
Charles University

Faculty of Mathematics and Physics

DOCTORAL THESIS

RNDr. Irena Mlýnková

XML Data in (Object-)Relational
Databases

Department of Software Engineering

Supervisor: Prof. RNDr. Jaroslav Pokorný, CSc.

Title: XML Data in (Object-)Relational Databases
Author: RNDr. Irena Mlýnková
Department: Department of Software Engineering
Supervisor: Prof. RNDr. Jaroslav Pokorný, CSc.
Author’s e-mail address: irena.mlynkova@mff.cuni.cz
Supervisor’s e-mail address: jaroslav.pokorny@mff.cuni.cz

Abstract: As XML has become a standard for data representation, it is
inevitable to propose and implement techniques for efficient managing of
XML documents. A natural alternative is to exploit features and functions
of (object-)relational database management systems, i.e. to rely on their long
theoretical and practical history. The main concern of such techniques is the
choice of an appropriate XML-to-relational mapping strategy.

In this thesis we focus on further enhancing of current most efficient
XML-to-relational storage strategies – so-called adaptive methods. Firstly,
we perform a detailed analysis of existing works and especially remaining
open issues. Secondly, we propose their enhancing which can be character-
ized as a hybrid user-driven adaptive mapping strategy, i.e. a combination
of so-called user-driven and adaptive methods. In the enhancing we focus
especially on deeper exploitation of user-given information, i.e. schema an-
notations, and we propose an approach which enables to identify new anno-
tation candidates and thus to help users to find a more appropriate mapping
strategy. For this purpose we propose a similarity measure which focuses
mainly on structural similarity of the given data and an algorithm which en-
ables reasonable tuning of its parameters on the basis of results of statistical
analysis of real-world XML data. Using various experiments we show the
behavior and efficiency of both the similarity measure and the hybrid map-
ping strategy on real XML data. And finally, we analyze the correctness and
structure of the resulting mapping strategy and related query evaluation.
We focus especially on the problem of correction of the set of annotation
candidates, evaluation of parts of a single XML query using various storage
strategies, and exploitation of redundancy. We conclude with a discussion of
further possible improvements of the approach, as well as XML processing
using (object-)relational databases in general.

Keywords: XML data management, object-relational databases, XML-to-
relational mapping strategy, adaptivity, user-driven method, similarity.

i

ii

Acknowledgments

I would like to thank all those who supported me in my doctoral studies and
work on my thesis. In the first place I very appreciate the help and advices
received from my supervisor Jaroslav Pokorný and I am grateful for numerous
corrections and comments. Secondly, I would like to thank to Kamil Toman
for inspirative cooperation on important part of this work – the statistical
analysis of real-world XML data. And undoubtedly, I must also express my
thanks to all the anonymous reviewers of my papers for helpful remarks and
ideas.

My thanks also go to institutions that provided financial support for my
research work. During my doctoral studies, my work was partially supported
by the Czech Science Foundation (GAČR), grant number 201/02/1553 and
201/06/0756 and by National Programme of Research, Information Society
Project number 1ET100300419.

Last but not least, I am very thankful to René whose unlimited support,
patience, and sense of humor made this work possible.

iii

iv

Contents

1 Introduction 1

1.1 Road Map . 4

2 Definitions and Formalism 7

3 Related Work 13

3.1 Cost-Driven Techniques . 14

3.1.1 Hybrid Object-Relational Mapping 16

3.1.2 FlexMap Mapping . 17

3.1.3 Adjustable and Adaptable Method (AAM) 19

3.1.4 Hill Climbing Algorithm 21

3.2 User-Driven Techniques . 23

3.2.1 ShreX Framework . 23

3.2.2 XCacheDB System . 25

3.3 Theoretic Issues . 26

3.3.1 Data Redundancy . 26

3.3.2 Grouping Problem . 27

3.4 Summary . 28

3.5 Open Issues . 29

4 Hybrid User-Driven Adaptive Method 33

4.1 Proposed Algorithm . 35

4.1.1 Searching for Similar Fragments 37

4.1.2 Adaptive Mapping Strategy 45

4.2 Experimental Implementation 46

4.3 Conclusion . 48

v

5 Similarity Measure 51
5.1 Related Work . 52
5.2 Proposed Similarity Evaluation 53

5.2.1 Matchers and Composite Measure 54
5.2.2 Tuning of the Weights 57

5.3 Experimental Tests . 61
5.3.1 Tuning Process . 62
5.3.2 Similarity Measure . 65

5.4 Conclusion . 68

6 Statistical Analysis of Real-World XML Data 69
6.1 Related Work . 70
6.2 Sample XML Data Collections 71

6.2.1 Preprocessing . 72
6.2.2 Accessibility of the Data 73
6.2.3 General Metrics and Classifications 73

6.3 Analyses and Results . 75
6.3.1 New Constructs . 76
6.3.2 Statistics and Results 77

6.4 Conclusion . 87

7 Query Evaluation 89
7.1 Related Work . 90
7.2 Correction of Candidate Set 91

7.2.1 Missed Annotation Candidates 92
7.2.2 Sample Set of Annotations 93
7.2.3 Annotation Intersection 94
7.2.4 Examples of Schema Annotations 98

7.3 Query Evaluation . 101
7.3.1 Interface between Schema Annotations 102
7.3.2 Document Shredding 105
7.3.3 Query Evaluation . 107
7.3.4 Exploitation of Redundancy 109

7.4 Architecture of the System . 113
7.5 Conclusion . 116

8 Conclusion 117

vi

List of Figures

4.1 Schema of the mapping process 37
4.2 A schema graph GS and an expanded schema graph Gex

S . . . 39
4.3 Similar fragments on the same root path 41
4.4 Exploitation of behavior of similarity function 42
4.5 Average percentage of annotated nodes at each iteration . . . 48

5.1 Tuning of parameter Pcross – number of iterations 63
5.2 Tuning of parameter Pcross – values of sum 5.6 63
5.3 Tuning of parameter Pmut – number of iterations 64
5.4 Tuning of parameter Pmut – values of sum 5.6 64
5.5 Tuning of parameter Pmov – number of iterations 65
5.6 Tuning of parameter Pmov – values of sum 5.6 65
5.7 Precision, Recall, and Overall for SimAvg and SimTuned 67

6.1 Number and size of documents per category 76
6.2 Distribution of elements, attributes, text nodes, and mixed

contents in XML documents per level 81
6.3 Element fan-out of XML documents per categories 82

7.1 Unidentified annotated subfragment 92
7.2 Unidentified annotated superfragment 93
7.3 Forbidden intersection of annotations 95
7.4 Intersection of multiple annotations I. 95
7.5 Intersection of multiple annotations II. 95
7.6 Exploitation of CLOBs – XML schema 98
7.7 Exploitation of CLOBs – relational schemes 99
7.8 Influencing mapping strategies – XML schema 100
7.9 Influencing mapping strategies – relational schemes 101
7.10 Exploitation of CLOBs – structural tables 106

vii

7.11 Join of structurally different tables – XML schema 108
7.12 Example of evaluation graph Geval 110
7.13 Architecture of the system . 114

viii

List of Tables

3.1 Annotation attributes for ShreX 24
3.2 Annotation attributes for XCacheDB 25

4.1 General characteristics per category 47

5.1 Quality of the achieved suboptimums 66
5.2 Efficiency of achieving the suboptimum 66

6.1 General statistics for XML data 73
6.2 General statistics per category 75
6.3 Global statistics for 95% XML documents 78
6.4 Maximum values of global statistics 79
6.5 Exploitation rate of global properties (%) 80
6.6 Exploitation rate of types of recursion (%) 83
6.7 Percentage representation of types of recursion (%) 84
6.8 Distance of closest and furthest ed-pairs in XML documents . 84
6.9 Mixed-content statistics for XML documents per category . . 85
6.10 DNA pattern statistics per category 86
6.11 Relational pattern statistics for XML documents per category 87
6.12 Shallow relational pattern statistics for XML documents per

category . 87

7.1 Supported schema annotations 94
7.2 Overriding and redundant annotation intersection 96
7.3 Influencing annotation intersection 96

ix

x

List of Algorithms

1 Naive Search Algorithm . 15
2 Greedy Search Algorithm . 18
3 Hill Climbing Algorithm . 21
4 Basic Annotation Strategy (BAS) 43
5 Global Annotation Strategy (GAS) 46
6 Genetic Algorithm (GA) . 60
7 Simulated Annealing (SA) . 61

xi

xii

Chapter 1

Introduction

Without any doubt the XML [28] is currently one of the most popular formats
for data representation. It is well-defined, easy-to-use, and involves various
recommendations such as languages for structural specification, transforma-
tion, querying, updating, etc. The popularity invoked an enormous endeavor
to propose more efficient methods and tools for managing and processing
XML data. The four most popular ones are methods which store XML
data in a file system, methods which store and process XML data using
an (object-)relational database management system ((O)RDBMS), methods
which exploit a pure object-oriented approach, and native methods that use
special indices, numbering schemes, and/or data structures proposed partic-
ularly for tree structure of XML documents.

Naturally, each of the approaches has both keen advocates and objectors.
The situation is not good especially for file system-based and object-oriented
methods. The former ones suffer from inability of querying without an addi-
tional preprocessing of the data, whereas the latter approach fails especially
in finding a corresponding efficient and comprehensive tool. Undoubtedly,
the highest-performance techniques are the native ones, since they are pro-
posed particularly for XML processing and do not need to artificially adapt
existing structures to a new purpose. But the most practically used ones are
methods which exploit features of “classical” (object-)relational databases.
The reason is that (O)RDBMS are still regarded as universal data processing
tools and their long theoretical and practical history can guarantee a reason-
able level of reliability. Contrary to native methods it is not necessary to
start “from scratch”, but we can rely on a mature and verified technology,
i.e. properties that no native XML database can offer yet. Thus until the

1

native XML methods “grow up”, i.e. until there exists a reliable and robust
implementation verified by years of both theoretic and implementation effort,
it is still necessary to improve XML data management in (O)RDBMS.

Currently there is a plenty of existing works concerning database-based1

XML data management. Almost all the major database vendors (such as,
e.g., [14] [11] [12]) more or less support XML processing and even the SQL
standard has been extended by a new part (SQL/XML) which introduces
new XML data type and operations for XML data manipulation. The main
concern of the database-based XML-processing techniques is the choice of the
way XML data are stored into relations, so-called XML-to-relational map-
ping. Under a closer investigation the methods can be further classified and
analyzed [50]. We usually distinguish generic (or schema-oblivious) meth-
ods which store XML data regardless the existence of corresponding XML
schema (e.g. [35] [73] [43] [66] [32]), schema-driven methods based on struc-
tural information from existing schema of XML documents (e.g. [67] [64]
[44] [49]), and user-defined methods which leave all the storage decisions in
hands of users (e.g. [15] [9]).

Techniques of the first type usually view an XML document as a directed
labeled tree with several types of nodes. (Hence, in fact, they also use a kind
of document schema, though a quite general one.) We can further distin-
guish generic techniques which store purely components of the tree and their
mutual relationship (e.g. [35]) and techniques which store additional struc-
tural information, usually using a kind of a numbering schema (e.g. [43]).
Such schema enables to speed up certain types of queries, but usually at the
cost of inefficient data updates. The fact that the techniques do not exploit
possibly existing XML schemes can be regarded as both advantage and dis-
advantage. On one hand, they do not depend on its existence but, on the
other hand, they cannot exploit the additional structural information. But,
together with the finding that a significant portion of real XML documents
(52% [47] of randomly crawled or 7.4% [51] of semi-automatically collected2)
have no schema at all, they seem to be the most practical choice.

By contrast, schema-driven methods have contradictory (dis)advantages.
The situation is even worse for methods which are based particularly on XML
Schema [70] [27] definitions (XSDs) and focus on their special features [49].

1In the rest of the text the term “database” represents an (O)RDBMS, if not explicitly
stated alternatively.

2Data collected with interference of a human operator who removes damaged, artificial,
too simple, or otherwise useless XML data.

2

As it is expectable, XSDs are used even less (only for 0.09% [47] of randomly
crawled or 38% [51] of semi-automatically collected XML documents) and
even if they are used, they often (in 85% of cases [26]) define so-called local
tree grammars [54], i.e. languages that can be defined using DTD [28] as
well. The most exploited “non-DTD” features are usually simple types [26]
whose lack in DTD is crucial but for XML data processing have only a side
optimization effect.

Another problem of purely schema-driven methods is that information
XML schemes provide is not satisfactory. Analysis of both XML documents
and XML schemes together [51] shows that XML schemes are often too gen-
eral, i.e. the set of document instances valid against a schema is much larger
than the set of real-world ones. Excessive examples can be recursion or “*”
operator which allow theoretically infinitely deep or wide XML documents.
Naturally, XML schemes also cannot provide any information about, e.g.,
retrieval frequency of an element/attribute or the way they are retrieved.
Thus not only XML schemes but also corresponding XML documents and
XML queries need to be taken into account to get the overall notion of the
demanded XML-processing application.

The last mentioned type of approach, i.e. the user-defined one, is a bit dif-
ferent. It does not involve methods for automatic database storage but rather
tools for specification of the target database schema and required XML-to-
relational mapping. It is commonly offered by most known (O)RDBMS [21]
as a feature that enables users to define what suits them most instead of be-
ing restricted by disadvantages of a particular technique. Nevertheless, the
key problem is evident – it assumes that the user is skilled in both database
and XML technologies and is able to specify an optimal database schema for
a particular application.

Apparently, advantages of all three approaches are closely related to the
particular situation. Thus it seem to be advisable to propose a method
which is able to exploit the current situation or, at least, to comfort to it.
If we analyze the database-based methods more deeply, we can distinguish
so-called flexible or adaptive methods (e.g. [39] [62] [71] [75]). They take
into account a given sample set of XML data and/or XML queries which
specify the future usage and adapt the resulting database schema to them.
Such techniques have naturally better performance results than the fixed
ones, i.e. methods which use pre-defined set of mapping rules and heuristics
regardless the intended future usage. A different set of methods, so-called
user-driven ones (e.g. [34] [23]), also adapt the target schema to a particular

3

application. In this case it is determined by schema annotations which specify
user-required local changes of a default fixed mapping strategy.

In this thesis we focus on further enhancing of adaptivity in the area
of processing XML data using (O)RDBMS. Firstly, we perform a detailed
analysis of existing works and especially remaining open issues. Secondly, we
propose their enhancing which can be characterized as a hybrid user-driven
adaptive mapping strategy, i.e. a combination of so-called user-driven and
adaptive methods. In the enhancing we focus especially on deeper exploita-
tion of user-given information, i.e. schema annotations, and we propose an
approach which enables to identify new annotation candidates and thus to
help users to find a more appropriate mapping strategy. For this purpose
we propose a similarity measure which focuses mainly on structural simi-
larity of the given data and an algorithm which enables reasonable tuning
of its parameters on the basis of results of statistical analysis of real-world
XML data. Using various experiments we show the behavior and efficiency
of both the similarity measure and the hybrid mapping strategy on real XML
data. And finally, we analyze the correctness and structure of the resulting
mapping strategy and related query evaluation. We focus especially on the
problem of correction of the set of annotation candidates, evaluation of parts
of a single XML query using various storage strategies, and exploitation of re-
dundancy. We conclude with a discussion of further possible improvements of
the approach, as well as XML processing using (object-)relational databases
in general.

1.1 Road Map

The rest of the thesis is structured as follows: In Chapter 2 we briefly state
several basic definitions used in the rest of the text. Chapter 3 contains an
analysis of existing adaptive mapping strategies and a discussion of corre-
sponding open issues. In Chapter 4 we propose a possible enhancing of these
methods – a hybrid user-driven adaptive method. We describe the approach
mostly theoretically leaving implementation decisions and corresponding is-
sues to the following chapters. In Chapter 5 we describe a similarity measure
designed particularly for the purpose of the proposed hybrid method and
especially the problem of reasonable tuning of its parameters. In the sixth
chapter we provide an overview of statistical analysis of real-world XML data
whose results were used several times in the work, in particular in the tuning

4

process and in experimental tests. Chapter 7 deals with the remaining issues
concerning the correctness and structure of the resulting mapping strategy
and related query evaluation. And finally, Chapter 8 provides conclusions
and outlines possible future work and further improvements.

For better orientation in the text, each chapter is introduced with an
abstract that briefly describes its content and lists papers where it was pub-
lished, if there exists any.

5

6

Chapter 2

Definitions and Formalism

In this chapter we state basic terms used in the rest of the text. We
use or slightly modify common notation and definitions from [29] and [26].
Other definitions, established particularly for the purpose of this thesis, are
stated and explained in respective chapters.

