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Kapitola 1
Uvod

1.1 Motivace

Struktura atomovych spekter je v zdsadé popsana nerelativistickou
kvantovou mechanikou a Coulombovou interakci. Jemna struktura
atomovych spekter je ddna interakcemi, které jsou vzhledem k elek-
trostatické interakci pomérné slabé. Jsou to zejména relativistické
efekty (magnetické efekty, zavislost hmotnosti na rychlosti), radia¢ni
korekce popsané kvantovou elektrodynamikou a efekty slabych in-
terakef.

Experimentdlni zjistén{ vinové délky spektralnich ¢ar nabylo ta-
kové piesnosti, Ze je mozno detekovat efekty slabych interakei [6].
Pozorovani téchto efekti je duilezité pfi ovéfovani platnosti tzv.
”Standardniho modelu” a dédle umoziuje stanovit meze pro hmot-
nosti intermedidlnich bozonu, které byly pfedpovézeny rozsifenimi
standardniho modelu.

Vzhledem k tomu, Ze tyto efekty jsou velice malé, je potfeba
umét pocitat zédkladni strukturu spekter s vysokou presnosti. Aby
se dosahlo takové pfesnosti, je potieba provadét vypocty znacného
rozsahu. V téchto vypoctech je numerickd stabilita zasadni problém.

Numerickd pfesnost je zdsadni problém pfi vsech védecko-tech-
nickych vypoctech, nejen v pfipadé vypoctu spekter atomu. Problé-
mu numerické stability proto byla a je vénovana zna¢né pozornost. V
této souvislosti je tfeba upozornit na préce [7] a [4], ve kterych bylo
ukédzano jak velmi efektivné pracovat s ¢isly podstatné vyssi numer-
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ické presnosti, ne# je strojovéd presnost. Napiiklad jak provadét celé
vypocty v 128 a 64 mistné aritmetice na strojich s 32 mistnou arit-
metikou. Je vSak zfejmé, Ze se zvysujicim se pottem platnych mist
ve vypoctech rostou ndroky na mnozstvi strojové paméti a Casu.
I pfesto, ze v posledni dobé se rychle zlepsuji technické parame-
try vypocetn{ techniky, je zddouci vyvijet takové algoritmy, které
vyzaduji co nejmensi numerickou pfesnost a maji tedy mensi techno-
logické naklady a umozni provadét vypodéty vétsiho rozsahu. Vyvoj
téchto metod a algoritmi pro vypotty atomovych spekter je pfed-
métem této prace.
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1.2 Vymezeni problému

Nejpfesné&jsi pfibliznd metoda vypoctu energii elektronovych hladin
bez pouziti relativistickych korekei je metoda konfiguraéni interakce
(CI). Ta je zalozend na rozvoji pfesné mmoha-elektronové vlnové
funkce do antisymetrizovanych souéinu jednoelektronovych spinor-
bitali (Slaterovych determinanti). Pfesnost muze byt jednoduse
zvétsovana zvySovanim poétu jednoelektronovych spinorbitalt (a
tedy i Slaterovych determinanti). Vypotet maticovych elementi
Coulombovské interakce mezi dvéma spinorbitaly lokalizovanymi na
stejném atomu vede k vypoctu dvouelektronovych integréli typu

/d37"1/d3T2Rn1i,z1i(Tlﬁli)}’ili,mli('fi1)Rn2i,12,-(7”2§2i)3/22i,m2,~(ﬁz)><
(1.1)
X719 Rn1,,01, (T1615) Yin, ma, (711) R 1o, (T2€a;) Yz, ma, (2),

kde Y}, () znaci kulové funkce ' a R, ;(¢r) jsou radidlnf funkce 2
(Laguerrovy polynomy).

Tvar jednoelektronovych spinorbitald mtize byt v principu libo-
volny (samoziejmé s podminkou, Ze spinorbitaly musi tvofit bézi),
nicméné je zndmo, ze pouzit{ Sturmovy ® baze s funkcemi

Rn,l<T) =2

kde L. ,(2r) jsou zobecnéné Laguerrovy polynomy vede k rychlé
konvergenci CI metody.

Pouzitim explicitniho tvaru Laguerrovych polynomiu je mozno
zapsat radidlni funkce R, (r) jako linedrni kombinace Slaterovych
funkci, imérnych exponencidle a mocniné 9

YY) m () = Ne'™¥ P/"cos(0), kde P"cos(6) jsou pfidruzené Legendrovy funkce.

2¢14, o, €15 a &25 jsou pifslusné stinici konstanty. 71 a 72 jsou jednotkové vektory v
piisludném sméru.

3Takzvané Sturmovy funkce dostaneme obecné jako feSen{ rovnice (D + B Vo — E)tpn = 0,
kde D je diferencidlni operdtor. Misto vlastniho problému hleddme takové B, pro které je
splnéna tato rovnice pfi daném E. Hleddme tedy E(8.). V piipadé Schrédingerovy rovnice
s Coulombovym potencidlem [, zdvisi pouze na hlavnim kvantovém cisle n a nezdvisi na
kvantovych &islech ! a m. Sturmova béze je spocetnd a dplnd.
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(n +1)120+ g
X(n—l—l—q)!q!(2l+1+q)!("l)qe A (1.3)

Dosazenim do (1.2) integraly dostanou tvar linedrni kombinace in-

tegrala
. —2r1,.a . —2r2,.b
/0 drie”*"r{ /0 droe™“"rg | (1.4)

které jsou snadno spocitatelné. Da se snadno ovérit, Ze vypocet koe-
ficientt linedrni kombinace je vsak s pouzitim aritmetiky s kone¢nou
presnosti znaéné numericky nestabilni.

Béazové funkce jsou ortogonalni, coz vede k tomu, ze funkce od-
povidajici vysoce excitovanym stavim maji mnoho uzli (méni zna-
ménko). Diisledkem toho je, Ze se pii vypoctu maticovych elementii
Coulombovské interakce mezi dvéma vinovymi funkcemi, které jsou
sestavené v této bazi, vytvaii numerické nestability. V piipadé, Ze se
misto ortogondlnich funkei pouziji neortogonalni funkce (které tvoif
tplnou bézi), se problém pfesune do procesu diagonalizace.

Numericky stabilni vypocet uvedenych integrala se da provést s
vyuzitim faktu, Ze radidlni funkce spliiuji urcité rekurentni relace.
Tyto relace se daji pouzit k odvozeni rekurentnich relaci mezi in-
tegraly z téchto funkei. Timto zplisobem je vypocet integrall (ele-
gantné) preveden na feSeni diferencnich rovnic a numerické nesta-
bility se pak daji pfiméfené snadno obejit.

Takovouto metodu se podafilo nasi skupiné vyvinout, napro-
gramovat a otestovat na piikladu atomu Helia. V dalsim textu bu-
dou popsény ideje, na kterych je tato metoda postavena, jeji popis a
vysledky numerickych testi na piipadu atomu He a jejich porovnani
s experimentalnimi daty.



Kapitola 2
Reseni problému

2.1 Spektrum generujici algebry

Vypocet atomovych integrali vychdzi z algebraického feSeni Schro-
dingerovy rovnice, zaloZeném na vysledcich teorie kompaktnich grup

a jejich Lieovych algeber 1. D4 se ukdzat, ze kdyz vyjdeme ze zdkladnich
komutaénich relaci pro kanonicky sdruzené proménné, napiiklad souradnice
a impulsu, miizeme sestrojit generdtory so(2,1) algebry [3], [2]. Tento
postup je aplikovatelny na libovolny pér kanonicky sdruzenych soufadnic

a k nim p¥isludnych momentt. UvaZzujme operdtor R v N-dimenzionalnim

eukleidovském prostoru,

1
2

N
R=R= (Z XJ?) , (2.1)

kde X; jsou jednotlivé soufadnice a k nému sdruZzeny moment Py
(pro N=3)

Pr= —z’R“MB%RM =i (a% + f(R)) , (2.2)

kde f(R) = 8 a M = 3(N —1) ; (zde je N obecné). Komutatn{
relace (zde pouzivdme i = 1)

[R, Pl =1 (23]
1Linedrn{ prostor, na ném# je definovana dalsf bilinedrni operace [A,B], zvana komutdtor,
spliiujfcf vztahy [A, B] = —[B, 4] a [4,[B,C]] + [B, [C, A]] + [C, [A, B]] = 0 se nazyvé Lieova

algebra.
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plati pro libovolnou funkci f(r). Z uvedené komutacéni relace pak

plyne

n—1

[R", Pp) = 3" RI[R, PR)R™'7 = inR™! (2.4)
j=0
a analogicky
[R, P} = inPE . (2.5)

Vynésobenim rovnice (2.4) R a po nésledné tipravé dostaneme
[R*, RPg] = inR™ , (2.6)

pricemz bylo pouzito vztahu

F(A)[G(A), B = [G(A), F(A)B], (2.7)
kde F(A) a G(A) jsou libovolné funkce operatoru A. Upravami vyse
uvedenych rovnic se dé ukézat, ze operatory RP,Q" a ﬁﬁ’}%, (m #
n) generuj{ neabelovskou dvou-dimenziondlni Lieovu algebru, kdyz
(n+m —1) =m nebo (n+m —1) =nnebom =1nebon=1.
Da se ukazat, ze operédtory R, RPg a RP,% generuji tfidimenzionalni
Lieovu algebru definovanou komutaénimi relacemi (viz [14])

[RPg, R] = —iR (2.8)
[RPg, RP2) = iRP (2.9)
[R, RP%) = 2iRPy . (2.10)

Tyto relace je mozno zobecnit na tvar

[R™, RPg] = inR" (2.11)

[RPg, R*"P2] = inR* " P2 (2.12)

(B, B2 P2] = 2in {RPR - %’(n -} @
Zavedenim vhodnych substituci 171, Vs, Vs

Vi =R" (2.14)

Vo=n"1 {RPR - %(n - 1)f] (2.15)

Vs =n"2R*"P2 (2.16)
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(Vl, Vs, V3 jsou generdtory pifslusné Lieovy algebry) lze tyto ko-
mutacni relace prevést do tvaru

[V, V] = iVh (2.17)
[Va, Va] = iVs (2.18)
Vi, Va] = 26V, . (2.19)

7 uvedenych opertori V se dé sestavit baze analogické bézi opers-
toru momentu hybnosti. Operéator V, je jeden z generdtord. Hledanou
transformaci obdrzime s¢itdnim a odeéitdnim relaci (2.17) a (2.18)

Vs £ V4, Vo] = —i(Vz 2 V4) . (2.20)
Pro linedrni kombinace Vi a Vs dostaneme z (2.19) tuto komutacni
relaci
Vs + V1, Vs — Vi] = [V1, V5] — [Va, Vi] = 4iV . (2.21)
Odtud je vidét, ze muzeme definovat operatory T
T, = é(f@, -V, (2.22)
Ty=Vs, (2.23)
Ty= 5 (G +74) (224)
takze obdrzime relace
[T1, To] = —iT3 (2.25)
[Ty, Ts] = iT; , (2.26)
T3, Ty] = iT . (2.27)

Tyto operéatory tvoii Lieovu algebru so(2,1). Uvedené komutaéni
relace jsou podobné relacim, které plati pro slozky momentu hyb-
nosti. Dédle bude struéné ukézéno, jak k nim lze urc¢itou transformaci
prejit. Pfedtim jesté definujeme posunovaci operatory Ty

Ty =Ty £4T5 . (2.28)

Je videét, ze plati
(T3, ] = +7T (2.29)
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a #e Ty generuji spektrum operatoru Ts. Vlastni funkce radidlni
slozky hamiltonidnu vodiku-podobného atomu R, ;(r)

H= % (p?. - K%LU - % (2.30)
jsou také vlastnimi funkcemi operétoru i,
Ts Ry () = nRy,(r) . (2.31)
Operétory T\ pak generuji spektrum 2
TyRpy = /(£ 1£1)(nF ) Ruzra(r) - (2.32)

UvaZujme radidlni soufadnici 7 a k ni sdruzenou hybnost p,, pak
operdtory Vi =r, Vo = rpy, Vs = rp2 + (1 + 1) /7 spliuji komutaéni
relace (2.17), (2.18), (2.19). Operétory T; pak maji tvar:

1 1
T = —(Tpf - ——l(l +1) -r), (2.33)
2 s
T2 =TDr , (234)
1 I(1+1
= E(rpf + Lj——) +r). (2.35)

Z uvedenych rekurentnich relaci pro operatory T; se daji odvodit
relace, které plati pro radidln{ ¢dst integrala (1.1).

2.2 Multipdlovy rozvoj

Pouzitim multipélového rozvoje

= =S (2)P 2.36
= 5 L Bl (2.36)

kde r; < 1 a P(z) jsou Laguerrovy polynomy, muzeme rovnici
(1.1) separovat na radialni a dhlovou ¢ést. Uhlovs, éést se d4 upravit
metodami popsanymi v [8], radidlni ¢4st pak piejde do tvaru
liisl2isl .20
X e g (i €20, €150 E25)

20peréatory T4 generuji vlastnf funkce. P¥ipomefime 7e je li f:V = V normalni operdtor

( f fr= f* f), tak existuje ortonormalni base V slozend z vlastnich vektord operatoru f.
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(o 0]
=/0 dry Ry, 1, (T1€1) R, a1, (riy)rit®
(o0
></ droRug, 12, (T2€0i) Rz, 12, (raboj)ra ™t +
1
o0
/o dry R, (T160i) Ry 1, (ra&ag) ™ x

X/ dry Rz, 2, (r262i) Rna, o, (ro&aj)rst? . (2.37)
il

2.3 Linearizace

Jednotlivé ¢ésti integrélu (2.37) obsahujf sou¢iny radidlnich funkei
stejné proménné. Diky tomu lze tyto integraly zjednodusit tzv. lin-
earizaci. To jsme provedli dvéma zplisoby, z nichz kazdy vede k
trochu jiné struktufe diferen¢nich rovnic. Zminéné diferenéni rovnice
ziskané prvnim resp. druhym zplisobem jsou si ekvivalentni, ale
umoziuji vlastni vypocet algoritmizovat ruznymi zptsoby.

2.3.1 Linearizace pfevedenim na feSeni hypergeometrickych
funkci

Tento zpusob pfevedeni sou¢inu dvou kulovych funkei na linedrni
kombinaci kulovych funkci je specidlnim ptipadem tzv. Wigner-Ec-
kartova teorému. D4 se ukézat, Ze jeho analogie pro so(2,1) algebru

ma tvar

7P Rpa 11 (€17) Rna,12(&or) =

nl4n2—-1+4p

= > (ny,h, &0, &[n)pRente((6 + 2)r) (2.38)

n=l1+12+1
Pro specidlni pfipad p = 1, & = 1, & = 1 jsme vyjadiili koeficienty
linedrni kombinace pomoci hypergeometrickych funkei.

(nla lla 1) ni, l27 1|’I'L)1 =

= Al Jus J Gl (2.39)

m,nzcnhnz,m-*-nz—l—n (n S ll _ l2)| !

kde

Abls — 217m M (y +my — by — I — 2){(ny 4+ ling + 1p)! y
. (nl - ll = 1)'(77,2 = lg = 1)'
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(’nl—ll—l)' (ng—lg—l)'
XJ (4 )] \J (bl

Koeficienty ¢t jsou rovny

ni,n2,n
O (mtng—bL—l—2-n) 4,
itan = Ouion ™ (g 1y F 2 m—1) riment1 - (241

Koeficienty C'2  pak maji tvar

n1,n2,n

Cllz F(—ni+lL+1,—-n;—ny —na+ 11 + 1o + 2;2) .
s (m+h+n+lk—n—1)n
X F(—=ny —l1,—n; —nl —n2 — 1} — 15;2) (2.42)

pro n > 0, jinak 0. F(a, f;7; ) je hypergeometricka funkce. Tento
vzorec jsme ziskali ze vzorce pro soucin dvou Laguerrovych poly-
nomu [9]

2.3.2 Linearizace algebraickou technikou

Pii urenf koeficientt (nl,11,£1,n1,12,£2|n), v rovnici (2.38) se dé
postupovat tak, ze se rovnice (2.38) vyndsobi 7R, y(¢r) a dalsimi
Upravami dostaneme

(n1, b1, &1, by Eafn)py/(na — 1 — 1) (g + 1) =
2(nq — 1= &%) (ny — 1,1, &1, ma, Ig, Ealmy)
—/(n1+ 1 = 1)(ng — b — 2)(na — 2,11, &1, m2, by, Ealm),p
+%\/(n +1)(n—=1U—=1)(n1 — 1,4,&,n2,l,&|n — 1),

+%\/(n =)+ +1)(n1 — 1,0,&,n9, b, 2o|n + 1), ,(2.43)

kde I' = I, + 1 a £ = & + & . Posledni rovnice se dé pouzit ke
snizovani kvantovych ¢isel ny a ns.

2.4 Rekurentni relace pro integraly

Dosazenim (2.38) do (2.37) obdrzime

b Bapiadatd _
o (B & Gy €oj) =

=Y " (nai, hi, E1iy g, by, €151 N1 )1 (Ras, baiy iy g, Laj, €251 Na)1 X
N1 N2
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N, — Ly —1)!
< (Pl 6, &) + PR (6,6) J ROy

XJ T (244

kde Ly = by; + lij, Lo = loi + loj, &1 = &1s + €155 &2 = i + &2y
P jsou integréaly pfes dvé radialni funkce

Poaite &) / Ry, (Eam)r / Ry, 1, (&ora)rytdrodry

(2.45)
kde byly zavedeny nenormalizované funkce R
- (n+1)!
= ] s . 2.46
Rudr) = \| o =y i) (2.46)

Pouzitim nenormalizovanych funkei je mozno z rovnic eliminovat
iracionaln{ faktory (viz [10]). V rovnici (2.44) jsme vyuzili rovnosti

/0 RNl,Ll(flTl)Tlle/ Ry, 1,(&aro)rytdridry =
™

0 1 ~
/0 RNZ,Lz(fQTl)T‘;l a RNl,Ll(ngz)T‘l;_ld'f'ld’l"g ¢ (247)

Linearizaci se dosdhne toho, ze integrély pfes ¢tyii funkce se daji
napsat jako linedrni kombinace integréli pfes dvé funkce. Pro in-
tegraly pres dvé funkce se daji odvodit snadno feSitelné rekurentni
relace. Rekurentni relace svazujici integraly s riznymi hodnotami
N, maji tvar

—(Np + Lo) Pt (6, &)+ (N2 — La) PRt (6, &)
—2APRRH €1, &) = —(N1, Lu, & |2r| Ny, Lo, &2) ,(2.48)

(o] = ~
(N1, L, &1]27| Ny, Lo, §2) = /0 2r* Ry, 1, (617) Ry, 1, (Eo7) dr
(2.49)
Rekurentni relace svazujici integrély s ruznymi hodnotami N; maji
tvar

— (N1 + L) P2k (61,62)  +(Ny — Li) PRiyen, (€1, 62)
+2(1 + VP61, &) = (Ny, Ly, &1]2r|Na, Lo, &) - (2.50)



KAPITOLA 2. RESENT PROBLEMU 13

Numericky stabilnf fesen{ t&chto relaci 1ze dosdhnout dvéma zptisoby:
za prvé se rekurentni relace se daji fesit pomoci hypergeometrickych
funkef (viz [11] a [12]), zadruhé k témto relacim je moZno odvodit
jesté dalsf relace, plynouci z obecnéjsi algebraické struktury so(4,2),
kterd vede k obecnéjsim relacim pro radidln{ funkce (viz [10])

2.5 Aplikace na dvouelektronové atomy

Schrodingerova rovnice pro dvouelektronové atomy s pevnym jadrem
(v atomovych jednotkdch) m4 tvar

Vi Vi Z Z 1
——————— = o s E 2.51
[ 2 2 71 ) t Tlg} 1/} 1/) ( )
kde Z je protonové &islo. Po preskalovani 7 — Z~1#® komutuje
tento hamiltonidn s komponentami celkového momentu hybnosti.

V? V7
[ o Yo 1 1, }zp— - (2.52)

2 2 T1 ZT12

Pfesnou vinovou funkei mﬁZeme rozvinout do bazovych funkei adap-

tovanych k symetrii

(11, 732)k) = Ry iy (T1€1k) R i (T2€2k) (101, 2| (Lik, Lok, L, 0))
(_I)L_llk—lzk R’”lk»llk (T2€1k)Rn2k,lzk (r1§2k) <,n"* I(llk> l2k’ L 0)>
(2.53)

kde Ry ;(ér) jsou radidlni funkce (1.2). Vypocet maticovych ele-
mentti operatoru (2.52) v bdzi funkef (2.53) se redukuje na vypocet
dvouelektronovych integrala (1.1) nebo vypocet jednoelektronovych
integrali. Jednoelektronové integraly jsou dvou typi. Prvni z nich
jsou prekryvové integraly, které se redukuji na tvar (2.49). Druhé

obsahuji Laplacetv operator:
. .
/d TRTLI I 51?") l1,my (n)(__)'arz,lz (§2T)}/vl2,m2 (TL) =

2
fz/ TRy 0, (&1/6ar) ( - M) R, iy (r)dr =
J (nl = l1 = 1)'(TL2 = ll = ].)l

N3

B T4 T

=] l1,1) .
§2|2 4 ana 17)

(n1 + l ) (TLQ + lg)
(2.54)
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Vysledné maticové elementy se (viz [10], [11]) redukuji na vypocet
prekryvovych integrala

(Nla Ll) fllNQ, L27 ‘52) = /Ooo TRNl,Ll (glr)éN2’L2 (527')(17' . (255)

Tyto integraly jsou relativné snadno spocitatelné, viz [10].

2.5.1 Numerické experimenty

V této &asti jsou shrnuty ¢iselné vysledky numerickych experimentii
provadénych na atomu helia. Hlavnim smyslem numerickych exper-
imenti byla tvorba podkladt pro odvozeni pfislusnych rekurentnich
relaci (2.48, 2.49, 2.50) ve tvaru, ktery je numericky stabilni a vy-
pocetné efektivni, nésledné otestovani spravnosti a nalezeni efek-
tivnfho a numericky stabilniho algoritmu vypoctu hodnot hyperge-
ometrickych funkci. Je tfeba se také zminit o otdzce stinicich kon-
stant & a &. Hlavni pozornost byla vénovana otdzce vypoctu in-
tegralu. Stinici konstanty & a &» je mozno vhodné optimalizovat,
aby se dosahlo rychlé konvergence CI. V literatufe zatim nebyla
nalezena, systematicka analyza tykajici se téchto konstant, hledani
jejich optimalizovanych hodnot je zatim obtizny tkol. Je potfeba ro-
zligit minimalné dva mozné pifpady: Pro monoexcitované stavy 2°5
a 2°P pouzivdme &, = 1 a &, = 1 —1/Z. V ostatnich piipadech
uvazujeme &, = &, = 1. Tyto hodnoty byly numericky ovéfeny
vypoctem CI s 50 bazovymi funkcemi.

V tabulce (2.1) je vidét zdvislost vypoctené variaén{ energie za-
kladniho stavu atomu helia ziskaného diagonalizaci zobecnéného
vlastniho problému na po¢tu zahrnutych stavi, tj. na velikosti vyfezu
matice. V tabulce (2.2) je stejnd zévislost pro stav 23S a v tabulce
(2.3) pro stav 2°P. Pro zdkladn{ stav konverguje energie v zdvislosti
na fa4du matice ponékud pomaleji. Energie stavii 23S a 23 P konver-
guje lépe. Pro tyto stavy jsme dosdhli chyby mensi nez 1-107%, co%
je vzhledem k jednoduchosti pouzité baze dobry vysledek.
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Tabulka 2.1: Variacni energie Ey zékladniho stavu helia ziskans diagonalizact
zobecnéného problému vlastnich hodnot (2.52) pro dané N. Réd odpovidé fddu
vyfezu matice. AE zna¢f rozdil Ey — En_1. Pfesna hodnota je —2.903724373

[5].

