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Notation

F t
−∞ = Ft = σ(Xs, s ≤ t) σ-field generated by history of random process {Xt}

up to time t

F+∞
t+m = σ(Xs, s ≥ t + m) σ-field generated by future of random process {Xt}

from time t + m

E[Xt|Ft−1] conditional mean value of random variable Xt

given σ-field Ft−1

var[Xt|Ft−1] conditional variance of random variable Xt

given σ-field Ft−1

X
D−→ N

(
0, V

)
convergence in distribution of random variable X

to a random variable having normal distribution

with mean 0 and variance V

Xn
a.s.−→ X as n → +∞ convergence almost surely,

equivalent to P(Xn → X as n → +∞) = 1

A⊗B Kronecker product of matrices A and B

I identity matrix of particular dimension

6



Chapter 1

Introduction

Random coefficient autoregressive models, abbreviated in this work as RCA, have been
studied for a long time which indicates their usefulness in econometric practice. One of
the first pieces of work concerning these models were paper [2] by Anděl published in 1976
and publication [25] by Nicholls and Quinn from 1982.

These models belong to a broad class of conditional heteroscedastic time series mod-
els because of their varying conditional variance. Well-known autoregressive conditional
heteroscedastic models (ARCH) introduced by Engle in [11] are in fact just special cases
of RCA models, see [31] or [32]. In the latter article, Tsay states that “RCA models
were widely investigated by time series analysts and ARCH models were investigated by
econometricians” which together with second-order equivalency between RCA and ARCH
models (meaning that they have the same conditional expectation and variance) justify
the necessity of studying RCA models. It is nicely expressed by the author a few pages
later: “Recognition of this connection provides useful insight into these two types of mod-
els. First, a combination of research in time series and econometrics provides sufficient
theory for understanding and using these models: to econometricians, properties of the
ARCH models, conditional and unconditional, can be derived directly form those of the
RCA models available in the time series literature; to time series analysts, applications of
the ARCH models in econometrics justify the practical value of the RCA models.” Tsay
then introduced extension of RCA concept called conditional heteroscedastic autoregres-
sive and moving averages models (CHARMA) and the rest of the article is devoted to
estimation of such models. CHARMA models are close to ARMA-ARCH models that
can be briefly described as standard autoregressive moving average models with ARCH
type error process, see for instance [38].

The relation between RCA and ARCH processes is investigated in [16] as well, where
the author found a connection between RCA process and AR-ARCH process. There is
also investigated an extension of RCA model into a model with heteroscedastic error
process variance of which depends on time. Estimation of AR-ARCH process and tests
for stationarity under weaker conditions are also described in the sequence of articles [21]
and [22] written by Ling where the author uses double-autoregressive model as a special
case of ARMA-ARCH models.

7
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RCA models represent a natural extension of the well-known autoregressive processes.
Specifically, process {Xt, t ∈ Z} is called RCA process of order p, in short RCA(p) process,
if Xt for each t ∈ Z satisfies

Xt =

p∑
i=1

(βi + Bt,i) Xt−i + Yt, (1.1)

where β1, . . . , βp are unknown constant parameters, {Yt, t ∈ Z} is an error process with
zero expectation and {Bt = (Bt,1, . . . , Bt,p)

′, t ∈ Z} denotes a p-dimensional random
coefficient process with zero expectation.

Natural discussion about necessity of such an extension of AR processes might appear,
meaning whether the coefficients might not be treated as non-random without significant
loss of accuracy. This leads to testing of randomness of the coefficients which is mentioned
in [25] (Chapter 6) and summarized in [1] and [13], for instance.

Let us come back to RCA models given by equation (1.1). Their stochastic setup was
initially defined by the following set of assumptions:

A1: Random coefficient process {Bt, t ∈ Z} is a sequence of independent and identically
distributed random vectors with zero mean and constant finite variance matrix Σ (in case
that Bt are univariate random variables, their variance is denoted as σ2

B).

A2: {Bt, t ∈ Z} and {Yt, t ∈ Z} are mutually independent.

A3: Error process {Yt, t ∈ Z} is a sequence of independent random variables with zero
mean and finite variance σ2.

Anděl in [2] derived conditions for existence of the RCA process as a weakly stationary
solution of the singly-infinite stochastic difference equation (SDE) (1.1) starting at t = 0.
In our doubly-infinite setup, given by equation (1.1) and assumtions A1–A3, the stationary
solution is granted by the conditions derived in [25] which will be stated later. The authors
of [25] also studied various estimators of unknown parameters β, σ2 and Σ, in which case
they needed more strict modification of assumption A3.

A4: Error process {Yt, t ∈ Z} is a sequence of independent and identically distributed
random variables with zero mean and finite variance σ2.

This classical stochastic setup was relaxed during past years in a lot of ways. For
instance, Hwang and Basawa in [14] studied estimators of RCA models where the random
coefficients and the error process are correlated through a time-independent covariance
matrix. They called such models Generalized RCA process and investigated both esti-
mation of the covariance structure and limit distribution of the least-squares estimators.
Alternatively, the error process can be heteroscedastic with time-dependent variance σ2

t ,
see [16], [17], and even then the assumption of independence could be weakened into
martingale difference property, see [15].
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In this work we will employ another type of generalization related to the choice of the
error process in RCA model, previously used for instance in [5]. Namely, during particular
sections we will use the following assumption:

A5: Error process {Yt, t ∈ Z} is an ergodic and strictly stationary martingale difference
sequence with respect to Ft = σ (Bs, Ys; s ≤ t) with finite variance σ2.

Concerning parameter estimation of RCA models, we go down the non-Bayesian time
domain path following the work of Nicholls and Quinn (see [25]). However, Bayesian
approach seems to be also favorable and gives useful results, see for instance [37]. In
that paper, Wang and Ghosh worked with RCA process as a three-level hierarchical
model (they called it RCAR there) and did parameter estimation and unit-root testing in
this Bayesian setup. Using simulation they concluded that this approach is suitable for
smaller sample sizes with presence of volatility in the data and it is robust against model
misspecification.

Estimation of parameters in RCA models, especially of the first-order, has been done in
great detail by many authors. Basic least-squares estimators and their weighted versions
are commonly used with various relaxations of model assumptions. Maximum likelihood
estimator is also very popular (for proper derivation of the estimator see for instance [25]),
although it does not have explicit expression in general. Quasi-maximum likelihood esti-
mator of parameters in the first-order RCA models under optimal conditions is studied
in [4], more elaborate estimators, namely generalized M -estimators, are introduced in [19]
where asymptotic normality in a semiparametric model setup is discussed. Authors in [39]
deal with an integer-valued RCA processes and they utilize estimator proposed by Schick
in [28].

The aim of this work is to develop theory of the estimators of RCA models originally
introduced by Schick in [28] for the first-order RCA process only. He proposed a whole
class of functional

√
n-consistent estimators and we extent this concept for generalized

RCA processes for higher-order and multivariate first-order cases. The following chap-
ters are structured similarly, beginning with model definition and defining the function
estimator. The model definition parts include theorems about existence of the general-
ized RCA process. After that we prove strong consistency and asymptotical normality of
the functional estimator for all mentioned RCA models. We estimate the asymptotical
variances, or variance matrices, and prove strong consistency of proposed estimators. We
also discuss the optimal choice of the functional estimator in the context of efficiency of
the estimators.

We begin with the first-order RCA models. Chapter 2 properly defines RCA(1) pro-
cess and describes its basic properties. Then we mention commonly used least-squares
estimators and maximum likelihood estimator. Section 2.4 presents functional estimator
and findings done by Schick in [28]. In the subsequent paragraphs, we investigate statis-
tical properties of such estimators, devoting the extra attention to rate of convergence to
normal distribution.

Chapter 3 introduces the concept of functional estimators into higher-order RCA mod-
els. We derive strong consistency and asymptotical normality of such estimators. The
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asymptotical variance matrix is derived both in general and for three specific choices of
the estimator. We also suggest a consistent estimator of the variance matrix there.

In a similar manner, Chapter 4 deals with multivariate first-order models. Such models
have been briefly studied in [25]. Estimation of special cases of non-random RCA models,
traditional vector autoregressive processes, is thoroughly discussed for instance in [23]
(Section 3.2 for the least-squares estimation, Section 3.4 for the maximum likelihood
estimation). There is also a remark about the random coefficient models in Section 18.2.1
and about an extension of multivariate AR models into stable ARMA models with time
dependent coefficients. The regularity conditions for such models could also be found
in [26].

Some conclusions and possible further topis are mentioned in Chapter 5. Since the
statistical inference presented in the proofs requires more complex techniques, special
theorems about convergency and more elaborate matrix operators are needed. There-
fore, Chapter 6 consists of non-trivial auxiliary lemmas used throughout the previous
chapters. For instance, the proofs concerning the rate of convergence in Section 2.4.4 re-
quire concepts and properties concerning the dependency structure (mixing, Lp-mixingale
and near-epoch dependency in Lp-norm) together with the Berry-Esséen theorem. Some
proofs, especially in Section 3.2.1, are based on matrix handling, so the Kronecker product,
vec and vech operators and their relations are stated in Chapter 6.

We present illustrative simulations and figures throughout the whole text. All of them
were done using software package R. Since we have not found any native estimation
procedure in R for RCA processes, we created a few functions by ourselves, especially
for simulation and estimation of RCA models. Commented source codes of the main
procedures are attached in Chapter 7.



Chapter 2

Estimators of the first-order models

2.1 Model specification

We will study the first-order RCA models in this chapter. We will present various esti-
mators of unknown parameters and compare them both theoretically and via simulation
studies.

The first-order RCA process, abbreviated as RCA(1), is a special case of equation (1.1)
for p = 1, namely

Xt = (β + Bt) Xt−1 + Yt, (2.1)

where the previous notation remains unchanged except that we omit unnecessary indices
and variance of univariate random coefficient process {Bt, t ∈ Z} will be denoted as σ2

B.
For further statistical inference, we will need the following stationarity assumption:

A6: β2 + σ2
B < 1

Definition 2.1. RCA(1) process
Real-valued random process {Xt, t ∈ Z} is called RCA(1) process if Xt satisfies ∀t ∈ Z
equation (2.1) where Bt and Yt fulfill assumptions A1, A2, A4, and A6.
Remark that (2.1) can be written in the form Xt = βXt−1 + ut, where ut = BtXt−1 + Yt.

If we denote Ft = σ (Bs, Ys; s ≤ t) and notice that both Bt and Yt are independent of
Ft−1, we can derive conditional moments of RCA(1) process.

E[Xt|Ft−1] = E[(β + Bt)Xt−1 + Yt|Ft−1] = βXt−1, (2.2)

var[Xt|Ft−1] = E
[
(Xt − E[Xt|Ft−1])

2 |Ft−1

]
= E

[
(BtXt−1 + Yt)

2 |Ft−1

]
=

= E
[
B2

t X
2
t−1|Ft−1

]
+ 2E[BtXt−1Yt|Ft−1] + E

[
Y 2

t |Ft−1

]
=

= σ2
BX2

t−1 + σ2. (2.3)

In case σ2
B > 0, the model has non-constant conditional variance which is sometimes

referred to as conditional heteroscedasticity. When both error and coefficient processes

11
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are mutually independent iid sequences and when the stationarity assumption is met,
there exists strictly stationary and ergodic solution of equation (2.1) (see [25], Corollary
2.2.1 and Theorem 2.7). In other words, there exists RCA(1) process according to Defi-
nition 2.1. From Section 2.4.2 to the end of this chapter, we will study a generalization
of the previously defined RCA(1) process.

Definition 2.2. Generalized RCA(1) process
Real-valued random process {Xt, t ∈ Z} is called Generalized RCA(1) process (GRCA(1)
for short) if Xt satisfies ∀t ∈ Z equation (2.1) where Bt and Yt fulfill assumptions A1, A2,
A5 and stationarity condition A6.

There exist other generalizations in literature (see for instance [14]) which are also
abbreviated as GRCA, so please do not get confused. Our extension covers for instance
cases of RCA models with ARCH or GARCH error process.

Theorem 2.1.
There exists a Generalized RCA(1) process according to Definition 2.2 which is Ft-
measurable, ergodic and strictly stationary.

Proof: We will basically follow similar proofs from [25]. We will show that there
exists an ergodic and strictly stationary Ft-measurable process Wt, defined as Wt

def=∑+∞
j=0

∏j−1
k=0(β + Bt−k)Yt−j, that satisfies stochastic difference equation (2.1).

We can formally iterate process {Xt} given by equation (2.1)

Xt = (β + Bt)Xt−1 + Yt = Yt + (β + Bt) ((β + Bt−1)Xt−2 + Yt−1) =

= Yt + (β + Bt)Yt−1 + (β + Bt)(β + Bt−1)Xt−2 = · · · =
= Yt + (β + Bt)Yt−1 + (β + Bt)(β + Bt−1)Yt−2+

+ (β + Bt)(β + Bt−1)(β + Bt−2)Yt−3 + . . . .

Let us define Wt,r
def=

∑r
j=0

∏j−1
k=0(β + Bt−k)Yt−j, for t ∈ Z and r = 0, 1, 2, . . . (where the

product is defined as 1 for j = 0). Using independence of {Bt}, its mutual independence
of {Yt}, and assumption β2 +σ2

B < 1 we have that variables {Wt,r, r ∈ N} possess Cauchy
property for fixed t, because for s < r it holds that

E|Wt,r −Wt,s|2 =

= E
∣∣(β + Bt) · . . . · (β + Bt−s)Yt−s−1 + . . . + (β + Bt) · . . . · (β + Bt−r+1)Yt−r

∣∣2 =

=
r∑

i=s+1

r∑
j=s+1

E
(
(β + Bt) · . . . · (β + Bt+1−i)Yt−i · (β + Bt) · . . . · (β + Bt+1−j)Yt−j

)
=

=
r∑

i=s+1

E
(
(β + Bt)

2 · . . . · (β + Bt+1−i)
2Y 2

t−i

)
=

r∑
i=s+1

(β2 + σ2
B)i · σ2 ≤

≤
+∞∑

i=s+1

(β2 + σ2
B)i · σ2 → 0 as s → +∞.
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For s > r the inference is similar. Thus, for each t ∈ Z there exists a limit in quadratic
mean of {Wt,r, r ∈ N} for r → +∞ which is equal to Wt. Wt is a function of Yt, Yt−1, . . .
and Bt, Bt−1, . . . which does not depend on time t, so Wt ∈ Ft. Since both {Bt} and {Yt}
are strictly stationary, ergodic, and mutually independent, {Wt} is also strictly stationary
and ergodic (see Lemma 6.1). Moreover,

(β + Bt)Wt−1 = (β + Bt)
+∞∑
j=0

j−1∏

k=0

(β + Bt−1−k)Yt−1−j =
+∞∑
j=0

j−1∏

k=−1

(β + Bt−k−1)Yt−1−j =

=
+∞∑
j=1

j−1∏

k=0

(β + Bt−k)Yt−j = Wt − Yt,

so process {Wt} satisfies equation (2.1) and we can refer to this process as Generalized
RCA process. ¤

The previous theorem gives us the explicit solution of equation (2.1) in form

Xt =
+∞∑
j=0

j−1∏

k=0

(β + Bt−k)Yt−j, (2.4)

where the product is defined as 1 for j = 0. Condition β2+σ2
B < 1 ensures that the infinite

sum (2.4) exists in the L2 sense. Recently published condition −∞ ≤ E ln |β + B0| < 0
derived in [4] guarantees that the sum converges almost surely (the latter condition means
that β + B0 is ”less than one” on average, see [3]). We can conclude from (2.4), using
independence of Bt and Yt, that

EXt = 0, (2.5)

varXt =
σ2

1− β − σ2
B

. (2.6)

The essential task is how to estimate the unknown parameters – in our case parameters
β, σ2

B, and σ2. The last two are usually treated as auxiliary requisites for the first one to
be estimated. Equation (2.1) defines the meaning of unknown parameters: Parameter β
may be seen as magnitude of the dependence of present value Xt on past value Xt−1, σ2

B

expresses variability of this dependence and σ2 simply stands for volatility of the error
(noise) process that blurs the dependence. Figure 2.1 indicates the influence of β and σ2

B

using simulated RCA(1) models. Two upper plots differ in variance σ2
B and we can see

that larger variance means more extremal values, more clustering of volatility. Two lower
plots illustrate situation σ2

B = 0, when random coefficient process RCA(1) simplifies to
standard autoregressive process AR(1), and we can see impact of the sign of parameter β
– for negative β the values more frequently change their sign.