An XML document is usually viewed as a directed labeled tree with several
types of nodes whose edges represent relationships among them. Auxiliary
structures, such as entities, comments, CDATA sections, processing instruc-
tions, etc., are without loss of generality omitted.

Definition 1 An XML document is a directed labeled tree T = (V, E, ΣE,
ΣA, Γ, lab, r), where

• V is a finite set of nodes,

• E ⊆ V × V is a set of edges,

• ΣE is a finite set of element names,

• ΣA is a finite set of attribute names,

• Γ is a finite set of text values,

• lab : V → ΣE ∪ ΣA ∪ Γ is a surjective function which assigns a label
to each v ∈ V s.t. for ∀ e = 〈vx, vy〉 ∈ E : (lab(vx) ∈ ΣE ∧ lab(vy) ∈
ΣE ∪ ΣA ∪ Γ) ∨ (lab(vx) ∈ ΣA ∧ lab(vy) ∈ Γ), and

• r is the root node of the tree.

7

A node v ∈ V is called an element if lab(v) ∈ ΣE, an attribute if lab(v) ∈
ΣA, or a text value if lab(v) ∈ Γ.

A schema of an XML document is usually defined using DTDs or XSDs
which describe the allowed structure of an element using a regular expression
called content model. An XML document is valid against a schema (or it is
an instance of a schema) if each element matches its content model and has
corresponding attributes. (We state the definitions for DTDs only for the
text length. For XSDs are often used the same or similar ones.)

Definition 2 A content model α over a set of element names Σ′
E is a regular

expression defined as α = ε | pcdata | f | (α1, α2, ..., αn) | (α1|α2|...|αn) |
β* | β+ | β?, where ε denotes an empty content model, pcdata denotes
a text content model, f ∈ Σ′

E, “,” and “|” stand for concatenation and
union (of content models α1, α2, ..., αn), and “*”, “+”, and “?” stand for
zero or more, one or more, and optional occurrence(s) (of content model β)
respectively.

A content model α s.t. α 6= ε ∧ α 6= pcdata is called an element content
model.

Definition 3 An XML schema S is a four-tuple (Σ′
E, Σ′

A, ∆, s), where

• Σ′
E is a finite set of element names,

• Σ′
A is a finite set of attribute names,

• ∆ is a finite set of declarations of the form e → α or e → β, where
e ∈ Σ′

E, α is a content model over Σ′
E, and β ⊆ Σ′

A, and

• s ∈ Σ′
E is a start symbol.

Definition 4 An XML document T = (V, E, ΣE, ΣA, Γ, lab, r) is valid
against a schema S = (Σ′

E, Σ′
A, ∆, s) if lab(r) = s and for ∀ v ∈ V and

its label e, the sequence e1 e2 ... ek of labels of its subelements matches the
regular expression α, where (e → α) ∈ ∆, and the set of its attributes matches
the set β ⊆ Σ′

A, where (e → β) ∈ ∆.

To simplify the XML-to-relational mapping process an XML schema is
often transformed into a graph representation. Probably its first occurrence,
so-called DTD graph, can be found in [67]. There are also various other
types of graph representation of an XML schema. If necessary, we mention
the slight differences later in the text.

8

Definition 5 A schema graph of a schema S = (Σ′
E, Σ′

A, ∆, s) is a directed,
labeled graph GS = (V,E, lab′, r′), where

• V is a finite set of nodes,

• E ⊆ V × V is a set of edges,

• lab′ : V → Σ′
E∪Σ′

A∪{“|”, “*”, “+”, “?”, “,”}∪{pcdata} is a surjective
function which assigns a label to ∀ v ∈ V s.t.

– If lab′(vx) ∈ Σ′
E :

- {vy|〈vx, vy〉 ∈ E ∧ lab′(vy) ∈ Σ′
A} = β, where (lab′(vx) → β) ∈

∆ and

- the sequence of labels l1 l2 ... lk of nodes of content subgraph
rooted at vx in inorder traversal order forms the content model
α, where (lab′(vx) → α) ∈ ∆.

– If lab′(vx) ∈ Σ′
A then lab′(vy) = pcdata, where e = 〈vx, vy〉 ∈ E.

and

• r′ is the root node of the graph and lab′(r′) = s.

A content subgraph of a schema graph GS = (V, E, lab′, r′) is its subgraph
G′

S = (V ′, E ′) rooted at node vr ∈ V ′, where lab′(vr) ∈ Σ′
E, s.t. ∀ leaf node

v ∈ V ′ : lab′(v) ∈ Σ′
E ∪ {pcdata} and ∀ inner node v ∈ V ′ : lab′(v) ∈ {“|”,

“*”, “+”, “?”, “,”}.

The core idea of XML-to-relational mapping methods is to decompose
a given schema graph into fragments. Each fragment is then mapped to a
corresponding relation.

Definition 6 A fragment f of a schema graph GS is each its connected
subgraph.

Definition 7 A decomposition of a schema graph GS = (V,E, lab′, r′) is a
set of its fragments F = {f1, ..., fn}, where ∀ v ∈ V is a member of at least
one fragment fi ∈ F , where i = 1, 2, ..., n.

9

For determining the best XML-to-relational strategy, the structure of the
stored XML data, in particular the complexity of used content models, is
usually analyzed. Basic characteristics simply distinguish the empty, text,
and element content of an element, more complex ones involve their depth
and width which is usually characterized by various types of fan-out. An
inverse characteristic to fan-out is called fan-in.

Definition 8 A depth of a content model α is inductively defined as follows:
depth(ε) = 0;
depth(pcdata) = depth(f) = 1;
depth(α1, α2, ..., αn) = depth(α1|α2|...|αn) = max(depth(αi)) + 1, where

i = 1, 2, ..., n;
depth(β*) = depth(β+) = depth(β?) = depth(β) + 1.

Definition 9 An element fan-out of an element e is the number of distinct
elements in content model α, where e → α.

An attribute fan-out of an element e is the cardinality of set β, where
e → β.

Definition 10 A fan-in of an element e is the cardinality of the set γ = {f
| f → α′ and the element e occurs in α′}.

An element with large fan-in value is called a hub.

Note that the definitions of both depth and fan-out are specified for XML
schemes but can be used (in slightly modified versions) also for XML doc-
uments. On the other hand, the fan-in value is in case of XML documents
senseless since it is for all non-root elements equal to 1. In addition to depth,
in case of XML documents we can also speak about levels. Note that this
construct can be (and often is) specified also for XML schemes.

Definition 11 A level of an element e is the distance of its node from the
root node r. The level of the root node is 0.

A distance of elements ex and ey is the number of edges in document tree
T separating their corresponding nodes.

Last but not least, there are characteristics which describe special types
of content models. Probably the most common ones are recursive and mixed
content. In addition, in case of XSDs we can distinguish also the unordered
content specified by the all operator.

10

Definition 12 An element e is recursive if e is reachable from e.
A node e′ is reachable from e if there exists a directed path from e to e′

in schema graph GS.
The element-descendant association is called an ed-pair.

Definition 13 A content model α is mixed, if α = (α1|...|αn|pcdata)∗ |
(α1|...|αn|pcdata)+ where n > 1 and for i = 1, 2, ..., n content model αi 6= ε
∧ αi 6= pcdata.

An element e is called mixed-content element if content model α, where
e → α, is mixed.

11

12

Chapter 3

Related Work

In this chapter we study techniques which are currently considered as the
most efficient way of XML processing based on (object-)relational databases,
so-called adaptive or flexible mapping methods. We provide an overview of
existing approaches, we classify their main features, and sum up the most
important findings and characteristics. Finally, we discuss possible improve-
ments and corresponding open issues.

Most of the contents of this chapter has been published in the following
papers:

Mlýnková, I. – Pokorný, J.: Adaptability of Methods for Processing XML
Data using Relational Databases – the State of the Art and Open Problems.
RCIS ’07: Proceedings of the 1st International Conference on Research Chal-
lenges in Information Science, pages 183 – 194, Ouarzazate, Morocco, April
2007. Ecole Marocaine des Sciences de l’Ingénieur, 2007. (Note: The Best
Paper Award; selected for publishing in Special Issue of the International
Journal of Computer Science and Applications, ISSN 0972-9038, Volume 4,
Issue 2, pages 43 – 62, Technomathematics Research Foundation, July 2007.)

Mlýnková, I. – Pokorný, J.: XML in the World of (Object-)Relational
Database Systems. ISD ’04: Proceedings of the 13th International Confer-
ence on Information Systems Development, pages 63 – 76, Vilnius, Lithua-
nia, September 2004. Springer Science+Business Media Inc., 2005. ISBN
978-0-387-25026-7.

Up to now several papers have focused on a proposal of an adaptive database-
based XML-processing method. We distinguish two main directions – cost-
driven and user-driven. Techniques of the former group can choose the

13

most efficient XML-to-relational storage strategy automatically. They usu-
ally evaluate a set of possible mappings and choose the optimal one according
to the given sample of XML data, query workload, etc. The main advantage
is expressed by the adverb “automatically”, i.e. without necessary or un-
desirable user interference. By contrast, techniques of the latter group also
support several storage strategies but the final decision is left in hands of
users. We distinguish these techniques from the user-defined ones (see In-
troduction), since their approach is different: By default they apply a fixed
mapping, but users can influence the mapping process by annotating frag-
ments of the input XML schema with demanded storage strategies. Similarly
to the user-defined techniques this approach also assumes a skilled user, but
most of the work is done by the system itself. The user is expected to help
the mapping process, not to perform it.

3.1 Cost-Driven Techniques

As mentioned above, cost-driven techniques can choose the best storage strat-
egy for a particular application automatically, without any interference of a
user. Thus the user can influence the mapping process only through the pro-
vided XML schema, set of sample XML documents or data statistics, set of
XML queries and eventually their weights, etc.

Each of the techniques can be characterized by the following five features:

1. an initial XML schema Sinit,

2. a set of XML schema transformations T = {t1, t2, ..., tn}, where for
i = 1, 2, ..., n : ti transforms a given schema S into a schema Si,

3. a fixed XML-to-relational mapping function fmap which transforms a
given XML schema S into a relational schema R,

4. a set of sample data Dsample characterizing the future application, which
usually consists of a set of XML documents {d1, d2, .., dk} valid against
Sinit, and a set of XML queries {q1, q2, .., ql} over Sinit, eventually with
corresponding weights {w1, w2, .., wl}, where for i = 1, 2, ..., l : wi ∈
[0, 1], and

5. a cost function fcost which evaluates the cost of the given relational
schema R with regard to the set Dsample.

14

The required result is an optimal relational schema Ropt, i.e. a schema,
where fcost(Ropt, Dsample) is minimal.

A naive but illustrative cost-driven storage strategy that is based on the
idea of using a “brute force” is depicted by Algorithm 1. It first generates a
set of possible XML schemes S using transformations from set T and starting
from initial schema Sinit (lines 1 – 4). Then it searches for schema s ∈
S with minimal cost fcost(fmap(s), Dsample) (lines 5 – 13) and returns the
corresponding optimal relational schema Ropt = fmap(s).

Algorithm 1 Naive Search Algorithm

Input: Sinit, T , fmap, Dsample, fcost

Output: Ropt

1: S ← {Sinit}
2: while ∃ t ∈ T, s ∈ S s.t. t(s) 6∈ S do
3: S ← S ∪ {t(s)}
4: end while
5: costopt ←∞
6: for all s ∈ S do
7: Rtmp ← fmap(s)
8: costtmp ← fcost(Rtmp, Dsample)
9: if costtmp < costopt then

10: Ropt ← Rtmp

11: costopt ← costtmp

12: end if
13: end for
14: return Ropt

Obviously the complexity of the algorithm depends strongly on the set T .
It can be proven that even a simple set of transformations causes the problem
of finding the optimal schema to be NP-hard [71] [75] [41]. Thus the existing
techniques in fact search for a suboptimal solution using various heuristics,
greedy strategies, approximation algorithms, terminal conditions, etc. We
can also observe that fixed methods can be considered as a special type of
cost-driven methods, where T = ∅, Dsample = ∅, and fcost(R, ∅) = const for
∀ R.

15

3.1.1 Hybrid Object-Relational Mapping

One of the first attempts of a cost-driven adaptive approach is a method
called Hybrid object-relational mapping [39]. It is based on the fact that if
XML documents are mostly semi-structured, a “classical” decomposition of
less structured XML parts into relations leads to inefficient query processing
caused by plenty of join operations. The algorithm exploits the idea of storing
well structured parts into relations and semi-structured parts using so-called
XML data type, which supports path queries and XML-aware full-text op-
erations. The fixed mapping for structured parts is similar to the classical
Hybrid algorithm [67], whereas, in addition, it exploits NF 2-relations using
constructs such as set-of, tuple-of, and list-of. Therefore the main con-
cern of the method is to identify the structured and semi-structured parts.
It consists of the following steps:

1. A schema graph G1 = (V1, E1, lab′1, r
′
1) is built for a given DTD1.

2. For ∀ v ∈ V1 a measure of significance ωv (see below) is determined.

3. Each v ∈ V1 which satisfies the following conditions is identified:

(a) v is not a leaf node.

(b) For v and ∀ its descendant vi, where i = 1, 2, ..., k : ωv < ωLOD

and ωvi
< ωLOD, where ωLOD is a required level of detail of the

resulting schema.

(c) v does not have a parent node which would satisfy the conditions.

4. Each fragment f ⊆ G1 which consists of a previously identified node v
and its descendants is replaced with an attribute node having the XML
data type, resulting in a schema graph G2.

5. G2 is mapped to a relational schema using a fixed mapping strategy.

The measure of significance ωv of a node v is defined as:

ωv =
1

2
ωSv +

1

4
ωDv +

1

4
ωQv =

1

2
ωSv +

1

4
· card(Dv)

card(D)
+

1

4
· card(Qv)

card(Q)
(3.1)

1Assuming that the DTD is a directed tree.

16

where ωSv is derived from the DTD structure as a combination of weights
expressing position of v in the graph and complexity of its content model
(see [39]), D ⊆ Dsample is a set of all given documents, Dv ⊆ D is a set of
documents containing v, Q ⊆ Dsample is a set of all given queries, and Qv ⊆ Q
is a set of queries containing v.

As we can see, the algorithm optimizes the naive approach mainly by the
facts that the schema graph is preprocessed, i.e. ωv is determined for ∀ v ∈ V1,
that the set of transformations T is a singleton, and that the transformation
is performed if the current node satisfies the above mentioned conditions (a)
– (c). The preprocessing ensures that the complexity of the search algorithm
is given by K1 ·card(V1)+K2 ·card(E1), where K1, K2 ∈ N. But, on the other
hand, the optimization is too restrictive in terms of the amount of possible
XML-to-relational mappings.

3.1.2 FlexMap Mapping

Another example of adaptive cost-driven methods was implemented as so-
called FlexMap framework [62]. The algorithm optimizes the naive approach
using a simple greedy strategy as depicted in Algorithm 2. The main dif-
ferences in comparison with the naive approach are the choice of the least
expensive transformation at each iteration (lines 5 – 12) and the termina-
tion of searching if there exists no transformation t ∈ T that can reduce the
current (sub)optimum (lines 13 – 19).

The set T of XML-to-XML transformations involves the following oper-
ations:

• Inlining and outlining – inverse operations which enable to store columns
of a subelement/attribute either in parent table or in a separate table

• Splitting and merging elements – inverse operations which enable to
store a shared element2 either in a common table or in separate tables

• Associativity and commutativity

• Union distribution and factorization – inverse operations which en-
able to separate out components of a union using equation (a, (b|c)) =
((a, b)|(a, c))

2An element with multiple parent elements in the schema – see [67].

17

Algorithm 2 Greedy Search Algorithm

Input: Sinit, T , fmap, Dsample, fcost

Output: Ropt

1: Sopt ← Sinit

2: Ropt ← fmap(Sopt)
3: costopt ← fcost(Ropt, Dsample)
4: loop
5: costmin ←∞
6: for all t ∈ T do
7: costt ← fcost(fmap(t(Sopt)), Dsample)
8: if costt < costmin then
9: tmin ← t

10: costmin ← costt
11: end if
12: end for
13: if costmin < costopt then
14: Sopt ← tmin(Sopt)
15: Ropt ← fmap(Sopt)
16: costopt ← fcost(Ropt, Dsample)
17: else
18: break;
19: end if
20: end loop
21: return Ropt

• Splitting and merging repetitions – exploitation of equation (a+) =
(a, a∗)

• Simplifying unions – exploitation of equation (a|b) ⊆ (a?, b?)

Note that except for commutativity and simplifying unions the transfor-
mations generate equivalent schema in terms of equivalence of sets of doc-
ument instances. Commutativity does not retain the order of the schema,
whereas simplifying unions generates a more general schema, i.e. a schema
with larger set of valid document instances. (However, only inlining and out-
lining were implemented and experimentally tested by the FlexMap system.)

