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Preface
This thesis tells the story of two well-established problems of algorithmic graph

theory: the minimum spanning trees and ranks of permutations. At distance, both
problems seem to be simple, boring and already solved, because we have polynomial-
time algorithms for them since ages. But when we come closer and seek algorithms
that are really efficient, the problems twirl and twist and withstand many a brave
attempt at the optimum solution. They also reveal a vast and diverse landscape of
a deep and beautiful theory. Still closer, this landscape turns out to be interwoven
with the intricate details of various models of computation and even of arithmetics
itself.

I have tried to cover all known important results on both problems and unite
them in a single coherent theory. At many places, I have attempted to contribute
my own little stones to this mosaic: several new results, simplifications of existing
ones, and last, but not least filling in important details where the original authors
have missed some.

When compared with the earlier surveys on the minimum spanning trees, most
notably Graham and Hell [GH85] and Eisner [Eis97], this work adds many of the
recent advances, the dynamic algorithms and also the relationship with computa-
tional models. No previous work covering the ranking problems in their entirety is
known.

The early parts of this thesis also served as a basis for a course on graph
algorithms which I was teaching at our faculty during years 2006 and 2007. They
are included in the textbook [Mar07] which I have written for this course.

My original results
� The lower bound in Section 1.5. Not published yet.
� The tree isomorphism algorithm in Section 2.2. Not published yet.
� Both algorithms for minor-closed graph classes in Section 3.1. Published

in [Mar04].
� The linear-time verification algorithm in Section 3.4 is a simplification of

the algorithm of King [Kin97] and it corrects many omissions in the original
paper. Not published yet.
� The ranking algorithms in Sections 7.1 to 7.3 are results of joint research

with Milan Straka. Published in [MS07].
� The remaining sections of Chapter 7 contain unpublished original results.

Other minor contributions
� The flattening procedure in Section 2.2. Included in [Mar04].
� The unified view of vector computations in Section 2.4. Published in the

textbook [Mar07]. The main ideas of this section were also included in the
yearbook of the Czech Mathematical Olympiad [HMN+07].
� Slight simplifications of the soft heaps and their analysis in Section 4.1.
� The dynamic MST algorithm for graphs with limited edge weights in Sec-

tion 5.4.
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Notation
I have tried to stick to the usual notation except where it was too inconve-

nient. Most symbols are defined at the place where they are used for the first time.
A complete index of symbols with pointers to their definitions is then available in
Appendix A. This appendix also describes the formalism of multigraphs and of the
Ackermann’s function, both of which are not defined consistently in the common
literature.

To avoid piling up too many symbols at places that speak about a single fixed
graph, this graph is always called G, its set of vertices and edges are denoted by
V and E respectively, and I also use n for the number of its vertices and m for
the number of edges. At places where there could be a danger of confusion, more
explicit notation is used instead.

So, my gentle reader, let us nestle deep in an ancient wing armchair. The saga
of the graph algorithms begins . . .
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1. Minimum Spanning Trees

1.1. The Problem

The problem of finding a minimum spanning tree of a weighted graph is one
of the best studied problems in the area of combinatorial optimization since its
birth. Its colorful history (see [GH85] and [Neš97] for the full account) begins
in 1926 with the pioneering work of Bor̊uvka [Bor26a]1, who studied primarily
an Euclidean version of the problem related to planning of electrical transmission
lines (see [Bor26b]), but gave an efficient algorithm for the general version of the
problem. As it was well before the dawn of graph theory, the language of his paper
was complicated, so we will better state the problem in contemporary terminology:

1.1.1. Problem. Given an undirected graph G with weights w : E(G)! R, find its
minimum spanning tree, defined as follows:

1.1.2. De�nition. For a given graph G with weights w : E(G)! R:

� A subgraph H � G is called a spanning subgraph if V (H) = V (G).
� A spanning tree of G is any spanning subgraph of G that is a tree.
� For any subgraph H � G we define its weight w(H) :=

P
e∈E(H) w(e).

When comparing two weights, we will use the terms lighter and heavier in
the obvious sense.
� A minimum spanning tree (MST) of G is a spanning tree T such that its

weight w(T ) is the smallest possible among all the spanning trees of G.
� For a disconnected graph, a (minimum) spanning forest (MSF) is defined

as a union of (minimum) spanning trees of its connected components.

Bor̊uvka’s work was further extended by Jarńık [Jar30], again in mostly ge-
ometric setting. He has discovered another efficient algorithm. However, when
computer science and graph theory started forming in the 1950’s and the spanning
tree problem was one of the central topics of the flourishing new disciplines, the pre-
vious work was not well known and the algorithms had to be rediscovered several
times.

In the next 50 years, several significantly faster algorithms were discovered,
ranging from the O(mβ(m,n)) time algorithm by Fredman and Tarjan [FT87],
over algorithms with inverse-Ackermann type complexity by Chazelle [Cha00a] and
Pettie [Pet99], to an algorithm by Pettie [PR02b] whose time complexity is provably
optimal.

In the upcoming chapters, we will explore this colorful universe of MST algo-
rithms. We will meet the canonical works of the classics, the clever ideas of their
successors, various approaches to the problem including randomization and solving
of important special cases. At several places, we will try to contribute our little
stones to this mosaic.

1 See [NMN01] for an English translation with commentary.
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1.2. Basic properties

In this section, we will examine the basic properties of spanning trees and
prove several important theorems which will serve as a foundation for our MST
algorithms. We will mostly follow the theory developed by Tarjan in [Tar83].

For the whole section, we will fix a connected graph G with edge weights w and
all other graphs will be spanning subgraphs of G. We will use the same notation
for the subgraphs as for the corresponding sets of edges.

First of all, let us show that the weights on edges are not necessary for the defini-
tion of the MST. We can formulate an equivalent characterization using an ordering
of edges instead.

1.2.1. De�nition. (Heavy and light edges)
Let T be a spanning tree. Then:

� For vertices x and y, let T [x, y] denote the (unique) path in T joining x
with y.
� For an edge e = xy we will call T [e] := T [x, y] the path covered by e and

the edges of this path edges covered by e.
� An edge e is called light with respect to T (or just T -light) if it covers

a heavier edge, i.e., if there is an edge f 2 T [e] such that w(f) > w(e).
� An edge e is called T -heavy if it covers a lighter edge.

1.2.2. Remark. Edges of the tree T cover only themselves and thus they are neither
heavy nor light. The same can happen if an edge outside T covers only edges of the
same weight, but this will be rare because all edge weights will be usually distinct.

1.2.3. Lemma. (Light edges)
Let T be a spanning tree. If there exists a T -light edge, then T is not minimum.

Proof. If there is a T -light edge e, then there exists an edge e′ 2 T [e] such that
w(e′) > w(e). Now T � e′ (T with the edge e′ removed) is a forest of two trees
with endpoints of e located in different components, so adding e to this forest must
restore connectivity and T ′ := T � e′ + e is another spanning tree with weight
w(T ′) = w(T )� w(e′) + w(e) < w(T ). Hence T could not have been minimum. �

e

T [e]

e
′

An edge exchange as in the proof of Lemma 1.2.3

The converse of this lemma is also true and to prove it, we will once again
use the technique of transforming trees by exchanges of edges. In the proof of the
lemma, we have made use of the fact that whenever we exchange an edge e of
a spanning tree for another edge f covered by e, the result is again a spanning tree.
In fact, it is possible to transform any spanning tree to any other spanning tree by
a sequence of exchanges.





1.2.4. Lemma. (Exchange property for trees)
Let T and T ′ be spanning trees of a common graph. Then there exists a sequence
of edge exchanges that transforms T to T ′. More formally, there exists a sequence
of spanning trees T = T0, T1, . . . , Tk = T ′ such that Ti+1 = Ti� ei + e′i where ei 2 Ti

and e′i 2 T ′.
Proof. By induction on d(T, T ′) := jT ∆ T ′j. When d(T, T ′) = 0, both trees are
identical and no exchanges are needed. Otherwise, the trees are different, but as
they have the same number of edges, there must exist an edge e′ 2 T ′ n T . The
cycle T [e′] + e′ cannot be wholly contained in T ′, so there also must exist an edge
e 2 T [e′] n T ′. Exchanging e for e′ yields a spanning tree T ∗ := T � e + e′ such that
d(T ∗, T ′) = d(T, T ′)� 2. Now we can apply the induction hypothesis to T ∗ and T ′

to get the rest of the exchange sequence. �

e
′

e
′

T [e′]

e

T T
′ T

∗

One step of the proof of Lemma 1.2.4

In some cases, a much stronger statement is true:

1.2.5. Lemma. (Monotone exchanges)
Let T be a spanning tree such that there are no T -light edges and T ′ be an arbitrary
spanning tree. Then there exists a sequence of edge exchanges transforming T to T ′

such that the weight of the tree does not decrease in any step.

Proof. We improve the argument from the previous proof, refining the induction
step. When we exchange e 2 T for e′ 2 T ′ n T such that e 2 T [e′], the weight
never drops, since e′ is not a T -light edge and therefore w(e′) � w(e), so w(T ∗) =
w(T )� w(e) + w(e′) � w(T ).

To keep the induction going, we have to make sure that there are still no light
edges with respect to T ∗. In fact, it is enough to avoid such edges in T ′ n T ∗, since
these are the only edges considered by the induction steps. To accomplish that, we
replace the so far arbitrary choice of e′ 2 T ′ n T by picking the lightest such edge.

Let us consider an edge f 2 T ′ n T ∗. We want to show that f is not T ∗-light,
i.e., that it is heavier than all edges on T ∗[f ]. The path T ∗[f ] is either identical to
the original path T [f ] (if e 62 T [f ]) or to T [f ] ∆ C, where C is the cycle T [e′] + e′.
The former case is trivial, in the latter we have w(f) � w(e′) due to the choice of e′

and all other edges on C are lighter than e′ as e′ was not T -light. �
This lemma immediately implies that Lemma 1.2.3 works in both directions:

1.2.6. Theorem. (Minimality of spanning trees)
A spanning tree T is minimum iff there is no T -light edge.

Proof. If T is minimum, then by Lemma 1.2.3 there are no T -light edges. Con-
versely, when T is a spanning tree without T -light edges and Tmin is an arbitrary
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minimum spanning tree, then according to the Monotone exchange lemma (1.2.5)
there exists a non-decreasing sequence of exchanges transforming T to Tmin, so
w(T ) � w(Tmin) and thus T is also minimum. �

In general, a single graph can have many minimum spanning trees (for example
a complete graph on n vertices with unit edge weights has nn−2 minimum spanning
trees according to the Cayley’s formula [Cay89]). However, as the following theorem
shows, this is possible only if the weight function is not injective.

1.2.7. Theorem. (Uniqueness of MST)
If all edge weights are distinct, then the minimum spanning tree is unique.

Proof. Consider two minimum spanning trees T1 and T2. According to the pre-
vious theorem, there are no light edges with respect to neither of them, so by
the Monotone exchange lemma (1.2.5) there exists a sequence of non-decreasing
edge exchanges going from T1 to T2. As all edge weights all distinct, these edge
exchanges must be in fact strictly increasing. On the other hand, we know that
w(T1) = w(T2), so the exchange sequence must be empty and indeed T1 and T2

must be identical. �
1.2.8. Notation. When G is a graph with distinct edge weights, we will use mst(G)
to denote its unique minimum spanning tree.

Also the following trivial lemma will be often invaluable:

1.2.9. Lemma. (Edge removal)
Let G be a graph with distinct edge weights and e 2 Gnmst(G). Then mst(G�e) =
mst(G).

Proof. The tree T = mst(G) is also a MST of G � e, because every T -light edge
in G�e is also T -light in G. Then we apply the uniqueness of the MST of G�e. �
1.2.10. Comparison oracles. To simplify the description of MST algorithms, we will
assume that the weights of all edges are distinct and that instead of numeric weights
we are given a comparison oracle. The oracle is a function that answers questions
of type “Is w(e) < w(f)?” in constant time. This will conveniently shield us from
problems with representation of real numbers in algorithms and in the few cases
where we need a more concrete input, we will explicitly state so.

In case the weights are not distinct, we can easily break ties by comparing
some unique identifiers of edges. According to our characterization of minimum
spanning trees, the unique MST of the new graph will still be a MST of the original
graph. Sometimes, we could be interested in finding all solutions, but as this is
an uncommon problem, we will postpone it until Section 5.5. For the time being,
we will always assume distinct weights.

1.2.11. Observation. If all edge weights are distinct and T is an arbitrary spanning
tree, then every edge of G is either T -heavy, or T -light, or contained in T .

1.2.12. Monotone isomorphism. Another useful consequence of the Minimality the-
orem is that whenever two graphs are isomorphic and the isomorphism preserves
the relative order of weights, the isomorphism applies to their MST’s as well:

1.2.13. De�nition. A monotone isomorphism between two weighted graphs G1 =
(V1, E1, w1) and G2 = (V2, E2, w2) is a bijection π : V1 ! V2 such that for each
u, v 2 V1 : uv 2 E1 , π(u)π(v) 2 E2 and for each e, f 2 E1 : w1(e) < w1(f) ,
w2(π[e]) < w2(π[f ]).
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1.2.14. Lemma. (MST of isomorphic graphs)
Let G1 and G2 be two weighted graphs with distinct edge weights and π a monotone
isomorphism between them. Then mst(G2) = π[mst(G1)].

Proof. The isomorphism π maps spanning trees to spanning trees bijectively and it
preserves the relation of covering. Since it is monotone, it preserves the property of
being a light edge (an edge e 2 E(G1) is T -light , the edge π[e] 2 E(G2) is f [T ]-
light). Therefore by the Minimality Theorem (1.2.6), T is the MST of G1 if and
only if π[T ] is the MST of G2. �
1.3. The Red-Blue meta-algorithm

Most MST algorithms can be described as special cases of the following proce-
dure (again following Tarjan [Tar83]):

1.3.1. Algorithm. (Red-Blue Meta-Algorithm)

Input: A graph G with an edge comparison oracle (see 1.2.10)

1. At the beginning, all edges are colored black.

2. Apply rules as long as possible:

3. Either pick a cut C such that its lightest edge is not blue
and color this edge blue, (Blue rule)

4. or pick a cycle C such that its heaviest edge is not red
and color this edge red. (Red rule)

Output: Minimum spanning tree of G consisting of edges colored blue.

1.3.2. This procedure is not a proper algorithm, since it does not specify how to
choose the rule to apply. We will however prove that no matter how the rules are
applied, the procedure always stops and it gives the correct result. Also, it will turn
out that each of the classical MST algorithms can be described as a specific way of
choosing the rules in this procedure, which justifies the name meta-algorithm.

1.3.3. Notation. We will denote the unique minimum spanning tree of the input
graph by Tmin. We intend to prove that this is also the output of the procedure.

1.3.4. Correctness. Let us prove that the meta-algorithm is correct. First we show
that the edges colored blue in any step of the procedure always belong to Tmin and
that the edges colored red are guaranteed to be outside Tmin. Then we demonstrate
that the procedure always stops. Some parts of the proof will turn out to be useful
in the upcoming chapters, so we will state them in a slightly more general way.

1.3.5. Lemma. (Blue lemma, also known as the Cut rule)
The lightest edge of every cut is contained in the MST.

Proof. By contradiction. Let e be the lightest edge of a cut C. If e 62 Tmin,
then there must exist an edge e′ 2 Tmin that is contained in C (take any pair of
vertices separated by C: the path in Tmin joining these vertices must cross C at
least once). Exchanging e for e′ in Tmin yields an even lighter spanning tree since
w(e) < w(e′). �
1.3.6. Lemma. (Red lemma, also known as the Cycle rule)
An edge e is not contained in the MST iff it is the heaviest on some cycle.

Proof. The implication from the left to the right follows directly from the Minimal-
ity theorem: if e 62 Tmin, then e is Tmin-heavy and so it is the heaviest edge on the
cycle Tmin[e] + e.
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We will prove the other implication again by contradiction. Suppose that e is
the heaviest edge of a cycle C and that e 2 Tmin. Removing e causes Tmin to split
to two components, let us call them Tx and Ty. Some vertices of C now lie in Tx,
the others in Ty, so there must exist in edge e′ 6= e such that its endpoints lie in
different components. Since w(e′) < w(e), exchanging e for e′ yields a spanning tree
lighter than Tmin. �

C

e

e′

C

e

TxTy

Ty

e′

Proof of the Blue (left) and Red (right) lemma

1.3.7. Lemma. (Black lemma)
As long as there exists a black edge, at least one rule can be applied.

Proof. Assume that e = xy is a black edge. Let us define M as the set of vertices
reachable from x using only blue edges. If y lies in M , then e together with some
blue path between x and y forms a cycle and e must be the heaviest edge on this
cycle. This holds because all blue edges have been already proven to be in Tmin and
there can be no Tmin-light edges. In this case, we can apply the Red rule.

On the other hand, if y 62M , then the cut formed by all edges between M and
V nM contains no blue edges, therefore we can use the Blue rule. �

x

y
e x

y
e

M M
M

Configurations in the proof of the Black lemma

1.3.8. Notation. We will use δ(M) to denote the cut separating M from its com-
plement. That is, δ(M) = E \ (M � (V nM)). We will also abbreviate δ(fvg)
as δ(v).

1.3.9. Theorem. (Red-Blue correctness)
For any selection of rules, the Red-Blue procedure stops and the blue edges form
the minimum spanning tree of the input graph.

Proof. To prove that the procedure stops, let us notice that no edge is ever recolored,
so we must run out of black edges after at most m steps. Recoloring to the same
color is avoided by the conditions built in the rules, recoloring to a different color
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would mean that the edge would be both inside and outside Tmin due to our Red
and Blue lemmata.

When no further rules can be applied, the Black lemma guarantees that all
edges are colored, so by the Blue lemma all blue edges are in Tmin and by the
Red lemma all other (red) edges are outside Tmin. Thus the blue edges are ex-
actly Tmin. �
1.3.10. Remark. The MST problem is a special case of the problem of finding the
minimum basis of a weighted matroid. Surprisingly, when we modify the Red-Blue
procedure to use the standard definitions of cycles and cuts in matroids, it will
always find the minimum basis. Some of the other MST algorithms also easily
generalize to matroids and in some sense matroids are exactly the objects where
“the greedy approach works”. We will however not pursue this direction in our
work, referring the reader to the Oxley’s monograph [Oxl92] instead.

1.4. Classical algorithms

The three classical MST algorithms (Bor̊uvka’s, Jarńık’s, and Kruskal’s) can
be easily stated in terms of the Red-Blue meta-algorithm. For each of them, we first
show the general version of the algorithm, then we prove that it gives the correct
result and finally we discuss the time complexity of various implementations.

1.4.1. Bor̊uvka’s algorithm. The oldest MST algorithm is based on a simple idea:
grow a forest in a sequence of iterations until it becomes connected. We start with
a forest of isolated vertices. In each iteration, we let each tree of the forest select
the lightest edge of those having exactly one endpoint in the tree (we will call such
edges the neighboring edges of the tree). We add all such edges to the forest and
proceed with the next iteration.

1.4.2. Algorithm. (Bor̊uvka [Bor26a], Choquet [Cho38], Sollin [Sol65], and others)

Input: A graph G with an edge comparison oracle.

1. T  a forest consisting of vertices of G and no edges.

2. While T is not connected:

3. For each component Ti of T , choose the lightest edge ei from the
cut separating Ti from the rest of T .

4. Add all ei’s to T .

Output: Minimum spanning tree T .

1.4.3. Lemma. In each iteration of the algorithm, the number of trees in T decreases
by at least a factor of two.

Proof. Each tree gets merged with at least one of its neighbors, so each of the new
trees contains two or more original trees. �
1.4.4. Corollary. The algorithm stops in O(log n) iterations.

1.4.5. Lemma. The Bor̊uvka’s algorithm outputs the MST of the input graph.

Proof. In every iteration of the algorithm, T is a blue subgraph, because every
addition of some edge ei to T is a straightforward application of the Blue rule.
We stop when the blue subgraph is connected, so we do not need the Red rule to
explicitly exclude edges.
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It remains to show that adding the edges simultaneously does not produce
a cycle. Consider the first iteration of the algorithm where T contains a cycle C.
Without loss of generality we can assume that:

C = T1[u1, v1] v1u2 T2[u2, v2] v2u3 T3[u3, v3] . . . Tk[uk, vk] vku1.

Each component Ti has chosen its lightest incident edge ei as either the edge viui+1

or vi−1ui (indexing cyclically). Suppose that e1 = v1u2 (otherwise we reverse the
orientation of the cycle). Then e2 = v2u3 and w(e2) < w(e1) and we can con-
tinue in the same way, getting w(e1) > w(e2) > . . . > w(ek) > w(e1), which is
a contradiction. (Note that distinctness of edge weights was crucial here.) �
1.4.6. Lemma. Each iteration can be carried out in time O(m).

Proof. We assign a label to each tree and we keep a mapping from vertices to
the labels of the trees they belong to. We scan all edges, map their endpoints
to the particular trees and for each tree we maintain the lightest incident edge so
far encountered. Instead of merging the trees one by one (which would be too
slow), we build an auxiliary graph whose vertices are the labels of the original trees
and edges correspond to the chosen lightest inter-tree edges. We find the connected
components of this graph, and these determine how are the original labels translated
to the new labels. �
1.4.7. Theorem. The Bor̊uvka’s algorithm finds the MST in time O(m log n).

Proof. Follows from the previous lemmata. �
1.4.8. Jarńık’s algorithm. The next algorithm, discovered independently by Jarńık,
Prim and Dijkstra, is similar to the Bor̊uvka’s algorithm, but instead of the whole
forest it concentrates on a single tree. It starts with a single vertex and it repeatedly
extends the tree by the lightest neighboring edge until the tree spans the whole
graph.

1.4.9. Algorithm. (Jarńık [Jar30], Prim [Pri57], Dijkstra [Dij59])

Input: A graph G with an edge comparison oracle.

1. T  a single-vertex tree containing an arbitrary vertex of G.

2. While there are vertices outside T :

3. Pick the lightest edge uv such that u 2 V (T ) and v 62 V (T ).

4. T  T + uv.

Output: Minimum spanning tree T .

1.4.10. Lemma. The Jarńık’s algorithm computes the MST of the input graph.

Proof. If G is connected, the algorithm always stops. In every step of the algorithm,
T is always a blue tree. because Step 4 corresponds to applying the Blue rule to
the cut δ(T ) separating T from the rest of the given graph. We need not care about
the remaining edges, since for a connected graph the algorithm always stops with
the right number of blue edges. �
1.4.11. Implementation. The most important part of the algorithm is finding the
neighboring edges. In a straightforward implementation, searching for the lightest
neighboring edge takes Θ(m) time, so the whole algorithm runs in time Θ(mn).

We can do much better by using a binary heap to hold all neighboring edges.
In each iteration, we find and delete the minimum edge from the heap and once we
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expand the tree, we insert the newly discovered neighboring edges to the heap and
delete the neighboring edges that became internal to the new tree. Since there are
always at most m edges in the heap, each heap operation takes O(log m) = O(log n)
time. For every edge, we perform at most one insertion and at most one deletion,
so we spend O(m log n) time in total. From this, we can conclude:

1.4.12. Theorem. The Jarńık’s algorithm computes the MST of a given graph in
time O(m log n).

1.4.13. Remark. We will show several faster implementations in Section 3.2.

1.4.14. Kruskal’s algorithm. The last of the three classical algorithms processes the
edges of the graph G greedily. It starts with an empty forest and it takes the
edges of G in order of their increasing weights. For every edge, it checks whether
its addition to the forest produces a cycle and if it does not, the edge is added.
Otherwise, the edge is dropped and not considered again.

1.4.15. Algorithm. (Kruskal [Kru56])

Input: A graph G with an edge comparison oracle.

1. Sort edges of G by their increasing weights.

2. T  an empty spanning subgraph.

3. For all edges e in their sorted order:

4. If T + e is acyclic, add e to T .

5. Otherwise drop e.

Output: Minimum spanning tree T .

1.4.16. Lemma. The Kruskal’s algorithm returns the MST of the input graph.

Proof. In every step, T is a forest of blue trees. Adding e to T in step 4 applies
the Blue rule on the cut separating some pair of components of T (e is the lightest,
because all other edges of the cut have not been considered yet). Dropping e in
step 5 corresponds to the Red rule on the cycle found (e must be the heaviest,
since all other edges of the cycle have been already processed). At the end of the
algorithm, all edges are colored, so T must be the MST. �
1.4.17. Implementation. Except for the initial sorting, which in general requires
Θ(m log m) time, the only other non-trivial operation is the detection of cycles.
What we need is a data structure for maintaining connected components, which
supports queries and edge insertion. This is closely related to the well-known Dis-
joint Set Union problem:

1.4.18. Problem. (Disjoint Set Union, DSU)
Maintain an equivalence relation on a finite set under a sequence of operations
Union and Find . The Find operation tests whether two elements are equivalent
and Union joins two different equivalence classes into one.

1.4.19. We can maintain the connected components of our forest T as equivalence
classes. When we want to add an edge uv, we first call Find(u, v) to check if both
endpoints of the edge lie in the same component. If they do not, addition of this
edge connects both components into one, so we perform Union(u, v) to merge the
equivalence classes.

Tarjan has shown that there is a data structure for the DSU problem of sur-
prising efficiency:
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1.4.20. Theorem. (Disjoint Set Union, Tarjan [Tar75])
Starting with a trivial equivalence with single-element classes, a sequence of oper-
ations comprising of n Unions intermixed with m � n Finds can be processed in
time O(mα(m,n)), where α(m,n) is a certain inverse of the Ackermann’s function
(see Definition A.3.4).

Proof. See [Tar75]. �
This completes the following theorem:

1.4.21. Theorem. The Kruskal’s algorithm finds the MST of a given graph in time
O(m log n). If the edges are already sorted by their weights, the time drops to
O(mα(m,n)).

Proof. We spend O(m log n) time on sorting, O(mα(m,n)) on processing the se-
quence of Unions and Finds, and O(m) on all other work. �
1.4.22. Remark. The cost of the Union and Find operations is of course dwarfed by
the complexity of sorting, so a much simpler (at least in terms of its analysis) data
structure would be sufficient, as long as it has O(log n) amortized complexity per
operation. For example, we can label vertices with identifiers of the corresponding
components and always relabel the smaller of the two components.

We will study dynamic maintenance of connected components in more detail
in Chapter 5.

1.5. Contractive algorithms

While the classical algorithms are based on growing suitable trees, they can
be also reformulated in terms of edge contraction. Instead of keeping a forest of
trees, we can keep each tree contracted to a single vertex. This replaces the rela-
tively complex tree-edge incidencies by simple vertex-edge incidencies, potentially
speeding up the calculation at the expense of having to perform the contractions.

We will show a contractive version of the Bor̊uvka’s algorithm in which these
costs are carefully balanced, leading for example to a linear-time algorithm for MST
in planar graphs.

There are two definitions of edge contraction that differ when an edge of a tri-
angle is contracted. Either we unify the other two edges to a single edge or we
keep them as two parallel edges, leaving us with a multigraph. We will use the
multigraph version and we will show that we can easily reduce the multigraph to
a simple graph later. (See A.2.3 for the exact definitions.)

We only need to be able to map edges of the contracted graph to the original
edges, so we let each edge carry a unique label `(e) that will be preserved by
contractions.

1.5.1. Lemma. (Flattening a multigraph)
Let G be a multigraph and G′ its subgraph obtaining by removing loops and re-
placing each bundle of parallel edges by its lightest edge. Then G′ has the same
MST as G.

Proof. Every spanning tree of G′ is a spanning tree of G. In the other direction:
Loops can be never contained in a spanning tree. If there is a spanning tree T
containing a removed edge e parallel to an edge e′ 2 G′, exchanging e′ for e makes T





lighter. (This is indeed the multigraph version of the Red lemma applied to a two-
edge cycle, as we will see in 1.6.2.) �
1.5.2. Algorithm. (Contractive version of Bor̊uvka’s algorithm)

Input: A graph G with an edge comparison oracle.

1. T  ;.
2. `(e) e for all edges e. (Initialize the labels.)

3. While n(G) > 1:

4. For each vertex vk of G, let ek be the lightest edge incident to vk.

5. T  T [ f`(e1), . . . , `(en)g.
(Remember labels of all selected edges.)

6. Contract all edges ek, inheriting labels and weights.2

7. Flatten G (remove parallel edges and loops).

Output: Minimum spanning tree T .

1.5.3. Notation. For the analysis of the algorithm, we will denote the graph con-
sidered by the algorithm at the beginning of the i-th iteration by Gi (starting with
G0 = G) and the number of vertices and edges of this graph by ni and mi respec-
tively. A single iteration of the algorithm will be called a Bor̊uvka step.

1.5.4. Lemma. The i-th Bor̊uvka step can be carried out in time O(mi).

Proof. The only non-trivial parts are steps 6 and 7. Contractions can be handled
similarly to the unions in the original Bor̊uvka’s algorithm (see 1.4.6): We build
an auxiliary graph containing only the selected edges ek, find connected components
of this graph and renumber vertices in each component to the identifier of the
component. This takes O(mi) time.

Flattening is performed by first removing the loops and then bucket-sorting
the edges (as ordered pairs of vertex identifiers) lexicographically, which brings
parallel edges together. The bucket sort uses two passes with ni buckets, so it takes
O(ni + mi) = O(mi). �
1.5.5. Theorem. The Contractive Bor̊uvka’s algorithm finds the MST of the input
graph in time O(min(n2,m log n)).

Proof. As in the original Bor̊uvka’s algorithm, the number of iterations is O(log n).
When combined with the previous lemma, it gives an O(m log n) upper bound.

To get the O(n2) bound, we observe that the number of trees in the non-
contracting version of the algorithm drops at least by a factor of two in each it-
eration (Lemma 1.4.3) and the same must hold for the number of vertices in the
contracting version. Therefore ni � n/2i. While the number of edges need not de-
crease geometrically, we still have mi � n2

i as the graphs Gi are simple (we explicitly
removed multiple edges and loops at the end of the previous iteration). Hence the
total time spent in all iterations is O(

P
i n

2
i ) = O(

P
i n

2/4i) = O(n2). �
On planar graphs, the algorithm runs much faster:

1.5.6. Theorem. (Contractive Bor̊uvka on planar graphs)
When the input graph is planar, the Contractive Bor̊uvka’s algorithm runs in time
O(n).

2 In other words, we will ask the comparison oracle for the edge `(e) instead of e.
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Proof. Let us refine the previous proof. We already know that ni � n/2i. We
will prove that when G is planar, the mi’s are decreasing geometrically. We know
that every Gi is planar, because the class of planar graphs is closed under edge
deletion and contraction. Moreover, Gi is also simple, so we can use the standard
bound on the number of edges of planar simple graphs (see for example [Die05])
to get mi � 3ni � 3n/2i. The total time complexity of the algorithm is therefore
O(
P

i mi) = O(
P

i n/2i) = O(n). �
1.5.7. Remark. There are several other possibilities how to find the MST of a planar
graph in linear time. For example, Matsui [Mat95] has described an algorithm based
on simultaneously working on the graph and its topological dual. The advantage of
our approach is that we do not need to construct the planar embedding explicitly.
We will show another simpler linear-time algorithm in section 3.1.

1.5.8. Remark. To achieve the linear time complexity, the algorithm needs a very
careful implementation, but we defer the technical details to section 2.2.

1.5.9. General contractions. Graph contractions are indeed a very powerful tool
and they can be used in other MST algorithms as well. The following lemma shows
the gist:

1.5.10. Lemma. (Contraction of MST edges)
Let G be a weighted graph, e an arbitrary edge of mst(G), G/e the multigraph
produced by contracting e in G, and π the bijection between edges of G � e and
their counterparts in G/e. Then mst(G) = π−1[mst(G/e)] + e.

Proof. The right-hand side of the equality is a spanning tree of G. Let us denote it
by T and the MST of G/e by T ′. If T were not minimum, there would exist a T -light
edge f in G (by the Minimality Theorem, 1.2.6). If the path T [f ] covered by f does
not contain e, then π[T [f ]] is a path covered by π(f) in T ′. Otherwise π(T [f ]� e)
is such a path. In both cases, f is T ′-light, which contradicts the minimality of T ′.
(We do not have a multigraph version of the theorem, but the direction we need is
a straightforward edge exchange, which obviously works in multigraphs as well as
in simple graphs.) �
1.5.11. Remark. In the Contractive Bor̊uvka’s algorithm, the role of the map-
ping π−1 is of course played by the edge labels `.

1.5.12. A lower bound. Finally, we will show a family of graphs for which the
O(m log n) bound on time complexity is tight. The graphs do not have unique
weights, but they are constructed in a way that the algorithm never compares two
edges with the same weight. Therefore, when two such graphs are monotonically
isomorphic (see 1.2.14), the algorithm processes them in the same way.

1.5.13. De�nition. A distractor of order k, denoted by Dk, is a path on n = 2k ver-
tices v1, . . . , vn, where each edge vivi+1 has its weight equal to the number of trailing
zeroes in the binary representation of the number i. The vertex v1 is called a base
of the distractor.

1.5.14. Remark. Alternatively, we can use a recursive definition: D0 is a single
vertex, Dk+1 consists of two disjoint copies of Dk joined by an edge of weight k.

1.5.15. Lemma. A single iteration of the contractive algorithm reduces the distrac-
tor Dk to a graph isomorphic with Dk−1.

Proof. Each vertex v of Dk is incident with a single edge of weight 1. The algorithm
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A distractor D3 and its evolution (bold edges are contracted)

therefore selects all weight 1 edges and contracts them. This produces a graph that
is equal to Dk−1 with all weights increased by 1, which does not change the relative
order of edges. �
1.5.16. De�nition. A hedgehog Ha,k is a graph consisting of a distractors D1

k, . . . , D
a
k

of order k together with edges of a complete graph on the bases of these distractors.
The additional edges have arbitrary weights that are heavier than the edges of all
the distractors.

0 1 0

0
1

0

0 1 0

01
0

0
1 0

≥ 2

A hedgehog H5,2 (quills bent to fit in the picture)

1.5.17. Lemma. A single iteration of the contractive algorithm reduces Ha,k to
a graph isomorphic with Ha,k−1.

Proof. Each vertex is incident with an edge of some distractor, so the algorithm
does not select any edge of the complete graph. Contraction therefore reduces
each distractor to a smaller distractor (modulo an additive factor in weight) and it
leaves the complete graph intact. The resulting graph is monotonely isomorphic to
Ha,k−1. �

When we set the parameters appropriately, we get the following lower bound:

1.5.18. Theorem. (Lower bound for Contractive Bor̊uvka)
For each n there exists a graph on Θ(n) vertices and Θ(n) edges such that the
Contractive Bor̊uvka’s algorithm spends time Ω(n log n) on it.

Proof. Consider the hedgehog Ha,k for a = dpne and k = dlog2 ae. It has a � 2k =
Θ(n) vertices and (a

2) + a � 2k = Θ(a2) + Θ(a2) = Θ(n) edges as we wanted.

By the previous lemma, the algorithm proceeds through a sequence of hedge-
hogs Ha,k,Ha,k−1, . . . , Ha,0 (up to monotone isomorphism), so it needs a logarithmic
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number of iterations plus some more to finish on the remaining complete graph.
Each iteration runs on a graph with Ω(n) edges as every Ha,k contains a complete
graph on a vertices. �
1.6. Lifting restrictions

In order to have a simple and neat theory, we have introduced several restric-
tions on the graphs in which we search for the MST. As in some rare cases we
are going to meet graphs that do not fit into this simplified world, let us quickly
examine what happens when the restrictions are lifted.

1.6.1. Disconnected graphs. The basic properties of minimum spanning trees and
the algorithms presented in this chapter apply to minimum spanning forests of dis-
connected graphs, too. The proofs of our theorems and the steps of our algorithms
are based on adjacency of vertices and existence of paths, so they are always local
to a single connected component. The Bor̊uvka’s and Kruskal’s algorithm need no
changes, the Jarńık’s algorithm has to be invoked separately for each component.

We can also extend the notion of light and heavy edges with respect to a tree to
forests: When an edge e connects two vertices lying in the same tree T of a forest F ,
it is F -heavy iff it is T -heavy (similarly for F -light). Edges connecting two different
trees are always considered F -light. Again, a spanning forest F is minimum iff there
are no F -light edges.

1.6.2. Multigraphs. All theorems and algorithms from this chapter work for multi-
graphs as well, only the notation sometimes gets crabbed, which we preferred to
avoid. The Minimality theorem and the Blue rule stay unchanged. The Red rule is
naturally extended to self-loops (which are never in the MST) and two-edge cycles
(where the heavier edge can be dropped) as already suggested in the Flattening
lemma (1.5.1).

1.6.3. Multiple edges of the same weight. In case when the edge weights are not
distinct, the characterization of minimum spanning trees using light edges is still
correct, but the MST is no longer unique (as already mentioned, there can be as
much as nn−2 MST’s).

In the Red-Blue procedure, we have to avoid being too zealous. The Blue
lemma cannot guarantee that when a cut contains multiple edges of the minimum
weight, all of them are in the MST. It will however tell that if we pick one of these
edges, an arbitrary MST can be modified to another MST that contains this edge.
Therefore the Blue rule will change to “Pick a cut C such that it does not contain
any blue edge and color one of its lightest edges blue.” The Red lemma and the
Red rule can be handled in a similar manner. The modified algorithm will be then
guaranteed to find one of the possible MST’s.