Suppose for a while, that we have a sample of size n drawn from some general model
with unknown parameter θ to be estimated. We are interested whether estimator an θ̂n is
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Figure 2.1: Simulated RCA(1) processes with N(0, 1) distributed error process Yt inde-
pendent of normally distributed random coefficients Bt where [β, σ2

B] = [0.5, 0.6] (upper
left panel), [0.5, 0.2] (upper right panel), [0.5, 0] (lower left panel) and [−0.5, 0] (lower
right panel).

strongly consistent, in which case we know that the estimator is close to its true value when
the sample size is large enough (without any information about rate of the convergence).
Providing that the estimator is asymptotically normal, we can also estimate the variance
of difference θ̂n − θ. We can numerically compare estimators by either their asymptotic
variances or their mean square errors defined as MSEθ = E(θ̂n − θ)2. Whenever it is

possible we omit in notation the explicit dependence on sample size n, so we put θ̂ = θ̂n

for instance.
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2.2 Least-squares estimators

The similarity of RCA and AR models evokes that we could estimate the parameters of
RCA process using the conditional least-squares method (LS estimator). The estimator
which minimizes quantity

n∑
t=1

(Xt − E[Xt|Ft−1])
2 =

n∑
t=1

(Xt − βXt−1)
2

is equal to

β̂LS =

n∑
t=1

Xt ·Xt−1

n∑
t=1

X2
t−1

. (2.7)

Parameters σ2 and σ2
B can be estimated as follows: Analogously to equation (2.3), we can

derive that E[u2
t |Ft−1] = σ2 + σ2

BX2
t−1. Then the linear regression equation

û2
t = σ2 + σ2

B ·X2
t−1 + εt

is solved where ût = Xt − β̂LSXt−1 are the estimated residuals and εt is a noise process.
The standard Gauss-Markov solution of the regression equation, provided that n > 0 and
that {X2

t , t = 0, 1, 2, . . . , n} is not a constant sequence, is equal to

σ̂2
B =

∑n
t=1(X

2
t−1 −X)(Xt − β̂LSXt−1)

2

∑n
t=1(X

2
t−1 −X)2

,

σ̂2 =
1

n

n∑
t=1

(Xt − β̂LSXt−1)
2 − σ̂2

BX,

(2.8)

where X = 1
n

∑n
t=1 X2

t−1.
Obviously Eut = 0. Although the variance of errors ut is constant, which can easily

be seen using variance of Xt given by equation (2.6) and noticing that

varut = E
(
E

[
u2

t |Ft−1

])
= E

(
σ2

BX2
t−1 + σ2

)
= σ2

B

σ2

1− β − σ2
B

+ σ2 = σ2 1− β

1− β − σ2
B

,

conditional variance of ut quadratically depends on Xt−1. This us true as long as σ2
B > 0,

in case of σ2
B = 0 both conditional and non-conditional variance of ut reduces to σ2.

Taking into account this general conditional heteroscedasticity of errors, we can improve
the estimator by minimizing

n∑
t=1

(Xt − E[Xt|Ft−1])
2

var[Xt|Ft−1]
=

n∑
t=1

u2
t

E[u2
t |Ft−1]

=
n∑

t=1

(Xt − βXt−1)
2

σ2
BX2

t−1 + σ2
.
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We gain the weighted conditional least-squares estimator (WLS estimator)

β̂WLS =

n∑
t=1

Xt·Xt−1

σ2+σ2
B ·X2

t−1

n∑
t=1

X2
t−1

σ2+σ2
B ·X2

t−1

. (2.9)

However, to evaluate the latter formula we also need to estimate parameters σ2 and
σ2

B. We usually use two-step estimation procedure: Calculate β̂LS first, find σ̂2 and σ̂2
B

according to equations (2.8) and then compute β̂WLS by (2.9), where the true values of
unknown variances are replaced by their estimates σ̂2 and σ̂2

B, as the final estimate.

2.3 Maximum likelihood estimator

Other widely used method for parameter estimation is maximum likelihood procedure. It
is based upon additional assumption that joint distribution of the errors and the random
coefficients is normal but it works even if this assumption is violated (then it is called
quasi-maximum likelihood method). Conditional likelihood function Ln is defined as the
conditional density of vector (X1, . . . , Xn) given F0. Its maximum is equivalent to the
maximum of function

ln(β, σ2, σ2
B) = −1

2

n∑
t=1

(
ln(σ2 + σ2

B ·X2
t−1) +

(Xt − βXt−1)
2

σ2 + σ2
B ·X2

t−1

)
. (2.10)

Function (2.10) is non-linear in σ2 and σ2
B and it is impossible to find its maximum

explicitly. Usual approach to this optimalization task (see [25]) is to introduce auxiliary

parameter r =
σ2

B

σ2 , rewrite (2.10) into

ln(β, r, σ2) = −1

2
n ln σ2 − 1

2

n∑
t=1

ln(1 + rX2
t−1)−

1

2σ2

n∑
t=1

(Xt − βXt−1)
2

1 + rX2
t−1

, (2.11)

differentiate it with respect to β and σ2, respectively

∂ln
∂β

(β, r, σ2) =
1

σ2

n∑
t=1

(Xt − βXt−1)Xt−1

1 + rX2
t−1

,

∂ln
∂σ2

(β, r, σ2) = − n

2σ2
+

1

2σ4

n∑
t=1

(Xt − βXt−1)
2

1 + rX2
t−1

and set the partial derivatives equal to zero to find the extreme. The results depend on
parameter r and have form

β(r) =

∑n
t=1

XtXt−1

1+rX2
t−1∑n

t=1

X2
t−1

1+rX2
t−1

, (2.12)
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σ2(r) =
1

n

n∑
t=1

(Xt − β(r)Xt−1)
2

1 + rX2
t−1

. (2.13)

Finally, terms (2.12) and (2.13) are put back into equation (2.11), where the last term is
omitted because it has no impact on the extreme, and expression

ln(r) = −1

2
n ln σ2(r)− 1

2

n∑
t=1

ln(1 + rX2
t−1) (2.14)

is maximized with respect to r. Optimal r̂ defines maximum likelihood estimators (2.12)
and (2.13), estimator σ̂2

B equals r̂ · σ̂2(r̂).
We could also differentiate directly function (2.10) with respect to β:

∂ln
∂β

(β, σ2, σ2
B) =

n∑
t=1

(Xt − βXt−1)Xt−1

σ2 + σ2
BX2

t−1

(2.15).

Then solution of equation ∂ln
∂β

(β, σ2, σ2
B) = 0 is exactly equal to the weighted least-squares

estimator (2.9), so in our case of RCA(1) models the maximum likelihood estimator co-
incides with the weighted least-squares estimator. Notice, that if the random coefficient
has zero variance (σ2

B = 0) then those estimators equal the ordinary least-squares estima-
tor (2.7).

Figure 2.2 illustrates the estimation procedure using simulated RCA(1) process (500
observations) with true parameter β = 0.3, σ2

B = 0.4 and σ2 = 1 in which stationarity
assumption A6 is met (β2+σ2

B = 0.49 < 1). We successively computed expressions (2.12),
(2.13) and (2.14) for values r = 0, 0.05, 0.10, . . . , 2. Left panel of 2.2 shows curve ln(r),
right panel displays β(r). The colored dots highlight the values for specific choices of

parameter r =
σ2

B

σ2 : Red color stands for the least-squares estimator (r = 0), green
color for the theoretical weighted least-squares estimator (r = 0.4 because we know that
σ2

B = 0.4 and σ2 = 1) and blue color for choice r = 1 will play a special role in the
following chapters. The maximum likelihood estimator of β is defined as the maximum
of function ln(r), which is achieved for r = 0.29 with ln(0.29) = −103.92 and corresponds

to β̂ML = 0.275 (brown lines in the figure). Finally, the green horizontal line in the right
panel indicates the weighted least-squares estimator (2.9) provided that we pretend not
to know true values of σ2

B and σ2.

Firstly, least squares estimator β̂LS = 0.2568 heavily underestimates true value β =
0.3. Secondly, notice that the maximum likelihood estimator (β̂ML = 0.2749) is close

to the weighted least-squares estimator (both theoretical β̂TH
WLS = 0.2783 and “properly”

estimated β̂WLS = 0.2779). The reason, why the maximum likelihood estimator is not
exactly equal to the weighted least-squares estimator as it should be according to the
theory, is that the likelihood curve is plotted using estimated parameter σ2(r) instead of
its theoretical value 1. Finally, although estimator β(r) given by (2.12) with r = 1 equals
0.2908 and still underestimates the true value, it is the closest estimator of all mentioned.
Since the curve in the right panel of Figure 2.2 increases as r increases, in this case we
could obtain the best estimator if we set r = 1.74.
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Figure 2.2: Left panel: Log-likelihood function ln(r) given by (2.14). Right panel: Esti-
mator of parameter β given by (2.12). Based on simulated RCA(1) model with β = 0.3,
σ2

B = 0.4 and σ2 = 1.

2.4 Functional estimator

More general approach to RCA estimation was proposed by Schick in his paper [28]. He
introduced a whole class of estimators that are asymptotically equivalent to the quasi-
maximum likelihood estimator but require weaker moment conditions and can be com-
puted more easily. Since we will explore his ideas further, let us describe the basic concept
in more detail.

Consider the RCA(1) model according to Definition 2.1 and put w(x) = σ2 + σ2
Bx2.

Let φ(x) be a measurable function that satisfies xφ(x) > 0 for every x 6= 0. Define

β̂(φ) =

n∑
t=1

φ(Xt−1) ·Xt

n∑
t=1

φ(Xt−1) ·Xt−1

(2.16)

and

V (φ) =
E (φ2(X0)w(X0))(

E(φ(X0)X0)
)2 . (2.17)

The motivation for the functional estimator might be the following: Consider the
weighted least-squares estimator given by equation (2.9) which could be rewritten into
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form

β̂WLS =

n∑
t=1

Xt−1

σ2+σ2
B ·X2

t−1
·Xt

n∑
t=1

Xt−1

σ2+σ2
B ·X2

t−1
·Xt−1

and notice that it is exactly equal to equation (2.16) with φ(x) = x
σ2+σ2

Bx2 = x
w(x)

. Sim-

ilarly, the ordinary least-squares estimator β̂LS given by equation (2.7) corresponds to
the choice φ(x) = x. Thus, one could allow also other functions φ to determine the
contribution of the past values Xt−1 to the estimator.

2.4.1 Choice of generating function

Schick proved in [28], Theorem 1, that for bounded functions φ the estimator β̂(φ) is
strongly consistent estimator of parameter β and that it is asymptotically normal with
zero mean and variance V (φ), namely

√
n(β̂(φ)− β)

D−→ N
(
0, V (φ)

)
as n →∞.

He also proved that the smallest asymptotic variance V (φ) is achieved for the weighted
least-squares estimator. This can be seen from equation (2.17) using Cauchy-Schwarz
inequality and noticing that for function ψ(x) = x

w(x)
and any function φ

V (ψ) =
E

(
X2

0

w2(X0)
w(X0)

)

(
E

(
X0

w(X0)
X0

))2 =
1

E
(

X2
0

w(X0)

) =

=
1

E
(

X2
0

w(X0)

) · E (φ2(X0)w(X0))

E (φ2(X0)w(X0))
≤ E (φ2(X0)w(X0))(

E (φ(X0)X0)
)2 = V (φ).

Since V (φ) = V (c · φ) for any non-zero constant c, the optimal estimator is determined
uniquely as a consequence of the previous Cauchy-Schwarz inequality.

The same conclusion about the optimal choice of the generating function can be proved
using similar techniques as Rao did in [27] for inference of the lower bound of variance
for a general estimator. Since we will need such techniques for RCA(p) and multivariate
RCA(1) models later on, let us describe it in detail and prove the previous result once
again. The motivation for such approach stems from maximum likelihood function de-
rived in Section 2.3. Consider equation (2.15), where the first derivative of log-likelihood
function ln with respect to parameter β is derived, and assume that parameters σ2 and
σ2

B are known. Now we can compute the Fisher information

I(β) = E

(
∂ln
∂β

)2

= E

(
n∑

t=1

Xt−1ut

σ2 + σ2
BX2

t−1

)2

=
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=
n∑

t=1

E

(
E

[(
Xt−1ut

σ2 + σ2
BX2

t−1

)2

|Ft−1

])
=

=
n∑

t=1

E

(
X2

t−1

(σ2 + σ2
BX2

t−1)
2
· E[

u2
t |Ft−1

])
=

n∑
t=1

E

(
X2

t−1

σ2 + σ2
BX2

t−1

)
=

= n · E X2
0

σ2 + σ2
BX2

0

= n · 1

V (ψ)

using strict stationarity of process {Xt} and the fact that sequence { Xt−1ut

σ2+σ2
BX2

t−1
} is mar-

tingale difference w.r. to Ft and thus it is a sequence of non-correlated variables. So the
inverse of the Fisher information corresponds to the variance of the weighted least-squares
estimator.

Now, let us define random variables

T1 =
n∑

t=1

φ(Xt−1)(Xt − βXt−1) =
n∑

t=1

φ(Xt−1)ut,

T2 =
n∑

t=1

Xt−1(Xt − βXt−1)

σ2
BX2

t−1 + σ2
=

n∑
t=1

Xt−1ut

w(Xt−1)
.

(2.18)

We have

ET1 =
n∑

t=1

E
(
φ(Xt−1)ut

)
=

n∑
t=1

E
(
E[φ(Xt−1)(BtXt−1 + Yt)|Ft−1]

)
=

=
n∑

t=1

E
(
φ(Xt−1)Xt−1 · E[Bt|Ft−1] + φ(Xt−1) · E[Y1|Ft−1]

)
= 0.

Since E[φ(Xt−1)ut|Ft−1] = φ(Xt−1) · E[ut|Ft−1] = 0, sequence {φ(Xt−1)ut} is a non-
correlated martingale difference which means that

ET 2
1 =

n∑
t=1

E
(
φ(Xt−1)

2u2
t

)
=

n∑
t=1

E
(
E

[
φ(Xt−1)

2u2
t |Ft−1

])
=

=
n∑

t=1

E
(
φ(Xt−1)

2 · E[
u2

t |Ft−1

])
=

n∑
t=1

E
(
φ(Xt−1)

2 · (σ2
BX2

t−1 + σ2)
)

=

=
n∑

t=1

E
(
φ(X0)

2 · (σ2
BX2

0 + σ2)
)

= n · E (
φ(X0)

2 · w(X0)
)
. (2.19)

Similarly, we could prove that ET2 = 0 and {Xt−1(Xt−βXt−1)

σ2
BX2

t−1+σ2 } is a martingale difference

sequence. Thus

ET 2
2 =

n∑
t=1

E

(
X2

t−1u
2
t

w(Xt−1)2

)
=

n∑
t=1

E

(
X2

t−1

w(Xt−1)2
· E[

u2
t |Ft−1

])
=
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=
n∑

t=1

E

(
X2

t−1

w(Xt−1)2
· w(Xt−1)

)
= n · E

(
X2

0

w(X0)

)
. (2.20)

Finally, covariance between variables T1 and T2 equals

ET1T2 = E

(
n∑

t=1

φ(Xt−1)ut ·
n∑

s=1

Xs−1us

w(Xs−1)

)
=

= E




n∑
t=1

φ(Xt−1)Xt−1u
2
t

w(Xt−1)
+

n∑
t=1

n∑
s=1

t6=s

φ(Xt−1)Xs−1utus

w(Xs−1)


 =

=
n∑

t=1

E

(
φ(Xt−1)Xt−1

w(Xt−1)
· w(Xt−1)

)
+

n∑
t=1

n∑
s=1

t6=s

E

(
φ(Xt−1)Xs−1utus

w(Xs−1)

)
=

= n · E (
φ(X0) ·X0

)
(2.21)

using the fact that for t > s (and analogously for t < s)

E

(
φ(Xt−1)Xs−1utus

w(Xs−1)

)
= E

(
E

[
φ(Xt−1)Xs−1utus

w(Xs−1)
|Ft−1

])
=

= E

(
φ(Xt−1)Xs−1us

w(Xs−1)
· E[ut|Ft−1]

)
= 0.