The fixed mapping again uses a strategy similar to the Hybrid algorithm
[67] but it is applied locally on each fragment of the schema specified by the

18

transformation rules stated by the search algorithm. For example elements
determined to be outlined are not inlined though a “traditional” Hybrid
algorithm would do so.

The process of evaluating fcost is significantly optimized. A naive ap-
proach would require construction of a particular relational schema, loading
sample XML data into the relations, and cost analysis of the resulting rela-
tional structures. The FlexMap evaluation exploits an XML Schema-aware
statistics framework StatiX [36] which analyzes the structure of a given XSD
and XML documents and computes their statistical summary, which is then
“mapped” to relational statistics regarding the fixed XML-to-relational map-
ping. Together with sample query workload they are used as an input for
a classical relational optimizer which estimates the resulting cost. Thus no
relational schema has to be constructed and, as the statistics are respectively
updated at each XML-to-XML transformation, the XML documents need to
be processed only once.

3.1.3 Adjustable and Adaptable Method (AAM)

The following method, which is also based on the idea of searching a space
of possible mappings, is presented in [71] as an Adjustable and adaptable
method (AAM). In this case the authors adapt the given problem to features
of genetic algorithms. It is also the first paper that mentions that the problem
of finding a relational schema R for a given set of XML documents and queries
Dsample, s.t. fcost(R, Dsample) is minimal, is NP-hard in the size of the data.

The set T of XML-to-XML transformations consists of inlining and out-
lining of schema fragments. For the purpose of the genetic algorithm each
transformed schema is represented using a bit string, where each bit corre-
sponds to an edge of the schema graph and it is set to 1 if the element the edge
points to is stored into a separate table or 0 if the element the edge points
to is stored into parent table. The bits set to 1 represent “borders” among
fragments, whereas each fragment is stored into one table corresponding to
so-called Universal table [35]. The extreme instances correspond to “one ta-
ble for the whole schema” (in case of 00...0 bit string) resulting in many null
values and “one table per each element” (in case of 11...1 bit string) resulting
in many join operations.

Similarly to the previous strategy the algorithm chooses only the best pos-
sible continuation at each iteration. The algorithm consists of the following
steps:

19

1. The initial population P0 (i.e. the set of bit strings) is generated ran-
domly.

2. The following steps are repeated until terminating conditions are met:

(a) Each member of the current population Pi is evaluated and only
the best representatives are selected for further production.

(b) The next generation Pi+1 is produced by genetic operators crossover,
mutation, and propagate.

The algorithm terminates either after certain number of transformations
or if a good-enough schema is achieved.

The cost function fcost is expressed as:

fcost(R,Dsample) = fM(R, Dsample) + fQ(R,Dsample) =

=
q∑

l=1

Cl ∗Rl + (
m∑

i=1

Si ∗ PSi
+

n∑
k=1

Jk ∗ PJk
)

(3.2)

where

• fM is a space-cost function, where Cl is the number of columns and Rl

is the number of rows in table Tl created for l-th element in the schema
and q is the number of all elements in the schema, and

• fQ is a query-cost function, where Si is cost and PSi
is probability of

i-th select query and Jk is cost and PJk
is probability of k-th join query,

m is the number of select queries in Dsample, and n is the number of
join queries in Dsample.

In other words fM represents the total memory cost of the mapping in-
stance, whereas fQ represents the total query cost. The probabilities PSi

and
PJk

enable to specify which elements will (not) be often retrieved and which
sets of elements will (not) be often combined to search. Also note that this
algorithm represents another way of finding a reasonable suboptimal solu-
tion in the theoretically infinite set of possibilities – using (in this case two)
terminal conditions.

20

3.1.4 Hill Climbing Algorithm

The last but not least cost-driven adaptive representative can be found in
paper [75]. The approach is again based on a greedy type of algorithm, in
this case a Hill climbing strategy that is depicted by Algorithm 3.

Algorithm 3 Hill Climbing Algorithm

Input: Sinit, T , fmap, Dsample, fcost

Output: Ropt

1: Sopt ← Sinit

2: Ropt ← fmap(Sopt)
3: costopt ← fcost(Ropt, Dsample)
4: Ttmp ← T
5: while Ttmp 6= ∅ do
6: t ← any member of Ttmp

7: Ttmp ← Ttmp\{t}
8: Stmp ← t(Sopt)
9: costtmp ← fcost(fmap(Stmp), Dsample)

10: if costtmp < costopt then
11: Sopt ← Stmp

12: Ropt ← fmap(Stmp)
13: costopt ← costtmp

14: Ttmp ← T
15: end if
16: end while
17: return Ropt

As we can see, the hill climbing strategy differs from the simple greedy
strategy depicted in Algorithm 2 in the way it chooses the appropriate trans-
formation t ∈ T . In the previous case the least expensive transformation
that can reduce the current (sub)optimum is chosen, in this case it is the
first such transformation found. The schema transformations are based on
the idea of vertical (V) or horizontal (H) cutting and merging the given
XML schema fragment(s). The set T consists of the following four types of
(pairwise inverse) operations:

• V-Cut(f, 〈u, v〉) – cuts fragment f into fragments f1 and f2, s.t. f1∪f2 =
f , where 〈u, v〉 is an edge from f1 to f2, i.e. u ∈ f1 and v ∈ f2

21

• V-Merge(f1, f2) – merges fragments f1 and f2 into fragment f = f1∪f2

• H-Cut(f, 〈u, v〉) – splits fragment f into twin fragments f1 and f2 hor-
izontally from edge 〈u, v〉, where u 6∈ f and v ∈ f , s.t. ext(f1) ∪
ext(f2) = ext(f) and ext(f1) ∩ ext(f2) = ∅ 3 4

• H-Merge(f1, f2) – merges two twin fragments f1 and f2 into one frag-
ment f s.t. ext(f1) ∪ ext(f2) = ext(f)

As we can observe, V-Cut and V-Merge operations are similar to outlining
and inlining of the fragment f2 out of or into the fragment f1. Conversely, H-
Cut operation corresponds to splitting of elements used in FlexMap mapping,
i.e. duplication of the shared part, and the H-Merge operation corresponds
to inverse merging of elements.

The fixed XML-to-relational mapping maps each fragment fi which con-
sists of nodes {v1, v2, ..., vn} to relation

Ri = (id(ri) : int, id(ri.parent) : int, lab(v1) : type(v1), ..., lab(vn) :
type(vn))
where ri is the root element of fi. Note that such mapping is again similar
to locally applied Universal table [35].

The cost function fcost is expressed as:

fcost(R,Dsample) =
n∑

i=1

wi · cost(qi, R) (3.3)

where Dsample consists of a sample set of XML documents and a given query
workload. The cost function cost(qi, R) for a query qi which accesses fragment
set {fi1, ..., fim} is expressed as:

cost(qi, R) =

{ |fi1| m = 1∑
j,k (|fij| · Selij + δ · (|Eij|+ |Eik|)/2) m > 1

(3.4)

where fij and fik, j 6= k are two join fragments, |Eij| is the number of
elements in ext(fij), and Selij is the selectivity of the path from the root to
fij estimated using Markov table. In other words, the formula simulates the
cost for joining relations corresponding to fragments fij and fik.

3ext(fi) is the set of all instance fragments conforming to the schema fragment fi.
4Fragments f1 and f2 are called twins if ext(f1)∩ext(f2) = ∅ and for each node u ∈ f1,

there is a node v ∈ f2 with the same label and vice versa.

22

The authors further analyze the influence of the choice of initial schema
Sinit on efficiency of the search algorithm. They use three types of initial
schema decompositions leading to Binary [35], Shared [67], or Hybrid map-
ping. The paper concludes with the finding that a good choice of an initial
schema is crucial and can lead to faster searches of the suboptimal mapping.

3.2 User-Driven Techniques

As mentioned before, the most flexible approach is the user-defined mapping,
i.e. the idea “to leave the whole process in hands of a user” who defines
both the target database schema and the required mapping. Due to simple
implementation it is supported in most commercial database systems [21].
At first sight the idea is correct – users can decide what suits them most and
are not restricted by disadvantages of a particular technique. The problem
is that such approach assumes users skilled in two complex technologies and
for more complex applications the design of an optimal relational schema is
an uneasy task in general.

On this account new techniques – in this thesis called user-driven map-
ping strategies – were proposed. The main difference is that the user can
influence a default fixed mapping strategy using annotations which specify
the required mapping for particular schema fragments. The set of annota-
tions is naturally limited but still enough powerful to define various mapping
strategies.

Each of the techniques is characterized by the following four features:

1. an initial XML schema Sinit,

2. a set of allowed fixed XML-to-relational mappings {f i
map}i=1,...,n,

3. a set of annotations ΩA, each of which is specified by name, target, al-
lowed values, and function, i.e. corresponding XML-to-relational map-
ping, and

4. a default mapping strategy sdef for remaining not annotated fragments.

3.2.1 ShreX Framework

Probably the first approach which faces the mentioned issues is proposed in
paper [34] as a mapping definition framework called ShreX. It allows users

23

to specify the required mapping, checks its correctness and completeness
and completes possible incompleteness using default rules. The mapping
specifications are made by annotating the input XSD with a predefined set
of attributes ΩA listed in Table 3.1.

Attribute Target Value Function
outline attribute or el-

ement
true,
false

If the value is true, a sepa-
rate table is created for the
attribute/element. Other-
wise, it is inlined.

tablename attribute, ele-
ment, or group

string The string is used as the ta-
ble name.

columnname attribute, ele-
ment, or sim-
ple type

string The string is used as the col-
umn name.

sqltype attribute, ele-
ment, or sim-
ple type

string The string defines the SQL
type of a column.

structurescheme root element KFO,
Interval,
Dewey

Defines the way of capturing
the structure of the whole
schema.

edgemapping element true,
false

If the value is true, the
element and all its subele-
ments are mapped using
Edge mapping [35].

maptoclob attribute or el-
ement

true,
false

If the value is true, the el-
ement/attribute is mapped
to a CLOB column.

Table 3.1: Annotation attributes for ShreX

The set of allowed XML-to-relational mappings {f i
map}i=1,2,...,n involves

inlining and outlining of an element/attribute, Edge mapping strategy, and
mapping an element or an attribute to a CLOB column. Furthermore, it
enables to specify the required capturing of the structure of the whole schema
using one of the following three approaches:

• Key, Foreign Key, and Ordinal Strategy (KFO) – each node is assigned
a unique integer ID and a foreign key pointing to parent ID, the sibling
order is captured using an ordinal value

24

• Interval Encoding – a unique {start,end} interval is assigned to each
node corresponding to preorder and postorder traversal entering time

• Dewey Decimal Classification – each node is assigned a path to the
root node described using concatenation of node IDs along the path

As side effects can be considered attributes for specifying names of tables
or columns and data types of columns. Not annotated parts are stored using
user-predefined rules, whereas such mapping is always a fixed one.

3.2.2 XCacheDB System

Paper [23] also proposes a user-driven mapping strategy which is imple-
mented and experimentally tested as an XCacheDB system that considers
only unordered and acyclic XML schemes and omits mixed-content elements.
The set of annotating attributes ΩA that can be assigned to any node v ∈ Sinit

is listed in Table 3.2.

Attribute Value Function
INLINE ∅ If placed on a node v, the fragment rooted at v is

inlined into parent table.
TABLE ∅ If placed on a node v, a new table is created for

the fragment rooted at v.
STORE BLOB ∅ If placed on a node v, the fragment rooted at v is

stored also into a BLOB column.
BLOB ONLY ∅ If placed on a node v, the fragment rooted at v is

stored into a BLOB column.
RENAME string The value specifies the name of corresponding ta-

ble or column created for node v.
DATATYPE string The value specifies the data type of corresponding

column created for node v.

Table 3.2: Annotation attributes for XCacheDB

It enables inlining and outlining of a node, storing a fragment into a BLOB
column, specifying table names or column names, and specifying column data
types. The main difference is in the data redundancy allowed by attribute
STORE BLOB which enables to shred the data into table(s) and, at the same
time, to store pre-parsed XML fragments into a BLOB column.

25

The fixed mapping uses a slightly different strategy: Each element or
attribute node is assigned a unique ID. Each fragment f is mapped to a
table Tf which has an attribute avID

of ID data type for each element or
attribute node v ∈ f . If v is an atomic node5, Tf has also an attribute av

of the same data type as v. For each distinct path that leads to f from a
repeatable ancestor v, Tf has a parent reference column of ID type which
points to ID of v.

In general, the set of possible mapping strategies supported by the system
can be characterized as a set of modifications of a single mapping strategy.

3.3 Theoretic Issues

Besides proposals of cost-driven and user-driven techniques, there are also
papers which discuss the corresponding open issues on theoretic level.

3.3.1 Data Redundancy

As mentioned above, the XCacheDB system allows a certain degree of re-
dundancy, in particular duplication into BLOB columns and the violation
of BCNF or 3NF condition. The paper [23] discusses the strategy also on
theoretic level and defines four classes of XML schema decompositions. Be-
fore we state the definitions we have to note that the approach is based on a
slightly different graph representation than in Definition 5. In particular, the
nodes of the graph correspond to elements, attributes, or pcdata, whereas
edges are labeled with corresponding operators.

Definition 14 A schema decomposition is minimal if all edges connecting
nodes of different fragments are labeled with “*” or “+”.

Definition 15 A schema decomposition is 4NF if all fragments are 4NF
fragments. A fragment is 4NF if no two nodes of the fragment are connected
by a “*” or “+” labeled edge.

Definition 16 A schema decomposition is non-MVD if all fragments are
non-MVD fragments. A fragment is non-MVD if all “*” or “+” labeled
edges appear in a single path.

5An attribute node or an element node having text content.

26

Definition 17 A schema decomposition is inlined if it is non-MVD but it
is not a 4NF decomposition. A fragment is inlined if it is non-MVD but it is
not a 4NF fragment.

According to these definitions, fixed mapping strategies (such as, e.g.,
[67] [49]) naturally consider only 4NF decompositions which are least space-
consuming and seem to be the best choice if we do not consider any other
information. Paper [23] shows that having further information (in this par-
ticular case given by a user), the choice of other type of decomposition can
lead to more efficient query processing though it requires a certain level of
redundancy.

3.3.2 Grouping Problem

Paper [41] is dealing with the idea that searching a (sub)optimal relational
decomposition is not only related to given XML schema, query workload, and
XML data, but it is also highly influenced by the chosen query translation
algorithm6 and the cost model. For the theoretic purpose a subset of the
problem – so-called grouping problem – is considered. It deals with possible
storage strategies for shared subelements, i.e. either into one common table
(so-called fully grouped strategy) or into separate tables (so-called fully parti-
tioned strategy). For analysis of its complexity the authors define two simple
cost metrics:

• RelCount – the cost of a relational query is the number of relation
instances in the query expression

• RelSize – the cost of a relational query is the sum of the number of
tuples in relation instances in the query expression

and three query translation algorithms:

• Naive Translation – performs a join between the relations correspond-
ing to all the elements appearing in the query, a wild-card query7 is
converted into union of several queries, one for each satisfying wild-
card substitution

6An algorithm for translating XML queries into SQL queries
7A query containing “//” or “/*” operators.

27

• Single Scan – a separate relational query is issued for each leaf element
and joins all relations on the path until the least common ancestor of
all the leaf elements is reached

• Multiple Scan – on each relation containing a part of the result is ap-
plied Single Scan algorithm and the resulting query consists of union
of the partial queries

On a simple example the authors show that for a wild-card query Q which
retrieves a shared fragment f with algorithm Naive Translation the fully
partitioned strategy performs better, whereas with algorithm Multiple Scan
the fully grouped strategy performs better. Furthermore, they illustrate that
reliability of the chosen cost model is also closely related to query translation
strategy. If a query contains not very selective predicate than the optimizer
may choose a plan that scans corresponding relations and thus RelSize is a
good corresponding metric. On the other hand, in case of highly selective
predicate the optimizer may choose an index lookup plan and thus RelCount
is a good metric.

3.4 Summary

We can sum up the state of the art of adaptability of database-based XML-
processing methods into the following natural but important findings:

1. As the storage strategy has a crucial impact on query-processing per-
formance, a fixed mapping based on predefined rules and heuristics is
not universally efficient.

2. It is not an easy task to choose an optimal mapping strategy for a
particular application and thus it is not advisable to rely only on user’s
experience and intuition.

3. As the space of possible XML-to-relational mappings is very large (usu-
ally theoretically infinite) and most of the subproblems are even NP-
hard, the exhaustive search is often impossible. It is necessary to define
search heuristics, approximation algorithms, and/or reliable terminal
conditions.