The Kruskal’s and Jarńık’s algorithms keep working. This is however not the
case of the Bor̊uvka’s algorithm, whose proof of correctness in Lemma 1.4.5 explic-
itly referred to distinct weights and indeed, if they are not distinct, the algorithm
will occasionally produce cycles. To avoid the cycles, the ties in edge weight com-
parisons have to be broken in a systematic way. The same applies to the contractive
version of this algorithm.
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2. Fine Details of Computation

2.1. Models and machines

Traditionally, computer scientists have been using a variety of computational
models as a formalism in which their algorithms are stated. If we were studying NP-
completeness, we could safely assume that all these models are equivalent, possibly
up to polynomial slowdown which is negligible. In our case, the differences between
good and not-so-good algorithms are on a much smaller scale. In this chapter,
we will replace the usual “tape measure” by a micrometer, state our computation
models carefully and develop a repertoire of basic data structures tailor-made for
the fine details of the models.

We would like to keep the formalism close enough to the reality of the con-
temporary computers. This rules out Turing machines and similar sequentially
addressed models, but even the remaining models are subtly different from each
other. For example, some of them allow indexing of arrays in constant time, while
on the others, arrays have to be emulated with pointer structures, requiring Ω(log n)
time to access a single element of an n-element array. It is hard to say which way is
superior — while most “real” computers have instructions for constant-time index-
ing, it seems to be physically impossible to fulfil this promise regardless of the size
of addressable memory. Indeed, at the level of logical gates inside the computer,
the depth of the actual indexing circuits is logarithmic.

In recent decades, most researchers in the area of combinatorial algorithms have
been considering two computational models: the Random Access Machine and the
Pointer Machine. The former is closer to the programmer’s view of a real computer,
the latter is slightly more restricted and “asymptotically safe.” We will follow this
practice and study our algorithms in both models.

2.1.1. The Random Access Machine (RAM) is not a single coherent model, but
rather a family of closely related machines which share the following properties.
(See Cook and Reckhow [CR72] for one of the usual formal definitions and Hagerup
[Hag98] for a thorough description of the differences between the RAM variants.)

The memory of the machine is represented by an array of memory cells ad-
dressed by non-negative integers. Each cell contains a single non-negative integer.
The program is a finite sequence of instructions of two basic kinds: calculation
instructions and control instructions.

Calculation instructions have two source arguments and one destination argu-
ment, each argument being either an immediate constant (not available as destina-
tion), a directly addressed memory cell (specified by its number) or an indirectly
addressed memory cell (its address is stored in a directly addressed memory cell).

Control instructions include branches (to a specific instruction in the program),
conditional branches (e.g., jump if two arguments specified as in the calculation
instructions are equal) and an instruction to halt the program.

At the beginning of the computation, the memory contains the input data in
specified cells and arbitrary values in all other cells. Then the program is executed
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one instruction at a time. When it halts, specified memory cells are interpreted as
the program’s output.

2.1.2. In the description of the RAM family, we have omitted several details on pur-
pose, because different members of the family define them differently. These are:
the size of the available integers, the time complexity of a single instruction, the
space complexity assigned to a single memory cell and the set of operations available
in calculation instructions.

If we impose no limits on the magnitude of the numbers and we assume that
arithmetic and logical operations work on them in constant time, we get a very
powerful parallel computer — we can emulate an exponential number of parallel
processors using arithmetics and suddenly almost everything can be computed in
constant time, modulo encoding and decoding of input and output. Such models
are unrealistic and there are two basic possibilities how to avoid this behavior:

1. Keep unbounded numbers, but increase costs of instructions: each instruc-
tion consumes time proportional to the number of bits of the numbers it
processes, including memory addresses. Similarly, space usage is measured
in bits, counting not only the values, but also the addresses of the respec-
tive memory cells.

2. Place a limit on the size of the numbers —define the word size W , the
number of bits available in each memory cell— and keep the cost of in-
structions and memory cells constant. The word size must not be constant,
since we can address only 2W cells of memory. If the input of the algorithm
is stored in N cells, we need W � log N just to be able to read the input.
On the other hand, we are interested in polynomial-time algorithms only,
so Θ(log N)-bit numbers should be sufficient. In practice, we pick W to
be the larger of Θ(log N) and the size of integers used in the algorithm’s
input and output. We will call an integer that fits in a single memory cell
a machine word.

Both restrictions easily avoid the problems of unbounded parallelism. The
first choice is theoretically cleaner and Cook et al. show nice correspondences to
the standard complexity classes, but the calculations of time and space complexity
tend to be somewhat tedious. What more, when compared with the RAM with
restricted word size, the complexities are usually exactly Θ(W ) times higher. This
does not hold in general (consider a program that uses many small numbers and
O(1) large ones), but it is true for the algorithms we are interested in. Therefore
we will always assume that the operations have unit cost and we make sure that all
numbers are limited by the available word size.

2.1.3. As for the choice of RAM operations, the following three instruction sets are
often used:

� Word-RAM — allows the “C-language operators”, i.e., addition, subtrac-
tion, multiplication, division, remainder, bitwise and, or, exclusive or
(xor) and negation (not), and bitwise shifts (<< and >>).
� AC0-RAM — allows all operations from the class AC0, i.e., those com-

putable by constant-depth polynomial-size boolean circuits with unlimited
fan-in and fan-out. This includes all operations of the Word-RAM except
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for multiplication, division and remainders, and also many other opera-
tions like computing the Hamming weight (number of bits set in a given
number).
� Both restrictions combined.

Thorup [Tho03] discusses the usual techniques employed by RAM algorithms
and he shows that they work on both Word-RAM and AC0-RAM, but the com-
bination of the two restrictions is too weak. On the other hand, the intersection
of AC0 with the instruction set of modern processors is already strong enough (e.g.,
when we add some floating-point operations and multimedia instructions available
on the Intel’s Pentium 4 [Int07]).

We will therefore use the Word-RAM instruction set, mentioning differences
from the AC0-RAM where necessary.

2.1.4. Notation. When speaking of the RAM, we implicitly mean the version with
numbers limited by a specified word size of W bits, unit cost of operations and
memory cells and the instruction set of the Word-RAM. This corresponds to the
usage in recent algorithmic literature, although the authors rarely mention the
details.

In some cases, a non-uniform variant of the Word-RAM is considered as well
(e.g., by Hagerup [HMP01]):

2.1.5. De�nition. A Word-RAM is called weakly non-uniform, if it is equipped with
O(1)-time access to a constant number of word-sized constants, which depend only
on the word size. These are called native constants and they are available in fixed
memory cells when the program starts. (By analogy with the high-level program-
ming languages, these constants can be thought of as computed at “compile time”.)

2.1.6. The Pointer Machine (PM) also does not seem to have any well established
definition. The various kinds of pointer machines are examined by Ben-Amram
in [BA95], but unlike the RAM’s they turn out to be equivalent up to constant
slowdown. Our definition will be closely related to the linking automaton proposed
by Knuth in [Knu97a], we will only adapt it to use RAM-like instructions instead
of an opaque control unit.

The PM works with two different types of data: symbols from a finite alphabet
and pointers . The memory of the machine consists of a fixed amount of registers
(some of them capable of storing a single symbol, each of the others holds a single
pointer) and an arbitrary amount of cells . The structure of all cells is the same:
each cell again contains a fixed number of fields for symbols and pointers. Registers
can be addressed directly, the cells only via pointers — by using a pointer stored
either in a register, or in a cell pointed to by a register. Longer chains of pointers
cannot be followed in constant time.

We can therefore view the whole memory as a directed graph, whose vertices
correspond to the cells (the registers are stored in a single special cell). The out-
going edges of each vertex correspond to pointer fields of the cells and they are
labeled with distinct labels drawn from a finite set. In addition to that, each vertex
contains a fixed amount of symbols. The machine can directly access vertices within
distance 2 from the register vertex.

The program is a finite sequence of instructions of the following kinds:
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� symbol instructions, which read a pair of symbols, apply an arbitrary func-
tion to them and write the result to a symbol register or field;
� pointer instructions for assignment of pointers to pointer registers/fields

and for creation of new memory cells (a pointer to the new cell is stored
into a register immediately);
� control instructions — similarly to the RAM; conditional jumps can decide

arbitrary unary relations on symbols and compare pointers for equality.

Time and space complexity are defined in the straightforward way: all instruc-
tions have unit cost and so do all memory cells.

Both input and output of the machine are passed in the form of a linked
structure pointed to by a designated register. For example, we can pass graphs back
and forth without having to encode them as strings of numbers or symbols. This
is important, because with the finite alphabet of the PM, symbolic representations
of graphs generally require super-linear space and therefore also time.1

2.1.7. Compared to the RAM, the PM lacks two important capabilities: indexing
of arrays and arithmetic instructions. We can emulate both with poly-logarithmic
slowdown, but it will turn out that they are rarely needed in graph algorithms.
We are also going to prove that the RAM is strictly stronger, so we will prefer to
formulate our algorithms for the PM and use the RAM only when necessary.

2.1.8. Theorem. Every program for the Word-RAM with word size W can be trans-
lated to a PM program computing the same with O(W 2) slowdown (given a suitable
encoding of inputs and outputs, of course). If the RAM program does not use mul-
tiplication, division and remainder operations, O(W ) slowdown is sufficient.

Proof sketch. Represent the memory of the RAM by a balanced binary search tree
or by a radix trie of depth O(W ). Values are encoded as linked lists of symbols
pointed to by the nodes of the tree. Both direct and indirect accesses to the memory
can therefore be done in O(W ) time. Use standard algorithms for arithmetic on big
numbers: O(W ) per operation except for multiplication, division and remainders
which take O(W 2).2 �
2.1.9. Theorem. Every program for the PM running in polynomial time can be
translated to a program computing the same on the Word-RAM with only O(1)
slowdown.

Proof sketch. Encode each cell of the PM’s memory to O(1) integers. Store the
encoded cells to the memory of the RAM sequentially and use memory addresses as
pointers. As the symbols are finite and there is only a polynomial number of cells
allocated during execution of the program, O(log N)-bit integers suffice (N is the
size of the program’s input). �

1 The usual representation of edges as pairs of vertex labels uses Θ(m log n) bits
and as a simple counting argument shows, this is asymptotically optimal for general
sparse graphs. On the other hand, specific families of sparse graphs can be stored
more efficiently, e.g., by a remarkable result of Turán [Tur84], planar graphs can be
encoded in O(n) bits. Encoding of dense graphs is of course trivial as the adjacency
matrix has only Θ(n2) bits.

2 We could use more efficient arithmetic algorithms, but the quadratic bound is
good enough for our purposes.
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2.1.10. There are also randomized versions of both machines. These are equipped
with an additional instruction for generating a single random bit. The standard
methods of design and analysis of randomized algorithms can be used (see for
example Motwani and Raghavan [MR95]).

2.1.11. Remark. There is one more interesting machine: the Immutable Pointer
Machine (mentioned for example in the description of LISP machines in [BA95]).
It differs from the ordinary PM by the inability to modify existing memory cells.
Only the contents of the registers are allowed to change. All cell modifications
thus have to be performed by creating a copy of the particular cell with some fields
changed. This in turn requires the pointers to the cell to be updated, possibly
triggering a cascade of further cell copies. For example, when a node of a binary
search tree is updated, all nodes on the path from that node to the root have to be
copied.

One of the advantages of this model is that the states of the machine are
persistent — it is possible to return to a previously visited state by recalling the
O(1) values of the registers (everything else could not have changed since that time)
and “fork” the computations. This corresponds to the semantics of pure functional
languages, e.g., of Haskell [JS03].

Unless we are willing to accept a logarithmic penalty in execution time and
space (in fact, our emulation of the Word-RAM on the PM can be easily made
immutable), the design of efficient algorithms for the immutable PM requires very
different techniques. Therefore, we will be interested in the imperative models only
and refer the interested reader to the thorough treatment of purely functional data
structures in the Okasaki’s monograph [Oka99].

2.2. Bucket sorting and uni�cation

The Contractive Bor̊uvka’s algorithm (1.5.2) needs to contract a given set of
edges in the current graph and then flatten the graph, all this in time O(m). We
have spared the technical details for this section, in which we are going to explain
several rather general techniques based on bucket sorting.

As we have already suggested in the proof of Lemma 1.5.2, contractions can be
performed in linear time by building an auxiliary graph and finding its connected
components. We will thus take care only of the subsequent flattening.

2.2.1. Flattening on RAM. On the RAM, we can view the edges as ordered pairs of
vertex identifiers with the smaller of the identifiers placed first. We sort these pairs
lexicographically. This brings parallel edges together, so that a simple linear scan
suffices to find each bunch of parallel edges and to remove all but the lightest one.
Lexicographic sorting of pairs can be accomplished in linear time by a two-pass
bucket sort with n buckets corresponding to the vertex identifiers.

However, there is a catch. Suppose that we use the standard representation
of graphs by adjacency lists whose heads are stored in an array indexed by ver-
tex identifiers. When we contract and flatten the graph, the number of vertices
decreases, but if we inherit the original vertex identifiers, the arrays will still have
the same size. We could then waste a super-linear amount of time by scanning the
increasingly sparse arrays, most of the time skipping unused entries.
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To avoid this problem, we have to renumber the vertices after each contraction
to component identifiers from the auxiliary graph and create a new vertex array.
This helps keep the size of the representation of the graph linear with respect to its
current size.

2.2.2. Flattening on PM. The pointer representation of graphs does not suffer from
sparsity since the vertices are always identified by pointers to per-vertex structures.
Each such structure then contains all attributes associated with the vertex, includ-
ing the head of its adjacency list. However, we have to find a way how to perform
bucket sorting without indexing of arrays.

We will keep a list of the per-vertex structures and we will use it to establish
the order of vertices. Each such structure will be endowed with a pointer to the
head of the list of items in the corresponding bucket. Inserting an edge to a bucket
can be then done in constant time and scanning the contents of all n buckets takes
O(n + m) time.

At last, we must not forget that while it was easy to normalize the pairs on the
RAM by putting the smaller identifier first, this fails on the PM because we can
directly compare the identifiers only for equality. We can work around this again by
bucket-sorting: we sort the multiset f(x, i) j x occurs in the i-th pairg on x. Then
we reset all pairs and re-insert the values back in their increasing order. This also
takes O(n + m).

2.2.3. Tree isomorphism. Another nice example of pointer-based radix sorting is
a Pointer Machine algorithm for deciding whether two rooted trees are isomorphic.
Let us assume for a moment that the outdegree of each vertex is at most a fixed
constant k. We begin by sorting the subtrees of both trees by their depth. This can
be accomplished by running depth-first search to calculate the depths and bucket-
sorting them with n buckets afterwards.

Then we proceed from depth 0 to the maximum depth and for each depth
we identify the isomorphism equivalence classes of the particular subtrees. We will
assign unique codes (identifiers) to all such classes; at most n+1 of them are needed
as there are n + 1 subtrees in the tree (including the empty subtree). As the PM
does not have numbers as an elementary type, we create a “yardstick” —a list of
n + 1 distinct items— and we use pointers to these “ticks” as identifiers. When we
are done, isomorphism of the whole trees can be decided by comparing the codes
assigned to their roots.

Suppose that classes of depths 0, . . . , d� 1 are already computed and we want
to identify those of depth d. We will denote their count of nd. We take a root of
every such tree and label it with an ordered k-tuple of codes of its subtrees; when it
has less than k sons, we pad the tuple with empty subtrees. Tuples corresponding
to isomorphic subtrees are identical up to reordering of elements. We therefore sort
the codes inside each tuple and then sort the tuples, which brings the equivalent
tuples together.

The first sort (inside the tuples) would be easy on the RAM, but on the PM we
have to use the normalization trick mentioned above. The second sort is a straight-
forward k-pass bucket sort.

If we are not careful, a single sorting pass takes O(nd + n) time, because while
we have only nd items to sort, we have to scan all n buckets. This can be easily
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avoided if we realize that the order of the buckets does not need to be fixed —
in every pass, we can use a completely different order and it still does bring the
equivalent tuples together. Thus we can keep a list of buckets that are used in the
current pass and look only inside these buckets. This way, we reduce the time spent
in a single pass to O(nd) and the whole algorithm takes just O(

P
d nd) = O(n).

Our algorithm can be easily modified for trees with unrestricted degrees. We
replace the fixed d-tuples by general sequences of codes. The first sort does not
need any changes. In the second sort, we proceed from the first position to the
last one and after each bucket-sorting pass we put aside the sequences that have
just ended. They are obviously not equivalent to any other sequences. The time
complexity of the second sort is linear in the sum of the lengths of the sequences,
which is nd+1 for depth d. We can therefore decide isomorphism of the whole trees
in time O(

P
d(nd + nd+1)) = O(n).

The unification of sequences by bucket sorting will be useful in many other
situations, so we will state it as a separate lemma:

2.2.4. Lemma. (Sequence unification)
Partitioning of a collection of sequences S1, . . . , Sn, whose elements are arbitrary
pointers and symbols from a finite alphabet, to equality classes can be performed
on the Pointer Machine in time O(n +

P
i jSij).

2.2.5. Remark. The first linear-time algorithm that partitions all subtrees to iso-
morphism equivalence classes is probably due to Zemlayachenko [Zem73], but it
lacks many details. Dinitz et al. [DIR99] have recast this algorithm in modern
terminology and filled the gaps. Our algorithm is easier to formulate than those,
because it replaces the need for auxiliary data structures by more elaborate bucket
sorting.

2.2.6. Topological graph computations. Many graph algorithms are based on the
idea of so called micro/macro decomposition: We decompose a graph to subgraphs
on roughly k vertices and solve the problem separately inside these “micrographs”
and in the “macrograph” obtained by contraction of the micrographs. If k is small
enough, many of the micrographs are isomorphic, so we can compute the result only
once for each isomorphism class and recycle it for all micrographs of that class. On
the other hand, the macrograph is roughly k times smaller than the original graph,
so we can use a less efficient algorithm and it will still run in linear time with respect
to the size of the original graph.

This kind of decomposition is traditionally used for trees, especially in the
algorithms for the Lowest Common Ancestor problem (cf. Section 3.4 and the survey
paper [AGKR02]) and for online maintenance of marked ancestors (cf. Alstrup et
al. [AHR98]). Let us take a glimpse at what happens when we decompose a tree
with k set to 1/4 � log n. There are at most 22k =

p
n non-isomorphic subtrees of

size k, because each isomorphism class is uniquely determined by the sequence of
2k up/down steps performed by depth-first search of the tree. Suppose that we
are able to decompose the input and identify the equivalence classes of microtrees
in linear time, then solve the problem in time O(poly(k)) for each microtree and
finally in O(n′ log n′) for the macrotree of size n′ = n/k. When we put these pieces
together, we get an algorithm for the whole problem which achieves time complexity
O(n +

p
n � poly(log n) + n/ log n � log(n/ log n)) = O(n).





Decompositions are usually implemented on the RAM, because subgraphs can
be easily encoded in numbers, and these can be then used to index arrays containing
the precomputed results. As the previous algorithm for subtree isomorphism shows,
indexing is not strictly required for identifying equivalent microtrees and it can be
replaced by bucket sorting on the Pointer Machine. Buchsbaum et al. [BKRW98]
have extended this technique to general graphs in form of so called topological graph
computations. Let us define them.

2.2.7. De�nition. A graph computation is a function that takes a labeled undirected
graph as its input. The labels of vertices and edges can be arbitrary symbols
drawn from a finite alphabet. The output of the computation is another labeling
of the same graph. This time, the vertices and edges can be labeled with not only
symbols of the alphabet, but also with pointers to the vertices and edges of the input
graph, and possibly also with pointers to outside objects. A graph computation is
called topological if it produces isomorphic outputs for isomorphic inputs. The
isomorphism of course has to preserve not only the structure of the graph, but also
the labels in the obvious way.

2.2.8. Observation. The topological graph computations cover a great variety of
graph problems, ranging from searching for matchings or Eulerian tours to finding
Hamilton circuits. The MST problem itself however does not belong to this class,
because we do not have any means of representing the edge weights as labels, unless
there is only a fixed amount of possible values.

As in the case of tree decompositions, we would like to identify the equivalent
subgraphs and process only a single instance from each equivalence class. We need
to be careful with the definition of the equivalence classes, because graph isomor-
phism is known to be computationally hard (it is one of the few problems that are
neither known to lie in P nor to be NP-complete; see Arvind and Kurur [AK02] for
recent results on its complexity). We will therefore manage with a weaker form of
equivalence, based on some sort of graph encodings:

2.2.9. De�nition. A canonical encoding of a given labeled graph represented by
adjacency lists is obtained by running the depth-first search on the graph and
recording its traces. We start with an empty encoding. When we enter a vertex,
we assign an identifier to it (again using a yardstick to represent numbers) and we
append the label of this vertex to the encoding. Then we scan all back edges going
from this vertex and append the identifiers of their destinations, accompanied by
the edges’ labels. Finally we append a special terminator to mark the boundary
between the code of this vertex and its successor.

2.2.10. Observation. The canonical encoding is well defined in the sense that non-
isomorphic graphs always receive different encodings. Obviously, encodings of iso-
morphic graphs can differ, depending on the order of vertices and also of the adja-
cency lists. A graph on n vertices with m edges is assigned an encoding of length at
most 2n + 2m — for each vertex, we record its label and a single terminator; edges
contribute by identifiers and labels. These encodings can be constructed in linear
time and in the same time we can also create a graph corresponding to a given
encoding. We will use the encodings for our unification of graphs:

2.2.11. De�nition. For a collection C of graphs, we define jCj as the number of
graphs in the collection and kCk as their total size, i.e., kCk =

P
G∈C n(G) + m(G).
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2.2.12. Lemma. (Graph unification)
A collection C of labeled graphs can be partitioned into classes which share the
same canonical encoding in time O(kCk) on the Pointer Machine.

Proof. Construct canonical encodings of all the graphs and then apply the Sequence
unification lemma (2.2.4) on them. �
2.2.13. When we want to perform a topological computation on a collection C of
graphs with k vertices, we first precompute its result for a collection G of generic
graphs corresponding to all possible canonical encodings on k vertices. Then we use
unification to match the actual graphs in C to the generic graphs in G. This gives
us the following theorem:

2.2.14. Theorem. (Topological computations, Buchsbaum et al. [BKRW98])
Suppose that we have a topological graph computation T that can be performed in
time T (k) for graphs on k vertices. Then we can run T on a collection C of labeled
graphs on k vertices in time O(kCk+(k+s)k(k+2) �(T (k)+k2)), where s is a constant
depending only on the number of symbols used as vertex/edge labels.

Proof. A graph on k vertices has less than k2/2 edges, so the canonical encodings
of all such graphs are shorter than 2k + 2k2/2 = k(k + 2). Each element of the
encoding is either a vertex identifier, or a symbol, or a separator, so it can attain
at most k + s possible values for some fixed s. We can therefore enumerate all
possible encodings and convert them to a collection G of all generic graphs such
that jGj � (k + s)k(k+2) and kGk � jGj � k2.

We run the computation on all generic graphs in time O(jGj � T (k)) and then
we use the Unification lemma (2.2.12) on the union of the collections C and G to
match the generic graphs with the equivalent actual graphs in C in time O(kCk +
kGk). Finally we create a copy of the generic result for each of the actual graphs.
If the computation uses pointers to the input vertices in its output, we have to
redirect them to the actual input vertices, which we can do by associating the
output vertices that refer to an input vertex with the corresponding places in the
encoding of the input graph. This way, the whole output can be generated in time
O(kCk+ kGk). �
2.2.15. Remark. The topological computations and the Graph unification lemma
will play important roles in Sections 3.4 and 4.4.

2.3. Data structures on the RAM
There is a lot of data structures designed specifically for the RAM. These

structures take advantage of both indexing and arithmetics and they often surpass
the known lower bounds for the same problem on the PM. In many cases, they
achieve constant time per operation, at least when either the magnitude of the
values or the size of the data structure is suitably bounded.

A classical result of this type is the tree of van Emde Boas [vEB77] which rep-
resent a subset of the integers f0, . . . , U �1g. It allows insertion, deletion and order
operations (minimum, maximum, successor etc.) in time O(log log U), regardless
of the size of the subset. If we replace the heap used in the Jarńık’s algorithm
(1.4.9) by this structure, we immediately get an algorithm for finding the MST
in integer-weighted graphs in time O(m log log wmax), where wmax is the maximum
weight.
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A real breakthrough has however been made by Fredman and Willard who
introduced the Fusion trees [FW93]. They again perform membership and prede-
cessor operation on a set of n integers, but with time complexity O(logW n) per
operation on a Word-RAM with W -bit words. This of course assumes that each el-
ement of the set fits in a single word. As W must at least log n, the operations take
O(log n/ log log n) time and thus we are able to sort n integers in time o(n log n).
This was a beginning of a long sequence of faster and faster sorting algorithms,
culminating with the work of Thorup and Han. They have improved the time com-
plexity of integer sorting to O(n log log n) deterministically [Han02] and expected
O(n
p

log log n) for randomized algorithms [HT02], both in linear space.

The Fusion trees themselves have very limited use in graph algorithms, but the
principles behind them are ubiquitous in many other data structures and these will
serve us well and often. We are going to build the theory of Q-heaps in Section 2.5,
which will later lead to a linear-time MST algorithm for arbitrary integer weights
in Section 3.2. Other such structures will help us in building linear-time RAM
algorithms for computing the ranks of various combinatorial structures in Chapter 7.

Outside our area, important consequences of RAM data structures include
the Thorup’s O(m) algorithm for single-source shortest paths in undirected graphs
with positive integer weights [Tho99] and his O(m log log n) algorithm for the same
problem in directed graphs [Tho04]. Both algorithms have been then significantly
simplified by Hagerup [Hag00].

Despite the progress in the recent years, the corner-stone of all RAM struc-
tures is still the representation of combinatorial objects by integers introduced by
Fredman and Willard. It will also form a basis for the rest of this chapter.

2.4. Bits and vectors
In this rather technical section, we will show how the RAM can be used as

a vector computer to operate in parallel on multiple elements, as long as these
elements fit in a single machine word. At the first sight this might seem useless,
because we cannot require large word sizes, but surprisingly often the elements are
small enough relative to the size of the algorithm’s input and thus also relative to
the minimum possible word size. Also, as the following lemma shows, we can easily
emulate slightly longer words:

2.4.1. Lemma. (Multiple-precision calculations)
Given a RAM with W -bit words, we can emulate all calculation and control in-
structions of a RAM with word size kW in time depending only on the k. (This is
usually called multiple-precision arithmetics.)

Proof. We split each word of the “big” machine to W ′-bit blocks, where W ′ =
W/2, and store these blocks in 2k consecutive memory cells. Addition, subtraction,
comparison and bitwise logical operations can be performed block-by-block. Shifts
by a multiple of W ′ are trivial, otherwise we can combine each block of the result
from shifted versions of two original blocks. To multiply two numbers, we can use
the elementary school algorithm using the W ′-bit blocks as digits in base 2W ′

—
the product of any two blocks fits in a single word.

Division is harder, but Newton-Raphson iteration (see [ITY95]) converges to
the quotient in a constant number of iterations, each of them involving O(1)
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multiple-precision additions and multiplications. A good starting approximation
can be obtained by dividing the two most-significant (non-zero) blocks of both
numbers.

Another approach to division is using the improved elementary school algorithm
as described by Knuth in [Knu97b]. It uses O(k2) steps, but the steps involve
calculation of the most significant bit set in a word. We will show below that it can
be done in constant time, but we have to be careful to avoid division instructions
in it. �
2.4.2. Notation. (Bit strings)
We will work with binary representations of natural numbers by strings over the
alphabet f0,1g: we will use hxi for the number x written in binary, hxib for the
same padded to exactly b bits by adding leading zeroes, and x[k] for the value of the
k-th bit of x (with a numbering of bits such that 2k[k] = 1). The usual conventions
for operations on strings will be utilized: When s and t are strings, we write st for
their concatenation and sk for the string s repeated k times. When the meaning is
clear from the context, we will use x and hxi interchangeably to avoid outbreak of
symbols.

2.4.3. De�nition. The bitwise encoding of a vector x = (x0, . . . , xd−1) of b-bit num-
bers is an integer x such that hxi = hxd−1ib0hxd−2ib0 . . .0hx0ib. In other words,
x =

P
i 2

(b+1)i � xi. (We have interspersed the elements with separator bits.)

2.4.4. Notation. (Vectors)
We will use boldface letters for vectors and the same letters in normal type for the
encodings of these vectors. The elements of a vector x will be written as x0, . . . , xd−1.

2.4.5. If we want to fit the whole vector in a single word, the parameters b and d
must satisfy the condition (b + 1)d � W . By using multiple-precision arithmetics,
we can encode all vectors satisfying bd = O(W ). We will now describe how to
translate simple vector manipulations to sequences of O(1) RAM operations on
their codes. As we are interested in asymptotic complexity only, we will prefer
clarity of the algorithms over saving instructions. Among other things, we will
freely use calculations on words of size O(bd), assuming that the Multiple-precision
lemma comes to save us when necessary.

2.4.6. First of all, let us observe that we can use and and or with suitable constants
to write zeroes or ones to an arbitrary set of bit positions at once. These operations
are usually called bit masking . Also, any element of a vector can be extracted or
replaced by a different value in O(1) time by masking and shifts.

2.4.7. Algorithm. (Operations on vectors with d elements of b bits each)

� Replicate(α) — Create a vector (α, . . . , α):

Replicate(α) = α � (0b1)d.

� Sum(x) — Calculate the sum of the elements of x, assuming that the result
fits in b bits:

Sum(x) = x mod 1b+1.

This is correct because when we calculate modulo 1b+1, the number 2b+1 =
10b+1 is congruent to 1 and thus x =

P
i 2

(b+1)i � xi � Pi 1
i � xi � Pi xi.

As the result should fit in b bits, the modulo makes no difference.
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If we want to avoid division, we can use double-precision multiplication
instead:

0xd−1 � � � 0x2 0x1 0x0� 0b1 � � � 0b1 0b1 0b1

xd−1 � � � x2 x1 x0

xd−1 xd−2 � � � x1 x0

xd−1 xd−2 xd−3 � � � x0
...

...
...

...
xd−1 � � � x2 x1 x0

rd−1 � � � r2 r1 sd � � � s3 s2 s1

This way, we also get all partial sums: sk =
Pk−1

i=0 xi, rk =
Pd−1

i=k xi.� Cmp(x, y) — Compare vectors x and y element-wise, i.e., make a vector z
such that zi = 1 if xi < yi and zi = 0 otherwise.

We replace the separator zeroes in x by ones and subtract y. These ones
change back to zeroes exactly at the positions where xi < yi and they stop
carries from propagating, so the fields do not interact with each other:

1xd−1 1xd−2 � � � 1 x1 1 x0� 0 yd−1 0 yd−2 � � � 0 y1 0 y0

? . . . ? . . . � � � ? . . . ? . . .

It only remains to shift the separator bits to the right positions, negate
them and mask out all other bits.
� Rank(x, α) — Return the number of elements of x which are less than α,

assuming that the result fits in b bits:

Rank(x, α) = Sum(Cmp(x,Replicate(α))).

� Insert(x, α) — Insert α into a sorted vector x:

We calculate the rank of α in x first, then we insert α into the particular
field of x using masking operations and shifts.

1. k  Rank(x, α).

2. ` x and 1(b+1)(n−k)0(b+1)k. (“left” part of the vector)

3. r = x and 1(b+1)k. (“right” part)

4. Return (` << (b + 1)) or (α << ((b + 1)k)) or r.

� Unpack(α) — Create a vector whose elements are the bits of hαid. In other
words, insert blocks 0b between the bits of α. Assuming that b � d, we
can do it as follows:

1. x Replicate(α).

2. y  (2b−1, 2b−2, . . . , 20). (bitwise encoding of this vector)

3. z  x and y.

4. Return Cmp(z, y) xor (0b1)d.

Let us observe that zi is either zero or equal to yi depending on the value
of the i-th bit of the number α. Comparing it with yi normalizes it to
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either zero or one, but in the opposite way than we need, so we flip the
bits by an additional xor.
� Unpackπ(α) — Like Unpack , but change the order of the bits according

to a fixed permutation π: The i-th element of the resulting vector is equal
to α[π(i)].

Implemented as above, but with a mask y = (2π(b−1), . . . , 2π(0)).
� Pack(x) — The inverse of Unpack : given a vector of zeroes and ones,

produce a number whose bits are the elements of the vector (in other
words, it crosses out the 0b blocks).

We interpret the x as an encoding of a vector with elements one bit shorter
and we sum these elements. For example, when n = 4 and b = 4:

0 0 0 0 x3 0 0 0 0 x2 0 0 0 0 x1 0 0 0 0 x0

0 0 0 0 x3 0 0 0 0 x2 0 0 0 0 x1 0 0 0 0 x0

However, this “reformatting” does not produce a correct encoding of a vec-
tor, because the separator zeroes are missing. For this reason, the imple-
mentation of Sum using modulo does not work correctly (it produces 0b

instead of 1b). We therefore use the technique based on multiplication in-
stead, which does not need the separators. (Alternatively, we can observe
that 1b is the only case affected, so we can handle it separately.)

2.4.8. Scalar operations. We can use the aforementioned tricks to perform inter-
esting operations on individual numbers in constant time, too. Let us assume for
a while that we are operating on b-bit numbers and the word size is at least b2.
This enables us to make use of intermediate vectors with b elements of b bits each.

2.4.9. Algorithm. (Integer operations in quadratic workspace)

� Weight(α) — Compute the Hamming weight of α, i.e., the number of ones
in hαi.
We perform Unpack and then Sum.
� Permuteπ(α) — Shuffle the bits of α according to a fixed permutation π.

We perform Unpackπ and Pack back.
� LSB(α) — Find the least significant bit of α, i.e., the smallest i such that

α[i] = 1.

By a combination of subtraction with xor, we create a number that con-
tains ones exactly at the position of LSB(α) and below:

α = � � � � �10000
α� 1 = � � � � �01111

α xor (α� 1) = 0 � � �011111

Then we calculate the Weight of the result and subtract 1.
� MSB(α) — Find the most significant bit of α (the position of the highest

bit set).

Reverse the bits of the number α first by calling Permute, then apply LSB
and subtract the result from b� 1.

2.4.10. LSB and MSB. As noted by Brodnik [Bro93] and others, the space require-
ments of the LSB operation can be lowered to linear. We split the w-bit input to
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p
w blocks of

p
w bits each. Then we determine which blocks are non-zero and

identify the lowest such block (this is a LSB of a number whose bits correspond to
the blocks). Finally we calculate the LSB of this block. In both calls to LSB, we
have a

p
w-bit number in a w-bit word, so we can use the previous algorithm. The

same trick of course applies to for finding the MSB , too.

The following algorithm shows the details:

2.4.11. Algorithm. (LSB in linear workspace)

Input: A w-bit number α.

1. b dpw e. (the size of a block)

2. ` b. (the number of blocks is the same)

3. x (α and (01b)`) or ((α and (10b)`) >> 1).
(encoding of a vector x such that xi 6= 0 iff the i-th block is non-zero)3

4. y  Cmp(0, x). (yi = 1 if the i-th block is non-zero, otherwise
y0 = 0)

5. β  Pack(y). (each block compressed to a single bit)

6. p LSB(β). (the index of the lowest non-zero block)

7. γ  (α >> bp) and 1b. (the contents of that block)

8. q  LSB(γ). (the lowest bit set there)

Output: LSB(α) = bp + q.

2.4.12. Constants. We have used a plenty of constants that depend on the format
of the vectors. Either we can write non-uniform programs (see 2.1.5) and use native
constants, or we can observe that all such constants can be easily manufactured.
For example, (0b1)d = 1(b+1)d/1b+1 = (2(b+1)d � 1)/(2b+1 � 1) = ((1 << (b + 1)d) �
1)/((2<<b)�1). The only exceptions are the w and b in the LSB algorithm 2.4.11,
which we are unable to produce in constant time. In practice we use the “bit tricks”
as frequently called subroutines in an encompassing algorithm, so we usually can
afford spending a lot of time on the precalculation of constants performed once
during algorithm startup.

2.4.13. History. The history of combining arithmetic and logical operations to ob-
tain fast programs for various interesting functions is blurred. Many of the bit
tricks, which we have described, have been discovered independently by numerous
people in the early ages of digital computers. Since then, they have become a part
of the computer science folklore. Probably the earliest documented occurrence is
in the 1972’s memo of the MIT Artificial Intelligence Lab [BGS72]. However, until
the work of Fredman and Willard nobody seemed to realize the full consequences.

3 Why is this so complicated? It is tempting to take α itself as a code of this
vector, but we must not forget the separator bits between elements, so we create
them and relocate the bits we have overwritten.
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2.5. Q-Heaps
We have shown how to perform non-trivial operations on a set of values in

constant time, but so far only under the assumption that the number of these
values is small enough and that the values themselves are also small enough (so
that the whole set fits in O(1) machine words). Now we will show how to lift the
restriction on the magnitude of the values and still keep constant time complexity.
We will describe a slightly simplified version of the Q-heaps developed by Fredman
and Willard in [FW90].

The Q-heap represents a set of at most k word-sized integers, where k �W 1/4

and W is the word size of the machine. It will support insertion, deletion, finding of
minimum and maximum, and other operations described below, in constant time,
provided that we are willing to spend O(2k4

) time on preprocessing.

The exponential-time preprocessing may sound alarming, but a typical appli-
cation uses Q-heaps of size k = log1/4 N , where N is the size of the algorithm’s
input. This guarantees that k � W 1/4 and O(2k4

) = O(N). Let us however re-
mark that the whole construction is primarily of theoretical importance — the huge
multiplicative constants hidden in the O make these heaps useless in practical algo-
rithms. Despite this, many of the tricks we develop have proven themselves useful
even in real-life data structures.

Spending so much time on preprocessing makes it possible to precompute tables
of almost arbitrary functions and then assume that the functions can be evaluated
in constant time:

2.5.1. Lemma. When f is a function computable in polynomial time, O(2k4

) time
is enough to precompute a table of the values of f for all arguments whose size is
O(k3) bits.