N | rad En AE
1 | 10 | -2.8725067

2 | 30 | -2.8975136 | -0.25 10~}
3 | 60 | -2.9009036 | -0.33 1072
4 | 99 | -2.9020298 | -0.11 1072
5 | 146 | -2.9025655 | -0.53 1073
6 | 200 | -2.9028682 | -0.30 1073
7 | 260 | -2.9030582 | -0.18 107®
8 | 325 | -2.9031862 | -0.12 1073
9 | 394 | -2.9032773 | -0.91 10~*
10 | 466 | -2.9033447 | -0.67 10~*
11 | 540 | -2.9033962 | -0.51 10~*
12 | 586 | -2.9034357 | -0.39 10™*
13 | 632 | -2.9034672 | -0.31 1074
14 | 678 | -2.9034922 | -0.24 10~*
15 | 724 | -2.9035120 | -0.19 10~
16 | 770 | -2.9035277 | -0.15 10~*
17 | 816 | -2.9035404 | -0.12 10~*
18 | 862 | -2.9035508 | -0.10 10~*
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Tabulka 2.2: To samé jako v Tabulce 2.1, ale pro 23S stavy. Pfesnd hodnota je
—2.175229378 [5].

N | réd E AE

1 | 17 | -2.174245506

2 | 47 | -2.175088716 | -0.84 107°
3 | 8 | -2.175208569 | -0.11 1073
4 | 130 | -2.175221935 | -0.13 10~*
5 | 175 | -2.175225653 | -0.37 10~°
6 | 232 | -2.175227182 | -0.15 105
7 | 288 | -2.175227945 | -0.76 10~°
8 | 340 | -2.175228372 | -0.42 10~¢
9 | 401 | -2.175228626 | -0.25 10~°
10 | 456 | -2.175228790 | -0.16 10~
11 | 502 | -2.175228901 | -0.11 1076
12 | 537 | -2.175228977 | -0.75 107
13 | 562 | -2.175229025 | -0.47 10~7

Tabulka 2.3: To samé jako v tabulce 2.1, ale pro 23P stavy. Pfesna hodnota je
—2.133164181 [5].

N | fad E AE

1 | 15 [ -2.131319860

2 | 54 | -2.132970321 | -0.16 102
3 | 106 | -2.133129547 | -0.15 1073
4 | 158 | -2.133151474 | -0.21 10~*
5 | 224 | -2.133157958 | -0.64 10~°
6 | 292 | -2.133160583 | -0.26 10~°
7 | 368 | -2.133161872 | -0.12 107°
8 | 450 | -2.133162588 | -0.71 10~
9 | 521 | -2.133163013 | -0.42 10~©
10 | 594 | -2.133163291 | -0.27 10~¢
11 | 672 | -2.133163480 | -0.18 10~¢
12 | 740 | -2.133163610 | -0.12 107°
13 | 798 | -2.133163699 | -0.89 107




Kapitola 3

Diskuse a zaveér

3.1 Diskuse vysledku

Jak bylo uvedeno vyse, radidlni ¢ast integrali (1.1) je mozno pocitat
dvéma, zpusoby. Prvni moZnost je pfevedeni integralli na vypocet
hypergeometrickych funkei (2.38, 2.39), druhd moznost je pozit re-
kurentnich relac{ (2.382.43). NiZe budou diskutovény obé moznosti.

Prvni variantu jsme zkouSeli pro pfipad, kdy stinici konstanty
& a & byly stejné [11, 12]. V tomto pfipadé se ve vsech vztazich
vyskytuji hypergeometrické ! funkce se zdkladem 2. Zobecnéni pro
piipad rtznych stinicich konstant je pomérné snadno proveditelné,
nicméné jsme se jim z Casovych divodi nezabyvali.

Vyhody a nevyhody této varianty jsou nésledujici. Pii pohledu
na vztahy pro maticové elementy (2.39,2.40, 2.41, 2.42) je zfejmé,
ze tyto elementy lze pocitat na sobé zcela nezdvisle. To znamens,
7e maticové elementy je mozno pocitat zcela paralelné. Vyhoda to-
hoto postupu je, Ze pfi souc¢asném stavu vypocetni techniky je pod-
statné snazsi provadét mnoho nezavislych vypocti paralelné, nez
jediny vypocet mnohondsobné vyssi rychlosti. Tento postup vsak
klade vysoké néroky na numerickou piesnost vypocitanych hodnot
hypergeometrickych funkci. Zna¢né ¢éast usili proto byla vénovéna
problému vypoétu hodnot hypergeometrickych funkci. Tyto funkce

!Hypergeometrickd funkce viz [1] se obvykle znati F(a,b;c;z), kde z je takzvany
zdklad. Gaussova fada hypergeometrické funkce je definovdna vztahem F(a,b;c;z) =
Z?:o (i)('c‘)(Tb)"-zn—': Poznamenejme, ze zvoleni vhodného bodu, ve kterém provadime rozvoj,
maé zdsadni vliv na numerickou stabilitu vypoctu.

17
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jsme se nejprve pokouseli pocitat z definice [1] a z Gaussovych relaci
pro hypergeometrické funkce. Tento postup vSak uspokojivé funguje
jen v raciondln{ aritmetice [13]. V aritmetice s kone¢nou piesnosti
ddvé casto nepfesné vysledky. Po mnoha riznych pokusech jsme
nakonec vyvinuli algoritmus vypoctu popsany v [12]. Tento algo-
ritmus déva zatim nejpfesnéjsi numerické hodnoty hypergeomet-
rickych funkei v §irokém rozsahu argumentt a je znacné efektivni.

Druhd varianta je rekurzivni vypocet [10]. Tato moznost byla
rozpracovana zcela obecné, tj. 1 pro ruzné stinici konstanty. Samotna
rekurzivni procedura vypoc¢tu vSak nefesl principidlné problém nu-
merické stability. Jeden z hlavnich vysledka této prace je proto
nalezeni takovych rekurentnich relaci, které vykazuji vysokou nu-
merickou stabilitu. Rekurzivni vypocet vyuziva k nalezeni ur¢itého
maticového elementu maticové elementy s blizkymi hodnotami kvan-
tovych éisel. Tento vypocet nelze provadét s takovou mirou par-
alelizace, jaké se dalo dosdhnout v predchozi varianté, nicméné vyse
popsané rekurentni relace je mozno Castecné paralelizovat. Posledni
moznost zatim nebyla z ¢asovych divodl rozpracovina do detailu.

Vyhoda vyvinutého algoritmu vynikne pfi vypoctu spekter vice-
elektronovych atomi. Predbézné testy provedené na atomu helia
ukazuji, ze metoda a jeji programova implementace je zcela korektni
a dava vysledky, které souhlasi s jinymi teoretickymi vypocty a ex-
perimenty.

3.2 Hlavni vysledky prace

Hlavn{ vysledky této préce jsou:

1. linearizace soucinu dvou radidlnich funkeci a nalezeni numericky
stabilni metody vypoctu koeficientt linedrni kombinace {11, 10],

2. odvozeni numericky stabilnich rekurentnich relaci pro reduko-
vané integraly (2.48, 2.49, 2.50) [10],

3. zjisténi, Ze redukované integraly (2.37) a koeficienty linedrni
kombinace (2.38, 2.39) lze vyjadiit prostfednictvim hypergeo-
metrickych funkef [11],
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4. nalezeni numericky stabilni metody vypocétu hypergeometrickych
funkei [12],

5. vyvoj programu pro vypocet energii atomu He [12, 10],

6. spotteni velmi ptesnych hodnot energii atomu He [10].

3.3 Zavér a vyhledy do budoucna

Chteli bychom rozpracovat do detailu body 3. a 4. uvedené mezi
hlavnimi vysledky. Déle chceme rozsifit metodu na relativistické
radidln{ funkce (funkce, jez jsou feSenim Diracovy rovnice pro atom
vodiku). Kromé toho chceme aplikovat vyvinutou metodu na vypocet
CI vice-elektronovych atomt, a tyto vysledky pak dale pouzit na
zjisténi vlivu slabych interakei na atomova spektra. Uvazujeme také
o rozsifeni metody na dvoucentrové integraly.
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The use of the so(2,1) algebra for the study of the two-electron atoms is suggested.
The radial part of the two-electron function is expanded into the products of the
one-electron functions. These one-electron functions form complete, entirely dis-
crete set and are identified as the eigenfunctions of one of the generators of the
s0(2,1) algebra. By applying this algebra we are able to express all the matrix
elements in analytic and numericaly stable form. For matrix elements of the two-
electron interaction this is done in three steps, all of them completely novel from
the methodological point of view. First, repulsion integrals over four radial func-
tions are written as a linear combination of the integrals over two radial functions
and the coefficients of the linear combination are given in terms of hypergeometric
functions. Second, combining algebraic technique with the integration by parts we
derive recurrence relations for the repulsion integrals over two radial functions.
Third, the derived recurrence relations are solved analytically in terms of the hy-
pergeometric functions. Thus we succeed in expressing the repulsion integrals as
rational functions of the hypergeometric functions. In this way we resolve the
problem of the numerical stability of calculation of the repulsion integrals. Finally,
as an illustration, the configuration interaction calculation of the lowest lying states
of the He atom is discussed. © 2004 American Institute of Physics.

[DOI: 10.1063/1.1760844]

I. INTRODUCTION

Two-electron atoms (like He, H™, Li*) are of great importance for their relative simplicity.
There are primarily three interesting problems to be studied on the two-electron atoms. First, since
the nonrelativistic Schrodinger equation can be solved very accurately for the ground as well as
low excited states,! ™ the relativistic and QED effects can be taken into account*'® and com-
pared to the expc:rirnent.lg“22 This yields together with the study of the hydrogenlike atoms precise
test of QED as a fundamental theory of the interaction of the electrically charged particles.*~2
The second interesting point is the study of resonances.’®~2® This was stimulated by the experi-
mental discovery of the strong correlation effects in the doubly excited states of helium? and led
to new theoretical concepts, like approximate quantum numbers**~3? and others. For an excellent
review of these methods, see Ref. 33. Third, if the many-electron wave function is searched for in
the form of expansion of a properly symmetrized product of the one-electron functions all the
necessary matrix elements can be reduced either to one- or two-electron matrix elements whatever
the number of the electrons involved. Therefore, if we find an effective method of calculating
these matrix elements for the two-electron atoms, this method can be directly applied to all atoms
and to the simplest molecules where it is physically reasonable to use orbitals localized at one
center.

For low lying states of the two-electron atoms with low nuclear charge, the best approach is
the one based on the use of the explicitly correlated functions.!™!* This method consists of
considering the interelectronic distance r;, as one of the coordinates. For example, for the S-states

0022-2488/2004/45(7)/2674/20/$22.00 2674 © 2004 American Institute of Physics
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of helium, the two electron wave function is considered as a function of three variables ry, r,, and
T2, Y=u(r;,ry,rp). However, the disadvantage of this method is that transition to the three-
electron atoms is very difficult® and increasing the number of the electrons further the method
quickly loses its attractivity. Therefore, the method is not generally considered as a suitable tool
for solving the many-electron problem.

The most accurate available method applicable for many electron problems is the configura-
tion interaction method (CI) (see e.g., Refs. 35, 36). This method has been applied on the two-
electron atoms either for finding some general trends of behavior of correlation energy like its
angular dependence, optimization of the screening constant, and so on®’~** or in combination with
the complex scaling method (see, e.g., Ref. 45) for a description of resonances, 2628:31.32

However, the problem is when one wants to perform very large scale CI calculation to get
very accurate results. Then one encounters what is usually refered to as the effect of linear
dependence of the basis set. Due to numerical errors, for large basis sets the linear independence
of the basis functions is lost. Thus, from some point the inclusion of more basis functions does not
improve the variational results. To avoid this, one should keep the basis functions orthogonal.
However, this requirement causes the highly excited functions to have large number of nodes and
to change their sign frequently. That leads to the numerical instability of the calculation of the
repulsion integrals.

This effect is quite general and appears also in the case of the explicitely correlated functions.
However, here the convergence of the method is so fast that very accurate results are obtained
before the problem appears.

To ensure numerical stability for the large scale CI calculations nonanalytic types of the basis
functions like B-splines'? or piecewise polynomials*' or analytic types with many parameters®
were invoked.

The aim of this paper is to suggest an efficient analytic method for calculating the one- and
two-electron matrix elements applicable to all atoms and with numerical stability under control.

In this paper, a great deal of attention is devoted to the calculation of the repulsion integrals
and the numerical stability of such a procedure. We expand the two-electron wave function into
the symmetrized product of the complete, entirely discrete one-electron basis set. This basis set is
in literature often refered to as a Sturmian one and its use goes back to the classical paper of
Hylleraas.46 However, in contrast to the usual treatment we identify these basis functions as the
eigenfunction of one of the generators of the so(2,1) algebra.’~>? This algebra is used for the
calculation of the radial integrals appearing in the multipole expansion. We first introduce an
analog to the Wigner—Eckart theorem for the so(2,1) algebra, i.e., we write the product of two
radial functions as a linear combination of the radial functions. The coefficients of the linear
combination can be expressed in terms of the hypergeometric functions. In this way we reduce the
two-dimensional integration over four radial functions to the two-dimensional integration over two
radial functions. Combining commutations relations of the so(2,1) algebra and analytic integration
by parts we derive the reccurence relations for the integrals over two radial functions. In this way
we reduce all the integrals to the integrals over nodeless functions. These integrals are calculated
analytically. Finally, the derived reccurence relations are solved analytically in terms of the hy-
pergeometric functions. Thus, we are able to express all the repulsion integrals as rational func-
tions of the hypergeometric functions. Succeeding in this, this paper represents the solution of the
problem of the numerical instability for the large scale CI calculations.

The problem considered in this paper was already tackled in Ref. 53. For the following
reasons we believe that our solution is better suited for the computational purposes than that given
in Ref. 53. First, when writing the products of the Laguerre polynomials as a linear combination
of the Laguerre polynomials we succeded in expressing the coefficients of the linear combination
in terms of the hypergeometric functions. Second, our recurrence relations for the integrals are
much more simpler than that derived in Ref. 53. Third, we were able to solve them in terms of the
hypergeometric functions. In this way all possible numerical instabilities are localized into the
calculation of the well-known hypergeometric functions. These functions were thoroughly inves-
tigated by mathematicians and are known for long time. Once the values of these functions are
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calculated, the computation can be run in the double presicion arithmetics. In Ref. 53, the numeri-
cally unstable parts of the calculation had to be performed in integer arithmetics. On the other
hand, at the present stage, the method described in this paper is less general than that given in Ref.
53. Possible generalizations of our method are indicated in the conclusions and will be described
in detail in the forthcoming paper.

The paper is organized as follows: First, the algebraic solution of the hydrogen atom by means
of the so(2,1) Lie algebra is described. Second, the problem of the helium atom is put into the
form suitable for the use of so(2,1) algebra. Then we turn to the calculation of the repulsion
integrals. Relying on the usual multipole expansion and integrating out the angular degrees of
freedom in the usual manner, we concentrate on the calculation of the radial integrals. The two
methods for calculation of the radial integrals are described. The first one consists of the expansion
of the radial functions into the Slater-type orbitals, i.e., into the products of the exponential
function and power of r. It is shown that this method is numerically unstable and reason of the
instability is clarified. The second, “quasialgebraic”” method is that described above. Finally, as an
illustration, the CI calculation for the lowest lying states of helium atom is made and the optimi-
zation of the screening constant is discussed.

We would like to stress that we are not going to compete with the techniques using explicitly
correlated functions. We apply the method for the states where CI is known to be converging very
slowly to see numerical stability of our computation of the integrals. It is reasonable to expect that
for other states the performance of the method will be better.

Il. ALGEBRAIC TREATMENT OF THE HYDROGEN ATOM

In this section we introduce the so(2,1) algebra and show its use for the solution of the
Schrodinger equation for hydrogen atom. For more detailed discussion see, e.g., Ref. 47. We adopt
the same notation as that in Refs. 47 and 48.

Let us consider the Schrodinger equation for the hydrogen atom in atomic units

Vil
—7—7}¢=E!//' (0

The key idea for solving this equation algebraically is to transform this equation into the equation
for the eigenvalues n of the operator T3

Ts|l,nY=n]|l,n), (2)
where the operator T'; equals
1 I(1+1
T3=§(rp3+ ( > )—I—r). (3)

Here p, is the conjugated radial momentum
] 2 + : 4
p=—il =, @

[(1+1) is the eigenvalue of L?, the square of the angular momentum and 7 is the principal
quantum number (see below).
Equation (1) can be transformed to Eq. (2) as follows. Using the expression for the Laplace
operator in the spherical coordinates
L2
V2= p% + s &)

multiplying Eq. (1) by » and making the scaling transformation r—nr we get
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L f 5 B ,
M p,+72- —n°Er|y=ni. (6)
We separate the angular and radial degrees of freedom
(x| y=(r|L,n)(n|L,m), ™

where n is a unit vector pointing in arbitrary direction and (n|l,m) are spherical harmonics, the
eigenfunctions of the square and the third component of the angular momentum, 1> and L,
respectively. Setting

E=—— 8

Eqgs. (2) and (6) are the same.

The advantage of this reformulation of the problem of the hydrogen atom is that first, as we
show below, the problem of the eigenvalues of the operator T3 can be solved purely algebraically,
second, the spectrum of the operator Ty is purely discrete. Therefore, this operator is much more
advantageous for description of bound atomic states than the usual operator in Eq. (1).

The eigenvalues of the operator T3 can be obtained by observation that T3 and the operators

T1=%(rp%+ l(lf 2 —r) ©

and
T2=rpr (10)

are closed under the commutation and form the so-called so(2,1) Lie algebra

[T, T,]=—iTs, (11)

[Ty, T3]=iT,, (12)
and

[T5,T]=iT,. (13)

Proceeding in analogy with the usual treatment of the so(3) algebra of the components of the
angular momentum we introduce the ladder operators

Py s (14)
From the commutation relations (12) and (13) we get
[T3,T+]==%Tx. (15)
Applying the last equation to the eigenvectors |/,n) we get after some manipulation
T3(Tx|lLn))=(nx1)(T+|l,n)). (16)

It is clear from the last equation that the vectors T'..|/,n) are the eigenvectors of the operator T3
with the eigenvalues corresponding to n* 1. Therefore, we can write

T.|lLn)=a*(l,n)|l,nx1), (17)
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where a®(l,n) are numbers specified as follows. From Egs. (14), (11), (9), (10), and (3) we get
successively

T, T_=T+T3+i[T,,T\]=T+ T5—T3=T>~I(I+1)—Ts. (18)
Applying the last equation to the eigenvectors |/,n) we get from Egs. (2) and (17)
at(ln—1Da (ILn)=n*—n—I(+1)=(n+)(n—-1-1). (19)

Requiring that the spectrum of the operator T3 is bounded from below, i.e., there exists some 7,
such that

T Lt =0, (20)
we get from Eq. (19) that @™ (I,n4;,)=0. This implies
Rpgn=1+1. @1)

Therefore, the eigenvalue spectrum of the operator 7' starts at =7+ 1 and then increases by 1 up
to the infinity. Since the energy E is given by Eq. (8) we identify n with the usual principal
quantum number.

To determine the numbers @™ (l,n) uniquely we require that the eigenvectors |I,n) are nor-
malized ((I,n|l,n)=1). It leads to the following solution of Eq. (19):48

at(ln—1)=a (I,n)=VJ(n+)(n—1—1). (22)

For further considerations, let us show how the matrix elements of the radial coordinate r can
be obtained. The radial coordinate » can be expressed as the difference of the operators T3 and T
[see Eq. (3) and (9)]. From Egs. (14), (17), and (22) we get that the operator r acts on the states
I,n) as follows (see, e.g., Ref. 48)

rlLn)y=—3V(n+D)(n—1-1)|l,n—1)+n|l,n)— N(n+1+1)(n—D|l,n+1). (23)

lll. ALGEBRAIC TREATMENT OF THE HELIUM ATOM

In this section we first transform the Schrodinger equation into the form suitable for the use of
the s0(2,1) algebra. Next we turn our attention to the symmetry adaptation of the wave function.
Relying on the multipole expansion, we separate angular and radial degrees of freedom in the
conventional manner. We note that one of the alternatives to such an approach was recently
suggested in Ref. 57. Finally, we integrate out the angular part and derive the expression for the
radial integrals.

A. Schrodinger equation

The Schrodinger equation for the two-electron atoms in atomic units takes the form

Y=EY, (24)

where Z is the charge of the nucleus and ry, denotes the interelectronic distance.
By scaling the coordinates of the electrons xD ﬂZ_lx(‘), i=1,2, we get an equivalent
equation

1
o2 y=—7EY. (25)
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Here, 7 is an arbitrary scaling parameter that can be subject to further optimization. Multiplying
Eq. (25) by ryry, writing the energy E as
72
E=— = +AE (26)

and using Egs. (3) and (5) we rewrite Eq. (25) into the form
7 i
(T80 = )+ ro(TSO= )+ S riraryy! \ =z ABr . (27)

Since the matrix elements of the one-electron operators r; and Tgi) can be calculated from Egs.
(23) and (2), respectively, the only remaining matrix elements to be calculated are the matrix
elements of the operator rlrzrl_zl, i.e., the repulsion integrals. Before doing so, we turn our
attention to the construction of the wave function.

B. Construction of the wave function

The two electron wave function |} has to be antisymmetric with respect to the interchange of
the electrons. In this paper we restrict ourselves to the calculation of the ground state energy. Since
the spin part of the ground state wave function of the helium atom is antisymmetric, the space part
has to be symmetric. Further, because of the spherical symmetry of the problem, the components
and the square of the total angular momentum L=L"+L® commute with the Hamiltonian. It
means that the Hamiltonian has the block structure and the states with different eigenvalues of L;
and L? do not mutually interact. The ground state is the singlet state with L=0, where L(L+1) is
the eigenvalue of the operator L2. Therefore, the angular part of the wave function equals

0,0)

!
(LD0)= 3 (Lm,L,=m|00)]t,m)V|t,=m). (28)

Here, (|) denotes the Clebsch—Gordan (CG) coefficients. It follows from the properties of CG
coefficients that Eq. (28) is the only nonzero combination of the products of one-electron angular
states yielding the state with L =0. It means that to characterize the angular part of the total wave
function we need just one quantum number /. It also follows from the properties of CG coeffi-
cients that the linear combination is symmetric with respect to the interchange of the electrons.
Therefore, we expand the exact wave function into the unperturbed wave functions as follows:

W)=2, fili), (29)
where
iy =27 3|1, ) V) i) P+ 1) DN ny YB) |(14,1)0). (30)

Here, the states |I,n) are the eigenstates of the operator T3 given by Eq. (2). The coefficients f;
will be determined from the diagonalization of Eq. (27).

C. Matrix elements

Now we describe how the matrix elements of the operator rlrzrl"z] among the functions (30)
are calculated.