28

4. The choice of an initial schema can strongly influence the efficiency of
the search algorithm. It is reasonable to start with at least “locally
good” schema.

5. The strategy of finding a (sub)optimal XML schema should take into
account not only the given schema, query workload, and XML data
statistics, but also possible query translations, cost metrics, and their
consequences.

6. Cost evaluation of a particular XML-to-relational mapping should not
involve time-consuming construction of the relational schema, loading
XML data and analyzing the resulting relational structures. It can be
optimized using cost estimation of XML queries, XML data statistics,
etc.

7. Despite the previous claim, the user should be allowed to influence the
mapping strategy. On the other hand, the approach should not demand
a full schema specification but it should exploit the user-given hints as
much as possible.

8. Even thought a storage strategy is able to adapt to a given sample of
schemes, data, queries, etc., its efficiency is still endangered by later
changes of the expected usage.

3.5 Open Issues

Although each of the existing approaches brings certain interesting ideas and
optimizations, there is still a space of possible future improvements of the
adaptive methods. We describe and discuss them in this chapter starting
from the least complex ones.

Missing Input Data As we already know, for cost-driven techniques there
are three types of input data – an XML schema Sinit, a set of XML documents
{d1, d2, .., dk}, and a set of XML queries {q1, q2, .., ql}. The problem of missing
schema Sinit was already outlined in the Introduction in connection with
(dis)advantages of generic and schema-driven methods. As we suppose that
the adaptability is the ability to adapt to the given situation, a method
which does not depend on existence of an XML schema but can exploit the

29

information if being given is probably a natural first improvement. This idea
is also strongly related to the mentioned problem of choice of a locally good
initial schema Sinit. The corresponding questions are:

• Can be the user-given schema considered as a good candidate for Sinit?

• How can we find an eventual better candidate?

• Can we find such candidate for schema-less XML documents?

A possible solution can be found in exploitation of methods for automatic
construction of XML schema for the given set of XML documents (e.g. [53]
[55]). Assuming that documents are more precise sources of structural in-
formation, we can expect that a schema generated on their bases will have
better characteristics too.

On the other hand, the problem of missing input XML documents can
be at least partly solved using reasonable default settings based on general
analysis of real XML data (e.g. [47] [51]). Furthermore, the surveys show
that real XML data are surprisingly simple in comparison with the expres-
sive power of languages for schema definition and thus the default mapping
strategy does not have to be complex too. It should rather focus on efficient
processing of frequently used XML patterns.

Finally, the presence of sample query workload is crucial since (to our
knowledge) there are no analyses on real XML queries, i.e. no source of in-
formation for default settings. The reason is that collecting such real repre-
sentatives is not as straightforward as in case of XML documents. Currently
the best sources of XML queries are XML benchmarking projects (e.g. [61]
[72]) but as the data and especially queries are supposed to be used for rating
the performance of a system in various situations, they cannot be considered
as an example of a real workload of particular application. Naturally, the
query statistics can be gathered by the system itself and the schema can be
adapted continuously, as discussed later in the text.

Efficient Solution of Subproblems A surprising fact we have encoun-
tered are numerous simplifications of the chosen solutions. As it was men-
tioned, some of the techniques omit, e.g., ordering of elements, mixed con-
tents, or recursion. This is a bit confusing finding regarding the fact that
there are proposals of efficient processing of these XML constructs (e.g. [69])
and that adaptive methods should cope with various situations. In addition,

30

both the often omitted constructs are in real-world XML schemes used more
often than it is usually assumed [51].

A similar observation can be done for user-driven methods. Though
the proposed systems are able to store schema fragments in various ways,
the default strategy for not annotated parts of the schema is again a fixed
one. It can be an interesting optimization to join the ideas and search the
(sub)optimal mapping for not annotated parts using a cost-driven method.

Deeper Exploitation of Information Another open issue is possible
deeper exploitation of the information given by the user. We can identify
two main questions:

• How can be the user-given information better exploited?

• Are there any other information a user can provide to increase the
efficiency?

A possible answer can be found in the idea of pattern matching, i.e. to
use the user-given schema annotations as “hints” how to store particular
XML patterns. We can naturally assume that structurally similar fragments
should be stored similarly and thus to focus on finding these fragments in the
rest of the schema. The main problem is how to identify the structurally sim-
ilar fragments. If we consider the variety of XML-to-XML transformations,
two structurally same fragments can be expressed using “at first glance” dif-
ferent regular expressions. Thus it is necessary to propose particular levels
of equivalence of XML schema fragments and algorithms how to determine
them. Last but not least, such system should focus on scalability of the
similarity metric and particularly its reasonable default setting.

Theoretical Analysis of the Problem As the overview shows, there are
various types of XML-to-XML transformations, whereas the mentioned ones
certainly do not cover the whole set of possibilities. Unfortunately, there
seems to be no theoretic study of these transformations, their key character-
istics, and possible classifications. The study can, among others, focus on
equivalent and generalizing transformations and as such serve as a good basis
for the pattern matching strategy. Especially interesting is the question of
NP-hardness in connection with the set of allowed transformations and its
complexity (similarly to paper [41] which analyzes theoretical complexity of

31

combinations of cost metrics and query translation algorithms). Such survey
would provide useful information especially for optimizations of the search
algorithm.

Dynamic Adaptability The last but not least issue is connected with the
most striking disadvantage of adaptive methods – the problem of possible
changes of XML queries or XML data that can lead to crucial worsening
of the efficiency. As mentioned above, it is also related to the problem of
missing input XML queries and ways how to gather them. The question of
changes of XML data opens also another wide research area of updatability
of the stored data – a feature that is often omitted in current approaches
although its importance is crucial.

The solution to these issues – i.e. a system that is able to adapt dy-
namically – is obvious and challenging but it is not an easy task. It should
especially avoid total reconstructions of the whole relational schema and
corresponding necessary reinserting of all the stored data, or such opera-
tion should be done only in very special cases. On the other hand, this
“brute-force” approach can serve as an inspiration. Supposing that changes
especially in case of XML queries will not be radical, the modifications of
the relational schema will be mostly local and we can apply the expensive
reconstruction just locally. Furthermore, we can again exploit the idea of
pattern matching and find the XML pattern defined by the modified schema
fragment in the rest of the schema.

Another question is how often should be the relational schema recon-
structed. The natural idea is of course “not too often”. But, on the other
hand, a research can be done on the idea of performing gradual minor
changes. It is probable that such approach will lead to less expensive (in
terms of reconstruction) and at the same time more efficient (in terms of
query processing) system. The former hypothesis should be verified, the lat-
ter one can be almost certainly expected. The key issue is how to find a
reasonable compromise.

32

Chapter 4

Hybrid User-Driven Adaptive
Method

In this chapter we introduce a method which can be characterized as a
hybrid user-driven adaptive mapping strategy focusing on two persisting dis-
advantages of user-driven methods. Firstly, it is the fact that the default
mapping strategy is (to our knowledge) always a fixed one. Since the corre-
sponding system must be able to store schema fragments in various ways, an
adaptive enhancing of the fixed method seems to be quite natural and suitable.
The second shortcoming is weak exploitation of the user-given information.
The annotations a user provides can not only be directly applied on particu-
lar schema fragments, but can be regarded as “hints” how to store particular
XML patterns. We use this information twice again. Firstly, we search for
similar patterns in the rest of the schema and store the found fragments in
a similar way. And secondly, we exploit the information in the adaptive
strategy for not annotated parts of the schema.

Most of the contents of this chapter has been published in the following
papers:

Mlýnková, I.: A Journey towards More Efficient Processing of XML Data
in (O)RDBMS. To appear in CIT ’07: Proceedings of the 7th IEEE Inter-
national Conference on Computer and Information Technology, Fukushima,
Japan, October 2007. IEEE Computer Society, 2007.

Mlýnková, I.: An XML-to-Relational User-Driven Mapping Strategy Based
on Similarity and Adaptivity. SYRCoDIS ’07: Proceedings of the 4th Spring
Young Researchers Colloquium on Databases and Information Systems, pages
9 – 20, Moscow, Russian Federation, May 2007. CEUR Workshop Proceed-

33

ings, ISSN 1613-0073, Vol. 256, Moscow State University, 2007.

The key concern of our approach is to exploit the user-given information
as much as possible. We result from the idea of user-driven enhancing of
the user-defined techniques, where a user is expected to help the mapping
process, not to perform it. We want to go even farther. But first of all we
discuss why user-given information is so important to deal with.

A simple demonstrative example can be a set of XML documents which
contain various XHTML [18] fragments. A classical fixed schema-driven map-
ping strategy would decompose the fragments into a number of relations.
Since we know that the standard XHTML DTD allows, e.g., complete sub-
graphs on up to 10 nodes, the reconstruction of such fragments would be a
really expensive operation in terms of the number of join operations. But if
we knew that the real complexity of such fragments is much simpler (and the
analysis of real XML data shows that it is quite probable [51]), e.g. that each
of the fragments can be described as a simple text with tags having the depth
of 2 at most, we could choose a much simpler storage strategy including the
extreme one – a CLOB column.

Another example can be the crucial feature of database storage strategies
– the updatability of data. On one hand, we could know that the data will
not be updated too much or at all, but we need an effective query evalua-
tion. On the other hand, there could be a strong demand for effective data
updates, whereas the queries are of marginal importance. And there are of
course cases which require effective processing of both. Naturally, the appro-
priate storage strategies differ strongly. In case of effective query processing
various indices and numbering schemes can be exploited but at the cost of
corresponding expensive updates. Effective updates, conversely, require the
simplest information of mutual data relationships. And if both the aspects
are required, it is unavoidable to compromise. And such decision can be again
made correctly only if we have an appropriate information on the required
future usage.

Last but not least, let us consider the question of data redundancy.
Without any additional information the optimal storage strategy is the 4NF
schema decomposition into relations [23] which can be achieved, e.g., using
the Hybrid algorithm [67], a representative of fixed mapping methods. The
decomposition does not involve data redundancy or violation of any nor-
mal form, i.e. it results in a database schema with the lowest number of
relations and null attributes. But, similarly to database design, there can

34

be reasonable real-world cases when the data should not strictly follow the
rules of normal forms and their moderation can lead to more effective query
processing (see Chapter 3.3.1).

Both the cost-driven and user-driven methods are based on the idea of
exploiting additional user-given information and they appropriately adapt
the target database schema. In the former case it is extracted from a sample
set of XML documents and/or XML queries which characterize the typical
future usage, in the latter case it is specified by user-given annotations, i.e.
the user directly specifies the required changes of a default mapping. But
although there is a plenty of existing representatives of the two approaches
(as we have described in Chapter 3), there are still numerous weak points
and open issues that should be improved and solved.

Our first improvement is searching for identical or similar fragments in
the not annotated schema parts. This approach has two main advantages:

1. The user is not forced to annotate all schema fragments that have to
be stored alternatively, but only those with different structure. Thus
the system is not endangered of unintended omitting of annotating all
similar cases.

2. The system can reveal structural similarities which are not evident “at
first glance” and which could remain hidden to the user.

Thus the first main concern of the proposal is how to identify identical
or similar fragments within the schema.

The second enhancing focuses on the choice of the mapping strategy for
schema fragments which were neither annotated by the user, nor identified
as fragments similar to the annotated ones. In this case we combine the idea
of cost-driven methods with the fact that a user-driven technique should
support various storage strategies too. Hence the second concern is how to
find the optimal mapping strategy for the remaining schema fragments and,
in addition, with exploitation of the information we already have, i.e. the
user-specified annotations, as much as possible.

4.1 Proposed Algorithm

A general idea of fixed schema-driven XML-to-relational mapping methods
is to decompose the given XML schema S = (Σ′

E, Σ′
A, ∆, s) into a set of

35

relations R = {r1, r2, ..., rn} using a mapping strategy srel. An extreme case
is when S is decomposed into a single relation resulting in many null values.
Other extreme occurs when for each element e ∈ Σ′

E a single relation is
created resulting in numerous join operations. (Note that since fixed mapping
methods view an XML document as general directed tree with several types
of nodes, we can speak about schema decomposition too.)

In user-driven strategies the decomposition is influenced by user-defined
annotations which specify how a particular user wants to store selected
schema fragments F = {f1, f2, ..., fm}. The user usually provides S (i.e. se-
lected elements determining the fragments) with annotating attributes from
the predefined set of attribute names ΩA, each of which represents a particu-
lar fixed mapping strategy, resulting in an annotated schema S ′. A classical
user-driven strategy then consist of the following steps:

1. S is annotated using ΩA resulting in S ′.

2. Annotated fragments from F are decomposed according to appropriate
mapping methods.

3. Not annotated fragments of S ′ are decomposed using a default fixed
mapping strategy sdef .

The proposed approach enhances a classical user-driven strategy combin-
ing it with the idea of adaptivity. We simply add the following steps between
the step 1 and 2:

a. For ∀ f ∈ F we identify a set Ff of all fragments occurring in S\{f}
similar to f .

b. For ∀ f ∈ F all fragments in Ff are annotated with annotating attributes
of f .

c. S\F is annotated using an adaptive strategy.

The whole mapping process is schematically depicted in Figure 4.1 where
the given schema S with F = {f, g} is mapped to a database schema R. If the
proposed enhancing, i.e. steps 1.a – 1.c, are included, the system gradually
identifies and adds new annotated fragments f1, f2, g1, g2, and g3 which
are mapped using user-required mapping strategies. If the enhancing is not
included (i.e. in case of a classical user-driven strategy), only fragments f

36

Figure 4.1: Schema of the mapping process

and g are annotated using user-required strategies and the rest of the schema
using sdef .

As it is obvious, the basic ideas are relatively simple. But if we analyze
the strategies more deeply, several interesting issues and open problems that
need to be solved occur. We deal with them in the following chapters.

4.1.1 Searching for Similar Fragments

Considering the idea of searching for similar fragments in more depth there
are several open issues, in particular the definition of annotated fragments,
the supported types of annotations (i.e. the fixed mapping strategies), the
measure of similarity, and the search algorithm. In addition, all these aspects
mutually influence each other.

Annotated Fragments

Firstly, for easier processing we view an XML schema S, no matter if an-
notated or not, as a graph (see Definition 5). Next, we assume that each
annotated fragment fe ∈ F is uniquely determined by an element e anno-
tated using an annotating attribute a ∈ ΩA.

Definition 18 An element fragment fe of a schema S is each subgraph of
GS consisting of an element e, all nodes reachable from e, and corresponding
edges.

Φ is a set of all element fragments of S.

37

Definition 19 An annotated fragment fe of schema S is an element frag-
ment of S rooted at an annotated element e excluding all annotating attributes
from ΩA.

An annotated element e of schema S is an element provided with an
annotated attribute from ΩA.

Note the difference between a general schema fragment (see Definition 6)
and an element fragment (see Definition 18). In the rest of the text we use the
term fragment for simplicity, referring to an element fragment if not explicitly
stated alternatively. Also note that this definition allows to annotate only
element definitions. It can be reasonable to annotate also single attributes,
attribute groups, or groups of elements (considering XSDs) similarly to [34],
but we restrict to elements for easier description.

As we want to support shared elements and recursion, since both the
constructs are widely used in real XML data [51], we must naturally allow the
annotated fragments to intersect almost arbitrarily. To simplify the situation,
we define an expanded schema graph which exploits the idea that both the
constructs purely indicate repeated occurrence of a particular pattern.

Definition 20 An expanded schema graph Gex
S is a result of the following

transformations of schema graph GS:

1. Each shared element is duplicated for each sharer using a deep copy
operation, i.e. including all its descendants and corresponding edges.

2. Each recursive element is duplicated for each repeated occurrence using
a shallow copy operation, i.e. only the element node itself is duplicated.

An illustrative example of a schema graph GS and its expanded schema
graph Gex

S is depicted in Figure 4.2. A shared element is highlighted using a
dotted rectangle, a recursive element is highlighted using a dotted circle.

As it is obvious, in case of shared elements the expansion is lossless op-
eration. It simply omits the key advantage of shared elements which allows
reusing of previously defined schema fragments. In addition, the real imple-
mentation does not have to perform the duplication of the shared fragments
in fact. The situation is more complicated in case of recursive elements which
need to be treated in a special way henceforth. For this purpose we exploit
results of statistical analysis of real-world recursive elements [51]. We discuss
the details later in the text.

In the following text we assume that a schema graph of an XML schema
is always an expanded schema graph, if not explicitly stated alternatively.

38

Figure 4.2: A schema graph GS and an expanded schema graph Gex
S

Types of Annotations

From Definitions 19 and 20 we can easily prove the following two statements:

Lemma 1 Each expanded schema graph Gex
S is a tree.