Now we define random vector (T1, T2)
′ whose variance matrix equals




ET 2
1 , ET1T2

ET1T2, ET 2
2


 = n ·




Eφ(X0)
2w(X0), Eφ(X0)X0

Eφ(X0)X0, E
X2

0

w(X0)


 , (2.22)

where the elements of the matrix were computed in (2.19) - (2.21). Variance matrix (2.22)
is positively semi-definite (or non-negatively definite) which means that its determinant
has to be non-negative. Thus

Eφ(X0)
2w(X0) · E X2

0

w(X0)
− (

Eφ(X0)X0

)2 ≥ 0

⇐⇒ Eφ(X0)
2w(X0)(

Eφ(X0)X0

)2 ≥ 1

E
X2

0

w(X0)

⇐⇒ V (φ) ≥ V (ψ)

which agrees to the previous proved result using Cauchy-Schwarz inequality.
The choice of function φ has tremendous impact on estimator β̂(φ). Generally, esti-

mator β̂(φ) is invariant w.r. to multiplication of function φ(x) by non-zero constant c,
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for σ2 = 0.5 and σ2
B varying from 0 to 1. Red

straight line φ(x) = x corresponds to σ2
B = 0, blue curve to σ2 = σ2

B = 0.5.

thus β̂(φ) = β̂(c ·φ). We have already seen that φ(x) = x corresponds to the least-squares
estimator (such function φ is not bounded but the statistical properties for the estimator
could be proved separately, see for instance [25]). The optimal function φ, in the sense of
the minimal asymptotical variance, leads to the weighted least-squares estimator that is
also equal to maximum likelihood estimator in the normal case. Notice that the optimal
estimator requires the knowledge of σ2 and σ2

B (or their ratio at least). Schick solved
this problem by introducing a class of consistent estimators of σ2 and σ2

B depending on
arbitrarily chosen bounded function χ. Then he proved (see Theorem 3 in [28]) that both
strong consistency and asymptotic normality remain valid when we plug those estimates
σ̂2 and σ̂2

B into the optimal estimator.
Figure 2.3 displays functions φ(x) = x

1+
σ2

B
σ2 x2

with fixed σ2 = 0.5 and various σ2
B.

Red straight line φ(x) = x corresponds to the choice of function φ for the least-squares
estimator (2.7), blue curve corresponds to the choice σ2 = σ2

B. Generally, the larger
parameter σ2

B is the more bounded function φ. This means that functional estimator (2.16)
with such function φ down-weights larger observed values – they are “suspected” to be
caused by more volatile random coefficients.

Generally, a simple stress-test of choice of function φ was performed and Figure 2.4
displays the results. We simulated RCA(1) process of 100 observations with parameters
β = 0.3, σ2

B = 0.4 and σ2 = 1. The true value of parameter β was then estimated

using estimator β̂(φ) with φ(x) = x
1+cx2 for c = 0, 0.05, 0.10, . . . , 2. We repeated such

simulation and estimation procedure 1000 times, computed average values of estimator
for each choice of constant c and plotted the results as a function of c, see Figure 2.4.
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Figure 2.4: Average estimator β̂(φ) (true value β = 0.3) for various choices of function
φ(x) = x

1+cx2 for c = 0, 0.05, 0.10, . . . , 2. Red dot (c = 0) corresponds to the least-squares
estimator, green dot (c = 0.4) to the weighted least-squares estimator and blue dot (c = 1)
to functional estimator used later on.

We highlighted important choices of c there – red dot with c = 0 corresponds to the
least-squares estimator, green dot with c = 0.4 corresponds to the weighted least-squares
estimator and blue dot with c = 1 corresponds to the functional estimator that will be
used later on mainly.

According to results of the previous simulation, we can conclude that the least-squares
estimator underestimates true value of parameter (in average of about 7%) whereas the
weighted least-squares estimator and the functional estimator with c = 1 are closer to the
true value (relative differences are about −0.3% and +0.5% in average, respectively).

2.4.2 Consistency and asymptotical normality

In the previous paragraph we described a class of estimators of RCA(1) process where the
estimators depend on chosen function φ. The mentioned results concerning consistency
and asymptotical normality were proved by Schick in [28] under assumptions that both
error process and coefficient process are mutually independent sequences of iid random
variables. In this section we relax the assumption about independence of error process
and replace it by martingale difference sequence property.
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We managed to prove consistency and asymptotical normality for the functional esti-
mator in our GRCA(1) setup.

Theorem 2.2.
Let {Xt, t ∈ Z} be a Generalized RCA(1) according to Definition 2.2.
Let E[Y 2

t |Ft−1] = σ2 < +∞ a.s. for all t and let φ(x) be a measurable function such that
0 < E (φ(X0) ·X0) < +∞.

Then the estimator β̂(φ) defined by (2.16) is strongly consistent estimator of β and√
n(β̂(φ)− β) converges in distribution to normal distribution with zero mean and vari-

ance V (φ) defined by (2.17).

Proof: The key expression for derivation of the properties of the estimator is

β̂(φ)− β =

1
n

n∑
t=1

φ(Xt−1) · (Xt − βXt−1)

1
n

n∑
t=1

φ(Xt−1) ·Xt−1

. (2.23)

According to Theorem 2.1, process {Xt} is strictly stationary and ergodic, so both
φ(Xt−1)(Xt − βXt−1) and φ(Xt−1)Xt−1 are also strictly stationary and ergodic. The er-
godic theorem (see e.g. [10], Theorem 13.12) gives us convergence of their sample averages
to their expected values. Moreover,

E[φ(Xt−1) · (Xt − βXt−1)|Ft−1] = φ(Xt−1) · E[Yt|Ft−1] = 0,

so φ(Xt−1)·(Xt−βXt−1) is a martingale difference sequence with respect to filtration {Ft}
(thus, its expectation is zero). The denominator of (2.23) converges to non-zero and finite

value E (φ(X0) ·X0), and we have β̂(φ)− β → 0 a.s. as n → ∞ that is equivalent to

strong consistency of estimator β̂(φ).
Similarly, the Lindeberg-Levy theorem for martingales (see [7]) applied to martingale
difference sequence φ(Xt−1) · (Xt − βXt−1) with variance

var
(
φ(Xt−1)(Xt − βXt−1)

)
= E

(
E

[
φ2(Xt−1)(Xt − βXt−1)

2|Ft−1

])
=

= E
(
φ2(Xt−1) · E

[
(BtXt−1 + Yt)

2|Ft−1

])
=

= E
(
φ2(Xt−1) · (X2

t−1σ
2
B + σ2)

)
= E

(
φ2(X0) · w(X0)

)

yields

1√
n

n∑
t=1

φ(Xt−1) · (Xt − βXt−1)
D→ N

(
0, E

(
φ2(X0) · w(X0)

))
as n →∞. (2.24)

Equation (2.23) immediately gives that

√
n(β̂(φ)− β) =

1√
n

n∑
t=1

φ(Xt−1) · (Xt − βXt−1)

1
n

n∑
t=1

φ(Xt−1) ·Xt−1

,
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where the numerator converges according to (2.24) and the denominator converges al-
most surely (and consequently in distribution) to Eφ(X0)X0 from the ergodic theorem

discussed earlier. Therefore,
√

n(β̂(φ)− β)
D→ N(0, V (φ)) for n → ∞ where V (φ) is de-

fined by (2.17). ¤

Similarly to the extension of the least-squares estimator of parameter β to the func-
tional estimator depending on chosen function φ(x), Schick also generalized the estimators
of variances σ2

B and σ2 into a broader class of the estimators depending on function ψ(x).
Namely, let ψ(x) be a measurable function, denote ψ = 1

n

∑n
t=1 ψ(Xt−1), X = 1

n

∑n
t=1 X2

t−1

and let γ = cov(ψ(X0), X
2
0 ) 6= 0. Then the estimators are defined as

σ̂2
B(ψ) =

∑n
t=1(ψ(Xt−1)− ψ)(Xt − β̂(φ)Xt−1)

2

∑n
t=1(ψ(Xt−1)− ψ)X2

t−1

,

σ̂2(ψ) =
1

n

n∑
t=1

(Xt − β̂(φ)Xt−1)
2 − σ̂2

B(ψ)X,

(2.25)

where β̂(φ) is an arbitrary estimator of parameter β. Since the proof of the consistency
of such estimators given by Schick is based solely on the ergodicity of RCA(1) process, it
is valid also for our Generalized RCA(1) process. More interesting is the connection of
these functional estimators to estimators derived by (2.8) – estimators σ̂2

B and σ̂2 stated
there are the special cases of σ̂2

B(ψ) and σ̂2(ψ) for ψ(x) = x2 and φ(x) = x, which could
be easily derived noticing that

∑n
t=1(X

2
t−1 −X)X2

t−1 =
∑n

t=1(X
2
t−1 −X)2.

Now we can state and prove a theorem about the consistent estimator of the asymp-
totical variance of estimator β̂(φ).

Theorem 2.3.
Let {Xt, t ∈ Z} be Generalized RCA(1) according to Definition 2.2. Let σ2 < +∞ and
let φ(x) be measurable function such that 0 < E (φ(X0) ·X0) < +∞. Let σ̂2

B and σ̂2 be
strongly consistent estimators of σ2

B and σ2, respectively.
Define

V̂ (φ) = n ·

n∑
t=1

φ2(Xt)(σ̂
2 + σ̂2

BX2
t )

(
n∑

t=1

φ(Xt)Xt

)2 . (2.26)

Then estimator V̂ (φ) is strongly consistent estimator of asymptotical variance V (φ) de-
fined by (2.17).

Proof: Estimator V̂ (φ) could be rewritten into the form

V̂ (φ) =

σ̂2 · 1
n

n∑
t=1

φ2(Xt) + σ̂2
B · 1

n

n∑
t=1

φ2(Xt)X
2
t

(
1
n

n∑
t=1

φ(Xt)Xt

)2 .
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Similarly to the proof of Theorem 2.2, we know that φ2(Xt), φ2(Xt)X
2
t and φ(Xt)Xt are

strictly stationary and ergodic which together with the consistency of σ̂2
B and σ̂2 gives

σ̂2 · 1

n

n∑
t=1

φ2(Xt) → σ2 · E (
φ2(X0)

)
,

σ̂2
B ·

1

n

n∑
t=1

φ2(Xt)X
2
t → σ2

B · E
(
φ2(X0)X

2
0

)
,

1

n

n∑
t=1

φ(Xt)Xt → E
(
φ(X0)X0

)
.

The combination of the limiting values equals the variance matrix (2.17) which completes
the proof. ¤

2.4.3 Simulation study

In the previous section we described some estimators of RCA and Generalized RCA
models. Since those estimators differ only in the choice of generating function φ, they
posses similar asymptotical properties. In the subsequent simulation, we will see that
there can be substantial differences for final sample size among the estimators.

The aim of the study is to vary length of simulated RCA(1) time series from 50 to

500 observations and compare the least-squares estimator β̂LS, the weighted least-squares
estimator β̂WLS and the functional estimator β̂(φ) defined by (2.16) with φ(x) = x

1+x2 .
Moreover, we are curious to know whether the assumption about independence of errors
Yt is crucial.

Setup of the simulations is the following: We simulate a sequence of observations from
RCA(1) model given by equation

Xt = (0.3 + Bt)Xt−1 + Yt, (2.27)

where random coefficients {Bt, t ∈ Z} are independent N(0, 0.4) random variables. Error
process {Yt, t ∈ Z} is a sequence of identically distributed variables with zero mean and
unit variance independent of {Bt}. Notice that since true parameter β = 0.3 and σ2

B = 0.4,
stationarity condition β2 + σ2

B < 1 is fulfilled. Constellation [β, σ2
B] = [0.3, 0.4] has been

chosen to illustrate the behavior of the estimators. We also performed more exhaustive
simulation for general [β, σ2

B] ∈ R2
+ such that β2 + σ2

B < 1 which results will be described
later.

We consider two cases:

1. {Yt} are independent and normally distributed random variables so Xt forms clas-
sical RCA(1) model.
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2. {Yt} stands for ARCH(1) process of the form

Yt = σtZt a.s.,

σ2
t = 0.5 + 0.5Y 2

t−1 a.s.,

where {Zt, t ∈ Z} is a sequence of independent and identically N(0, 1) distributed
variables. Thus, {Xt} is Generalized RCA(1) model according to Definition 2.2
because ARCH process is obviously a martingale difference sequence of no longer
independent random variables. The particular choice of ARCH process does not
seem to be crucial because we achieved similar results using other ARCH processes.

Simulation procedure:

• set sample size n ∈ {50, 100, 150, . . . , 500}
• do for each choice n of sample size:

– repeat 1000 times

1. simulate RCA(1) time series according to (2.27) (n observations)

2. estimate true parameter β = 0.3 using β̂LS, β̂WLS and β̂(φ) with φ(x) =
x

1+x2 , respectively and estimate asymptotical variance V (φ) for each esti-
mator

– for each estimator compute β̂ = 1
1000

∑1000
i=1 β̂i, MSE = 1

1000

∑1000
i=1

(
β̂i − β̂

)2

and V̂ (φ) = 1
1000

∑1000
i=1 V̂ i(φ)

• for both types of errors Yt plot β̂, MSE and V̂ (φ) for each estimator as function of
sample size n.

The weighted least-squares estimator requires the knowledge of variances σ2 and σ2
B

(see expression (2.9)). We estimate those parameters as we have discussed previously
using linear regression estimates (2.8). Figures 2.5 to 2.7 display achieved results.

In brief, the weighted least-squares estimator and the functional estimator behave
similarly whereas the ordinary least-squares estimator tends to underestimate the true
value of parameter, especially in case of ARCH errors.

More precisely, the functional estimator seems to perform even little bit better than
WLS estimator in the sense that average estimate of parameter β is usually closer to its
true value 0.3. Variance of the functional estimator also decreases to zero most quickly,
its asymptotical variance is stable. Figure 2.7 also reveals known fact that the smallest
asymptotical variance is theoretically achieved by the weighted least-squares estimator.
The worst results are achieved by LS estimator in Generalized RCA(1) model with ARCH
errors. It not only underestimates the true value of parameter about 10% for small sample
sizes but also its MSE is roughly twice as large as for the other estimators and converges
very slowly. The estimate of asymptotical variance is not stable and even increases as
sample size rises.
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Figure 2.5: Average estimate β̂LS (red curve), β̂WLS (green curve) and β̂(φ) with φ(x) =
x

1+x2 (blue curve) for parameter β (true value 0.3) in simulated Generalized RCA(1)
process with iid error process Yt (left panel) and ARCH errors (right panel).
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Figure 2.6: MSE of estimator β̂LS (red curve), β̂WLS (green curve) and β̂(φ) with φ(x) =
x

1+x2 (blue curve) in simulated Generalized RCA(1) process with iid error process Yt (left
panel) and ARCH errors (right panel).
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Figure 2.7: Average asymptotical variance of estimator β̂LS (red curve), β̂WLS (green

curve) and β̂(φ) with φ(x) = x
1+x2 (blue curve) in simulated Generalized RCA(1) process

with iid error process Yt (left panel) and ARCH errors (right panel).

The difference between the weighted least-squares estimator and the functional es-
timator lies in estimation of auxiliary parameters σ2 and σ2

B – WLS needs them to be
estimated formerly while the function estimator does not. We can observe that in practice
there is no substantive difference it the estimate, even the functional estimator performs
better without their knowledge.

This simulation study might be compared to the simulations we published earlier
(see [34]). The conclusions are similar to the previous ones. The possibly larger smooth-
ness of current curves is caused by larger number of simulations performed (1000 instead
of 100) and by slightly different approach in generation of the time series due to computa-
tional requirements. Technically, here we generated sequences of the maximum length 500
observations and truncated them for smaller sample sizes whereas previously we generated
each sequence independently.