Projecting the states |/,n) onto the coordinate basis we get the radial functions R, ,(r)
=(r|l,n). Introducing the inner product
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(il = [ dr Ry ()Rey 1,7 (31)
0

the functions R, (r) are orthonormal for [} =1, (I;,n|l;,ny)= Sn, ., We note that this inner

product differs from the usual one by the factor »~! in the integrand (see, e.g., Refs. 47, 48).
To separate the angular and radial degrees of freedom we expand rl_zl in the multipole expan-
sion

1 & feAt
-1 <
Fig =— — | P)(n;-my), 32
2 ,>,_ZO(,>) ((my o) (32)
where ro=ry, ro=ry if r\<ry and r-=r,, r~=ry if r;>r,. Here, the P;(x) denotes the
Legendre polynomials. With the definition of the inner product (31) and multipole expansion (32)
the matrix elements of r1r2r1_21 can be written as
I+l
(i|rirar ) =27 Cryng* Onjy n )2 ; | 91.,1}.,1[Xli’lj’l +x04! 1, (33)
= Ii—lj h

LR R ) ROV L RLO 3

where / in the summation increases by 2.
Here, the angular part 91,--!,,1 corresponds to the calculation of the matrix elements of the

Legendre polynomials between the coupled states (28)

[(21+1)(21+1)]"7
21+1

ali,lj,lz((li,li)olpl(nl m)|(1;,1)0)=(—1)"* (1;,0.1;,0]1,0)2.

(34)

This result is obtained with help of the algebraic angular-momentum methods (see e.g., Refs.
54-56). It follows from the properties of the CG coefficients that 9’;,','" is zero unless |/;—1 jl
<I<l;+1; and [;+1;+1 is even. Therefore, the sum in Eq. (33) is not infinite and in fact contains
only a few terms.

The radial part of the integration reads

!
xlidlt = oodr oodr iR, o (r )R, e )r_<R (roRy, 1.(r2)
v Jo AT o GTTT 2 TR 1 T 2) TR Ry g {71 172

Myt My ety

o oo
= 1+2 —1+1
_fo driRy, 1 (rORy, 1 (r)7 f1erRn‘-z,li(rZ)Rnﬂ.Ij(rZ)rz

# 2
o B r
+f driRpy, 1 (r)R, 1 (ri)ry IHJ droR, , 1 (r)Ry 1 (r2)r5' 2. (35)
0 TN LAty 0 1277 Je7)

The following section is devoted to the calculation of these integrals.

IV. CALCULATION OF THE RADIAL INTEGRALS

In this section that is the main part of the paper, two methods of the calculations of the radial
integrals (35) are described. The first method is given in the Sec. IV A and is based on the
reduction of the integrals to the integrals over the Slater-type orbitals. This method is essentially
the same as that used in Ref. 37. This method is shown to be numerically unstable. The second
method is described in the remaining three subsections. In the Sec. IV B the integrals over four
radial functions are transformed to the integrals over two radial functions with help of the analog
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of Wigner—Eckart theorem for so(2,1) algebra. In Sec. IV C the recurrence relations for the
remaining integrals over two radial functions are derived. In Sec. IV D these recurrence relations
are solved analytically.

A. Expansion into the Slater-type orbitals

The expansion of the integrals into the Slater-type orbitals is based on the explicit form of the

radial functions
tn—1— 1)1 _
R, (r)=2 V(n+—l)!e MReP L (28, (36)

where L2!"! (2r) are generalized Laguerre polynomials (see, e.g., Refs. 59-61).

Using the explicit form of the Laguerre polynomials we can rewrite the radial functions
R, i(r) as the linear combination of the Slater-type orbitals, i.e., as the products of the exponential
function and power of r

n—1=1
Rofrd=2 X o™, (37)
g=0
where the coefficients d,, ; , equal

N ] (n+1)! o
Y= N "GIDT (rml=1=g)lgilF Trgr V2 8

Inserting this expansion into the integrals (35) we obtain after some manipulation

ny— =1 np—l=1 njy—1—1 njp—I;—1

by byt
X 4 E d > d > d > d
n: ,l.,q. n. ,].,q. n. ,].,q. - Y[.,q.
il il gin=0 271442 411=0 JLAEE L qj2=0 Jj2 J2

Bt Higalireiys q;1=0 i J

l !
X [lqil+‘7j1+1i+lj+ l,qi2+qj2+l,-+lj+l +Iqi2+qj2+li+lj+ lvqil+qjl+li+1j+ l]’ (39)

where

o« rl
o b=24f drie s Ij drye~ Fapl bl
‘ 0 0

o ®
=24J drle~2rlr?+l+1f dr2e—2r2rg—1
Ay r

ag—1
b+1+g+1)!
=(a—1)12"1"2%-1-ay Lksnd ad )il 279,

40
e (40)

This way of calculation of the integrals (35) suffers by numerical instability. For example,
running the formula (39) between the states with n; =21, n;,=19, ;=3 and n;;=17, n,
=23, I;=1 in the double precision arithmetics yields the totally meaningless result 10% for both
[=2 and [=4. The reason for the instability is the changing sign of the d, ; , coefficients, Eq.
(38), that causes cancellation errors (see also discussion in Ref. 53). These changes are related to
the orthogonality of the Laguerre polynomials. There is, of course, possibility to relax the require-
ment of having the orthonormal system of the functions and to consider the radial wave functions
in the form R, (r)=0U, e "r"~!. This system is complete as well as the system (36). The
pertinent radial integrals (35) can then be calculated according to the formula (40) and the matrix
elements of the operators in Eq. (27) are calculated easily as well. The problem of doing this is
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that the numerical instability is just moved from the calculation of the integrals (35) to the
generalized eigenvalue problem (27). In the case of the nonorthogonal basis the matrix r,r, on the
right-hand side of Eq. (27) is not just quasitridiagonal, but full.

Therefore, we will solve the problem of the numerical stability on the level of calculation of
the integrals (35).

B. “Wigner—Eckart theorem” for so(2,1) algebra

Looking at Eq. (35) we observe that there are always the products of the wave functions of the
same variable (like R"u ) li(rl)R"jl ) ,j(rl)) that enter into the integration. Therefore, in the first step
we try to write the product of two radial functions as a linear combination of the radial functions.
Here, we proceed analogously to the angular integration. This trick of writing the product of two
spherical harmonics as a linear combination of the spherical harmonics is a special case of much
more general theorem called Wigner—Eckart theorem (see e.g., Refs. 54—58). We found its analog
for so(2,1) algebra to be

npbn—1,—1.—2

Lot (n;+tn;—n—1+1;+1;)!
— Aliodj Ll ) i Xy
rR,,,_,,i(r)R,,j,,j(r)—A"i,{,j ,,;_1 €y (ni+nj—n—1;—1,—2)! netny=n=14p+127);
41)
where the multiplicative factor Af”'"l,f; equals
>
A,i_,j:21‘”f‘"f(n,-+nj—l,-—lj—2)!(n,-+1,-+nj+lj)!\/(n,-—l,-—l)!\/(n,—lj—l)!
(42)
The coefficients ci‘ljl , Of the linear combination read
(4 fF
iy el (b~ 1—2-n)Ch (43)
Cn‘-,nj,n_ npangan (ni nf i J n ni,nj,n+l’
where the coefficients C;"‘_’f'{j'n are given as
Cli'lj :F(—n,+l,+1,—n,—n,—nj+l,+lj+2,2)F(—-n,-—l,,—n,—n,—n,—l,—lJ,Z)
il (thtutl—n—1})a!
(44)

for n=0 and equal zero otherwise. Here, F(a,3;y;z) denotes the hypergeometric function (see
e.g., Refs. 59-61).

The formula (41) was derived from the identities for the Laguerre polynomials found in Ref.
59, namely Eq. (5) of Sec. 8.6.4 and Eq. (11) of Sec. 5.5.2.

It is evident from the orthonormality of the radial functions for /;=1; that an expression like

(41) has to exist. What is new here is the explicit form of the coefficients cf{""f; o
LT

Using Eq. (41) in the radial integrals (35) we rewrite them into the form

nijptnjg=-li=1=2 nptnjp—li—1;=2
Xll-,]j,[ _Ali,lj Ali‘lj 2 cl,’,lj Cli,]j

LA RL L) Byl Bigaty ny=—1 BNyt ny=—1 Byl ity

(nl.1+njl—n1—l+l,~+lj)! (niptnjp—ny—1+1L+1)!
(niytnjy—ny=li=L;=2)! V(nptnjp—ny=li=1;=2)!

x Qlitit (45)

nl-l+nj1—1—n1,ni2+uj2—l—n2’

where Qﬁ'}’, N, denotes the integrals over two radial functions
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ON! v, = 0w, + O i, - (46)
Here,
03 = | "arik, s2rrt" f:drzRNz,Lurz)r;’ 47)
and
On'h,= J:anNl 2L@2rry’! forldrzRNz.L(Zrz)r’;l. (48)

Before proceeding further let us point out that once the values of the hypergeometric functions
and factorials are calculated, Eq. (43) is numerically stable. Therefore, this step of the calculation,
the reduction of the integrals over four radial functions to the integrals over two radial functions,
is numerically stable. The next step is to find the stable way of calculation of the integrals
(46)—(48).

C. Derivation of the reccurrence relations for the integrals

In this subsection, we derive the recurrence relations for the integrals (47) and (48).

To motivate our further considerations we note that when we expand the radial functions in
the integrals (47) and (48) into the powers of r, Eq. (37), the numerical instabilities appear again.
Obviously, to achieve numerical stabilization we have to treat the functions R, (2r) as one
indivisible object. The functions R, ;(2r) are treated in this way, when applying algebraic ap-
proach. The ladder operators T change the whole function R, ,(2r) into the other functions
R,+1,(2r). Therefore, in the following we try to apply these ladder operators to the radial func-
tions. To do so, we have to combine this algebraic technique with the analytic integration by parts.

1. Elementary example

For the sake of transparency, let us first consider the integral

Ty
J;) drzRN2‘L(2r2). (49)

After we show the numerically stable way how to calculate this integral, we extend it to the
integrals (47) and (48).
First, let us show that

1 d 1
fo drzrz(“ir_2+ r_z)[RNZ,L(er)]:rlRNZ,L(zrl)- (50)

The proof is elementary. Expanding the brackets on the left hand side we get

Ty d 1 ’1 r d
f dry rz(_+_)[RN2,L(272)]=f drzRNz,L(2r2)+j dryry=—[Ry, 1(2r2)].
0 ry 0 0 dry™ 72

dr2
(51)
Integrating the second term by parts
| d " ry
drory5—[Ry, 1(2r)]=[r:Ry, 1(2r2)])' = | draRy, 1(2r3) (52)
0 dr2 2 2 0 2

and inserting this term into Eq. (51) we get Eq. (50).
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Second, we observe that the operator r((d/dr) + (1/r)) is up to the imaginary unit equal to
the operator T,, Eq. (10) and the operator T, can be expressed as the difference of the creation
and annihilation operators T, and T_, Eq. (14)

d

1 1
r((—f;)=zrp,=lr2=5<T+—T_>- (53)

Thus, from the algebraic side we see that the operator (53) acts on the radial functions as

d 1 1
r(5+ 7) [Ry,(21)]=5 V(N +L+1)(Ny—L)Ry, +1,.(27)

1
-EJ(N2+L)(N2—L_I)RN2—~1,L(2r)1 (54)

where Eq. (17) was used.
Finally, combining the analytic result (50) with the algebraic one (54) we get the recurrence
relation for the integrals (49)

1 T 1 r
E\I(Nz‘*'L"‘l)(Nz_L)fo erRN2+1,L(2r2)_E\I(N2+L)(N2_L_1)f0 dryRy,—1,1(2r3)
=riRy, 1(2r). (55)

With this reccurence relation we reduce the quantum number N, to L+ 1. The integral over
nodeless function Ry 41 (2r;) is calculated analytically according to Eq. (40). The advantage of
the recurrence relation (55) is that calculating integral over Ry, +1 1(2r,) from the integral over

Ry,-11(2r2) contains the sum of positive numbers and not the difference of two numbers.
Therefore, it is numerically stable.

oLyl

2. Recurrence relations for Qy’ 'y,

connecting different values of N,

Now, we extend the described procedure to the calculation of the integrals appearing in Eq.
(48)

Ty
JO dryry" 'Ry, 1(2r). (56)

The analytic aspect is the same. By the same calculation as for Eq. (50) we get

T d 1
J drzrz('d_‘l"_“)[RNZ,L(Zrz)rlz-'—l =rll+2RN2,L(2r1). (57)
0 ry rz

1+1 i

From the algebraic side we can deal with the extra term '™~ using the commutation relation*

[ irp,)=—kr® (58)

that holds for every integer k>0. Applying this operator identity for k=141 to the radial func-
tions Ry, 1(2r) we get
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it} |
2 [+1 [+1;
jo dryiryp,[Ry, 1(2r)ry ]:fo dryry tirop, [Ry, 1(213)]
1) | dry i Ry, (2 59
( ) 0 Fg iy N2,L( ra)s (59)

Combining again the analytical result (57) with the algebraic results (54) and (59) we get

1 r
ri Ry, L(2r) = 7 V(Ny+L+1)(N,—L) fo Ry, +10(2r0)ry dry

1 E 1+1
—EV!(Nz‘FL)(Nz‘L‘l) . Ry,-11(2r2)ry "dr,
+(1+1)f IRN2,,4(2r2)r12+1. (60)
0

Finally, multiplying the last equation by rl_’R v,.L(2r1) and integrating from zero to infinity we
obtain

§(L N1 [r[LNy) = (N2 + L+ D) (N~ L) Oy 11

= BN+ L)V, —L=1) 0y 1+ I+ 1) 03 (61)
where we used Egs. (31) and (48). Matrix elements of r are calculated from Eq. (23).
q

oLl

3. Recurrence relations for Q' y,

connecting different values of N,

To derive recurrence relations for Q;,lLNIZ connecting the different values of N; we will need
a slight modification of Eq. (57)

- g 1l 4 i1 1+1
. dryry d_r1+ﬁ [ri Ry, 1(2r1)] A dryRy, 1(2ry)r;
=_Jo dry r%RNl L(2r )Ry, 1(2ry). (62)
This equation can be derived as follows. We expand the bracket on the left-hand side
9 d 1\ . b 1+1
. dryr d_r1+r_1 [r1 'Ry, (2r1)] . dryRy, 1(2r))r;
w ry
=f dr rl_[RNI,L(Zrl)f dra Ry, 1(2r)rs"!
0 0
= d n I+1
+ | driro—[ri "Ry, L(2r)] | draRy, 1(2ry)r; (63)
0 dr h 0 2

and integrate the second term by parts
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N d " I+1
dryrig—[ri Ry, 1(2r)] | ~draRy, 1(2r5)r
0 T 0

e}

—1+1 "1 I+1 © 4 r
=|ri " Ry, 1(2r1) ’ droRy, 1(2r))ry 7| — Odrlrl Ry, (2r1) i dry

0

XRNZ,L(ZrZ)r’;l—J.O dryriRy 1(2r))Ry, (2r1), (64)

where we used the Newton formula for differentiation of the integral with respect to the upper
bound. Since the boundary term vanishes, by inserting Eq. (64) into Eq. (63) we get Eq. (62).

Also the algebraic side of the calculation requires only slight modification of the previous
case. Instead of the commutation relation (58) we use the commutation relation

[r*irp,]=—kr (65)

that is obtained from Eq. (58) by multiplying both sides by 7 ~*. Applying this operator identity to
the radial functions Ry 1(2r;) for k=1 leads to

irip, [ri 'Ry, L2r)1=r{"irip, [Ry, 1(2r)]=1r 'Ry, 1(2r). (66)

We use the last equation in the integrand on the left hand side of Eq. (62), then apply Eq. (54),
where we just replace N, by N,. After some manipulation we get the sought reccurence relation

— §(L.Ny|r

LNy)=3(N + L+ 1)(N ~L)Qy 51w,

= WV LN - L- D)@y M, 108, - (67)

4. Recurrence relations for the integrals Qy:"x.

No new ideas are required to derive the recurrence relations for the integrals Q;I’L;\,IZ. Pro-

ceeding in analogy with the previous cases we derive recurrence relations connecting the integrals
with different values of N,,

= (LN [r|LNp) = 2Ny + L+ D) (N, = L) Q5 14

— BN ALYV~ L= 5~ 103, (68)

and the recurrence relations connecting the integrals with different values of Ny,

(LN [P LNy = (N + L+ 1) (N = LYQN v,

~ SN ALYV = L= 1)@} ]y + I+ DOV (69)
It is immediately seen from Egs. (61), (67), (68), and (69) that
ON5L= 0N (70)

Through the derived recurrence relations all the needed integrals are reduced to the calculation
of the integrals QZ;LLI"ILH . These integrals can be calculated from Eq. (40),
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—2+4L

B PR ml’u:z—l(zml)!F(1,—L+1;—2L—1;2). (71)

D. Solution of recurrence relations

To solve recurrence relations derived in the previous section it is advantageous to eliminate
the irrational factors by introducing the unnormalized integrals

(Ny+L)! (N,+L)! .
ELE. * L1
0N =4 N ==t Vv, L= 1)1 21 (72)

Then the recurrence relations take the form

(N, +L)! (Ny+L)!
(N,—L—1)! Y (N,—L—1)!

=(No—L) 0y 1~ (N2 L) 0N 5 = 21045 (73)

(L,Nl r

and

(N +L)! (N +L)!

(L,Ny|r|L,No)
=(N =)0y siw,~ N+ L) O 5y + 20+ 1) 0N - (74)

The recurrence relations for Q,QILNIZ are obtained using Eq. (70).

1. Solution in the variable N,

Because of Eq. (70) we can restrict our attention to the case N;=N,. We note that the matrix
elements (L,N,|r|L,N,) vanish whenever |[N,—N,;|>1, see Eq. (23). That means that for N;

>N,+1 the recurrence relation (74) is homogcnous Since it is the three-term recursion relation
L1

we need two initial values of Oy’ N x namely O’ N, +2 N, and QN <1, to determine the solution
uniquely.
General solution of homogenous Eq. (74) is
Onit, =81(N)F(N;~L,~ L+1+1;-2L;2)
+8(N) (=DM LU F(N - L, - L~1-1;-2L;2). (75)

We found this solution by realizing that the recurrence relation (74) can be transformed to the one
of the relations between contigous hypergeometric functions (see, e.g., Ref. 61). This solution
holds for all N;>N, including the cases N=N,+2 and N;=N,+1, that can be viewed as the
initial conditions. In principle we could determine the functions g;(N,) and g,(N,) by consider-
ing Eq. (75) for Ny=N,+1 and N,=N,+2. However, it is more advantageous to proceed in
different way; to insert directly solution (75) into Eq. (73). This is done in the following para-
graph.

2. Solution in the variable N,
If we consider Eq. (73) for Ny=N,+2 we obtain

(Nz_L)Q;Z'Il’é,NZH - 21@;2’&’5,1\/2“ (N2+L)Q;2EréN -1=0 (76)

Further, considering Eq. (73) for N;=N,+3 we get
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(Nz—L)Q;Z'i’g,zvﬁl_zlézcz’ligw (N2+L)Q;2ﬁ§1v-1 0, (77)

and so on. It seen from these equations that the values of Q;L,J for Ny=N;+1 can be calculated
from Eq. (76), the values of Q+ o2y for N,=N,+2 can be calculated from Eq. (77), and so on.

Therefore, all the values of QN1 _];,12 for N{>N, including the values Ny=N,+1 and Ni=N,

+2 can be calculated from homogenous Eq. (73).
By inserting solution (75) into the homogenous equation (73) we get

F(Ni—=L,—L+1+1;—2L;2)[(Ny—L)g(Na+1)—(Ny+L)g(N,—1)—2lg(N;)]
+(— 1ML F(N —L,—L—1—1;-2L;2)[(N;—L)g»(N,+1)
—(Ny+L)g,(N,—1)—21g2(N3)]=0. (78)

Requiring that this equation is satisfied for Ny=N,+1 and Ny=N,+2 the expression in the
brackets have to vanish. It is the three-term recursion relation having the solution

gi(N) =g (= 1)V L= F(Ny~ L, — L+1;—2L;2)
+gPF(Ny—L,—L—1;-2L;2), i=12. (79)

Thus, Egs. (75) and (79) represent a general solution for QJr . l for all N;>N,. Four constants

gf’) , I,j=1,2 are determined from four values QLHH'LH, l,j= 1,2,
The solution for QIGILNIZ is obtained by reversing the role of N; and N, in Eqgs. (75) and (79).
The constants g,(.j) , I,j=1,2 are determined as in the previous case.

3. Final result

Proceeding in the way described above we arrive to the explicit solution for the integrals
O, »
O Lf =K(L)F(N,—L,—L+1+1;-2L;2)[(—D)Ne*! =+
XF(N,—L,—L+1;—2L;2)+F(N,—L,—L—1;—2L;2)] (80)
and
QN —K(L D(-1)MLE(N —L,—L+1;—-2L;2) X[ (= 1)V "L F(N,— L,—L—1—-1
—2L; 23+ F(Ny—L,—L+1+1;—2L:2)]. (81)
The constant K(L,I) is in both cases the same and equals

(2L+1)! L+1 = {I+1F(L =L 1=0E~1:2)
F(2,— L+1+1s—2L:2) F(l,—L+di—2L:2)+ F(1l,—L—1li—2L;2)"

(L 1= (82)

These solutions hold for all N;>N, and for all L>1. The solution for L=1 has very simple form
On5i=0 (83)
and

_ (N, +L)!
Gy 4 =(-1f™ No—L=D1" (84)

1
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TABLE L. Labeling of the basis sets. States are ordered in accordance with
the increasing unperturbed energies, i.e., in accordance with the sum of
principal quantum numbers n,(i)=n; +n;.

! niy i L R
1 1 1 0 2
2 1 2 0 3
3 1 3 0 4
4 2 2 0 4
5 2 2 1 4
6 1 4 0 ]
7 2 3 0 5
8 2 3 1 5

The solutions for N;=N, for N;>L+ 1 are obtained by considering Eq. (73) for N,=N,;— 1.
- The explicit solution of reccurence relations given in this subsection finishes our way to the
stable calculation of the radial integrals. The final solution of numerical stable calculation of the
radial integrals is the use of Eq. (45), where the integrals Qxll N, are calculated from Egs. (46),
(72), (80), (81), (83), and (84). Running these equations in the double precision arithmetics for
nj=21, n;p=19, n;; =17, and n;,=23 for different values of /;, I;, and [ yields the relative
error in the worst cases of the order 10714,

Finally, we would like to emphasize that all the hypergeometric functions appearing in Egs.
(44), (80), (81), and (82) are in fact polynomials, so the question of convergence of the corre-
sponding series in their computation does not arise.

g4

V. CONFIGURATION INTERACTION

As an illustration, we solve Eq. (27) variationally for the helium atom, i.e., for Z=2. It is
well-known that the ground state of helium is one of the most difficult cases of calculation of the
electron—electron correlation (see below), so we give this example to see the performance of the
method under unfavorable circumstances. We label the basis vectors |i) in the way indicated in
Table I. The states are ordered in such a way that the unperturbed energies increase, i.e., according
to the sum of the hydrogen principal quantum numbers n;;+n;,. The truncated basis sets are
characterized by the number 7, that denotes the maximum of the sums n;; +n;, of the states
included in the truncated basis sets. For example, the basis set characterized by n1,=2 includes all
the states with 2=n;, +n,,. This basis set is one-dimensional {|0,1)("]0,1)|(0,0)0)}. The basis
set characterized by n;=3 is two-dimensional: {]0,1)(?]0,1)®](0,0)0),27"%(|0,1)(}|0,2)®
+10,2)10,1))|(0,0)0)}. Similarly, the basis set characterized by n,,=4 is five-dimensional,
by n,=>5 eight-dimensional, and so on.