Lemma 2 Two annotated fragments fx and fy of an expanded schema graph
Gex

S can intersect only if fx ⊆ fy or fy ⊆ fx.

Furthermore, we can observe that the common schema fragment, i.e. the
intersection, contains all descendants of a particular element.

We distinguish three types of the annotation intersection depending on
the way the corresponding mapping strategies influence each other on the
common schema fragment.

Definition 21 Intersecting annotations are redundant if the corresponding
mapping strategies are applied on the common schema fragment separately.

Definition 22 Intersecting annotations are overriding if only one of the cor-
responding mapping strategies is applied on the common schema fragment.

Definition 23 Intersecting annotations are influencing if the corresponding
mapping strategies are combined resulting in one composite storage strategy
applied on the common schema fragment.

Redundant annotations can be exploited, e.g., when a user wants to store
XHTML fragments both in a single CLOB column (for fast retrieval of the
whole fragment) and, at the same time, into a set of tables (to enable querying
particular items). An example of overriding annotations can occur when
a user specifies a general mapping strategy for the whole schema S and

39

then annotates fragments which should be stored alternatively. Naturally,
in this case the strategy which is applied on the common schema fragment
is always the one specified for its root element. The last mentioned type of
annotations can be used in a situation when a user specifies, e.g., the 4NF
decomposition for a particular schema fragment and, at the same time, an
additional numbering schema which speeds up processing of particular types
of queries. In this case the numbering schema is regarded as a supplemental
index over the data stored in relations of 4NF decomposition, i.e. the data
are not stored redundantly as in the first case.

Each subset of supported annotations is assigned a (user-specified) in-
tersection type for particular orders of their compositions. This can involve
plenty of specifications, but, in fact, the amount of reasonable and thus nec-
essary specifications is much lower than the theoretically allowed ones. We
deal with this topic in Chapter 7 in detail.

Note that the existing systems [34] [23] mostly support overriding and
influencing annotations, the XCacheDB system [23], in addition, supports a
kind of redundant intersection similar to the above described example.

Similarity Measure and Search Algorithm

The main idea of the enhancing remains the same regardless the chosen sim-
ilarity measure and search algorithm. The choice of the measure influences
the precision of the system, whereas the algorithm influences the efficiency of
finding the required fragments. In general there are not many ways how to
avoid the exhaustive search. And although we can assume that card(F) = m
is small, i.e. that a user annotates only several fragments, the exhaustive
search can be expensive due to the size of GS. Therefore, for the purpose of
optimization, we exploit characteristics of the similarity measure.

Similarly to most of existing algorithms [45] [33] for measuring similarity
on schema level we use various supplemental matchers [60], i.e. functions
which evaluate similarity of a particular feature of the given schema frag-
ments, such as, e.g., similarity of depths, similarity of number of elements,
similarity of fan-outs, etc.

Definition 24 A matcher is a function m : Φ2 → [0, 1] which evaluates
similarity of a particular feature of two schema fragments fx, fy ∈ Φ.

40

Definition 25 A partial similarity measure is a function mpart : Φ2 → [0, 1]p

which evaluates similarity of the given schema fragments fx, fy ∈ Φ using
matchers m1, m2, ...,mp : Φ2 → [0, 1] and returns a p-tuple of their results.

Then the partial results are combined into the resulting composite simi-
larity value. The most common and verified [33] way of composition is usually
a kind of weighted sum.

Definition 26 A composite similarity measure is a function mcomp : [0, 1]p →
[0, 1] which combines the results of particular matchers and returns the total
similarity value.

For most of the usually used matchers the knowledge of actual value of
the analyzed feature for child nodes is necessary for evaluating the value for
their parent node. Thus the search algorithm uses a bottom-up strategy,
i.e. starting from leaf nodes towards the root node, and searches for schema
fragments exceeding a given threshold Tsim ∈ [0, 1]. The question is whether
we should annotate all schema fragments exceeding Tsim. Let us consider the
situation depicted in Figure 4.3, where for i ∈ {1, 2, 3} sim(f, fi) > Tsim and
f is the annotated fragment.

Figure 4.3: Similar fragments on the same root path

The problem is whether we can annotate all the three fragments f1, f2, f3

using the annotation of f , especially what will be the result of intersection
in case of f1 and f3 or f2 and f3, i.e. fragments occurring on the same root
path1. We can naturally assume that intersection of two identical annotations
is overriding and, as such, has no effect. Thus we could annotate only the
topmost fragment on each root path. In case of example in Figure 4.3 this
rule would be applied twice, resulting in a single annotation of fragment
f3. But what if we knew, in addition, that sim(f, f1) > sim(f, f3) and
sim(f, f2) > sim(f, f3)? As it is obvious, in such case it is seems to be more

1A path from the root node to a leaf node.

41

reasonable and natural to annotate fragments f1 and f2 rather than whole
f3. If we generalize the idea, the algorithm annotates an element e using
annotations of each fragment f ∈ F s.t. sim(f, fe) > Tsim and 6 ∃ element e′

on any root path traversing e s.t. sim(f, fe′) > sim(f, fe).
Therefore, for the purpose of optimization we need to know the behavior

of the similarity function on particular root paths. In the optimal case if we
knew that it has only one global maximum, we could skip processing of all
the ancestors on the current root path whenever we reach the fragment with
the extreme similarity value. A sample situation can be seen in Figure 4.4
which depicts an example of a graph of similarity function for an annotated
fragment f and fragments f1, f2, ..., fr on a single root path. From the graph
we can see, that only fragments f1, f2, f3, f4 need to be processed (f4 for
testing the extremity), then the similarity evaluation can terminate, skipping
fragments f5, f6, ..., fr.

Figure 4.4: Exploitation of behavior of similarity function

Although we can hardly ensure that mcomp is concave, we can assume
that at least q of the matchers, where 1 6 q 6 p, have this property. For
instance a trivial matcher with such behavior can compare the number of
distinct element or attribute names, the number of similar operators, the
depth of the corresponding content model, etc. Such information is then
used as heuristics based on the idea that if at least “sufficient amount” of
the q matchers exceed their extreme value, we can terminate processing of
the current root path too.

The whole optimization of the approach, so-called basic annotation strat-
egy (BAS), is depicted by Algorithm 4, where function terminate returns
true if the search algorithm should terminate in the given node, otherwise
it returns false. Furthermore, we assume that each element of the graph
is assigned an auxiliary list of candidates consisting of pairs 〈fragment,
similarity〉, i.e. references to fragments (and corresponding similarity val-
ues) within its subtree that are candidates for annotation.

42

Algorithm 4 Basic Annotation Strategy (BAS)

Input: S, F , m1, m2, ..., mq, mq+1, ..., mp, mcomp, Tsim

Output: F ∪ newly annotated fragments
1: F ′ ← F
2: for all f ∈ F do
3: listToProcess ← leaf elements of Gex

S \{f}
4: listOfProcessed ← ∅
5: while listToProcess 6= ∅ do
6: for all e ∈ listToProcess do
7: e.candidates ← ∅
8: fe ← subgraph rooted at e
9: sime ← mcomp(f, fe)

10: for all c ∈ e.subelems do
11: for all 〈f ′, sim〉 ∈ c.candidates do
12: if sim > sime then
13: e.candidates ← e.candidates ∪ {〈f ′, sim〉}
14: end if
15: end for
16: end for
17: if e.candidates = ∅ ∧ sime > Tsim then
18: e.candidates ← e.candidates ∪ {〈fe, sime〉}
19: end if
20: if terminate(f , e, m1, m2, ..., mq, Tsim) then
21: for all 〈f ′, sim〉 ∈ e.candidates do
22: f ′.annotation ← f .annotation
23: F ′ ← F ′ ∪ {f ′}
24: end for
25: else
26: if ∀ s ∈ e.siblings : s ∈ listOfProcessed then
27: listToProcess ← listToProcess ∪ {e.parent}
28: end if
29: end if
30: listToProcess ← listToProcess \ {e}
31: listOfProcessed ← listOfProcessed ∪ {e}
32: end for
33: end while
34: end for
35: return F ′

43

The algorithm processes schema graph starting from leaf nodes. For each
root path the optimal similarity value and the reference to corresponding
fragment are propagated until a better candidate is found or the condition
of the heuristics is fulfilled. Then the processing of the current root path
is terminated and current candidates are annotated. The complexity of the
algorithm depends on the heuristics. In the worst case it does not enable to
skip processing of any node that results in the exhaustive search.

In general we could use an arbitrary similarity measure, not exactly the
above defined composite one. It is also possible to use disjoint sets of match-
ers for the heuristics and for the composite similarity measure. Nevertheless,
we deal with the above described ones, since it is the typical and verified way
for evaluating similarity among XML schemes. Also note that since it is nat-
ural that a user does not want to annotate all similar fragments in a similar
way, we assume that such fragments are denoted as final and excluded from
the processing.

Recursive Elements

Last but not least, we have to solve the open problem of expanded recursive
elements, since the expansion is not a lossless operation as in case of shared
elements. We exploit the results of analysis of real-world XML data (see
Chapter 6) which shows two important aspects:

1. Despite it is generally believed that recursive elements are of marginal
importance, they are used in a significant portion of real XML data.

2. Although the recursive elements can have arbitrarily complex structure,
the most common type of recursion is linear and the average depth of
recursion is low.

If we realize that we need the “lost” information about recursion only
at one stage of the algorithm, the solution is quite obvious. We analyze
the structure of schema fragments when evaluating matchers m1,m2, ..., mp,
whereas each of the matchers describes similarity of a particular feature of
the given fragments. In case the fragments contain recursive elements we
do not use the exact measure, but its approximation with regard to the real
complexity of recursive elements. For instance if the matcher analyzes the
maximum depth of fragment containing a recursive element, the resulting

44

depth is not infinite, but considers the average depth of real-world recursive
elements.

The question is whether it is necessary to involve a matcher which ana-
lyzes the amount of recursive elements in schema fragments. On one hand, it
can increase the precision of the composite measure. But from another point
of view, the approximation transforms the recursive element to a “classical”
element and hence such matcher can be viewed as misleading. We use the
former option assuming that the tuning process (see Chapter 5) sets appro-
priate weights to all the matchers including the recursive one.

4.1.2 Adaptive Mapping Strategy

At this stage of the algorithm we have a schema S and a set of annotated
fragments F which involve the user-defined fragments and fragments iden-
tified by BAS algorithm. As the second enhancing we apply an adaptive
mapping strategy on the remaining parts of the schema. At first glance the
user-driven techniques have nothing in common with the adaptive ones. But
under a closer investigation we can see that the user-given annotations pro-
vide a similar information – they “say” how particular schema fragments
should be stored to enable efficient data querying and processing. Thus we
can reuse the user-given information. For this purpose we define an operation
contraction which enables to omit those schema fragments where we already
know the storage strategy and focus on the remaining ones.

Definition 27 A contraction of a schema graph GS with annotated fragment
set F is an operation which replaces each fragment f ∈ F with a single auxil-
iary node called a contracted node. The resulting graph is called a contracted
graph Gcon

S .

The basic idea of the adaptive strategy is as follows: Having a contracted
graph Gcon

S we repeat the BAS algorithm and operation contraction until
there is no fragment to annotate. The BAS algorithm is just slightly modified:

• It searches for schema fragments which are not involved in the schema,
i.e. it searches among all nodes of the given graph and returns the
(eventually empty) set of identified fragments.

• For similarity evaluation we do not take into account contracted nodes.

45

• The annotations of contracted nodes are always overriding in relation
to the newly defined ones.

We denote this modification of BAS as a contraction-aware annotation
strategy (CAS). The resulting annotating strategy, so called global annotation
strategy (GAS), is depicted by Algorithm 5, where function contract applies
operation contraction on graph of the given schema S and set of fragments
F and function restore restores all the contracted nodes of the given schema
to the original ones.

Algorithm 5 Global Annotation Strategy (GAS)

Input: S, F , m1, m2, ..., mp, mcomp, Tsim

Output: F ∪ newly annotated fragments
1: F ′ ← BAS(S, F , m1, m2, ..., mp, mcomp, Tsim)
2: F tmp ← F ′

3: while F tmp 6= ∅ do
4: contract(S, F tmp)
5: F tmp ← CAS(S, F , m1, m2, ..., mp, mcomp, Tsim)
6: F ′ ← F ′ ∪ F tmp

7: end while
8: restore(S, F ′)
9: return F ′

The resulting complexity of the algorithm depends on the number of
iterations of the cycle (lines 3 – 7). In the worst case each iteration results in
annotating of a single element, i.e. the search algorithm repeats (|Φ|−|F |+1)
times.

4.2 Experimental Implementation

For testing the key features of the proposed approach we have implemented
an experimental system called UserMap. In the following experiments we
analyze the key aspect of the proposed approach – the BAS and GAS al-
gorithms and their behavior on real data. We use the same 98 real-world
XML schemes that we used in statistical analysis described in Chapter 6
divided into database (dat), document (doc), exchange (ex), report (rep),
and research (res) category. Their basic characteristics can be seen in Ta-
bles 6.3 and 6.4. The first two categories are similar to classical data-centric

46

and document-centric ones, the other three are introduced in the analysis to
enable finer division. In experiments we use a slight modification of GAS
(Algorithm 5) which enables to compare its behavior within the categories.
In particular, the annotated fragments are represented using a separate test-
ing set of schema fragments consisting of 5 data-centric, 5 document-centric,
3 relational, and 3 DNA real-world schema fragments (see Definition 32 and
31). Table 4.1 shows results of characteristics of the algorithm applied on all
the sample fragments per each category.

Characteristic dat doc ex rep res
Average number of iterations 2.7 3.9 2.9 4.1 4.3
Average % of not annotated nodes 2.1 53.4 13.5 25.6 31.1
% of fully contracted schemes 93.7 22.2 81.1 0.0 28.6

Table 4.1: General characteristics per category

As we can see, the algorithm has quite reasonable behavior. Firstly, the
number of iterations is not an extreme one – the algorithm is able to perform
more than one contraction (i.e. not only the BAS algorithm is applied) and,
on the other hand, there are no extreme values with regard to usual depth
or number of elements in the schemes (see Table 6.3). From the other two
characteristics it is obvious that the schemes are not usually fully contracted,
i.e. the storage strategies are not determined for the whole schema (although
it depends highly on the particular category). This indicates that the default
mapping strategy sdef should be still specified. If we compare the average
number of iterations with the percentage of fully contracted schemes, it is
surprising that schemes with the lower amount of contractions are fully con-
tracted more often. It is probably caused by the fact, that the two categories,
i.e. dat and ex, usually contain schemes with much simpler structure than,
e.g., the doc one, or much regular than, e.g., the res one.

Next set of performed tests analyzed the behavior of the algorithm in
particular iterations, especially the percentage of annotated nodes at each
iteration, as depicted by graphs in Figure 4.5.

As we can observe, the percentage of annotated nodes is usually highest
in the first iteration, i.e. using the BAS algorithm, and then, with the de-
creasing number of nodes, rapidly decreases too. The only exceptions are the
rep category, where the percentage grows up to third iteration and the res

category, where it later slowly grows up to seventh iteration. It is probably

47

Figure 4.5: Average percentage of annotated nodes at each iteration

caused by less regular structure than in the other three cases, especially in
case of res category, as well as the lower number of sample XML schemes
and thus less precise tuning of the similarity measure (see Chapter 5.3.2).

In the last set of performed tests we have analyzed the relationship be-
tween types of schema fragments and the iterations. The finding is that var-
ious types of schema fragments appear “randomly” regardless the iteration.
This indicates that the algorithm does not provide degenerated schemes, such
as, e.g., a schema where all the annotations correspond to a single sample
schema fragment.

4.3 Conclusion

The results of the experiments show that the proposed approach is able to
exploit the user-given information more deeply and find more appropriate
mapping strategy for not annotated schema parts than sdef . When applied
on real-world XML schemes and schema fragments, the algorithm behaves
quite reasonably, though it is not usually able to annotate the given schema
fully. This indicates that the default mapping strategy sdef is still important.

Obviously there are several open issues related to the approach. Firstly,
it is highly dependent on the choice and precision of the similarity measure.

48

We deal with this problem in Chapter 5 exploiting the results of statistical
analysis described in Chapter 6. On the other hand, since the approach is
proposed to enable a user to assign a mapping strategy to a chosen schema
fragment which is suitable for the actual application, though it can be highly
inefficient in the general case, an analysis of efficiency of the resulting storage
strategy would be quite predictable and thus useless. But, on the other hand,
there remains the open issue of the correctness and structure of the resulting
mapping strategy and related query evaluation. We deal with these issues in
Chapter 7.