The previous results emphasized the effect of the increasing sample size. Let us add
another factor into the simulations, namely freedom in [β, σ2

B]. Specifically, we varied
both β and σ2

B in 0, 0.1, 0.2, . . . , 0.9 (maintaining that β2 + σ2
B < 1) and for each choice

of [β, σ2
B] accomplished the previous simulation procedure. The results are displayed on

Figures 2.8 and 2.9, precise numbers are included in Table 2.1.
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Figure 2.8: Average differences β̂LS −β and β̂(φ)−β with φ(x) = x
1+x2 (upper figure and

lower figure, respectively) for various parameters β and σ2
B (horizontal and vertical axis

in each panel). Sample size varies across the panels from 50 (left bottom panel) to 500
(right upper panel).
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Figure 2.9: Average difference β̂WLS−β for various parameters β and σ2
B (horizontal and

vertical axis in each panel). Sample size varies across the panels from 50 (left bottom
panel) to 500 (right upper panel).

Figure 2.8 consists of two pictures – upper figure shows the results of the simulation for

the least-squares estimator β̂LS, lower figure shows the same for the functional estimator

β̂(φ) with φ(x) = x
1+x2 . The results for the weighted least-squares estimator are separately

displayed on Figure 2.9. Each figure consists of 10 panels each of which stands for the
particular sample size of the simulations (ordered by rows from bottom to top and from
left right, sample sizes are n = 50, 100, 150, . . . , 500). Each panel displays the average

difference of the particular estimator β̂ − β as a function of β and σ2
B (the numbers

which the plots are based on are reported in Table 2.1). In other words, the color of
each small square defined by coordinates [β, σ2

B] visualizes the result of 1000 simulations
of RCA(1) model with given the parameters β and σ2

B. If we traced the small square
[β, σ2

B] = [0.3, 0.4] across the panels, we would obtain the line plot 2.5 for instance.
General rule how to read these figures says that the more pink color means the larger

under fit of the estimator. We can see that the least-squares estimator underfits the mod-
els especially for smaller sample sizes which has already been revealed by the previous
simulation. In addition, these figures also illustrate the effect of the magnitude of the ran-
dom coefficients and their variance. The pink color is more concentrated to the boundary
β + σ2

B = 1 which width is much broader for small sample sizes. On the other hand, low
values of the true parameters β and σ2

B lead to significantly better estimators.
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β

σ2
B 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

-0.017 -0.029 -0.044 -0.068

0.9 -0.002 -0.005 -0.007 -0.006

-0.010 -0.014 -0.014 -0.017

-0.008 -0.007 -0.029 -0.067 -0.087

0.8 -0.006 0.006 -0.003 -0.018 -0.015

-0.009 0.002 0.006 -0.019 -0.028

-0.001 -0.022 -0.036 -0.050 -0.088 -0.100

0.7 -0.001 0.001 -0.004 -0.003 -0.018 -0.017

0.000 -0.005 -0.008 -0.008 -0.031 -0.015

-0.010 -0.019 -0.031 -0.043 -0.059 -0.085 -0.114

0.6 -0.008 -0.009 -0.012 -0.003 0.002 -0.021 -0.020

-0.010 -0.016 -0.013 -0.011 -0.008 -0.026 -0.029

-0.005 -0.005 -0.023 -0.035 -0.054 -0.060 -0.101 -0.128

0.5 -0.014 0.002 -0.008 -0.008 -0.013 -0.007 -0.019 -0.016

-0.008 0.002 -0.015 -0.010 -0.010 -0.015 -0.052 -0.040

-0.005 -0.005 -0.025 -0.023 -0.053 -0.064 -0.077 -0.091

0.4 -0.007 -0.001 -0.018 -0.005 -0.015 -0.019 -0.004 -0.005

-0.005 0.000 0.013 -0.008 -0.008 -0.025 -0.009 -0.024

-0.003 -0.002 -0.020 -0.024 -0.033 -0.046 -0.059 -0.074 -0.104

0.3 0.000 0.005 -0.007 -0.003 -0.010 -0.010 -0.012 -0.008 -0.016

0.001 -0.002 -0.008 -0.005 -0.011 -0.016 -0.024 0.057 -0.031

-0.007 -0.012 -0.015 -0.021 -0.023 -0.035 -0.043 -0.061 -0.075

0.2 -0.003 -0.012 -0.005 -0.006 -0.008 -0.012 -0.014 -0.013 -0.009

-0.009 -0.009 0.066 -0.023 -0.014 -0.015 -0.021 -0.040 -0.038

0.000 -0.012 -0.014 -0.012 -0.024 -0.028 -0.037 -0.035 -0.047 -0.063

0.1 0.002 -0.004 -0.011 -0.006 -0.013 -0.012 -0.015 -0.007 -0.010 -0.017

0.011 0.002 -0.011 0.197 -0.017 -0.025 -0.029 -0.023 -0.018 -0.038

0.000 0.000 -0.011 -0.011 -0.021 -0.019 -0.014 -0.030 -0.029 -0.035

0.0 0.003 0.003 -0.009 -0.008 -0.011 -0.011 -0.003 -0.015 -0.011 -0.016

0.003 0.071 -0.035 -0.013 -0.011 0.031 -0.035 -0.014 -0.039 -0.044

Table 2.1: Average differences between the true and estimated value of estimated param-

eter (β̂ − β) for various choices of parameters β and σ2
B. Sample size of the simulation

equals 50 observations. Presented estimators are LS (top rows), functional estimator
(middle rows), WLS (bottom rows).
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The functional estimator did better job than the least-squares estimator and it depends
neither on the sample size nor on magnitudes of the true parameters. The weighted least-
squares estimator behaves similarly to the functional one. However, there were certain
constellations of the parameters when this estimator was not stable. We also performed
the same simulations for a few different variances σ2 and for various choices of the ARCH
process as the noise process. Since they corresponded to the previous results, we does not
present them here.

The conclusions from this simulations might be that the least-squares estimator is a
reasonable and computationally simple estimator when there is low randomness in the
coefficients and if there is no dependency structure in the errors of RCA(1) process. If
there is a dependence present, in our case of the form of ARCH process, in tends to un-
derestimate the parameter whereas the weighted least-squares estimator or the functional
estimator behaves nicely. Also the least-squares estimator requires larger sample sizes not
to underfit the true value of the parameter.

2.4.4 Rate of convergence

We proved consistency and asymptotic normality of the estimator of type (2.16) in Gen-
eralized RCA(1) model specified in Definition 2.2. We also performed a simulation study
which revealed that the functional estimators seem to possess better statistical properties
than the conventional estimators. The aim of this section is to derive the rate of conver-
gence to normal distribution of such estimators for sufficiently large class of functions.

Special case φ(x) = x has been studied for instance by Basu and Roy in [5] or [6]. In
the first mentioned article, the authors established the rate of convergence of LS estimator
in both univariate and multivariate RCA models. In the second paper, they proved similar
results but they used general autoregressive model with fixed coefficients instead of RCA
process. Similar work was done in [8] for the first-order autoregressive process.

Unfortunately, such approach cannot be used for a general function φ(x), so we have
to define class of all admissible functions φ(x). Denote h(x) = xφ(x) and presume that
h(x) > 0 for every x 6= 0 and that h(x) fulfills Lipschitz condition for given RCA process
Xt:

Definition 2.3. Lipschitz function
Let {Xt, t ∈ Z} be real random process and h(x) be real measurable function.
Then h(x) fulfills the Lipschitz condition for given process Xt if

|h(Xs)− h(Xt)| ≤ ch|Xs −Xt| a.s. (2.28)

for all s, t ∈ Z and some constant ch > 0.

Remark:
1. If process {Xt} is uniformly bounded by some positive constant cX then function

h(x) = x2 satisfies Definition 2.3. This can be seen by noticing that |X2
s − X2

t | =
|Xs + Xt||Xs −Xt| ≤ (|Xs|+ |Xt|)|Xs −Xt| ≤ 2cX |Xs −Xt|.
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2. Generally, if process {Xt} in Definition 2.3 satisfies P(Xt ∈ I, ∀t ∈ Z) = 1 for some
bounded interval I ∈ R, then any function h(x) with bounded first derivation on I
suits.
This follows from the Lagrange Mean Value Theorem that states that for such
function h(x) and for each x, y ∈ I there exists z ∈ (x, y) such that h(y) − h(x) =
h′(z)(y−x). So |h(Xs)−h(Xt)| = |h′(Z)|·|(Xs−Xt)| ≤ maxz∈I |h′(z)|·|(Xs−Xt)| =
ch|Xs −Xt| a.s..
Thus, function h(x) = x2

1+x2 , which corresponds to φ(x) = x
1+x2 , fits for instance.

We employ similar techniques as Basu and Roy did in [5] where they explored the rate
of convergence of LS estimator in RCA models. To prove the main result of this section
we need a few auxiliary lemmas. The commonly known ones can be found in Chapter 6
consisting of these auxiliaries exclusively (Lemmas 6.2–6.5), the more specific propositions
will be proved in this section.

It also turned out that we need a Hoeffding-type exponential inequality for a function
of RCA(1) process {Xt}. Specifically we have to ensure that

P

(∣∣∣∣∣
1

n

n−1∑
t=0

(
h(Xt)− Eh(Xt)

)
∣∣∣∣∣ > ε

)
≤ c · e−dnε2

, (2.29)

where h(x) is given measurable function and c, d are some constants. This inequality is
well known when h(x) = x and either {Xt} are independent or they form a martingale
difference sequence. For general function h(x) there were similar inequalities proved for
uniformly ergodic Markov chains {Xt} (see for instance [12]) or under some assumptions
for ergodic time series (working paper [30]). Unfortunately, none of these generalizations
of the Hoeffding inequality was applicable in our case so we proved inequality (2.29) using
similar techniques as the authors of [17] did for heteroscedastic RCA(1) model.

For that purpose, we employed mixing concept (for further details see [10]):

Definition 2.4. Strong mixing
Let {V t, t ∈ Z} be a sequence of random vectors. Let F t

−∞ = σ(V s, s ≤ t), and
F+∞

t+m = σ(V s, s ≥ t + m) for each t,m ∈ Z.
The sequence {V t} is said to be α-mixing (or strong mixing) if limm→∞ αm = 0 where

αm = sup
t∈Z

(
sup

G∈Ft
−∞,H∈F+∞

t+m

∣∣P(G ∩H)− P(G)P(H)
∣∣
)

.

Precisely, a sequence is called α-mixing of size −a0 if αm = O(m−a) for some a > a0.

Definition 2.5. Mixingale
Let {Xt, t ∈ Z} be a sequence of integrable random variables. Let Ft = σ(Xs, s ≤ t) for
each t ∈ Z.
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The sequence {Xt,Ft} is called an Lp-mixingale if, for p ≥ 1, there exist sequences of
non-negative constants {ct, t ∈ Z} and {ζm,m ∈ N0} such that ζm → 0 as m → +∞, and

‖E[Xt|Ft−m]‖p ≤ ctζm,

‖Xt − E[Xt|Ft+m]‖p ≤ ctζm+1

hold for all t ∈ Z and m ∈ N0.
The Lp-mixingale is of size −a0 if ζm = O(m−a) for some a > a0 > 0.

Definition 2.6. Near-epoch dependency
Let {Xt, t ∈ Z} be a sequence of integrable random variables. Let {V t, t ∈ Z} be a
sequence, possibly vector-valued, let us define for each t ∈ Z the filtration {F t+m

t−m ,m ∈ N0}
such that F t+m

t−m = σ(V t−m, . . . , V t+m).
The sequence {Xt} is said to be near-epoch dependent in Lp-norm (Lp-NED) on {V t} if,
for p > 0, there exist sequences of non-negative constants {dt, t ∈ Z} and {νm,m ∈ N0}
such that νm → 0 as m → +∞, and

∥∥Xt − E
[
Xt|F t+m

t−m

]∥∥
p
≤ dtνm

hold for all t ∈ Z and m ∈ N0.
The Lp-NED is of size −a0 if νm = O(m−a) for some a > a0 > 0.

To prove the main theorem, we have to make an assumption about mutual structure
between the random coefficients and the error process.

A7: {(Bt, Yt), t ∈ Z} is α-mixing of size −a for some a > 2.

The idea behind using just introduced concepts for proving exponential inequality (2.29)
is briefly the following: A Lipschitz function maintains Lp-NED property, Lp-NED pro-
cess is Lp-mixingale under certain assumptions, and a sum of Lp-mixingale items can be
divided into a sum of martingale difference items and some residuum.

Theorem 2.4.
Let {Xt,Ft} be a uniformly bounded stationary L1-mixingale of size −1 with bounded
constant sequence {ct, t ∈ Z} from Definition 2.5.
Then there exists decomposition

Xt = Rt −Rt+1 + Wt, (2.30)

where E|Rt| < +∞ and {Wt,Ft} is a stationary martingale difference sequence. Moreover,
both sequences {Rt} and {Wt} are also uniformly bounded. Equation (2.30) immediately
implies that

n−1∑
t=0

Xt = R0 −Rn +
n−1∑
t=0

Wt. (2.31)
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Proof: This theorem extends Theorem 16.6 from [10] and we will make use of the proof
stated there. Decompositions (2.30) and (2.31) are established in the cited theorem, what
remains is to prove the boundedness. Let us for each m ∈ N and t ∈ Z define a random
variable

Rm,t =
m∑

s=0

(E[Xt+s|Ft−1]−Xt−s−1 + E[Xt−s−1|Ft−1]).

Using triangular inequality and L1-mixingale property we have that

|Rm,t| ≤
m∑

s=0

( ∣∣E[Xt+s|Ft−1]
∣∣ +

∣∣Xt−s−1 − E[Xt−s−1|Ft−1]
∣∣) ≤

≤
m∑

s=0

(ct+s · ζs+1 + ct−s−1 · ζs+1) ≤ 2c1 ·
m∑

s=0

ζs+1 ≤ 2c1 ·
m∑

s=0

c2
1

(s + 1)a
≤ d,

where ct ≤ c1 and ζs+1 ≤ c2
1

(s+1)a for some c1, c2 > 0. Constant d > 0 exists because of

a > 1. Thus, {Rm,t} are bounded uniformly in both m and t. In the proof mentioned
above there is shown that for each t ∈ Z, Rm,t converges to Rt a.s. as m → +∞. Thus,
Rt are uniformly bounded in t because of the boundedness of Rm,t.
Triangular inequality applied to rearranged equation (2.30) yields |Wt| = |Xt−Rt+Rt+1| ≤
cX + 2d, which ensures uniform boundedness of Wt. ¤

We have to assume some additional conditions concerning the Generalized RCA(1)
process {Xt} to employ the previous techniques.

A8: P(|X0| ≤ cX) = 1 for some constant cX > 0.

A9: P(|B0| ≤ cB) = 1 for some constant cB > 0.

Since the Generalized RCA(1) process {Xt} is strictly stationary, the boundedness of
X0 according to A8 ensures uniform boundedness of the whole sequence {Xt}, i.e. there
exists constant cX > 0 such that P(|Xt| ≤ cX , ∀t ∈ Z) = 1.

Theorem 2.5.
Under Assumptions A8 and A9 both {Bt} and {Yt} in the definition of the Generalized
RCA(1) process are uniformly bounded.

Proof:
Firstly, sequence {Bt} is uniformly bounded according to Assumptions A3 and A9 using
its strictly stationarity property.
Secondly, equation (2.1) gives us |Xt| = |(β + Bt)Xt−1 + Yt| ≥ |BtXt−1 + Yt| − |βXt−1|,
consequently |BtXt−1 + Yt| ≤ |Xt| + |βXt−1| ≤ (1 + |β|)cX a.s. due to boundedness of
{Xt}, so we know that {BtXt−1 + Yt} is uniformly bounded.
Finally, |BtXt−1 + Yt| ≥ |Yt| − |Bt||Xt−1|, thus |Yt| ≤ |BtXt−1 + Yt| + |Bt||Xt−1| ≤ c for
some constant c > 0 and all t ∈ Z because all processes on the right hand side of the
inequality are uniformly bounded. ¤
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Theorem 2.6.
Let {Xt, t ∈ Z} be a Generalized RCA(1) process that satisfies Assumptions A7, A8
and A9. Let φ : R → R be a continuous measurable function such that h(x) = xφ(x)
satisfies Definition 2.3. Denote Zt = h(Xt)− Eh(Xt) for each t ∈ Z.
Then there exists the same decomposition of process {Zt, t ∈ Z} as in Theorem 2.4 for
Ft = σ(Bs, Ys; s ≤ t) where both sequences {Rt} and {Wt} are uniformly bounded.