We note that our variational calculation corresponds to what is usually called the full CI with
the successivelly increasing basis set.

The parameter # in Eq. (27) was optimized numerically by calculating the values of the
energy for some discrete values of # and looking for the minimum of these discrete values.
Results are shown in Table II.

We found that the parameter 7 with increasing basis set decreases, see Table II. This can be
intuitively understood as follows. We have to build the atomic orbitals in such a way to describe
the motion of the electrons properly, i.e., to obtain high probability of their appearence in the
places where they “really” are. As we enlarge the basis sets the maximum of this probability is
moving to the places more distant from the nucleus. Therefore, to get it to the proper place, close
to the nucleus, the screening constant 7 has to decrease. Numerical analysis shows that the optimal
screening constant 7 goes to zero roughly like ”1_21 . However, this analysis is not very reliable
since the optimal screening constant 7 is determined with lower accuracy than the variational
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TABLE II. The variational energy levels E( %) of the ground state of helium obtained by diagonalization of the generalized
eigenvalue problem (27) with the optimized choices of the parameter 7. order denotes the order of the truncated matrix.
The relative error is calculated with respect to the value —2.903724377 given in Ref. 8.  denotes the extrapolated value,
the extrapolation was made with respect to nl}a , see text for details.

Ny Order 7 E(n) Error E( ) [%]
2 1 1.18518 —2.847656250000 1.930
3 2 1.18518 —2.847656250000 1.930
4 5 0.97196 —2.895444678791 0.285
5 8 0.94051 ~2.897109123114 0.227
6 14 0.79681 —2.900714155920 0.103
7 20 0.76085 —2.901452790421 0.0782
8 30 0.68217 —2.902341254761 0.0476
9 40 0.64803 —2.902654772148 0.0368
10 55 0.59598 —2.902975741200 0.0257
28 1015 0.28285 —2.903681963068 0.00146
29 1120 0.27532 —2.903685852234 0.00132
30 1240 0.26782 —2.903689437387 0.00120
31 1360 0.26104 —2.903692451003 0.00109
32 1496 0.25431 —2.903695236574 0.00100
33 1632 0.24821 —2.903697608901 0.000928
34 1785 0.24206 —2.903699807464 0.000846
35 1938 0.23660 -2.903701701251 0.000780
36 2109 023126 —2.903703460890 0.000720
37 2280 0.22601 —2.903704991252 0.000667
38 2470 0.22129 —2.903706417162 0.000618
39 2660 0.21684 —~2.903707667974 0.000575
40 2870 0.21223 —2.903708835966 0.000535
o0 0 —2.903724034618 0.0000117

energy E( 7). The reason is that with the increasing basis set the second derivative of the function
E( %) in minimum goes to zero, see Ref. 37. Therefore small variations of # around the minimum
yield energies that differ negligibly.

It is seen from Table II that convergence of the variational energy levels towards the exact one
is rapid at the beginning but rather slow afterwards. It is quite remarkable that we can get
“chemical accuracy” —2.903, i.e., error about 1 kcal/mol just with 55 basis functions considering
the simplicity of the wave function used. However, it is seen from Table II that to go beyond this
“chemical accuracy” it is very difficult. This slow convergence can be partially removed by
extrapolating the results for finite basis sets to the infinite one by using the Thiele—Padé
extrapolation.’®®? The result for n,=40 is E(40)=—2.903 708 8 compared to the exact result
obtained with the explicitely correlated functions — 2.903 724 377.8 Extrapolating the values given
in the Table II from n,, equal to 30 to n;, equal to 40 with respect to ”1_23 we obtained
—2.903 724 0. Extrapolating from the interval n,,= 28 to n,,=38 we obtained —2.903 723 98, so
reliable part of the extrapolated result is E = —2.903 724. The dependence of E(n,) on nl_23
was guessed by analyzing the values from n;,=20 to n;,=40. It is seen that the extrapolation
improves the variational result by two orders.

The slow convergence of the CI method for the ground state of helium is well known and was
analyzed in detail in several papers.*®3**42 This slow convergence is related to slow convergence
of the multipole expansion for the ground state energy because of the cusp of the wave function
for ry=r,. For this reason the multipole expansion of rl_zl has been abandoned in the accurate
calculations of two electron atoms and the explicitely correlated functions were introduced. Nev-
ertheless, even for the two-electron atoms the standard CI is more advantegeous than the use of the
explicitely correlated functions in the cases when the electron—electron correlation is not so
strong. This appears first for the highly ionized two-electron atoms when the interaction between
the electrons is supressed by the factor 1/Z. For such systems, the relativistic and QED effects
become very important and it is much easier to calculate the pertinent matrix elements of the
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TABLE III. The variational energy levels E( ) of the first excited S-state of helium obtained by diagonalization of the
generalized eigenvalue problem (27) with the optimized choices of the parameter . Order denotes the order of the
truncated matrix. The relative error is calculated with respect to the value —2.1459740292 given in Ref. 64. « denotes the
extrapolated value, the extrapolation was made with respect to nl—f ;

N Order 7 E(7n) Error E(%) [%]
28 1015 0.75446 —2.145962069450 0.000557
29 1120 0.73376 —2.145963231801 0.000503
30 1240 0.71477 —2.145964245885 0.000455
31 1360 0.69624 —2.145965134389 0.000414
32 1496 0.67907 —2.145965916881 0.000378
33 1632 0.66286 —2.145966608567 0.000345
34 1785 0.64685 —2.145967222783 0.000317
35 1938 0.63233 —2.145967769878 0.000291
36 2109 0.61763 —2.145968259173 0.000268
37 2280 0.60442 —2.145968697983 0.000248
38 2470 0.59219 —2.145969092719 0.000230
39 2660 0.57911 —2.145969449151 0.000213
40 2870 0.56765 —2.145969771531 0.000198
® o —2.145974038455 0.419x 107

relativistic and QED operators in the basis considered in this paper than in the basis of the
explicitely correlated functions. Second, for the excited states, especially for the states with total
angular momenta larger than zero, the electron—electron correlation is decreased due to the dif-
ferent angular distribution of the electron orbitals. Intuitively, the electron-electron correlation is
the strongest in the case of the S-states and especially for the ground state where the electrons,
roughly speaking, occupy the same orbital. From Table III it is seen that already for the first
excited S-state the performance of the method is better. It is expected than in the combination with
the complex scaling method the performance of the method for higher excited states will further
improve.27

Finally, let us point out that to judge overall performance of the technique described we
should have in mind the last sentences from the Introduction.

V1. CONCLUSIONS

In this paper the use of so(2,1) Lie algebra for calculation of the spectra of the two-electron
atoms was suggested. It was shown that by applying this algebra we were able to express all the
necessary matrix elements in the analytic form. Particularly, we succeeded in expressing the
repulsion integrals in terms of the hypergeometric functions. This was done in three steps, all of
them are completely novel from the methodological point of view.

First, we formulated analog of the Wigner—Eckart theorem for so(2,1) algebra. In this way we
reduced the repulsion integrals over four radial functions to the repulsion integrals over two radial
functions. Second, combining algebraic technique with the integration by parts we derived recur-
rence relations for the repulsion integrals over two radial functions. Third, we solved the recur-
rence relations, in form of the difference equations in two variables, in terms of the hypergeomet-
ric functions. These analytic and numerical stable formulas for the repulsion integrals are the
main result of this paper. It solves the problem of the numerical stability and enables us to make
the large scale CI calculation with analytic basis functions.

As an illustration, the full CI calculation with increasing basis set for the ground state of
helium was made. It is well-known that the electron—electron correlation is in this case very
strong. Nevertheless, we showed that by means of the Thiele—Padé extrapolation more accurate
results can be obtained. This extrapolation technique is rather straightforward. With more sophis-
ticated technique of extrapolation we can expect even better results. This will be published in the
forthcoming paper in which also the methodical problems of extrapolation (including ab initio
estimate of the error) will be discussed. Our calculation cannot, of course, compete with that



2692 J. Math. Phys., Vol. 45, No. 7, July 2004 . Zamastil et al.

obtained by means of the explicitely correlated functions. However, since the numerical difficul-
ties are encountered also within that approach, some of the ideas introduced in this paper could be

usefull also in those calculations.

Also, one may expect that the ideas introduced in this paper can be applied to Gaussian
functions used in most of quantum chemical calculations.

In this paper we restricted our attention to the calculation of the states with the total square of
the angular momentum equal to zero and to the singlet spin states and we used just one screening
constant to optimize the energy. However, only slight modifications are necessary to deal also with
the states of different symmetry and with more screening constants. These modifications will be
discussed in the forthcoming paper.

The method described in this paper can also be used for calculation of 1/Z expansion (see,
e.g., Refs. 9, 63), the variational and perturbational calculation of atoms with more than two
electrons, the inclusion of the relativistic and QED corrections for the two-electron atoms with
large Z and the calculation of the dynamical problems on helium like one- and two-photon
transitions.5*%3
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In this paper we extend the method for numerically stable calculation of the atomic
integrals suggested in our previous paper for the S-states of two-electron atoms to
the states with arbitrary total angular momenta. The extension consists in finding
numerically stable forms of the solution of difference equations appearing in the
calculation of the radial part of the atomic integrals. These equations become for
some value of the independent variable homogenous and their solution in that
region is described by one of the two linearly independent solutions. Modification
of the method of the variation of constants for this special type of linear second
order inhomogenous difference equations is suggested and applied. © 2005
American Institute of Physics. [DOI: 10.1063/1.1849811]

I. INTRODUCTION

This work grew out from the search for a numerically stable method of the solution of linear
inhomogenous second order difference equations appearing in the calculation of the radial part of
the atomic intcgrals.1 Generally, once we know one of the two linearly independent solutions of
the homogenous equation, the second solution can be obtained by the method of the reduction of
order.” The solution of the inhomogenous equation is then obtained by the method of the variation
of constants.” However, it turns out that for the difference equations appearing in the calculation
of the atomic integrals this general well-known procedure is of little use in its standard form. The
reason is that these difference equations become for certain values of the independent variable
homogenous and their solution in that region is described by one of the two linearly independent
solutions. This behavior results from the general formula by several cancellations of large num-
bers. If these cancellations are left on the computer working, for example, in double precision
arithmetics, totally wrong results are obtained.

Therefore, a general method for obtaining a numerically stable solution of this type of differ-
ence equation is given in this paper. The method is applied to the special case of difference
equations appearing in the calculation of the radial part of the atomic integrals. Thus, the method
suggested in our previous paper for the S-states of the two-electron atoms is extended here to the
states with arbitrary total angular momenta. Since in general there are at most two-electron inter-
actions, these results can be extended to all atoms and more generally to all one-center integrals.

The paper is organized as follows. In Sec. II we briefly summarize the calculation of the
atomic integrals via the multipole expansion of Coulomb potential. Here, we proceed along the
lines of our previous paper.1 After integrating out angular degrees of freedom, we use analog of
the Wigner—Eckart theorem for the radial functions. This reduces the integration over four radial
functions to the integration over two radial functions. Then we write down a generalization of the
difference equations for the reduced radial integrals derived in Ref. 1 for the S-states to the states
of arbitrary total angular momenta of the electrons. The main difference is the fact that for the
states of the nonzero total angular momentum the difference equations are inhomogenous. In Sec.
IIT we discuss solutions of these equations. We present results of numerical experiments that show

0022-2488/2005/46(3)/033504/16/$22.50 46, 033504-1 © 2005 American Institute of Physics
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that the difference equations are in a region where they are homogenous described by just one of
the two linearly independent solutions. In Sec. IV we first briefly summarize general methods of
the reduction of order and the variation of constants. We modify the method of the variation of
constants for the cases when the second of the two linearly independent solutions of homogenous
equations is obtained by the method of the reduction of order. The form proposed by us is more
suitable for computational purposes. We then turn our attention to the special type of equations
appearing in the calculation of the atomic integrals and derive numerically stable forms of their
solution. In Sec. V we apply the general method of Sec. IV to the difference equations for the
reduced radial integrals and test it for the case of very large quantum numbers. In Sec. VI, a
summary of the achieved results and perspectives of their further applications are given. In the
Appendix computationally suitable forms of the hypergeometric functions needed in Secs. II and
IIT are given.

ll. CALCULATION OF THE ATOMIC INTEGRALS

In this section we derive the difference equations for the reduced radial part of the atomic
integrals. The derivation of these equations was given in great detail in Ref. 1 for the S-states of
two-electron atoms. What is difficult in the extension of the method described in Ref. 1 for the
S-states to the general state is the solution of these difference equations, not their derivation.
Therefore, we shall proceed very briefly.

We search for the exact two-electron wave function by the expansion into the symmetry
adapted products of the one-electron wave functions

Il) = 2_(1+5/n ’:2 it "12)/2[Rn n (rl)R,,iZ,,n(rz)](l,-l,l,~2)L) & R”i21li2(r1)R"i1vli1(r2)I(liz’lil)L)]' (1)
Here, the states |({;,1,)L) are the eigenfunctions of the square and the third component of the sum

of the angular momenta of two electrons

h
I(ZI’IZ)L> = 2 (ll,mblz,

m1=—ll

ml)(l)lllsM—nll)(Z)a (2)

where (|) denotes Clebsch-Gordan coefficients. Their explicit form is given, for example, in
Refs. 3—5 The radial functions R, ; are eigenfuctions of one of the generators of the so(2,1)
algcbra and will be described in greater detail later.

A. Multipole expansion

The matrix elements of the Coulomb interaction, i.e., repulsion integrals, are calculated by
means of the multipole expansion of the operator r[21,

= _Z (:<> P, . nip), (3)

> =0

where r.=min(r|,r,) and r-=max(r;,r,), P/{x) denotes the Legendre polynomials. With the
usual definition of the inner product (to avoid confusion we note that the inner product used in
Ref. 1 differs from the usual one by the factor ') and multipole expansion (3) the matrix
elements of the operator ru between the states (1) can be written as

min(fy+H it p)
Sy +5, /2, Lo linsd 15l il
(ilraljy=2" g oy un By 1) 2 01,1.1,2,,1 ;2"X':,111;‘2,2 Ilﬂﬂ
=max(ly =Ly | Wia=tl)
min(ly+ 5,051+ )
Lidind
* 2 9’:1 112 ]j2 Jl’lX"‘ 1 '12}3"‘" - (4)

t=max(llj1~1 ol 1j1-1ia])

where [ in the summation increases by 2.
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The angular part 6, . corresponds to the matrix elements of the Legendre polynomials

P/(n, .1,) between the coupled states (2),

W (g L LI P((y . 1) (11, L)L)

21+1

XW(lis Ll Lo, L) (11,0, 151, 01,00 (12,0, 112, 011,0), (5)

- (_ 1)L+l+li1—lj1+li2—lj2

where W(a,b,c,d;e,f) are the so-called Racah coefficients and their explicit form is given, for
example, in Refs. 4 and 5. The Clebch—Gordan coefficients (a,O,b,Olc,O) are zero unless a, b,
and c satisfy the triangle inequality |a—b|<c=<a+b and a+b+c is even. This reduces the infinite
sum in Eq. (3) to the finite number of terms in Eq. (4).

The radial part of the integration reads

o o !
I
1,11,21115 » 22 =
X =), dry . dr, rl’an“,rn(’1)Rn,.2,/[2(f2)r;>+1anl,zﬂ(rl)anz,lﬁ(fz)

niphios jl

=J dry Ry 1, (r)R 1 (ror J dr, R, ?(rz)an,,jz(rz)r§1+l
0

i

o ri
+j dry Ry 1, (r)Ry 1 ()7 _Mf dr, Rni2,1i2("2)an2,/j2(rz)rlz+2- (6)
0 0

B. Reduction of the radial integrals

Using the analog of the Wigner—Eckart theorem for so(2,1) algebra1 we can write the integrals
over four radial functions as a linear combination of the integrals over two radial functions

nng =l =l - nip+njp—lp—ljp-2
Xlul;z vlpd — 9-24%1:1 1Al'2 2 C[il’ljl 2 clizdj2
MMl G EC WAL ) nifith s jouy
ny=-1 ny=-1
X Gplates (7)
ll+ i—1- n1 12+n}2—1—n2

where the multiplicative factor A 4 ! equals

Il _21_"1'_J'(n,-+nj—l,-—lj—Z)!(n,-+l,-+nj+lj)! (n,-—l,-—l)' (n—l—l)'
An ;1 I . (8)
" (n,-—l,-—-l)!(nj—lj—l)! (ni+l,~)! (ﬂ +l)|
The coefficients c,; {, , of the linear combination read
534
O {U"_ C"i’{’j’” (n,—+n,-+l +l - I)C" aphesr 2
where the coefficients Cfl ’n , are given as
ETRe F(=mp+ L+ 1,— n5— my— g+ b+ 1y + 2, 2)F(— m— by — 3 — my— ny— - 132) (10)
Mol plt (n,-+l,-+nj+lj—n—1)!n!

for n=0 and equal zero otherwise. Here, F(«a, B;y;z) denotes the hypergeometric function (see,
e.g., Refs. 6-8). We note that Eq. (43) in Ref. 1 is incorrect.

QL1 Lzl denotes the integrals over two radial functions
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AL1.Ly! ] T3
QNll sz Q+[\-I1 122 QNI’}"? . (11)
Here,
Oiiia'= [ an i [“an & e 2
ON, ¥, dry Ry, ., (2r)r dry Ry, 1 (2r))13 12)
0 i
and
Qﬁfﬁ?’:j dry ENI,LI(Zrl)rff dry Ry L2(2r2)r’+1 (13)
0

where EN,L(r) differs from Ry ,(r) by the normalization factor

Ry(n=2 \ (7511/2—[:)1!)!RN,L(V)- (14)

We note that due to the selection rules for the Clebsch—Gordan coefficients mentioned earlier
the difference |L,—L,| is always even. Moreover, the sum L;+L,+/ must be even as well.

C. Difference equations for the reduced integrals

Proceeding in complete analogy with the considerations made in Ref. 1 we obtain the follow-

ing difference equations for the integrals Qt LI‘LZ d,

(Ny— L) Oy 2t — (N + L) Oy - 2105 %2 = - pyi, (15)
and
(Ny = L) Oy = (Ny + L) Oy %! + 20+ DOV = oy (16)

The values of é;,lL}vi’ll are obtained from the relation'

QNLl Loyl _ Q+l/2L1 ) (17)

V2 Ny.Ny

Here, the right-hand side of equations le Lo equals

PR, = f dr Ry, 1 2Ry, 1 (27). (18)
0
Using the explicit form of the radial functions,9

R, {r=2%"(r L% (20, (19)

'n—I-1

and the expression for the generalized Laguerre polynomials (see, e.g., Refs. 6-8)

Ly(r) = l'er d'K(e"rK“’), (20)

we obtain for L, > L,+1 integrating by parts (see, e.g., Ref. 3),
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min(N;-L;-1,Ny-L,-1)
1, Lt L+ 2)! % _ )orlr1g
DN N, = (~1)
2 g=max(0,N,—L;~2)

X(Nl—Lz—q—3>(L1+L2+2+q)< Ly~ g+ 1 ) 1)
Fy—Lp—3 Ei+lp+2 J\Wp—L—1-g
for N,=N;+1 and

Lily _

PN%,=0 (22)

otherwise. The values of pﬁll’f,‘vzz for L,>L;+1 are obtained from the obvious symmetry p]Lvll',l,\?z

=pl,\;22”LN11, see Eq. (18).
Using difference equations (15) and (16) the integrals are reduced to the integrals over node-
less functions that can be calculated analytically,1

012 =2 Ly + Ly + DIF(L,- Ly + 13- Ly — Ly~ 12). (23)

The difference equations (15) and (16) were programmed in MAPLE in form of the recursive
algorithm and solved both in rational and 16 digit arithmetics. From these numerical experiments
we found that for large quantum numbers N;, N,, L;, and L, numerical instabilities appear.
Moreover, after some time the recursive algorithm took so much computer memory that further
computation was not feasible.

Therefore, we search for the explicit solution of Egs. (15) and (16). This is done in the
following section.

lll. SOLUTION OF DIFFERENCE EQUATIONS

In this section we discuss the explicit solution of Egs. (15) and (16). We argue that the method
of variation of constants cannot be used in its standard form and discuss the result of our numeri-
cal experiments. These experiments show that Egs. (15) and (16) are in the region where they are
homogenous described by just one of the two linearly independent solutions.

A. The extension of the method given in Ref. 1

In our previous paper’ we solved Eqgs. (15) and (16) for the S-states. It follows from the
properties of the Clebsch—Gordan coefficients that we must consider the only case Li=L,=L. In
such a case the situation is simplified by virtue of the fact that the right-hand side lz),L\,’lLJv.2 vanishes
whenever |[N;—N,|>1.! That means that Eqs. (15) and (16) are for most of the values N; and N,
homogenous. Therefore, it was sufficient to find two linearly independent solutions (fundamental
system) of homogenous equations (15) and (16) for [<<L. The two linearly independent solutions
of homogenous equation (15) are

ay, = (= DV BNy = Ly, = Ly + ;- 2L5;2) 24)
and
bN2=F(N2—L2,—L2—l;—2L2;2). (25)
The two linearly independent solutions of the homogenous equation (16) are
aleF(Nl—Ll—l,—L1+l+1;—2L1;2) (26)

and
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by, = (= DM E(WN - Ly~ Ly - 1= 15-20L,,2). (27)

For =L, behavior of Egs. (15) and (16) was so simple that it was possible to guess the result
directly from the numerical analysis.

The task of solving Egs. (15) and (16) is therefore twofold.

First, to determine two linearly independent solutions of homogenous equations (15) and (16)
in the cases when /=min(L,,L,). In these cases solutions are not hypergeometric functions. In the
Appendix we give a method for finding the solution of Egs. (15) and (16) in terms of the power
series in N, or N,. For [<min(L;,L,) we obtain in this way an alternative expression for the
hypergeometric functions. For /=min(L;,L,) this method yields at least one of the two linearly
independent solutions. The second solution is found by the method of the reduction of order
described in Sec. IV A below.

Second, the fundamental system is used for the solution of inhomogenous equations by the
method of the variation of constants. One possibility is to apply this method to Eq. (16) and fix
constants on the values ézlﬁlllﬁzl and Qzlﬁlzl,?,; Then we apply the method first to Eq. (15) for
Ny=L;+1 and fix constants on the values of QZ}';IILLZZLI and Qzlﬁlllngd Second, we apply the
method to Eq. (16) for Ny=L,+2 and fix constants on the values of ézlilzlfzil and Qzlﬁlzlfziz Such
solution, however, is neither fast nor numerically stable. The reason is that solution of Egs. (15)
and (16) is simplified by virtue of the fact that these equations become homogenous for L; <L,
and Ny >N,+1 or L >L, and N,>N;+1, see Eq. (22). Further simplifications were found from
numerical experiments given below. All these simplifications must be carefully examined and
taken into account to get numerically stable formulas.

B. Numerical experiments

We found that Eq. (15) can be for L;>L, and N,>N,;+1 described by just one of the two
linearly independent solutions,

QXIIL}V: 2 = K(Ny, Ly, Ly, Day,, .

where ay, is given by Eq. (24). This equation holds for [<L,. For /=L, the dependence of
QLIL}V?L? on N, can be described as

Oy 2 = KN Ly, L) (- VL, (29)

Equation (16) behaves in the same way for L,>L; and N;>N,+1,

Q;rilLJl\;zLM =K(No, Ly, Ly, Day,, =t

where ay is given by Eq. (26). This equation holds for /<L;. For /=L, and N;>N, we found

Oy f1=0. (31)

These results show that Eq. (15) is for L, > L, and N,> N, +1 described by just one of the two
linearly independent solutions. Equation (16) behaves in this way for L; <L, and N;>N,+1. A
consequence of this is that although Egs. (15) and (16) are three term recursion relations we need
in the case of Eq. (15) for L; > L, and in the case of Eq. (16) for L; <L, just one initial condition
instead of two. In the case of Eq. (16) for L; <L, and /=L, we do not need initial conditions at all.
From numerical experiments given in Sec. V below, we were able to determine these initial
conditions, that means to determine behavior of Q}f‘}éf{ for L, > L, and Qzl’;‘llﬁzl for L; <L, and
I<L,.