49

50

Chapter 5

Similarity Measure

In this chapter we describe a similarity measure designed primarily for
the purpose of enhancing of user-driven XML-to-relational storage strate-
gies described in Chapter 4. In comparison with the existing approaches the
method differs mainly in two aspects: Firstly, it focuses on structural similar-
ity of the given schema fragments instead of semantics of element/attribute
names, context of the analyzed schema fragments, etc., commonly used in
many existing works. Secondly, we deal with the problem of tuning parame-
ters of the similarity measure, an aspect which is quite important but usually
omitted in existing works. For this purpose we exploit the results of statistical
analysis of real-world XML data from Chapter 6, in particular XML schemes,
and we show that the tuning problem can be viewed as a kind of constraints
optimization problem and thus can be solved using corresponding approaches.
For this purpose we exploit and compare two approaches – genetic algorithms
and simulated annealing. Using further experiments we show that with an ap-
propriate tuning the similarity measure can be much precise than a common
“reasonable” setting usually used.

Most of the contents of this chapter has been published in the following
paper:

Mlýnková, I.: Evaluation of XML Schema Fragments Similarity Based
on Properties of Real Data. (Note: Paper under review process)

A possible optimization of XML-based methods can be found in exploita-
tion of similarity of XML data and matching of XML patterns. In general
it enables to manage similar XML data in a similar manner or to extend
approaches known for a particular type of XML data to the whole set of

51

similar ones.

The most common area of exploitation of data similarity (not only for
the XML case) are storage strategies based on the idea of clustering XML
documents or XML schemes (e.g. [30]). They focus on storing structurally
similar data in a similar way or “close” to each other to enable fast retrieval
and to reduce processing of the whole set of stored data to their relevant
subset. Another large area covers so-called dissemination-based applications
(e.g. [20]), i.e. applications which timely distribute data from the underlying
data sources to a set of customers according to user-defined profiles. These
systems use a kind of approximate evaluation, since the user expects that
the resulting data conform to the specified profile up to particular similarity
threshold. Another set of similarity-based techniques consists of so-called
data integration systems, or, when concerning directly XML schemes, schema
integration systems (e.g. [48]). They enable to provide a user with a uniform
view of the data coming from different sources and thus having different
structure, identifiers, data types, etc. Hence such system must be able to
analyze the source data and to find corresponding similarities. And there
are also other, not such obvious examples of similarity exploitation [60], such
as, e.g., data warehousing (e.g. [58]) which needs to transform the data
from source format to the warehouse format, e-commerce where message
translation between various formats is necessary (e.g. [31]), semantic query
processing (e.g. [63]), etc.

But despite the fact that the amount of existing similarity-based ap-
proaches is significant, there is still a space for improvements and new ways
of similarity exploitation. In this chapter we propose a similarity measure
designed primarily for the purpose of enhancing of user-driven XML-to-
relational storage strategies. But the key ideas we are proposing can be
simply extended to be used to any appropriate similarity-based problem.

5.1 Related Work

As mentioned above, the number of existing works in the area of XML data
similarity evaluation is nontrivial. We can search for similarity among XML
documents, XML schemes, or between the two groups. We can distinguish
several levels of similarity that can be taken into account during the search
process, such as a structural level (i.e. considering only the structure of the
given XML fragments), a semantic level (i.e. taking into account also the

52

meaning of element/attribute names), a constraint level (i.e. taking into
account also various value constraints), etc. Or, we can require different
precisions of the similarity evaluation depending on the target application.

In case of document similarity we distinguish techniques expressing the
similarity of two documents D1 and D2 by measuring how difficult is to
transform D1 into D2 (e.g. [57]) and techniques which specify a simple and
reasonable representation of D1 and D2 that enables their efficient compari-
son and similarity evaluation (e.g. [74]). In case of similarity of document D
and schema S there are also two types of strategies – techniques which mea-
sure the number of elements which appear in D but not in S and vice versa
(e.g. [25]) and techniques which measure the closest distance between D and
“all” documents valid against S (e.g. [56]). Finally, methods for measuring
similarity of two XML schemes S1 and S2 exploit and combine various sup-
plemental information and measures such as, e.g., predefined similarity rules,
similarity of element/attribute names, equality of data types and structure,
schema instances, thesauri, previous results, etc. (e.g. [45] [33] [68])

In our case for choosing the best possible XML-to-relational storage strat-
egy the key information lies in structural analysis of XML data. Thus, if
we want to exploit similarity of XML data, also the corresponding measure
should focus especially on structural level. And since the most common
source of structural information are XML schemes, also the corresponding
similarity should be evaluated primarily on schema level. In this area the
key emphasis is currently put on the semantic similarity of the given schema
fragments reflecting the requirements of corresponding applications (such as
schema-integration systems, dissemination-based systems, etc.). But for the
purpose of XML-to-relational storage strategies such techniques are inappro-
priate.

5.2 Proposed Similarity Evaluation

As mentioned in Chapter 4, the proposed similarity measure sim(fx, fy) ∈
[0, 1] expressing similarity of two fragments fx and fy of schema S, where 1
represents strong similarity and 0 strong dissimilarity, is based on a similar
idea as most of the existing works. It exploits a number of supplemental
matchers m1,m2, ..., mp (see Definition 24), i.e. functions which evaluate
similarity of a particular feature of the given schema fragments, such as,
e.g., similarity of number of nodes of fx and fy, similarity of their depths,

53

similarity of their contents, etc. Then the partial results are combined into
the resulting composite similarity value mcomp (see Definition 25 and 26).
The most common and verified [33] way of composition is usually a kind of
weighted sum.

In this chapter we focus on several key aspects of the similarity measure.
Firstly, we deal with the problem of stating the partial matchers which should
focus mainly on structural aspects of the given schema fragments and espe-
cially constructs which influence the efficiency of database processing. Thus
the similarity should not primarily rely, e.g., on semantics of used identifiers.
Furthermore, since our approach assumes that a user can annotate any kind
of a schema fragment and a similar fragment can be detected anywhere in the
schema, it should not rely also on context of the evaluated fragments. And
last but not least, the similarity evaluation strategies have to cope with the
problem of setting various parameters, especially weights of matchers within
the composite measure. The setting process is usually omitted in current
works (i.e. the weights are set without any argumentation), or a kind of a
machine-learning technique is exploited.

With regard to these observations we have decided to exploit the knowl-
edge and results of statistical analysis of real XML data collections, in par-
ticular the part considering XML schemes. The data parameters that were
analyzed describe a given schema fragment quite precisely and, at the same
time, the results for a representative sample of real XML schemes can be
used for tuning parameters of the similarity measure.

5.2.1 Matchers and Composite Measure

For definition of matchers m1, m2, ..., mp we exploit most of the XML data
characteristics defined and evaluated in the analysis in Chapter 6. Since
we want to describe the structure of the schema fragments as precisely as
possible, the amount of characteristics is nontrivial. On the other hand, at
this stage the versatility of the approach becomes evident, since in general
any kind of matchers can be used depending on the purpose and requirements
of corresponding application.

According to the scope the used characteristics can be divided into the
following groups:

• root – characteristics of root node of the fragment:

54

– type of content, i.e. empty, text, element, mixed, trivial, or un-
ordered,

– fan-outs, i.e. element, attribute, simple, minimum, and maximum,

– type of the node, i.e. DNA pattern or relational pattern, and

– type of the recursion, i.e. trivial, linear, pure, or general.

• subtree – characteristics of the whole fragment:

– basic, i.e. number of elements, number of attributes, number of
mixed contents, number of empty contents, maximum and average
depth, minimum and maximum element fan-out,

– XML Schema-like, i.e. number of unordered contents, default val-
ues, fixed values, wildcards, ID types, IDREF(S) types, unique,
key, and keyref nodes,

– recursive, i.e. number of recursive elements, number of particular
types of recursion,

– depths, i.e. minimum, maximum, average, and unbounded,

– fan-outs, i.e. element, simple, minimum, and maximum,

– mixed contents, i.e. depths, fan-outs, simple fan-outs,

– DNA patterns, i.e. depths, fan-outs, simple fan-outs, and

– relational patterns, i.e. fan-outs, simple fan-outs.

• level – characteristics of each level of the fragment: number of elements,
attributes, text nodes, mixed contents, DNA patterns, and relational
patterns, fan-outs and simple fan-outs.

Since each matcher should evaluate similarity of a particular character-
istic of the given schema fragments fx and fy, we need to transform the
resulting values (e.g. types of the root nodes, numbers of elements, etc.)
to interval [0, 1]. In case of root characteristics we distinguish two cases –
feature matchers and single-value matchers. Feature matchers express the
(in)equality of the value of i-th feature feai (e.g. type of the node, content,
or recursion):

mfea
i (fx, fy) =

{
1 feai(fx) = feai(fy)
0 otherwise

(5.1)

55

They are combined using a weighted sum into a composite feature matcher :

mfea(fx, fy) =
n∑

i=1

mfea
i (fx, fy) · wfea

i (5.2)

where weights wfea
i ∈ [0, 1],

∑n
i=1 wfea

i = 1, and n is the number of feature
matchers.

Single-value matchers express the difference between the value of j-th
single-value characteristic valuej (e.g. element or attribute fan-out):

msingle
j (fx, fy) =

1

|valuej(fx)− valuej(fy)|+ 1
(5.3)

As for the subtree characteristics we distinguish two cases too. In case
of single-valued characteristics (i.e. basic, XML Schema-like, and recursive)
we also use the single-value matchers (see equation 5.3) which are within the
subsets composed into composite single-value matchers msingle, again using a
weighted sum. The situation in case of multi-valued characteristics (e.g. list
of possible depths of the fragment) is a bit complicated – it requires similar-
ity evaluation of two lists of values of arbitrary, distinct lengths. Therefore
we first supply the shorter list with zero values and sort the lists in decreas-
ing order. Then we use so-called multi-valued matchers which express the
similarity of a j-th sorted sequence sj:

mmulti
j (fx, fy) =

∑m
k=1

1
|sj(fx)[k]−sj(fy)[k]|+1

m
(5.4)

where m is the length of the sequences and seqj(.)[k] expresses the k-th
member of the sequence.

For level characteristics we use so-called level matchers which compose
the results of single-valued (see equation 5.3) or multi-valued (see equation
5.4) matchers at particular levels and decrease their weight with the growing
level:

mlev
j (fx, fy) =

l∑

k=1

m
single/multi
j (fx, fy) · (1

2
)k (5.5)

where l is the maximum of number of levels of fx and fy (assuming that the
shallower one is again supplied with zero values).

56

Finally, the resulting composite function mcomp is expressed as a weighted
sum of all the matchers.

As it is obvious, the resulting composite similarity expresses the similarity
of the given schema fragments with regard to the selected matchers, each
having its particular weight. Thus there remains the problem of tuning the
weights which highly influences its precision.

5.2.2 Tuning of the Weights

In existing works we can distinguish two approaches – the parameters are
set either without any argumentation (or on the basis of authors experience
whose more detailed description is usually omitted) or a machine-learning
strategy is exploited. In the latter case the corresponding system is usually
provided with a set of sample situations (e.g. pairs of data fragments and
their similarity) and the system than exploits this knowledge in the evaluation
process.

In our approach we use the “golden mean” – we exploit the results from
the analysis of real-world XML schemes (see Chapter 6) and we set the pa-
rameters on the basis of the results. The basic idea is relatively simple: We
use the same 98 real-world XML schemes divided into database (dat), docu-
ment (doc), exchange (ex), report (rep), and research (res) category. Their
basic characteristics can be seen in Tables 6.3 and 6.4. We prepare sample
patterns of real schema fragments, such as data-centric fragments, document-
centric fragments, unordered elements, relational patterns, recursive elements
(of all the four types), DNA patterns, etc., whose representation is in the par-
ticular categories known. Using a search algorithm we compute the number
of occurrences of similar fragments within the schema categories and tune
the parameters of the similarity measure so that the results correspond to
the results of analysis of the real-world data.

Note that this is the second stage where the algorithm can be modified
to any purpose. In general it is possible to use any relevant information, i.e.
knowledge of characteristics of any sample set of data. We have used the
results of our analysis since the real-world sample is nontrivial and the data
were collected so that they cover many possible areas where XML data are
exploited.

57

Theoretical View of the Tuning Problem

In general the tuning problem and its proposed solution can be described as
follows: Let c1, c2, ..., cK denote the categories of schemes, p1, p2, ..., pP the
sample patterns, and (M rep

i,j)K×P the representation matrix which contains
real-world representation of pattern pj in category ci, i.e. results of the statis-
tics. Next let us have a search algorithm with parameters par1, par2, ..., parR,
where ∀i : pari ∈ [0, 1] and some subsets of the parameters have to fulfill
particular constraints, such as, e.g., the sum of subset of parameters which
correspond to weights of a single weighted sum must be equal to 1. With the
given setting of parameters the algorithm returns calculated representation
repi,j of pattern pj in category ci. The aim is to find the optimal setting of
parameters par1, par2, ..., parR, i.e. the setting where the sum of deviations
of calculated and real-world representations

K∑
i=1

P∑
j=1

|M rep[i, j]− repi,j| (5.6)

is minimal. This task is obviously a kind of a classical constraints optimiza-
tion problem (COP) – a problem of finding a solution in a feasible region
(i.e. a set of all possible solutions), where the value of objective function (i.e.
a function which determines the quality of a solution) is optimal and the
solution satisfies the given criteria. In our case:

• the feasible region contains all possible settings of parameters par1,
par2, ..., parR corresponding to weights of weighted sums (defined in
Chapter 5.2.1),

• the objective function evaluates the sum 5.6, and

• the criteria of the solution are the above described constraints.

The problem is that since the parameters par1, par2, ..., parR are in general
real values from [0, 1], the feasible region is theoretically infinite. But under a
closer investigation we can see that the real-world case is much simpler than
the theoretical problem. Firstly, we can restrict possible values of parameters
par1, par2, ..., parR to a certain precision, i.e. the infinite feasible region can
be reduced to a reasonable size. Furthermore, for our purpose we do not
need the optimal solution, but a reasonably good suboptimum, since the

58

algorithm is expected to search for similar schema fragments, not exactly
the given ones. And last but not least, as the evaluation of the objective
function requires similarity evaluation of all the patterns p1, p2, ..., pP and all
schema fragments in categories c1, c2, ..., cK , we need to minimize the amount
of evaluations.

For searching the suboptimum we exploit and compare a slight modi-
fication of two approaches for searching a suboptimal solution of an opti-
mization problem – global search heuristics called genetic algorithms and
simulated annealing. They enable to find a reasonable setting following the
given requirements and, at the same time, influence the number of expensive
evaluations.

Genetic Algorithms

Genetic algorithms (GA) [37] are a part of evolutionary algorithms which
are inspired by observations of evolution biology. Their idea is based on
iterative improving of (usually) randomly generated initial population P0

of individuals using two key operations, simulations of natural processes –
crossover and mutation.

As depicted by Algorithm 6, at i-th iteration the fitness ffit, i.e. the
quality, of every individual of population Pi is evaluated, multiple individuals
are selected on the basis of their fitness, and modified, i.e. crossed over
and mutated to form a new population Pi+1. Operation crossover creates
a new offspring crossing over two individuals by exchanging their portions.
Operation mutation creates a new individual by changing attributes of an
existing one. Both the operations are performed with a given probability
Pcross and Pmut which influence the speed of convergence to the suboptimal
solution. The algorithm terminates either if satisfactory fitness level Fmin

has been reached in population Pi or after N iterations.

In our case a single individual of a population corresponds to a single
possible setting of parameters par1, par2, ..., parR and the fitness function
evaluates the inverse value of sum 5.6. The initial population is generated
randomly or a set of reasonable settings can be used. And finally, operations
crossover and mutation are slightly modified to ensure that the subsets of
parameters corresponding to a single weighted sum still fulfill the previously
described conditions.

59

Algorithm 6 Genetic Algorithm (GA)

Input: ffit, Fmin, N
Output: individual with the maximum fitness
1: i ← 0
2: Pi ← initial population
3: evaluate individuals in Pi using ffit

4: while i 6 N ∧ Fmin is not reached in Pi do
5: i ← i + 1
6: Pi ← best individuals from Pi−1

7: crossover(Pi)
8: mutate(Pi)
9: evaluate individuals in Pi using ffit

10: end while
11: return I ∈ Pi s.t. ffit(I) is maximum

Simulated Annealing

The idea of simulated annealing (SA) [38] is also inspired by natural pro-
cesses, in this case the way a metal cools and freezes into crystalline struc-
ture, where controlled cooling increases size of the crystals and thus reduces
defects. SA algorithm is also iterative and based on exploitation of randomly
generated solutions.