Proof. There are 2O(k3) possible combinations of arguments of the given size and
for each of them we spend poly(k) time on calculating the function. It remains to

observe that 2O(k3) � poly(k) = O(2k4

). �
2.5.2. Tries and ranks. We will first develop an auxiliary construction based on
tries and then derive the real definition of the Q-heap from it.

2.5.3. Notation.
� W — the word size of the RAM,
� k = O(W 1/4) — the limit on the size of the heap,
� n � k — the number of elements stored in the heap,
� X = fx1, . . . , xng — the elements themselves: distinct W -bit numbers

indexed in a way that x1 < . . . < xn,
� gi = MSB(xi xor xi+1) — the position of the most significant bit in which

xi and xi+1 differ,
� RX(x) — the rank of x in X, that is the number of elements of X which

are less than x (where x itself need not be an element of X).4

2.5.4. De�nition. A trie for a set of strings S over a finite alphabet Σ is a rooted
tree whose vertices are the prefixes of the strings in S and there is an edge going

4 We will dedicate the whole Chapter 7 to the study of various ranks.
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from a prefix α to a prefix β iff β can be obtained from α by appending a single
symbol of the alphabet. The edge will be labeled with that particular symbol. We
will also define the letter depth of a vertex as the length of the corresponding prefix.
We mark the vertices which match a string of S.

A compressed trie is obtained by removing the vertices of outdegree 1 except
for the root and the marked vertices. Wherever there is a directed path whose
internal vertices have outdegree 1 and they carry no mark, we replace this path by
a single edge labeled with the concatenation of the original edges’ labels.

In both kinds of tries, we order the outgoing edges of every vertex by their
labels lexicographically.

2.5.5. Observation. In both tries, the root of the tree is the empty word. Generally,
the prefix in a vertex is equal to the concatenation of edge labels on the path leading
from the root to that vertex. The letter depth of the vertex is equal to the total
size of these labels. All leaves correspond to strings in S, but so can some internal
vertices if there are two strings in S such that one is a prefix of the other.

Furthermore, the labels of all edges leaving a common vertex are always distinct
and when we compress the trie, no two such labels share their initial symbols. This
allows us to search in the trie efficiently: when looking for a string x, we follow
the path from the root and whenever we visit an internal vertex of letter depth d,
we test the d-th character of x, we follow the edge whose label starts with this
character, and we check that the rest of the label matches.

The compressed trie is also efficient in terms of space consumption — it has
O(jSj) vertices (this can be easily shown by induction on jSj) and all edge labels
can be represented in space linear in the sum of the lengths of the strings in S.

2.5.6. De�nition. For our set X, we define T as a compressed trie for the set of
binary encodings of the numbers xi, padded to exactly W bits, i.e., for S = fhxiW j
x 2 Xg.

5

4 0

23

x1 x2 x3 x4

x5 x6

0

0 10

0011 1010 001 101

10000

0 1

x1 = 000011 g1 = 3
x2 = 001010 g2 = 4
x3 = 010001 g3 = 2
x4 = 010101 g4 = 5
x5 = 100000 g5 = 0
x6 = 100001

Six numbers stored in a compressed trie

2.5.7. Observation. The trie T has several interesting properties. Since all words
in S have the same length, the leaves of the trie correspond to these exact words,
that is to the numbers xi. The depth-first traversal of the trie enumerates the words
of S in lexicographic order and therefore also the xi’s in the order of their values.
Between each pair of leaves xi and xi+1 it visits an internal vertex whose letter
depth is exactly W � 1� gi.

2.5.8. Let us now modify the algorithm for searching in the trie and make it compare
only the first symbols of the edges. In other words, we will test only the bits gi
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which will be called guides (as they guide us through the tree). For x 2 X, the
modified algorithm will still return the correct leaf. For all x outside X it will no
longer fail and instead it will land on some leaf xi. At the first sight the number xi

may seem unrelated, but we will show that it can be used to determine the rank
of x in X, which will later form a basis for all Q-heap operations:

2.5.9. Lemma. The rank RX(x) is uniquely determined by a combination of:

� the trie T ,
� the index i of the leaf found when searching for x in T ,
� the relation (<, =, >) between x and xi,� the bit position b = MSB(x xor xi) of the first disagreement between x

and xi.

Proof. If x 2 X, we detect that from xi = x and the rank is obviously i� 1. Let us
assume that x 62 X and imagine that we follow the same path as when searching
for x, but this time we check the full edge labels. The position b is the first position
where hxi disagrees with a label. Before this point, all edges not taken by the search
were leading either to subtrees containing elements all smaller than x or all larger
than x and the only values not known yet are those in the subtree below the edge
that we currently consider. Now if x[b] = 0 (and therefore x < xi), all values in that
subtree have xj[b] = 1 and thus they are larger than x. In the other case, x[b] = 1
and xj[b] = 0, so they are smaller. �
2.5.10. A better representation. The preceding lemma shows that the rank can be
computed in polynomial time, but unfortunately the variables on which it depends
are too large for a table to be efficiently precomputed. We will carefully choose
an equivalent representation of the trie which is compact enough.

2.5.11. Lemma. The compressed trie is uniquely determined by the order of the
guides g1, . . . , gn−1.

Proof. We already know that the letter depths of the trie vertices are exactly the
numbers W � 1 � gi. The root of the trie must have the smallest of these let-
ter depths, i.e., it must correspond to the highest numbered bit. Let us call this
bit gi. This implies that the values x1, . . . , xi must lie in the left subtree of the
root and xi+1, . . . , xn in its right subtree. Both subtrees can be then constructed
recursively.5 �
2.5.12. Unfortunately, the vector of the gi’s is also too long (is has k log W bits and
we have no upper bound on W in terms of k), so we will compress it even further:

2.5.13. Notation.
� B = fg1, . . . , gng — the set of bit positions of all the guides, stored as

a sorted array,
� G : f1, . . . , ng ! f1, . . . , ng — a function mapping the guides to their bit

positions in B: gi = B[G(i)],
� x[B] — a bit string containing the bits of x originally located at the posi-

tions given by B, i.e., the concatenation of bits x[B[1]], x[B[2]], . . . , x[B[n]].

5 This construction is also known as the cartesian tree for the sequence g1, . . . , gn−1

and it is useful in many other algorithms as it can be built in O(n) time. A nice
application on the Lowest Common Ancestor and Range Minimum problems has
been described by Bender et al. in [BFC00].
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2.5.14. Observation. The set B has O(k log W ) = O(W ) bits, so it can be stored in
a constant number of machine words in the form of a sorted vector. The function G
can be also stored as a vector ofO(k log k) bits. We can change a single gi in constant
time using vector operations: First we delete the original value of gi from B if it is
not used anywhere else. Then we add the new value to B if it was not there yet and
we write its position in B to G(i). Whenever we insert or delete a value in B, the
values at the higher positions shift one position up or down and we have to update
the pointers in G. This can be fortunately accomplished by adding or subtracting
a result of vector comparison.

In this representation, we can reformulate our lemma on ranks as follows:

2.5.15. Lemma. The rank RX(x) can be computed in constant time from:

� the function G,
� the values x1, . . . , xn,
� the bit string x[B],
� x itself.

Proof. Let us prove that all ingredients of Lemma 2.5.9 are either small enough or
computable in constant time.

We know that the shape of the trie T is uniquely determined by the order of
the gi’s and therefore by the function G since the array B is sorted. The shape of
the trie together with the bits in x[B] determine the leaf xi found when searching
for x using only the guides. This can be computed in polynomial time and it
depends on O(k log k) bits of input, so according to Lemma 2.5.1 we can look it up
in a precomputed table.

The relation between x and xi can be obtained directly as we know the xi. The
bit position of the first disagreement can be calculated in constant time using the
Brodnik’s LSB/MSB algorithm (2.4.11).

All these ingredients can be stored in O(k log k) bits, so we may assume that
the rank can be looked up in constant time as well. �
2.5.16. We would like to store the set X as a sorted array together with the cor-
responding trie, which will allow us to determine the position for a newly inserted
element in constant time. However, the set is too large to fit in a vector and we
cannot perform insertion on an ordinary array in constant time. This can be worked
around by keeping the set in an unsorted array and storing a separate vector con-
taining the permutation that sorts the array. We can then insert a new element
at an arbitrary place in the array and just update the permutation to reflect the
correct order.

2.5.17. The Q-heap. We are now ready for the real definition of the Q-heap and for
the description of the basic operations on it.

2.5.18. De�nition. A Q-heap consists of:

� k, n — the capacity of the heap and the current number of elements (word-
sized integers),
� X — the set of word-sized elements stored in the heap (an array of words

in an arbitrary order),
� % — a permutation on f1, . . . , ng such that X[%(1)] < . . . < X[%(n)] (a vec-

tor of O(n log k) bits; we will write xi for X[%(i)]),
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� B — a set of “interesting” bit positions (a sorted vector of O(n log W )
bits),
� G — the function that maps the guides to the bit positions in B (a vector

of O(n log k) bits),
� precomputed tables of various functions.

2.5.19. Algorithm. (Search in the Q-heap)

Input: A Q-heap and an integer x to search for.

1. i RX(x) + 1, using Lemma 2.5.15 to calculate the rank.

2. If i � n return xi, otherwise return undefined.
Output: The smallest element of the heap which is greater or equal to x.

2.5.20. Algorithm. (Insertion to the Q-heap)

Input: A Q-heap and an integer x to insert.

1. i RX(x) + 1, using Lemma 2.5.15 to calculate the rank.

2. If x = xi, return immediately (the value is already present).

3. Insert the new value to X:

4. n n + 1.

5. X[n] x.

6. Insert n at the i-th position in the permutation %.

7. Update the gj’s:

8. Move all gj for j � i one position up.
This translates to insertion in the vector representing G.

9. Recalculate gi−1 and gi according to the definition.
Update B and G as described in 2.5.14.

Output: The updated Q-heap.

2.5.21. Algorithm. (Deletion from the Q-heap)

Input: A Q-heap and an integer x to be deleted from it.

1. i RX(x) + 1, using Lemma 2.5.15 to calculate the rank.

2. If i > n or xi 6= x, return immediately (the value is not in the heap).

3. Delete the value from X:

4. X[%(i)] X[n].

5. Find j such that %(j) = n and set %(j) %(i).

6. n n� 1.

7. Update the gj’s like in the previous algorithm.

Output: The updated Q-heap.

2.5.22. Algorithm. (Finding the i-th smallest element in the Q-heap)

Input: A Q-heap and an index i.

1. If i < 1 or i > n, return undefined.
2. Return xi.

Output: The i-th smallest element in the heap.

2.5.23. Extraction. The heap algorithms we have just described have been built
from primitives operating in constant time, with one notable exception: the extrac-
tion x[B] of all bits of x at positions specified by the set B. This cannot be done
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in O(1) time on the Word-RAM, but we can implement it with AC0 instructions as
suggested by Andersson in [AMT99] or even with those AC0 instructions present
on real processors (see Thorup [Tho03]). On the Word-RAM, we need to make use
of the fact that the set B is not changing too much — there are O(1) changes per
Q-heap operation. As Fredman and Willard have shown, it is possible to maintain
a “decoder”, whose state is stored in O(1) machine words and which helps us to
extract x[B] in a constant number of operations:

2.5.24. Lemma. (Extraction of bits)
Under the assumptions on k, W and the preprocessing time as in the Q-heaps,6 it is
possible to maintain a data structure for a set B of bit positions, which allows x[B]
to be extracted in O(1) time for an arbitrary x. When a single element is inserted
to B or deleted from B, the structure can be updated in constant time, as long as
jBj � k.

Proof. See Fredman and Willard [FW90]. �
2.5.25. This was the last missing bit of the mechanics of the Q-heaps. We are there-
fore ready to conclude this section by the following theorem and its consequences:

2.5.26. Theorem. (Q-heaps, Fredman and Willard [FW90])
Let W and k be positive integers such that k = O(W 1/4). Let Q be a Q-heap of
at most k-elements of W bits each. Then the Q-heap operations 2.5.19 to 2.5.22
on Q (insertion, deletion, search for a given value and search for the i-th smallest
element) run in constant time on a Word-RAM with word size W , after spending

time O(2k4

) on the same RAM on precomputing of tables.

Proof. Every operation on the Q-heap can be performed in a constant number of
vector operations and calculations of ranks. The ranks are computed in O(1) steps
involving again O(1) vector operations, binary logarithms and bit extraction. All
these can be calculated in constant time using the results of Section 2.4 and Lemma
2.5.24. �
2.5.27. Combining Q-heaps. We can also use the Q-heaps as building blocks of more
complex structures like Atomic heaps and AF-heaps (see once again [FW90]). We
will show a simpler, but often sufficient construction, sometimes called the Q-heap
tree. Suppose we have a Q-heap of capacity k and a parameter d 2 N+. We
can build a balanced k-ary tree of depth d such that its leaves contain a given
set and every internal vertex keeps the minimum value in the subtree rooted in it,
together with a Q-heap containing the values in all its sons. This allows minimum
to be extracted in constant time (it is placed in the root) and when any element is
changed, it is sufficient to recalculate the values from the path from this element to
the root, which takes O(d) Q-heap operations.

2.5.28. Corollary. (Q-heap trees)
For every positive integer r and δ > 0 there exists a data structure capable of
maintaining the minimum of a set of at most r word-sized numbers under insertions
and deletions. Each operation takes O(1) time on a Word-RAM with word size

6 Actually, this is the only place where we need k to be as low as W 1/4. In the
AC0 implementation, it is enough to ensure k log k � W . On the other hand, we
need not care about the exponent because it can be increased arbitrarily using the
Q-heap trees described below.
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W = Ω(rδ), after spending time O(2rδ

) on precomputing of tables.

Proof. Choose δ′ � δ such that rδ′ = O(W 1/4). Build a Q-heap tree of depth
d = dδ/δ′e containing Q-heaps of size k = rδ′ . �
2.5.29. Remark. When we have an algorithm with input of size N , the word size
is at least log N and we can spend time O(N) on preprocessing, so we can choose
r = log N and δ = 1 in the above corollary and get a heap of size log N working in
constant time per operation.
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3. Advanced MST Algorithms

3.1. Minor-closed graph classes

The contractive algorithm given in Section 1.5 has been found to perform well
on planar graphs, but in the general case its time complexity was not linear. Can
we find any broader class of graphs where this algorithm is still efficient? The
right context turns out to be the minor-closed graph classes, which are closed under
contractions and have bounded density.

3.1.1. De�nition. A graph H is a minor of a graph G (written as H 4 G) iff it can
be obtained from a subgraph of G by a sequence of simple graph contractions (see
A.2.4).

3.1.2. De�nition. A class C of graphs is minor-closed , when for every G 2 C and
every minor H of G, the graph H lies in C as well. A class C is called non-trivial if
at least one graph lies in C and at least one lies outside C.
3.1.3. Example. Non-trivial minor-closed classes include:

� planar graphs,
� graphs embeddable in any fixed surface (i.e., graphs of bounded genus),
� graphs embeddable in R3 without knots or without interlocking cycles,
� graphs of bounded tree-width or path-width.

3.1.4. Many of the nice structural properties of planar graphs extend to minor-
closed classes, too (see Lovász [Lov05] for a nice survey of this theory and Diestel
[Die05] for some of the deeper results). The most important property is probably
the characterization of such classes in terms of their forbidden minors.

3.1.5. De�nition. For a class H of graphs we define Forb(H) as the class of graphs
that do not contain any of the graphs in H as a minor. We will call H the
set of forbidden (or excluded) minors for this class. We will often abbreviate
Forb(fM1, . . . ,Mng) to Forb(M1, . . . ,Mn).

3.1.6. Observation. For every H 6= ;, the class Forb(H) is non-trivial and closed on
minors. This works in the opposite direction as well: for every minor-closed class C
there is a class H such that C = Forb(H). One such H is the complement of C, but
smaller ones can be found, too. For example, the planar graphs can be equivalently
described as the class Forb(K5,K3,3) — this follows from the Kuratowski’s theorem
(the theorem speaks of forbidden subdivisions, but while in general this is not
the same as forbidden minors, it is for K5 and K3,3). The celebrated theorem by
Robertson and Seymour guarantees that we can always find a finite set of forbidden
minors:

3.1.7. Theorem. (Excluded minors, Robertson & Seymour [RS04])
For every non-trivial minor-closed graph class C there exists a finite set H of graphs
such that C = Forb(H).

Proof. This theorem has been proven in a long series of papers on graph minors
culminating with [RS04]. See this paper and follow the references to the previous
articles in the series. �
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3.1.8. For analysis of the contractive algorithm, we will make use of another im-
portant property — the bounded density of minor-closed classes. The connection
between minors and density dates back to Mader in the 1960’s and it can be proven
without use of the Robertson-Seymour theory.

3.1.9. De�nition. Let G be a graph and C be a class of graphs. We define the edge
density %(G) of G as the average number of edges per vertex, i.e., m(G)/n(G). The
edge density %(C) of the class is then defined as the infimum of %(G) over all G 2 C.
3.1.10. Theorem. (Mader [Mad67])
For every k 2 N there exists h(k) 2 R such that every graph of average degree at
least h(k) contains a subdivision of Kk as a subgraph.

Proof sketch. (See Lemma 3.5.1 in [Die05] for a complete proof in English.)

Let us fix k and prove by induction on m that every graph of average degree
at least 2m contains a subdivision of some graph with k vertices and m edges (for
k � m � (k

2)). When we reach m = (k
2), the theorem follows as the only graph

with k vertices and (k
2) edges is Kk.

The base case m = k: Let us observe that when the average degree is a,
removing any vertex of degree less than a/2 does not decrease the average degree.
A graph with a � 2k therefore has a subgraph with minimum degree δ � a/2 = 2k−1.
Such subgraph contains a cycle on more than δ vertices, in other words a subdivision
of the cycle Ck.

Induction step: Let G be a graph with average degree at least 2m and assume
that the theorem already holds for m�1. Without loss of generality, G is connected.
Consider a maximal set U � V such that the subgraph G[U ] induced by U is
connected and the graph G.U (G with U contracted to a single vertex) has average
degree at least 2m (such U exists, because G = G . U whenever jU j = 1). Now
consider the subgraph H induced in G by the neighbors of U . Every v 2 V (H)
must have degH(v) � 2m−1, as otherwise we can add this vertex to U , contradicting
its maximality. By the induction hypothesis, H contains a subdivision of some
graph R with k vertices and m � 1 edges. Any two non-adjacent vertices of R
can be connected in the subdivision by a path lying entirely in G[U ], which reveals
a subdivision of a graph with m edges. �
3.1.11. Theorem. (Density of minor-closed classes, Mader [Mad67])
Every non-trivial minor-closed class of graphs has finite edge density.

Proof. Let C be any such class, X its excluded minor with the smallest number
of vertices x. As X 4 Kx, the class C is entirely contained in C ′ = Forb(Kx), so
%(C) � %(C ′) and therefore it suffices to prove the theorem for classes excluding
a single complete graph Kx.

We will show that %(C) � 2h(x), where h is the function from the previous
theorem. If any G 2 C had more than 2h(x) � n(G) edges, its average degree would
be at least h(x), so by the previous theorem G would contain a subdivision of Kx

and hence Kx as a minor. �
Let us return to the analysis of our algorithm.

3.1.12. Theorem. (MST on minor-closed classes, Mareš [Mar04])
For any fixed non-trivial minor-closed class C of graphs, the Contractive Bor̊uvka’s
algorithm (1.5.2) finds the MST of any graph of this class in time O(n). (The
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constant hidden in the O depends on the class.)

Proof. Following the proof for planar graphs (1.5.6), we denote the graph considered
by the algorithm at the beginning of the i-th Bor̊uvka step by Gi and its number
of vertices and edges by ni and mi respectively. Again the i-th phase runs in time
O(mi) and we have ni � n/2i, so it remains to show a linear bound for the mi’s.

Since each Gi is produced from Gi−1 by a sequence of edge contractions, all
Gi’s are minors of the input graph.1 So they also belong to C and by the Density
theorem mi � %(C) � ni. The time complexity is therefore

P
iO(mi) =

P
iO(ni) =

O(
P

i n/2i) = O(n). �
3.1.13. Local contractions. The contractive algorithm uses “batch processing” to
perform many contractions in a single step. It is also possible to perform them one
edge at a time, batching only the flattenings. A contraction of an edge uv can be
done in time O(deg(u)) by removing all edges incident with u and inserting them
back with u replaced by v. Therefore we need to find a lot of vertices with small
degrees. The following lemma shows that this is always the case in minor-closed
classes.

3.1.14. Lemma. (Low-degree vertices)
Let C be a graph class with density % and G 2 C a graph with n vertices. Then at
least n/2 vertices of G have degree at most 4%.

Proof. Assume the contrary: Let there be at least n/2 vertices with degree greater
than 4%. Then

P
v deg(v) > n/2 � 4% = 2%n, which is in contradiction with the

number of edges being at most %n. �
3.1.15. Remark. The proof can be also viewed probabilistically: let X be the degree
of a vertex of G chosen uniformly at random. Then EX � 2%, hence by the Markov’s
inequality Pr[X > 4%] < 1/2, so for at least n/2 vertices v we have deg(v) � 4%.

3.1.16. Algorithm. (Local Bor̊uvka’s Algorithm, Mareš [Mar04])

Input: A graph G with an edge comparison oracle and a parameter t 2 N.

1. T  ;.
2. `(e) e for all edges e.

3. While n(G) > 1:

4. While there exists a vertex v such that deg(v) � t:

5. Select the lightest edge e incident with v.

6. Contract e.

7. T  T + `(e).

8. Flatten G, removing parallel edges and loops.

Output: Minimum spanning tree T .

3.1.17. Theorem. When C is a minor-closed class of graphs with density %, the
Local Bor̊uvka’s Algorithm with the parameter t set to 4% finds the MST of any
graph from this class in time O(n). (The constant in the O depends on the class.)

Proof. Let us denote by Gi, ni and mi the graph considered by the algorithm at the
beginning of the i-th iteration of the outer loop, and the number of its vertices and

1 Technically, these are multigraph contractions, but followed by flattening, so
they are equivalent to contractions on simple graphs.
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edges respectively. As in the proof of the previous algorithm (3.1.12), we observe
that all the Gi’s are minors of the graph G given as the input.

For the choice t = 4%, the Lemma on low-degree vertices (3.1.14) guarantees
that at the beginning of the i-th iteration, at least ni/2 vertices have degree at
most t. Each selected edge removes one such vertex and possibly increases the
degree of another one, so at least ni/4 edges get selected. Hence ni � 3/4 �ni−1 and
ni � n � (3/4)i, so the algorithm terminates after O(log n) iterations.

Each selected edge belongs to mst(G), because it is the lightest edge of the
trivial cut δ(v) (see the Blue rule, Lemma 1.3.1). The steps 6 and 7 therefore
correspond to the operation described by the Contraction Lemma (1.5.10) and when
the algorithm stops, T is indeed the minimum spanning tree.

It remains to analyse the time complexity of the algorithm. Since Gi 2 C, we
know that mi � %ni � %n/2i. We will show that the i-th iteration is carried out in
time O(mi). Steps 5 and 6 run in time O(deg(v)) = O(t) for each v, so summed
over all v’s they take O(tni), which is O(ni) for a fixed class C. Flattening takes
O(mi) as already noted in the analysis of the Contracting Bor̊uvka’s Algorithm (see
1.5.4).

The whole algorithm therefore runs in timeO(
P

i mi) = O(
P

i n/2i) = O(n). �
3.1.18. Back to planar graphs. For planar graphs, we can obtain a sharper version of
the low-degree lemma showing that the algorithm works with t = 8 as well (we had
t = 12 from % = 3). While this does not change the asymptotic time complexity of
the algorithm, the constant-factor speedup can still delight the hearts of its practical
users.

3.1.19. Lemma. (Low-degree vertices in planar graphs)
Let G be a planar graph with n vertices. Then at least n/2 vertices of v have degree
at most 8.

Proof. It suffices to show that the lemma holds for triangulations (if there are any
edges missing, the situation can only get better) with at least 4 vertices. Since G is
planar, we have

P
v deg(v) < 6n. The numbers d(v) := deg(v)� 3 are non-negative

and
P

v d(v) < 3n, so by the same argument as in the proof of the general lemma,
for at least n/2 vertices v it holds that d(v) < 6, and thus deg(v) � 8. �
3.1.20. Remark. The constant 8 in the previous lemma is the best we can have.
Consider a k � k triangular grid. It has n = k2 vertices, O(k) of them lie on the
outer face and they have degree at most 6, the remaining n�O(k) interior vertices
have degree exactly 6. Therefore the number of faces f is 6/3 � n = 2n, ignoring
terms of order O(k). All interior triangles can be properly colored with two colors,
black and white. Now add a new vertex inside each white face and connect it to all
three vertices on the boundary of that face (see the picture). This adds f/2 � n
vertices of degree 3 and it increases the degrees of the original � n interior vertices
to 9, therefore about a half of the vertices of the new planar graph has degree 9.

3.1.21. Remark. The observation in Theorem 3.1.12 was also independently made
by Gustedt [Gus98], who studied a parallel version of the Contractive Bor̊uvka’s
algorithm applied to minor-closed classes.

3.1.22. Remark. The bound on the average degree needed to enforce a Kk minor,
which we get from Theorem 3.1.10, is very coarse. Kostochka [Kos84] and inde-
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The construction from Remark 3.1.20

pendently Thomason [Tho84] have proven that an average degree Ω(k
p

log k) is
sufficient and that this is the best what we can get.

3.1.23. Remark. Minor-closed classes share many other interesting properties, for
example bounded chromatic numbers of various kinds, as shown by Theorem 6.1 of
[NdM03]. We can expect that many algorithmic problems will turn out to be easy
for them.

3.2. Iterated algorithms
We have seen that the Jarńık’s Algorithm 1.4.9 runs in Θ(m log n) time. Fred-

man and Tarjan [FT87] have shown a faster implementation using their Fibonacci
heaps. In this section, we will convey their results and we will show several inter-
esting consequences.

The previous implementation of the algorithm used a binary heap to store all
edges separating the current tree T from the rest of the graph, i.e., edges of the
cut δ(T ). Instead of that, we will remember the vertices adjacent to T and for each
such vertex v we will maintain the lightest edge uv such that u lies in T . We will
call these edges active edges and keep them in a Fibonacci heap, ordered by weight.

When we want to extend T by the lightest edge of δ(T ), it is sufficient to find
the lightest active edge uv and add this edge to T together with the new vertex v.
Then we have to update the active edges as follows. The edge uv has just ceased
to be active. We scan all neighbors w of the vertex v. When w is already in T , no
action is needed. If w is outside T and it was not adjacent to T (there is no active
edge remembered for it so far), we set the edge vw as active. Otherwise we check
the existing active edge for w and replace it by vw if the new edge is lighter.

The following algorithm shows how these operations translate to insertions,
decreases and deletions in the heap.

3.2.1. Algorithm. (Active Edge Jarńık; Fredman and Tarjan [FT87])

Input: A graph G with an edge comparison oracle.

1. v0  an arbitrary vertex of G.

2. T  a tree containing just the vertex v0.

3. H  a Fibonacci heap of active edges stored as pairs (u, v) where
u 2 T, v 62 T , ordered by the weights w(uv), and initially empty.

4. A a mapping of vertices outside T to their active edges in the heap;
initially all elements undefined.
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5. Insert all edges incident with v0 to H and update A accordingly.

6. While H is not empty:

7. (u, v) DeleteMin(H).

8. T  T + uv.

9. For all edges vw such that w 62 T :

10. If there exists an active edge A(w):

11. If vw is lighter than A(w), Decrease A(w) to (v, w)
in H.

12. If there is no such edge, then Insert (v, w) to H and set A(w).

Output: Minimum spanning tree T .

3.2.2. Analysis. To analyse the time complexity of this algorithm, we will use the
standard theorem on complexity of the Fibonacci heap:

3.2.3. Theorem. (Fibonacci heaps, Fredman and Tarjan [FT87])
The Fibonacci heap performs the following operations with the indicated amortized
time complexities:

� Insert (insertion of a new element) in O(1),
� Decrease (decreasing the value of an existing element) in O(1),
� Merge (merging of two heaps into one) in O(1),
� DeleteMin (deletion of the minimal element) in O(log n),
� Delete (deletion of an arbitrary element) in O(log n),

where n is the number of elements present in the heap at the time of the operation.

Proof. See Fredman and Tarjan [FT87] for both the description of the Fibonacci
heap and the proof of this theorem. �
3.2.4. Theorem. Algorithm 3.2.1 with the Fibonacci heap finds the MST of the
input graph in time O(m + n log n).

Proof. The algorithm always stops, because every edge enters the heap H at most
once. As it selects exactly the same edges as the original Jarńık’s algorithm, it gives
the correct answer.

The time complexity is O(m) plus the cost of the heap operations. The algo-
rithm performs at most one Insert or Decrease per edge and exactly one DeleteMin
per vertex. There are at most n elements in the heap at any given time, thus by
the previous theorem the operations take O(m + n log n) time in total. �
3.2.5. Corollary. For graphs with edge density Ω(log n), this algorithm runs in lin-
ear time.

3.2.6. Remark. (Other heaps)
We can consider using other kinds of heaps that have the property that inserts and
decreases are faster than deletes. Of course, the Fibonacci heaps are asymptotically
optimal (by the standard Ω(n log n) lower bound on sorting by comparisons, see for
example [LRCS01]), so the other data structures can improve only multiplicative
constants or offer an easier implementation.

A nice example is the d-regular heap — a variant of the usual binary heap
in the form of a complete d-regular tree. Insert , Decrease and other operations
involving bubbling the values up spend O(1) time at a single level, so they run
in O(logd n) time. Delete and DeleteMin require bubbling down, which incurs
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comparison with all d sons at every level, so they spend O(d logd n). With this
structure, the time complexity of the whole algorithm is O(nd logd n + m logd n),
which suggests setting d = m/n, yielding O(m logm/n n). This is still linear for

graphs with density at least n1+ε.

Another possibility is to use the 2-3-heaps [TC99] or Trinomial heaps [Tak00].
Both have the same asymptotic complexity as Fibonacci heaps (the latter even
in the worst case, but it does not matter here) and their authors claim faster
implementation. For integer weights, we can use Thorup’s priority queues described
in [Tho04] which have constant-time Insert and Decrease and O(log log n) time
DeleteMin. (We will however omit the details since we will show a faster integer
algorithm soon.)

3.2.7. Combining MST algorithms. As we already noted, the improved Jarńık’s
algorithm runs in linear time for sufficiently dense graphs. In some cases, it is
useful to combine it with another MST algorithm, which identifies a part of the
MST edges and contracts them to increase the density of the graph. For example,
we can perform several Bor̊uvka steps and then find the rest of the MST by the
Active Edge Jarńık’s algorithm.

3.2.8. Algorithm. (Mixed Bor̊uvka-Jarńık)

Input: A graph G with an edge comparison oracle.

1. Run log log n Bor̊uvka steps (1.5.2), getting a MST T1.

2. Run the Active Edge Jarńık’s algorithm (3.2.1) on the resulting graph,
getting a MST T2.

3. Combine T1 and T2 to T as in the Contraction lemma (1.5.10).

Output: Minimum spanning tree T .

3.2.9. Theorem. The Mixed Bor̊uvka-Jarńık algorithm finds the MST of the input
graph in time O(m log log n).

Proof. Correctness follows from the Contraction lemma and from the proofs of
correctness of the respective algorithms. As for time complexity: The first step takes
O(m log log n) time (by Lemma 1.5.4) and it gradually contracts G to a graph G′ of
size m′ � m and n′ � n/ log n. The second step then runs in time O(m′+n′ log n′) =
O(m) and both trees can be combined in linear time, too. �
3.2.10. Iterating Jarńık’s algorithm. Actually, there is a much better choice of the
algorithms to combine: use the Active Edge Jarńık’s algorithm multiple times, each
time stopping it after a while. A good choice of the stopping condition is to place
a limit on the size of the heap. We start with an arbitrary vertex, grow the tree
as usually and once the heap gets too large, we conserve the current tree and start
with a different vertex and an empty heap. When this process runs out of vertices,
it has identified a sub-forest of the MST, so we can contract the edges of this forest
and iterate.

3.2.11. Algorithm. (Iterated Jarńık; Fredman and Tarjan [FT87])

Input: A graph G with an edge comparison oracle.

1. T  ;. (edges of the MST)

2. `(e) e for all edges e. (edge labels as usually)

3. m0  m.
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4. While n > 1: (We will call iterations of this loop phases .)

5. F  ;. (forest built in the current phase)

6. t 2d2m0/ne. (the limit on heap size)

7. While there is a vertex v0 62 F :

8. Run the Active Edge Jarńık’s algorithm (3.2.1) from v0, stop
when:

9. all vertices have been processed, or

10. a vertex of F has been added to the tree, or

11. the heap has grown to more than t elements.

12. Denote the resulting tree R.

13. F  F [R.

14. T  T [ `[F ]. (Remember MST edges found in this phase.)

15. Contract all edges of F and flatten G.

Output: Minimum spanning tree T .

3.2.12. Notation. For analysis of the algorithm, let us denote the graph entering
the i-th phase by Gi and likewise with the other parameters. Let the trees from
which Fi has been constructed be called R1

i , . . . , R
zi
i . The non-indexed G, m and n

will correspond to the graph given as input.

3.2.13. However the choice of the parameter t can seem mysterious, the following
lemma makes the reason clear:

3.2.14. Lemma. Each phase of the Iterated Jarńık’s algorithm runs in time O(m).

Proof. During the i-th phase, the heap always contains at most ti elements, so it
takes time O(log ti) = O(m/ni) to delete an element from the heap. The trees Rj

i

are edge-disjoint, so there are at most ni DeleteMin’s over the course of the phase.
Each edge is considered at most twice (once per its endpoint), so the number of the
other heap operations is O(mi). Together, it equals O(mi+ni log ti) = O(mi+m) =
O(m). �
3.2.15. Lemma. Unless the i-th phase is final, the forest Fi consists of at most
2mi/ti trees.

Proof. As every edge of Gi is incident with at most two trees of Fi, it is sufficient
to establish that there are at least ti edges incident with every such tree, including
edges connecting two vertices of the same tree.

The forest Fi evolves by additions of the trees Rj
i . Let us consider the possi-

bilities how the algorithm could have stopped growing the tree Rj
i :

� the heap had more than ti elements (step 10): since the each elements
stored in the heap corresponds to a unique edge incident with Rj

i , we have
enough such edges;
� the algorithm just added a vertex of Fi to Rj

i (step 9): in this case, an ex-
isting tree of Fi is extended, so the number of edges incident with it cannot
decrease;2

� all vertices have been processed (step 8): this can happen only in the final
phase. �

2 This is the place where we needed to count the interior edges as well.
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3.2.16. Theorem. The Iterated Jarńık’s algorithm finds the MST of the input graph
in time O(mβ(m,n)), where β(m,n) := minfi j log(i) n � m/ng.
Proof. Phases are finite and in every phase at least one edge is contracted, so the
outer loop is eventually terminated. The resulting subgraph T is equal to mst(G),
because each Fi is a subgraph of mst(Gi) and the Fi’s are glued together according
to the Contraction lemma (1.5.10).

Let us bound the sizes of the graphs processed in the individual phases. As
the vertices of Gi+1 correspond to the components of Fi, by the previous lemma
ni+1 � 2mi/ti. Then ti+1 = 2d2m/ni+1e � 22m/ni+1 � 22m/(2mi/ti) = 2(m/mi)·ti � 2ti ,
therefore:

ti � 222
...

m/n
�

a tower of i exponentials.

As soon as ti � n, the i-th phase is final, because at that time there is enough
space in the heap to process the whole graph without stopping. So there are at
most β(m,n) phases and we already know that each phase runs in linear time
(Lemma 3.2.14). �
3.2.17. Corollary. The Iterated Jarńık’s algorithm runs in time O(m log∗ n).

Proof. β(m,n) � β(1, n) � log∗ n. �
3.2.18. Corollary. When we use the Iterated Jarńık’s algorithm on graphs with edge
density at least log(k) n for some k 2 N+, it runs in time O(km).

Proof. If m/n � log(k) n, then β(m,n) � k. �
3.2.19. Integer weights. The algorithm spends most of the time in phases which
have small heaps. Once the heap grows to Ω(log(k) n) for any fixed k, the graph
gets dense enough to guarantee that at most k phases remain. This means that if
we are able to construct a heap of size Ω(log(k) n) with constant time per operation,
we can get a linear-time algorithm for MST. This is the case when the weights are
integers:

3.2.20. Theorem. (MST for integer weights, Fredman and Willard [FW90])
MST of a graph with integer edge weights can be found in time O(m) on the
Word-RAM.

Proof. We will combine the Iterated Jarńık’s algorithm with the Q-heaps from
Section 2.5. We modify the first pass of the algorithm to choose t = log n and use
the Q-heap tree instead of the Fibonacci heap. From Theorem 2.5.26 and Remark
2.5.29 we know that the operations on the Q-heap tree run in constant time, so
the modified first phase takes time O(m). Following the analysis of the original
algorithm in the proof of Theorem 3.2.16 we obtain t2 � 2t1 = 2log n = n, so the
algorithm stops after the second phase.3 �
3.2.21. Further improvements. Gabow et al. [GGST86] have shown how to speed
up the Iterated Jarńık’s algorithm to O(m log β(m,n)). They split the adjacency
lists of the vertices to small buckets, keep each bucket sorted and consider only the
lightest edge in each bucket until it is removed. The mechanics of the algorithm
is complex and there is a lot of technical details which need careful handling, so

3 Alternatively, we can use the Q-heaps directly with k = log1/4 n and then the
algorithm stops after the third phase.
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we omit the description of this algorithm. A better algorithm will be shown in
Chapter 4.