This simplifies the situation tremendously because it means that instead of solving both Egs.
(16) and (15) simultaneously, we must solve only Eq. (16) for L\ <L, and Eq. (15) for L, > L,.
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As it is clear from the above discussion we need modification of the method of the variation
of constants for the case when one of the solutions is obtained by the method of the reduction of
order [the case [=min(L;,L,)] and for special types of equations when for some value of inde-
pendent variable equations become homogenous and their solution in that region is described by
one of the two linearly independent solutions [Eq. (16) for L; <L, and Eq. (15) for L, >L,]. A
general theory of the variation of constants for these cases is given in the following section.

IV. GENERAL THEORY

In this section a general modification of the method of variation of constants is described. We
consider general linear second order inhomogenous difference equations for the discrete function

fw

Jrer + Guafn+ Tof p1= Sy (32)
We assume that f,,=0 for n<<L+1 where L is integer and that s,,=0 for all n>M +1. Equation (15)
is obtained from this general equation by setting n=N,, L=L,, M=N,, and fN2= QX,{“}VZLZI Equation
(16) is obtained from this general equation by setting n=N,, L=L,, M=N,, and lezé;’f}\;ﬁ’l’l.
With these assignments we have for both cases

n+L
n-L’

(33)

=

We first show the method of the reduction of order. This is not new, but for the sake of further
considerations we describe it in greater detail. Then we summarize the method of the variation of
constants and modify it for the cases when one of the solutions was obtained by the reduction of
order and for special types of equations appearing in the calculation of atomic integrals.

A. Reduction of order
Let a, be a solution of the homogenous equation
Apy1 + Guln + ryap_ 1 =0. (34)

The second linearly independent solution can be found by the method of the reduction of order.
We search for it in the form

b,= (xn - xL)an- (35)
Inserting it into homogenous equation (32) (with s,=0) and using Eq. (34) we obtain after some

manipulation

— (36)
where

Ay =%~ %y g (37)

Considering the last equation successively for descending n we get

i
X=Xy = > d. (38)

i=n+1

Considering Eq. (36) successively for descending n we get



033504-8 Zamastil et al. J. Math. Phys. 46, 033504 (2005)

n-1
Ap—m@n-m-1
dn= ].—.[ Tk dn—m' (39)
k=n-m Anlp-1

Since a,=0 for n<L+1 we set n—m—1=L+1 in the last equation. Then we obtain for d,,,

n-1

H Ty
k=L+2
d,=——apar.1dr. (40)
n“%n-1

Inserting this equation into Eq. (38) we get finally

i-1

k=L+2

Xj— Xy = Q14201114142 & (41)

i=n+l Gili-1

B. Variation of constants

Having two linearly independent solutions a, and b, of the homogenous equation a general
solution of the inhomogenous equation (32) is obtained by the method of variation of constants”

n-1
fa=Clan+Coby+ 2 Tibja,—ab,). (42)
j=L42
Here, T] denotes the ratio
7.=SL (43)
W
where W; is the Wronskian of the solutions
Wi=ajb;—abj.. (44)

The constants c¢; and ¢, in Eq. (42) are fixed by the initial values f;,; and f ;.
For further considerations we derive an alternative form of the Wronskian W, see also Ref. 2.
Inserting b; from Eq. (35) we rewrite Eq. (44) into the form

W;=—aja;(xj —x)). (45)
Inserting the difference x;,;~x; from Eq. (41) into the last equation we obtain

J

W;=-apnap1dr0 II r (46)
k=L+2
Since

Wi == ar0010d142 (47)

we can write

j
W;=Wp, I1 ~. (48)
k=L+2

By means of Eq. (47) we can rewrite also Eq. (41) into the form
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i-1
H T

k=L+2

xj—xy=—Wry 2 (49)

inl Gy
We note that, quite generally, formula (42) can be set into an alternative form. Inserting b,
from Eq. (35) we get

n-1

fo=anler+ ey, —xp) + % Tja(x;— x,)), (50)
j=L+2

where the difference x;—x, is given by Eq. (49). This form of the solution is likely to be less
numerically unstable than the form (42), especially in the cases where one of the solutions was
obtained by the method of the reduction of order. The reason is that in Eq. (42) we subtract the
numbers b;a, and a;b,. Inserting b; from Eq. (35) we see that we subtract in fact a;a,,(x;—x;) and
a;a,(x,—x.). These two numbers can be very large especially for large n and j. Therefore their
subtraction can cause a loss of significant digits. The advantage of Eq. (50) is that we directly

calculate the result of the subtraction.

C. Special type of equations

Until now, our considerations were quite general. Now we turn to the special type of Eq. (32)
for which s,=0 for all n>M+1 where M is integer and the solution of Eq. (32) in this region is
fully described by just one of the two linearly independent solutions of the homogenous equation

fn=Kay, (51)
where K is independent on n. Comparing Egs. (50) and (51) we get

M+1
K=ci+(x,—x)cp + E Tja;(x;—x,) (52)
Jj=L+2

for arbitrary n> M+ 1. Since this equation holds for n> M +1 independently on the value of n we
get

M+1
& —~Xgtnt 2 Tiax;=K (53)
J=L+2
and
M+1
Cy— 2 T:,aj=0 (54)
J=LA2

The last two equations are a source of numerical instabilities if constants ¢, and ¢, are determined
from the initial values f;.; and f7,,. To avoid these instabilities we use Egs. (53) and (54) as
equations determining constants ¢; and c,. If we do so and insert the result into Eq. (50) we obtain

M+1
fn:aan_ 2 T:jaj(xj_'xn)]- (55)

j=n

Considering this equation for n=L+1 we determine the constant X,
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M+1
K=@+ > Tia;(x; — xp41)- (56)
Arel  j=L+1

Inserting this back into Eq. (55) we obtain finally

n—1 M+1
i
foma| E+ X Tia;(x; — Xp41) + > Tia;(x, — Xp41) |- (57)
Arel j=L+2 j=n
Alternatively, we can use Eq. (35) and rewrite Eq. (57) in terms of a, and b,,
M+1 n-1 M+1
a
fo= = fro— 2 Tiabra | +a, 2 Tibj+b, 2 Tia;. (58)
aryy j=L+2 JELA2 Jj=n

The last two equations are likely to be more convenient for computational purposes than Eq. (42)
since there are no cancellations of large numbers in these equations. The possible exception is the
subtraction in the square brackets in Eq. (58), but for the special case of interest (see Sec. V) we
avoid this difficulty.

V. APPLICATION OF THE METHOD

General theory outlined in the preceding section will be applied to the difference equations
(15) and (16). To do so, we need to calculate T; from Eq. (43).

A. Calculation of T;

First we calculate Wronskian (44) from Eq. (48). Inserting r, from Eq. (33) into this equation
we get that Wronskian behaves for both Eqgs. (15) and (16) as

G+L) Wi

W= DG o

(59)
where we set either L=L, or L=L;. We note that W, is the only quantity in this equation that
depends on the concrete form of a; and b;.

Second, we take the right-hand side s; of Eq. (32) equal to

Lyl
Pn,j
sj=- _—1 (60)
i=L
in case of Eq. (15) and
L21Ll
PN,,j
§;= -—Z_L (61)
J—4

in case of Eq. (16).
Equations (59), (60), and (61) can be used to simplify formula (43). By inserting Eq. (59) with
L=L, and Eq. (60) into Eq. (43) we get in the case of Eq. (15),

il
T.= Euis”

- A (62)
. WL2+1

Analogously, by inserting Eq. (59) with L=L, and Eq. (61) into Eq. (43) we get in the case of Eq.
(16),
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Tj = —_— . (63)
Here, Plf,ll’,l,\}z2 denotes

Fodls
pN]»NZWLz”

Phte = , 64

MNe T (N — L)Wy, =
This quantity was introduced because of the symmetry
Lyl I

Phks = Pl (65)

[see the notes after Egs. (22) and (59)]. By combining Egs. (21) and (59) we can write for L,
>L,+1,

min(¥;—~L;~1,Ny-Ly—1)

Pkl,ﬁ]z:(Ll—L2+l)!(2L2+1)! S "
e 2 g=max(0,Ny—L,-2)
Ni=Ly—q-=3\(Ny— L= 1 \[Li+ Ly +2+
X( 1—Ly—q )( s— Ly )( 1+L 4])' (66)
Ll—L2—2 q N2+L2

The case L,>L;+1 is calculated by means of Eq. (65).

B. Numerical experiments and final formulas
1. Case I<min(L,,L,)

By numerical experiments we found that the initial values f;,, for Eq. (15) with L; > L, and
1< L, and for Eq. (16) with L, <L, and /<L, are given as

M+1

frn=(ar +br) 2 T;a;. (67)
j=L#1

In the case of Eq. (15) this equation holds with L=L,, M=N|, fL+1=Q;'V'ILJ£’:f{I and with a;, b;, and
T; given by Egs. (24), (25), and (62). In the case of Eq. (16) this equation holds with L=L;, M

=Ns, fr. 0= ézll;llL,&zl and with a;, b;, and T; given by Egs. (26), (27), and (63).

Then Eq. (58) can be brought to the form

n-1 M+1
fn =4a, E Tj(aj + b]) = (an + bn) 2 Tja] (68)
J=L+1 j=n

2. Case I=L,
It follows from Eq. (29) that in this case one of the two linearly independent solutions is
ay, = (- izt (69)

The second one is determined by the reduction of order. We use Eq. (57) for fNZ:QX,'IIj}\;ﬁ’ZM with
n=N,, L=L,, M=N,, and T; given by Eq. (62). The value of f7,; was found from numerical
analysis to be

+Ly Lo Ly _ (Ly+ Ly + 1)!{(N; — L, — 2)!
NyLy+l By — B — TR~y — 130

0 (70)
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3. Case I=L,

It follows from Eq. (31) that the constant K in Eq. (51) is equal to zero, so we can use Eq. (55)
for fy,= Q+ . ZLZ L1 with n=Ny, L=L;, M=N,, and T; calculated from Eq. (63).

One of the two linearly independent solutions of homogenous equation (16) is given by Eq.
(A6) of the Appendix with J=2L;+1,

20441

ay, = (- it X (N = Erls (71)
=0

where h; are given by Eq. (A11) and where hyy ,,=1.
Using Egs. (33) and (49) we can write Eq. (55) for the case considered as

M+1

e W S 2 (- P+ L-1)!
g (2L+l)'J o1 liom1 @i (k—L—1)!

(72)

This expression is still not entirely satisfactory. We found that there is residual instability for n
close to L+1. To eliminate it we rewrite the double summation in the last equation

Wit o DR+ L- D1
fn=—a, : ' 2 9% (73)
(2L+l)'k=n+1 akak_l(k—L— 1) j=k
The source of instability for n close to L+1 is an interesting identity,
M+1
J=L+l
Therefore, we use this identity in Eq. (73) and rewrite this equation to the form
M+ k-1
4 - D+ L-1)!
PR P G Vil (3 A "

a a;.
"L+ DYl @@ k-L-1) I T

This equation is stable for all # from L+1 to M. For n> M, it yields zero as it should.

C. Numerical tests

We tested derived formulas numerically for very large quantum numbers. First we set L;
=16 and L,=14, second we considered L;=20 and L,=10. We took N,;=50 and varied N, from
L,+1 to 70 and [ from 2 to L,. Then we reversed the role of L; and L, and also N; and N,. These
tests are rather severe; in normal calculation one encounters much more favorable situations. The
formulas were run in double precision arithmetics and compared with the exact solutions of Egs.
(15) and (16) programmed in MAPLE in the form of the recursive algorithm run in rational arith-
metics. For [<min(L,,L,), the hypergeometric functions (24)—(27) were calculated from the
MAPLE subroutine. The numerical stable way of their calculations is given in the Appendix. For
|Ly—L,|=2 the relative error of the derived formulas was typically of order 107'%. For the case
|L;—L,|=10 the relative error was typically two orders higher. This shows that numerical stability
of formulas slightly deteriorates with increasing difference |L; —L,|. However, one can expect that
with increasing difference of the angular momenta of the electrons the contributions of the terms
with large numbers of nodes to the energy is relatively small. Therefore, the achieved numerical
stability is sufficient for all practical purposes.

VI. CONCLUSIONS

In this paper we extended the method of numerically stable calculation of the atomic integrals
suggested in our previous paper1 for the S-states of two-electron atoms to the states of arbitrary



033504-13  Method of variation of constants J. Math. Phys. 46, 033504 (2005)

total angular momenta. Thus, in these two papers the complete solution of the numerically stable
calculation of the atomic integrals is given. In the first palpcr1 we succeeded in transformation of
the problem of the numerical stable calculation of the atomic integrals to the problem of the
numerical stable solution of the difference equations. In this paper we completed our program by
solving the latter problem in required generality. To achieve this aim we suggested a computa-
tionally stable method for the solution of inhomogenous difference equations that for certain
values of the discrete independent variable become homogenous and in that region are described
by just one of the two linearly independent solutions. The method was applied to the difference
equations appearing in the radial part of the atomic integrals and tested for very large quantum
numbers. These tests show high numerical stability of the suggested method. The stability slightly
decreases with increasing difference of the angular momenta of the electrons.

The method suggested in these two papers can be used for the calculation of the radial part of
the Coulomb interaction between electrons whose orbitals are expanded from the same center.
This covers all atoms and the simplest molecules. The results obtained in these papers can be
directly used for the configuration interaction calculation of the excited states of two electron
atoms. This will be reported elsewhere.

Because of the potential importance of the achieved results it would be desirable to put them
on a rigorous basis. The paper is based on the observation that Eqgs. (15) and (16) can be in the
region where they become homogenous described by just one of the two linearly independent
solutions. Although we are certain about this observation, one should see why equations behave in
this way. The same applies to our guesses (67), (70), and (74), and for Eq. (A17) in the Appendix.

Therefore, we believe that the results achieved in this paper are of some interest from the point
of view of atomic physics as well as pure mathematics.
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APPENDIX

In this appendix we suggest a solution of the homogenous equations (15) and (16). Since this
solution is given in terms of the hypergeometric function F(a,b,c,2) we find a particularly useful
form of these functions that can be used also in Eq. (10).

Let us rewrite homogenous equations (15) and (16) into a general form,

(n—L)gpu1 — (n+L)gypy —2(J - L)g,=0. (A1)

This equation is obtained from the original homogenous equation (16),

(n—L)fus1 = (n+ L)f,_y + 20+ 1)f, =0, (A2)
by setting either f,=g, and J=L-I-1 or f,=(-1)"g, and J=L+I+1. Equation (A1) is obtained
also from homogenous equation (15),

(n_L)an - (n+L)fn—l -2lf,=0, (A3)

by setting either f,=g, and J=L+[ or f,=(-1)"g, and J=L-1. Due to the selection rules for
Clebsch—-Gordan coefficients mentioned after Eq. (5), the difference L—1 is always even. There-
fore, the parameter J is odd in the case of Eq. (16) and even in the case of Eq. (15).

For J<L~1 the solution of Eq. (A1) is given by the hypergeometric function

gn=F(n—-L,—J;-2L;2). (A4)

Let us remind the form of the hypergeometric function F(a,b,c,z) here,



033504-14  Zamastil et al. J. Math. Phys. 46, 033504 (2005)

ab  ala+1)bb+1) 72
Fla,b,c,7) =1+ —z7 4 ——————>—
adegl=14""0t "0 N @l

(AS5)
It turns out that this form of the hypergeometric functions is useful only for a close to zero, i.e.,
only for n close to L. For larger n, a more suitable form is needed.

Since we want to get expression also for the hypergeometric functions appearing in Eq. (10),
we allow L to be half-integral and n to be half-integral and smaller than L+1.

We search for the solution of Eq. (A1) in the form of the series

J
gn=2 hin—LY. (A6)
=0

Later on, it will be clear why we choose the upper bound of summation J. The advantage of this
expansion is that the coefficients #; do not change the sign. Therefore, for n larger than L this way
of calculating the hypergeometric functions is numerically stable and can be used for the hyper-
geometric functions appearing in Egs. (24)—(27).

Since J must be a non-negative integer, for L=I we obtain only one solution in the form (A6).
If /<L, we obtain in this way two linearly independent solutions.

The remaining hypergeometric functions to be calculated are those appearing in Eq. (10). For
these functions argument a in the definition (AS5) is always negative. As it is clear from Eq. (A4)
it corresponds to the situation when n<<L. The use of Eq. (A6) is not advantageous in this case,
because for negative value of n—L we get in (A6) the sum of terms with changing signs. When n
is close to L, the best way is to calculate the hypergeometric functions from the definition (A5).
For n more distant from I. we calculate the hypergeometric functions from the series

7
Bu= 2 cjnj. (A7)
j=0

It appears that for even J the coefficients ¢; with odd j equal zero and for odd J the coefficients c;
with even j equal zero. From this fact it immediately follows that

Fl~n—-L,—J:~2L:2)=(~1YF(n-L—J:-2L.2). (A8)

Using this equation we can always raise the value of the parameter a over —L.
In the following we first show how to calculate the coefficients 4; in the expansion (A6), then
we calculate the coefficients c; in the expansion (A7).

Expansion around n=L
We make substitution N=n—L in Eq. (Al). Then Eq. (A1) reads

Ngns1 = (N +2L)gy-y - 2(J - L)gy=0. (A9)

Inserting the expansion (A6) and using the binomial formula we obtain after some manipulation

I F s J
> [2 (J )N"“(l — (= 1Y}y = 2L N = 1y *-2(J - L)N’ | h;=0. (A10)
j=0 | k=0 \K k=0

Comparing now terms with the same powers of N we get for the highest power N identically zero.
It means that the coefficient £, is free for the normalization of the solution. This is the reason why
we chose in Eq. (A6) the upper bound of the summation equal to J. Going then successively to the
lower powers of N we obtain recurrence relations for the coefficients h;,
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hy_ 15 _U-p)! [1—(—1)1‘"’"

hy (=) g (L+j—p)! 2

(/=) -L(1+j-p)- l)j"’jl%jz- (Al1)

Normalization of the series (A6) to the hypergeometric function is done by comparing Eqs. (A4)
and (A6) for some value of n. The best choice is n=L since then we have

h
1=h,~2, (A12)
hy

where we used the identity F(0,—J;—2L;2)=1. The ratio hy/h; is calculated from Eq. (A11).

Expansion around n=0

We proceed along the same lines as in the derivation of recurrence relations for the coeffi-
cients &;. We insert the expansion (A7) into Eq. (A1), use binomial formula and compare the terms
with the same powers of n. After some manipulation we obtain

=1 .
€r-2p _ 1 % Crg;  (J—=2))!
¢ 2pU-2p)in ¢ 2p-2j+1)!

for p running from 1 to J/2 for J even and to (J—1)/2 for J odd. The coefficients ¢ J-2p-1 €qual
zero.

The coefficient c; is determined by comparing series (A7) and the hypergeometric function
(A4) for some n. Setting n=L we obtain

[-2p-L2p-2j+1)] (A13)

J
1= S, (A14)
j=0 €J
where we used the identity F(0,—J;—2L;2)=1. For practical purposes, however, this form is not
very convenient, since there is a cancellation of large numbers in the sum on the right-hand side.
For this reason the use of series (A7) is not suitable for calculation of the hypergeometric func-
tions with n comparable or greater than L. Instead we determine the constant ¢; as follows.
For even values of J=2P the constant ¢,p is found by comparing Egs. (A4) and (A7) for n
=(],

Fl=L~ 2P0 = g -, (A15)
Cop

where the ratio cy/c,p is calculated from Eq. (A13). The values of F(~L,-2P;~2L,2) were found
from the numerical experiments to be
P-1

F(-L-2P-2L2)=]]
p=0

2p+1

— Al6
2L-2p-1 \Al6)

For odd values of J=2P+1, comparison of Egs. (A4) and (A7) yields for n=0 nothing, since both
sides are identically equal to zero. However, the constant ¢,p,; can be calculated from remarkable
identity

Cap
e =— Al7
2P+1 L-P ( )

found by numerical experiments.
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In this paper, a numerically stable method of calculating atomic integrals is suggested. The commutation
relations among the components of the angular momentum and the Runge-Lenz vector are used to deduce
recurrence relations for the Sturmian radial functions. The radial part of the one- and two-electron integrals is
evaluated by means of these recurrence relations. The product of two radial functions is written as a linear
combination of the radial functions. This enables us to write the integrals over four radial functions as a linear
combination of the integrals over two radial functions. The recurrence relations for the functions are used to
derive the recursion relations for the coefficients of the linear combination and for the integrals over two

functions.

DOI: 10.1103/PhysRevA.75.022506

I. INTRODUCTION

This paper is concerned with the calculation of atomic
wave functions and atomic integrals in an algebraic way.
This algebraic approach compares favorably with the analyti-
cal one. The algebraic approach enables us to handle the
numerical instabilities encountered when calculating atomic
integrals. There is also an inherent elegance in this approach.

The accuracy of the spectroscopic measurements achieved
such a level that parity violating effects of the weak interac-
tions on the atomic spectra can be measured. For a review of
these exciting developments see, e.g., Refs. [1,2]. Together
with the corresponding theoretical calculations, see, e.g.,
Ref. [3], this provides bounds on the mass of new neutral
bosons predicted by extensions of the standard model. These
bounds are tighter than those achieved in the present collider
experiments [3]. Undoubtedly, the search for effects of the
physics beyond the standard model on the atomic spectra
will continue. More accurate measurements and calculations
will be made. In this connection we would like to draw at-
tention to the fact that there is an obstacle in further improve-
ment of the theoretical calculations.

Let us restrict our discussion to the cases when the motion
of electrons can be treated in the first approximation as non-
relativistic. Only slight modifications of the following dis-
cussion are needed to treat the cases when relativity has to be
taken into account from the very beginning. The most accu-
rate approximate method for solution of the Schrédinger
equation for many-electron atoms is the method of configu-
ration interaction (CI). It consists of expanding the exact
wave function into the antisymmetrized products of one-
electron spin orbitals. The orbital component of the spin or-
bitals is the product of the radial and angular parts.

The CI method can be systematically improved by enlarg-
Ing the set of one-electron spin orbitals. However, in doing
So the following difficulty is encountered. If we consider the
orthogonal set of one-electron spin orbitals, we have to in-
clude the spin orbitals with radial functions having large
Number of nodes into the set. These functions change their
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sign frequently. Calculation of the matrix elements of the
Coulomb interaction between these functions in finite preci-
sion arithmetics corresponds, from numerical point of view,
to the subtraction of two infinities. If we consider nonor-
thogonal basis set, then we just shift the problem of numeri-
cal instabilities from the calculation of the integrals to the
diagonalization of Hamiltonian matrix. So far the numerical
instabilities have not been analyzed in a systematic way.
Thus, they are not controlled. The difficulty caused by nu-
merical instabilities is evident when observing the published
numerical calculations.