As depicted by Algorithm 7, the SA algorithm starts with the initial state
s0 which is iteratively improved. The quality of a state sx is evaluated using
its energy E(sx) which needs to be minimized. At i-th iteration the current
state si is replaced with a random “nearby” state si+1 whose choice depends
on a global parameter T called temperature which is gradually decreased
(usually by fixed factor α < 1) during the process. The probability Pmov

of moving from state si to si+1 is expressed as a function of T , E(si), and
E(si+1):

Pmov =

{
1 E(si) > E(si+1)

exp(E(si)−E(si+1)
T

) otherwise
(5.7)

The algorithm terminates either after a certain number of iterations N
or if a state with satisfactory energy Emin is reached.

The main advantage of SA in comparison with GA is its ability to avoid
trapping at local optimum. The reason is that SA does not accept only

60

Algorithm 7 Simulated Annealing (SA)

Input: E, Emin, N
Output: state with minimum energy E
1: i ← 0
2: s0 ← initial state
3: sopt ← s0

4: while i 6 N ∧ Emin < E(sopt) do
5: i ← i + 1
6: si ← a random neighbor of si−1

7: if E(si) < E(sopt) then
8: sopt ← si

9: end if
10: if ¬ move (E(si−1), E(si), T) then
11: si ← si−1

12: end if
13: decrease(T)
14: end while
15: return sopt

states which improve the current optimum, but also some of those which can
(temporarily) worsen it. The probability Pmov and temperature T ensure that
at the beginning the state changes almost arbitrarily (within the adjacent
states) but the changes decrease as T goes to zero.

In our case each state represents a single setting of parameters par1, par2,
..., parR and the energy E evaluates sum 5.6. For the initial state can be
again used either a randomly generated setting or any known reasonable
setting. The neighboring states are defined by a modification of mutation of
GA, where only a single parameter is randomly changed (and the others are
recomputed to fulfill conditions of weighted sums).

5.3 Experimental Tests

The experimental tests we have performed to analyze the proposed ideas
and approaches can be divided into two parts. Firstly, we analyze the tuning
process, i.e. we compare the two algorithms for searching a better candidate
for the weights and the achieved results. And secondly, we analyze the quality

61

of the tuned similarity measure.

5.3.1 Tuning Process

For experimental testing of GA and SA algorithms we first need to tune the
key parameters of both the algorithms.

As for the GA algorithm, we need to tune the probabilities Pcross and
Pmut which influence the speed of convergence to the suboptimum. With
fixed value of Pmut and maximum number of iterations N = 30 we have
performed number of tests for setting the value of Pcross. The results are
depicted by Figures 5.1 and 5.2 containing average, median, and minimum
values for values of Pcross ∈ [0.1, 0.9]. Figure 5.1 depicts at which iteration the
suboptimal value was reached, Figure 5.2 depicts the resulting suboptimal
value of sum 5.6. As we can see, since both the average and median iteration
for reaching the suboptimum occur mostly between 15 and 20, the maximum
number of iterations does not need to be much higher. Considering only the
reached values (Figure 5.2) the best candidates for Pcross are 0.1, 0.4, 0.5, 0.7
and 0.9. But together with the results from Figure 5.1 we can say that the
optimal value of Pcross occurs between 0.4 and 0.5.

Similarly, with fixed value of Pcross = 0.5 and the same maximum number
of iterations N = 30 the process of tuning of parameter Pmut is depicted in
Figures 5.3 and 5.4 containing values with the same meaning. Unfortunately,
these results are more ambiguous than in the previous case. Thus we have
analyzed the particular results and from the possible candidates we have
selected 0.16 as the best compromise value of Pmut.

As for the SA algorithm, we need to perform the same tuning for param-
eter T and the threshold of Pmov. The setting of T requires quite a lot of
user involvement since the value must conform to numerous requirements to
achieve a reasonable value [38]. Mainly, it should correspond to the estimated
deviation of E(si) and E(si+1), it must ensure that the algorithm moves to a
state si+1 even if E(si+1) > E(si) (but the probability Pmov is high enough),
the declination of T should be reasonable enough to exploit the main idea
of the approach, etc. Thus this parameter was set rather semiautomatically
with regard to balanced conformation to the requirements. With fixed value
of T and maximum number of iterations N = 80 the value of Pmov seems to
be the best around 0.7 considering the number of iterations and between 0.4
and 0.5 considering the resulting values, as depicted by Figures 5.5 and 5.6
respectively. After more detailed analysis of the results, we have set Pmov to

62

Figure 5.1: Tuning of parameter Pcross – number of iterations

Figure 5.2: Tuning of parameter Pcross – values of sum 5.6

0.7.

With the current setting of both the algorithms we can now analyze their
behavior. Firstly, we are interested in the quality of the achieved subop-
timum, in particular in comparison with the typical reasonable setting of
weights so that the composite measure returns the average similarity. Table
5.1 overviews the quality of the suboptimums expressed using the result of
sum 5.6 for both the GA and SA algorithms which were evaluated either
starting with random population P0/state s0 or with setting to the average-
producing weights (denoted as avg). As we can see in both the cases the
results are much better when we start with a reasonable, verified setting
than with a random one. If we compare the quality of avg with the achieved
suboptimums, we can see that using both the algorithms can found much
better candidates for setting the weights.

Comparing the two algorithms together we are interested in the amount of
expensive evaluations of fitness/energy (i.e. the sum 5.6), in particular their
efficiency and the quality of the reached suboptimum. As for the quality we

63

Figure 5.3: Tuning of parameter Pmut – number of iterations

Figure 5.4: Tuning of parameter Pmut – values of sum 5.6

can again refer to Table 5.1, where we can see that though the values of the
two algorithms do not differ too much, the GA algorithm performs better in
all the cases.

The analysis of number of iterations firstly requires a brief discussion: In
case of GA the number of evaluations of sum 5.6 seems to be given by the
product of number of iterations and number of individuals in a population.
In case of SA it is given by the number of iterations, since at each iteration
only a single state is evaluated. But due to the properties of GA all the
individuals of a population can be evaluated concurrently avoiding repetitions
of expensive preprocessing of the graph and supplemental calculations (e.g.
number of nodes, depths, types of nodes, etc.). Thus in fact also in this case
the number of evaluations rather corresponds to number of iterations of the
algorithm.

The resulting numbers of iterations necessary for reaching the subopti-
mums from Table 5.1 are depicted in Table 5.2. As can be seen not only has
the GA algorithm undoubtedly better results than SA, but also the number

64

Figure 5.5: Tuning of parameter Pmov – number of iterations

Figure 5.6: Tuning of parameter Pmov – values of sum 5.6

of iterations is lower due to its ability to evaluate a population of candidates
at each iteration instead of a single one. It is quite probable that with a
higher number of iterations the SA algorithm would perform better, but the
duration of such evaluation would be unacceptable as it cannot be performed
concurrently for more candidates. Thus though the SA algorithm is able to
cope with local optimums [38], for our purpose seems to be better to use an
approach which is able to reach the optimum as soon as possible, as it is in
case of GA assured using a population of candidates.

5.3.2 Similarity Measure

At this stage we have a similarity measure whose parameters are tuned ac-
cording to the knowledge of structure of real-world data. But the question is
how good such tuning is. As we have mentioned, the existing works rather
focus on semantic similarity of XML schema fragments and thus compari-
son of our approach with any of them would be misleading. On the other

65

Characteristic
Result of sum 5.6

Minimum Average Median Maximum

P0 (GA)
random 0,013 1,176 0,673 3,959
avg 0,001 0,652 0,463 3,441

s0 (SA)
random 0,082 17,318 11,764 55,719
avg 0,061 9,412 6,595 40,519

Arithmetic mean 482,113

Table 5.1: Quality of the achieved suboptimums

Characteristic
Number of iterations

Minimum Average Median Maximum

P0 (GA)
random 1 17,2 19 30
avg 5 20,9 22,5 30

s0 (SA)
random 8 39,8 38 80
avg 2 38.7 37 80

Table 5.2: Efficiency of achieving the suboptimum

hand, we can compare the tuning with the usually used reasonable setting to
the average-producing weights. From Table 5.1 we can see that in terms of
sum 5.6 the reached settings are much better than in the average-producing
case. But such results are not very convincing in general. Thus for the
purpose of evaluation of quality of the two similarity measures (which we
further denote as SimTuned and SimAvg) we use the approach introduced
in [33]. It is based on the idea of comparing results of an algorithm with
results of manual processing assuming that the manually achieved results
form the optimum. Let R be the set of manually determined matches, i.e.
in our case schema fragments similar to the given schema pattern, and P
the set of matches determined by the algorithm. Then I denotes the set of
true positives, i.e. matches correctly identified by the algorithm, F = P\I
denotes false matches, i.e. matches incorrectly identified by the algorithm,
and M = R\I denotes false negatives, i.e. matches not identified by the al-
gorithm. On the basis of these characteristics, the following quality measures
can be computed:

• Precision = |I|
|P | = |I|

|I|+|F | estimates the reliability of the similarity mea-
sure,

• Recall = |I|
|R| specifies the share of real matches that is found, and

66

• Overall = 1 − |F |+|M |
|R| = |I|−|F |

|R| represents a combined measure which
represents the post-match effort necessary to remove false and add
missed matches.

In the ideal case I = P = R, F = M = ∅, and the measures reach their
highest values Precision = Recall = Overall = 1. On the other hand, the
lower the values are (whereas the Overall can have even negative values), the
least precise the similarity measure is.

For the purpose of the evaluation we have selected 5 XML schemes repre-
senting each of the 5 schema categories and prepared a sample set of 10 data-
centric and 10 document-centric schema patterns. For each of the schema
representatives we have manually identified the set R of data-centric and
document-centric fragments. Then we have performed searching for frag-
ments similar to the schema patterns using both SimAvg and SimTuned, i.e.
we have performed 5 × (10 + 10) experiments for each of them, and deter-
mined the sets P and I. Finally, within the categories we have computed
average values of the results (i.e. average |P | and |I|) and then the resulting
values of Precision, Recall, and Overall.

As can be seen from Figure 5.7 the SimAvg approach is apparently much
worse similarity measure than SimTuned within all the categories. Secondly,
it is evident (and natural) that the quality of both the measures is correlated
with the number of source schemes within the categories, i.e. the amount
of source information we had for tuning the weights. The best results can
be found for categories dat, doc, and ex since the amount of corresponding
schemes highly exceeds the amount in the other two (see Table 6.2).

Figure 5.7: Precision, Recall, and Overall for SimAvg and SimTuned

67

If we consider the Precision and Recall parameters together (since they
influence each other and thus cannot be evaluated separately, otherwise the
results can be misleading), we can see that in the first three categories the
reliability as well as the share of real matchers found exceeded 60%. It is
not as good result as in case of [33], where for the best identified similarity
measures the values often exceeded 75%, but none of the evaluated similarity
measures focussed on structural similarity as precisely as in our case and, of
course, the match tasks were quite different.

Considering the Overall parameter the worst results are again in case of
rep and res categories, whereas in case of SimAvg and rep category the value
is even negative. This denotes that the number of false positives exceeds the
number of true positives and such measure is almost useless, since the post-
match effort is too high.

5.4 Conclusion

The experiments show that with the proper tuning of weights based on reli-
able information on representative sample data, the corresponding similarity
measure has much better characteristics than the commonly used average-
producing ones. In addition, the idea can be used for any type similarity
measure (i.e. measure focussing not only on structural similarity) and any
type of relevant tuning data.

Last but not least, note that from another point of view also the semantics
of element/attribute names can be important. In our approach we assume
that for the purpose of XML-to-relational storage strategies the key aspect
is structural similarity of the data. This is definitely true but from another
point of view we could assume that not only structurally similar but also
semantically similar schema fragments should be stored in a similar way.
In another words we could expect that the user will work similarly with
semantically similar fragments.

68

Chapter 6

Statistical Analysis of
Real-World XML Data

In this chapter we describe a statistical analysis of existing real-world
XML data, in particular their structure and real complexity. The results
were used primarily in the tuning process of similarity measure in Chapter
5 and experiments in Chapter 4, but the analysis in general brings several
important findings and conclusions. For its purpose we have gathered more
than 20GB of real XML collections and implemented a robust automatic an-
alyzer. The analysis considers existing papers on similar topics, trying to
confirm or refute their observations as well as to bring new findings. It fo-
cuses on frequent, but often ignored XML constructs (such as mixed content
or recursion) and relationship between schemes and their instances.

Most of the contents of this chapter has been published in the following
papers:

Mlýnková, I. – Toman, K. – Pokorný, J.: Statistical Analysis of Real
XML Data Collections. COMAD ’06: Proceedings of the 13th International
Conference on Management of Data, pages 20 – 31, New Delhi, India, De-
cember 2006. Tata McGraw-Hill Publishing Company Limited, 2006. ISBN
0-07-063374-6. (Note: The Best Student Paper Award)

Toman, K. – Mlýnková, I.: XML Data – The Current State of Affairs.
Proceedings of XML Prague ’06 conference, pages 87 – 102, Prague, Czech
Republic, June 2006. (Note: An invited talk)

When considering the existing works on XML data processing in more detail,
we can distinguish two situations. On one hand, there is a group of general

69

techniques that take into account all possible features of input XML data.
This idea is obviously correct, but the problem is that the XML standards
were proposed in full possible generality so future users can choose what suits
them most. Nevertheless, the real XML data are usually not so “rich”, thus
the effort spent on every possible feature is mostly useless. It can even be
harmful in terms of efficiency.

On the other hand, there are techniques that somehow do restrict features
of the input XML data. For them it is natural to expect inefficiencies to
occur only when the given data do not correspond to these restrictions. The
problem is that such restrictions do not result from features of real XML
data, but they are often caused by limitations of a particular technique,
complexity of such solution, irregularities, etc.

We can naturally pose two apparent questions:

1. Is it necessary to take into account a feature that will be used minimally
or will not be used at all?

2. If so, what are these features?

The answer for the first question obviously depends on the particular
situation. The second one is the main topic of this chapter.

6.1 Related Work

So far only a few papers have focused on analysis of real XML data. They
analyze either the structure of DTDs, the structure of XSDs, or the structure
of XML documents (regardless their schema). The sample data usually differ.

For the first time the analysis of the structure of DTDs had probably oc-
curred in paper [65] and it was further extended in papers [29] and [40]. They
focused especially on the number of (root) elements and attributes, the depth
of content models, the usage of mixed content, IDs/IDREFs, and attribute
“decorations” (i.e. implied, required, and fixed), non-determinism, and
ambiguity. Side aim of the papers was a discussion of shortcomings of DTDs.
The most important findings are that real content models are quite simple
(the depth is always less than 10), the number of non-linear recursive ele-
ments (see Definition 30) is high (they occur in 58% of all DTDs), the number
of hubs is significant, and that IDs/IDREFs are not used frequently.

70

With the arrival of XML Schema, a natural question has arisen: Which
of the extra features of XML Schema not allowed in DTD are used in prac-
tice? Paper [26] is trying to answer it using statistical analysis of real XML
schemes. The most exploited features seem to be restriction of simple types
(found in 73% of XSDs), extension of complex types (37%), and namespaces
(22%). The first finding reflects the lack of types in DTD, the second one
confirms the naturalness of object-oriented approach, whereas the last one
probably results from mutual modular usage of XSDs. The other features
are used minimally or not used at all. The concluding finding is that 85%
of XSDs define so called local tree languages [54], i.e. languages that can be
defined by DTDs as well. Paper [46], that also focuses directly on structural
analysis of XSDs, defines 11 metrics and two formulae that use the metrics
to compute complexity and quality indices of XSDs. Unfortunately, there is
only one XSD example for which the statistics were computed.

Paper [47] analyses the structure of XML documents directly, regardless
eventually existing schema. The statistics are divided into two groups –
statistics about the XML Web (e.g. clustering of the source web sites by
zones and geographical regions, the number and volume of documents per
zone, the number of DTD/XSD references, etc.) and statistics about the
XML documents (e.g. the size and depth, the amount of markup and mixed-
content elements, fan-out, recursion, etc.). The most interesting findings of
the research are that the structural information always dominates the size of
documents, both mixed-content elements (found in 72% of documents) and
recursion (found in 15% of documents) are important, and that documents
are quite shallow (they have always fewer than 8 levels on average).

In this chapter we take up work initiated in the existing articles. We
focus on analysis of XML data aspects which are important for efficient
data processing, while we omit, e.g., the source of XML data collections or
secondary XML items such as name space references. In general, our analysis
focuses on aspects which influence the structural complexity of XML data or
carry additional important information, while it ignores items that are rather
relevant to semantic web [16] or can be even qualified as “syntactic sugar”.