3.3. Veri�cation of minimality

Now we will turn our attention to a slightly different problem: given a spanning
tree, how to verify that it is minimum? We will show that this can be achieved in
linear time and it will serve as a basis for a randomized linear-time MST algorithm
in Section 3.5.

MST verification has been studied by Komlós [Kom85], who has proven that
O(m) edge comparisons are sufficient, but his algorithm needed super-linear time
to find the edges to compare. Dixon, Rauch and Tarjan [DRT92] have later shown
that the overhead can be reduced to linear time on the RAM using preprocessing
and table lookup on small subtrees. Later, King has given a simpler algorithm in
[Kin97].

In this section, we will follow Komlós’s steps and study the comparisons needed,
saving the actual efficient implementation for later.

3.3.1. To verify that a spanning tree T is minimum, it is sufficient to check that all
edges outside T are T -heavy (by the Minimality Theorem, 1.2.6). In fact, we will
be able to find all T -light edges efficiently. For each edge uv 2 E n T , we will find
the heaviest edge of the tree path T [u, v] and compare its weight to w(uv). It is
therefore sufficient to solve the following problem:

3.3.2. Problem. Given a weighted tree T and a set of query paths Q � fT [u, v] j
u, v 2 V (T )g specified by their endpoints, find the heaviest edge (peak) of every
path in Q.

3.3.3. Bor̊uvka trees. Finding the peaks can be burdensome if the tree T is degen-
erated, so we will first reduce it to the same problem on a balanced tree. We run
the Bor̊uvka’s algorithm on T , which certainly produces T itself, and we record the
order, in which the subtrees have been merged, in another tree B(T ). The peak
queries on T can be then easily translated to peak queries on B(T ).

3.3.4. De�nition. For a weighted tree T we define its Bor̊uvka tree B(T ) as a rooted
tree which records the execution of the Bor̊uvka’s algorithm run on T . The leaves
of B(T ) are all the vertices of T , an internal vertex v at level i from the bottom
corresponds to a component tree C(v) formed in the i-th iteration of the algorithm.
When a tree C(v) selects an adjacent edge e and gets merged with some other trees
to form a component C(u), we add an edge uv to B(T ) and set its weight to w(e).

a b c d e f g h x ya cb d e f g hx y 1 1 2 3 3 4 4 5 5 68 8 7 79 91 8 9 72 3 4 5 6
An octipede and its Bor̊uvka tree
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3.3.5. Observation. As the algorithm finishes with a single component in the last
phase, the Bor̊uvka tree is really a tree. All its leaves are on the same level and each
internal vertex has at least two sons. Such trees will be called complete branching
trees.

3.3.6. Lemma. For every tree T and every pair of its vertices x, y 2 V (T ), the peak
of the path T [x, y] has the same weight as the peak of the path B(T )[x, y].

Proof. Let us denote the path T [x, y] by P and its heaviest edge by h = ab. Simi-
larly, let us use P ′ for B(T )[x, y] and h′ for the heaviest edge of P ′.

We will first prove that h has its counterpart of the same weight in P ′, so
w(h′) � w(h). Consider the lowest vertex u of B(T ) such that the component C(u)
contains both a and b, and consider the sons va and vb of u for which a 2 C(va)
and b 2 C(vb). As the edge h must have been selected by at least one of these
components, we assume without loss of generality that it was C(va), and hence we
have w(uva) = w(h). We will show that the edge uva lies in P ′, because exactly
one of the vertices x, y lies in C(va). Both cannot lie there, since it would imply
that C(va), being connected, contains the whole path P , including h. On the other
hand, if C(va) contained neither x nor y, it would have to be incident with another
edge of P different from h, so this lighter edge would be selected instead of h.

In the other direction: for any edge uv 2 P ′, the tree C(v) is incident with at
least one edge of P , so the selected edge must be lighter or equal to this edge and
hence also to h. �
3.3.7. We will simplify the problem even further: For an arbitrary tree T , we split
each query path T [x, y] to two half-paths T [x, a] and T [a, y] where a is the lowest
common ancestor of x and y in T . It is therefore sufficient to consider only paths
that connect a vertex with one of its ancestors.

When we combine the two transforms, we get:

3.3.8. Lemma. (Balancing of trees)
For each tree T on n vertices and a set Q of q query paths on T , it is possible to
find a complete branching tree T ′, together with a set Q′ of paths on T ′, such that
the weights of the heaviest edges of the paths in Q can be deduced from the same
of the paths in Q′. The tree T ′ has at most 2n vertices and O(log n) levels. The
set Q′ contains at most 2q paths and each of them connects a vertex of T ′ with
one of its ancestors. The construction of T ′ involves O(n) comparisons and the
transformation of the answers takes O(q) comparisons.

Proof. The tree T ′ will be the Bor̊uvka tree for T , obtained by running the contrac-
tive version of the Bor̊uvka’s algorithm (Algorithm 1.5.2) on T . The algorithm runs
in linear time, for example because trees are planar (Theorem 1.5.6). We therefore
spend O(n) comparisons in it.

As T ′ has n leaves and it is a complete branching tree, it has at most n internal
vertices, so n(T ′) � 2n as promised. Since the number of iterations of the Bor̊uvka’s
algorithm is O(log n), the depth of the Bor̊uvka tree must be logarithmic as well.

For each query path T [x, y] we find the lowest common ancestor of x and y
and split the path by the two half-paths. This produces a set Q′ of at most 2q
half-paths. The peak of every original query path is then the heavier of the peaks
of its halves. �
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3.3.9. Bounding comparisons. We will now describe a simple variant of the depth-
first search which finds the peaks of all query paths of the balanced problem. As
we promised, we will take care of the number of comparisons only, as long as all
other operations are well-defined and they can be performed in polynomial time.

3.3.10. De�nition. For every edge e = uv, we consider the set Qe of all query paths
containing e. The vertex of a path, that is closer to the root, will be called the
top of the path, the other vertex its bottom. We define arrays Te and Pe as follows:
Te contains the tops of the paths in Qe in order of their increasing depth (we will
call them active tops and each of them will be stored exactly once). For each active
top t = Te[i], we define Pe[i] as the peak of the path T [v, t].

3.3.11. Observation. As for every i the path T [v, Te[i + 1]] is contained within
T [v, Te[i]], the edges of Pe must have non-increasing weights, that is w(Pe[i + 1]) �
w(Pe[i]). This leads to the following algorithm:

3.3.12. Algorithm. FindPeaks(u, p, Tp, Pp) — process all queries located in the sub-
tree rooted at u entered from its parent via an edge p.

1. Process all query paths whose bottom is u and record their peaks.
This is accomplished by finding the index i of each path’s top in Tp

and reading the desired edge from Pp[i].

2. For every son v of u, process the edge e = uv:

3. Construct the array of tops Te for the edge e: Start with Tp,
remove the tops of the paths that do not contain e and add the
vertex u itself if there is a query path which has u as its top and
whose bottom lies somewhere in the subtree rooted at v.

4. Prepare the array of the peaks Pe: Start with Pp, remove the
entries corresponding to the tops that are no longer active. If u
became an active top, append e to the array.

5. Finish Pe: Since the paths leading to all active tops have been
extended by the edge e, compare w(e) with weights of the edges
recorded in Pe and replace those edges which are lighter by e.
Since Pp was sorted, we can use binary search to locate the bound-
ary between the lighter and heavier edges in Pe.

6. Recurse on v: call FindPeaks(v, e, Te, Pe).

As we need a parent edge to start the recursion, we add an imaginary parent edge p0

of the root vertex r, for which no queries are defined. We can therefore start with
FindPeaks(r, p0, ;, ;).

Let us account for the comparisons:

3.3.13. Lemma. When the procedure FindPeaks is called on the balanced problem,
it performs O(n+q) comparisons, where n is the size of the tree and q is the number
of query paths.

Proof. We will calculate the number of comparisons ci performed when processing
the edges going from the (i + 1)-th to the i-th level of the tree. The levels are
numbered from the bottom, so leaves are at level 0 and the root is at level ` �
dlog2 ne. There are ni � n/2i vertices at the i-th level, so we consider exactly ni
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edges. To avoid taking a logarithm4 of zero, we define jTej = 1 for Te = ;.
ci �

X
e

(1 + log jTej) (Total cost of the binary searches.)

� ni +
X

e

log jTej (We sum over ni edges.)

� ni + ni �
P

e log jTej
ni

(Consider the average of logarithms.)

� ni + ni � log

P
e jTej
ni

(Logarithm is concave.)

� ni + ni � log
q + n

ni
(Bound the number of tops by queries.)

= ni �
�

1 + log

�
q + n

n
� n

ni

��
= ni + ni log

q + n

n
+ ni log

n

ni
.

Summing over all levels, we estimate the total number of comparisons as:

c =
X

i

ci =

 X
i

ni

!
+

 X
i

ni log
q + n

n

!
+

 X
i

ni log
n

ni

!
.

The first part is equal to n, the second one to n log((q + n)/n) � q + n. For the
third one, we would like to plug in the bound ni � n/2i, but we unfortunately have
one ni in the denominator. We save the situation by observing that the function
f(x) = x log(n/x) is decreasing5 for x > n/e, so for i � 2 it holds that:

ni log
n

ni
� n

2i
� log

n

n/2i
=

n

2i
� i.

We can therefore rewrite the third part as:X
i

ni log
n

ni
� n0 log

n

n0
+ n1 log

n

n1
+ n �X

i≥2

i

2i
�

� n log 1 + n1 � n

n1
+ n � O(1) = O(n).

Putting all three parts together, we conclude that:

c � n + (q + n) +O(n) = O(n + q). �
3.3.14. When we combine this lemma with the above reduction from general trees
to balanced trees, we get the following theorem:

4 All logarithms are binary.
5 We can easily check the derivative: f(x) = (x lnn�x lnx)/ ln 2, so f ′(x) � ln 2 =

lnn� lnx� 1. We want f ′(x) < 0 and therefore lnx > lnn� 1, i.e., x > n/e.
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3.3.15. Theorem. (Verification of the MST, Komlós [Kom85])
For every weighted graph G and its spanning tree T , it is sufficient to perform O(m)
comparisons of edge weights to determine whether T is minimum and to find all
T -light edges in G.

Proof. We first transform the problem to finding all peaks of a set of query paths
in T (these are exactly the paths covered by the edges of GnT ). We use the reduction
from Lemma 3.3.8 to get an equivalent problem with a full branching tree and a set
of parent-descendant paths. The reduction costs O(m + n) comparisons. Then we
run the FindPeaks procedure (Algorithm 3.3.12) to find the tops of all query paths.
According to Lemma 3.3.13, this spends another O(m + n) comparisons. Since we
(as always) assume that G is connected, O(m + n) = O(m). �
3.3.16. Other applications. The problem of computing path maxima or minima in
a weighted tree has several other interesting applications. One of them is computing
minimum cuts separating given pairs of vertices in a given weighted undirected
graph G. We construct a Gomory-Hu tree T for the graph as described in [GH61]

(see also [HKPB07] for a more efficient algorithm running in time eO(mn) for unit-
cost graphs). The crucial property of this tree is that for every two vertices u, v of
the graph G, the minimum-cost edge on T [u, v] has the same cost as the minimum
cut separating u and v in G. Since the construction of T generally takes Ω(n2)
time, we could of course invest this time in precomputing the minima for all pairs
of vertices. This would however require quadratic space, so we can better use the
method of this section which fits in O(n + q) space for q queries.

3.3.17. Dynamic verification. A dynamic version of the problem is also often con-
sidered. It calls for a data structure representing a weighted forest with operations
for modifying the structure of the forest and querying minima or maxima on paths.
Sleator and Tarjan have shown in [ST83] how to do this in O(log n) time amor-
tized per operation, which leads to an implementation of the Dinic’s maximum flow
algorithm [Din70] in time O(mn log n).

3.4. Veri�cation in linear time

We have proven that O(m) edge weight comparisons suffice to verify minimality
of a given spanning tree. Now we will show an algorithm for the RAM which finds
the required comparisons in linear time. We will follow the idea of King from
[Kin97], but as we have the power of the RAM data structures from Section 2.4
at our command, the low-level details will be easier, especially the construction of
vertex and edge labels.

3.4.1. First of all, let us make sure that the reduction to fully branching trees in
the Balancing lemma (3.3.8) can be made run in linear time. As already noticed in
the proof, the Bor̊uvka’s algorithm runs in linear time. Constructing the Bor̊uvka
tree in the process adds at most a constant overhead to every step of the algorithm.

Finding the common ancestors is not trivial, but Harel and Tarjan have shown
in [HT84] that linear time is sufficient on the RAM. Several more accessible algo-
rithms have been developed since then (see the Alstrup’s survey paper [AGKR02]
and a particularly elegant algorithm described by Bender and Falach-Colton in
[BFC00]). Any of them implies the following theorem:
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3.4.2. Theorem. (Lowest common ancestors)
On the RAM, it is possible to preprocess a tree T in time O(n) and then answer
lowest common ancestor queries presented online in constant time.

3.4.3. Corollary. The reductions in Lemma 3.3.8 can be performed in time O(m).

3.4.4. Having the balanced problem at hand, it remains to implement the procedure
FindPeaks of Algorithm 3.3.12 efficiently. We need a compact representation of the
arrays Te and Pe, which will allow to reduce the overhead of the algorithm to time
linear in the number of comparisons performed. To achieve this goal, we will encode
the arrays in RAM vectors (see Section 2.4 for the vector operations).

3.4.5. De�nition.
Vertex identifiers: Since all vertices processed by the procedure lie on the path

from the root to the current vertex u, we modify the algorithm to keep a stack of
these vertices in an array. We will often refer to each vertex by its index in this
array, i.e., by its depth. We will call these identifiers vertex labels and we note
that each label requires only ` = dlogdlog nee bits. As every tree edge is uniquely
identified by its bottom vertex, we can use the same encoding for edge labels.

Slots: As we are going to need several operations which are not computable in
constant time on the RAM, we precompute tables for these operations like we did
in the Q-heaps (cf. Lemma 2.5.1). A table for word-sized arguments would take too
much time to precompute, so we will generally store our data structures in slots of
s = d1/3 � log ne bits each. We will soon show that it is possible to precompute
a table of any reasonable function whose arguments fit in two slots.

Top masks: The array Te will be represented by a bit mask Me called the top
mask. For each of the possible tops t (i.e., the ancestors of the current vertex), we
store a single bit telling whether t 2 Te. Each top mask fits in dlog ne bits and
therefore in a single machine word. If needed, it can be split to three slots. Unions
and intersections of sets of tops then translate to and/or on the top masks.

Small and big lists: The heaviest edge found so far for each top is stored by
the algorithm in the array Pe. Instead of keeping the real array, we store the labels
of these edges in a list encoded in a bit string. Depending on the size of the list,
we use one of two possible encodings: Small lists are stored in a vector that fits
in a single slot, with the unused fields filled by a special constant, so that we can
easily infer the length of the list.

If the data do not fit in a small list, we use a big list instead. It is stored in
O(log log n) words, each of them containing a slot-sized vector. Unlike the small
lists, we use the big lists as arrays. If a top t of depth d is active, we keep the
corresponding entry of Pe in the d-th field of the big list. Otherwise, we keep that
entry unused.

We want to perform all operations on small lists in constant time, but we can
afford spending time O(log log n) on every big list. This is true because whenever
we use a big list, jTej = Ω(log n/ log log n), hence we need log jTej = Ω(log log n)
comparisons anyway.

Pointers: When we need to construct a small list containing a sub-list of a big
list, we do not have enough time to see the whole big list. To handle this, we
introduce pointers as another kind of edge identifiers. A pointer is an index to the
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nearest big list on the path from the small list containing the pointer to the root.
As each big list has at most dlog ne fields, the pointer fits in ` bits, but we need one
extra bit to distinguish between regular labels and pointers.

3.4.6. Lemma. (Precomputation of tables)
When f is a function of up to two arguments computable in polynomial time, we
can precompute a table of the values of f for all values of arguments that fit in
a single slot. The precomputation takes O(n) time.

Proof. Similar to the proof of Lemma 2.5.1. There are O(22s) = O(n2/3) possible
values of arguments, so the precomputation takes time O(n2/3 � poly(s)) = O(n2/3 �
poly(log n)) = O(n). �
3.4.7. Example. As we can afford spending O(n) time on preprocessing, we can
assume that we can compute the following functions in constant time:

� Weight(x) — the Hamming weight of a slot-sized number x (we already
considered this operation in Algorithm 2.4.9, but we needed quadratic
word size for it). We can easily extend this function to log n-bit numbers
by splitting the number in three slots and adding their weights.
� FindKth(x, k) — the k-th set bit from the top of the slot-sized num-

ber x. Again, this can be extended to multi-slot numbers by calculating
the Weight of each slot first and then finding the slot containing the k-th 1.
� Bits(m) — for a slot-sized bit mask m, it returns a small list of the positions

of the bits set in hmi.
� Select(x,m) — constructs a slot containing the substring of hxi selected

by the bits set in hmi.
� SubList(x,m) — when x is a small list and m a bit mask, it returns a small

list containing the elements of x selected by the bits set in m.

3.4.8. We will now show how to perform all parts of the procedure FindPeaks in
the required time. We will denote the size of the tree by n and the number of query
paths by q.

3.4.9. Lemma. Depths of all vertices and all top masks can be computed in time
O(n + q).

Proof. Run depth-first search on the tree, assign the depth of a vertex when entering
it and construct its top mask when leaving it. The top mask can be obtained by
or-ing the masks of its sons, excluding the level of the sons and including the tops
of all query paths that have their bottoms at the current vertex (the depths of the
tops are already assigned). �
3.4.10. Lemma. The arrays Te and Pe can be indexed in constant time.

Proof. Indexing Te is exactly the operation FindKth applied on the corresponding
top mask Me.

If Pe is stored in a big list, we calculate the index of the particular slot and
the position of the field inside the slot. This field can be then extracted using bit
masking and shifts.

If it is a small list, we extract the field directly, but we have to dereference it
in case it is a pointer. We modify the recursion in FindPeaks to pass the depth of
the lowest edge endowed with a big list and when we encounter a pointer, we index
this big list. �
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3.4.11. Lemma. For an arbitrary active top t, the corresponding entry of Pe can be
extracted in constant time.

Proof. We look up the precomputed depth d of t first. If Pe is stored in a big list,
we extract the d-th entry of the list. If the list is small, we find the position of the
particular field by counting bits of the top mask Me at position d and higher (this
is Weight of Me with the lower bits masked out). �
3.4.12. Lemma. FindPeaks processes an edge e in time O(log jTej+ qe), where qe is
the number of query paths having e as its bottom edge.

Proof. The edge is examined in steps 1, 3, 4 and 5 of the algorithm. We will
show how to perform each of these steps in constant time if Pe is a small list or
O(log log n) if it is big.

Step 1 looks up qe tops in Pe and we already know from Lemma 3.4.11 how to
do that in constant time per top.

Step 3 is trivial as we have already computed the top masks and we can recon-
struct the entries of Te in constant time according to Lemma 3.4.10.

Step 5 involves binary search on Pe in O(log jTej) comparisons, each of them
indexes Pe, which is O(1) again by Lemma 3.4.10. Rewriting the lighter edges is
O(1) for small lists by replication and bit masking, for a big list we do the same for
each of its slots.

Step 4 is the only non-trivial one. We already know which tops to select (we
have the top masks Me and Mp precomputed), but we have to carefully extract the
sublist. We need to handle these four cases:

� Small from small: We use Select(Te, Tp) to find the fields of Pp that shall
be deleted by a subsequent call to SubList . Pointers can be retained as
they still refer to the same ancestor list.
� Big from big: We can copy the whole Pp, since the layout of the big lists is

fixed and the items, which we do not want, simply end up as unused fields
in Pe.� Small from big: We use the operation Bits to construct a list of pointers
(we use bit masking to add the “this is a pointer” flags).
� Big from small: First we have to dereference the pointers in the small

list S. For each slot Bi of the ancestor big list, we construct a subvector
of S containing only the pointers referring to that slot, adjusted to be
relative to the beginning of the slot (we use Compare and Replicate from
Algorithm 2.4.7 and bit masking). Then we use a precomputed table to
replace the pointers by the fields of Bi they point to. We or together the
partial results and we again have a small list.

Finally, we have to spread the fields of this small list to the whole big list.
This is similar: for each slot of the big list, we find the part of the small
list keeping the fields we want (we call Weight on the sub-words of Me

before and after the intended interval of depths) and we use a tabulated
function to shift the fields to the right locations in the slot (controlled by
the sub-word of Me in the intended interval). �

We now have all the necessary ingredients to prove the following theorem and thus
conclude this section:
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3.4.13. Theorem. (Verification of MST on the RAM)
There is a RAM algorithm which for every weighted graph G and its spanning
tree T determines whether T is minimum and finds all T -light edges in G in time
O(m).

Proof. Implement the Komlós’s algorithm from Theorem 3.3.15 with the data struc-
tures developed in this section. According to Lemma 3.4.12, the algorithm runs in
time

P
eO(log jTej+ qe) = O(

P
e log jTej) +O(

P
e qe). The second sum is O(m) as

there are O(1) query paths per edge, the first sum is O(#comparisons), which is
O(m) by Theorem 3.3.15. �
In Section 5.5, we will need a more specialized statement:

3.4.14. Corollary. There is a RAM algorithm which for every weighted tree T and
a set P of paths in T calculates the peaks of these paths in time O(n(T ) + jP j).
3.4.15. Verification on the Pointer Machine. Buchsbaum et al. [BKRW98] have re-
cently shown that linear-time verification can be achieved even on the Pointer Ma-
chine. They first solve the problem of finding the lowest common ancestors for
a set of pairs of vertices by batch processing: They combine an algorithm of time
complexity O(mα(m,n)) based on the Disjoint Set Union data structure with the
framework of topological graph computations described in Section 2.2. Then they
use a similar technique for finding the peaks themselves.

3.4.16. Online verification. The online version of this problem has turned out to be
more difficult. It calls for an algorithm that preprocesses the tree and then answers
queries for peaks of paths presented online. Pettie [Pet06] has proven an interesting
lower bound based on the inverses of the Ackermann’s function. If we want to
answer queries within t comparisons, we have to invest Ω(n log λt(n)) time into
preprocessing.6 This implies that with preprocessing in linear time, the queries
require Ω(α(n)) time.

3.5. A randomized algorithm
When we analysed the Contractive Bor̊uvka’s algorithm in Section 1.5, we

observed that while the number of vertices per iteration decreases exponentially, the
number of edges generally does not, so we spend Θ(m) time on every phase. Karger,
Klein and Tarjan [KKT95] have overcome this problem by combining the Bor̊uvka’s
algorithm with filtering based on random sampling. This leads to a randomized
algorithm which runs in linear expected time.

The principle of the filtering is simple: Let us consider any spanning tree T of
the input graph G. Each edge of G that is T -heavy is the heaviest edge of some
cycle, so by the Red lemma (1.3.6) it cannot participate in the MST of G. We
can therefore discard all T -heavy edges and continue with finding the MST on the
reduced graph. Of course, not all choices of T are equally good, but it will soon
turn out that when we take T as the MST of a randomly selected subgraph, only
a small expected number of edges remains.

Selecting a subgraph at random will unavoidably produce disconnected sub-
graphs at occasion, so we will drop the implicit assumption that all graphs are

6 λt(n) is the t-th row inverse of the Ackermann’s function, α(n) is its diagonal
inverse. See A.3.4 for the exact definitions.
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connected for this section and we will always search for the minimum spanning
forest. As we already noted (1.6.1), with a little bit of care our algorithms and
theorems keep working.

Since we need the MST verification algorithm for finding the T -heavy edges,
we will assume that we are working on the RAM.

3.5.1. Lemma. (Random sampling, Karger [Kar93])
Let H be a subgraph of G obtained by including each edge independently with
probability p. Let further F be the minimum spanning forest of H. Then the
expected number of F -nonheavy7 edges in G is at most n/p.

Proof. Let us observe that we can obtain the forest F by running the Kruskal’s
algorithm (1.4.21) combined with the random process producing H from G. We
sort all edges of G by their weights and we start with an empty forest F . For each
edge, we first flip a biased coin (that gives heads with probability p) and if it comes
up tails, we discard the edge. Otherwise we perform a single step of the Kruskal’s
algorithm: We check whether F + e contains a cycle. If it does, we discard e,
otherwise we add e to F . At the end, we have produced the subgraph H and its
MSF F .

When we exchange the check for cycles with flipping the coin, we get an equiv-
alent algorithm which will turn out to be more convenient to analyse:

1. If F + e contains a cycle, we immediately discard e (we can flip the
coin, but we need not to, because the edge will be discarded regardless
of the outcome). We note that e is F -heavy with respect to both the
current state of F and the final MSF.

2. If F + e is acyclic, we flip the coin:

3. If it comes up heads, we add e to F . In this case, e is neither
F -light nor F -heavy.

4. If it comes up tails, we discard e. Such edges are F -light.

The number of F -nonheavy edges is therefore equal to the total number of the
coin flips in step 2 of this algorithm. We also know that the algorithm stops before
it adds n edges to F . Therefore it flips at most as many coins as a simple random
process that repeatedly flips until it gets n heads. As waiting for every occurrence
of heads takes expected time 1/p, waiting for n heads must take n/p. This is the
bound we wanted to achieve. �
3.5.2. We will formulate the algorithm as a doubly-recursive procedure. It alterna-
tively performs steps of the Bor̊uvka’s algorithm and filtering based on the above
lemma. The first recursive call computes the MSF of the sampled subgraph, the
second one finds the MSF of the original graph, but without the heavy edges.

As in all contractive algorithms, we use edge labels to keep track of the original
locations of the edges in the input graph. For the sake of simplicity, we do not
mention it in the algorithm explicitly.

3.5.3. Algorithm. (MSF by random sampling — the KKT algorithm)

Input: A graph G with an edge comparison oracle.

7 That is, F -light edges and also edges of F itself.
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1. Remove isolated vertices from G. If no vertices remain, stop and
return an empty forest.

2. Perform two Bor̊uvka steps (iterations of Algorithm 1.5.2) on G and
remember the set B of the edges having been contracted.

3. Select a subgraph H � G by including each edge independently with
probability 1/2.

4. F  msf(H) calculated recursively.

5. Construct G′ � G by removing all F -heavy edges of G.

6. R msf(G′) calculated recursively.

7. Return R [B.

Output: The minimum spanning forest of G.

3.5.4. Notation. Let us analyse the time complexity of this algorithm by studying
properties of its recursion tree. This tree describes the subproblems processed by
the recursive calls. For any vertex v of the tree, we denote the number of vertices
and edges of the corresponding subproblem Gv by nv and mv respectively. If mv > 0,
the recursion continues: the left son of v corresponds to the call on the sampled
subgraph Hv, the right son to the reduced graph G′

v. (Similarly, we use letters
subscripted with v for the state of the other variables of the algorithm.) The root
of the recursion tree is obviously the original graph G, the leaves are trivial graphs
with no edges.

3.5.5. Observation. The Bor̊uvka steps together with the removal of isolated ver-
tices guarantee that the number of vertices drops at least by a factor of four in
every recursive call. The size of a subproblem Gv at level i is therefore at most
n/4i and the depth of the tree is at most dlog4 ne. As there are no more than 2i

subproblems at level i, the sum of all nv’s on that level is at most n/2i, which is at
most 2n when summed over the whole tree.

We are going to show that the worst case of the KKT algorithm is not worse
than of the plain contractive algorithm, while the average case is linear.

3.5.6. Lemma. For every subproblem Gv, the KKT algorithm spends O(mv + nv)
time plus the cost of the recursive calls.

Proof. We know from Lemma 1.5.4 that each Bor̊uvka step takes time O(mv +nv).
8

The selection of the edges of Hv is straightforward. Finding the Fv-heavy edges is
not, but we have already shown in Theorem 3.4.13 that linear time is sufficient on
the RAM. �
3.5.7. Theorem. (Worst-case complexity of the KKT algorithm)
The KKT algorithm runs in time O(min(n2,m log n)) in the worst case on the RAM.

Proof. The argument for the O(n2) bound is similar to the analysis of the plain
contractive algorithm. As every subproblem Gv is a simple graph, the number of
its edges mv is less than n2

v. By the previous lemma, we spend time O(n2
v) on it.

Summing over all subproblems yields
P

vO(n2
v) = O((

P
v nv)

2) = O(n2).

In order to prove the O(m log n) bound, it is sufficient to show that the total
time spent on every level of the recursion tree is O(m). Suppose that v is a vertex of
the recursion tree with its left son ` and right son r. Some edges of Gv are removed

8 We need to add nv, because the graph could be disconnected.
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in the Bor̊uvka steps, let us denote their number by bv. The remaining edges fall
either to G` = Hv, or to Gr = G′

v, or possibly to both.

We can observe that the intersection G`\Gr cannot be large: The edges of Hv

that are not in the forest Fv are Fv-heavy, so they do not end up in Gr. Therefore
the intersection can contain only the edges of Fv. As there are at most nv/4 such
edges, we have m` + mr + bv � mv + nv/4.

On the other hand, the first Bor̊uvka step selects at least nv/2 edges, so bv �
nv/2. The duplication of edges between G` and Gr is therefore compensated by the
loss of edges by contraction and m` + mr � mv. So the total number of edges per
level does not decrease and it remains to apply the previous lemma. �
3.5.8. Theorem. (Expected complexity of the KKT algorithm)
The expected time complexity of the KKT algorithm on the RAM is O(m).

Proof. The structure of the recursion tree depends on the random choices taken,
but as its worst-case depth is at most dlog4 ne, the tree is always a subtree of
the complete binary tree of that depth. We will therefore prove the theorem by
examining the complete tree, possibly with empty subproblems in some vertices.

The left edges of the tree (edges connecting a parent with its left son) form
a set of left paths. Let us consider the expected time spent on a single left path.
When walking the path downwards from its top vertex r, the expected size of
the subproblems decreases exponentially: for a son ` of a vertex v, we have n` �
nv/4 and Em` = Emv/2. The expected total time spend on the path is therefore
O(nr + mr) and it remains to sum this over all left paths.

With the exception of the path going from the root of the tree, the top r of a left
path is always a right son of a unique parent vertex v. Since the subproblem Gr

has been obtained from its parent subproblem Gv by filtering out all heavy edges,
we can use the Sampling lemma (3.5.1) to show that Emr � 2nv. The sum of the
expected sizes of all top subproblems is then

P
r nr + mr �Pv 3nv = O(n). After

adding the exceptional path from the root, we get O(m + n) = O(m). �
3.5.9. High probability. There is also a high-probability version of the above theo-
rem. According to Karger, Klein and Tarjan [KKT95], the time complexity of the
algorithm is O(m) with probability 1 � exp(�Ω(m)). The proof again follows the
recursion tree and it involves applying the Chernoff bound [Che52] to bound the
tail probabilities.

3.5.10. Different sampling. We could also use a slightly different formulation of
the Sampling lemma suggested by Chan [Cha98]. He changes the selection of the
subgraph H to choosing an mp-edge subset of E(G) uniformly at random. The
proof is then a straightforward application of the backward analysis method. We
however preferred the Karger’s original version, because generating a random subset
of a given size requires an unbounded number of random bits in the worst case.

3.5.11. On the Pointer Machine. The only place where we needed the power of the
RAM is finding the heavy edges, so we can employ the pointer-machine verification
algorithm mentioned in 3.4.15 to bring the results of this section to the PM.
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4. Approaching Optimality

4.1. Soft heaps
A vast majority of MST algorithms that we have encountered so far is based on

the Tarjan’s Blue rule (Lemma 1.3.5). The rule serves to identify edges that belong
to the MST, while all other edges are left in the process. This unfortunately means
that the later stages of computation spend most of their time on these edges that
never enter the MSF. A notable exception is the randomized algorithm of Karger,
Klein and Tarjan. It adds an important ingredient: it uses the Red rule (Lemma
1.3.6) to filter out edges that are guaranteed to stay outside the MST, so that the
graphs with which the algorithm works get smaller with time.

Recently, Chazelle [Cha00a] and Pettie [Pet99] have presented new determin-
istic algorithms for the MST which are also based on the combination of both
rules. They have reached worst-case time complexity O(mα(m,n)) on the Pointer
Machine. We will devote this chapter to their results and especially to another
algorithm by Pettie and Ramachandran [PR02b] which is provably optimal.

At the very heart of all these algorithms lies the soft heap discovered by Chazelle
[Cha00b]. It is a meldable priority queue, roughly similar to the Vuillemin’s bino-
mial heaps [Vui78] or Fredman’s and Tarjan’s Fibonacci heaps [FT87]. The soft
heaps run faster at the expense of corrupting a fraction of the inserted elements by
raising their values (the values are however never lowered). This allows for a trade-
off between accuracy and speed, controlled by a parameter ε. The heap operations
take O(log(1/ε)) amortized time and at every moment at most εn elements of the
n elements inserted can be corrupted.

4.1.1. De�nition. (Soft heap interface)
The soft heap contains a set of distinct items from a totally ordered universe and
it supports the following operations:

� Create(ε) — Create an empty soft heap with the given accuracy parame-
ter ε.
� Insert(H,x) — Insert a new item x into the heap H.
� Meld(P,Q) — Merge two heaps into one, more precisely move all items of

a heap Q to the heap P , destroying Q in the process. Both heaps must
have the same ε.
� DeleteMin(H) — Delete the minimum item of the heap H and return its

value (optionally signalling that the value has been corrupted).
� Explode(H) — Destroy the heap and return a list of all items contained in

it (again optionally marking those corrupted).

For every item, we will distinguish between its original value at the time of insertion
and its current value in the heap, which is possibly corrupted.

4.1.2. Example. (Linear-time selection)
We can use soft heaps to select the median (or generally the k-th smallest element)
of a sequence. We insert all n elements to a soft heap with error rate ε = 1/3. Then
we delete the minimum about n/3 times and we remember the current value x of
the last element deleted. This x is greater or equal than the current values of the
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previously deleted elements and thus also than their original values. On the other
hand, the current values of the 2n/3 elements remaining in the heap are greater
than x and at most n/3 of them are corrupted. Therefore at least n/3 original
elements are greater than x and at least n/3 ones are smaller.

This allows us to use the x as a pivot in the traditional divide-and-conquer
algorithm for selection (cf. Hoare’s Quickselect algorithm [Hoa61]): We split the
input elements to three parts: A contains those less than x, B those equal to x
and C those greater than x. If k � jAj, the desired element lies in A, so we can
continue by finding the k-th smallest element of A. If jAj < k � jAj + jBj, the
desired element is x itself. Otherwise, we search for the (k � jAj � jBj)-th smallest
element of C. Either way, we have removed at least n/3 items, so the total time
complexity is O(n + (2/3) � n + (2/3)2 � n + . . .) = O(n).

We have obtained a nice alternative to the standard linear-time selection al-
gorithm of Blum [BFP+73]. The same trick can be used to select a good pivot in
Quicksort [Hoa62], leading to time complexity O(n log n) in the worst case.

4.1.3. De�nition. (Soft queues)
The soft heap is built from soft queues (we will usually omit the adjective soft in
the rest of this section). Each queue has a shape of a binary tree.1 Each vertex v
of the tree remembers a doubly-linked list of items. The item list in every left son
will be used only temporarily and it will be kept empty between operations. Only
right sons and the root have their lists permanently occupied. The left sons will be
called white, the right ones black. (See the picture.)

The first value in every list is called the controlling key of the vertex, denoted
by ckey(v). If the list is empty, we keep the most recently used value or we set
ckey(v) = +1. The ckeys obey the standard heap order — a ckey of a parent is
always smaller than the ckeys of its sons.

Each vertex is also assigned its rank, which is a non-negative integer. The ranks
of leaves are always zero, the rank of every internal vertex can be arbitrary, but it
must be strictly greater than the ranks of its sons. We define the rank of the whole
queue to be equal to the rank of its root vertex and similarly for its ckey .

A queue is called complete if every two vertices joined by an edge have rank
difference exactly one. In other words, it is a complete binary tree and the ranks
correspond to vertex heights.

4.1.4. Observation. The complete queue of rank k contains exactly 2k+1�1 vertices,
2k of which are black (by induction). Any other queue can be trivially embedded
to the complete queue of the same rank, which we will call the master tree of the
queue. This embedding preserves vertex ranks, colors and the ancestor relation.

The queues have a nice recursive structure. We can construct a queue of rank k
by joining two queues of rank k � 1 under a new root. The root will inherit the
item list of one of the original roots and also its ckey . To preserve the heap order,
we will choose the son whose ckey is smaller.

1 Actually, Chazelle defines the queues as binomial trees, but he transforms them
in ways that are somewhat counter-intuitive, albeit well-defined. We prefer describ-
ing the queues as binary trees with a special distribution of values. In fact, the
original C code in the Chazelle’s paper [Cha00b] uses this representation internally.
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A complete and a partial soft queue tree
(black vertices contain items, numbers indicate ranks)

Sometimes, we will also need to split a queue to smaller queues. We will call
this operation dismantling the queue and it will happen only in cases when the item
list in the root is empty. It suffices to remove the leftmost (all white) path going
from the root. From a queue of rank k, we get queues of ranks 0, 1, . . . , k� 1, some
of which may be missing if the original queue was not complete.
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Joining and dismantling of soft queues

We will now define the real soft heap and the operations on it.

4.1.5. De�nition. A soft heap consists of:

� a doubly linked list of soft queues of distinct ranks (in increasing order of
ranks), we will call the first queue the head of the list, the last queue will
be its tail ;
� suffix minima: each queue contains a pointer to the queue with minimum

ckey of those following it in the list;
� a global parameter r: an even integer to be set depending on ε.