The form of one-electron spin orbitals is in principle ar-
bitrary. However, to achieve rapid convergence of the CI
method, the Sturmian basis set is usually applied, see, e.g.,
Refs. [4-8]. This set is obtained from hydrogenic basis set
via energy-dependent scaling transformation. The solution of
the Schrodinger equation for the hydrogen atom is found to
be a product of radial and angular functions. The difference
in dealing with radial and angular functions is striking. The
angular functions are found from commutation relations of
so(3) algebra. This enables one to transform the angular in-
tegrations of complicated expressions to manageable alge-
braic manipulations [9-11]. On the other hand, the radial
functions are not found from symmetry considerations but as
solutions of differential equation. However, this leads to
much less manageable numerical instabilities in the radial
part of the integration mentioned above.

This observation is the chief motivation for the search of
the algebraic treatment of the radial functions presented in
this paper. This algebraic treatment is facilitated by high
symmetry of the hydrogen atom. There are six operators
commuting with hydrogenic Hamiltonian when neglecting
spin. They consist of components of angular momentum and
components of the Runge-Lenz vector. This vector is integral
of motion also in the classical theory. This is a direct conse-
quence of the fact that the classical orbit in Coulomb poten-
tial is a conic section. The Runge-Lenz vector has the direc-
tion of the principal axis of the conic section. Its magnitude
equals to the eccentricity of the conic section, see, e.g., Ref.
[12]. These six operators do not mutually commute. How-
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ever, they are closed under commutation and form so(4) al-
gebra. In addition, there are three radial operators closed un-
der commutation that form so(2,1) algebra. After the energy-
dependent scaling transformation so(4) algebra can be
merged with so(2,1) algebra into so(4,2) algebra, see, e.g.,
Ref. [13].

The commutation of the Runge-Lenz vector with hydro-
genic Hamiltonian was realized by Pauli even before the dis-
covery of the Schrodinger equation. It was further elaborated
by Fock and Bargmann (for an English translation of the
original papers see Ref. [14]). Despite the fact that this high
symmetry of the hydrogen atom has been known for such a
long time it was seldom applied to more complicated atoms.
Particularly, Herrick and Sinanoglu applied it to the classifi-
cation of the doubly excited states of two-electron atoms
[15]. Further, de Prunele applied it to the evaluation of the
matrix elements of Coulomb interaction in the basis used by
Herrick and Sinanoglu [16].

The first aim of this paper is to explore the high symmetry
of the hydrogen atom and to relate it to the properties of
radial functions. So far, only partial symmetry has been uti-
lized via so(2,1) algebra of radial operators [13,17]. This
provided the recurrence relations for radial functions with
different principal number n but with the same orbital num-
ber I. The ultimate goal is to examine if so(4) algebra relates
radial functions with different orbital numbers /. The second
aim of this paper is to show that these relations for the radial
functions can be used to numerically stabilize the calculation
of the matrix elements of Coulomb interaction.

The paper is organized as follows. In Sec. II the energy
spectrum of the hydrogen atom and the recurrence relations
connecting the radial functions of the hydrogen atom with
the same principal number n but different orbital number !
are deduced. In Sec. III we consider so(2,1) algebra of radial
operators. We make the energy-dependent scaling to trans-
form the set of hydrogen basis functions pertaining to the
discrete part of the spectrum to the Sturmian basis set. It is
shown that the existence of so(2,1) algebra implies recur-
rence relations connecting the radial functions with the same
orbital number [ but different principal number n. Finally,
these relations are combined with the ones derived in Sec. II
to deduce the relations that are advantageous for further cal-
culations. The rest of the paper is devoted to the applications
of these recurrence relations. In Sec. IV the calculation of the
matrix elements of Coulomb interaction is described in de-
tail. First, the multipole expansion of the Coulomb potential
is used to separate the radial and angular degrees of freedom.
Further, the product of two radial functions is written as a
linear combination of the radial functions. Numerically
stable recurrence relations for the coefficients of the linear
combination are derived. The linearization of the product of
radial functions is used to write the integrals over four radial
functions as the linear combination of the integrals over two
radial functions. From recurrence relations for the radial
functions, the recurrence relations for the reduced integrals
are derived. This section constitutes a major development of
the computation of the radial integrals. In Sec. V the method
developed in this paper is used for CI calculation of the 1S,
235, and 2 7S states of helium. In Appendix A the algebra of
the angular operators is studied and the action of the angular
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operators on the angular functions is determined. This appen-
dix summarizes the results concerning the so(3) vector op-
erators necessary for the purposes of this paper. Finally, in
Appendix B the one-electron integrals needed in Sec. IV are
calculated.

To make the paper understandable for wide audience we
completely avoid all the nomenclature of the mathematical
theory of Lie algebras. To understand this paper it is suffi-
cient to know the basic notions of quantum mechanics such
as commutator, eigenvectors, and eigenvalues. The atomic
units and Einstein summation convention will be used
throughout this paper.

II. HYDROGEN ATOM

In this section the algebraic solution of hydrogen atom is
given. It is shown that the Runge-Lenz vector commutes
with the Hamiltonian of the hydrogen atom and it is a special
case of so(3) vector operator. The matrix elements of so(3)
vector operators between spherical harmonics yield the en-
ergy spectrum and the recurrence relations for the radial
functions of the hydrogen atom. These recurrence relations
connect the radial functions with the same principal number
n but different orbital numbers /. The matrix elements of
s0(3) vector operators between spherical harmonics needed
in this section are derived in Appendix A.

A. Energy spectrum of the hydrogen atom

Let us consider the problem of the nonrelativistic hydro-
gen atom

1
H|n,l,m)=—ﬁ|n,l,m), (1)

where the Hamiltonian is given by

V2o
H= PR (2)
At this point we assume that n is a positive real number.
Later on we show that n has to be a positive integer.
Because of the spherical symmetry of the problem, it is
advantageous to make the transition between Cartesian and
spherical coordinates

Xp=rny. (3)

Here, r is the radial distance and n; are components of the
corresponding unit vector

7i = (sin @ cos ¢,sin Osin @,cos 0). (4)

Indices j, & and so on, range from 1 to 3. The letter i is
reserved for the square-root of minus one.

Using the chain rule for the differentiation of composed
functions, expression of the operator V, in terms of the vari-
ables r, 6, and ¢ reads

d J Vi
Vi &xk_nkﬁr+ 7 )

Here, the angular differential operator V" was introduced by
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sin @ ¢ J d
V"=< qD—-&cosc,ocos g il ol
sin 8 d¢ d0’ sin 8 de
d d
+ sin ¢ cos 6—,— sin 6— 6
@ P p 0) (6)

Decomposition of the operators # and V into the radial and
angular parts simplifies expressions for the operators repre-
senting other observables. This is described in detail in Ap-
pendix A.

We separate the radial and angular variables also in the
wave function

(Fn,l,m) = (rln, D)}{A|L,m) = R, ((r/n)Y, (). 7)

It will be clear later why we write the argument of the radial
function as r/n. By inserting this separation into Eq. (1) and
using Eqgs. (A8) and (A9) of Appendix A, we obtain the
well-known equation for the radial functions

B Hikl] 1) 1
[;’ . R, (rin) =— —R, (rin). (8)
Here, p, denotes the radial momentum
Jd 1
p,=—i<—+—). 9)
ar r

At this point, the differential equation (8) is usually solved.
However, there is another approach based on the commuta-
tivity of the Runge-Lenz vector with the Hamiltonian (2).
The latter approach will prove to be more advantageous
when dealing with many-electron atoms.

The Runge-Lenz vector is given by

(LXp-pXL)+7, (10)

Using the decompositions (3) and (5), it can be rewritten into
the more suitable form

. i I d
X:n(—l—-—+—->+V"—. (11)
or F or

Commutativity of the components of Runge-Lenz vector
with Hamiltonian (2) can be proved using Egs. (A14) and
(A15) of Appendix A and Eq. (11).

It is seen from Eq. (11) that the Runge-Lenz vector acts
on spherical harmonics in the same way as the operator

V=£(r)i+g(r)V". (12)

Here, f(r) and g(r) are operators acting on radial functions. It
follows from the representation theory of so(4) algebra that
the third component of the operator (12) acts on the spherical
harmonics as [see Egs. (A28) and (A32) of Appendix A]

[(1+m)(1—m)|l-1,m)
top NI+ 1+m)(I+1-m)l+1,m). (13)

The coefficients ¢, are determined from Eq. (A34) of Appen-
dix A
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I-1)(+m) +cp (1 +1-m)(21+3)
= (L,m|(V* = i[V, V,])|L,m). (14)

Runge-Lenz vector commutes with Hamiltonian (2).
Thus, Egs. (13) and (14) can be in this case written as

Xs|n,l,my = efN(L+ m)(I1 - m)|n,l - 1,m)

% c;'+1\/(l+ 1+m)(l+1-m)|n, I+ 1,m)

(15)
and
(eN*21= 1)+ m) + (c} ) I+ 1 -m)(21 + 3)
= {(n,L,m|(X% - i[X},X,))|n,L,m)
={n,l,m|1 + 2H(L* + 1) — 2HL,|n,l,m)
=n2—l(l+]2)—1+m. (16)

n

Comparing the terms proportional to the zeroth and first
power of m on both sides of the last equation yields

1 -Dn+!
7 | (n=D@+D )
n N QI+ 1)(20-1)
Expressions for X? and [X;,X,] used in Eq. (16) can be ob-

tained from Egs. (1) and (11) and from Egs. (A1), (A2),
(A4)—(A6), (A9), (A10), and (A13)-(A15) of Appendix A.

Since operator X is Hermitian and its third component is
real, coefficients c] have to be real. It is seen from the last
equation and Eq. (15) that this holds only if the maximum
allowed value of [ for fixed »n is /=n—1 and n is an integer.
This finishes the derivation of Bohr formula for the energy
levels of the hydrogen atom. The derivation given here is
more or less the same as that of Pauli [14]. Let us also note

that six operators L and X are closed under commutation.
This is usually referred to as so(4) algebra [13].

B. Wave functions of the hydrogen atom

We would like to point out that we can also derive the
form of radial functions R, /(r) without solving Eq. (8). We
compare the action of operator X; on the states In,l ,m) as
calculated from Eq. (11) and from Eq. (15). To get the action
of operator X5 given by Eq. (11) we need to know the action
of operators n; and V3 on spherical harmonics. Operator 7 is
special case of operator (12). The matrix elements of the
operator n3 are given by Egs. (13) and (14). Since obviously
n*=1 and [n,,n,]=0 we have

)+ byl + 1,m), (18)

(I+m)(-m)
b= \/————. 19
e @I-13l+1) )
The action of the third component of operator V" follows
from Eq. (A16) of Appendix A and Eq. (18)

where
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Vg|lam> = (l * l)bl,m]l - 1,771) i lbl+1,m|l + 1:m>- (20)

Using Egs. (11), (18), and (20), we get that the third compo-
nent of the Runge-Lenz vector acts on the states (7) as

d (l+1
X5{Fin,l,m) = (l— -1+ L
dr

)Rn,l(r/n) bl,mYl—] ,m(ﬁ)

d I(l+1
—(—(1+ 1)—-1 +Q)

dr r
XRn,I(r/n)bH],mYI+l,m(r-{)- (21)

Finally, we insert the separation (7) into Eq. (15). Since
the spherical harmonics form an orthonormal basis set, the
terms proportional to Y;_; () in Egs. (15) and (21) have to
be equal:

(l d I(1+1) yn? =12

— =1+ )Rn (rin) = R, .1 (rin). (22)
dr : ;

The terms proportional to Y, (%) in Egs. (15) and (21)
have to be equal as well, i.e.,

——I(l: 1))Rn,,(r/n)

d
((l+l);+1—

=- —n—‘RnJ+1(r/n). (23)

Considering the last equation for [=n—1, we get the first
order differential equation for the radial function R, , (r),
whose solution reads

Ry 1(rin) = K rin)" e, (24)

Considering Eq. (22) for / descending from n—1 to 0, the
remaining radial functions R, ,(r/n) are obtained by differen-
tiation. Equations (22) and (23) were also derived in Ref.
[18] from different considerations. In that paper it is de-
scribed how these equations can be used for the calculation
of the intensities of the hydrogen atom.

III. STURMIAN BASIS SET

In this section, the transition from the discrete part of the
hydrogenic basis set to the Sturmian basis set is performed
via energy-dependent scaling. The ladder operators for the
radial functions are constructed. These operators yield the
recurrence relations for the radial functions with the same
orbital number /. These recurrence relations for the radial
functions are combined with those derived in the previous
Section to generate additional recurrence relations. Finally,
the orthonormality relations of the Sturmian basis set are
discussed.

A. Energy-dependent scaling

For variational calculation of the more complicated atoms
the hydrogenic functions are not convenient. The reason is
that the Hamiltonian given by Eq. (2) has both discrete and
continuous spectra. Therefore, the discrete spectrum does not
form a complete basis set. The incompleteness of the discrete

PHYSICAL REVIEW A 75, 022506 (2007)

hydrogenic functions is caused by the presence of factor 1/n
in the argument of the exponential function, see Eq. (24).
Therefore we make the energy-dependent scaling r— rn.
Equation (8) then takes the form

pr o ll+1) n I
Pr e+ l) n o . 5
{ 2 * 2,2 r:lR""(') ZRHJ(") (25)

In Eq. (8), we considered different energy levels labeled by n
for fixed nuclear charge Z=1, while in Eq. (25), we consider
different nuclear charges Z=n for fixed energy level E=
-1/2.

If we multiply Eq. (25) by r we can rewrite it into the
form of the eigenvalue problem

T3Rn,l(r) = "Rn.l(r)' (26)

where

Il + l))+§. @7

T. -5( 24
3"2 Py r2

B. Ladder operators for radial functions

The great advantage of Eq. (26) is that the spectrum of
operator T3 is purely discrete. This is most easily seen by
constructing step-up and step-down operators

ri oo W21y P,
Ti:5<p’+_r2_ —Eitrp,. (28)

It follows from Egs. (27) and (28) that
[T3,T.]= £ T,. (29)
Acting with this operator equation on the radial functions
R, (1), we get (see, e.g., Refs. [13,19,20])
TRy (r) =N(n £ 12 1)(n + DRy (7). (30)

Operators Ty and T, are closed under commutation. This is
related to the existence of the radial so(2,1) algebra, as de-
tailed in Refs. [13,17,19]. With the help of operators T5 and
T, we can, for example, determine action of the radial coor-
dinate and derivative with respect to radial coordinate on the
radial functions, namely,

2rR,, (r) = (2T; - T, — T_)R, (7)

= ann,l(r) = V(n +i+ 1)(” = Z)Rn+l,l(r)
=N(n=1=1)(n+ DR,y (1) (31)

and
2r<i ¥ l)Rn l(r) = (T+_ T_)Rn l(r)
dr “r) ,

= (n il 1)(" = Z)Rn+1,l(r)
=V(n=1-1)(n+DR,_ (r), (32)

respectively. These equations follow from Egs. (9), (26)—
(28), and (30).
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C. Recurrence relations

In the previous section we derived recurrence relations for
the radial functions of hydrogen, Egs. (22) and (23). By mak-
ing energy-dependent scaling r—rn in these equations we
convert them to the equations for the Sturmian radial func-
tions

9
Hi + 1) e J]Rn,,(r) Wl e ) (33)
dr r l l ’

and

d 1 n
{r(; + —;) ¥l (I+ 1):|Rn,l(r)
2= (1+ 1)

=——— TRl (34)
I+1
Thus, Eqgs. (31) and (32) connect the radial functions with
the same / and different n. The last two equations connect the
radial functions with the same »n and different /. We could
have finished at this point. However, for the purposes of the
following Section it is advantageous to combine Egs.
(31)—(34) to additional recurrence relations.
We apply Egs. (31) and (32) to the left-hand side of the
last two equations. After some manipulation we obtain

2R, () = N+ L4+ 1) (n+ 1+ 2)R ey 11 (1)
+V(n=1=2)(n—1= DR,y 11 (7)

=29 = (1 + 1)%R, 11 (r) (35)

and

2rR, () =N =D+ 1= DRy ,1(r)

+Vm+Dm+1-1)R, g 1 4(r) - 2n? - lzR,,!,_l(r).
(36)

Further, we rewrite Egs. (33) and (34):

d 1+1 V22
Bl —— Rn,z(r)=T
p

n
Y ar,l—l(r) + 'l_ar,l(r)

(37)

and

d | \fm B
r(;j; = ;)Rn,l(r) = H—lr“?n.lﬂ(r) + er"’l(r)

(38)

and arrange the right-hand sides of the last two equations as
follows. In Eq. (37) we use Eg. (31) on the first term and Eq.
(36) on the second term. In Eq. (38) we use Eq. (31) on the
first term and Eq. (35) on the second term. After some ma-
Nipulation we get
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d |
2”(; - ;)Rn,l(r) = ‘\‘f(” +i+Dm+1+ 2)Rn+1,l+1(r)

+ V(= 1-2)(n— 1= DRy 11 (r)

39
and
2r{ £+ L), ) = G D 1= DRy 1)
+Vm+ D)+ 1-1)Ry g (7).
(@0

Equations (31), (32), (35), (36), (39), and (40) will be used
for the calculation of one- and two-electron integrals in the
next section.

D. Orthonormality relations

Since functions R, (r) are eigenfunctions of Hermitian
operator T3, they form an orthonormal basis set. However, in
contrast to the Hamilton operator (2) that is Hermitian with
respect to the inner product

(n1, 1| Hng, 1) =J ’Ry (r)HR,, /(r)dr, (41)
0
operator 75 is Hermitian with respect to the inner product
(Tl = Ry TR . @)
0

Consequently, while the wave functions of hydrogen are or-
thonormal with respect to the inner product

ORI f PR, (DR, (Ndr=6, .  (43)
0

the eigenfunctions R, (r) of operator T3 are orthonormal
with respect to the inner product

(nl,l

nZvl) = f arl,l(r)an,l(r)drz 5n1,n2' (44)
0

IV. MATRIX ELEMENTS OF THE COULOMB
INTERACTION

In this section, we apply results of the previous section to
the calculation of two-electron integrals. First, as usually, we
separate the radial and angular degrees of freedom by means
of the multipole expansion. Further, we write the product of
two radial functions as a linear combination of radial func-
tions. We thus reduce the integrals over four radial functions
to the integrals over two radial functions. For these reduced
integrals, we derive recurrence relations combining integra-
tion by parts with algebraic methods. Using result of this
section calculation of two-electron integrals is reduced to the
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calculation of one-electron integrals. Evaluation of one-
electron integrals is described in Appendix B.

A. Screened radial functions

In many-electrons atoms the electrons occupying different
orbitals “see” different effective nuclear charges. For ex-
ample, the dominant configuration of P states of two electron
atoms is the one in which the first electron occupies the s
orbital and the second electron occupies the p orbital. Now,
the electron occupying the s orbital is close to the nucleus
and its effective nuclear charge is close to the nuclear charge
Z. However, the electron occupying the p orbital is further
away from the nucleus and “sees” the charge Z of nucleus
“screened” by the charge of the electron in s orbital —1. Its
effective nuclear charge is therefore close to Z—1. Thus, to
get fast convergence of the variational method, we have to
consider different screening constants for different electrons.

For this purpose, instead of the “ordinary” radial func-
tions R, ,(r), we consider the “screened” radial functions
R, (ér). The “screened” functions are obtained from “ordi-
nary” functions by the energy-independent scaling »— &r and
multiplication by & This multiplication is to ensure the
proper normalization (44). For example, the nodeless
“screened” functions Ry, ,(ér) read

— 2—§ 1,-¢&r
Rl+1,l(§r) = \m(z‘fr) e ~. (45)

This equation is obtained from Eq. (24) for r— rné and from
Eq. (44).

B. Separation of radial and angular degrees of freedom

Calculating the matrix elements of the Coulomb interac-
tion between two spin orbitals leads to the calculation of the
integrals

fdz'rlfdaran,k,llk(rlflk)Yllk,m,k(ﬁl)RnZk,IZk(rzfzk)

X Y12k,m2k(ﬁ2)rﬁanU,zU(ﬁ E)Y 1 m, (R)R, 1, (r2€))
X lej,m2j(ﬁ2) 2 (46)

To separate the angular and radial degrees of freedom, we
expand ry, in the multipole expansion

1 N re ! e
”I; = _2 (_> Py, - ny), (47)

Fs =0 \T>

where ro=ry, ro=ry if r\<rp and re=ry, r~=r; if r;>r,.
Here, P)(x) denotes the Legendre polynomials.

The angular part of the integration is achieved by the
methods developed by Racah, see, e.g., Refs. [9-11]. The
radial part of the integration involves calculation of integrals
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f dranlk,llk(rl§Ik)RnU,lU(r1§1j)r11+2
0

el
Xf droRo, 1, (12620 R, 1, (r2&3))1r5 +
,

1

+j dran]k,I”_(rlglk)RnU,lU(rlglj)r;Hl
0

ny
Xf erRn2k,12k(r2§2k)Rnl}-,lzj(r2§2j)r)2+2- (48)
0

C. Linearization of the product of two functions

It has been pointed out in Ref. [17], that the products of
the radial functions of the same variable [such as
Ry, (11 §1k)R,1U,,U(r1§1 ] appear in the integrals (48). The
integration of the product of three spherical harmonics is
greatly simplified by virtue of the fact that the product of two
spherical harmonics can be written as a linear combination of
spherical harmonics. This is known as a special case of the
Wigner-Eckart theorem. Being inspired by that theorem, we
write

"Ry 1, (617)Ry, 1, (£21)
ny+ny—l+p

-3

n=l"+1

(nl?llvgh”?.’lZ’gZ’n)pRn,l’(gr)1 (49)

where ['=1+1, and &{=¢§,+&,. The number of the nodes of
function R, ;/(ér) is n—1'~1. The product of the function
with n;—/;—1 nodes and the function with n,—I,—1 nodes is
the function with n;+n,—1-1'—1 nodes. Thus, this function
is composed only of the functions R, ;(&r) for which the
number of nodes n—I'—1 does not exceed n;+n,—1-1"-1.
Thus, the upper bound in the summation in Eq. (49) is n
=n;+n,—1 for p=0. For a nonzero p the upper bound is
deduced from Eq. (31).