Proof:
Firstly, we will show that {Xt} is L2-NED on {Bt, Yt} of arbitrary size. Let us denote
F t+m

t−m = σ(Bs, Ys; s = t−m, . . . , t + m) and verify Definition 2.6:
Definition of RCA(1) model and F t+m

t−m -measurability of Bs and Ys for s = t, t−1, . . . , t−m
yields

∥∥Xt − E
[
Xt|F t+m

t−m

]∥∥
2

=
∥∥(β + Bt)Xt−1 + Yt − E

[
(β + Bt)Xt−1 + Yt|F t+m

t−m

]∥∥
2

=

=
∥∥(β + Bt)Xt−1 − (β + Bt)E

[
Xt−1|F t+m

t−m

]∥∥
2

=

=
∥∥(β + Bt)

(
Xt−1 − E

[
Xt−1|F t+m

t−m

])∥∥
2

= · · · =

=

∥∥∥∥∥

(
m∏

i=0

(β + Bt−i)

)
· (Xt−m−1 − E

[
Xt−m−1|F t+m

t−m

])
∥∥∥∥∥

2

≤

≤
∥∥∥∥∥

(
m∏

i=0

(β + Bt−i)

)
Xt−m−1

∥∥∥∥∥
2

+

∥∥∥∥∥

(
m∏

i=0

(β + Bt−i)

)
E

[
Xt−m−1|F t+m

t−m

]
∥∥∥∥∥

2

≤

≤
∥∥∥∥∥

(
m∏

i=0

(β + Bt−i)

)
cX

∥∥∥∥∥
2

+

∥∥∥∥∥

(
m∏

i=0

(β + Bt−i)

)
cX

∥∥∥∥∥
2

.

The last inequality holds due to the uniform boundedness of sequence {Xt} by a positive
constant cX . Notice that

∥∥∥∥∥
m∏

i=0

(β + Bt−i)

∥∥∥∥∥
2

=

(
E

m∏
i=0

(β + Bt−i)
2

) 1
2

=
(
E(β + Bt)

2
)m+1

2 =
(
β2 + σ2

B

)m+1
2 .

So we have ∥∥Xt − E
[
Xt|F t+m

t−m

]∥∥
2
≤ 2 · cX ·

(
β2 + σ2

B

)m+1
2 .

Since it is assumed that β2 +σ2
B < 1, term (β2 +σ2

B)
m+1

2 is of order O(m−a) for any a > 0
and thus {Xt} is L2-NED with constants dt = 2 · cX in Definition 2.6.
Secondly, {h(Xt)} is L2-NED on {Bt, Yt} of arbitrary size with constants dt = 2 · c · ch

(due to Lemma 6.4 and the Lipschitz property of the function h(x) with some constant
ch) and so is {Zt} (adding a constant does not violate the NED condition).
Finally, if we knew that {Zt} is L1-mixingale of size −1 we would have the desired de-
composition of Zt according to Theorem 2.4. We will show that {Zt} is even L2-mixingale
(and the inequality ‖ · ‖1 ≤ ‖ · ‖2 will ensure its L1-mixingale property). This can be
seen by applying Lemma 6.5 to sequence {Zt} (which is Lr-bounded for any r > 1 be-
cause the sequence {Xt} is bounded and the function h(x) is continuous) and to α-mixing
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sequence {Bt, Yt} of size −a for some a > 2 (Assumption A7). {Zt} is L2-NED of ar-
bitrary size −b, so the size of L2-mixingale Zt is −min(b, a(1/2 − 1/r)). Notice, that
min(b, a(1/2 − 1/r)) = a/2 − a/r > 1 because the term a/r can be arbitrary small by
increasing r. Constants ct in Definition 2.5 are equal to O(max(‖Xt‖r, 2 · c · ch)), they
are bounded due to the boundedness of {Xt}, thus both sequences {Rt} and {Wt} in the
decomposition are uniformly bounded according to Theorem 2.4. ¤

Theorem 2.7.
Let {Xt, t ∈ Z} be a Generalized RCA(1) process that satisfies Assumptions A7, A8 and
A9. Let φ : R→ R be a continuous measurable function such that h(x) = xφ(x) satisfies
Lipschitz condition (2.28).
Then there exist constants c > 0 and d > 0 such that exponential inequality (2.29) holds.

Proof:
Denote Zt = h(Xt) − Eh(Xt) for each t ∈ Z. Then Theorem 2.6 gives us decomposi-
tion (2.31) of {Zt}, namely

∑n−1
t=0 Zt = R0 − Rn +

∑n−1
t=0 Wt, where {Wt} is a uniformly

bounded martingale difference sequence and {Rt} is a uniformly bounded random se-
quence. Now we get

P

(∣∣∣∣∣
1

n

n−1∑
t=0

Zt

∣∣∣∣∣ > ε

)
= P

(∣∣∣∣∣
1

n

(
R0 −Rn +

n−1∑
t=0

Wt

)∣∣∣∣∣ > ε

)
≤

≤ P

(
1

n

∣∣R0 −Rn

∣∣ +

∣∣∣∣∣
1

n

n−1∑
t=0

Wt

∣∣∣∣∣ > ε

)
≤

≤ P
(∣∣R0 −Rn

∣∣ > n · ε

2

)
+ P

(∣∣∣∣∣
1

n

n−1∑
t=0

Wt

∣∣∣∣∣ >
ε

2

)
≤

≤ P
(∣∣R0

∣∣ +
∣∣Rn

∣∣ > n · ε

2

)
+ c1 · e−d1n( ε

2)
2

using the triangular inequality and the Hoeffding inequality for bounded martingale dif-
ferences (see for instance [10], Theorem 15.20). An upper bound for the first summand
might be easily obtained as follows:

P
(
|R0|+ |Rn| > n · ε

2

)
= P

(
eε·(|R0|+|Rn|) > en· ε2

2

)
≤ E

(
eε·(|R0|+|Rn|)) · e−n· ε2

2 ≤

≤ c2 · e−2n( ε
2)

2

,

where finite constant c2 can be found thanks to uniform boundedness of {Rt}. If we
combine this result with the previous estimate, we get the desired result

P

(∣∣∣∣∣
1

n

n−1∑
t=0

Zt

∣∣∣∣∣ > ε

)
≤ max(c1, c2) · e−min(d1,2)·n·( ε

2)
2

= c · e−dnε2 ¤
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Now, let us formulate and prove the main theorem of this section.

Theorem 2.8.
Let {Xt, t ∈ Z} be a Generalized RCA(1) process according to Definition 2.2 with
E[Y 2

t |Ft−1] = σ2 < +∞ a.s. for all t. Let Assumptions A7, A8 and A9 be satisfied.
Let φ : R → R be a continuous measurable function such that h(x) = xφ(x) satisfies
h(x) > 0 for x 6= 0 and the Lipschitz condition (2.28).
Then there exists c > 0 such that for each n ∈ N

sup
x∈R

∣∣∣∣∣∣
P


√n

(
β̂(φ)− β

)
√

V (φ)
≤ x


− Φ(x)

∣∣∣∣∣∣
≤ c · (ln n)3

√
n

, (2.32)

where estimator β̂(φ) is defined by (2.16) and asymptotic variance V (φ) is defined by (2.17).

Remark: This theorem covers both the LS estimator (choice φ(x) = x) and the estimator
with the smallest asymptotic variance in model with σ2

B = σ2
Y (choice φ(x) = x

1+x2 ), for
further discussion see the beginning of Paragraph 2.4.1.

Proof: We basically follow similar proof from [5] for scalar RCA(1) model.
For each n ∈ N let us define

fn =
1√
n

n∑
t=1

φ(Xt−1)(Xt − βXt−1),

gn =
1

n

n∑
t=1

φ(Xt−1)Xt−1 =
1

n

n∑
t=1

h(Xt−1).

Then
√

n(β̂(φ)− β) = fn

gn
. Denote U(φ) = E (φ2(X1)w(X1)) where w(x) = σ2 + σ2

Bx2 and

notice that V (φ) = U(φ)
(Eh(X1))2

> 0, so we have

sup
x∈R

∣∣∣∣∣∣
P


√n

(
β̂(φ)− β

)
√

V (φ)
≤ x


− Φ(x)

∣∣∣∣∣∣
= sup

x∈R

∣∣∣∣∣P
(

Eh(X1)√
U(φ)

fn

gn

≤ x

)
− Φ(x)

∣∣∣∣∣ .

Lemma 6.2 gives us for any ε > 0

sup
x∈R

∣∣∣∣∣P
(

Eh(X1)√
U(φ)

fn

gn

≤ x

)
− Φ(x)

∣∣∣∣∣ ≤ sup
y∈R

∣∣∣∣∣P
(

fn√
U(φ)

≤ y

)
− Φ(y)

∣∣∣∣∣ +

+ P

(∣∣∣∣
gn

Eh(X1)
− 1

∣∣∣∣ > ε

)
+ ε. (2.33)

It can be easily derived that {φ(Xt−1)(Xt − βXt−1)} is a martingale difference sequence
with variance U(φ) defined previously. Function φ is continuous, process {Xt} is uniformly
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bounded, thus {φ(Xt−1)(Xt − βXt−1)} is also uniformly bounded. So Lemma 6.3 can be
applied to the first term on the right hand side of inequality (2.33) and we have

sup
y∈R

∣∣∣∣∣P
(

fn√
U(φ)

≤ y

)
− Φ(y)

∣∣∣∣∣ ≤ d · (ln n)3

√
n

,

where d > 0 is some constant.
The second term on the right hand side of inequality (2.33) can be arranged into

P

(∣∣∣∣
gn

Eh(X1)
− 1

∣∣∣∣ > ε

)
= P

( ∣∣gn − Eh(X1)
∣∣ > ε · Eh(X1)

)
=

= P

(∣∣∣∣∣
1

n

n∑
t=1

(
h(Xt−1)− Eh(Xt−1)

)
∣∣∣∣∣ > ε · Eh(X1)

)
,

using the definition of gn and the strict stationarity of {Xt}. All conditions of Theorem 2.7
are met and we have

P

(∣∣∣∣∣
1

n

n∑
t=1

(
h(Xt−1)− Eh(Xt−1)

)
∣∣∣∣∣ > ε · Eh(X1)

)
≤ p · e−qnε2

,

where p, q > 0 are some constants.
If we sum up all derived results we gain that for any ε > 0 there exist positive constants
d, p, q such that

sup
x∈R

∣∣∣P
(√

n
(
β̂(φ)− β

)
≤ x

)
−G(x)

∣∣∣ ≤ d · (ln n)3

√
n

+ p · e−qnε2

+ ε.

Setting ε = (ln n)3√
n

we obtain the desired upper bound c · (ln n)3√
n

for some positive constant
c. ¤



Chapter 3

Estimators of higher-order models

3.1 Model specification

In this chapter we will return our attention to RCA(p) models of general order p which
special case for p = 1 has been studied earlier. Similarly to the previous chapter, we will
be interested in estimation of parameter β, this time a p-dimensional vector. We will
describe commonly used estimators (see for instance [25]) and introduce an extension of
the functional estimator originally proposed by Schick in [28] for the first-order models and
which we studied in Chapter 2. We will also derive statistical properties of the functional
estimator and compare it to the least-squares estimator.

Equation (1.1) can be rewritten into the form closer to standard autoregressive ex-
pression

Xt =

p∑
i=1

βiXt−i + ut = β′Zt−1 + ut (3.1)

with a new error process ut =
∑p

i=1 Bt,iXt−i + Yt = B′
tZt−1 + Yt, where

β = (β1, β2, . . . , βp)
′, Bt = (Bt,1, Bt,2, . . . , Bt,p)

′ and Zt = (Xt, Xt−1, . . . , Xt−p+1)
′.

Another useful representation could be via multivariate RCA(1) model of the form

Zt = (B + Ct)Zt−1 + Ut, (3.2)

where Ut = (Yt, 0, . . . , 0) and

B =




β1 β2 . . . βp−1 βp

1 0 . . . 0 0

0 1 . . . 0 0
...

0 0 . . . 1 0




, Ct =




Bt,1 Bt,2 . . . Bt,p

0 0 . . . 0
...

0 0 . . . 0




.

41
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Similarly to the first-order case, we will use the stochastic setup given by assump-
tions A1, A2 and A5. The representation (3.2) of process {Xt} as a special multivariate
RCA(1) process enables us to benefit from the theorems that will be proved in Chapter 4.
Namely, we can adopt the stationarity assumption

A10: All the eigenvalues of matrix E(Ct⊗Ct)+ (B⊗B) are less than unity in modulus.

Definition 3.1. Generalized RCA(p) process
Real-valued random process {Xt, t ∈ Z} is called Generalized RCA(p) process if Xt sat-
isfies ∀t ∈ Z equation (1.1) and fulfills assumptions A1, A2, A5 and stationarity condi-
tion A10.

Theorem 4.1 in Chapter 4 proves that there exists strictly stationary and ergodic
solution of equation (3.2) (or equivalent equation (1.1)), which is measurable with respect
to Ft = σ ((B′

s, Ys)
′; s ≤ t), and the solution is of the form

Zt =
+∞∑
j=0

[
j−1∏
i=0

(B + Ct−i)

]
·Ut−j, (3.3)

where the product is defined as 1 for j = 0. This expression can be directly compared to
its special case (2.4) for RCA(1) models.

Assuming that the conditional variance of error process {Yt} is constant and time
independent, the conditional moments of process {Xt} can be computed as follows:

E[Xt|Ft−1] = E
[
β′Zt−1 + ut|Ft−1

]
= β′Zt−1 + E

[
B′

tZt−1 + Yt|Ft−1

]
=

= β′Zt−1 + Z′t−1 · EBt + E[Yt|Ft−1] = β′Zt−1, (3.4)

var[Xt|Ft−1] = E
[
(Xt − E[Xt|Ft−1])

2 |Ft−1

]
= E

[
u2

t |Ft−1

]
=

= E
[
(B′

tZt−1 + Yt)
2 |Ft−1

]
=

= E
[
Y 2

t + 2 ·B′
tZt−1Yt + (B′

tZt−1)
2|Ft−1

]
=

= σ2 + 2 ·B′
tZt−1 · E[Yt|Ft−1] + E

[
Z′t−1BtB

′
tZt−1|Ft−1

]
=

= σ2 + Z′t−1 · E
(
BtB

′
t

) · Zt−1 = σ2 + Z′t−1 ·Σ · Zt−1 =

= σ2 +
(
Z′t−1 ⊗ Z′t−1

) · vec(Σ) =

= σ2 + vec
(
Zt−1Z

′
t−1

)′ ·K′
nvech(Σ), (3.5)

where the last equalities are obtained using Lemma 6.8 (identities b, c) and Lemma 6.9
from Chapter 6 where the duplication matrix Kn is also defined.
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3.2 Functional estimator

The well-known estimator of parameter β (see for instance [25]) is the least-squares esti-
mator defined by

β̂LS =

(
n∑

t=1

Zt−1Z
′
t−1

)−1

·
(

n∑
t=1

Zt−1Xt

)
(3.6)

and it possesses essential statistical properties, namely strong consistency and asymptot-
ical normality

√
n

(
β̂LS − β

)
−→ N

(
0, σ2V−1 + V−1E (Z0Z

′
0Z

′
0ΣZ0)V

−1
)
,

where V = EZ0Z
′
0.