We will define the rank of a heap as the highest of the ranks of its queues (that is,
the rank of the heap’s tail).

The heap always keeps the Rank invariant: When a root of any tree has rank k,
its leftmost path contains at least k/2 vertices.

4.1.6. Operations on soft heaps.

Melding of two soft heaps involves merging of their lists of queues. We disas-
semble the heap of the smaller rank and we insert its queues to the other heap. If
two queues of the same rank k appear in both lists, we join them to a single queue
of rank k+1 as already described and we propagate the new queue as a carry to the
next iteration. (This is similar to addition of binary numbers.) Finally, we have to
update the suffix minima by walking the new list backwards from the last inserted
item.
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Creation of a new soft heap is trivial, insertion is handled by creating a single-
element heap and melding it to the destination heap.

4.1.7. Algorithm. (Creating a new soft heap)

Input: The parameter ε (the accuracy of the heap).

1. Allocate memory for a new heap structure H.

2. Initialize the list of queues in H to an empty list.

3. Set the parameter r to 2dlog(1/ε)e+ 2 (to be justified later).

Output: A newly minted soft heap H.

4.1.8. Algorithm. (Melding of two soft heaps)

Input: Two soft heaps P and Q.

1. If rank(P ) < rank(Q), exchange the queue lists of P and Q.

2. p head(P ).
(Whenever we run into an end of a list in this procedure, we assume
that there is an empty queue of infinite rank there.)

3. While Q still has some queues:

4. q  head(Q).

5. If rank(p) < rank(q), then p the successor of p,

6. else if rank(p) > rank(q), remove q from Q and insert it to P
before p,

7. otherwise (the ranks are equal, we need to propagate the carry):

8. carry  p.

9. Remove p from P and set p the original successor of p.

10. While rank(q) = rank(carry):

11. Remove q from Q.

12. carry  join(q, carry).

13. q  head(Q).

14. Insert carry before q.

15. Update the suffix minima: Walk with p backwards to the head of P :

16. p′  suffix min of the successor of p.

17. If ckey(p) < ckey(p′), set suffix min(p) p.

18. Otherwise set suffix min(p) p′.
19. Destroy the heap Q.

Output: The merged heap P .

4.1.9. Algorithm. (Insertion of an element to a soft heap)

Input: A heap H and a new element x.

1. Create a new heap H ′ of the same parameters as H. Let H ′ contain
a sole queue of rank 0, whose only vertex has the element x in its item
list.

2. Meld(H,H ′).
Output: An updated heap H.

4.1.10. Corruption. So far, the mechanics of the soft heaps were almost identical to
the binomial heaps and the reader could rightfully yawn. The things are going to
get interesting now as we approach the parts where corruption of items takes place.
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If all item lists contain at most one item equal to the ckey of the particular
vertex, no information is lost and the heap order guarantees that the minimum
item of every queue stays in its root. We can however allow longer lists and let the
items stored in a single list travel together between the vertices of the tree, still
represented by a common ckey . This data-structural analogue of car pooling will
allow the items to travel at a faster rate, but as only a single item can be equal to
the ckey , all other items will be inevitably corrupted.

We of course have to be careful about the size of the lists, because we must
avoid corrupting too many items. We will control the growth according to the
vertex ranks. Vertices with rank at most r will always contain just a single item.
Above this level, the higher is the rank, the longer list will be allowed.

4.1.11. Deletion of minimum will be based on this principle. The minimum is easy
to locate — we follow the suffix min of the head of the heap to the queue with the
minimum ckey . There we look inside the item list of the root of the queue. We
remove the last item from the list (we do not want the ckey to change) and we
return it as the minimum. (It is not necessarily the real minimum of all items, but
always the minimum of their current, possibly corrupted values.)

If the list becomes empty, we refill it with items from the lower levels of the
same queue. This process can be best described recursively: We ask the left son
to refill itself (remember that the left son is always white, so there are currently
no items there). If the new ckey of the left son is smaller than of the right son,
we immediately move the left son’s list to its parent. Otherwise, we exchange
the sons and move the list from the new left son to the parent. This way we
obey the heap order and at the same time we keep the white left son free of
items.

Occasionally, we repeat this process once again and we concatenate the result-
ing lists (we append the latter list to the former, using the smaller of the two ckeys).
This makes the lists grow longer and we want to do that roughly on every other
level of the tree. The exact condition will be that either the rank of the current
vertex is odd, or the difference in ranks between this vertex and its right son is at
least two.

If refilling of the left son fails because there are no more items in that subtree
(we report this by setting the ckey to +1), the current vertex is no longer needed
— the items would just pass through it unmodified. We therefore want to remove
it. Instead of deleting it directly, we rather make it point to its former grandsons
and we remove the (now orphaned) original son. This helps us to ensure that both
sons always keep the same rank, which will be useful for the analysis.

When the refilling is over, we update the suffix minima by walking from the
current queue to the head of the heap exactly as we did in the Meld procedure.

Our only remaining worry is that the Rank invariant can be broken after the
refilling. When the leftmost path of the tree becomes too short, we just dismantle
the tree as already described and we meld the new trees back to the heap. This is
easier to handle when the item list at the root vertex is empty. We will therefore
move this check before the refilling of the root list. It will turn out that we have
enough time to always walk the leftmost path completely, so no explicit counters
are needed.
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Let us translate these ideas to real (pseudo)code:

4.1.12. Algorithm. (Deleting the minimum item from a soft heap)

Input: A soft heap H.

1. Use suffix min of the head queue of H to locate the queue q with the
smallest ckey .

2. Remove the final element x of the item list in the root of q.

3. If the item list became empty:

4. Count the vertices on the leftmost path of q.

5. If there are less than rank(q) of them:

6. Remove q from the list of queues.

7. Recalculate the suffix minima as in the Meld procedure.

8. Dismantle q and create a heap H ′ holding the resulting
trees.

9. Meld them back: Meld(H,H ′).
10. Otherwise:

11. Call Refill on the root of q.

12. If ckey(q) = +1 (no items left), remove the tree q from H.

13. Recalculate the suffix minima.

Output: The deleted minimum item x (possibly corrupted).

4.1.13. Algorithm. (Refilling the item list of a vertex)

Input: A soft queue and its vertex v with an empty item list.

1. Handle trivial cases: If v has no children or both have ckey = +1,
set ckey(v) to +1 and return.

2. Let left and right denote the respective sons of v.

3. Recurse: call Refill(left).

4. If ckey(left) > ckey(right), swap the sons.

5. Move the item list from left to v (implying ckey(v) = ckey(left)).

6. If rank(v) > r and either rank(v) is odd or rank(v) > rank(right)+1,
recurse once more:

7. Repeat steps 3–4.

8. Append the item list from left to the item list at v.

9. Clean up. If ckey(right) = +1:

10. If ckey(left) = +1, unlink and discard both sons.

11. Otherwise relink the sons of left to v and discard left .

Output: A modified soft queue.

4.1.14. Explode is trivial once we know how to recognize the corrupted items. It
simply examines all queues in the heap, walks the trees and the item lists of all
vertices. It records all items seen, the corrupted ones are those that different from
their ckey .

4.1.15. Analysis of accuracy. The description of the operations is now complete, so
let us analyse their behavior and verify that we have delivered what we promised
— first the accuracy of the structure, then the time complexity of operations. In
the whole analysis, we will denote the total number of elements inserted during the
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history of the structure by n. We will also frequently take advantage of knowing
that the threshold r is even.

We start by bounding the sizes of the item lists.

4.1.16. Lemma. For every vertex v of a soft queue, the size `(v) of its item list
satisfies:

`(v) � max(1, 2drank(v)/2e−r/2).

Proof. Initially, all item lists contain at most one item, so the inequality trivially
holds. Let us continue by induction. Melds can affect the inequality only in the
favorable direction (they occasionally move an item list to a vertex of a higher
rank) and so do deletes (they only remove items from lists). The only potentially
dangerous place is the Refill procedure.

Refilling sometimes just moves items upwards, which is safe, and sometimes
it joins two lists into one, which generally is not. When rank(v) � r, no joining
takes place and `(v) is still 1. Otherwise we join when either rank(v) is odd or
rank(w) < rank(v)� 1 for any son w of v (remember that both sons have the same
rank). In both cases, drank(w)/2e � drank(v)/2e�1. By the induction hypothesis,
the size of each of the two lists being joined is at most 2max(1,drank(v)/2e−1−r/2), so the
new list has at most 2drank(v)/2e−r/2 items. (The maximum has disappeared since
rank(v) > r and therefore the desired bound is at least 2.) �

We will now sum the sizes of the lists over all vertices containing corrupted
items.

4.1.17. Lemma. At any given time, the heap contains at most n/2r−2 corrupted
items.

Proof. We first prove an auxiliary claim: The master trees of all queues contain
at most n black vertices. This follows by induction: If no deletions have taken
place, there are exactly n black vertices, because insertion adds one black vertex
and melding preserves their number. A deletion affects the master trees only when
dismantling takes place and then it only removes a black vertex.

An obvious upper bound on the number of corrupted items is the total size of
item lists in all vertices of rank greater than r. We already know from the previous
lemma that the list sizes are limited by a function of the ranks. A complete tree is
obviously the worst case, so we will prove that this lemma holds for the master tree
of every queue in the heap. The actual trees can be much sparser, but the above
claim guarantees that the total size of the master trees is bounded by the number
of insertions properly.

So let us consider a complete tree of rank k. It has exactly 2k−i vertices of
rank i and each such vertex contains a list of at most 2di/2e−r/2 items by the previous
lemma. Summing over all ranks greater than r, we get that the total number of
corrupted items in this tree is at most:

kX
i=r+1

2k−i �2di/2e−r/2 = 2k−r/2 �
kX

i=r+1

2di/2e−i � 2k−r/2+1/2 �
kX

i=r+1

2−i/2 � 2k−r �
∞X
i=0

2−i/2.

The sum of a geometric series with quotient 2−1/2 is less than four, so the last
expression is less than 2k−r+2. Since the tree contains nk = 2k black vertices, this
makes less than nk/2

r−2 corrupted items as we asserted. �
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4.1.18. Analysis of time complexity. Now we will examine the amortized time com-
plexity of the individual operations. We will show that if we charge O(r) time
against every element inserted, it is enough to cover the cost of all other operations.

All heap operations use only pointer operations, so it will be easy to derive the
time bound in the Pointer Machine model. The notable exception is however that
the procedures often refer to the ranks, which are integers on the order of log n, so
they cannot fit in a single memory cell. For the time being, we will assume that
the ranks can be manipulated in constant time, postponing the proof for later.

We take a look at the melds first.

4.1.19. Lemma. The amortized cost of a meld is O(1), except for melds induced by
dismantling which take O(rank(q)), where q is the queue to be dismantled.

Proof. The real cost of a meld of heaps P and Q is linear in the smaller of their
ranks, plus the time spent on carry propagation. The latter is easy to dispose of:
Every time there is a carry, the total number of trees in all heaps decreases by one.
So it suffices to charge O(1) against creation of a tree. An insert creates one tree,
dismantling creates at most rank(q) trees, and all other operations alter only the
internal structure of trees.

As for the O(min(rank(P ), rank(Q))) part, let us assume for a while that no
dismantling ever takes place and consider the meld forest. It is a forest whose leaves
correspond to the n single-element heaps constructed by Insert and each internal
vertex represents a heap arisen from melding its sons. The left son will be the one
with the greater or equal rank. We therefore want to bound the sum of ranks of all
right sons.

For every right son, we will distribute the charge for its rank k among all leaves
in its subtree. There are at least 2k such leaves. No leaf ever receives the same
rank twice, because the ranks of right sons on every path from the root of the tree
to a leaf are strictly decreasing. (This holds because melding of two heaps always
produces a heap of a rank strictly greater than the smaller of the input ranks.)
Hence at most n/2k right sons have rank k and the total time charged against the
leaves is bounded by:

max.rankX
k=0

k � n

2k
� n �

∞X
k=0

k

2k
= 2n.

Let us return dismantling to the game. When a queue is dismantled, melding
the parts back to the heap takes O(rank(q)) time. We can therefore let the disman-
tling pay for it and omit such induced melds from the meld forest. As the rank of
a heap is never increased by induced melds, the above calculation is still a proper
upper bound on the cost of the regular melds. �

Before we estimate the time spent on deletions, we analyse the refills.

4.1.20. Lemma. Every invocation of Refill takes time O(1) amortized.

Proof. When Refill is called from the DeleteMin operation, it recurses on a subtree
of the queue. This subtree can be split to the “lossless” lower part (rank r and
below) and the upper part where list concatenation and thus also corruption takes
place. Whenever we visit the lower part during the recursion, we spend at worst
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O(r) time there. We will prove that the total time spent in the upper parts during
the whole life of the data structure is O(n). Since each upper vertex can perform
at most two calls to the lower part, the total time spent in the lower parts is O(rn).
All this can be prepaid by the inserts.

Let us focus on the upper part. There are three possibilities of what can happen
when we visit a vertex:

� We delete it: Every vertex deleted has to have been created at some time
in the past. New vertices are created only during inserts and melds (when
joining two trees) and we have already shown that these operations have
constant amortized complexity. Then the same must hold for deletions.
� We recurse twice and concatenate the lists: The lists are disassembled only

when they reach the root of the tree, otherwise they are only concatenated.
We can easily model the situation by a binary tree forest similar to the
meld forest. There are n leaves and every internal vertex has outdegree
two, so the total number of concatenations is at most n. Each of them can
be performed in constant time as the list is doubly linked.
� We recurse only once: This occurs only if the rank is even and the gap

between the rank of this vertex and its sons is equal to 1. It therefore
cannot happen twice in a row, thus it is clearly dominated by the cost of
the other possibilities.

The total cost of all steps in the upper part is therefore O(n). �
We now proceed with examining the DeleteMin operation.

4.1.21. Lemma. Every DeleteMin takes O(1) time amortized.

Proof. Aside from refilling, which is O(1) by the previous lemma, the DeleteMin
takes care of the Rank invariant. This happens by checking the length of the
leftmost path and dismantling the tree if the length is too far from the tree’s rank k.
When the invariant is satisfied, the leftmost path is visited by the subsequent call
to Refill , so we can account the check on the refilling.

When we are dismantling, we have to pay O(k) for the operation itself and
another O(k) for melding the trees back to the heap. Since we have produced at
most k/2 subtrees of distinct ranks, some subtree of rank k/2 or more must be
missing. Its master tree contained at least 2k/2 vertices which are now permanently
gone from the data structure, so we can charge the cost against them. A single
vertex can participate in the master trees of several dismantlings, but their ranks
are always strictly increasing. By the same argument as in the proof of Lemma
4.1.19 (complexity of Meld), each vertex pays O(1).

We must not forget that DeleteMin also has to recalculate the suffix minima.
In the worst case, it requires touching k trees. Because of the Rank invariant, this
is linear in the size of the leftmost path and therefore it can be also paid for by
Refill . (Incidentally, this was the only place where we needed the invariant.) �

Explodes are easy not only to implement, but also to analyse:

4.1.22. Lemma. Every Explode takes O(1) time amortized.

Proof. As all queues, vertices and items examined by Explode are forever gone
from the heap, we can charge the constant time spent on each of them against the
operations that have created them. �
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It remains to take care of the calculation with ranks:

4.1.23. Lemma. Every manipulation with ranks performed by the soft heap opera-
tions can be implemented on the Pointer Machine in constant amortized time.

Proof. We will recycle the idea of “yardsticks” from Section 2.2. We create a yard-
stick — a doubly linked list whose elements represent the possible values of a rank.
Every vertex of a queue will store its rank as a pointer to the corresponding “tick”
of the yardstick. We will extend the list whenever necessary.

Comparison of two ranks for equality is then trivial, as is incrementing or
decrementing the rank by 1. Testing whether a rank is odd can be handled by
storing an odd/even flag in every tick. This covers all uses of ranks except for the
comparisons for inequality when melding. In step 1 of Meld , we just mark the ticks
of the two ranks and walk the yardstick from the beginning until we come across
a mark. Thus we compare the ranks in time proportional to the smaller of them,
which is the real cost of the meld anyway. The comparisons in steps 5 and 6 are
trickier, but since the ranks of the elements put to P are strictly increasing, we
can start walking the list at the rank of the previous element in P . The cost is
then the difference between the current and the previous rank and the sum of these
differences telescopes, again to the real cost of the meld. �

We can put the bits together now and laurel our effort with the following
theorem:

4.1.24. Theorem. (Performance of soft heaps, Chazelle [Cha00b])
A soft heap with error rate ε (0 < ε � 1/2) processes a sequence of operations
starting with an empty heap and containing n Inserts in time O(n log(1/ε)) on the
Pointer Machine. At every moment, the heap contains at most εn corrupted items.

Proof. We set the parameter r to 2+2dlog(1/ε)e. The rest follows from the analysis
above. By Lemma 4.1.17, there are always at most n/2r−2 � εn corrupted items in
the heap. By Lemma 4.1.19–4.1.23, the time spent on all operations in the sequence
can be paid for by charging O(r) time against each Insert . This yields the time
bound. �
4.1.25. Remark. When we set ε = 1/2n, the soft heap is not allowed to corrupt any
items, so it can be used like any traditional heap. By the standard lower bound on
sorting it therefore requires Ω(log n) time per operation, so the time complexity is
optimal for this choice of ε. Chazelle [Cha00b] proves that it is optimal for every
choice of ε.

The space consumed by the heap need not be linear in the current number
of items, but if a case where this matters ever occurred, we could fix it easily by
rebuilding the whole data structure completely after n/2 deletes. This increases the
number of potentially corrupted items, but at worst twice, so it suffices to decrease ε
twice.
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4.2. Robust contractions

Having the soft heaps at hand, we would like to use them in a conventional
MST algorithm in place of a normal heap. The most efficient specimen of a heap-
based algorithm we have seen so far is the Iterated Jarńık’s algorithm (3.2.11). It is
based on a simple, yet powerful idea: Run the Jarńık’s algorithm with limited heap
size, so that it stops when the neighborhood of the tree becomes too large. Grow
multiple such trees, always starting in a vertex not visited yet. All these trees are
contained in the MST, so by the Contraction lemma (1.5.10) we can contract each
of them to a single vertex and iterate the algorithm on the resulting graph.

We can try implanting the soft heap in this algorithm, preferably in the earlier
version without active edges (1.4.9) as the soft heap lacks the Decrease operation.
This brave, but somewhat simple-minded attempt is however doomed to fail. The
reason is of course the corruption of items inside the heap, which leads to increase of
weights of some subset of edges. In presence of corrupted edges, most of the theory
we have so carefully built breaks down. For example, the Blue lemma (1.3.5) now
holds only when we consider a cut with no corrupted edges, with a possible exception
of the lightest edge of the cut. Similarly, the Red lemma (1.3.6) is true only if the
heaviest edge on the cycle is not corrupted.

There is fortunately some light in this darkness. While the basic structural
properties of MST’s no longer hold, there is a weaker form of the Contraction
lemma that takes the corrupted edges into account. Before we prove this lemma,
we expand our awareness of subgraphs which can be contracted.

4.2.1. De�nition. A subgraph C � G is contractible iff for every pair of edges
e, f 2 δ(C)2 there exists a path in C connecting the endpoints of the edges e, f
such that all edges on this path are lighter than either e or f .

4.2.2. Example. Let us see that when we stop the Jarńık’s algorithm at some mo-
ment and we take a subgraph C induced by the constructed tree, this subgraph is
contractible. Indeed, when we consider any two distinct edges uv, xy having exactly
one endpoint in C (w.l.o.g. u, x 2 C and v, y 62 C), they enter the algorithm’s heap
at some time. Without loss of generality uv enters it earlier. Before the algorithm
reaches the vertex x, it adds the whole path ux to the tree. As the edge uv never
leaves the heap, all edges on the path ux must be lighter than this edge.

We can now easily reformulate the Contraction lemma (1.5.10) in the language
of contractible subgraphs. We again assume that we are working with multigraphs
and that they need not be connected. Furthermore, we slightly abuse the notation
in the way that we omit the explicit bijection between G� C and G/C, so we can
write G = C [ (G/C).

4.2.3. Lemma. (Generalized contraction)
When C � G is a contractible subgraph, then msf(G) = msf(C) [msf(G/C).

Proof. As both sides of the equality are forests spanning the same graph, it suffices
to show that msf(G) � msf(C) [msf(G/C). Let us show that edges of G that do
not belong to the right-hand side do not belong to the left-hand side either. We
know that the edges that do not participate in the MSF of some graph are exactly

2 That is, of G’s edges with exactly one endpoint in C.
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those which are the heaviest on some cycle (this is the Cycle rule from Lemma
1.3.6).

Whenever an edge g lies in C, but not in msf(C), then g is the heaviest edge on
some cycle in C. As this cycle is also contained in G, the edge g does not participate
in msf(G) either.

Similarly for g 2 (G/C) n msf(G/C): when the cycle does not contain the
vertex c to which we have contracted the subgraph C, this cycle is present in G,
too. Otherwise we consider the edges e, f incident with c on this cycle. Since C is
contractible, there must exist a path P in C connecting the endpoints of e and f
in G, such that all edges of P are lighter than either e or f and hence also than g.
Expanding c in the cycle to the path P then produces a cycle in G whose heaviest
edge is g. �

We are now ready to bring corruption back to the game and state a “robust”
version of this lemma. A notation for corrupted graphs will be handy:

4.2.4. Notation. When G is a weighted graph and R a subset of its edges, we will
use G *R to denote an arbitrary graph obtained from G by increasing the weights
of some of the edges in R. As usually, we will assume that all edges of this graph
have pairwise distinct weights. While this is technically not true for the corruption
caused by soft heaps, we can easily make it so.

Whenever C is a subgraph of G, we will use RC to refer to the edges of R with
exactly one endpoint in C (i.e., RC = R \ δ(C)).

4.2.5. Lemma. (Robust contraction, Chazelle [Cha97])
Let G be a weighted graph and C its subgraph contractible in G*R for some set R
of edges. Then msf(G) � msf(C) [msf((G/C) nRC) [RC .

Proof. We will modify the proof of the previous lemma. We will again consider all
possible types of edges that do not belong to the right-hand side and we will show
that they are the heaviest edges of certain cycles. Every edge g of G lies either
in C, or in H = (G/C) nRC , or possibly in RC .

If g 2 C nmsf(C), then the same argument as before applies.

If g 2 H n msf(H), we consider the cycle in H on which g is the heaviest.
When c (the vertex to which we have contracted C) is outside this cycle, we are
done. Otherwise we observe that the edges e, f adjacent to c on this cycle cannot be
corrupted (they would be in RC otherwise, which is impossible). By contractibility
of C there exists a path P in C * (R \C) such that all edges of P are lighter than
e or f and hence also than g. The weights of the edges of P in the original graph G
cannot be higher than in G * R, so the path P is lighter than g even in G and we
can again perform the trick with expanding the vertex c to P in the cycle C. Hence
g 62 mst(G). �
4.2.6. We still intend to mimic the Iterative Jarńık’s algorithm. We will partition
the given graph to a collection C of non-overlapping contractible subgraphs called
clusters and we put aside all edges that got corrupted in the process. We recursively
compute the MSF of those subgraphs and of the contracted graph. Then we take
the union of these MSF’s and add the corrupted edges. According to the previous
lemma, this does not produce the MSF of G, but a sparser graph containing it, on
which we can continue.





We can formulate the exact partitioning algorithm and its properties as follows:

4.2.7. Algorithm. (Partition a graph to a collection of contractible clusters)

Input: A graph G with an edge comparison oracle, a parameter t control-
ling the size of the clusters, and an accuracy parameter ε.

1. Mark all vertices as “live”.

2. C  ;, RC  ;. (Start with an empty collection and no corrupted
edges.)

3. While there is a live vertex v0:

4. T = fv0g. (the tree that we currently grow)

5. K = ;. (edges known to be corrupted in the current iteration)

6. Create a soft heap with accuracy ε and Insert the edges adjacent
to v0 into it.

7. While the heap is not empty and jT j � t:

8. DeleteMin an edge uv from the heap, assume u 2 T .

9. If uv was corrupted, add it to K.

10. If v 2 T , drop the edge and repeat the previous two steps.

11. T  T [ fvg.
12. If v is dead, break out of the current loop.

13. Insert all edges incident with v to the heap.

14. C  C [ fG[T ]g. (Record the cluster induced by the tree.)

15. Explode the heap and add all remaining corrupted edges to K.

16. RC  RC [KT . (Record the “interesting” corrupted edges.)

17. G G nKT . (Remove the corrupted edges from G.)

18. Mark all vertices of T as “dead”.

Output: The collection C of contractible clusters and the set RC of cor-
rupted edges in the neighborhood of these clusters.

4.2.8. Theorem. (Partitioning to contractible clusters, Chazelle [Cha97])
Given a weighted graph G and parameters ε (0 < ε � 1/2) and t, the Partition
algorithm (4.2.7) constructs a collection C = fC1, . . . , Ckg of clusters and a set RC

of edges such that:

1. All the clusters and the set RC are mutually edge-disjoint.

2. Each cluster contains at most t vertices.

3. Each vertex of G is contained in at least one cluster.

4. The connected components of the union of all clusters have at least t
vertices each, except perhaps for those which are equal to a connected
component of G nRC.

5. jRCj � 2εm.

6. msf(G) � Si msf(Ci) [msf
�
(G/

S
i Ci) nRC

�
[RC.

7. The algorithm runs in time O(n + m log(1/ε)).

Proof. Claim 1: The Partition algorithm grows a series of trees which induce the
clusters Ci in G. A tree is built from edges adjacent to live vertices and once it
is finished, all vertices of the tree die, so no edge is ever reused in another tree.
The edges that enter RC are immediately deleted from the graph, so they never
participate in any tree.
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Claim 2: The algorithm stops when all vertices are dead, so each vertex must
have entered some tree.

Claim 3: The trees have at most t vertices each, which limits the size of the
Ci’s as well.

Claim 4: We can show that each connected component has t or more vertices
as we already did in the proof of Lemma 3.2.15: How can a new tree stop growing?
Either it acquires t vertices, or it joins one of the existing trees (this only increases
the size of the component), or the heap becomes empty (which means that the tree
spans a full component of the current graph and hence also of the final G nRC).

Claim 5: The set RC contains a subset of edges corrupted by the soft heaps
over the course of the algorithm. As every edge is inserted to a heap at most once
per its endpoint, the heaps can corrupt at worst 2εm edges altogether.

We will prove the remaining two claims as separate lemmata. �
4.2.9. Lemma. (Correctness of Partition, Claim 6 of Theorem 4.2.8)

msf(G) �[
i

msf(Ci) [msf

��
G/
[
i

Ci

�
nRC

�
[RC.

Proof. By iterating the Robust contraction lemma (4.2.5). Let Ki be the set of edges
corrupted when constructing the cluster Ci in the i-th phase of the algorithm, and
similarly for the state of the other variables at that time. We will use induction
on i to prove that the lemma holds at the end of every phase.

At the beginning, the statement is obviously true, even as an equality. In the
i-th phase we construct the cluster Ci by running the partial Jarńık’s algorithm on
the graph Gi = G n Sj<i K

Cj
j . If it were not for corruption, the cluster Ci would

be contractible, as we already know from Example 4.2.2. When the edges in Ki

get corrupted, the cluster is contractible in some corrupted graph Gi * Ki. (We
have to be careful as the edges are becoming corrupted gradually, but it is easy to
check that it can only improve the situation.) Since Ci shares no edges with Cj for
any j < i, we know that Ci also a contractible subgraph of (Gi/

S
j<i Cj)*Ki. Now

we can use the Robust contraction lemma to show that:

msf

��
G/
[
j<i

Cj

�
n[

j<i

K
Cj

j

�
� msf(Ci) [msf

��
G/
[
j≤i

Cj

�
n[

j≤i

K
Cj

j

�
[KCi

i .

This completes the induction step, because K
Cj

j = K
Cj

j for all j. �
4.2.10. Lemma. (Efficiency of Partition, Claim 7 of Theorem 4.2.8)
The Partition algorithm runs in time O(n + m log(1/ε)).

Proof. The inner loop (steps 7–13) processes the edges of the current cluster Ci and
also the edges in its neighborhood δ(Ci). Steps 6 and 13 insert every such edge to
the heap at most once, so steps 8–12 visit each edge also at most once. For every
edge, we spend O(log(1/ε)) time amortized on inserting it and O(1) on the other
operations (by Theorem 4.1.24 on performance of the soft heaps).

Each edge of G can participate in some Ci [ δ(Ci) only twice before both its
endpoints die. The inner loop therefore processes O(m) edges total, so it takes
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O(m log(1/ε)) time. The remaining parts of the algorithm spend O(m) time on
operations with clusters and corrupted edges and additionally O(n) on identifying
the live vertices. �
4.3. Decision trees

The Pettie’s and Ramachandran’s algorithm combines the idea of robust par-
titioning with optimal decision trees constructed by brute force for very small sub-
graphs. In this section, we will explain the basics of the decision trees and prove
several lemmata which will turn out to be useful for the analysis of time complexity
of the final algorithm.

Let us consider all computations of some comparison-based MST algorithm
when we run it on a fixed graph G with all possible permutations of edge weights.
The computations can be described by a binary tree. The root of the tree corre-
sponds to the first comparison performed by the algorithm and depending to its
result, the computation continues either in the left subtree or in the right subtree.
There it encounters another comparison and so on, until it arrives to a leaf of the
tree where the spanning tree found by the algorithm is recorded.

Formally, the decision trees are defined as follows:

4.3.1. De�nition. (Decision trees and their complexity)
A MSF decision tree for a graph G is a binary tree. Its internal vertices are labeled
with pairs of G’s edges to be compared, each of the two outgoing tree edges cor-
responds to one possible result of the comparison.3 Leaves of the tree are labeled
with spanning trees of the graph G.

A computation of the decision tree on a specific permutation of edge weights
in G is the path from the root to a leaf such that the outcome of every comparison
agrees with the edge weights. The result of the computation is the spanning tree
assigned to its final leaf. A decision tree is correct iff for every permutation the
corresponding computation results in the real MSF of G with the particular weights.

The time complexity of a decision tree is defined as its depth. It therefore
bounds the number of comparisons spent on every path. (It need not be equal
since some paths need not correspond to an actual computation — the sequence of
outcomes on the path could be unsatisfiable.)

A decision tree is called optimal if it is correct and its depth is minimum possible
among the correct decision trees for the given graph. We will denote an arbitrary
optimal decision tree for G by D(G) and its complexity by D(G).

The decision tree complexity D(m,n) of the MSF problem is the maximum
of D(G) over all graphs G with n vertices and m edges.

4.3.2. Observation. Decision trees are the most general deterministic comparison-
based computation model possible. The only operations that count in its time
complexity are comparisons. All other computation is free, including solving NP-
complete problems or having access to an unlimited source of non-uniform con-
stants. The decision tree complexity is therefore an obvious lower bound on the
time complexity of the problem in all other comparison-based models.

3 There are two possible outcomes since there is no reason to compare an edge
with itself and we, as usually, expect that the edge weights are distinct.
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The downside is that we do not know any explicit construction of the optimal
decision trees, or at least a non-constructive proof of their complexity. On the other
hand, the complexity of any existing comparison-based algorithm can be used as
an upper bound on the decision tree complexity. For example:

4.3.3. Lemma. D(m,n) � 4/3 � n2.

Proof. Let us count the comparisons performed by the Contractive Bor̊uvka’s al-
gorithm (1.5.2), tightening up the constants in its previous analysis in Theorem
1.5.5. In the first iteration, each edge participates in two comparisons (one per
endpoint), so the algorithm performs at most 2m � 2(n

2) � n2 comparisons. Then
the number of vertices drops at least by a factor of two, so the subsequent it-
erations spend at most (n/2)2, (n/4)2, . . . comparisons, which sums to less than
n2 �P∞

i=0(1/4)i = 4/3 �n2. Between the Bor̊uvka steps, we flatten the multigraph to
a simple graph, which also needs some comparisons, but for every such comparison
we remove one of the participating edges, which saves at least one comparison in
the subsequent steps. �
4.3.4. Of course we can get sharper bounds from the better algorithms, but we will
first show how to find the optimal trees using brute force. The complexity of the
search will be of course enormous, but as we already promised, we will need the
optimal trees only for very small subgraphs.

4.3.5. Lemma. (Construction of optimal decision trees)
An optimal MST decision tree for a graph G on n vertices can be constructed on

the Pointer Machine in time O(224n2

).

Proof. We will try all possible decision trees of depth at most 2n2 (we know from
the previous lemma that the desired optimal tree is shallower). We can obtain any
such tree by taking the complete binary tree of exactly this depth and labeling
its 2 � 22n2 � 1 vertices with comparisons and spanning trees. Those labeled with
comparisons become internal vertices of the decision tree, the others become leaves
and the parts of the tree below them are removed. There are less than n4 possible
comparisons and less than 2n2

spanning trees of G, so the number of candidate

decision trees is bounded by (n4 + 2n2

)22n2+1 � 2(n2+1)·22n2+1 � 222n2+2 � 223n2

.

We will enumerate the trees in an arbitrary order, test each of them for cor-
rectness and find the shallowest tree among those correct. Testing can be accom-
plished by running through all possible permutations of edges, each time calcu-
lating the MSF using any of the known algorithms and comparing it with the
result given by the decision tree. The number of permutations does not exceed
(n2)! � (n2)n2 � n2n2 � 2n3

and each one can be checked in time O(poly(n)).

On the Pointer Machine, trees and permutations can be certainly enumerated
in time O(poly(n)) per object. The time complexity of the whole algorithm is

therefore O(223n2 � 2n3 � poly(n)) = O(224n2

). �
4.3.6. Basic properties of decision trees. The following properties will be useful for
analysis of algorithms based on precomputed decision trees. We will omit some
technical details, referring the reader to section 5.1 of the Pettie’s article [PR02b].

4.3.7. Lemma. The decision tree complexity D(m,n) of the MSF satisfies:

1. D(m,n) � m/2 for m,n > 2.

2. D(m′, n′) � D(m,n) whenever m′ � m and n′ � n.
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Proof. For every m,n > 2 there is a graph on n vertices and m edges such that
every edge lies on a cycle. Every correct MSF decision tree for this graph has to
compare each edge at least once. Otherwise the decision tree cannot distinguish
between the case when an edge has the lowest of all weights (and thus it is forced
to belong to the MSF) and when it has the highest weight (so it is forced out of the
MSF).

Decision trees for graphs on n′ vertices can be used for graphs with n vertices
as well — it suffices to add isolated vertices, which does not change the MSF.
Similarly, we can increase m to m′ by adding edges parallel to an existing edge and
making them heavier than the rest of the graph, so that they can never belong to
the MSF. �
4.3.8. De�nition. Subgraphs C1, . . . , Ck of a graph G are called the compartments
of G iff they are edge-disjoint, their union is the whole graph G and msf(G) =S

i msf(Ci) for every permutation of edge weights.

4.3.9. Lemma. The clusters C1, . . . , Ck generated by the Partition procedure of the
previous section (Algorithm 4.2.7) are compartments of the graph H =

S
i Ci.

Proof. The first and second condition of the definition of compartments follow from
the Partitioning theorem (4.2.8), so it remains to show that msf(H) is the union
of the MSF’s of the individual compartments. By the Cycle rule (Lemma 1.3.6),
an edge h 2 H is not contained in msf(H) if and only if it is the heaviest edge on
some cycle. It is therefore sufficient to prove that every cycle in H is contained
within a single Ci.

Let us consider a cycle K � H and a cluster Ci such that it contains an edge e
of K and all clusters constructed later by the procedure do not contain any. If K is
not fully contained in Ci, we can extend the edge e to a maximal path contained
in both K and Ci. Since Ci shares at most one vertex with the earlier clusters,
there can be at most one edge from K adjacent to the maximal path, which is
impossible. �
4.3.10. Lemma. Let C1, . . . , Ck be compartments of a graph G. Then there ex-
ists an optimal MSF decision tree for G that does not compare edges of distinct
compartments.

Proof sketch. Consider a subset P of edge weight permutations w that satisfy
w(e) < w(f) whenever e 2 Ci, f 2 Cj, i < j. For such permutations, no deci-
sion tree can gain any information on relations between edge weights in a single
compartment by inter-compartment comparisons — the results of all such compar-
isons are determined in advance.

Let us take an arbitrary correct decision tree for G and restrict it to ver-
tices reachable by computations on P . Whenever a vertex contained an inter-
compartment comparison, it has lost one of its sons, so we can remove it by con-
tracting its only outgoing edge. We observe that we get a decision tree satisfying
the desired condition and that this tree is correct.

As for the correctness, the MSF of a single Ci is uniquely determined by com-
parisons of its weights and the set P contains all combinations of orderings of
weights inside individual compartments. Therefore every spanning tree of every Ci

and thus also of H is properly recognized. �
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4.3.11. Lemma. Let C1, . . . , Ck be compartments of a graph G. Then D(G) =P
i D(Ci).

Proof sketch. A collection of decision trees for the individual compartments can be
“glued together” to a decision tree for G. We take the decision tree for C1, replace
every its leaf by a copy of the tree for C2 and so on. Every leaf ` of the compound
tree will be labeled with the union of labels of the original leaves encountered on
the path from the root to `. This proves that D(G) �Pi D(Ci).

The other inequality requires more effort. We use the previous lemma to trans-
form the optimal decision tree for G to another of the same depth, but without
inter-compartment comparisons. Then we prove by induction on k and then on the
depth of the tree that this tree can be re-arranged, so that every computation first
compares edges from C1, then from C2 and so on. This means that the tree can be
decomposed to decision trees for the Ci’s. Also, without loss of efficiency all trees
for a single Ci can be made isomorphic to D(Ci). �
4.3.12. Corollary. If C1, . . . , Ck are the clusters generated by the Partition proce-
dure (Algorithm 4.2.7), then D(

S
i Ci) =

P
i D(Ci).