Let us determine coefficients (ny,1;, & ,n,,15, §2|n)P. Mul-
tiplying Eq. (49) by rR,: ;(ér), integrating over r and using
the orthonormality of radial functions, (44), we obtain

(nhll’glan’lZs §2|nl)p

= f rpHRn',l’(fr)Rnl,Il(glr)an,lz(g?.r)dr- (50)
0
Further, we multiply Eq. (49) by 2r. On the left-hand side of
Eq. (49) we let 2r act on the function Rnly,l(glr) according to
Eq. (31) where we substitute r— &r. On the right-hand side
of Eq. (49) operator 2r acts on function R, ;/(ér). Thus we
arrive at equation

1
"I’an,lz(‘fz”)E‘[zannl,ll(glr)
1

=y + 4+ 1)y - 1Ry 41,1, (17)
=Vl = 1= D(ny + IR, -1, (617)]
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nytny—l+p

-3

n=1"+1
X[2nR, 11 (&) = N(n+ 1" + 1)1 — ') Rypyy (&7
N =1 =)+ 1R,y (£)]. (51)

1
(n1,11,§1,n2,12, §2|n)pg

We multiply the last equation by 7R, ;/(ér), integrate over r
and use the orthonormality relations (44) and Eq. (50):

2ny(ny 1y, €m0, 0, 6|n")
e \/("l + lI + 1)(”1 - l])(nl + 1s11,§1,n2,lz,§2|n’)
= ‘/(’11 =5 = D(n +1)(ny ~ 1,11,51,712,12,§2|n')

ny+ny—1+p 45
= 2 (nlvlhgl’nZ’lZa §2|n)p_l
n=1"+1 f
X[2n6, n— Jn+1 +1)(n- 1)yt a1
N =1'= 1)+ 1") 8y 1] (52)

After deleting the zero terms on the right-hand side, we ob-
tain the following recurrence relation for the coefficients

(nl’ll’gl’n2’12a§2|n)

(”1,11,51,n2al2, §2|n)p\/("1 . l] S ])(nl + ll)

&n
= 2(}11 -1- Lg)(nl = 17117§I7n2512?§2|n’)p

=y + 1= 1)y = 1= 2)(ny = 2,1, E,m0,15,65[),

4 g—é\f(ﬁ Y= = 1)y — LIy, Ermg ol — 1),

+ %\[(n_ l’)(n + l' + 1)(”1 = 1,11,51,”2,12,52'” o l)p

(53)
The last equation expresses coefficients
(1,11, &,n0,1,&]|n), through coefficients

(ny,1y,&,n0,1,&|n"), with ny smaller than n;, but with n'
sometimes smaller and sometimes larger than n. But since
there are lower and upper bounds on the possible values of n,
see Eq. (49), Eq. (533) can be used to lower the quantum
number n; to /;+1. To lower the quantum number n, to [,
+1 we apply Eq. (53) again exchanging this time n; and nj,
l; and l,, and & and §, and taking into account that
(”1’11,‘fl’”2alz,§2|”)p=(n2,lz,§2,”1,ll’fl|”)p-

The value of coefficients (I;+1,1;,&,0,+1,1,,6]|n), is
obtained by inserting Bq. (45) into Eq. (49). We thus obtain

(h+ L& L+ L&\l + 1+ 1)
gt (21, +21,+1)!
(& + &N 21+ 1)1+ 1)!

(54)

and
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(h+ L& L+ L, 6|n)e=0n> L + [+ 1. (55)

The case of a nonzero p is obtained from Egs. (49) and (31).
For example,

(ll + 1’ll’§1712+ 1,12,§2|11 + l2+ 1)1

=2(L +1,+1) amg" ity 1) y
(& + &2 N 21 + 112+ 1)!

(56)
(L + L1, ELL + 1,0,6|L + 1+ 2),

§_41+1§12+1
== V2l + L+ 1) 7 J‘r 52)1”2*2

(21, + 20, + 1)!
@+ DL+ 1)
(57)

and

(ll + l,ll,§1,12+ 1,12,§2|n)1 =O, i = ll + 12+2. (58)

Remarkably, the described method of calculating coefficients
(ny,01,& ,n2,15, &|n), is numerically stable.

Using Eq. (49) for p=1, the integrals (48) can be written
as linear combination of the integrals [17]

P’%’i’-ﬁzz‘[(gl &)+ PIL\IZZ’,IJVI{I(‘fz’fl)- (59)

Here,

Pﬁljvzz’l(fl,&):f ENI,LI(&H)"I;IJ ENZ,IQ(fz"z)r;drz dry
0 r

1

(60)

and

Plﬁi’,lﬂfl(gz,fl)zf ENl-Ll(glrl)rIl
0

o
Xj RNZ,LZ(fzrz)rl;l dr2 drl, (61)
0

where we introduced the unnormalized radial functions
1?,,‘ /(r) related to the normalized functions R,, ,(r) via relation

~ / (n+1)!
Rn.l(r) = mRn,l(r) . (62)

By using unnormalized functions the irrational factors are
conveniently eliminated.

The great advantage of our procedure is that the integrals
(60) can be evaluated much more easily than the original
integrals (48). In the next subsection, we derive recurrence
relations for these integrals.

D. Recurrence relations for the integrals

1. Recurrence relations connecting integrals with different
values of N, and L,

The recurrence relations connecting integrals (60) with
different values of N, and L, are derived from “analytic”
equation [17]
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[ e
=/
5 dr

1

)["z Ry, 1,(&rp)ldry=—ri™' Ry, 1 (&)

(63)

obtained by integration by parts and from the “algebraic”
equations

2,-(%.4. ) R, (&)= (n—DRyuy (&) = (n+ DR, (&),
(64)

Zr(d—d'—‘ ) R, (r) == Ry 1 (7) +Rn Lei(r),  (65)

Zr( — 4+ ﬂ)1’%",,@) =—(n-D(n+1=DRpy (N +(n+1D)
dar F :

X(n+1=1)R,_y 1 (r). (66)

Equations (64)—(66) are obtained by substituting Eq. (62)
into Egs. (32), (39), and (40).

Inserting Egs. (64)—(66) into Eq. (63), multiplying Eq.
(63) by 213N],L1(r1 &)t and integrating over r; from zero to
infinity we obtain successively

- (N, +L2)P§,1ﬁ,2 1(€1,&)

+ Ny = L) Pt (61, 6) = 20PR 2 (61, 6)
— (N1, Ly, & 27N, Ly, &), (67)
AR 2y
- P (6.6) + 2Ly + 1= DPYRY6,E)
— (N1 Ly, &27No, Ly, &), (68)
and finally

(Ny+ Ly)(Ny+ Ly — I)PLI Lz_l l(fl»fz)
~Ly+ 1)P,Lvl W (61,8) - 2(Ly
+ )Py (6,6)

=— (Ny, L1, &|27|Ny, Lo, &). (69)

- (N3 = Ly)(N,

The one-electron integrals on the right-hand side of these
equations are given as

(Ny,Ly, §|2r|No, Ly, &) = f ZVZENI,LI(&V)ENZ,L2(§2r)dr-
0
(70)
2. Recurrence relations connecting integrals with different

values of N; and L;

To derive recurrence relations connecting the integrals
(60) with different values of N, and L;, we need a modifica-
tion of “analytic” equation (63), namely [17]
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* d
J dry rl(d_+ )[rHRN L (51’1)]J dry Ry, 1 (&arp)ry

0
= f drl’%ENI,LI(‘flrl)ENz,Lz(gzrl) (71
0

obtained by integration by parts. By inserting the “algebraic”
equations (64)—(66) into Eq. (71) we obtain

- (Ny + L1)P1L\/11'_L12:,I\,2(§1, &)
— L)Y (61, 6) + 20+ DPRR(6,6)

= (NI’L17§1|2r|N2>L21 §2)’ (72)

+(V

PJLlel %221(51,52)
~ P66 + 2Ly + 1+ 2) P61, 6)

= (N, Ly, &[2r|No, Lo, &), (73)

and, finally,
(N1 + L)V, + Ly~ DPRY L R1EL6)

— LNy~ Ly + DPY R (6 6)
+2(1+ 1-L)PY (£, 8)
= (Ny,Ly, £1|2r|Np, Ly, &). (74)

- (N

3. Discussion

By means of recurrence relations for the radial functions,
we have derived recurrence relations for the integrals. We
note that Eq. (67) and (72) were derived already in Ref. [17].
As is clear from the above derivation, these equations result
from Eq. (64). The latter can be traced back to commutation
relations (29). Equation (64) connects the radial functions
with different principle numbers n but the same orbital num-
ber . Consequently, Egs. (67) and (72) connect the values of
integrals Pkll',lﬁz’l(gl,fz) with different principal numbers N,
and N,, but with the same orbital numbers L, and L,. On the
other hand, Egs. (68), (69), (73), and (74) are derived for the
first time here. They result from Egs. (65) and (66). The
latter can be traced back to the commutation relations be-
tween operators pertaining to so(4) algebra. Equations (65)
and (66) connect the radial functions with different principle
numbers n and with different orbital number /. Consequently,
Egs. (68), (69), (73), and (74) connect the values of integrals
PL1 La. 1(§1,§2) with different principal numbers N; and N,
and w1th different orbital numbers L; and L,.

In Ref. [17] we found by experimentation with MAPLE
that Egs. (67) and (72) acquire very simple solution in the
cases when the right-hand side vanishes. This appears either
for &=§&,, Li=L, and [N;—N,|> 1, see Egs. (44) and (31), or
for =&, L1<L, and N;>N,+1, see discussion after Eq.
(B12) below. Further, we found that integrals P;;,I;?,;,lz(fl €D
vanish for N; > N,. At that time we did not know Egs. (68),
(69), (73), and (74). The information found by experimenta-
tion is contained in these equations.
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Now, we have to use Eqs (67)—(74) for the actual calcu-
lation of integrals PL1 Lol (51,52) in such a way that the sim-

plification mentioned above comes out in a numerical stable
way. For example, as mentioned above, integrals
Pf(,l;f,dz(ﬁl ,&;) equal zero for Ny > N,. This zero cannot result

from a subtraction of two large numbers.
With this in mind we combine Egs. (67) and (68) into a
single equation

- ZIPII??VZH I(fhfz) 2(Ly + 1)P1[\}' Ifftlll(gl,fz)
+2Lo+ 1= DN+ Ly + PR (61, 6)
== (Ny, Ly, &[2r|Ny Ly + 1,6)
— (No+ Ly + 1)(Ny, Ly, £[2r|Ny, Ly, &) . (75)

The right-hand side of this equation can be brought into the
form

B 2Ly+1)
&
— (N1,L1,&|Np, Ly + 1,8)],

[(WN1,Ly &[Ny + 1,0+ 1,8,)

where

(Ny,Ly, €1|Ny, Ly, &) = J rENl,Ll(flr)ENZ,LZ(fz”)dr-
0

(76)
Here, we used equations
28Ry, 1,(607) = Ryyp1 1,1 (E28) + Ry, 1,1 (E7)
- 2EN2,L2+1 (&r) (77)
and
ZgzrﬁNz,L,_—H(ng)
=2N. ZENZ,L2+1(§2" )
— (Ny = Ly = DRy 1,01 (&)
~ Ny + Ly+ DRy, (&) (78)

These equations were obtained by substituting Eq. (62) into
Egs. (31) and (35), respectively.

Further, we combine Egs. (67) and (69) into a single equa-
tion

2Ly(Ny + Ly = PR (61,6
= 2UN, ~ L) PR (61,6) - 2Ly + DPRR(60,8)

= (N1 Ly, £1|2r|Ny, Ly — 1,6) (N, - Ly)
= (N1=L1’§l|2r|N2vL2’§2)- (79)

The right-hand side of this equation can be simplified into
the form
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2L
- 5_2[(N2+L2" D(Ny,L1, &[N, - 1,1, - 1,£)
2

= (Ny=Ly)(Ny,Ly, &[Ny Ly - 1,86)].

Here we used Eq. (78) and equation
26rRy, 1 (&) = (Ny = Ly + 1)(Ny — Lz)EN2+1,L2-1(§2")
+ (N2 + L) Ny + Ly = DRy, 1 1,-1(&0)
= 2(Ny+ Ly)(No = LRy, 1,1 (&r). (80)

This equation is obtained by inserting Eq. (62) into Eq. (36).
Similarly, we put together Egs. (72) and (73)

— 2Ly + VPR 6L 6) + 200+ VP 6, 6)
+2(Ly + 14 2)(Ny + Ly + PR (6,6)
. 2(L, + 1)
N 1
—(Ny,L; + 1,§ Ny, Ly, )], (81)
and Egs. (72) and (74)

[(Ny+1,Ly + 1,& [Ny, Ly, &)

2L (Ny + Ly = DPYTR(E,6) + 2N~ L) (I + 1)

X PN, 6) + 20+ 1- L)PERI 61, 6)

2L1

[(Nl L= 1)(Ny = 1,L = 1,§|Ny, Ly, &)

= (Nl —L)(Ny,L; - 1,&|N5, Ly, £)]. (82)

We note that considering the last equation for &=¢; and
L;=I+1 together with orthonormality relations (44) yields

ﬁvaNIZ({,f] ,€)=0 in a numerically stable way, as desired.

E. Actual calculations of the integrals

The above equatlons can be used for actual calculations of
the integrals PLl’ 2 (§1,§2) as follows. We set Pf;,ll’fvzz”(gl,fz)
=0 whenever N1 <L1+1 or N,<L,+1. Further, we assume
that we know how to calculate the one-electron integrals
(Ny,L;,& |N,, Ly, &). Calculation of these integrals is left to
Appendix B.

1. Case Ly #L,

We can use Eq. (81) repeatedly to lower the value of L to
I and to consider Eq. (82) for L;=I+1 to calculate the inte-
grals Py LZ’ (§1 ,&). Similarly, we can use Eq. (75) repeatedly
to lower the value of L, to / and to con51der Eq. (75) for
L,=I-1 to calculate the integrals P,’;,l (§,,§2) However,
this way of calculation of the integrals changes the difference
L,-L,. This is not advantageous because of the following
reason. As mentioned above, the integrals PL1 Lo, I(fl &) have
particularly simple form for & =§, and Ll—-Lq Procccdmg in
this way we would calculate simple integrals P"' oy, '(fl &)
through the more complicated integrals P"' (£| .§1) with
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The better way is to reduce the integrals with L; ¥ L, only
to the case L;=L,. In the case L, greater than L, we use Eq.
(81) repeatedly to lower the value of L; to L,. In the opposite
case L, greater than L; we use Eq. (75) to lower the value of
Lz to Ll-

2. Case Ly=1,>1

Further, we show that the integrals PLl l’z (§1,§2) for the
case L;=L,>1 can be reduced to the 1ntegrals PL1 e l(§1 &)

with L;=L,=1. We set L;=L and L,+1=L in Eqs (75) and
(82). We eliminate the integrals Pﬁ'ﬁ;,;’l(fl,gz) from these
equations and obtain

LP}%I'IL,}\IIZ+1(§1’§2) + lPIL\/f/(IZ(fl,gz)

L
- E[(lelﬂ §1|N2 ¥ 17L’§2) L (leLy §1|N2’L7§2)]
2

B (L-D(N,+L)
.

— (N - L)+ )Py R M(ELE)

{—L(Nl +L- )Py 156, 6)

L
+ E—[(Nl +L_ 1)(N1 - 1,L— 1,§1|N2,L— 1,52)
1

_(NI_L)(NI,L'_1’§1|N27L_1’§2)]}- (83)

This equation cannot be used in the case L=[+1, since the
denominator on the right-hand side vanishes.

Further, we set L;+1=L and L,=L in Egs. (79) and (81).
We eliminate integrals P (§1,§2) from these equations

and obtain

L5 (61, 8) = L+ DPR5 (61.6)

T é,_[(Nl + laL$ §1 |N2*L’ §2) = (N17L7 §1|N2’L’§2)]
1

(LAl )N + L)
B I+L

+U(N,~ LYPy M6, 6)

{_ LNy + L= 1)Py 5 1'(61,6)

L
+ §_[(N2+L— D(Ny,L-1,§|Ny,L-1,&)
2

— (Ny = L)(Ny,L - 1,&|Ny, L - 1,52)]}- (84)

This equation can be used in all cases.

Using Egs. (83) and (84) we calculate integrals
Pﬁl’:;éz(gl , &) through integrals P,I;,;'j;,Lz—"’I(fl ,&). In actual cal-
culation we use Eq. (83) in cases N,<N; and L+ [/+1. Oth-
erwise we use Eq. (84). These equations are used repeatedly
until L—k=1.

The advantage of Eqs. (83) and (84) is that they calculate
integrals P,f,ll’,ﬁ,zz(‘fl ,&) where L,=L, through the integrals
with different quantum numbers N,, N,, L;, and L,, but again
with L, =L,. The advantage of this approach becomes appar-
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ent when considering the case &, =§&,. By virtue of the ortho-
normality relations, (44), the one-electron integrals in Egs.
(83) and (84) nearly always vanish.

3. Case L;=L,=1

Setting Ly=[-1 and L,=! in Eq. (75) and setting L;=1
+1 and L,=! in Bq. (82) we obtain two equations for the
integrals Pﬁ;,”fN (&.8)

Pﬁv’ IN2(§1a§2) + Pﬁv[ 1N2+1(§1’§2)

1
=—‘[(N1,l &[Ny +1,1,8) — (N1, LNy, L E)] (85)
&

and

v, +l)P1”1N (£.6)+ (N —1- 1)P5VZIN2(§1,§2)

1
= E[(N1 + (N, - 1,l,§1|N2J,§2)
1

'—(Nl_l_])(Nl_lsla§1|N21l7§2)]- (86)

In the case when N; <N, and N;>I[+1, we use the latter
equation, otherwise we use the former one.

V. APPLICATION TO HELIUM

The method for calculation of the one- and two-electron
matrix elements described in this paper is general and can be
applied to all atoms, or more generally to all one-center in-
tegrals. To show that the method really works and can be
used to obtain further insights into the atomic structure we
apply it to the CI calculation of helium.

A. Algebraic formulation

The Schrédinger equation for the two-electron atoms in
atomic units takes the form

Ve % Z VA 1

- (2

[ L ) = —'}lﬂ—El//, (87)
2 2 r I 12

where Z is the charge of the nucleus. In the case of helium
we set Z=2. By scaling the coordinates of the electrons X0
—Z7 %%, i=1,2, we get an equivalent equation

(1) (2)
b —_— — = === 88
|: 2 2 r r Zr12 Zz ( )

Since Hamiltonian in Eq. (88) commutes with the compo-
nents of the total angular momentum and spin of the elec-
trons, it is advantageous to expand the exact wave function
into the symmetry adapted basis functions

el 71 €10 Ry 1, (T2 €20 i Pl (L ) L, O
+ (- DWclaR,  (REDR,, 1 (NEx)

X (rigs1iy | (o Lok) L, 0) (89)

<F1,F2|k> = R

where R, ,(ér) are the Sturmian radial function used through-
out the paper, S=0 refers to the singlets and S=1 to the
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triplets, and finally |(/;,l,),L,0> are the eigenstates of the
square of the total angular momentum

mjn(ll,lz)

<ﬁ17ﬁ21(11712)1L70>: 2

m=-min(l1,lp)

= nllL’ 0) Yll,m(’:il) le,—m(ﬁZ) .

(llam’123

Here, (|) denotes the Clebsch-Gordan coefficients.

The calculation of the matrix elements of the operators in
Eq. (88) between two functions of the form (89) is reduced
either to the calculation of the two-electron integrals (46) or
to the calculation of the one-electron integrals. One encoun-
ters two kinds of the one-electron integrals. The first one are
the overlap integrals that are reduced to the integrals (70)

Jd3r Rnl,ll(flr)Yll.ml(ﬁ)an,lz(§2r)le,mz(ﬁ)

E (=L - (-1 - 1)

!
— (1 +1,)! ("1’11»§1|”|”2»ll,§2)-
1t4): 1)

(90)

The second one are the integrals involving the Laplace op-
erator. These are calculated as follows:

2

v
fdar Rnl,ll(glr)yll,ml(ﬁ)<_ 7>Rn2,12(§2r)Y12,mz(ﬁ)
X L +1
= §2f I‘Rnl,,l(§1/§2r)§(p%+ k 1'; )>Rn2,zl(r)d7‘

0

=L =D (-4 -1)
N (ny +1)! (ny +1)!

+(T++T_)/4|n2,l1,1). (91)

!
&x(ny, 1y, 6116|T512

Here, we used an expression for the Laplacian operator in
spherical coordinates (A8), equation for spherical harmonics
(A9), orthonormality of spherical harmonics, and Egs. (27)
and (28). The resulting matrix elements are by means of Eqgs.
(26) and (30) reduced to the calculation of the overlap inte-
grals (76).

B. Configuration interaction

In this paper we concentrate on calculation of S and P
states, i.e., on the states with L=0 and L=1 in Eq. (89). It
follows from properties of Clebsch-Gordan coefficients that
for L=0 it must be /;,=[5=I; and for L=1 it must be I;;
=l —1=l;. Thus, after taking into account all symmetries,
we have an infinite number of configurations labeled by set
of integers {nyy,no.l}, with k ranged from 1 to infinity.
When performing CI calculation we have to truncate this
basis set in some manner. Also, we are free to optimize the
screening constants &, and &, for different [, to achieve the
rapid convergence of CI method.

In this paper we are mainly interested in the numerical
stability of the integrals. The main source of the instabilities
are the integrals among highly excited configurations. To
know the integrals that have to be evaluated accurately, we
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need to know the highly excited configurations that contrib-
ute significantly. Also, we need to know the values of the
screening constants that are close to the optimal ones.

Let us consider the second-order of the perturbation
theory

E®) § Wia (92)
k=1 EE)O) T E/((O) .

It is seen that if the matrix elements W, do not vary appre-
ciably with the increasing k, the contributions of the configu-
rations decrease with the increasing unperturbed energies
E,((0 =—(n2+n,2)/2. Now it is clear that, for example,
{1s,(n+1)s} configurations are more significant than {2s,(n
+2)s} and {2p,(n+2)p} configurations. The latter are more
significant than {3s,(n+3)s}, {3p,(n+3)p}, and {3d,(n
+3)d} configurations and so on. Generally, for the S states
we consider {N/,{N+n)l} configurations with ! going from 0
to N—1 and with n going from O (for the singlets) or from 1
(for the triplets) to some b. For the P states we consider two
kinds of configurations: either {NI,(N+n)(I+1)} with | going
from O to N—1 and with n going from 1 to b, or {(N
+n)l,N(I+1)} with [ going from 0 to N—2 and with n going
from O to &.

The question now is how to choose b to pick up the sig-
nificant configurations. Let us suppose that we have fixed N
and ! and we are adding to the basis set the states with
increasing n. We made variational calculation with k basis
functions and calculated the ground state of given symmetry
E,. We add the (k+1)th state, obtain E,,; and calculate the
difference E,, ;—E,. If this difference is less than &, contri-
bution of the states with fixed N and [ is saturated. Addition
of the further states with fixed NV and / and increasing n does
not improve the variational result significantly. For the triplet
S and P states we took e=107°, for the singlet S state we
took £=107". In this way we determined b.

For {Ns,(N+n)s} configurations of the triplet S state and
{1s,np} of the triplet P state we took &y=1-1/Z and &,
=1. In these configurations, the distinction between the “in-
ner” and “outer” electrons is meaningful. The “inner” elec-
tron “sees” the nuclear charge and the “outer” electron
“sees” the nuclear charge screened by the “inner” electron.
For other configurations we took §;,=&;=1.

Tables I and II summarize our findings about significant
configurations for the § and P states, respectively. For low N
the contribution of the states with small /=0, 1,2 is dominant
and we have to take large number of the excitations of the
“outer” electron. As we move to larger values of N, the con-
tribution of the states with small / saturates. The dominant
contribution is shifted to the states with [=3,4,5. Also, as N
increases the contributions of the configurations with larger n
goes down. In other words, as we are moving to the higher
excited states the electrons have tendency to have equal prin-
cipal quantum numbers.

However, it is seen from Tables I and II that precise de-
pendence of b on N and / that cuts the unsignificant configu-
rations is anything but simple. Perhaps labeling of the con-
figurations by means of the approximate quantum numbers
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TABLE I. The basis set used for configuration interaction for the
S states. {NI,(N+n)l} configurations are ordered according to the
principal quantum number N of the “inner” electron. For fixed N,
the orbital quantum number / runs from 0 to N—1. For fixed N and
[ the difference n between the principal quantum numbers of the
“outer” and “inner” electron ranges from O (for the singlets) or from
1 (for the triplets) to b. b serves to cut the contribution of the states
with large n that do not significantly improve the variational result.
b was determined from numerical experiments, see the main text for
the details.

State Interval b
lg N<12,1<3 9
N<12,1=3 0-(]=9)
12<N=<18 6—|1-4|
5 N<5 18-N-2I
6<N=<8$ 18-N-1
9<N=<13 18—N-|[-4|

as used by Herrick and Sinanoglu [15] provides the desired
“selection rule.”

