels was in the primary visual cortex.

At a later stage of scene processing, the cluster S6, encompassing the scene-selective MPA
area, showed scene object discrimination at 307 ms, which <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>