Proof. Lemma 4.3.9 tells us that C1, . . . , Ck are compartments of the graph
S

Ci,
so we can apply Lemma 4.3.11 on them. �
4.3.13. Corollary. 2D(m,n) � D(2m, 2n) for every m,n.

Proof. For an arbitrary graph G with m edges and n vertices, we create a graph G2

consisting of two copies of G sharing a single vertex. The copies of G are obviously
compartments of G2, so by Lemma 4.3.11 it holds that D(G2) = 2D(G). Taking
a maximum over all choices of G yields D(2m, 2n) � maxG D(G2) = 2D(m,n). �
4.4. An optimal algorithm

Once we have developed the soft heaps, partitioning and MST decision trees, it
is now simple to state the Pettie’s and Ramachandran’s MST algorithm and prove
that it is asymptotically optimal among all MST algorithms in comparison-based
models. Several standard MST algorithms from the previous chapters will also play
their roles.

We will describe the algorithm as a recursive procedure. When the procedure
is called on a graph G, it sets the parameter t to roughly log(3) n and it calls the
Partition procedure to split the graph into a collection of clusters of size t and a set
of corrupted edges. Then it uses precomputed decision trees to find the MSF of
the clusters. The graph obtained by contracting the clusters is on the other hand
dense enough, so that the Iterated Jarńık’s algorithm runs on it in linear time.
Afterwards we combine the MSF’s of the clusters and of the contracted graphs, we
mix in the corrupted edges and run two iterations of the Contractive Bor̊uvka’s
algorithm. This guarantees reduction in the number of both vertices and edges by
a constant factor, so we can efficiently recurse on the resulting graph.

4.4.1. Algorithm. (Optimal MST algorithm, Pettie and Ramachandran [PR02b])

Input: A connected graph G with an edge comparison oracle.

1. If G has no edges, return an empty tree.

2. t blog(3) nc. (the size of clusters)
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3. Call Partition (4.2.7) on G and t with ε = 1/8. It returns a collec-
tion C = fC1, . . . , Ckg of clusters and a set RC of corrupted edges.

4. Fi  mst(Ci) for all i, obtained using optimal decision trees.

5. GA  (G/
S

i Ci) nRC. (the contracted graph)

6. FA  msf(GA) calculated by the Iterated Jarńık’s algorithm (3.2.11).

7. GB  S
i Fi [ FA [RC. (combine subtrees with corrupted edges)

8. Run two Bor̊uvka steps (iterations of the Contractive Bor̊uvka’s algo-
rithm, 1.5.2) on GB, getting a contracted graph GC and a set FB of
MST edges.

9. FC  mst(GC) obtained by a recursive call to this algorithm.

10. Return FB [ FC .

Output: The minimum spanning tree of G.

Correctness of this algorithm immediately follows from the Partitioning theo-
rem (4.2.8) and from the proofs of the respective algorithms used as subroutines.
Let us take a look at the time complexity. We will be careful to use only the
operations offered by the Pointer Machine.

4.4.2. Lemma. The time complexity T (m,n) of the Optimal algorithm satisfies the
following recurrence:

T (m,n) �X
i

c1D(Ci) + T (m/2, n/4) + c2m,

where c1 and c2 are some positive constants and D is the decision tree complexity
from the previous section.

Proof. The first two steps of the algorithm are trivial as we have linear time at our
disposal.

By the Partitioning theorem (4.2.8), the call to Partition with ε set to a con-
stant takes O(m) time and it produces a collection of clusters of size at most t and
at most m/4 corrupted edges. It also guarantees that the connected components of
the union of the Ci’s have at least t vertices (unless there is just a single component).

To apply the decision trees, we will use the framework of topological compu-
tations developed in Section 2.2. We pad all clusters in C with isolated vertices, so
that they have exactly t vertices. We use a computation that labels the graph with
a pointer to its optimal decision tree. Then we apply Theorem 2.2.14 combined with
the brute-force construction of optimal decision trees from Lemma 4.3.5. Together
they guarantee that we can assign the decision trees to the clusters in time:

O�kCk+ tt(t+2) � �224t2

+ t2
��

= O�m + 222t�
= O(m).

Execution of the decision tree on each cluster Ci then takes O(D(Ci)) steps.

The contracted graph GA has at most n/t = O(n/ log(3) n) vertices and asymp-
totically the same number of edges as G, so according to Corollary 3.2.18, the
Iterated Jarńık’s algorithm runs on it in linear time.

The combined graph GB has n vertices, but less than n edges from the individ-
ual spanning trees and at most m/4 additional edges which were corrupted. The
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Bor̊uvka steps on GB take O(m) time by Lemma 1.4.6 and they produce a graph GC

with at most n/4 vertices and at most n/4 + m/4 � m/2 edges. (The n tree edges
in GB are guaranteed to be reduced by the Bor̊uvka’s algorithm.) It is easy to verify
that this graph is still connected, so we can recurse on it.

The remaining steps of the algorithm can be easily performed in linear time
either directly or in case of the contractions by the bucket-sorting techniques of
Section 2.2. �
4.4.3. Optimality. The properties of decision tree complexity, which we have proven
in the previous section, will help us show that the time complexity recurrence is
satisfied by a constant multiple of the decision tree complexity D(m,n) itself. This
way, we will prove the following theorem:

4.4.4. Theorem. (Optimality of the Optimal algorithm)
The time complexity of the Optimal MST algorithm 4.4.1 is Θ(D(m,n)).

Proof. We will prove by induction that T (m,n) � cD(m,n) for some c > 0. The
base case is trivial, for the induction step we will expand on the previous lemma:

T (m,n) �X
i

c1D(Ci) + T (m/2, n/4) + c2m (Lemma 4.4.2)

� c1D(
S

iCi) + T (m/2, n/4) + c2m (Corollary 4.3.12)

� c1D(m,n) + T (m/2, n/4) + c2m (definition of D(m,n))

� c1D(m,n) + cD(m/2, n/4) + c2m (induction hypothesis)

� c1D(m,n) + c/2 �D(m,n/2) + c2m (Corollary 4.3.13)

� c1D(m,n) + c/2 �D(m,n) + 2c2D(m,n) (Lemma 4.3.7)

� (c1 + c/2 + 2c2) �D(m,n)

� cD(m,n). (by setting c = 2c1 + 4c2)

The other inequality is obvious as D(m,n) is an asymptotic lower bound on the
time complexity of every comparison-based algorithm. �
4.4.5. Complexity of MST. As we have already noted, the exact decision tree com-
plexity D(m,n) of the MST problem is still open and so therefore is the time
complexity of the optimal algorithm. However, every time we come up with an-
other comparison-based algorithm, we can use its complexity (or more specifically
the number of comparisons it performs, which can be even lower) as an upper bound
on the optimal algorithm.

The best explicit comparison-based algorithm known to date achieves complex-
ity O(mα(m,n)).4 It has been discovered by Chazelle [Cha00a] as an improvement
of his previous O(mα(m,n) � log α(m,n)) algorithm [Cha97]. It is also based on the
ideas of this chapter — in particular the soft heaps and robust contractions. The
algorithm is very complex and it involves a lot of elaborate technical details, so we
only refer to the original paper here. Another algorithm of the same complexity,
using similar ideas, has been discovered independently by Pettie [Pet99], who, hav-
ing the optimal algorithm at hand, does not take care about the low-level details

4 α(m,n) is a certain inverse of the Ackermann’s function, λk(n) is the row inverse
of the same function. See A.3.4 for the exact definitions.
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and he only bounds the number of comparisons. Using any of these results, we can
prove an Ackermannian upper bound on the optimal algorithm:

4.4.6. Theorem. (Upper bound on complexity of the Optimal algorithm)
The time complexity of the Optimal MST algorithm is O(mα(m,n)).

Proof. We bound D(m,n) by the number of comparisons performed by the algo-
rithm of Chazelle [Cha00a] or Pettie [Pet99]. �

Similarly to the Iterated Jarńık’s algorithm, this bound is actually linear for
classes of graphs that do not have density extremely close to constant:

4.4.7. Corollary. The Optimal MST algorithm runs in linear time whenever m �
n � λk(n) for any fixed k.

Proof. Combine the previous theorem with Lemma A.3.8. �
4.4.8. Remark. It is also known from [PR02b] that when we run the Optimal al-
gorithm on a random graph drawn from either Gn,p (random graphs on n vertices,
each edge is included with probability p independently on the other edges) or Gn,m

(we draw the graph uniformly at random from the set of all graphs with n vertices
and m edges), it runs in linear time with high probability, regardless of the edge
weights.

4.4.9. Models of computation. Another important consequence of the optimal al-
gorithm is that when we aim for a linear-time MST algorithm (or for proving that
it does not exist), we do not need to care about computational models at all. The
elaborate RAM data structures of Chapter 2, which have helped us so much in the
case of integer weights, cannot help if we are allowed to access the edge weights by
performing comparisons only. We can even make use of non-uniform objects given
by some sort of oracle. Indeed, whatever trick we employ to achieve linear time
complexity, we can mimic it in the world of decision trees and thus we can use it to
show that the algorithm we already knew is also linear.

This however applies to deterministic algorithms only — we have shown that
access to a source of random bits allows us to compute the MST in expected linear
time (the KKT algorithm, 3.5.3). There were attempts to derandomize the KKT
algorithm, but so far the best result in this direction is the randomized algorithm
also by Pettie [PR02a] which achieves expected linear time complexity with only
O(log∗ n) random bits.
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5. Dynamic Spanning Trees

5.1. Dynamic graph algorithms
In many applications, we often need to solve a certain graph problem for a se-

quence of graphs that differ only a little, so recomputing the solution for every graph
from scratch would be a waste of time. In such cases, we usually turn our attention
to dynamic graph algorithms. A dynamic algorithm is in fact a data structure that
remembers a graph. It offers operations that modify the structure of the graph
and also operations that query the result of the problem for the current state of
the graph. A typical example of a problem of this kind is dynamic maintenance of
connected components:

5.1.1. Problem. (Dynamic connectivity)
Maintain an undirected graph under a sequence of the following operations:

� Init(n) — Create a graph with n isolated vertices f1, . . . , ng.1
� Insert(G, u, v) — Insert an edge uv to G and return its unique identifier.

This assumes that the edge did not exist yet.
� Delete(G, e) — Delete an edge specified by its identifier from G.
� Connected(G, u, v) — Test if vertices u and v are in the same connected

component of G.

5.1.2. We have already encountered a special case of dynamic connectivity when
implementing the Kruskal’s algorithm in Section 1.4. At that time, we did not
need to delete any edges from the graph, which makes the problem substantially
easier. This special case is customarily called an incremental or semidynamic graph
algorithm. We mentioned the Disjoint Set Union data structure of Tarjan (Theorem
1.4.20) which can be used for that: Connected components are represented by
equivalence classes. Queries on connectedness translate to Find , edge insertions to
Find followed by Union if the new edge joins two different components. This way,
a sequence of m operations starting with an empty graph on n vertices is processed
in time O(n + mα(m,n)) and this holds even for the Pointer Machine. Fredman
and Saks [FS89] have proven a matching lower bound in the cell-probe model which
is stronger than RAM with O(log n)-bit words.

5.1.3. Dynamic MSF. In this chapter, we will focus on the dynamic version of
the minimum spanning forest. This problem seems to be intimately related to
the dynamic connectivity. Indeed, all known algorithms for dynamic connectivity
maintain some sort of a spanning forest. For example, in the incremental algorithm
we have just mentioned, this forest is formed by the edges that have triggered
the Unions. This suggests that a dynamic MSF algorithm could be obtained by
modifying the mechanics of the data structure to keep the forest minimum. This
will really turn out to be true, although we cannot be sure that it will lead to the
most efficient solution possible — as of now, the known lower bounds are very far.

1 The structure could support dynamic addition and removal of vertices, too, but
this is easy to add and infrequently used, so we will rather keep the set of vertices
fixed for clarity.
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Incremental MST will be easy to achieve even in the few pages of this section,
but making it fully dynamic will require more effort, so we will review some of the
required building blocks before going into that.

We however have to answer one important question first: What should be the
output of our MSF data structure? Adding an operation that returns the MSF
of the current graph would be of course possible, but somewhat impractical as
this operation would have to spend Ω(n) time on the mere writing of its output.
A better way seems to be making the Insert and Delete operations report the list
of modifications of the MSF implied by the change in the graph.

Let us see what happens when we Insert an edge e to a graph G with its min-
imum spanning forest F , obtaining a new graph G′ with its MSF F ′. If e connects
two components of G (and therefore also of F ), we have to add e to F . Otherwise,
one of the following cases happens: Either e is F -heavy and thus the forest F is also
the MSF of the new graph. Or it is F -light and we have to modify F by exchanging
the heaviest edge f of the path F [e] with e.

Correctness of the former case follows immediately from the Minimality The-
orem (1.2.6), because any F ′-light would be also F -light, which is impossible as
F was minimum. In the latter case, the edge f is not contained in F ′ because it
is the heaviest on the cycle F [e] + e (by the Red lemma, 1.3.6). We can now use
the Blue lemma (1.3.5) to prove that it should be replaced with e. Consider the
tree T of F that contains both endpoints of the edge e. When we remove f from F ,
this tree falls apart to two components T1 and T2. The edge f was the lightest
in the cut δG(T1) and e is lighter than f , so e is the lightest in δG′(T1) and hence
e 2 F ′.

A Delete of an edge that is not contained in F does not change F . When we
delete an MSF edge, we have to reconnect F by choosing the lightest edge of the
cut separating the new components (again the Blue lemma in action). If there is
no such replacement edge, we have deleted a bridge, so the MSF has to remain
disconnected.

The idea of reporting differences in the MSF indeed works very well. We can
summarize what we have shown by the following lemma and use it to define the
dynamic MSF.

5.1.4. Lemma. An Insert or Delete of an edge in G causes at most one edge addi-
tion, edge removal or edge exchange in msf(G).

5.1.5. Problem. (Dynamic minimum spanning forest)
Maintain an undirected graph with distinct weights on edges (drawn from a totally
ordered set) and its minimum spanning forest under a sequence of the following
operations:

� Init(n) — Create a graph with n isolated vertices f1, . . . , ng.
� Insert(G, u, v, w) — Insert an edge uv of weight w to G. Return its unique

identifier and the list of additions and deletions of edges in msf(G).
� Delete(G, e) — Delete an edge specified by its identifier from G. Return

the list of additions and deletions of edges in msf(G).

5.1.6. Incremental MSF. To obtain an incremental MSF algorithm, we need to keep
the forest in a data structure that supports search for the heaviest edge on the path
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connecting a given pair of vertices. This can be handled efficiently by the Link-Cut
trees of Sleator and Tarjan:

5.1.7. Theorem. (Link-Cut Trees, Sleator and Tarjan [ST83])
There is a data structure that represents a forest of rooted trees on n vertices. Each
edge of the forest has a weight drawn from a totally ordered set. The structure
supports the following operations in time O(log n) amortized:2

� Parent(v) — Return the parent of v in its tree or null if v is a root.
� Root(v) — Return the root of the tree containing v.
� Weight(v) — Return the weight of the edge (Parent(v), v).
� PathMax (v) — Return the vertex u closest to Root(v) such that the edge

(Parent(u), u) is the heaviest of those on the path from the root to v. If
more edges have the maximum weight, break the tie arbitrarily. If there is
no such edge (v is the root itself), return null .
� Link(u, v, w) — Connect the trees containing u and v by an edge (u, v) of

weight w. Assumes that v is a tree root and u lies in a different tree.
� Cut(v) — Split the tree containing the non-root vertex v to two trees by

removing the edge (Parent(v), v). Returns the weight of this edge.
� Evert(v) — Modify the orientations of edges to make v the root of its tree.

Proof. See [ST83]. �
Once we have this structure, we can turn our ideas on updating of the MSF to

an incremental algorithm:

5.1.8. Algorithm. (Insert in an incremental MSF)

Input: A graph G with its MSF F represented as a Link-Cut forest,
an edge uv with weight w to be inserted.

1. Evert(u). (u is now the root of its tree.)

2. If Root(v) 6= u: (u and v lie in different trees.)

3. Link(v, u, w). (Connect the trees.)

4. Return “uv added”.

5. Otherwise: (both are in the same tree)

6. y  PathMax (v).

7. x Parent(y). (Edge xy is the heaviest on F [uv].)

8. If Weight(y) > w: (We have to exchange xy with uv.)

9. Cut(y), Evert(v), Link(u, v, w).

10. Return “uv added, xy removed”.

11. Otherwise return “no changes”.

Output: The list of changes in F .

5.1.9. Theorem. (Incremental MSF)
When only edge insertions are allowed, the dynamic MSF can be maintained in
time O(log n) amortized per operation.

Proof. Every Insert performs O(1) operations on the Link-Cut forest, which take
O(log n) each by Theorem 5.1.7. �

2 The Link-Cut trees can offer a plethora of other operations, but we do not
mention them as they are not needed for our problem.
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5.1.10. Remark. We can easily extend the semidynamic MSF algorithm to allow
an operation commonly called Backtrack — removal of the most recently inserted
edge. It is sufficient to keep the history of all MSF changes in a stack and reverse
the most recent change upon backtrack.

What are the obstacles to making the structure fully dynamic? Deletion of
edges that do not belong to the MSF is trivial (we do not need to change anything)
and so is deletion of bridges (we just remove the bridge from the Link-Cut tree,
knowing that there is no edge to replace it). The hard part is the search for
replacement edges after an edge belonging to the MSF is deleted.

This very problem also has to be solved by algorithms for fully dynamic con-
nectivity, we will take a look at them first.

5.2. Eulerian Tour trees
An important stop on the road to fully dynamic algorithms has the name

Eulerian Tour trees or simply ET-trees . It is a representation of forests introduced
by Henzinger and King [HK99] in their randomized dynamic algorithms. It is
similar to the Link-Cut trees, but it is much simpler and instead of path operations
it offers efficient operations on subtrees. It is also possible to attach auxiliary data
to vertices and edges of the original tree.

5.2.1. De�nition. Let T be a rooted tree. We will call a sequence of vertices of T its
Eulerian Tour sequence (ET-sequence) if it lists the vertices visited by the depth-
first traversal of T . More precisely, it can be generated by the following procedure
ET (v) when it is invoked on the root of the tree:

1. Record v in the sequence.

2. For each son w of v:

3. Call ET (w).

4. Record w.

A single tree can have multiple ET-sequences, corresponding to different orders in
which the sons can be enumerated in step 2.

In every ET-sequence, one of the occurrences of each vertex is defined as its
active occurrence and it will be used to store auxiliary data associated with that
vertex.

5.2.2. Observation. An ET-sequence contains a vertex of degree d exactly d times
except for the root which occurs d+1 times. The whole sequence therefore contains
2n�1 elements. It indeed describes the order of vertices on an Eulerian tour in the
tree with all edges doubled. Let us observe what happens to an ET-sequence when
we modify the tree. (See the picture.)

When we delete an edge uv from the tree T (let u be the parent of v), the
sequence AuvBvuC (with no u nor v in B) splits to two sequences AuC and vBv.
If there was only a single occurrence of v, then v was a leaf and thus the sequence
transforms from AuvuC to AuC and v alone.

Changing the root of the tree T from v to w changes its ET-sequence from
vAwBwCv to wBwCvAw. If w was a leaf, the sequence changes from vAwCv to
wCvAw. If vw was the only edge of T , the sequence vw becomes wv. Note that
this works regardless of the possible presence of w inside B.
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Joining the roots of two trees by a new edge makes their ET-sequences vAv
and wBw combine to vAvwBwv. Again, we have to handle the cases when v or w
has degree 1 separately: v and wBw combine to vwBwv, and v with w makes vwv.

0
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T2

T1 : 0121034546474308980, T2 : aba.
T1 � 34 : 01210308980, 4546474.
T1 rooted at 3 : 3454647430898012103.
T1 + 0a + T2: 0121034546474308980aba0.

Trees and their ET-sequences

If any of the occurrences that we have removed from the sequence was active,
there is always a new occurrence of the same vertex that can stand in its place and
inherit the auxiliary data.

5.2.3. The ET-trees will store the ET-sequences as (a, b)-trees with the parameter a
set upon initialization of the structure and with b = 2a. We know from the standard
theorems of (a, b)-trees (see for example [LRCS01]) that the depth of a tree with
n leaves is always O(loga n) and that all basic operations including insertion, dele-
tion, search, splitting and joining the trees run in time O(b loga n) in the worst case.

We will use the ET-trees to maintain a spanning forest of the dynamic graph.
The auxiliary data of each vertex will hold a list of edges incident with the given
vertex, that do not lie in the forest. Such edges are usually called the non-tree
edges.

5.2.4. De�nition. Eulerian Tour trees (ET-trees) are a data structure that repre-
sents a forest of trees and a set of non-tree edges associated with the vertices of the
forest. To avoid confusion, we will distinguish between original vertices and edges
(of the given trees) and the vertices and edges of the data structure. The structure
consists of:

� A collection of (a, b)-trees of some fixed parameters a and b. Each such
tree corresponds to one of the original trees T . Its leaves (in the usual tree
order) correspond to the elements of an ET-sequence for T . Each two con-
secutive leaves u and v are separated by a unique key stored in an internal
vertex of the (a, b)-tree. This key is used to represent the original edge uv.
Each original edge is therefore kept in both its orientations.
� Mappings act , edge and twin:

� act(v) maps each original vertex to the leaf containing its active
occurrence;
� edge(e) of an original edge e is one of the internal keys repre-

senting it;
� twin(k) pairs an internal key k with the other internal key of

the same original edge.

� A list of non-tree edges placed in each leaf. The lists are allowed to be
non-empty only in the leaves that represent active occurrences of original
vertices.
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� Boolean markers in the internal vertices that signal presence of a non-tree
edge anywhere in the subtree rooted at the internal vertex.
� Counters leaves(v) that contain the number of leaves in the subtree rooted

at v.

5.2.5. De�nition. The ET-trees support the following operations on the original
trees:

� Create — Create a single-vertex tree.
� Link(u, v) — Join two different trees by an edge uv and return a unique

identifier of this edge.
� Cut(e) — Split a tree by removing the edge e given by its identifier.
� Connected(u, v) — Test if the vertices u and v lie in the same tree.
� Size(v) — Return the number of vertices in the tree containing the vertex v.
� InsertNontree(v, e) — Add a non-tree edge e to the list at v and return

a unique identifier of this edge.
� DeleteNontree(e) — Delete a non-tree edge e given by its identifier.
� ScanNontree(v) — Return a list of non-tree edges associated with the

vertices of the v’s tree.

5.2.6. Implementation. We will implement the operations on the ET-trees by trans-
lating the intended changes of the ET-sequences to operations on the (a, b)-trees.
The role of identifiers of the original vertices and edges will be of course played by
pointers to the respective leaves and internal keys of the (a, b)-trees.

Cut of an edge splits the (a, b)-tree at both internal keys representing the given
edge and joins them back in the different order.

Link of two trees can be accomplished by making both vertices the roots of
their trees first and joining the roots by an edge afterwards. Re-rooting involves
splits and joins of (a, b)-trees. As we can split at any occurrence of the new root
vertex, we will use the active occurrence which we remember. Linking of the roots
is translated to joining of the (a, b)-trees.

Connected follows parent pointers from both u and v to the roots of their trees.
Then it checks if the roots are equal.

Size finds the root r and returns leaves(r).

InsertNontree finds the leaf act(v) containing the list of v’s non-tree edges and
inserts the new edge there. The returned identifier will consist from the pointer to
the edge and the vertex in whose list it is stored. Then we have to recalculate the
markers on the path from act(v) to the root. DeleteNontree is analogous.

Whenever any other operation changes a vertex of the tree, it will also update
its marker and counter and, if necessary, the markers and counters on the path to
the root.

ScanNontree traverses the tree recursively from the root, but it does not enter
the subtrees whose roots are not marked.

Analysis of time complexity of the operations is now straightforward:

5.2.7. Theorem. (Eulerian Tour trees, Henzinger and Rauch [HK99])
The ET-trees perform the operations Link and Cut in time O(a loga n), Create
in O(1), Connected , Size, InsertNontree, and DeleteNontree in O(loga n), and
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ScanNontree in O(a loga n) per edge reported. Here n is the number of vertices
in the original forest and a � 2 is an arbitrary constant.

Proof. We set b = 2a. Our implementation performs O(1) operations on the (a, b)-
trees per operation on the ET-tree, plus O(1) other work. We apply the standard
theorems on the complexity of (a, b)-trees [LRCS01]. �
5.2.8. Example. (Connectivity acceleration)
In most cases, the ET-trees are used with a constant, but sometimes choosing a as
a function of n can also have its beauty. Suppose that there is a data structure which
maintains an arbitrary spanning forest of a dynamic graph. Suppose also that the
structure works in time O(logk n) per operation and that it reports O(1) changes
in the spanning forest for every change in the graph. If we keep the spanning forest
in ET-trees with a = log n, the updates of the data structure cost an additional
O(log2 n/ log log n), but connectivity queries accelerate to O(log n/ log log n).

5.2.9. ET-trees with weights. In some cases, we will also need a representation
of weighted graphs and enumerate the non-tree edges in order of their increasing
weights (in fact, it will be sufficient to find the lightest one, remove it and iterate).
This can be handled by a minute modification of the ET-trees.

The tree edges will remember their weight in the corresponding internal keys
of the ET-tree. We replace each list of non-tree edges by an (a, b)-tree keeping the
edges sorted by weight. We also store the minimum element of that tree separately,
so that it can be accessed in constant time. The boolean marker will then become
the minimum weight of a non-tree edge attached to the particular subtree, which
can be recalculated as easy as the markers can. Searching for the lightest non-tree
edge then just follows the modified markers.

The time complexities of all operations therefore remain the same, with a pos-
sible exception of the operations on non-tree edges, to which we have added the
burden of updating the new (a, b)-trees. This however consists of O(1) updates per
a single call to InsertNontree or DeleteNontree, which takes O(a loga n) time only.
We can therefore conclude:

5.2.10. Corollary. (Weighted ET-trees)
In weighted ET-trees, the operations InsertNontree and DeleteNontree have time
complexity O(a loga n). All other operations take the same time as indicated by
Theorem 5.2.7.

5.3. Dynamic connectivity

The fully dynamic connectivity problem has a long and rich history. In the
1980’s, Frederickson [Fre85] has used his topological trees to construct a dynamic
connectivity algorithm of complexity O(

p
m) per update and O(1) per query. Epp-

stein et al. [EGIN97] have introduced a sparsification technique which can bring
the updates down to O(

p
n). Later, several different algorithms with complexity

on the order of nε were presented by Henzinger and King [HK97a] and also by
Mareš [Mar00]. A polylogarithmic time bound was first reached by the random-
ized algorithm of Henzinger and King [HK99]. The best result known as of now is
the O(log2 n) time deterministic algorithm by Holm, de Lichtenberg and Thorup
[HdLT01], which will we describe in this section.
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The algorithm will maintain a spanning forest F of the current graph G, repre-
sented by an ET-tree which will be used to answer connectivity queries. The edges
of G n F will be stored as non-tree edges in the ET-tree. Hence, an insertion of
an edge to G either adds it to F or inserts it as non-tree. Deletions of non-tree edges
are also easy, but when a tree edge is deleted, we have to search for its replacement
among the non-tree edges.

To govern the search in an efficient way, we will associate each edge e with
a level `(e) � L = blog2 nc. For each level i, we will use Fi to denote the subforest
of F containing edges of level at least i. Therefore F = F0 � F1 � . . . � FL. We
will maintain the following invariants:

I1 F is the maximum spanning forest of G with respect to the lev-
els. (In other words, if uv is a non-tree edge, then u and v are
connected in F`(uv).)

I2 For each i, the components of Fi have at most bn/2ic vertices
each. (This implies that it does not make sense to define Fi for
i > L, because it would be empty anyway.)

At the beginning, the graph contains no edges, so both invariants are trivially
satisfied. Newly inserted edges enter level 0, which cannot break I1 nor I2.

When we delete a tree edge at level `, we split a tree T of F` to two trees T1

and T2. Without loss of generality, let us assume that T1 is the smaller one. We
will try to find the replacement edge of the highest possible level that connects the
spanning tree back. From I1, we know that such an edge cannot belong to a level
greater than `, so we start looking for it at level `. According to I2, the tree T had
at most bn/2`c vertices, so T1 has at most bn/2`+1c of them. Thus we can move all
level ` edges of T1 to level ` + 1 without violating either invariant.

We now start enumerating the non-tree edges incident with T1. Each such edge
is either local to T1 or it joins T1 with T2. We will therefore check each edge whether
its other endpoint lies in T2 and if it does, we have found the replacement edge,
so we insert it to F` and stop. Otherwise we move the edge one level up. (This
will be the grist for the mill of our amortization argument: We can charge most of
the work on level increases and we know that the level of each edge can reach at
most L.)

If the non-tree edges at level ` are exhausted, we try the same in the next
lower level and so on. If there is no replacement edge at level 0, the tree T remains
disconnected.

5.3.1. Implementation. For each level `, we will use a separate ET-tree E` with a
set to 2, which will represent the forest F` and the non-tree edges at that particular
level. Besides operations on the non-tree edges, we also need to find the tree edges
of level ` when we want to bring them one level up. This can be accomplished either
by modifying the ET-trees to attach two lists of edges attached to vertices instead
of one, or by using a second ET-tree.

5.3.2. Algorithm. (Insertion of an edge)

Input: An edge uv to insert.

1. `(uv) 0.
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2. Ask the ET-tree E0 if u and v are in the same component. If they
are:

3. Add uv to the list of non-tree edges in E0 at both u and v.

4. Otherwise:

5. Add uv to F0.

5.3.3. Algorithm. (Deletion of an edge)

Input: An edge uv to delete.

1. ` `(uv).

2. If uv is a non-tree edge:

3. Remove uv from the lists of non-tree edges at both u and v in E`.
4. Otherwise:

5. Remove uv from F` and hence also from F0, . . . , F`−1.

6. Call Replace(uv, `) to get the replacement edge f .

7. Insert f to F0, . . . , F`(f).

5.3.4. Algorithm. (Replace(uv, i) – Search for replacement for edge uv at level i)

Input: An edge uv to replace and a level i such that there is no replacement
at levels greater than i.

1. Let T1 and T2 be the trees in Fi containing u and v respectively.

2. If n(T1) > n(T2), swap T1 with T2.

3. Find all level i edges in T1 using Ei and move them to level i + 1.

4. Enumerate non-tree edges incident with vertices of T1 and stored in
Ei. For each edge xy, x 2 T1, do:

5. If y 2 T2, remove xy from Ei and return it to the caller.

6. Otherwise increase `(xy) by one.
This includes deleting xy from Ei and inserting it to Ei+1.

7. If i > 0, call Replace(xy, i� 1).

8. Otherwise return null .

Output: The replacement edge.

As foretold, time complexity will be analysed by amortization on the levels.

5.3.5. Theorem. (Fully dynamic connectivity, Holm et al. [HdLT01])
Dynamic connectivity can be maintained in time O(log2 n) amortized per Insert
and Delete and in time O(log n/ log log n) per Connected in the worst case.

Proof. The direct cost of an Insert is O(log n) for the operations on the ET-trees
(by Theorem 5.2.7). We will also have the insertion pre-pay all level increases of the
new edge. Since the levels never decrease, each edge can be brought a level up at
most L = blog nc times. Every increase costs O(log n) on the ET-tree operations,
so we pay O(log2 n) for all of them.

A Delete costs O(log2 n) directly, as we might have to update all L ET-trees.
Additionally, we call Replace up to L times. The initialization of Replace costs
O(log n) per call, the rest is paid for by the edge level increases.

To bring the complexity of the operation Connected from O(log n) down to
O(log n/ log log n), we apply the trick from Example 5.2.8 and store F0 in an ET-
tree with a = max(blog nc, 2). This does not hurt the complexity of insertions and
deletions, but allows for faster queries. �
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5.3.6. Remark. An Ω(log n/ log log n) lower bound for the amortized complexity
of the dynamic connectivity problem has been proven by Henzinger and Fredman
[HF98] in the cell probe model with O(log n)-bit words. Thorup has answered by
a faster algorithm [Tho00b] that achieves O(log n log3 log n) time per update and
O(log n/ log(3) n) per query on a RAM with O(log n)-bit words. (He claims that the
algorithm runs on a Pointer Machine, but it uses arithmetic operations, so it does
not fit the definition of the PM we use. The algorithm only does not need direct
indexing of arrays.) So far, it is not known how to extend this algorithm to fit our
needs, so we omit the details.

5.4. Dynamic spanning forests
Let us turn our attention back to the dynamic MSF. Most of the early algo-

rithms for dynamic connectivity also imply O(nε) algorithms for dynamic main-
tenance of the MSF. Henzinger and King [HK97b, HK99] have generalized their
randomized connectivity algorithm to maintain the MSF in O(log5 n) time per op-
eration, or O(k log3 n) if only k different values of edge weights are allowed. They
have solved the decremental version of the problem first (which starts with a given
graph and only edge deletions are allowed) and then presented a general reduction
from the fully dynamic MSF to its decremental version. We will describe the algo-
rithm of Holm, de Lichtenberg and Thorup [HdLT01], who have followed the same
path. They have modified their dynamic connectivity algorithm to solve the decre-
mental MSF in O(log2 n) and obtained the fully dynamic MSF working in O(log4 n)
per operation.

5.4.1. Decremental MSF. Turning the algorithm from the previous section to the
decremental MSF requires only two changes: First, we have to start with the for-
est F equal to the MSF of the initial graph. As we require to pay O(log2 n) for every
insertion, we can use almost arbitrary MSF algorithm to find F . Second, when we
search for an replacement edge, we need to pick the lightest possible choice. We
will therefore use the weighted version of the ET-trees (Corollary 5.2.10) and scan
the lightest non-tree edge incident with the examined tree first. We must ensure
that the lower levels cannot contain a lighter replacement edge, but fortunately the
light edges tend to “bubble up” in the hierarchy of levels. This can be formalized
in form of the following invariant:

I3 On every cycle, the heaviest edge has the smallest level.

This immediately implies that we always select the right replacement edge:

5.4.2. Lemma. Let F be the minimum spanning forest and e any its edge. Then
among all replacement edges for e, the lightest one is at the maximum level.

Proof. Let us consider any two edges f1 and f2 replacing e. By minimality of F and
the Cycle rule (Lemma 1.3.6), each fi is the heaviest edge on the cycle Ci = F [fi]+fi.
In a moment, we will show that the symmetric difference C of these two cycles is
again a cycle. This implies that if f1 is heavier than f2, then f1 is the heaviest edge
on C, so `(f1) � `(f2) by I3. Therefore the lightest of all replacement edges must
have the maximum level.

Why is C a cycle: Let F a and F b be the trees of F � e in which the endpoints
of e lie, and for every edge g going between F a and F b let ga and gb be its respective
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endpoints. We know that Ci consists of the path F [fa
i , ea], the edge e, the path

F [eb, f b
i ], and the edge fi. Thus C must contain the paths F [fa

1 , fa
2 ] and F [f b

1 , f
b
2 ]

and the edges f1 and f2, which together form a simple cycle. �
We now have to make sure that the additional invariant is really observed:

5.4.3. Lemma. After every operation, the invariant I3 is satisfied.

Proof. When the structure is freshly initialized, I3 is obviously satisfied, as all edges
are at level 0. Sole deletions of edges (both tree and non-tree) cannot violate I3, so
we need to check only the replaces, in particular the place when an edge e gets its
level increased.

For the violation to happen for the first time, e must be the heaviest on some
cycle C, so by the Cycle rule, e must be non-tree. The increase of `(e) must therefore
take place when e is considered as a replacement edge incident with some tree T1 at
level ` = `(e). We will pause the computation just before this increase and we will
prove that all other edges of C already are at levels greater than `, so the violation
cannot occur.

Let us first show that for edges of C incident with T1. All edges of T1 itself
already are at the higher levels as they were moved there at the very beginning
of the search for the replacement edge. The other tree edges incident with T1

would have lower levels, which is impossible since the invariant would be already
violated. Non-tree edges of C incident with T1 are lighter than e, so they were
already considered as candidates for the replacement edge, because the algorithm
always picks the lightest candidate first. Such edges therefore have been already
moved a level up.

The case of edges of C that do not touch T1 is easy to handle: Such edges
do not exist. If they did, at least one more edge of C besides e would have to
connect T1 with the other trees of level `. We already know that this could not be
a tree edge. If it were a non-tree edge, it could not have level greater than ` by I1
nor smaller than ` by I3. Therefore it would be a level ` edge lighter than e, and
as such it would have been selected as the replacement edge before e was. �

We can conclude:

5.4.4. Theorem. (Decremental MSF, Holm et al. [HdLT01])
When we start with a graph on n vertices with m edges and we perform a sequence
of edge deletions, the MSF can be initialized in time O((m + n) � log2 n) and then
updated in time O(log2 n) amortized per operation.

5.4.5. Fully dynamic MSF. The decremental MSF algorithm can be turned to
a fully dynamic one by a blackbox reduction whose properties are summarized
in the following theorem:

5.4.6. Theorem. (MSF dynamization, Holm et al. [HdLT01])
Suppose that we have a decremental MSF algorithm with the following properties:

1. For any a, b, it can be initialized on a graph with a vertices and b edges.

2. Then it executes an arbitrary sequence of deletions in time O(b � t(a, b)),
where t is a non-decreasing function.

Then there exists a fully dynamic MSF algorithm for a graph on n vertices, starting
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with no edges, that performs m insertions and deletions in amortized time:

O
 

log3 n +

log mX
i=1

iX
j=1

t(min(n, 2j), 2j)

!
per operation.