Similarly to the first-order case, the unknown parameters σ2 and Σ can be estimated
using a linear regression model: The conditional variance of the theoretical residuals ut is

derived in equation (3.5). If we substitute ut by the estimated residuals ût = Xt−β̂
′
LSZt−1

into that expression, we obtain the regression equation

û2
t = σ2 + A′

t−1γ + εt

with regressors (1|A′
t−1) = (1|vec(Zt−1Z

′
t−1)

′ ·K′
n), parameters (σ2, γ′)′ = (σ2, vech(Σ)′)′

to estimate and a noise process εt. The solution of the regression equation is

γ̂ =

(
n∑

t=1

(At−1 −A)(At−1 −A)′
)−1 n∑

t=1

(Xt − β̂
′
LSZt−1)

2(At−1 −A),

σ̂2 =
1

n

n∑
t=1

(Xt − β̂
′
LSZt−1)

2 − γ̂′A,

(3.7)

where A = 1
n

∑n
t=1 At−1. Nicholls and Quinn proved in [25], Theorem 3.2, that under

higher moment conditions of process {Xt} such estimators are strongly consistent and
asymptotically normal. We could generalize estimators (3.7) in the same manner as
Schick did for the first-order RCA(1) models (see formulas (2.25)). Namely, we could
impose a measurable function ψ : Rp → Rp, define Bt−1 = Kn · vec(ψ(Zt−1)Z

′
t−1) instead

of the quantities At−1 and reformulate expressions (3.7).
Other commonly used estimators are the weighted least-squares or the maximum like-

lihood estimators. However, the exact derivation of such estimators is not straightforward
and precise statistical inference requires stronger assumptions. Inspired by the extension
of the least-squares estimator of the first-order RCA models into a class of the functional
estimators, we propose an analogous extension for the higher-order models. Consider
measurable function φ : Rp → Rp and define

β̂(φ) =

(
n∑

t=1

φ(Zt−1)Z
′
t−1

)−1

·
(

n∑
t=1

φ(Zt−1)Xt

)
. (3.8)
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The following theorem states basic properties of estimator (3.8):

Theorem 3.1.
Consider RCA(p) model according to Definition 3.1.
Let E[Y 2

t |Ft−1] = σ2 < +∞ a.s. for all t and let φ : Rp → Rp be measurable function such
that Eφ(Z0)Z

′
0 is a finite positive definite matrix and E

(
φ(Z0)φ(Z0)

′ (Z′0ΣZ0)
)

is a finite
matrix. Denote

V(φ) =
(
Eφ(Z0)Z

′
0

)−1 · E (
φ(Z0)φ(Z0)

′ · w(Z0)
) · (EZ0φ(Z0)

′)−1
, (3.9)

where w(z) = σ2 + z′Σz for z ∈ Rp.
Then estimator (3.8) is a strongly consistent and asymptotically normal estimator of
parameter β with asymptotical variance matrix defined by (3.9).

Remark: Function φ(x) = x, that corresponds to the least-squares estimator, fulfills the
assumptions provided that EX4

t < +∞ (see [25], Theorem 3.1). If function φ is bounded
then the second assumption reduces to EX2

t < +∞.

Proof: Using definition of functional estimator (3.8) we can infer that

β̂(φ)− β =

(
1

n

n∑
t=1

φ(Zt−1)Z
′
t−1

)−1

·
(

1

n

n∑
t=1

[
φ(Zt−1)Xt − φ(Zt−1)Z

′
t−1β

]
)

=

=

(
1

n

n∑
t=1

φ(Zt−1)Z
′
t−1

)−1

·
(

1

n

n∑
t=1

φ(Zt−1)ut

)
. (3.10)

Likewise in the proof of Theorem 2.2, the components of sequences {φ(Zt−1)Z
′
t−1, t ∈ Z}

and {φ(Zt−1)ut, t ∈ Z} are strictly stationary and ergodic. Moreover, the components of
the latter sequence form a martingale difference sequence because

E[φ(Zt−1)ut|Ft−1] = φ(Zt−1)E[ut|Ft−1] = 0.

The ergodic theorem (see e.g. [10], Theorem 13.12) tells us that the first term in (3.10) al-

most surely converges to
(
Eφ(Z0)Z

′
0

)−1
whereas the second term converges to E(φ(Z0)u1) =

0, which completes the proof of consistency of the estimator.
Similarly to equation (3.10) notice that

√
n

(
β̂(φ)− β

)
=

(
1

n

n∑
t=1

φ(Zt−1)Z
′
t−1

)−1

·
(

1√
n

n∑
t=1

φ(Zt−1)ut

)
.

Choose arbitrary α ∈ Rp and note that also {α′φ(Zt−1)ut} forms an univariate martingale
difference sequence with variance

var(α′φ(Zt−1)ut) = E
(
E

[
(α′φ(Zt−1))

2
u2

t |Ft−1

])
=

= E
(
(α′φ(Zt−1))

2 (
σ2 + Z′t−1ΣZt−1

))
=
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= α′E
(
φ(Z0)φ(Z0)

′ (σ2 + Z′0ΣZ0

))
α < +∞.

Due to Lindeberg-Levy theorem for martingales (see [7]) this means that

1√
n

n∑
t=1

α′φ(Zt−1)ut = α′
(

1√
n

n∑
t=1

φ(Zt−1)ut

)

has asymptotically one-dimensional normal distribution with zero mean and the vari-
ance computed above. Thus, 1√

n

∑n
t=1 φ(Zt−1)ut has asymptotically p-dimensional nor-

mal distribution and so does
√

n
(
β̂(φ)− β

)
with the asymptotical variance matrix equal

to (3.9). ¤

3.2.1 Asymptotical variance matrix

Asymptotical variance matrix of the functional estimator is relatively complex and strongly
depends on the choice of function φ. In this section we will compute the exact form of the
matrix for a few particular choices of the function and then suggest a consistent estimator
of the variance matrix.

Let us consider asymptotical variance matrix V(φ) given by (3.9).

1. Choice φ(z) = z corresponds to the least-squares estimator (3.6) and the variance
matrix directly simplifies into

V(φ) = σ2V−1 + V−1 · E (
Z0Z

′
0Z

′
0ΣZ0

) ·V−1,

where V = EZ0Z
′
0 = varZ0.

2. Choice φ(z) = z
σ2+z′Σz

results in the weighted least-squares estimator with the
variance matrix

V(φ) =

(
E

Z0Z
′
0

σ2 + Z′0ΣZ0

)−1

· E
(

Z0Z
′
0

(σ2 + Z′0ΣZ0)2

(
σ2 + Z′0ΣZ0

)) ·

·
(

E
Z0Z

′
0

σ2 + Z′0ΣZ0

)−1

=

(
E

Z0Z
′
0

σ2 + Z′0ΣZ0

)−1

=

=
(
Eφ(Z0)Z

′
0

)−1
.

3. Choice φ(z) = z
1+z′z corresponds to the special case of the weighted least-squares

estimator for Σ = σ2I and its variance matrix equals

V(φ) = σ2F−1 + F−1E

(
Z0Z

′
0Z

′
0ΣZ0

(1 + Z′0Z0)2

)
F−1,

where F = E
Z0Z′0

1+Z′0Z0
.
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Theorem 3.1 gives the exact formula for the asymptotical variance matrix of estimator
β(φ) for general function φ. The three specific choices of φ given above indicate that
evaluation of the matrix is rather complicated. Naturally, we are interested in a consistent
estimator of this matrix.

Theorem 3.2.
Consider RCA(p) model according to Definition 3.1. Let φ : Rp → Rp be measurable
function such that matrix Eφ(Z0)Z

′
0 is finite and positive definite.

Let σ̂2
n and Σ̂n be strongly consistent estimators of σ2 and Σ, respectively. Denote

Pn =
1

n

n∑
t=1

φ(Zt−1)Z
′
t−1,

Qn =
1

n

n∑
t=1

[
φ(Zt−1)φ(Zt−1)

′(σ̂2
n + Z′t−1Σ̂nZt−1)

]
.

Then

V̂n(φ) = P−1
n ·Qn ·P′−1

n (3.11)

is a strongly consistent estimator of the asymptotical variance matrix V(φ) given by (3.9).

Proof: Denote Q = φ(Z0)φ(Z0)
′ (σ2 + Z′0ΣZ0) and notice that

V(φ) = (EP1)
−1 · EQ · (EP′

1)
−1.

Since {Xt, t ∈ Z} is strictly stationary and ergodic so is {φ(Zt−1)Z
′
t−1, t ∈ Z} and the

ergodic theorem tells us that Pn
a.s.−→ EP1 = Eφ(Z0)Z

′
0 as n → +∞. Term Qn might be

rewritten as

Qn = σ̂2
n ·

1

n

n∑
t=1

φ(Zt−1)φ(Zt−1)
′ +

1

n

n∑
t=1

[
φ(Zt−1)φ(Zt−1)

′(Z′t−1Σ̂nZt−1)
]
. (3.12)

The first term of (3.12) converges to σ2 · Eφ(Z0)φ(Z0)
′ due to consistency of σ̂2

n and
ergodicity of {φ(Zt−1)φ(Zt−1)

′, t ∈ Z}. The convergence of the second term in (3.12) has
to be proved more technically (using the Kronecker product, the vec operator and the
related identities from Lemma 6.6 and Lemma 6.8 stated in Chapter 6):

vec

(
1

n

n∑
t=1

φ(Zt−1)φ(Zt−1)
′(Z′t−1Σ̂nZt−1)

)
=

=
1

n

n∑
t=1

vec
(
φ(Zt−1)φ(Zt−1)

′)
p×p

·
(
Z′t−1Σ̂nZt−1

)
1×1

=
1

n

n∑
t=1

vec
(
φ(Zt−1)φ(Zt−1)

′) ·

· vec
(
Z′t−1Σ̂nZt−1

)
=

1

n

n∑
t=1

vec
(
φ(Zt−1)p×1φ(Zt−1)

′
1×p

) ·
(
(Z′t−1 ⊗ Z′t−1)vec(Σ̂n)

)
=
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=
1

n

n∑
t=1

(
φ(Zt−1)⊗ φ(Zt−1)

)
p2×1

· (Z′t−1 ⊗ Z′t−1)1×p2 · vec(Σ̂n)p2×1 =

=

(
1

n

n∑
t=1

(
φ(Zt−1)Z

′
t−1

)⊗ (
φ(Zt−1)Z

′
t−1

)
)
· vec(Σ̂n).

The latter term thanks to the ergodicity of {Zt} and consistency of Σ̂n converges to

E
(
(φ(Z0)Z

′
0)⊗ (φ(Z0)Z

′
0)

) · vec(Σ) = E
(
(φ(Z0)⊗ φ(Z0)) · (Z′0 ⊗ Z′0) · vec(Σ)

)
=

= E
(
vec

(
φ(Z0)φ(Z0)

′) · vec (Z′0ΣZ′0)
)

= vec
(
E

(
φ(Z0)φ(Z0)

′Z′0ΣZ′0
))

.

Thus, Qn
a.s.−→ EQ as n → +∞ which completes the proof that V̂n(φ)

a.s.−→ V(φ). ¤

3.2.2 Optimal estimator

Similarly to Section 2.4.1 where we studied the impact of the generating function of
the functional estimators for the first-order RCA models, we will find an optimal choice
of the function for the higher-order models in this section. Optimality of an estimator
will be defined using its asymptotical variance matrix. Namely, estimator β̂(ψ) defined by
equation (3.8) is optimal if its asymptotical variance matrix V(ψ) defined by (3.9) satisfies

V(φ)−V(ψ) ≥ 0 for any estimator β̂(φ) with variance matrix V(φ) (the difference of the
variance matrices is a positively semi-definite matrix). This property ensures, for instance,

that the variances of all elements of vector estimator β̂(ψ) are the smallest possible.
Now let us assume that the conditional variance of error process {Yt} equals σ2. We will

show that the optimal estimator is the weighted-least squares estimator which corresponds
to the choice ψ(z) = z

σ2+z′Σz
= z

w(z)
and which asymptotical variance matrix has been

derived in Section 3.2.1, point 2. The derivation mimics the similar inference for RCA(1)
models performed in Section 2.4.1. Let us define two p-dimensional random vectors

T1 =
n∑

t=1

φ(Zt−1)(Xt − β′Zt−1) =
n∑

t=1

φ(Zt−1)ut,

T2 =
n∑

t=1

Zt−1(Xt − β′Zt−1)

σ2 + Z′t−1ΣZt−1

=
n∑

t=1

Zt−1ut

w(Zt−1)
.

Since both sequences {φ(Zt−1)ut} and { Zt−1ut

w(Zt−1)
} are martingale differences w.r. to Ft, we

know that both ET1 = 0 and ET2 = 0. Variance matrix of vector T1 then equals

ET1T
′
1 = E

(
n∑

t=1

φ(Zt−1)ut ·
n∑

s=1

φ(Zs−1)
′us

)
=

= E




n∑
t=1

φ(Zt−1)φ(Zt−1)
′ · u2

t +
n∑

t=1

n∑
s=1

t 6=s

φ(Zt−1)φ(Zs−1)
′ · utus


 =
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=
n∑

t=1

E
(
φ(Zt−1)φ(Zt−1)

′ · E[
u2

t |Ft−1

])
=

n∑
t=1

E
(
φ(Zt−1)φ(Zt−1)

′ · w(Zt−1)
)

= n · E (
φ(Z0)φ(Z0)

′ · w(Z0)
)

(3.13)

using strict stationarity of the process {Zt} and the fact that for t > s (for t < s the same
conclusion holds)

E




n∑
t=1

n∑
s=1

t>s

φ(Zt−1)φ(Zs−1)
′ · utus


 = E




n∑
t=1

n∑
s=1

t>s

E[φ(Zt−1)φ(Zs−1)
′ · utus|Ft−1]


 =

= E




n∑
t=1

n∑
s=1

t>s

φ(Zt−1)φ(Zs−1)
′ · us · E[ut|Ft−1]


 = 0.

Analogously

ET2T
′
2 = E




n∑
t=1

Zt−1Z
′
t−1 · u2

t

w(Zt−1)2
+

n∑
t=1

n∑
s=1

t6=s

Zt−1Z
′
s−1 · utus

w(Zt−1)w(Zs−1)


 =

=
n∑

t=1

E

(
Zt−1Z

′
t−1

w(Zt−1)2
· E[

u2
t |Ft−1

])
= n · E

(
Z0Z

′
0

w(Z0)

)
. (3.14)

The cross-covariance matrix of T1 and T2 could be rewritten into

ET1T
′
2 = E

(
n∑

t=1

φ(Zt−1)ut ·
n∑

s=1

Z′s−1us

w(Zs−1)

)
=

= E




n∑
t=1

φ(Zt−1)Z
′
t−1 · u2

t

w(Zt−1)
+

n∑
t=1

n∑
s=1

t 6=s

φ(Zt−1)Z
′
s−1 · utus

w(Zs−1)


 =

=
n∑

t=1

E

(
φ(Zt−1)Z

′
t−1

w(Zt−1)
· w(Zt−1)

)
+

n∑
t=1

n∑
s=1

t 6=s

E

(
φ(Zt−1)Z

′
s−1 · utus

w(Zs−1)

)
=

= n · E (
φ(Z0)Z

′
0

)
(3.15)

Variance matrix of 2p-dimensional random vector (T′
1,T

′
2)
′ is equal to the block-matrix

(
ET1T

′
1, ET1T

′
2

ET2T
′
1, ET2T

′
2

)
= n ·


 E

(
φ(Z0)φ(Z0)

′ · w(Z0)
)
, E

(
φ(Z0)Z

′
0

)

E
(
Z0φ(Z0)

′) , E
(

Z0Z′0
w(Z0)

)

 , (3.16)
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where the elements were computed in (3.13) - (3.15). Case p = 1 has been studied
previously and it is based on the non-negativity of the determinant of matrix (3.16). For
general p ≥ 1 we will employ the following theorem which is a modification of the theorem
concerning computation of the determinant for a block matrix:

Theorem 3.3.
Consider block matrix

M =

(
A B

B′ C

)
,

where A, B, C are p× p-dimensional matrices. Let M ≥ 0, B be a regular matrix, and
C be a symmetric regular matrix.
Then

B−1AB′−1 −C−1 ≥ 0.

Proof: We will prove that A − BC−1B′ ≥ 0 from which the result could be obtained
by multiplication of matrices B−1 and B′−1, respectively. Choose arbitrary x ∈ Rp and
y ∈ Rp. Matrix M is positively semi-definite which means that

(x′,y′)M
(

x
y

)
= x′Ax + y′B′x + x′By + y′Cy = x′Ax + y′Cy + 2x′By ≥ 0.

We want to know that for any x ∈ Rp holds

x′Ax− x′BC−1B′x ≥ 0.

Comparing the previous two inequalities we conclude that it suffices to find y ∈ Rp such
that

y′Cy + 2x′By = −x′BC−1B′x.