C. Results and discussion

We first discuss accuracy of the eigenvalues and then nu-
merical stability of the integrals. The results presented in
Tables I1I-V show that after relatively fast convergence for
small N, the convergence of CI slows down for larger N. The
results were compared with those obtained in Ref. [20] with
the method of the explicitly correlated functions. As ex-
pected, the result for the ground state is not impressive. It is
well known that electron-electron correlation for the lowest
state of two-electron atoms is very strong. Thus, the results
obtained within the orbital method are relatively poor in

TABLE II. The same as in Table II but for the P states. The only
difference is that in this case we have two kinds of configurations
{NL,(N+n)(I+1)} and {(N+n)l,N(I+1)}.

Configurations Interval b
{NL,(N+n)(I+1)} N=1 13
N=2 13-2|1-1|
N=3 10-2|1-1]
4<N=<38, [<4 7
4<N=<8,[=4 7-(1-3)
9<N=13,I<7 4
9<N=13, =7 4—(1-6)
{(N+m),N(+1)} N=2 14
N=3 13-2(I-1)
4<N=<S$ 1
6<N=<10, I<4 5
6=N=<10, =4 5-(1-3)
11sN=<13,I<7 5—(N-10)

11=N=13,1=7 5-(N-10)-(I-6)

PHYSICAL REVIEW A 75, 022506 (2007)

TABLE III. Variational energy levels Ey of the ground state of
helium obtained by diagonalization of the generalized eigenvalue
problem (88) for given N. Order denotes the order of the truncated
matrix. AE denotes the difference Ey—Ey_;. The exact value is
-2.903724373 [20].

N Order Ey AE

1 10 -2.8725067

2 30 -2.8975136 -0.25 107!
3 60 ~2.9009036 -0.33 1072
4 99 ~2.9020298 —-0.11 1072
5 146 ~2.9025655 -0.53 1073
6 200 -2.9028682 -0.30 1073
7 260 ~2.9030582 -0.18 1073
8 325 -2.9031862 -0.12 1072
9 394 -2.9032773 -0.91 107*
10 466 -2.9033447 -0.67 1074
11 540 ~2.9033962 -0.51 1074
12 586 —2.9034357 -0.39 1074
13 632 —-2.9034672 ~-0.31 1074
14 678 -2.9034922 -0.24 107*
15 724 -2.9035120 -0.19 107
16 770 -2.9035277 -0.1510™*
17 816 —2.9035404 -0.12 107*
18 862 -2.9035508 -0.10 1074

comparison with those obtained by means of the explicitly
correlated functions, see, e.g., Refs. [6,17,21,22]. The latter
method has the disadvantage that its extension to the atoms
with more than two electrons is very complicated. Three-
electron atoms are just on the margin of feasibility [23]. The
accuracy of our calculation is much better for the excited
states. Our results for 2 *S and 2 >P states are better than 1
part in 10°. Considering the simplicity of the basis set used
here in comparison with that used in Ref. [20], these results

TABLE IV. The same as in Table III, but for the 235 state. The
exact value is —2.175229378 [20].

N Order E AE

1 17 —2.174245506

2 47 -2.175088716 -0.84 1073
3 86 -2.175208569 =011 102
4 130 -2.175221935 -0.13 10
5 175 -2.175225653 037107
6 232 -2.175227182 813 10°°
7 288 —2.175227945 —0.76 1076
8 340 -2.175228372 —-0.42 1076
9 401 —2.175228626 -0.25 107¢
10 456 -2.175228790 -0.16 107°
11 502 —2.175228901 -0.11 10°8
12 537 -2.175228977 =0.75 1077
13 562 -2.175229025 -0.47 1077
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TABLE V. The same as in Table III, but for the 23P state. The
exact value is —2.133164181 [20].

N Order E AE

1 15 —2.131319860

2 54 -2.132970321 -0.16 1072
3 106 -2.133129547 -0.15 1073
4 158 -2.133151474 —0.21 1074
5 224 -2.133157958 -0.64 1073
6 292 -2.133160583 -0.26 1073
7 368 -2.133161872 -0.12 107
8 450 -2.133162588 -0.71 107
9 521 —-2.133163013 ~0.42 1075
10 594 -2.133163291 -0.27 1076
11 672 -2.133163480 -0.18 1076
12 740 -2.133163610 -0.12 1079
13 798 -2.133163699 -0.89 1077

are good. Going to the higher excited states, the performance
of the orbital method further improves, see, e.g., Ref. [4].

To improve the result achieved here it is necessary to
optimize screening constants, classify the configurations ac-
cording to the scheme proposed by Herrick and Sinanoglu
and to extrapolate the results to infinite N. This will be dis-
cussed elsewhere.

In Table VI a few values of the repulsion integrals be-
tween {ls,2p} configuration and the excited configurations
are presented. Also presented are a few diagonal matrix ele-
ments between the highly excited configurations. These con-
figurations are the last considered configurations for given N.
The values of the integrals were calculated in the double
precision and then compared with the calculation performed
in quadruple precision. It is seen from Table VI that the
numerical stability of the method is very high. To conclude,
these preliminary results show that the algebraic method de-
veloped in this paper is sound.
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VI. CONCLUSIONS

In this paper two goals were achieved. First, we have
shown that conservation of the Runge-Lenz vector and the
commutation relations between components of the Runge-
Lenz vector and angular momentum provides recurrence re-
lations for the radial functions of the hydrogen. Second, we
have shown that these recurrence relations facilitated the nu-
merical stability of calculations. In particular, the integrals
over four radial functions were written as a linear combina-
tion of the integrals over two radial functions. Numerically
stable recurrence relations for the coefficients of the linear
combination were found. The integrals over two radial func-
tions were given through numerically stable recurrence rela-
tions. The method was applied to the calculation of 1S,
2 3S, and 2 3P states of helium. The results obtained here are
in agreement with the other calculations.

We would like to point out that with the methods devel-
oped in this paper the treatment of the radial degrees of free-
dom is neither more complicated nor less elegant than the
treatment of the angular ones. We note that the only analyti-
cal tools used in the evaluation of the two electron integrals
(46) were the multipole expansion (47) and the integration
by parts, Egs. (63) and (71). In the evaluation of the one-
electron integrals we calculated analytically the integrals
over nodeless functions (B3). The rest of the calculation was
algebraic. In fact, the calculation can be carried out in a
completely algebraic way [24]. By means of the recurrence
relations derived in Sec. III and Appendix B, we can calcu-
late the matrix 72,. The matrix elements of r;, then can be
calculated by means of the improved Newton method for
square-root of the matrix [25].

Algebraic method for the calculation of the atomic inte-
grals developed in this paper can be extended to the calcula-
tion of the oscillator strengths [20,26], Bethe logarithm
[21,27] and relativistic effects [28] Since the algebraic
method for the calculation of the atomic integrals keeps the
numerical instabilities under control, it provides the possibil-
ity of further improvement of the atomic calculation in gen-
eral. Therefore, we believe that it is of some interest.

TABLE VI. Values of the integrals (k]r]'z1 |f) as calculated in the double precision where the states |k) and |j) are the symmetry adapted
states given by Eq. (89) for the triplet P states, i.e., for L=1 and S=1. The results were checked in quadruple precision. Error denotes the
difference between the results obtained in double and quadruple precision.

nik e b ny Iy S omyy o o &y ny Dy & (klri3li) Error

1 0 1 16 i 1/2 10 7 | 9 8 1 0.900831851943034 10~ -0.19 10717
1 0 1 16 1 1/2 10 8 1 10 9 1 -0.2890615746201898 10~¢ 0.94 10718
1 0 1 16 1 1/2 12 9 1 11 10 1 0.1831898394329932 10~ -0.16 1077
] 0 1 16 1 112 12 9 1 12 10 1 0.4890330421218360 10™* -0.38 10717
1 0 1 16 1 172 13 8 | 13 9 1 0.1977285617128401 1073 -0.68 10717
10 7 1 9 8 1 10 7 I 9 8 1 17.00271743870608 -0.11 10713
10 8 1 10 9 ] 10 8 1 10 9 1 19.73464697927070 0.19 10713
12 9 1 11 10 1 12 9 | 11 10 1 21.51748282351638 -0.12 10713
12 9 1 12 10 ] 12 9 ] 12 10 1 22.41407884446250 -0.20 10714
13 8 1 13 9 ] 13 8 1 13 9 1 21.84661070151542 066 10714
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APPENDIX A

This appendix is divided into four subsections. Decompo-
sition of the operators into the radial and angular parts is
described and the algebra of the angular operators is treated.
The most important results on the angular momentum are
summarized. The selection rules and the calculation of non-
zero matrix elements of the class of the vector operators
between spherical harmonics are given. The class of the vec-
tor operators considered here is a special case of the so(3)
vector operators, see, €.g., Refs. [13,29,30]. In the exposition
of the representation theory of so(3) vector operators we pro-
ceed along the lines of the paper [13], though some details
are different.

1. Algebra of the angular operators

Taking the dot product of 7 and V", we get from Egs. (4)
and (6) that

nkV;::O. (Al)

The ordering in the last equation is important, since compo-
nents of 7 and V" do not commute. To get their commutation
relations, let us consider the well-known commutation rela-
tion [V}, x]=dy and insert Egs. (5) and (3) into V; and x,
respectively. After simple manipulations we obtain

[V;,nk] = Sjk = njnk. (A2)

Setting j=k, we get (recalling that Einstein summation con-
vention is used)

[V;;nk] =2. (A3)
Equation (A1) yields an even stronger result, namely,
=2, (A4)

Further, using Egs. (3) and (5) we obtain for the compo-
nents of the angular momentum
a V7

s . | .
L,=— zsjk,kal =- lsjk,rnk ny + =— lSjkﬂ’lkVI;.
/ or r

(A5)

Here, we used the well-known theorem that the product of a
symmetric tensor and an antisymmetric tensor vanishes.
From the last equation it is immediately clear that the com-
ponents of L depend on the angular variables only. Further,
taking the dot product of the vector operator L with itself we
obtain
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L=~ (V%2 (A6)
Here, we used Egs. (A1), (A2), and (A4) and the identity
Sjlequ = 6kp51q i 5kq51p' (A7)

The expression for the Laplace operator in spherical co-
ordinates can be easily obtained from Egs. (5), (A1), (A4),
and (A6)

12
-V= p% + s
Also, it immediately follows that the Hamiltonian H in Eq.
(1) commutes with the square and the third component of the
angular momentum L? and L.

(A8)

2. Angular momentum

Let us recall only some very important relations derived
in the algebraic treatment of the angular momentum. The
eigenvalues and eigenvectors of the square of angular mo-
mentum and one of its components are defined by equations

L2|l,m) = (I + 1)|1,m) (A9)

and

Ls|l,m) = m|l,m}). (A10)

It is advantageous to introduce the step-up and step-down
operators L,=L,+iL,. One can show that these operators act
on the eigenstates |/,m) as follows:

LlLmy=\UTm)(+1zm)|lm+1).  (All)
Taking the Hermitian conjugate of this equation we obtain
(mLz=Um+INUFm)(I+1xm).  (A12)

The magnetic quantum number m runs from —/ to / by 1. For
orbital motion, the values of m have to be integers. Hence,
possible values of orbital quantum number / are non-negative
integers. The projections of the eigenvectors |/,m) into the
coordinate basis are called spherical harmonics Y;,(6, )
=(n|l,m).

3. Selection rules

Next we show that from the commutation relations of the
vector operators 7 and V" with the components of the angu-

lar momentum L we can determine the matrix elements of
these operators between the spherical harmonics. To get the
selection rules for the quantum number / we begin by notic-
ing that the components of operator V} do not mutually com-
mute. To see this, we start from the commutation relation
[V;,V,]=0 and insert the decomposition (5) into V,. Using
Eq. (A2), we obtain after some manipulations

(V5 V] =m¥V" - n,V}. (A13)

Using this equation together with Egs. (A2) and (A6) we

derive the commutation relations
(L] =2(n - V) (A14)

and
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[L%,Vi]=-2n,L2. (A15)

The last two equations are operator identities. Multiplying
these equations from the left by (I',m’'| and from the right by
|/,m) and using Eq. (A9), we obtain after simple manipula-
tions two very important equations, namely,

2+UI+1)=1'("+1)
2

(' \m'|Vi|Lm) = (I m' |ng|l,m)

(A16)
and

U +1+2)"+ DU +1=D" =1 =D ,m' |ng|l,m)=0.
(A17)

It follows from these two equations that the matrix elements
of operators 72 and V" among spherical harmonics vanish
whenever I’ # [+ 1.

Let us now find the selection rules for the quantum num-
ber m. We start with the observation that for every vector

operator V of the form (12) the commutation relations

[Ljv Vk]= isjkmvm (AIS)

holds. This follows from Egs. (A2), (A5), and (A13). Thus,
the operators V given by Eq. (12), are special cases of the
so(3) vector operators, see, e.g., [13,29,30]. It follows from
these equations that

[Ls5,V3]=0 (A19)
and
[Ls, V)= £V., (A20)
where the usual notation
V.=V %iV, (A21)

has been used. Multiplying the last two equations by (I'm’|
from the left and by |I,m) from the right and using Eq. (A10)
we get

A m'|V3|l,m)=0,m" # m (A22)
and

' m'|\V)lbm)y=0,m' #m=1. (A23)

4. Calculation of nonzero matrix elements

The nonzero matrix elements of operator V can be evalu-
ated by means of the commutator

[L,,V.]=0. (A24)

This equation follows from Eq. (A18). Further, we multiply
this equation by (I—1,m+ 1| from the left and by |/,m) from
the right. Using Egs. (A11) and (A12) to get the action of
operator L, on spherical harmonics, we obtain
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(1-1,m+1|V,]l,m) B
I-1,m+2VLm+1)

(I-m)(l-m-1)
(I-m-1D)(1-m=2)"
(A25)

Since the numerator and denominator on both sides of this
equation differ by the substitution m-—m-+1, the most gen-
eral form of the matrix elements reads

I-1,m+ 1|V ]|lm)=cN(I-m)(I-1-m), (A26)

where coefficient ¢; is independent on m.

The matrix elements of operators V3 and V_ can now eas-
ily be found. Using the last equation, the commutation rela-
tion

/|
Vo= E[L" Vil (A27)
and Egs. (A11) and (A12) we obtain the matrix element of
operator V3

(I - 1,m|Vy|l,m) = eN(I — m)(I + m).

Similarly, using the last equation, Egs. (A11) and (A12) and
the commutation relation

(A28)

V_=[L_ V5], (A29)

we finally obtain
(I-1,m=1|V_|lm)y=—cpN(l+ m— 1)(I + m). (A30)

The remaining nonzero matrix elements can be obtained
by assuming that operator Vj is real. Coefficient ¢; is then
real. Taking the Hermitian conjugate of Egs. (A26), (A28),
and (A30), we get successively

Lmy=cpV(l-m+2)(I—m+1),
(A31)

I+ 1,m-1|V_

A+ Lm|Vsll,my=cpy V(L + 1=m)(I+ 1 +m), (A32)

and

({+1,m+ 1[V+|l,m}:—c,+1\/(l+ m+1)({+m+2).
(A33)
So far, we have determined dependence of the matrix el-

ements on the quantum number m. To determine coefficient
¢, we note that

(V.V_+ V3)|L,m)
=[c?21- 1) +m) + ¢} (L+ 1 —m) (21 + 3)]|1,m)
= (V2 =i[Vy,Vo))|l,m). (A34)
The first equality follows from Egs. (A26), (A28), and
(A30)—(A33). The second equality follows from Eq. (A21)
and the definition of V2=V, V,. Equation (A34) is an impor-

tant result and it was used in the Sec. II to determine spec-
trum of the hydrogen atom.
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APPENDIX B

In Sec. IV we showed that calculation of two-electron
integrals can be reduced to calculation of one-electron inte-
grals (76). Algebraic calculation of the overlap integrals (76)
is described in this appendix. We first calculate integrals
(Ny,Ly,&|Ny,Ly, &) for Ly=L,. Knowing these integrals,
we calculate the integrals with L; # L,. Again, it is important
to calculate these integrals in a numerically stable way. The
results obtained in this subsection can also be obtained by
analytical method, see, e.g., Ref. [31].

1. Case N;=L,+1 and Ly=L,
Considering Eq. (85) for N,=1 yields

1
Phom(Ené) = Wb &ll+108). (B
2
Inserting this equation into Eq. (86) for N,=I+1 we obtain
the formula

(N]‘i‘l,l,flll'*‘ 1,l,§2)= —(Nl,l,§l|l+1,l,§2).

N-1 &+&
(B2)
This equation is solved with the initial condition
21+ 1)
(I+LL&I+1,L6)= (22‘5152)’“@- (B3)

This equation is obtained by inserting Egs. (45) and (62) into
Eq. (76). Having established this formula we need only to
raise the quantum number N, from the value /+1 to an arbi-
trary value and to raise the quantum number L, from the
value /.

2. Case Li=L,

To raise the quantum number N, from the value /+1 to an
arbitrary value we start with the “analytic” formula

" id 1t - N
f r(; i ;>[rRNl'Ll(glr)RNz,I,Z(gz")]dr

0

o d 1 -
=0=f r[ (d_ + _>RN1,LI(§1"):|RNZ,L2(§2")dr
ror

0

1 [d 1)\ &
+f r|:r(2+;)RNZ,L2(§2r)]RNI,LI(Elr)dr.

0
(B4)
Applying Eq. (64) we obtain
(Ny = L)(Ny + 1Ly, &[Ny, Lo, £))
= (Ny + L) (Ny = 1,Ly,£[No, Ly, &)
+(Ny = Ly)(Ny, L1, €[No + 1,1y, &)
= (Ny+Lo)(Ny, Ly, &[Ny = 1,L5,6,) =0.  (B5)

Further, we consider expression
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Jr2r1-?-Nl,LI(§IT)EN2,L2(§2”)dr
0

and let 2r act first on the function R’NI'L](& r), second on the

function ENZ,LZ(gzr). Operator 2r acts on these functions ac-
cording to Eq. (78) as

fr2r§N1,Ll(§1")EN2,L2(§2")
0

1
= E[ZNl(Nl,thl'Nz»Lz,fz)
1

—(Ny = L))(Ny + 1,11, &Ny, Ly, &)
—(Ny+Ly)(Ny = 1,L1,£|No, Ly, £)]

1

= E[2N2(N1’Lla§1|N25L2a§2) - (NZ—LZ)(NDL]»§1|N2
2
+1,L5,&) = (Ny+ L) (N1, L1, €N, — 1,15, ).

(B6)

Eliminating (N,+1,L;,& |N,,Ly,&) from one of the Egs.
(B5) and (B6) we obtain

1 1
(N, - Lz)(_ e —)(NI’L1,§||N2 +1,0,,8)

& &
= (‘—&+&>(N I §|N Ly, &)
= §] §2 15519 6114V2:425 62,
1 1
+(N2+Lz)(_—_>(N1.L1,§1|N2—1,L2,§2)
& &
N;+L
+2 s 1(N1‘1,L1,§1|N2,L2,§2)- (B7)

1

Using this equation for L;=L,=[ together with Eq. (B2) we
obtain all possible integrals (Ny,1,&|N,,1,&).

3. Case L1 ¢L2

In general, we can assume that L; <L,, since obviously
(N1,Ly, &Ny, Ly, £)=(Na, Ly, &| Ny, Ly, £). We raise quan-
tum number L, from the value L,=L; to the needed value as
follows.

For the action of operator r(dir+l) on the function

ENz,Lz(gzr) in Eq. (B4) we use Eq. (65) instead of Eq. (64).
We obtain

(N = L)(Ny + 1,1, §|No, Ly, £)
—(Ny + LNy = 1,L1, [N, Ly, &)
+ (N, L &[N, - L1y +1,8)
~(Np,Li, &[N + 1,15+ 1,6)
+2(Ly + 1)(Ny, Ly, |No, Ly, £) = 0.

Further, for the action of operator 2r on the function
ENZ,L2(§2r) in Eq. (B6) we use Eq. (77) instead of Eq. (78).
We get

(B8)
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|
E[ZNl (N1, L1, &|No, Ly, &)
1

= (N = L)(Ny + 1,L, &[N, Ly, &)
= (N + L)(Ny = 1,L,,&|No, Ly, &)1

1
= —§_[_ 2(Ny,Ly, &Ny, Ly + 1,8)
2

+(NLLL, &GNy + 1,1, + 1,6)
+ (N, L &N, - 1,L, + 1,6)]. (B9)

Eliminating integrals (N,+1,L;,&|Ny,Ly, &) from one of
the Eqgs. (B8) and (B9) we obtain

2(Ny + Ly + D)(Ny,Ly, &[Ny, Ly, &)
=2(Ny +L)(Ny = 1,L1,§|No, Ly, &)

- (1 = ?)(NI’LI’&VVZ_ LLy+1,6)
2
28N L Ny L+ 1,8
&

+ (1 + ?)(N1aL1,§1|N2+ LLL,+1,&). (B10)
2

This equation could be used for calculating the integrals
(Ny,Lq, & |N,y, Ly, &) as it stands. However, it turns out that
it is more advantageous to combine the last equation with
Eq. (B7). Elimination of the integrals (N,
~1,L;,&|Ny,Ly, &) from one of these equations yields

(] + ?)(Nl,Ll,fllNz'*‘ 1,L,+1,&)
2
= zé(vaLl’ §1|N2’L2 + 1’§2)
&
- (1 = %)(NI’L1=§1|N2_ LLy+1,8)

= 2<N2§1‘ +L2 + 1)(N19L1,§1|N2’L21§2)
2

PHYSICAL REVIEW A 75, 022506 (2007)

= (NZ_L2)<I o %)(NI»LI’§IIN2+ 1,L,, &)

& (N2+L2)<1 = ?;)(vaLlsgllNZ_ L,L,,&).

(B11)

We run this equation starting from L,=L; successively as-
cending the quantum number L, to the desired value. In par-
ticular, considering the last equation for &=¢§, leads to the
equation

(NI)LI7§1|N2+ 1,L2+ l’gl) ol (vaLl)§1[N2’L2+ 17§1)
=(Ny+Ly+ 1)(Ny, Ly, &[Ny, Lo, &)
= (Ny=Ly)(Ny, Ly, &|Ny + 1,10, &)

Taking into account the orthogonality of the radial functions
for the same & Eq. (44), we get that integrals
(Ny,Ly,&|Ny, Ly, £ vanish for L, <L, and N, > N,. The non-
zero integrals can be easily calculated from the last equation
starting with N;=N,+1 and L;=L,.

(B12)

4. Generalizations

We would like to remark that the algebraic method devel-
oped so far can also be applied to the evaluation of integrals
I 5°r”+1Rn1,,1(§1r)R,,l,,Z(fzr)dr, for both positive and negative
p (see also Refs. [12,32,33]). If p is positive, we use one of
Egs. (31), (35), and (36) to reduce the integrals to the form
(76). If p is negative, we consider Eq. (31), Eq. (35) with /
replaced by /-1 and Eq. (36) with [ replaced by [+1. We
eliminate R,;; (ér) and R, /(ér) from these equations and
get

r 'R, (&r) = ¢ )[1\/(n+l+ Dn-1-1)

I+ 1)(21+1
XRpy 11 (&) + L+ DN(n + D(n—1)
XRy -1 (&r) + 21+ D)nR, (§r)].  (B13)

By means of this equation we reduce the integrals of the
form ff;r'lpI”R,,l,,l(.flr)R,,z,,z(§2r)dr to the integrals of the
form (76).
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