Proof sketch. The reduction is very technical, but its essence is the following: We
maintain a logarithmic number of decremental structures A0, . . . , Ablog nc of expo-
nentially increasing sizes. Every non-tree edge is contained in exactly one Ai, tree
edges can belong to multiple structures.

When an edge is inserted, we union it with some of the Ai’s, build a new
decremental structure and amortize the cost of the build over the insertions. Deletes
of non-tree edges are trivial. Delete of a tree edge is performed on all Ai’s containing
it and the replacement edge is sought among the replacement edges found in these
structures. The unused replacement edges then have to be reinserted back to the
structure.

The original reduction of Henzinger et al. [HK97b] handles these reinserts by
a mechanism of batch insertions supported by their decremental structure, which
is not available in our case. Holm et al. have replaced it by a system of auxiliary
edges inserted at various places in the structure. We refer to the article [HdLT01]
for details. �
5.4.7. Corollary. (Fully dynamic MSF)
There is a fully dynamic MSF algorithm that works in time O(log4 n) amortized
per operation for graphs on n vertices.

Proof. Apply the reduction from the previous theorem to the decremental algo-
rithm we have developed. This results in an algorithm of amortized complexity
O(log4 max(m,n)) where m is the number of operations performed. This could
exceed O(log4 n) if m is very large, but we can rebuild the whole structure after
n2 operations, which brings log m down to O(log n). The O(n2 log4 n) cost of the
rebuild then incurs only O(log4 n) additional cost on each operation. �
5.4.8. Remark. The limitation of MSF structures based on the Holm’s algorithm
for connectivity to only edge deletions seems to be unavoidable. The invariant I3
could be easily broken for many cycles at once whenever a very light non-tree edge
is inserted. We could try increasing the level of the newly inserted edge, but we
would quite likely hit I1 before we managed to skip the levels of all the heaviest
edges on the particular cycles.

On the other hand, if we decided to drop I3, we would encounter different
obstacles. The ET-trees can bring the lightest non-tree incident with the current
tree T1, but the lightest replacement edge could also be located in the super-trees
of T1 at the lower levels, which are too large to scan and both I1 and I2 prevent us
from charging the time on increasing levels there.

An interesting special case in which insertions are possible is when all non-tree
edges have the same weight. This leads to the following algorithm for dynamic MSF
on graphs with a small set of allowed edge weights. It is based on an idea similar
to the O(k log3 n) algorithm of Henzinger and King [HK99], but have adapted it to
use the better results on dynamic connectivity we have at hand.
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5.4.9. Dynamic MSF with limited edge weights. Let us assume for a while that our
graph has edges of only two different weights (let us say 1 and 2). We will forget our
rule that all edge weights are distinct for a moment and we recall the observation in
1.6.3 that the basic structural properties of the MST’s from Section 1.2 still hold.

We split the graph G to two subgraphs G1 and G2 according to the edge
weights. We use one instance C1 of the dynamic connectivity algorithm to maintain
an arbitrary spanning forest F1 of G1, which is obviously minimum. Then we add
another instance C2 to maintain a spanning forest F2 of the graph G2 [ F1 such
that all edges of F1 are forced to be in F2. Obviously, F2 is the MSF of the whole
graph G — if any edge of F1 were not contained in msf(G), we could use the
standard exchange argument to create an even lighter spanning tree.

When a weight 2 edge is inserted to G, we insert it to C2 and it either enters F2

or becomes a non-tree edge. Similarly, deletion of a weight 2 edge is a pure deletion
in C2, because such edges can be replaced only by other weight 2 edges.

Insertion of edges of weight 1 needs more attention: We insert the edge to C1.
If F1 stays unchanged, we are done. If the new edge enters F1, we use a Sleator-
Tarjan tree kept for F2 to check if the new edge covers some tree edge of weight 2.
If this is not the case, we insert the new edge to C2 and hence also to F2 and we
are done. Otherwise we exchange one of the covered weight 2 edges f for e in C2.
We note that e can inherit the level of f and f can become a non-tree edge without
changing its level. This adjustment can be performed in time O(log2 n), including
paying for the future level increases of the new edge.

Deletion of weight 1 edges is once more straightforward. We delete the edge
from C1. If it has no replacement, we delete it from C2 as well. If it has a replacement,
we delete the edge from C2 and insert the replacement on its place as described
above. We observe than this pair of operations causes an insertion, deletion or
a replacement in C2.

This way, we can handle every insertion and deletion in time O(log2 n) amor-
tized. This construction can be iterated in an obvious way: if we have k distinct
edge weights, we build k connectivity structures C1, . . . , Ck. The structure Ci con-
tains edges of weight i together with the MSF edges from Ci−1. Bounding the time
complexity is then easy:

5.4.10. Theorem. (MSF with limited edge weights)
There is a fully dynamic MSF algorithm that works in time O(k � log2 n) amortized
per operation for graphs on n vertices with only k distinct edge weights allowed.

Proof. A change in the graph G involving an edge of weight w causes a change
in Cw, which can propagate to Cw+1 and so on, possibly up to Ck. In each Ci, we
spend time O(log2 n) by updating the connectivity structure according to Theorem
5.3.5 and O(log n) on operations with the Sleator-Tarjan trees by Theorem 5.1.7. �
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5.5. Almost minimum trees

In some situations, finding the single minimum spanning tree is not enough
and we are interested in the K lightest spanning trees, usually for some small value
of K. Katoh, Ibaraki and Mine [KIM81] have given an algorithm of time complexity
O(m log β(m,n)+Km), building on the MST algorithm of Gabow et al. [GGST86].
Subsequently, Eppstein [Epp92] has discovered an elegant preprocessing step which
allows to reduce the running time to O(m log β(m,n)+min(K2,Km)) by eliminat-
ing edges which are either present in all K trees or in none of them. We will show
a variant of their algorithm based on the MST verification procedure of Section 3.4.

In this section, we will require the edge weights to be numeric, because com-
parisons are certainly not sufficient to determine the second best spanning tree. We
will assume that our computation model is able to add, subtract and compare the
edge weights in constant time.

Let us focus on finding the second lightest spanning tree first.

5.5.1. Second lightest spanning tree. Suppose that we have a weighted graph G
and a sequence T1, . . . , Tz of all its spanning trees. Also suppose that the weights
of these spanning trees are distinct and that the sequence is ordered by weight, i.e.,
w(T1) < . . . < w(Tz) and T1 = mst(G). Let us observe that each tree is similar to
at least one of its predecessors:

5.5.2. Lemma. (Difference lemma)
For each i > 1 there exists j < i such that Ti and Tj differ by a single edge exchange.

Proof. We know from the Monotone exchange lemma (1.2.5) that T1 can be trans-
formed to Ti by a sequence of edge exchanges which never decrease tree weight.
The last exchange in this sequence therefore obtains Ti from a tree of the desired
properties. �
5.5.3. This lemma implies that the second best spanning tree T2 differs from T1 by
a single edge exchange. It remains to find which exchange it is. Let us consider the
exchange of an edge f 2 E n T1 with an edge e 2 T1[f ]. We get a tree T1 � e + f of
weight w(T1) � w(e) + w(f). To obtain T2, we have to find e and f such that the
difference w(f)�w(e) is the minimum possible. Thus for every f , the edge e must be
always the heaviest on the path T1[f ]. We can apply the algorithm from Corollary
3.4.14 and find the heaviest edges (peaks) of all such paths and thus examine all
possible choices of f in linear time. So we get:

5.5.4. Lemma. For every graph H and a MST T of H, linear time is sufficient to
find edges e 2 T and f 2 H n T such that w(f)� w(e) is minimum.

5.5.5. Notation. We will call this procedure finding the best exchange in (H,T ).

5.5.6. Corollary. Given G and T1, we can find T2 in time O(m).

5.5.7. Third lightest spanning tree. Once we know T1 and T2, how to get T3? Ac-
cording to the Difference lemma, T3 can be obtained by a single exchange from
either T1 or T2. Therefore we need to find the best exchange for T2 and the second
best exchange for T1 and use the better of them. The latter is not easy to find
directly, so we will make a minor side step.

We know that T2 equals T1 � e + f for some edges e and f . We define two
auxiliary graphs: G1 := G/e and G2 := G� e. The tree T1/e is obviously the MST
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of G1 (by the Contraction lemma) and T2 is the MST of G2 (all T2-light edges in G2

would be T1-light in G).

5.5.8. Observation. The tree T3 can be obtained by a single edge exchange in either
(G1, T1/e) or (G2, T2):

� If T3 = T1 � e′ + f ′ for e′ 6= e, then T3/e = (T1/e)� e′ + f ′ in G1.� If T3 = T1 � e + f ′, then T3 = T2 � f + f ′ in G2.� If T3 = T2 � e′ + f ′, then this exchange is found in G2.

Conversely, a single exchange in (G1, T1/e) or in (G2, T2) corresponds to an exchange
in either (G,T1) or (G,T2). Even stronger, a spanning tree T of G either contains e
and then T .e is a spanning tree of G1, or T doesn’t contain e and so it is a spanning
tree of G2.

Thus we can run the previous algorithm for finding the best edge exchange on
both G1 and G2 and find T3 again in time O(m).

5.5.9. Further spanning trees. The construction of auxiliary graphs can be iterated
to obtain T1, . . . , TK for an arbitrary K. We will build a meta-tree of auxiliary
graphs. Each node of this meta-tree carries a graph3 and its minimum spanning
tree. The root node contains (G,T1), its sons have (G1, T1/e) and (G2, T2). When
T3 is obtained by an exchange in one of these sons, we attach two new leaves to
that son and we let them carry the two auxiliary graphs derived by contracting or
deleting the exchanged edge. Then we find the best edge exchanges among all leaves
of the new meta-tree and repeat the process. By Observation 5.5.8, each spanning
tree of G is generated exactly once. The Difference lemma guarantees that the trees
are enumerated in the increasing order.

Recalculating the best exchanges in all leaves of the meta-tree after generating
each Ti is of course not necessary, because most leaves stay unchanged. We will
rather remember the best exchange for each leaf and keep the weight differences
of these exchanges in a heap. In every step, we will delete the minimum from the
heap and use the exchange in the particular leaf to generate a new spanning tree.
Then we will create the new leaves, calculate their best exchanges and insert them
into the heap. The algorithm is now straightforward and so will be its analysis:

5.5.10. Algorithm. (Finding K best spanning trees)

Input: A weighted graph G, its MST T1 and an integer K > 0.

1. R  a meta tree whose vertices carry triples (G′, T ′, F ′). Initially it
contains just a root with (G,T1, ;).
(G′ is a graph, T ′ is its MST, and F ′ is a set of edges of G that are
contracted in G′.)

2. H  a heap of quadruples (δ, r, e, f) ordered on δ, initially empty.
(Each quadruple describes an exchange of e for f in a leaf r of R and
δ = w(f)� w(e) is the weight gain of this exchange.)

3. Find the best edge exchange in (G,T1) and insert it to H.

4. i 1.

3 This graph is always derived from G by a sequence of edge deletions and con-
tractions. It is tempting to say that it is a minor of G, but this is not true as we
preserve multiple edges.
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5. While i < K:

6. Delete the minimum quadruple (δ, r, e, f) from H.

7. (G′, T ′, F ′) the triple carried by the leaf r.

8. i i + 1.

9. Ti  (T ′ � e + f) [ F ′. (The next spanning tree)

10. r1  a new leaf carrying (G′/e, T ′/e, F ′ + e).

11. r2  a new leaf carrying (G′ � e, Ti, F
′).

12. Attach r1 and r2 as sons of r.

13. Find the best edge exchanges in r1 and r2 and insert them to H.

Output: The spanning trees T2, . . . , TK .

5.5.11. Lemma. Given G and T1, we can find T2, . . . , TK in time O(Km+K log K).

Proof. Generating each Ti requires finding the best exchange for two graphs and
also O(1) operations on the heap. The former takes O(m) according to Corollary
3.4.14, and each heap operation takes O(log K). �
5.5.12. Remark. The meta-tree is not needed for the actual operation of the algo-
rithm — it suffices to keep its leaves in the heap.

5.5.13. Arbitrary weights. While the assumption that the weights of all spanning
trees are distinct has helped us in thinking about the problem, we should not forget
that it is somewhat unrealistic. We could refine the proof of our algorithm and
demonstrate that the algorithm indeed works without this assumption, but we will
rather show that the ties can be broken easily.

Let δ be the minimum positive difference among the weights of all spanning
trees of G and e1, . . . , em be the edges of G. We observe that it suffices to increase
w(ei) by δi = δ/2i+1. The cost of every spanning tree has increased by at mostP

i δi < δ/2, so if T was lighter than T ′, it still is. On the other hand, no two trees
share the same weight adjustment, so all tree weights are now distinct.

The exact value of δ is not easy to calculate, but closer inspection of the
algorithm reveals that it is not needed at all. The only place where the edge weights
are examined is when we search for the best exchange. In this case, we compare
the differences of pairs of edge weights with each other. Each such difference is
therefore adjusted by δ � (2−i�2−j) for some i, j > 1, which again does not influence
comparison of originally distinct differences. If two differences were identical, it is
sufficient to look at their values of i and j, i.e., at the identifiers of the edges.

5.5.14. Invariant edges. Our algorithm can be further improved for small values
of K (which seems to be the common case in most applications) by the reduction
of Eppstein [Epp92]. We will observe that there are many edges of T1 which are
guaranteed to be contained in T2, . . . , TK as well, and likewise there are many edges
of GnT1 which are excluded from all those spanning trees. The idea is the following
(again assuming that the tree weights are distinct):

5.5.15. De�nition. For an edge e 2 T1, we define its gain g(e) as the minimum
weight gained by exchanging e for another edge. Similarly, we define the gain G(f)
for f 62 T1. Put formally:

g(e) := minfw(f)� w(e) j f 2 E, e 2 T [f ]g,
G(f) := minfw(f)� w(e) j e 2 T [f ]g.
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5.5.16. Lemma. When t1, . . . , tn−1 are the edges of T1 in order of increasing gain,
the edges tK , . . . , tn−1 are present in all trees T2, . . . , TK .

Proof. The best exchanges in T1 involving t1, . . . , tK−1 produce K�1 spanning trees
of increasing weights. Any exchange involving tK , . . . , tn produces a tree which is
heavier or equal than all those trees. (We are ascertained by the Monotone exchange
lemma that the gain of such exchanges need not be reverted later.) �
5.5.17. Lemma. When q1, . . . , qm−n+1 are the edges of G n T1 in order of increasing
gain, the edges qK , . . . , qm−n+1 are not present in any of T2, . . . , TK .

Proof. Similar to the previous lemma. �
5.5.18. It is therefore sufficient to find T2, . . . , TK in the graph obtained from G by
contracting the edges tK , . . . , tn and deleting qK , . . . , qm−n+1. This graph has only
O(K) vertices and O(K) edges. The only remaining hurdle is how to calculate the
gains. For edges outside T1, it again suffices to find the peaks of the covered paths.
The gains of MST edges require a different algorithm, but Tarjan [Tar79] has shown
how to obtain them in time O(mα(m,n)).

When we put the results of this section together, we can conclude:

5.5.19. Theorem. (Finding K lightest spanning trees)
For a given graph G with real edge weights and a positive integer K, the K best
spanning trees can be found in time O(mα(m,n) + min(K2,Km + K log K)).

Proof. First we find the MST of G in time O(mα(m,n)) using the Pettie’s Optimal
MST algorithm (Theorem 4.4.6). Then we calculate the gains of MST edges by the
Tarjan’s algorithm from [Tar79], again in O(mα(m,n)), and the gains of the other
edges using our MST verification algorithm (Corollary 3.4.14) in O(m). We use
Lemma 5.5.16 to identify edges that are required, and Lemma 5.5.17 to find edges
that are superfluous. We contract the former edges, remove the latter ones and
run Algorithm 5.5.10 to find the spanning trees. By Lemma 5.5.11, it runs in the
desired time.

If K � m, this reduction does not pay off, so we run Algorithm 5.5.10 directly
on the input graph. �
5.5.20. Improvements. It is an interesting open question whether the algorithms of
Section 3.4 can be modified to calculate all gains in linear time. The main procedure
could be, but it requires having the input reduced to a balance tree beforehand and
here the Bor̊uvka trees fail. The Buchsbaum’s Pointer-Machine algorithm (3.4.15)
seems to be more promising.

5.5.21. Large K. When K is large, re-running the verification algorithm for every
change of the graph is too costly. Frederickson [Fre97] has shown how to find
the best swaps dynamically, reducing the overall time complexity of Algorithm
5.5.10 to O(Km1/2) and improving the bound in Theorem 5.5.19 to O(mα(m,n)+
min(K3/2,Km1/2)). It is open if the dynamic data structures of this chapter could
be modified to bring the complexity of finding the next tree down to polylogarithmic.

5.5.22. Multiple minimum trees. Another nice application of Theorem 5.5.19 is find-
ing all minimum spanning trees in a graph that does not have distinct edge weights.
We find a single MST using any of the algorithms of the previous chapters and then
we use the enumeration algorithm of this section to find further spanning trees as
long as their weights are equal to the minimum.
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We can even use the reduction of the number of edges from Lemmata 5.5.16 and
5.5.17: we start with some fixed K and when we exhaust all K trees, we double K
and restart the whole process. The extra time spent on these restarts is dominated
by the time of the final pass.

This finally settles the question that we have asked ourselves in Section 1.2,
namely whether we lose anything by assuming that all weights are distinct and by
searching for just the single minimum tree.
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6. Applications

6.1. Special cases and related problems
Towards the end of our story of the minimum spanning trees, we will now

focus our attention on various special cases of the MST problem and also to several
related problems that frequently arise in practice.

6.1.1. Graphs with sorted edges. When the edges of the given graph are already
sorted by their weights, we can use the Kruskal’s algorithm to find the MST in time
O(mα(n)) (Theorem 1.4.21). We can however do better: As the minimality of
a spanning tree depends only on the order of weights and not on the actual values
(The Minimality Theorem, 1.2.6), we can renumber the weights to 1, . . . ,m and
find the MST using the Fredman-Willard algorithm for integer weights. According
to Theorem 3.2.20 it runs in time O(m) on the Word-RAM.

6.1.2. Graphs with a small number of distinct weights. When the weights of edges
are drawn from a set of a fixed size U , we can sort them in linear time and so
reduce the problem to the previous case. A more practical way is to use the Jarńık’s
algorithm (1.4.11), but replace the heap by an array of U buckets. As the number
of buckets is constant, we can find the minimum in constant time and hence the
whole algorithm runs in time O(m), even on the Pointer Machine. For large values
of U, we can build a binary search tree or the van Emde-Boas tree (see Section
2.3 and [vEB77]) on the top of the buckets to bring the complexity of finding the
minimum down to O(log U) or O(log log U) respectively.

6.1.3. Graphs with floating-point weights. A common case of non-integer weights
are rational numbers in floating-point (FP) representation. Even in this case we
will be able to find the MST in linear time. The most common representation of
binary FP numbers specified by the IEEE standard 754-1985 [IEE85] has a useful
property: When the bit strings encoding non-negative FP numbers are read as
ordinary integers, the order of these integers is the same as of the original FP
numbers. We can therefore once again replace the edge weights by integers and use
the linear-time integer algorithm. While the other FP representations (see [Gol91]
for an overview) need not have this property, the corresponding integers can be
adjusted in O(1) time to the format we need using bit masking. (More advanced
tricks of this type have been employed by Thorup [Tho00a] to extend his linear-time
algorithm for single-source shortest paths to FP edge lengths.)

6.1.4. Graphs with bounded degrees. For graphs with vertex degrees bounded by
a constant ∆, the problem is either trivial (if ∆ < 3) or as hard as for arbitrary
graphs. There is a simple linear-time transform of arbitrary graphs to graphs with
maximum degree 3 which preserves the MST:

6.1.5. Lemma. (Degree reduction)
For every graph G there exists a graph G′ with maximum degree at most 3 and
a function π : E(G)! E(G′) such that mst(G) = π−1(mst(G′)). The graph G′ and
the embedding π can be constructed in time O(m).

Proof. We show how to eliminate a single vertex v of degree d > 3 and then apply
induction.
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Degree reduction in Lemma 6.1.5

Assume that v has neighbors w1, . . . , wd. We replace v and the edges vwi by
d new vertices v1, . . . , vd, joined by a path v1v2 . . . vd, and edges viwi. Each edge
of the path will receive a weight smaller than all original weights, the other edges
will inherit the weights of the edges vwi they replace. The edges of the path will
therefore lie in the MST (this is obvious from the Kruskal’s algorithm) and as G
can be obtained from the new G′ by contracting the path, the rest follows from the
Contraction lemma (1.5.10).

This step can be carried out in time O(d). It replaces a high-degree vertex by
vertices of degree 3 and it does not change degrees of any other vertices. So the whole
procedure stops in at most n such steps, so it takes time O(

P
v∈V deg(v)) = O(m),

including the time needed to find the high-degree vertices at the beginning. �
6.1.6. Euclidean MST. The MST also has its counterparts in the realm of geometric
algorithms. Suppose that we have n points x1, . . . , xn in the plane and we want
to find the shortest system of segments connecting these points. If we want the
segments to touch only in the given points, this is equivalent to finding the MST of
the complete graph on the vertices V = fx1, . . . , xng with edge weights defined as
the Euclidean distances of the points. Since the graph is dense, many of the MST
algorithms discussed run in linear time with the size of the graph, hence in time
O(n2).

There is a more efficient method based on the observation that the MST is
always a subgraph of the Delaunay’s tesselation for the given points (this was first
noted by Shamos and Hoey [SH75]). The tesselation is a planar graph, which
guarantees that it has O(n) edges, and it is a dual graph of the Voronoi diagram
of the given points, which can be constructed in time O(n log n) using for example
the Fortune’s algorithm [For87]. We can therefore reduce the problem to finding
the MST of the tesselation for which O(n log n) time is more than sufficient.

This approach fails for non-Euclidean metrics, but in some cases (in particular
for the rectilinear metric) the O(n log n) time bound is also achievable by the algo-
rithm of Zhou et al. [ZSN02] based on the sweep-line technique and the Red rule.
For other variations on the geometric MST, see Eppstein’s survey paper [Epp96].

6.1.7. Steiner trees. The constraint that the segments in the previous example are
allowed to touch each other only in the given points looks artificial and it is indeed
uncommon in practical applications (including the problem of designing electrical
transmission lines originally studied by Bor̊uvka). If we lift this restriction, we get
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the problem known by the name Steiner tree.1 We can also define it in terms of
graphs:

6.1.8. De�nition. A Steiner tree of a weighted graph (G,w) with a set M � V of
mandatory vertices is a tree T � G that contains all the mandatory vertices and
its weight is minimum possible.

When M = V , the Steiner tree is identical to the MST, but if we allow an ar-
bitrary choice of the mandatory vertices, it is NP-hard. This has been proven by
Garey and Johnson [GGJ77, GJ77] for not only the graph version with weights
f1, 2g, but also for the planar version with Euclidean or rectilinear metric. There is
a polynomial-time approximation algorithm with ratio 5/3 for graphs due to Prömel
and Steger [PS00] and a polynomial-time approximation scheme for the Euclidean
Steiner tree in an arbitrary dimension by Arora [Aro98].

6.1.9. Approximating the weight of the MST. Sometimes we are not interested in
the actual edges forming the MST and only the weight matters. If we are willing to
put up with a randomized approximation, we can even achieve sub-linear complex-
ity. Chazelle et al. [CRT05] have shown an algorithm which, given 0 < ε < 1/2,
approximates the weight of the MST of a graph with average degree d and edge
weights from the set f1, . . . , wg in time O(dwε−2 � log(dw/ε)), producing a weight
which has relative error at most ε with probability at least 3/4. They have also
proven a close lower bound Ω(dwε−2).

For the d-dimensional Euclidean case, there is a randomized approximation
algorithm by Czumaj et al. [CEF+03] which with high probability produces a span-

ning tree within relative error ε in eO(
p

n � poly(1/ε))2 queries to a data struc-
ture containing the points. The data structure is expected to answer orthogo-
nal range queries and cone approximate nearest neighbor queries. There is also
an eO(n � poly(1/ε)) time approximation algorithm for the MST weight in arbitrary
metric spaces by Czumaj and Sohler [CS04]. (This is still sub-linear since the
corresponding graph has roughly n2 edges.)

6.2. Practical algorithms

So far, we were studying the theoretical aspects of the MST algorithms. How
should we find the MST on a real computer?

Moret and Shapiro [MS94] have conducted an extensive experimental study of
performance of implementations of various MST algorithms on different computers.
They have tested the algorithms on several sets of graphs, varying in the number of
vertices (up to millions) and in edge density (from constant to n1/2. In almost all
tests, the winner was an ordinary Prim’s algorithm implemented with pairing heaps
[FSST86]. The pairing heaps are known to perform surprisingly well in practice, but
they still elude attempts at complete theoretical analysis. So far the best results are
those of Pettie [Pet05], who has proven that deletion of the minimum takes O(log n)
time and all other operations take O(22

√
log log n); both bounds are amortized.

1 It is named after the Swiss mathematician Jacob Steiner who studied a special
case of this problem in the 19th century.

2 eO(f) = O(f � logO(1) f) and poly(n) = nO(1).
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The Moret’s study however completely misses variants of the Bor̊uvka’s algo-
rithm and many of those have very promising characteristics, especially for planar
graphs and minor-closed classes.

Also, Katriel et al. [KST03] have proposed a new algorithm based on the Red
rule. It is a randomized algorithm which uses a simplified form of the idea of
edge filtering from the algorithm of Karger, Klein and Tarjan (see Section 3.5).
The expected time complexity is slightly worse: O(n log n+m). However, for dense
graphs it performs very well in practice, even in comparison with the Moret’s results.

6.2.1. Parallel algorithms. Most of the early parallel algorithms for the MST are
variants of the Bor̊uvka’s algorithm. The operations on the individual trees are
independent of each other, so they can be carried out in parallel. There are O(log n)
steps and each of them can be executed in O(log n) parallel time using standard
PRAM techniques (see [JáJ92] for the description of the model).

Several better algorithms have been constructed, the best of which run in time
O(log n). Chong, Han and Lam [CHL01] have recently discovered an algorithm
that achieves this time complexity even on the EREW PRAM — the weakest of
the parallel RAM’s which does not allow concurrent reading nor writing to the same
memory cell by multiple processors. In this model, the O(log n) bound is clearly
the best possible.

As in the sequential models, the basic question still remains open: Is it possible
to compute the MST in parallel on EREW PRAM, spending only linear work? This
would of course imply existence of a linear-time sequential algorithm, so none of
the known parallel algorithms achieve that. Algorithms with linear work can be ob-
tained by utilizing randomness, as shown for example by Pettie and Ramachandran
[PR02a], but so far only at the expense of higher time complexity.
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7. Ranking Combinatorial Structures

7.1. Ranking and unranking
The techniques for building efficient data structures on the RAM, which we

have described in Chapter 2, can be also used for a variety of problems related
to ranking of combinatorial structures. Generally, the problems are stated in the
following way:

7.1.1. De�nition. Let C be a set of objects and � a linear order on C. The rank
RC,≺(x) of an element x 2 C is the number of elements y 2 C such that y � x. We
will call the function RC,≺ the ranking function for C ordered by � and its inverse
R−1

C,≺ the unranking function for C and �. When the set and the order are clear

from the context, we will use plain R(x) and R−1(x). Also, when � is defined on
a superset C ′ of C, we naturally extend RC(x) to elements x 2 C ′ n C.

7.1.2. Example. Let us consider the set Ck = f0,1gk of all binary strings of length k
ordered lexicographically. Then R−1(i) is the i-th smallest element of this set, that
is the number i written in binary and padded to k digits (i.e., hiik in the notation
of Section 2.4). Obviously, R(x) is the integer whose binary representation is the
string x.

7.1.3. In this chapter, we will investigate how to compute the ranking and unranking
functions for different sets efficiently. Usually, we will observe that the ranks (and
hence the input and output of our algorithm) are large numbers, so we can use the
integers of a similar magnitude to represent non-trivial data structures.

7.1.4. Until the end of the chapter, we will always assume that our model of com-
putation is the Random Access Machine (more specifically, the Word-RAM).

7.2. Ranking of permutations
One of the most common ranking problems is ranking of permutations on the

set [n] = f1, 2, . . . , ng. This is frequently used to create arrays indexed by permu-
tations: for example in Ruskey’s algorithm for finding Hamilton cycles in Cayley
graphs (see [RJW95] and [RS93]) or when exploring state spaces of combinatorial
puzzles like the Loyd’s Fifteen [SD06]. Many other applications are surveyed by Cri-
tani et al. [CDDB97] and in most cases, the time complexity of the whole algorithm
is limited by the efficiency of the (un)ranking functions.

The permutations are usually ranked according to their lexicographic order. In
fact, an arbitrary order is often sufficient if the ranks are used solely for indexing
of arrays. The lexicographic order however has an additional advantage of a nice
structure, which allows various operations on permutations to be performed directly
on their ranks.

Näıve algorithms for lexicographic ranking require time Θ(n2) in the worst case
[Rei77] and even on average [Lie97]. This can be easily improved to O(n log n) by
using either a binary search tree to calculate inversions, or by a divide-and-conquer
technique, or by clever use of modular arithmetic (all three algorithms are described
in Knuth [Knu98]). Myrvold and Ruskey [MR01] mention further improvements to
O(n log n/ log log n) by using the RAM data structures of Dietz [Die89].
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Linear time complexity was reached by Myrvold and Ruskey [MR01] for a non-
lexicographic order, which is defined locally by the history of the data structure —
in fact, they introduce a linear-time unranking algorithm first and then they derive
an inverse algorithm without describing the order explicitly. However, they leave
the problem of lexicographic ranking open.

We will describe a general procedure which, when combined with suitable RAM
data structures, yields a linear-time algorithm for lexicographic (un)ranking.

7.2.1. Notation. We will view permutations on a finite set A � N as ordered jAj-
tuples (in other words, arrays) containing every element of A exactly once. We will
use square brackets to index these tuples: π = (π[1], . . . , π[jAj]), and sub-tuples:
π[i . . . j] = (π[i], π[i + 1], . . . , π[j]). The lexicographic ranking and unranking func-
tions for the permutations on A will be denoted by L(π,A) and L−1(i, A) respec-
tively.

7.2.2. Observation. Let us first observe that permutations have a simple recursive
structure. If we fix the first element π[1] of a permutation π on the set [n], the
elements π[2], . . . , π[n] form a permutation on [n]�fπ[1]g = f1, . . . , π[1]� 1, π[1] +
1, . . . , ng. The lexicographic order of two permutations π and π′ on the original
set is then determined by π[1] and π′[1] and only if these elements are equal, it is
decided by the lexicographic comparison of permutations π[2 . . . n] and π′[2 . . . n].
Moreover, when we fix π[1], all permutations on the smaller set occur exactly once,
so the rank of π is (π[1]� 1) � (n� 1)! plus the rank of π[2 . . . n].

This gives us a reduction from (un)ranking of permutations on [n] to (un)rank-
ing of permutations on a (n � 1)-element set, which suggests a straightforward
algorithm, but unfortunately this set is different from [n�1] and it even depends on
the value of π[1]. We could renumber the elements to get [n�1], but it would require
linear time per iteration. To avoid this, we generalize the problem to permutations
on subsets of [n]. For a permutation π on a set A � [n] of size m, similar reasoning
gives a simple formula:

L((π[1], . . . , π[m]), A) = RA(π[1]) � (m� 1)! + L((π[2], . . . , π[m]), A n fπ[1]g),
which uses the ranking function RA for A. This recursive formula immediately
translates to the following recursive algorithms for both ranking and unranking
(described for example in [Knu98]):

7.2.3. Algorithm. Rank(π, i, n,A): Compute the rank of a permutation π[i . . . n]
on A.

1. If i � n, return 0.

2. a RA(π[i]).

3. b Rank(π, i + 1, n, A n fπ[i]g).
4. Return a � (n� i)! + b.

We can call Rank(π, 1, n, [n]) for ranking on [n], i.e., to calculate L(π, [n]).

7.2.4. Algorithm. Unrank(j, i, n,A): Return an array π such that π[i . . . n] is the
j-th permutation on A.

1. If i > n, return (0, . . . , 0).
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2. x R−1
A (bj/(n� i)!c).

3. π  Unrank(j mod (n� i)!, i + 1, n, A n fxg).
4. π[i] x.

5. Return π.

We can call Unrank(j, 1, n, [n]) for the unranking problem on [n], i.e., to calculate
L−1(j, [n]).

7.2.5. Representation of sets. The most time-consuming parts of the above algo-
rithms are of course operations on the set A. If we store A in a data structure of
a known time complexity, the complexity of the whole algorithm is easy to calculate:

7.2.6. Lemma. Suppose that there is a data structure maintaining a subset of [n] un-
der a sequence of deletions, which supports ranking and unranking of elements, and
that the time complexity of a single operation is at most t(n). Then lexicographic
ranking and unranking of permutations can be performed in time O(n � t(n)).

Proof. Let us analyse the above algorithms. The depth of the recursion is n and
in each nested invocation of the recursive procedure we perform a constant number
of operations. All of them are either trivial, or calculations of factorials (which can
be precomputed in O(n) time), or operations on the data structure. �
7.2.7. Example. If we store A in an ordinary array, we have insertion and deletion
in constant time, but ranking and unranking in O(n), so t(n) = O(n) and the
algorithm is quadratic. Binary search trees give t(n) = O(log n). The data structure
of Dietz [Die89] improves it to t(n) = O(log n/ log log n). In fact, all these variants
are equivalent to the classical algorithms based on inversion vectors, because at
the time of processing π[i], the value of RA(π[i]) is exactly the number of elements
forming inversions with π[i].

7.2.8. To obtain linear time complexity, we will make use of the representation of
vectors by integers on the RAM as developed in Section 2.4, but first of all, we will
make sure that the ranks are large numbers, so the word size of the machine has to
be large as well:

7.2.9. Observation. log n! = Θ(n log n), therefore the word size must be Ω(n log n).

Proof. We have nn � n! � bn/2cbn/2c, so n log n � log n! � bn/2c � logbn/2c. �
Thus we get the following theorem:

7.2.10. Theorem. (Lexicographic ranking of permutations)
When we order the permutations on the set [n] lexicographically, both ranking and
unranking can be performed on the RAM in time O(n).

Proof. We will store the elements of the set A in a sorted vector. Each element has
O(log n) bits, so the whole vector takes O(n log n) bits, which by the above obser-
vation fits in a constant number of machine words. We know from Algorithm 2.4.7
that ranks can be calculated in constant time in such vectors and that insertions
and deletions can be translated to ranks and masking. Unranking, that is indexing
of the vector, is masking alone. So we can apply the previous Lemma 7.2.6 with
t(n) = O(1). �
7.2.11. Remark. We can also easily derive the non-lexicographic linear-time algo-
rithm of Myrvold and Ruskey [MR01] from our algorithm. We will relax the re-
quirements on the data structure to allow the order of elements to depend on the
history of the structure (i.e., on the sequence of deletes performed so far). We can
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observe that although the algorithm no longer gives the lexicographic ranks, the
unranking function is still an inverse of the ranking function, because the sequence
of deletes from A is the same during both ranking and unranking.

The implementation of the relaxed structure is straightforward. We store the
set A in an array α and use the order of the elements in α determine the order
on A. We will also maintain an “inverse” array α−1 such that α[α−1[x]] = x for
every x 2 A. Ranking and unranking can be performed by a simple lookup in these
arrays: RA(x) = α−1[x], R−1(i) = α[i]. When we want to delete an element, we
exchange it with the last element in the array α and update α−1 accordingly.

7.3. Ranking of k -permutations
The ideas from the previous section can be also generalized to lexicographic

ranking of k-permutations, that is of ordered k-tuples of distinct elements drawn
from the set [n]. There are nk = n � (n � 1) � . . . � (n � k + 1) such k-permutations
and they have a recursive structure similar to the one of the permutations. We will
therefore use the same recursive scheme as before (algorithms 7.2.3 and 7.2.4), but
we will modify the first step of both algorithms to stop after the first k iterations.
We will also replace the number (n� i)! of permutations on the remaining elements
by the number of (k� i)-permutations on the same elements, i.e., by (n� i)k−i. As
(n� i)k−i = (n� i) � (n� i� 1)k−i−1, we can precalculate all these values in linear
time.

Unfortunately, the ranks of k-permutations can be much smaller, so we can no
longer rely on the same data structure fitting in a constant number of word-sized
integers. For example, if k = 1, the ranks are O(log n)-bit numbers, but the data
structure still requires Θ(n log n) bits.

We do a minor side step by remembering the complement of A instead, that
is the set of the at most k elements we have already seen. We will call this set H
(because it describes the “holes” in A). Let us prove that Ω(k log n) bits are needed
to represent the rank, so the vector representation of H certainly fits in a constant
number of words.

7.3.1. Lemma. The number of k-permutations on [n] is 2Ω(k log n).

Proof. We already know that there nk such k-permutations. If k � n/2, then every
term in the product is n/2 or more, so log nk � k � (log n � 1). If k � n/2, then
nk � nn/2 and log nk � (n/2)(log n� 1) � (k/2)(log n� 1). �
7.3.2. It remains to show how to translate the operations on A to operations on H,
again stored as a sorted vector h. Insertion to A correspond to deletion from H and
vice versa. The rank of any x 2 [n] in A is x minus the number of holes that are
smaller than x, therefore RA(x) = x � RH(x). To calculate RH(x), we can again
use the vector operation Rank from Algorithm 2.4.7, this time on the vector h.