Denote z = B′x. Then y has to satisfy elliptical equation

y′Cy + 2z′y + z′C−1z = 0. (3.17)

Assuming for the moment that p = 1, the equation simplifies into cy2 + 2zy + z2

c
= 0

which is solved by y = − z
c
. And really the choice y = −C−1z fulfils equation (3.17) which

completes the proof. ¤

Let us come back to block matrix (3.16). If the block elements Eφ(Z0)Z
′
0 and E

Z0Z′0
w(Z0)

are regular matrices, we could employ theorem 3.3 and conclude that

(
Eφ(Z0)Z

′
0

)−1
E

(
φ(Z0)φ(Z0)

′ · w(Z0)
) (

EZ0φ(Z0)
′)−1 −

(
E

Z0Z
′
0

w(Z0)

)−1

≥ 0

⇐⇒ V(φ)−V(ψ) ≥ 0,

where V(φ) is the asymptotical variance matrix of general estimator β̂(φ) and ψ(z) = z
w(z)

corresponds to the asymptotical variance matrix of the weighted least-squares estimator.
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3.3 Simulation study

In the previous section we extended the concept of functional estimator to the higher-
order RCA processes. The aim of this study is to compare two functional estimators
– one corresponding to the least-squares estimator, the other to the special case of the
weighted least-squares estimator. We are interested in the impact of variances of random
coefficients to the estimators.

Setup of the simulations is the following: We simulate a sequence of observations from
RCA(2) model given by equation

Xt = (0.4 + Bt,1)Xt−1 + (0.2 + Bt,2)Xt−2 + Yt, (3.18)

where random coefficients {Bt = (Bt,1, Bt,2)
′, t ∈ Z} are independent normally distributed

N2(0,Σ) random variables and error process {Yt, t ∈ Z} is a sequence of independent and
normally distributed N(0, 1) variables independent of {Bt}.
Simulation procedure involves the following steps:

• set Σ =

(
σ2

1 0

0 σ2
2

)
where σ2

1, σ
2
2 ∈ {0; 0.05; 0.10; . . . ; 0.35}

– repeat 100 times

1. simulate RCA(2) time series (500 observations)

2. estimate parameter β using β̂LS and β̂(φ) with φ(z) = z
1+z′z , respectively

– for each estimator compute β̂ = 1
100

∑100
i=1 β̂i and MSE = 1

100

∑100
i=1

(
β̂i − β̂

)2

• plot β̂ and MSE as functions of σ2
1 for the fixed level of σ2

2 for each estimator

Before the actual simulation, let us examine stationarity assumption A10 closely. This
assumption states that all eigenvalues of matrix E(Ct⊗Ct)+(B⊗B) should be less than
unity in order there exists a stationary RCA process. In our case

Ct =

(
Bt,1 Bt,2

0 0

)
, B =

(
0.4 0.2

1 0

)
.

Using independence of Bt,1 and Bt,2, that follows from their non-correlated jointly normal
distribution, we have

E(Ct ⊗Ct) + (B⊗B) =

= E




B2
t,1 Bt,1Bt,2 Bt,1Bt,2 B2

t,2

0 0 0 0

0 0 0 0

0 0 0 0




+




0.16 0.08 0.08 0.04

0.4 0 0.2 0

0.4 0.2 0 0

1 0 0 0




=
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Figure 3.1: Eigenvalues from staionarity assumption as functions of variances σ2
1 and σ2

2.
Each surface stands for a single eigenvalue.

=




σ2
1 + 0.16 0.08 0.08 σ2

2 + 0.04

0.4 0 0.2 0

0.4 0.2 0 0

1 0 0 0




.

The latter matrix has four eigenvalues for each choice of σ2
1 and σ2

2. Figure 3.1 displays
those eigenvalues as functions of the variances. Each surface stands for one eigenvalue
and we can see that all of them are bounded by values of z axis −1 and 1, respectively
(pink bottom plane and light blue upper plane). Thus, each choice of variance matrix Σ
leads to a stationary RCA(2) process.

Results of the simulation study are displayed on Figures 3.2 and 3.3. Compared esti-
mators β̂LS and β̂( z

1+z′z) behave similarly when random coefficients have low variances.

However, β̂LS on average underestimates the true value of parameter when variances
increase and the estimated values vary depending on simulations. On the other hand,
β̂( z

1+z′z) is stable no matter how large variances of random coefficients are and the esti-
mated values do not vary so much.

We also performed the same simulations with the only difference, namely we set true
parameter β in equation (3.18) (where it equals (0.4, 0.2)′) to (0.2, 0.4)′ or (0, 0)′, respec-
tively. Figures 3.4 and 3.5 display results for β = (0.2, 0.4)′ which do not differ from
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the previous ones and the least-squares estimator still underestimates the true parameter
when variances increase. Figures 3.6 and 3.7 show results for β = (0, 0)′. There both
estimators behave similarly no matter how large the variances are, with a little bigger
MSE in case of the least-squares estimator.
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Figure 3.2: Average estimate of true parameter β = (β1, β2)
′ = (0.4, 0.2)′ in simulated

RCA(2) model. Upper panels stand for estimation of β1, lower for β2. Left panels display
results for the least-squares estimator, right panels for the functional estimator. Horizontal
axis stands for variance σ2

1, curves corresponds to various choices of variance σ2
2 (color of

the curves ranges from black to red as σ2
2 increases).
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Figure 3.3: MSE of estimators of parameter β in simulated RCA(2) model (true parameter
β = (β1, β2)

′ = (0.4, 0.2)′). Upper panels stand for MSE concerning to β1, lower for β2.
Left panels display results for the least-squares estimator, right panels for the functional
estimator. Horizontal axis stands for variance σ2

1, curves corresponds to various choices
of variance σ2

2 (color of the curves ranges from black to red as σ2
2 increases).
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Figure 3.4: Average estimate of true parameter β = (β1, β2)
′ = (0.2, 0.4)′ in simulated

RCA(2) model. Upper panels stand for estimation of β1, lower for β2. Left panels display
results for the least-squares estimator, right panels for the functional estimator. Horizontal
axis stands for variance σ2

1, curves corresponds to various choices of variance σ2
2 (color of

the curves ranges from black to red as σ2
2 increases).



CHAPTER 3. ESTIMATORS OF HIGHER-ORDER MODELS 56

0.00 0.10 0.20 0.30

0.
00

0.
04

0.
08

0.
12

least−squares

variance 1

M
S

E
 o

f b
et

a 
1

0.00 0.10 0.20 0.30

0.
00

0.
04

0.
08

0.
12

functional

variance 1

M
S

E
 o

f b
et

a 
1

0.00 0.10 0.20 0.30

0.
00

0.
04

0.
08

0.
12

least−squares

variance 1

M
S

E
 o

f b
et

a 
2

0.00 0.10 0.20 0.30

0.
00

0.
04

0.
08

0.
12

functional

variance 1

M
S

E
 o

f b
et

a 
2

Figure 3.5: MSE of estimators of parameter β in simulated RCA(2) model (true parameter
β = (β1, β2)

′ = (0.2, 0.4)′). Upper panels stand for MSE concerning to β1, lower for β2.
Left panels display results for the least-squares estimator, right panels for the functional
estimator. Horizontal axis stands for variance σ2

1, curves corresponds to various choices
of variance σ2

2 (color of the curves ranges from black to red as σ2
2 increases).
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Figure 3.6: Average estimate of true parameter β = (β1, β2)
′ = (0, 0)′ in simulated

RCA(2) model. Upper panels stand for estimation of β1, lower for β2. Left panels display
results for the least-squares estimator, right panels for the functional estimator. Horizontal
axis stands for variance σ2

1, curves corresponds to various choices of variance σ2
2 (color of

the curves ranges from black to red as σ2
2 increases).
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Figure 3.7: MSE of estimators of parameter β in simulated RCA(2) model (true parameter
β = (β1, β2)

′ = (0, 0)′). Upper panels stand for MSE concerning to β1, lower for β2.
Left panels display results for the least-squares estimator, right panels for the functional
estimator. Horizontal axis stands for variance σ2

1, curves corresponds to various choices
of variance σ2

2 (color of the curves ranges from black to red as σ2
2 increases).



Chapter 4

Estimators of multivariate models

4.1 Model specification

We will extend the concept of functional estimator to the multivariate RCA(1) models in
this chapter, assuming that values of the process belong to Rm for general m ∈ N. We
will restrict ourselves to the first-order model only, so the results might be compared to
univariate RCA(1) models studied in Chapter 2. Similarly to Chapter 3, we will specify
the model, briefly describe the usual least-squares estimator and define a class of the
functional estimators. We will proof strong consistency and asymptotical normality of
such estimators and we will demonstrate their properties via a simple simulation study.

Process Xt = (X1
t , . . . , Xm

t )′ ∈ Rm is called multivariate RCA(1) model of the first
order if Xt for each t ∈ Z satisfies

Xt = (β + Bt)Xt−1 + Yt, (4.1)

where β is a matrix of unknown parameters, {Bt, t ∈ Z} is a sequence of random matrices
and {Yt, t ∈ Z} is a random vector error process. Let us denote

β =




β11 . . . β1m

...

βm1 . . . βmm


 , Bt =




B11
t . . . B1m

t
...

Bm1
t . . . Bmm

t


 , Yt =




Y 1
t

...

Y m
t


 .

Equation (4.1) might be rewritten into

Xt = βXt−1 + ut (4.2)

using new vector error process ut = BtXt−1 + Yt = (X′
t−1 ⊗ I) · vec(Bt) + Yt (for the

second equation see Lemma 6.8, property d) that will play an important role later on.
We assume that error process Yt is independent of the iid distributed random coeffi-

cients Bt. Similarly to the univariate case, we allow the error process to be a stationary
martingale difference sequence.

59
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A11: All eigenvalues of matrix E(B0 ⊗B0) + (β ⊗ β) are less than unity in modulus.

Definition 4.1. Generalized multivariate RCA(1) process
Random vector process {Xt, t ∈ Z} is called Generalized multivariate RCA(1) process
if Xt satisfies ∀t ∈ Z equation (4.1) and if stationarity condition A11 is met. Matrix
process {Bt} is assumed to be a centered iid sequence with finite positive definite matrix
Σ = E(vecBt · vec′Bt) independent of error process {Yt} which is an ergodic and strictly
stationary martingale difference sequence with respect to Ft = σ (Bs,Ys; s ≤ t) with finite
positive definite variance matrix G.

If we denote Σ = E(vecBt ·vec′Bt) and assume that E[YtY
′
t|Ft−1] = G, we can derive

the conditional moments of process {Xt}
E[Xt|Ft−1] = βXt−1,

var[Xt|Ft−1] = E
[
(Xt − E[Xt|Ft−1]) (Xt − E[Xt|Ft−1])

′ |Ft−1

]
= E[utu

′
t|Ft−1] =

= E
[(

(X′
t−1 ⊗ I)vec(Bt) + Yt

) (
(X′

t−1 ⊗ I)vec(Bt) + Yt

)′ |Ft−1

]
=

= E
[
(X′

t−1 ⊗ I)vec(Bt)vec′(Bt)(Xt−1 ⊗ I)|Ft−1

]
+ E[YtY

′
t|Ft−1] =

= (X′
t−1 ⊗ I) ·Σ · (Xt−1 ⊗ I) + G.

The conditional variance is a m×m matrix and sometimes it is useful to express it as a
vector. Using Lemma 6.8 from Chapter 6, matrix identity c, we have

vec (var[Xt|Ft−1]) =
[
(X′

t−1 ⊗ I)⊗ (X′
t−1 ⊗ I)

] · vec(Σ) + vec(G)

which could be transformed into

vech (var[Xt|Ft−1]) = vech (E[utu
′
t|Ft−1]) = Hmvec (var[Xt|Ft−1]) =

= Hm

[
(X′

t−1 ⊗ I)⊗ (X′
t−1 ⊗ I) ·K′

m2vech(Σ) + K′
mvech(G)

]
=

= Hm(X′
t−1 ⊗ I)⊗ (X′

t−1 ⊗ I)K′
m2 · vech(Σ) + vech(G), (4.3)

where Hm and Km2 are the matrices from Lemma 6.9 in Chapter 6.
The following theorem proves that there exists a unique strictly stationary solution

of the stochastic difference equation (4.1). The solution is measurable with respect to
Ft = σ ((B′

s,Ys)
′; s ≤ t), and is of the form

Xt =
+∞∑
j=0

[
j−1∏
i=0

(β + Bt−i)

]
·Yt−j, (4.4)

where the product is defined as 1 for j = 0.

Theorem 4.1.
There exists the Generalized multivariate RCA(1) process according to Definition 4.1
which is Ft-measurable, ergodic and strictly stationary.
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Proof: The existence of RCA process and its properties are profoundly discussed in [25],
Section 2.3. However, the definition of RCA process stated there differs in the assumption
that Yt are supposed to be independent. We will benefit from the proofs given there and
we will show that the crucial steps remain valid also for the RCA process according to
our definition.

Iterating equation (4.1) we get

Xt = Yt + (β + Bt)
[
Yt−1 + (β + Bt−1)Xt−2

]
=

= Yt + (β + Bt)Yt−1 + (β + Bt)(β + Bt−1)Xt−2 = . . . =

=
r∑

j=0

St,j−1 ·Yt−j + St,r ·Xt−r−1, (4.5)

where St,r =
r∏

k=0

(β+Bt−k) for r = 0, 1, . . . and St,−1 = I. Denote Wt,r = Xt−St,r ·Xt−r−1

and if we knew that the sum in (4.5) converges, we could continue with the iteration into
infinity when the second term would diminish to zero and we would obtain the solution
given by equation (4.4) which is equal to the limit of Wt,r as r goes to infinity.

Now we will compute the variance matrix of Wt,r in the form of vec operator. Noticing
that

E
[
vec

(
St,j−1Yt−jY

′
t−iS

′
t,i−1

)]
= E

[
(St,i−1 ⊗ St,j−1)

] · E [
vec(Yt−jY

′
t−i)

]
= 0

for i 6= j where we used matrix identity c from Lemma 6.8 in Chapter 6 and the indepen-
dence of St,r and Yu for any time u ∈ Z, we have

vec
(
E

[
Wt,rW

′
t,r

])
= vec

(
E

[
r∑

j=0

St,j−1Yt−j

][
r∑

i=0

St,i−1Yt−i

]′)
=

= vec

(
E

[
r∑

j=0

St,j−1Yt−jY
′
t−jS

′
t,j−1

])
=

=
r∑

j=0

E (St,j−1 ⊗ St,j−1) · E
[
vec

(
Yt−jY

′
t−j

)]
=

=
r∑

j=0

E

(
j−1∏

k=0

(β + Bt−k)⊗
j−1∏

l=0

(β + Bt−l)

)
· vec

(
E

[
Yt−jY

′
t−j

])
=

=
r∑

j=0

E

(
j−1∏

k=0

(β + Bt−k)⊗ (β + Bt−k)

)
· vec(G) =

=
r∑

j=0

j−1∏

k=0

(
β ⊗ β + E

(
Bt ⊗Bt

)) · vec(G) =

=
r∑

j=0

(
E

(
B0 ⊗B0

)
+ β ⊗ β

)j · vec(G). (4.6)
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The condition under which the sum in equation (4.6) converges is equal to the stationarity
assumption A11. That is sequentially proved in Theorem 2.2 and Corollary 2.2.1 in [25], all
of which derivations remain valid under our assumption on RCA process. The uniqueness
of the process {Xt} is discussed in Corollary 2.2.2, stationarity and ergodicity is proved
in Theorem 2.7 in [25]. ¤

4.2 Functional estimator

The least-squares estimator of multivariate RCA(1) model according to Definition 4.1 is
defined (see [25], Section 7.2) as

β̂LS =

(
n∑

t=1

XtX
′
t−1

)
·
(

n∑
t=1

Xt−1X
′
t−1

)−1

. (4.7)

There also has been proved its strong consistency, which in this case means that

vec
(
β̂LS − β

)
a.s.−→ 0

and asymptotical normality of
√

n · vec
(
β̂LS − β

)
.

The other parameters of the model, variance matrices Σ and G, can be estimated as
follows: Equation (4.3) gives the expression of the conditional mean of vech(utu

′
t). If we

compute the estimated residuals ût = Xt−β̂LSXt−1, Nicholls and Quinn in [25] suggested
to estimate parameters Σ and G by regressing vech(utu

′
t) on

(1|A′
t−1) = (1|Hm(X′

t−1 ⊗ I)⊗ (X′
t−1 ⊗ I)K′

m2)

with the regression parameters (vech(G)′, vech(Σ))′. The solution of the regression equa-
tion is equal to

vech(Σ̂) =

(
n∑

t=1

(
At−1 −A

) (
At−1 −A

)′
)−1 (

n∑
t=1

(
At−1 −A

) · vech
(
utu

′
t

)
)

,

vech(Ĝ) =
1

n

n∑
t=1

vech
(
utu

′
t

)−A
′ · vech(Σ̂),

(4.8)

where A = 1
n

∑n
t=1 At−1. In [25], Theorem 7.2, there is proved that under higher moment

conditions of process {Xt} such estimators are strongly consistent (one requires finite 4th

moments of the components of vector Xt) and asymptotically normal (finite 8th moments).
Likewise in the extension of the functional estimator to univariate higher-order RCA(p)

models, we propose an extension of the least-squares estimator into a broad class of
estimators using measurable function φ : Rm → Rm. Thus, let us define estimator

β̂(φ) =

(
n∑

t=1

Xtφ(Xt−1)
′
)
·
(

n∑
t=1

Xt−1φ(Xt−1)
′
)−1

. (4.9)
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We published the proof of the following theorem for a special multivariate RCA model
with iid errors (see [36]). Since then we have extended the statement to the generalized
RCA models.

Theorem 4.2.
Consider Generalized multivariate RCA(1) process according to Definition 4.1.
Let E[YtY

′
t|Ft−1] = G a.s for all t and let φ : Rm → Rm be measurable function such

that matrix Eφ(X0)X
′
0 is finite and positive definite. Denote

V(φ) = (EP)−1 · E (
QGQ′) · (EP′)−1 + (EP)−1 · E (

PΣP′) · (EP′)−1, (4.10)

where P = φ(X0)X
′
0 ⊗ I and Q = φ(X0)⊗ I.

Then estimator β̂(φ) defined by (4.9) is a strongly consistent and asymptotically normal
estimator of parameter β with asymptotical variance matrix defined by (4.10).

Proof: According to Definition (4.9) of functional estimator β̂(φ) we know that

β̂(φ)− β =

(
n∑

t=1

Xtφ(Xt−1)
′ − β

n∑
t=1

Xt−1φ(Xt−1)
′
)
·
(

n∑
t=1

Xt−1φ(Xt−1)
′
)−1

=

=

(
n∑

t=1

utφ(Xt−1)
′
)
·
(

n∑
t=1

Xt−1φ(Xt−1)
′
)−1

.

Now using Lemma 6.8 from Chapter 6, matrix identities f and g, we have

vec(β̂(φ)− β) =




(
1

n

n∑
t=1

φ(Xt−1)X
′
t−1

)−1

⊗ I


 ·

[
1

n

n∑
t=1

(
φ(Xt−1)⊗ I

)
ut

]
.(4.11)

Strict stationarity and ergodicity of Xt guarantees strict stationarity and ergodicity of
both sequences {φ(Xt−1)X

′
t−1, t ∈ Z} and {(φ(Xt−1)⊗I)ut, t ∈ Z}. Moreover, components

of the latter sequence form a martingale difference sequence with zero mean value, which
can be seen by choosing arbitrary α ∈ Rm2

and noticing that

E[α′(φ(Xt−1)⊗ I)ut|Ft−1] = α′(φ(Xt−1)⊗ I)E[ut|Ft−1] = 0.

Ergodic theorem (see e.g. [10], Theorem 13.12) tells us that the first term in (4.11) con-
verges almost surely to (Eφ(X0)X

′
0)
−1 ⊗ I and the second term converges to zero, which

implies that vec(β̂(φ)− β) → 0 as n → +∞.
Proof of the asymptotical normality requires little bit more computation:

var
(
α′(φ(Xt−1)⊗ I)ut

)
= E

(
E

[
(α′(φ(Xt−1)⊗ I)ut)

2 |Ft−1

])
=

= E
(
E[α′(φ(Xt−1)⊗ I)utu

′
t(φ(Xt−1)

′ ⊗ I)α′|Ft−1]
)

=

= E
(
α′(φ(Xt−1)⊗ I) · E[utu

′
t|Ft−1] · (φ(Xt−1)

′ ⊗ I)α′
)

=
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= E
(
α′(φ(Xt−1)⊗ I) · [(X′

t−1 ⊗ I)Σ(Xt−1 ⊗ I) + G
] · (φ(Xt−1)

′ ⊗ I)α′
)

=

= α′E
(
(φ(Xt−1)X

′
t−1 ⊗ I)Σ(Xt−1φ(Xt−1)

′ ⊗ I)
)
α +

+ α′E
(
(φ(Xt−1)⊗ I)G(φ(Xt−1)

′ ⊗ I)
)
α. (4.12)

Similarly to equation (4.11) notice that

√
n · vec(β̂(φ)− β) =




(
1

n

n∑
t=1

φ(Xt−1)X
′
t−1

)−1

⊗ I


 ·

[
1√
n

n∑
t=1

(
φ(Xt−1)⊗ I

)
ut

]
,

where the first term converges to (Eφ(X0)X
′
0)
−1 ⊗ I and the second term has due to

Lindeberg-Levy theorem for martingales (see [7]) asymptotically m-dimensional normal
distribution. If we introduce expressions P and Q according to Theorem 4.2, the variance
matrix V(φ) can easily be derived from (4.12). ¤

4.2.1 Asymptotical variance matrix

Variance matrix V(φ) defined by equation (4.10) is very complicated, so we suggest a
consistent estimator of the asymptotical variance matrix. Firstly, we need an auxiliary
proposition:

Theorem 4.3.
Let (Ω,A, P) denote probability space. Let {An, n ∈ N} and {Bn, n ∈ N} be random
r × r-dimensional matrix processes. Assume that {Bn} is ergodic with finite second
moments and that An

a.s.−→ A as n → +∞ where A ∈ Rr×r is a finite constant matrix.
Then

1

n

n∑
t=1

BtAnB
′
t

a.s.−→ E(B1AB′
1) as n → +∞.

Proof: We will prove the convergence of the correspondent components using ergodicity
and the vec operator (see Chapter 6 for its properties):

vec

(
1

n

n∑
t=1

BtAnB
′
t

)
=

1

n

n∑
t=1

vec
(
BtAnB

′
t

)
=

1

n

n∑
t=1

Bt ⊗Bt · vec(An)
a.s.−→

a.s.−→ E
(
B1 ⊗B1

) · vec(A) = E
(
vec (B1AB′

1)
)

= vec
(
E (B1AB′

1)
)
.

¤

Now let us formulate and prove the theorem concerning the consistent estimator:

Theorem 4.4.
Consider multivariate RCA(1) model according to Definition 4.1.
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Let φ : Rm → Rm be measurable function such that matrix Eφ(X0)X
′
0 is finite and positive

definite. Let Ĝn and Σ̂n be strongly consistent estimators of G and Σ, respectively.
Denote Pt = φ(Xt−1)X

′
t−1 ⊗ I and Qt = φ(Xt−1)⊗ I.

Then

V̂n(φ) = n

(
n∑

t=1

Pt

)−1

·
n∑

t=1

(
QtĜnQ

′
t

)
·
(

n∑
t=1

P′
t

)−1

+

+ n

(
n∑

t=1

Pt

)−1

·
n∑

t=1

(
PtΣ̂nP

′
t

)
·
(

n∑
t=1

P′
t

)−1

is a strongly consistent estimator of asymptotical variance matrix V(φ) given by (4.10).

Proof: Process {Xt, t ∈ Z} is strictly stationary and ergodic which implies that {Pt, t ∈
Z}, {Qt, t ∈ Z}, {PtΣP′

t, t ∈ Z}, and {QtGQ′
t, t ∈ Z} are strictly stationary and ergodic.

The ergodic theorem tells us that 1
n

∑n
t=1 Pt

a.s.−→ EP and 1
n

∑n
t=1 Qt

a.s.−→ EQ as n → +∞,

where P and Q are defined in Theorem 4.2. Consistency of estimators Ĝn, Σ̂n and
Theorem 4.3 completes the proof. ¤

4.2.2 Lower bound for variance matrix

Similarly to the previous chapters, we are interested in the optimal choice of generating
function φ for estimator β̂(φ). We will employ the same techniques described in Sec-
tions 2.4.1 and 3.2.2, so we will omit unnecessary details. The only difference this time
is that we are not able to identify the optimal estimator (optimal in the sense of asymp-
totical variance matrix). Thus, we will infer the lower bound for asymptotical variance
matrix of the estimators.

Let E[YtY
′
t|Ft−1] = G and define two m2-dimensional random vectors

T1 =
n∑

t=1

(
φ(Xt−1)⊗ I

) · (Xt − β′Xt−1) =
n∑

t=1

(
φ(Xt−1)⊗ I

) · ut,

T2 =
n∑

t=1

(
Xt−1 ⊗ I

) ·w(Xt−1)
−1 · (Xt − β′Xt−1) =

n∑
t=1

(
Xt−1 ⊗ I

) ·w(Xt−1)
−1 · ut,

where w(z) = (z′ ⊗ I) · Σ · (z ⊗ I) + G. Since both sequences {(φ(Xt−1)⊗ I
) · ut} and

{(Xt−1 ⊗ I
) ·w(Xt−1)

−1 · ut} are martingale differences w.r to Ft, it immediately follows
that ET1 = 0 and ET2 = 0 and the variance matrix of vector T1 equals

ET1T
′
1 = E

(
n∑

t=1

(
φ(Xt−1)⊗ I

)
ut

)
·
(

n∑
s=1

u′s
(
φ(Xt−1)

′ ⊗ I
)
)

=

=
n∑

t=1

E
((

φ(Xt−1)⊗ I
)
utu

′
t

(
φ(Xt−1)

′ ⊗ I
))

=
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=
n∑

t=1

E
((

φ(Xt−1)⊗ I
) · E[utu

′
t|Ft−1] ·

(
φ(Xt−1)

′ ⊗ I
))

=

= n · E ((
φ(X0)⊗ I

) ·w(X0) ·
(
φ(X0)

′ ⊗ I
))

=

= n · E ((
φ(X0)⊗ I

) · ((X′
0 ⊗ I) · Σ · (X0 ⊗ I) + G) · (φ(X0)

′ ⊗ I
))

=

= n · E ((
φ(X0)X

′
0 ⊗ I

)
Σ

(
X0φ(X0)

′ ⊗ I
)

+
(
φ(X0)⊗ I

)
G

(
φ(X0)

′ ⊗ I
))

=

= n · E (PΣP′ + QGQ′) (4.13)

using matrix property from Lemma 6.7 and the notation defined in Theorem 4.2. As the
direct analogy we can infer that

ET2T
′
2 = n · E ((

X0 ⊗ I
) ·w(X0)

−1 · (X′
0 ⊗ I

))
. (4.14)

The cross-covariance matrix of T1 and T2 could be computed as follows:

ET1T
′
2 = E

((
n∑

t=1

(
φ(Xt−1)⊗ I

) · ut

)
·
(

n∑
s=1

u′s ·w(Xs−1)
−1 · (X′

s−1 ⊗ I
)
))

=

=
n∑

t=1

E
((

φ(Xt−1)⊗ I
) · E[utu

′
t|Ft−1] ·w(Xt−1)

−1 · (X′
t−1 ⊗ I

))
=

=
n∑

t=1

E
((

φ(Xt−1)⊗ I
) ·w(Xt−1) ·w(Xt−1)

−1 · (X′
t−1 ⊗ I

))
=

= n · E ((
φ(X0)⊗ I

) · (X′
0 ⊗ I

))
= n · E (

φ(X0)X
′
0 ⊗ I

)
= n · EP. (4.15)

Variance matrix of 2m2-dimensional random vector (T′
1,T

′
2)
′ is equal to the block-

matrix
(

ET1T
′
1, ET1T

′
2

ET2T
′
1, ET2T

′
2

)

where the elements were computed in (4.13) - (4.15). Theorem 3.3 tells us that if the
block elements ET1T

′
2 and ET2T

′
2 are regular matrices, we have

(
ET1T

′
2

)−1 · (ET1T
′
1) · (ET2T

′
1)
−1 − (ET2T

′
2)
−1 ≥ 0

⇐⇒ (EP)−1 · E (
PΣP′ + QGQ′) · (EP′)−1 − (ET2T

′
2)
−1 ≥ 0

⇐⇒ V(φ)− (
E

(
(X0 ⊗ I) ·w(X0)

−1 · (X′
0 ⊗ I)

))−1 ≥ 0,

where V(φ) is the asymptotical variance matrix of general estimator β̂(φ). Thus

(
E

(
(X0 ⊗ I) ·w(X0)

−1 · (X′
0 ⊗ I)

))−1

is the lower bound of the asymptotical variance matrix for all functional estimators β̂(φ)
such that E

(
φ(X0)X

′
0 ⊗ I

)
is regular.
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There are a few special cases when we can compute the optimal estimator explicitly.
If Σ = 0 for instance, which corresponds to the classical AR model, and G = σ2I for
some σ2 > 0, we have w(z) = σ2I. Then the lower bound equals

(
E

(
(X0 ⊗ I) ·w(X0)

−1 · (X′
0 ⊗ I)

))−1
= σ2

(
E (X0X

′
0 ⊗ I)

)−1

and asymptotical variance matrix of the estimator β̂(φ) with φ(z) = z achieves this lower
bound.

4.3 Simulation study

We introduced and studied a class of functional estimators of parameter β of the multi-
variate RCA(1) process in the previous sections. This study will compare the least-squares
estimator to the particular choice of the functional estimator.

Setup of the simulations is the following: We simulate a sequence of observations from
2-dimensional RCA(1) model given by equation

(
X1

t

X2
t

)
=

((
0.2 0.1

0.3 0.4

)
+

(
B11

t B12
t

B21
t B22

t

))
·
(

X1
t−1

X2
t−1

)
+

(
Y 1

t

Y 2
t

)
, (4.16)

where both random coefficients Bt and error process Yt are mutually independent and
identically normally distributed. We set Σ = var(vecBt) = 0.2 · I and G = varYt = I.
Simulation procedure consists of the following steps:

• repeat 1000 times

1. simulate 2-dimensional RCA(1) time series (100 observations) given by equa-
tion (4.16)

2. estimate parameter β using β̂LS and β̂(φ) with φ(z) = z
1+z′z

• compute β̂ = 1
1000

∑1000
i=1 β̂

i
for each estimator

• plot density estimations of all parameters for both estimators

Let us verify stationarity assumption A11 of the process first. This assumption requires
that all eigenvalues of matrix E(Bt ⊗Bt) + (β ⊗ β) are less than unity:

E(Bt ⊗Bt) + (β ⊗ β) =

= E




varB11
t 0 0 varB12

t

0 0 0 0

0 0 0 0

varB21
t 0 0 varB22

t




+




0.04 0.02 0.02 0.01

0.06 0.08 0.03 0.04

0.06 0.03 0.08 0.04

0.09 0.12 0.12 0.16




=
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=




0.24 0.02 0.02 0.21

0.06 0.08 0.03 0.04

0.06 0.03 0.08 0.04

0.29 0.12 0.12 0.36




,

using mutual independence of random coefficients that follows from their non-correlated
jointly normal distribution. The latter matrix has four eigenvalues (0.583, 0.064 + 0.036i,
0.064 − 0.036i, 0.050) all of which absolute values (0.583, 0.073, 0.073, 0.050) are less
than one. Thus, the simulated process is well-defined stationary 2-dimensional RCA(1)
process.

Results of the simulation study are displayed on Figure 4.1 and in Table 4.1. We have
1000 estimated values of true parameters β11, β12, β21 and β22. We compare the estimators
via both sample means and via density estimations (we use default density estimation in
R based on kernel smoothing).

parameter true value LS est. φ(z) = z
1+z′z

β11 0.2 0.163 0.182

β12 0.1 0.088 0.098

β21 0.3 0.257 0.278

β22 0.4 0.391 0.401

Table 4.1: Average values of estimated parameters

The least-squares estimator β̂LS always underestimates the true value, especially for

β11 and β21 whereas functional estimator β̂( z
1+z′z) is closer to the true values. The density

estimation also reveals bias for the least-squares estimator.
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Figure 4.1: Density of estimated values of the parameters (red color for LS estimator,
blue color for functional estimator) for simulated 2-dimensional RCA(1) process.
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