The only operation, which we cannot translate directly, is unranking in A. We
will therefore define an auxiliary vector r of the same size as h, containing the
ranks of the holes: ri = RA(hi) = hi � RH(hi) = hi � i. To find the j-th smallest
element of A, we locate the interval between holes to which this element belongs:
the interval is bordered from below by a hole hi such that i is the largest index
satisfying ri � j. In other words, i = Rank(r, j + 1)� 1. Finding the right element
in the interval is then easy: R−1

A (j) = hi + 1 + j � ri.
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7.3.3. Example. If A = f2, 5, 6g and n = 8, then h = (1, 3, 4, 7, 8) and r =
(0, 1, 1, 3, 3). When we want to calculate R−1

A (2), we find i = 2 and the wanted
element is h2 + 1 + 2� r2 = 4 + 1 + 2� 1 = 6.

7.3.4. The vector r can be updated in constant time whenever an element is inserted
to h. It is sufficient to shift the fields apart (we know that the position of the new
element in r is the same as in h), insert the new value using masking operations and
decrease all higher fields by one in parallel by using a single subtraction. Updates
after deletions from h are analogous.

We have replaced all operations on A by the corresponding operations on the
modified data structure, each of which works again in constant time. Therefore
we have just proven the following theorem, which brings this section to a happy
ending:

7.3.5. Theorem. (Lexicographic ranking of k-permutations)
When we order the k-permutations on the set [n] lexicographically, both ranking
and unranking can be performed on the RAM in time O(k).

Proof. We modify algorithms 7.2.3 and 7.2.4 for k-permutations as shown at the
beginning of this section. We use the vectors h and r described above as an implicit
representation of the set A. The modified algorithm uses recursion k levels deep
and as each operation on A can be performed in O(1) time using h and r, every
level takes only constant time. The time bound follows. �
7.4. Restricted permutations

Another interesting class of combinatorial objects that can be counted and
ranked are restricted permutations. An archetypal member of this class are per-
mutations without a fixed point, i.e., permutations π such that π(i) 6= i for all i.
These are also called derangements or hatcheck permutations.1 We will present
a general (un)ranking method for any class of restricted permutations and derive
a linear-time algorithm for the derangements from it.

7.4.1. De�nition. We will fix a non-negative integer n and use P for the set of
all permutations on [n]. A restriction graph is a bipartite graph G whose parts are
two copies of the set [n]. A permutation π 2 P satisfies the restrictions if (i, π(i))
is an edge of G for every i.

7.4.2. Boards and rooks. We will follow the path unthreaded by Kaplansky and
Riordan [KR46] and charted by Stanley in [Sta00]. We will relate restricted per-
mutations to placements of non-attacking rooks on a hollow chessboard.

7.4.3. De�nition.
� A board is the grid B = [n]� [n]. It consists of n2 squares.
� A trace of a permutation π 2 P is the set of squares T (π) = f(i, π(i)); i 2 [n]g.

7.4.4. Observation. The traces of permutations (and thus the permutations them-
selves) correspond exactly to placements of n rooks at the board in a way such that
the rooks do not attack each other (i.e., there is at most one rook in every row and

1 As the story in [MN98] goes, once upon a time there was a hatcheck lady who
was so confused that she was giving out the hats completely at random. What is
the probability that none of the gentlemen receives his own hat?
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likewise in every column; as there are n rooks, there must be exactly one of them
in every row and column). When speaking about rook placements, we will always
mean non-attacking placements.

Restricted permutations then correspond to placements of rooks on a board
with some of the squares removed. The holes (missing squares) correspond to the
non-edges of G, so π 2 P satisfies the restrictions iff T (π) avoids the holes.

7.4.5. De�nition. Let H � B be any set of holes in the board. Then:

� Nj denotes the number of placements of n rooks on the board such that
exactly j of the rooks stand on holes. That is:

Nj :=
���nπ 2 P

��� jH \ T (π)j = j
o���.

� rk is the number of ways how to place k rooks on the holes. In other words,
this is the number of k-element subsets of H such that no two elements
share a common row or column.
� N is the generating function for the Nj’s:

N(x) =
X
j≥0

Njx
j.

As Nj = 0 for j > n, this function is in fact a finite polynomial.

7.4.6. Theorem. (The number of restricted permutations, Stanley [Sta00])
The function N can be expressed in terms of the numbers rk as:

N(x) =
nX

k=0

rk � (n� k)! � (x� 1)k.

Proof. If two polynomials of degree n coincide at more than n points, they are
identical, therefore it is sufficient to prove that the equality holds for all x 2 N+.
The N(x) counts the ways of placing n rooks on the board and labeling each of
them which stands on a hole with an element of [x]. The right-hand side counts the
same: We can obtain any such configuration by placing k rooks on H first, labeling
them with elements of f2, . . . , xg, placing additional n� k rooks on the remaining
rows and columns (there are (n�k)! ways how to do this) and labeling those of the
new rooks standing on a hole with 1. �
7.4.7. Corollary. When we substitute x = 0 in the above equality, we get a formula
for the number of rook placements avoiding the holes altogether:

N0 = N(0) =
nX

k=0

(�1)k � (n� k)! � rk.

7.4.8. Example. Let us apply this theory to the hatcheck lady problem. The set H
of holes is the main diagonal of the board: H = f(i, i) j i 2 [n]g. When we want
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to place k rooks on the holes, we can do that in rk = (n
k) ways. By the previous

corollary, the number of derangements is:

N0 =
nX

k=0

(�1)k � (n� k)! �
 

n

k

!
=

nX
k=0

(�1)k � n!

k!
= n! �

nX
k=0

(�1)k

k!
.

As the sum converges to 1/e when n approaches infinity, we know that the number
of derangements is asymptotically n!/e.

7.4.9. Matchings and permanents. Placements of n rooks (and therefore also re-
stricted permutations) can be also equated with perfect matchings in the restric-
tion graph G. The edges of the matching correspond to the squares occupied by
the rooks, the condition that no two rooks share a row nor column translates to the
edges not touching each other, and the use of exactly n rooks is equivalent to the
matching being perfect.

There is also a well-known correspondence between the perfect matchings in
a bipartite graph and non-zero summands in the formula for the permanent of
the bipartite adjacency matrix M of the graph. This holds because the non-zero
summands are in one-to-one correspondence with the placements of n rooks on the
corresponding board. The number N0 is therefore equal to the permanent of the
matrix M .

We will summarize our observations by the following lemma:

7.4.10. Lemma. The following sets have the same cardinality:

� permutations that obey a given restriction graph G,
� non-attacking placements of rooks on a n � n board avoiding holes that

correspond to non-edges of G,
� perfect matchings in the graph G,
� non-zero summands in the permanent of the adjacency matrix of G.

Proof. Follows from 7.4.4 and 7.4.9. �
7.4.11. The diversity of the characterizations of restricted permutations brings both
good and bad news. The good news is that we can use the plethora of known results
on bipartite matchings. Most importantly, we can efficiently determine whether
there exists at least one permutation satisfying a given set of restrictions:

7.4.12. Theorem. There is an algorithm which decides in time O(n1/2 �m) whether
there exists a permutation satisfying a given restriction graph. The n and m are
the number of vertices and edges of the restriction graph.

Proof. It is sufficient to verify that there exists a perfect matching in the given
graph. By a standard technique, this can be reduced in linear time to finding
a maximum flow in a suitable unit-capacity network. This flow can be then found
using the Dinic’s algorithm in time O(

p
n � m). (See Dinic [Din70] for the flow

algorithm, Even and Tarjan [ET75] for the time bound and Schrijver [Sch03] for
more references on flows and matchings.) �
7.4.13. The bad news is that computing the permanent is known to be #P-complete
even for zero-one matrices (as proven by Valiant [Val79]). As a ranking function for
a set of matchings can be used to count all such matchings, we obtain the following
theorem:
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7.4.14. Theorem. If there is a polynomial-time algorithm for lexicographic ranking
of permutations with a set of restrictions which is a part of the input, then P = #P.

Proof. We will show that a polynomial-time ranking algorithm would imply a po-
lynomial-time algorithm for computing the permanent of an arbitrary zero-one ma-
trix, which is a #P-complete problem.

We know from Lemma 7.4.10 that non-zero summands in the permanent of
a zero-one matrix M correspond to permutations restricted by a graph G whose
bipartite adjacency matrix is M . The permanent is therefore equal to the num-
ber of such permutations, which is one more than the rank of the lexicograph-
ically maximum such permutation. It therefore remains to show that we can
find the lexicographically maximum permutation permitted by G in polynomial
time.

We can determine π[1] by trying all the possible values permitted by G in
decreasing order and stopping as soon as we find π[1] which can be extended to
a complete permutation. This can be verified using the previous theorem on the
graph of the remaining restrictions, i.e., on G with the vertices 1 on one side and π[1]
on the other side removed. Once we have π[1], proceed by finding π[2] in the
same way, using the reduced graph. This way we construct the whole maximum
permutation π in O(n2) calls to the verification algorithm. �
7.4.15. Recursive structure. However, the hardness of computing the permanent is
the only obstacle. We will show that whenever we are given a set of restrictions for
which the counting problem is easy (and it is also easy for subgraphs obtained by
deleting vertices), ranking is easy as well. The key will be once again a recursive
structure, similar to the one we have seen in the case of plain permutations in
7.2.2.

7.4.16. Notation. As we will work with permutations on different sets simultane-
ously, we have to extend our notation accordingly. For every finite set of elements
A � N, we will consider the set PA of all permutations on A, as usually viewed
as ordered jAj-tuples. The restriction graph will be represented by its adjacency
matrix M 2 f0, 1g|A|×|A| and a permutation π 2 PA satisfies M (conforms to the
restrictions) iff M [i, j] = 1 whenever j = RA(π[i])+1.2 The set of all such π will be
denoted by PA,M and their number (which obviously does not depend on the choice
of A) by N0(M) = perM .

We will also frequently need to delete a row and a column simultaneously
from M . This operation corresponds to deletion of one vertex from each part of the
restriction graph. We will write M i,j for the matrix M with its i-th row and j-th
column removed.

7.4.17. Observation. Let us consider a permutation π 2 PA and n = jAj. When
we fix the value of the element π[1], the remaining elements form a permutation
π′ = π[2 . . . n] on the set A′ = Anfπ[1]g. The permutation π satisfies the restriction
matrix M if and only if M [1, a] = 1 for a = RA(π[1]) and π′ satisfies a restriction
matrix M ′ = M1,a. This translates to the following counterparts of algorithms 7.2.3
and 7.2.4:

2 The +1 is added because matrices are indexed from 1 while the lowest rank is 0.
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7.4.18. Algorithm. Rank(π, i, n,A,M): Compute the lexicographic rank of a per-
mutation π[i . . . n] 2 PA,M .

1. If i � n, return 0.

2. a RA(π[i]).

3. b Ca =
P

k N0(M
1,k) over all k such that 1 � k � a and M [1, k] = 1.

(Ca is the number of permutations in PA,M whose first element lies
among the first a elements of A.)

4. Return b + Rank(π, i + 1, n, A n fπ[i]g,M1,a+1).

To calculate the rank of π 2 PA,M , we call Rank(π, 1, jAj, A,M).

7.4.19. Algorithm. Unrank(j, i, n,A,M): Return an array π such that π[i, . . . , n]
is the j-th permutation in PA,M .

1. If i > n, return (0, . . . , 0).

2. Find minimum a such that Ca > j (where Ca is as in Rank above).

3. x R−1
A (a� 1).

4. π  Unrank(j � Ca−1, i + 1, n, A n fxg,M1,a).

5. π[i] x.

6. Return π.

To find the j-th permutation in PA,M , we call Unrank(j, 1, jAj, A,M).

7.4.20. The time complexity of these algorithms will be dominated by the compu-
tation of the numbers Ca, which requires a linear amount of calls to N0 on every
level of recursion, and by the manipulation with matrices. Because of this, we do
not need any sophisticated data structure for the set A, an ordinary sorted array
will suffice. (Also, we cannot use the vector representation blindly, because we have
no guarantee that the word size is large enough.)

7.4.21. Theorem. (Lexicographic ranking of restricted permutations)
Suppose that we have a family of matrices M = fM1,M2, . . .g such that Mn 2f0, 1gn×n and it is possible to calculate the permanent of M ′ in time O(t(n)) for
every matrix M ′ obtained by deletion of rows and columns from Mn. Then there
exist algorithms for ranking and unranking in PA,Mn

in time O(n4 +n2 � t(n)) if Mn

and an n-element set A are given as a part of the input.

Proof. We will combine the algorithms 7.4.18 and 7.4.19 with the supplied function
for computing the permanent. All matrices constructed by the algorithm are sub-
matrices of Mn of the required type, so all computations of the function N0 can be
performed in time O(t(n)) each.

The recursion is n levels deep. Every level involves a constant number of
(un)ranking operations on A and computation of at most n of the Ca’s. Each such
Ca can be derived from Ca−1 by constructing a submatrix of M (which takes O(n2)
time) and computing its N0. We therefore spend time O(n2) on operations with
the set A, O(n4) on matrix manipulations and O(n2 � t(n)) by the computations of
the N0’s. �
7.4.22. Approximation. In cases where efficient evaluation of the permanent is out
of our reach, we can consider using the fully-polynomial randomized approximation
scheme for the permanent described by Jerrum, Sinclair and Vigoda [JSV04]. They
have described a randomized algorithm that for every ε > 0 approximates the value
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of the permanent of an n � n matrix with non-negative entries. The output is
within relative error ε from the correct value with probability at least 1/2 and the
algorithm runs in time polynomial in n and 1/ε. From this, we can get a similar
approximation scheme for the ranks.

7.4.23. Special restriction graphs. There are also deterministic algorithms for com-
puting the number of perfect matchings in various special graph families (which
imply polynomial-time ranking algorithms for the corresponding families of permu-
tations). If the graph is planar, we can use the Kasteleyn’s algorithm [Kas67] based
on Pfaffian orientations which runs in time O(n3). It has been recently extended
to arbitrary surfaces by Yuster and Zwick [YZ07] and sped up to O(n2.19). The
counting problem for arbitrary minor-closed classes (cf. Section 3.1) is still open.

7.5. Hatcheck lady and other derangements
The time bound for ranking of general restricted permutations shown in the

previous section is obviously very coarse. Its main purpose was to demonstrate that
many special cases of the ranking problem can be indeed computed in polynomial
time. For most families of restriction matrices, we can do much better. One of the
possible improvements is replacing the matrix M by the corresponding restriction
graph and instead of copying the matrix at every level of recursion, we can perform
local operations on the graph and undo them later. Another useful trick is to
calculate the N0’s of the smaller matrices using information already computed for
the larger matrices.

These speedups are hard to state formally in general (they depend on the
structure of the matrices), so we will concentrate on a specific example instead. We
will show that for the derangements one can achieve linear time complexity.

7.5.1. Notation. As we already know, the hatcheck permutations correspond to
restriction matrices that contain zeroes only on the main diagonal, and to graphs
that are complete bipartite with the matching f(i, i) j i 2 [n]g deleted. For a given
order n, we will call this matrix Dn and the graph Gn and we will show that the
submatrices of Dn share several nice properties:

7.5.2. Lemma. Let D be a submatrix of Dn obtained by deletion of rows and
columns. Then the value of the permanent of D depends only on the size of D
and on the number of zero entries in D.

Proof. We know from Lemma 7.4.10 that the permanent counts matchings in the
graph G obtained from Gn by removing the vertices corresponding to the deleted
rows and columns of Dn. Therefore we can prove the lemma for the number of
matchings instead.

As Gn is a complete bipartite graph without edges of a single perfect matching,
the graph G must be also complete bipartite with some non-touching edges missing.
Two such graphs G and G′ are therefore isomorphic if and only if they have the
same number of vertices and also the same number of missing edges. As the number
of matchings is an isomorphism invariant, the lemma follows. �
7.5.3. Remark. There is a clear combinatorial intuition behind this lemma: if we are
to count permutations with restrictions placed on z elements and these restrictions
are independent, it does not matter how exactly they look like.
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7.5.4. De�nition. Let n0(z, d) be the permanent shared by all submatrices as de-
scribed by the above lemma, which have d� d entries and exactly z zeroes.

7.5.5. Lemma. The function n0 satisfies the following recurrence:

n0(0, d) = d!,

n0(d, d) = d! �Xd

k=0

(�1)k

k!
,

n0(z, d) = z � n0(z � 1, d� 1) + (d� z) � n0(z, d� 1) for z < d.

(�)

Proof. The base cases of the recurrence are straightforward: n0(0, d) counts the un-
restricted permutations on [d], and n0(d, d) is equal to the number of derangements
on [d], which we have already computed in Example 7.4.8. Let us prove the third
formula.

We will count the permutations π restricted by a matrix M of the given param-
eters z and d. As z < d, there is at least one position in the permutation for which
no restriction applies and by Lemma 7.5.2 we can choose without loss of generality
that it is the first position.

If we select π[1] from the z restricted elements, the rest of π is a permutation on
the remaining elements with one restriction less and there are n0(z � 1, d� 1) such
permutations. On the other hand, if we use an unrestricted element, all restrictions
stay in effect, so there are n0(z, d� 1) ways how to do so. �
7.5.6. Lemma. The function n0 also satisfies the following recurrence:

n0(z � 1, d) = n0(z, d) + n0(z � 1, d� 1) for z > 0, d > 0. (z)

Proof. We will again take advantage of having proven Lemma 7.5.2, which allows
us to choose arbitrary matrices with the given parameters. Let us pick a matrix Mz

containing z zeroes such that Mz[1, 1] = 0. Then define Mz−1 which is equal to Mz

everywhere except Mz−1[1, 1] = 1.

We will count the permutations π 2 Pd satisfying Mz−1 in two ways. First,
there are n0(z�1, d) such permutations. On the other hand, we can divide the them
to two types depending on whether π[1] = 1. Those having π[1] 6= 1 are exactly
the n0(z, d) permutations satisfying Mz. The others correspond to permutations
(π[2], . . . , π[d]) on f2, . . . , dg that satisfy M1,1

z , so there are n0(z�1, d�1) of them. �
7.5.7. Corollary. For a given n, a table of the values n0(z, d) for all 0 � z � d � n
can be precomputed in time O(n2).

Proof. Use either recurrence and induction on z + d. �
7.5.8. Corollary. For every 0 � z < d we have n0(z, d)� n0(z + 1, d) � n0(z, d)/d.

Proof. According to the recurrence (z), the difference n0(z, d)�n0(z+1, d) is equal
to n0(z, d� 1). We can bound this by plugging the trivial inequality n0(z, d� 1) �
n0(z � 1, d� 1) to (�), from which we obtain n0(z, d) � d � n0(z, d� 1). �
7.5.9. The algorithm. Let us show how to modify the ranking algorithm (7.4.18)
using the insight we have gained into the structure of derangements.

The algorithm uses the matrix M only for computing N0 of its submatrices
and we have shown that this value depends only on the order of the matrix and
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the number of zeroes in it. We will therefore replace maintenance of the matrix by
remembering the number z of its zeroes and the set Z that contains the elements
x 2 A whose locations are restricted (there is a zero anywhere in the (RA(x) + 1)-
th column of M). In other words, every x 2 Z can appear at all positions in the
permutation except one (and these forbidden positions are different for different x’s),
while the remaining elements of A can appear anywhere.

As we already observed (7.4.8) that the number of derangements on [n] is Θ(n!),
we can again use word-sized vectors to represent the sets A and Z with insertion,
deletion, ranking and unranking on them in constant time.

When the algorithm selects a submatrix M ′ = M1,k for an element x whose
rank is k � 1, this matrix it is described by either by the choice of z′ = z � 1
and Z ′ = Z n fxg (if x 2 Z) or z′ = z and Z ′ = Z (if x 62 Z). All computations
of N0 in the algorithm can be therefore replaced by looking up the appropriate
n0(z

′, jAj � 1) in the precomputed table. Moreover, we can calculate a single Ca in
constant time, because all summands are either n0(z, jAj � 1) or n0(z � 1, jAj � 1),
depending on the set Z. We get:

Ca = r � n0(z � 1, jAj � 1) + (a� r) � n0(z, jAj � 1),

where r = RZ(R−1
A (a)), that is the number of restricted elements among the a small-

est ones in A.

All operations at a single level of the Rank function now run in constant time,
but Unrank needs to search among the Ca’s to find the first of them which exceeds
the given rank. We could use binary search, but that would take Θ(log n) time.
There is however a clever trick: the value of Ca does not vary too much with the
set Z. Specifically, by Corollary 7.5.8 the difference between the values for Z = ;
and Z = A is at most n0(z � 1, jAj � 1). It is therefore sufficient to just divide the
rank by n0(z�1, jAj�1) and we get either the correct value of a or one more. Both
possibilities can be checked in constant time.

We can therefore conclude this section by the following theorem:

7.5.10. Theorem. (Ranking of derangements)
For every n, the derangements on the set [n] can be ranked and unranked according
to the lexicographic order in time O(n) after spending O(n2) on initialization of
auxiliary tables.

Proof. We modify the general algorithms for (un)ranking of restricted permutations
(7.4.18 and 7.4.19) as described above (7.5.9). Each of the n levels of recursion will
then run in constant time. The values n0 will be looked up in a table precalculated
in quadratic time as shown in Corollary 7.5.7. �
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8. Epilogue
We have seen the many facets of the minimum spanning tree problem. It has

turned out that while the major question of the existence of a linear-time MST
algorithm is still open, backing off a little bit in an almost arbitrary direction leads
to a linear solution. This includes classes of graphs with edge density at least λk(n)
for an arbitrary fixed k, minor-closed classes, and graphs whose edge weights are
integers. Using randomness also helps, as does having the edges pre-sorted.

If we do not know anything about the structure of the graph and we are only
allowed to compare the edge weights, we can use the Pettie’s MST algorithm. Its
time complexity is guaranteed to be asymptotically optimal, but we do not know
what it really is — the best what we have is an O(mα(m,n)) upper bound and the
trivial Ω(m) lower bound.

One thing we however know for sure. The algorithm runs on the weakest of
our computational models —the Pointer Machine— and its complexity is linear in
the minimum number of comparisons needed to decide the problem. We therefore
need not worry about the details of computational models, which have contributed
so much to the linear-time algorithms for our special cases. Instead, it is sufficient
to study the complexity of MST decision trees. However, aside from the properties
mentioned in Section 4.3, not much is known about these trees so far.

As for the dynamic algorithms, we have an algorithm which maintains the
minimum spanning forest within poly-logarithmic time per operation. The optimum
complexity is once again undecided — the known lower bounds are very far from
the upper ones. The known algorithms run on the Pointer machine and we do not
know if using a stronger model can help.

For the ranking problems, the situation is completely different. We have shown
linear-time algorithms for three important problems of this kind. The techniques,
which we have used, seem to be applicable to other ranking problems. On the other
hand, ranking of general restricted permutations has turned out to balance on the
verge of #P -completeness. All our algorithms run on the RAM model, which seems
to be the only sensible choice for problems of inherently arithmetic nature. While
the unit-cost assumption on arithmetic operations is not universally accepted, our
results imply that the complexity of our algorithm is dominated by the necessary
arithmetics.

Aside from the concrete problems we have solved, we have also built several
algorithmic techniques of general interest: the unification procedures using pointer-
based bucket sorting (Section 2.2) and the vector computations on the RAM (Sec-
tion 2.4). We hope that they will be useful in many other algorithms.
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A. Notation

A.1. Symbols
A(x, y) . . . . . Ackermann’s function (A.3.1)
A(x) . . . . . . . diagonal Ackermann’s function (A.3.1)
and . . . . . . . bitwise conjunction: (x and y)[i] = 1 iff x[i] = 1 ^ y[i] = 1
Ck . . . . . . . . . cycle on k vertices
D(G) . . . . . . optimal MSF decision tree for a graph G (4.3.1)
D(G) . . . . . . depth of D(G) (4.3.1)
D(m,n) . . . . decision tree complexity of MSF for m edges and n vertices (4.3.1)
Dn . . . . . . . . . n�n matrix with 0’s on the main diagonal and 1’s elsewhere (7.5.1)
degG(v) . . . . degree of vertex v in graph G; we omit G if it is clear from context
E(G) . . . . . . set of edges of a graph G
E . . . . . . . . . . E(G) when the graph G is clear from context
EX . . . . . . . . expected value of a random variable X
Kk . . . . . . . . . complete graph on k vertices
L(π,A) . . . . lexicographic ranking function for permutations on a set A � N

(7.2.1)
L−1(i, A) . . . lexicographic unranking function, the inverse of L (7.2.1)
log n . . . . . . . binary logarithm of the number n
log∗ n . . . . . . iterated logarithm: log∗ n := minfi j log(i) n � 1g; the inverse of 2 " n
LSB(x) . . . . position of the lowest bit set in x (2.4.9)
MSB(x) . . . position of the highest bit set in x (2.4.9)
MSF . . . . . . . minimum spanning forest (1.1.2)
msf(G) . . . . the unique minimum spanning forest of a graph G (1.2.8)
MST . . . . . . . minimum spanning tree (1.1.2)
mst(G) . . . . the unique minimum spanning tree of a graph G (1.2.8)
m(G) . . . . . . number of edges of a graph G, that is jE(G)j
m . . . . . . . . . . m(G) when the graph G is clear from context
N . . . . . . . . . . set of all non-negative integers
N+ . . . . . . . . set of all positive integers
N0(M) . . . . . number of permutations satisfying the restrictions M (7.4.16)
n(G) . . . . . . . number of vertices of a graph G, that is jV (G)j
n . . . . . . . . . . n(G) when the graph G is clear from context
not . . . . . . . bitwise negation: (not x)[i] = 1� x[i]
O(g) . . . . . . . asymptotic O: f = O(g) iff 9c > 0 : f(n) � g(n) for all n � n0eO(g) . . . . . . . f = eO(g) iff f = O(g � logO(1) g)
or . . . . . . . . . bitwise disjunction: (x or y)[i] = 1 iff x[i] = 1 _ y[i] = 1
PA . . . . . . . . . set of all permutations on a set A (7.4.16)
PA,M . . . . . . set of all permutations on A satisfying the restrictions M (7.4.16)
perM . . . . . . permanent of a square matrix M
poly(n) . . . . f = poly(n) iff f = O(nc) for some c
Pr[ϕ] . . . . . . probability that a predicate ϕ is true
R . . . . . . . . . . set of all real numbers
RC,≺(x) . . . . rank of x in a set C ordered by � (7.1.1)
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R−1
C,≺(i) . . . . unrank of i: the i-th smallest element of a set C ordered by � (7.1.1)

V (G) . . . . . . set of vertices of a graph G
V . . . . . . . . . . V (G) when the graph G is clear from context
W . . . . . . . . . word size of the RAM (2.1.2)
w(e) . . . . . . . weight of an edge e
xor . . . . . . . bitwise non-equivalence: (x xor y)[i] = 1 iff x[i] 6= y[i]
α(n) . . . . . . . diagonal inverse of the Ackermann’s function (A.3.4)
α(m,n) . . . . α(m,n) := minfx � 1 j A(x, 4dm/ne) > log ng (A.3.4)
β(m,n) . . . . β(m,n) := minfi j log(i) n � m/ng (3.2.16)
δG(U) . . . . . . the cut separating U � V (G) from V (G) n U (1.3.8)
δG(v) . . . . . . edges of a one-vertex cut, i.e., δG(fvg) (1.3.8)
Θ(g) . . . . . . . asymptotic Θ: f = Θ(g) iff f = O(g) and f = Ω(g)
λi(n) . . . . . . inverse of the i-th row of the Ackermann’s function (A.3.4)
%(C) . . . . . . . edge density of a graph class C (3.1.9)
Ω(g) . . . . . . . asymptotic Ω: f = Ω(g) iff 9c > 0 : f(n) � g(n) for all n � n0

T [u, v] . . . . . the path in a tree T joining vertices u and v (1.2.1)
T [e] . . . . . . . . the path in a tree T joining the endpoints of an edge e (1.2.1)
A ∆ B . . . . . symetric difference of sets: (A nB) [ (B nA)
G� e . . . . . . graph G with edge e removed
G + e . . . . . . graph G with edge e added
G[U ] . . . . . . . subgraph induced by a set U � V (G)
(X

k ) . . . . . . . . the set of all k-element subsets of a set X
G/e . . . . . . . . multigraph contraction (A.2.3)
G . e . . . . . . . simple graph contraction (A.2.4)
G/X, G . X contraction by a set X of vertices or edges (A.2.5)
f [X] . . . . . . . function applied to a set: f [X] := ff(x) j x 2 Xg
f [e] . . . . . . . . as edges are two-element sets, f [e] maps both endpoints of an edge e
f (i) . . . . . . . . function f iterated i times: f (0)(x) := x, f (i+1)(x) := f(f (i)(x))
2 " n . . . . . . . the tower function (iterated exponential): 2"0 := 1, 2"(n+1) := 22↑n

hxi . . . . . . . . number x 2 N written in binary (2.4.2)
hxib . . . . . . . . hxi zero-padded to exactly b bits (2.4.2)
x[i] . . . . . . . . when x 2 N: the value of the i-th bit of x (2.4.2)
x[B] . . . . . . . when x 2 N: the values of the bits at positions in the set B (2.5.13)
π[i] . . . . . . . . when π is a sequence: the i-th element of π, starting with π[1] (7.2.1)
π[i . . . j] . . . . the subsequence π[i], π[i + 1], . . . , π[j]
σk . . . . . . . . . the string σ repeated k times (2.4.2)
0, 1 . . . . . . . . bits in a bit string (2.4.2)
� . . . . . . . . . . congruence modulo a given number
x . . . . . . . . . . vector with elements x1, . . . , xd; x is its bitwise encoding (2.4.4)
x << n . . . . . bitwise shift of x by n positions to the left: x << n = x � 2n

x >> n . . . . . bitwise shift of x by n positions to the right: x >> n = bx/2nc
[n] . . . . . . . . . the set f1, 2, . . . , ng (7.2)
nk . . . . . . . . . k-th falling factorial power: n � (n� 1) � . . . � (n� k + 1) (7.3)
H 4 G . . . . . H is a minor of G (3.1.1)
G *R . . . . . . graph G with edges in R corrupted (4.2.4)
RC . . . . . . . . RC = R \ δ(C) (4.2.4)
M i,j . . . . . . . the matrix M with i-th row and j-th column deleted (7.4.16)
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A.2. Multigraphs and contractions

Since the formalism of multigraphs is not fixed in the literature, we will better
define it carefully, following [Die05]:

A.2.1. De�nition. A multigraph is an ordered triple (V,E,M), where V is the set
of vertices, E is the set of edges, taken as abstract objects disjoint with the vertices,
and M is a mapping E ! V [(V

2) which assigns to each edge either a pair of vertices
or a single vertex (if the edge is a loop).

A.2.2. Notation. When the meaning is clear from the context, we use the standard
graph notation even for multigraphs. For example, xy 2 E(G) becomes a shorthand
for 9e 2 E(G) such that M(G)(e) = fx, yg. Also, we consider multigraphs with no
multiple edges nor loops and simple graphs to be the same objects, although they
formally differ.

A.2.3. De�nition. Let G = (V,E,M) be a multigraph and e = xy its arbitrary edge.
The (multigraph) contraction of e in G produces a multigraph G/e = (V ′, E ′,M ′)
such that:

V ′ = (V (G) n fx, yg) [ fveg, where ve is a new vertex,

E ′ = E(G)� feg,
M ′(f) = fm(v) j v 2M(f)g for every f 2 E ′, and

m(x) =

�
ve for v = x, y,

v otherwise.

We sometimes also need to contract edges in simple graphs. It is equivalent to
performing the multigraph contraction and then unifying parallel edges and deleting
loops.

A.2.4. De�nition. Let G = (V,E) a simple graph and e = xy its arbitrary edge.
The (simple graph) contraction of e in G produces a graph G . e = (V ′, E ′) such
that:

V ′ = (V (G) n fx, yg) [ fveg, where ve is a new vertex,

E ′ = ffm(x),m(y)g j xy 2 E ^m(x) 6= m(y)g,
m(x) =

�
ve for v = x, y,

v otherwise.

A.2.5. De�nition. We can also extend the above definitions to contractions of a set
of vertices or edges. For F � E(G), the graph G/F is defined as (G/f1)/f2/ . . . /fk

where f1, . . . , fk are the elements of F (the result obviously does not depend on the
order of edges). For U � V (G), we define G/U as the graph with all vertices of U
merged to a single vertex, that is (G [ U∗)/U∗, where U∗ is the complete graph
on U . Similarly for G . F and G . U .
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A.3. Ackermann's function and its inverses
The Ackermann’s function is an extremely quickly growing function which has

been introduced by Ackermann [Ack28] in the context of computability theory.
Its original purpose was to demonstrate that not every recursive function is also
primitive recursive. At the first sight, it does not seem related to efficient algorithms
at all. Its various inverses however occur in analyses of algorithms and mathematical
structures surprisingly often: We meet them in Section 1.4 in the time complexity
of the Disjoint Set Union data structure and also in the best known upper bound
on the decision tree complexity of minimum spanning trees in Section 4.4. Another
important application is in the complexity of Davenport-Schinzel sequences (see
Klazar’s survey [Kla02]), but as far as we know, these are not otherwise related to
the topic of our study.

Various sources differ in the exact definition of both the Ackermann’s function
and its inverse, but most of these differences are in factors that are negligible in the
light of the giant asymptotic growth of the function.1 We will use the definition by
double recursion given by Tarjan [Tar75], which is predominant in the literature on
graph algorithms.

A.3.1. De�nition. The Ackermann’s function A(x, y) is a function on non-negative
integers defined as follows:

A(0, y) := 2y,

A(x, 0) := 0,

A(x, 1) := 2 for x � 1,

A(x, y) := A(x� 1, A(x, y � 1)) for x � 1, y � 2.

The functions A(x, �) are called the rows of A(x, y), similarly A(�, y) are its columns.

Sometimes, a single-parameter version of this function is also used. It is defined
as the diagonal of the previous function, i.e., A(x) := A(x, x).

A.3.2. Example. We can try evaluating A(x, y) in some points:

A(x, 2) = A(x� 1, A(x, 1)) = A(x� 1, 2) = A(0, 2) = 4,

A(1, y) = A(0, A(1, y � 1)) = 2A(1, y � 1) = 2y−1A(1, 1) = 2y,

A(2, y) = A(1, A(2, y � 1)) = 2A(2,y−1) = 2 " y (the tower of exponentials),

A(3, y) = the tower function iterated y times,

A(4, 3) = A(3, A(4, 2)) = A(3, 4) = A(2, A(3, 3)) = A(2, A(2, A(3, 2))) =

= A(2, A(2, 4)) = 2 " (2 " 4) = 2 " 65536.

A.3.3. Inverses. As common for functions of multiple parameters, there is no single
function which could claim the title of the only true Inverse Ackermann’s function.
The following three functions related to the inverse of the function A are often
considered:

1 To quote Pettie [Pet06]: “In the field of algorithms & complexity, Ackermann’s
function is rarely defined the same way twice. We would not presume to buck such
a well-established precedent. Here is a slight variant.”
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A.3.4. De�nition. The i-th row inverse λi(n) of the Ackermann’s function is defined
by:

λi(n) := minfy j A(i, y) > log ng.
The diagonal inverse α(n) is defined by:

α(n) := minfx j A(x) > log ng.
The two-parameter alpha function α(m,n) is defined for m � n by:

α(m,n) := minfx � 1 j A(x, 4dm/ne) > log ng.
A.3.5. Example. λ1(n) = O(log log n), λ2(n) = O(log∗ n), λ3(n) grows even slower
and α(n) is asymptotically smaller than λi(n) for any fixed i.

A.3.6. Observation. It is easy to verify that all the rows are strictly increasing and
so are all columns, except the first three columns which are constant. Therefore for
a fixed n, α(m,n) is maximized at m = n. So α(m,n) � 3 when log n < A(3, 4),
which covers all values of m that are likely to occur in practice.

A.3.7. Lemma. α(m,n) � α(n) + 1.

Proof. We know that A(x, 4dm/ne) � A(x, 4) = A(x�1, A(x, 3)) � A(x�1, x�1),
so A(x, 4dm/ne) rises above log n no later than A(x� 1, x� 1) does. �
A.3.8. Lemma. When i is a fixed constant and m � n � λi(n), then α(m,n) � i.

Proof. The choice of m guarantees that A(x, 4dm/ne) � A(x, λi(n)), which is
greater than log n for all x � i. �
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matematik̊u a fyzik̊u, Praha, 2007. In Czech.

[HMP01] T. Hagerup, P. B. Miltersen, and R. Pagh. Deterministic Dictionaries.
Journal of Algorithms, 41(1):69–85, 2001.

[Hoa61] C. A. R. Hoare. Algorithm 65: find. Communications of the ACM,
4(7):321–322, 1961.

[Hoa62] C. A. R. Hoare. Quicksort. The Computer Journal, 5(1):10–16. British
Computer Society, 1962.

[HT84] D. Harel and R. E. Tarjan. Fast algorithms for finding nearest common
ancestors. SIAM Journal on Computing, 13(2):338–355, 1984.

[HT02] Y. Han and M. Thorup. Integer Sorting in O(n
p

log log n) Expected
Time and Linear Space. In FOCS 2002: Proceedings of the 43rd Annual
IEEE Symposium on Foundations of Computer Science, pages 135–144,
2002.

[IEE85] IEEE. IEEE Standard 754-1985 for Binary Floating-point Arithmetic.
IEEE, 1985.

[Int07] Intel Corp. Intel 64 and IA-32 Architectures Software Developer’s Man-
ual, Volume 2: Instruction Set Reference. Intel Corp., 2007.

[ITY95] M. Ito, N. Takagi, and S. Yajima. Efficient Initial Approximation and
Fast Converging Methods for Division and Square Root. In Proceedings
of the 12th IEEE Symposium on Computer Arithmetic, pages 2–9, 1995.
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