6.2 Sample XML Data Collections

We have collected a huge amount of XML documents and their DTDs/XSDs.
In contrast to existing papers, the XML collections were not only collected

71

automatically using a crawler, but also manually from sources offering their
data natively in XML format (e.g. government sites, open document repos-
itories, web site XML exports, etc.), Internet catalogues, and semantic web
resources. The respective schemes for data sets were often searched out later
in separate because they had been missing in the original sources. Then
the collections were categorized and the duplicate documents identified by a
simple hashing algorithm (disregarding white spaces), and subsequently re-
moved. Also computer-generated or random-content XML documents were
eliminated.

The reason for using more reliable and/or categorized sources is that
automatic crawling of XML documents generates a set of documents that
are “unnatural” and often contain only trivial data which cause mislead-
ing results. For example paper [47] mentions that the set of sample data
(which were crawled automatically) contains almost 2000 of documents with
depth 6 1, i.e. documents containing a single element with empty or text
content. Our purpose was to collect a representative set of currently used
XML collections from various spheres of human activities. We have included
data which are used for testing XML processing methods (e.g. Shakespeare’s
plays [1], XMark [2], Inex [3]), representatives of standard XML schemes
(e.g. XHTML [18], SVG [19], RDF [24], DocBook [10]), sample database
exports (e.g. FreeDB [4], IMDb [5]), well-known types of documents (e.g.
OpenOffice documents [13]), randomly crawled XML data (Medical Subject
Headings [6], novels in XML [7], RNAdb [8]), etc.

6.2.1 Preprocessing

Authors of most existing papers complain of a large number of errors in
the collected sample data. Unfortunately, we can only confirm the claim.
The overwhelming majority of the collected data contained various types of
serious errors. XML documents were not even well-formed and more than a
half of the well-formed ones contained invalid data. Similar problems were
found in case of DTDs and XSDs.

Contrary to previous papers we have not decided to discard the data.
Most of the errors (e.g. bad encoding, missing end tags, missing elements,
unescaped special characters, wrong usage of namespaces, etc.) were de-
tected using Xerces Java parser [59] or various auxiliary analyzers and semi-
automatically corrected. Most of the corrections had to be done manually
though.

72

6.2.2 Accessibility of the Data

Unfortunately, we cannot release the resulting set of corrected XML data col-
lections for download, since most of them are not free or underlie to Copyright
Act and do not allow redistribution. The complete listing of the original data,
number of documents per collection, DTD/XSD existence, and their sources
can be found in [52]. (Naturally, we cannot be responsible for their current
validity.)

6.2.3 General Metrics and Classifications

First of all, we have computed statistics that describe the sample XML data
in general. The overview of these statistics is listed in Table 6.1.

Statistics Results
Number of XML documents 16,534
Number of XML collections 133
Number of DTDs/XSDs 98
Total size of documents (MB) 20,756
Minimum size of a document (B) 61
Maximum size of a document (MB) 1,971
Average size of a document (MB) 1.3
Median size of a document (kB) 10
Sample variation (MB) 433.8
Documents with DTD (%) 74.6
Documents with XSD (%) 38.2
Documents without DTD/XSD (%) 7.4

Table 6.1: General statistics for XML data

The sizes of XML documents vary strongly (from 61B to 1,971MB), nev-
ertheless both the average size (1.3MB) and median size (10kB) seems to be
“natural”. Another not surprising finding is that a considerable percentage
of documents (7.4%) still does not have any schema (although the ratio is
better than in all mentioned existing works) and if so, the XML Schema lan-
guage is for this purpose used even less (only for 38.2% of documents).1 The
positive results may be influenced by the fact that the gathered data were
collected semi-automatically, not randomly.

1Some documents have both DTD and XSD, thus the sum is not 100%.

73

To avoid averaging the features of the whole data set, where the docu-
ments have nothing in common but having an XML format, we have cat-
egorized the data by the original sources and further grouped according to
similar structure, contents, or approach used to describe the data. This way
we have obtained a finer look into various types of XML data not neglecting
the interesting differences among the selected categories, whereas we have
avoided the extensive amount of similar results.

In the rest of the chapter we refer to the following categories2:

• data-centric documents (dat), i.e. documents designed for database
processing (e.g. database exports, lists of employees, lists of IMDb
movies and actors, etc.),

• document-centric documents (doc), i.e. documents which were designed
for human reading (e.g. Shakespeare’s plays, XHTML documents, nov-
els in XML, DocBook documents, etc.),

• documents for data exchange (ex) (e.g. medical information on patients
and illnesses, etc.),

• reports (rep), i.e. overviews or summaries of data (usually of database
type),

• research documents (res), i.e. documents which contain special (scien-
tific or technical) structures (e.g. protein sequences, DNA/RNA struc-
tures, NASA findings, etc.), and

• semantic web documents (sem), i.e. RDF documents.

The number and size of documents per each category is depicted in Ta-
ble 6.2 and for better clarity also in pie charts in Figure 6.1. The complete
assignment of XML collections into particular categories can be found in [52].

Considering the sizes of individual XML documents, the most homoge-
nous category is the doc one. Surprisingly it is also the one with the least
document size (61B). Apparently this is because most of these XML doc-
uments are written by hand or with the aid of an XML editor. The other

2Though these logical categories are not as strictly defined as the common
data/document-centric partitioning, no XML document has been inserted into more than
one category.

74

Statistics dat doc ex rep res sem
Number of XML documents 3,412 6,691 218 2,983 2,451 779
Number of XML collections 38 22 25 2 16 30
Number of DTDs/XSDs 31 18 38 4 7 0
Total size of documents (MB) 2,237 1,187 371 11,371 1,697 3,892
Min. size of document (B) 447 61 2,433 1,925 2,016 356
Max. size of document (MB) 1,242 16 134 96 684 1,971
Avg. size of document (kB) 672 182 1,744 3,903 709 5,116
Median size of document (kB) 3.8 13.4 5.7 1,574 6.9 45.0
Sample variation (MB) 510.7 0.6 154.4 61.8 352.3 5534.5
Documents with DTD (%) 99.7 93.7 100 0 99.8 0
Documents with XSD (%) 0 57.8 0 100 99.6 0
Schema-less documents (%) 0.3 6.3 0 0 0.2 100

Table 6.2: General statistics per category

extreme is the sem category which, despite the similar structure of docu-
ments, contains some very large documents (including the largest one with
1,971MB) as well as collections split into very small documents, depending
heavily on the used tool and conventions.

Note that the percentage of usage of DTDs or XSDs is always either al-
most 0% or almost 100%, depending on the category. The reason probably
comes from the higher reliability of the used sources and the chosen catego-
rization. On the other hand, though a considerable portion of all documents
used some kind of a standard schema (e.g. XHTML, DocBook, etc.), they
were not 100% valid against it. Thus the schema could be used as a guide
for human processing, but it would not be usable for computer validation.

6.3 Analyses and Results

There are two main parts of our observations. Firstly, we carry out analyses
similar to previous studies and compare the results with the original ones.
Secondly, we focus on new XML features with emphasis on frequently dis-
regarded ones such as mixed content and recursion, their complexity, and
corresponding classification.

75

Figure 6.1: Number and size of documents per category

6.3.1 New Constructs

On the basis of our experience and manual preprocessing of the analyzed
data we have defined several new constructs which describe XML documents
and schemes with higher degree of detail. The constructs involve a new type
of element content and related constructs, three types of element fan-out,
four types of recursion, and two special types of elements called relational
and DNA patterns. We have focused especially on simple patterns within
the general XML constructs which can usually be represented by “ordinary”
relational tables or, in case of recursion and mixed contents, which can be
processed and stored simply, without the usual generalization.

Definition 28 An element is trivial if it has an arbitrary amount of at-
tributes and its content model α = ε | pcdata.

A mixed-content element is simple if each of its subelements is trivial. A
mixed-content element that is not simple is called complex.

A simple element fan-out of an element e is the number of distinct trivial
elements in its content model α.

Definition 29 A minimum element fan-out of element e is the minimum
number of elements allowed by its content model α.

A maximum element fan-out of element e is the maximum number of
elements allowed by content model α.

An unbounded element fan-out is a maximum element fan-out of ∞.

76

Definition 30 An element e is trivially recursive if it is recursive and e is
the only element reachable from e and neither of its occurrences is enclosed
by “*” or “+”.

An element e is linearly recursive if it is recursive and e is the only
recursive element reachable from e and neither of its occurrences is enclosed
by “*” or “+”.

An element e is purely recursive if it is recursive and e is the only recur-
sive element reachable from e.

An element that is recursive but not purely recursive is called a generally
recursive element.

Definition 31 A nonrecursive element e is called a DNA pattern if it is not
mixed and its content model α consists of a nonzero amount of trivial ele-
ments and one nontrivial and nonrecursive element whose occurrence is not
enclosed by “*” or “+”. The nontrivial subelement is called a degenerated
branch.

A depth of a DNA pattern e is the maximum depth of its degenerated
branch.

Definition 32 A nonrecursive element e is called a relational pattern if it
has an arbitrary amount of attributes and its content model α = (e1, e2, ..., en)∗
| (e1, e2, ..., en)+ | (e1|e2|...|en)∗ | (e1|e2|...|en)+, where e1, e2, ..., en are triv-
ial elements.

A nonrecursive element e is called a shallow relational pattern if it has
an arbitrary amount of attributes and its content model α = f∗ | f+, where
f is a trivial element.

6.3.2 Statistics and Results

In this chapter we discuss only the core findings and results; all results can
be found in [52]. When possible, we also compare results of the analyses
of XML documents with corresponding results of analyses of their XML
schemes.3 There are of course no schema results for sem category, since it
contains no schema at all.

3In such case there are Doc. and Sch. abbreviations on the left-hand side of a table
which identify the respective results.

77

Global Statistics

The first set of statistics we call global, since they consider overall properties
of XML data. They involve the number of elements of various types (i.e.
empty, text, mixed, recursive, etc.), the number of attributes, the text length
in document, paths, and depths. For DTDs/XSDs the depths are counted for
each root element used in the sample XML documents, for recursive elements
we take into account the lowest level(s) and the infinite level.

Table 6.3 gives us the notion of limits of a “typical” XML document of
each category. Each column contains the overall results of all documents
disregarding exactly 5% of those ones with the extreme values. For the sake
of completeness the extremes are listed in Table 6.4.

Statistics dat doc ex rep res sem
Max. num. of elements 402 4,085 37,502 309,379 427 112,942
Max. num. of attributes 9 1,675 5,182 37,815 129 37,996
Max. num. of empty elements 3 361 123 16,348 6 23,635
Max. num. of mixed elements 0 302 21 0 1 0
Max. num. of dist. el. names 81 48 58 388 44 144
Max. num. of rec. elements 0 3 2 0 0 0
Max. num. of distinct paths 79 96 67 312 30 143

Depth of document
Avg. 5 7 5 5 5 5
Max. 5 13 9 6 7 6

Table 6.3: Global statistics for 95% XML documents

It is evident that most of the documents are constructed quite simply
using only a very reasonable number of distinct element and attribute names
(usually less than 150) which influences a similar number of distinct paths
within each category. And even though the maximum number of elements in
an XML tree is often huge, the number of distinct paths still remains several
orders lower. This naturally corresponds with the average and maximum
depths of XML documents which are very low (all under 13 disregarding the
5% of extreme values). Nevertheless, note that this is not the case for XML
schemes which allow much richer structures.

In all documents the maximum depth exceeded 20 only for some specific,
often heavily recursive instances. It is arguable whether it is their inherent
feature or if it is a result of a lack of a good structure design. The maxi-
mum depth of corresponding schemes is higher, but it also tops around 80

78

Statistics dat doc ex
D

o
c.

Num. of elements 23,132,565 267,632 2,911,059
Num. of attributes 33,660,779 102,945 857,691
Num. of dist. el. names 81 134 146
Num. of dist. rec. el. names 4 12 6
Num. of dist. paths 434 2,086 144
Depth of document 12 459 14

S
ch

. Num. of dist. el. names 76 377 523
Num. of dist. paths 115 11,994 1,665
Depth of schema 12 81 79
Statistics rep res sem

D
o
c.

Num. of elements 1,957,637 21,305,818 25,548,388
Num. of attributes 208,265 2,189,859 10,228,483
Num. of dist. el. names 461 210 1,410
Num. of dist. rec. el. names 0 6 1
Num. of dist. paths 373 426 2,534
Depth of document 6 19 11

S
ch

. Num. of dist. el. names 3,213 250 -
Num. of dist. paths 3,137 568 -
Depth of schema 5 15 -

Table 6.4: Maximum values of global statistics

(disregarding possible recursion, i.e. an infinite depth).

Besides that, the recursion is also remarkably trivial. Mostly, the number
of distinct element names with recursive occurrences is up to 3 and even
the most complex documents do not have more than 12 possible recursive
elements present at the same time. We will further deal with this finding in
recursive statistics.

Last but not least, Table 6.5 depicts the exploitation rate of global prop-
erties, i.e. percentage of documents/schemes with at least one property. Note
that the results differ substantially for categories where the XML documents
are expected to be read or written by humans and for data-oriented ones.
The database-oriented XML documents are designed to be more regular to
ensure further simple computer processing, while human-oriented data are
much more terse and also a richer syntax is used to emphasize the seman-
tics and to improve readability. For example, it is only a matter of taste
whether an attribute or simple element is used to represent the same in-

79

Node type dat doc ex rep res sem
D

o
c.

Attribute 31.7 96.2 92.2 100.0 99.9 99.9
Empty element 26.8 69.2 89.9 100.0 86.7 92.7
Mixed element 0.2 76.5 8.7 0.0 10.1 2.4
Recursive element 0.1 43.3 63.8 0.0 0.7 3.3

S
ch

.

Attribute 50.0 94.1 52.6 100.0 85.7 -
Empty element 37.5 94.1 47.4 25.0 71.4 -
Mixed element 37.5 100.0 50.0 0.0 57.1 -
Recursive element 12.5 88.2 18.4 0.0 28.6 -

Table 6.5: Exploitation rate of global properties (%)

formation in the document. Similar statements hold for mixed-content or
empty elements. However, as the table shows, the most common features
are spread throughout all categories and thus should not be ignored by the
XML processors. The only exception are mixed-content elements which are
used sparsely outside the doc category.

Last fact to be observed is that XML features used in schemes and doc-
ument instances usually match, i.e. the schemes are quite well designed in
this matter, though we later show that they are too general.

Level Statistics

Level statistics focus on distribution of elements, attributes, text nodes, and
mixed contents per each level of documents. Figure 6.2 depicts the distri-
butions for the whole sample set of documents; for schemes the results are
not shown, since they were too influenced by recursive and thus possibly
infinitely deep documents to generate any meaningful data.

The graphs show that the highest amounts of analyzed nodes are always
at first levels and then the number of occurrences rapidly decreases. The
steep exponential decrease ends around level 20 and then the drop is much
slower and shows more fluctuations. This correlates closely with fan-out
statistics in Figure 6.3, see below.

Note that unlike attributes or mixed contents the text nodes occurrences
copy the curve of element frequencies almost perfectly. This denotes that the
text content is spread evenly through all levels of XML documents.

80

Figure 6.2: Distribution of elements, attributes, text nodes, and mixed con-
tents in XML documents per level

Fan-Out Statistics

Fan-out statistics describe the overall distribution of XML data. Figure 6.3
depicts the results of element fan-out for XML documents per each category
using 3D graphs that consist of level, fan-out value, and the number of oc-
currences of such pairs. Each level is for better lucidity displayed with a
different color.

81

Figure 6.3: Element fan-out of XML documents per categories

82

We can observe that the characteristics of the graph are similar in each
level, but with the growing depth it gets thinner. Similarly to level statistics
the highest values are at first levels and soon radically decrease. The graphs
for simple element fan-out (see [52]) are analogous, just naturally thinner. As
in the previous case of element/text nodes it indicates that the distribution
of trivial elements is almost same as the overall distribution of elements.
It also means that simple elements are very frequent at all levels of XML
documents.

Considering XML schemes the inverse fan-in values are usually rather low
on average and moderate on maximum values (usually around 13 different
input elements). Exceptions are the doc and ex categories which generally
show far more complicated schema definitions than the rest ones (including,
e.g., complete subgraphs on up to 10 nodes). For more details see [52].

Recursive Statistics

Next set of statistics, called recursive, deals with types and complexity of
recursion. We already know that recursive elements are extensively used
especially in doc and ex categories. Table 6.6 contains an overview of ex-
ploitation rates for the four previously defined types of recursion; Table 6.7
contains percentage of the respective types. Finally, Table 6.8 shows the
distance of the closest and furthest ed-pairs. In all the tables T stands for
trivial recursion, L stands for linear recursion, P stands for pure recursion,
and G stands for general recursion.4

dat doc ex rep res sem

D
o
c.

T 0.06 2.38 3.67 - 0 0.27
L 0.06 19.92 32.57 - 0.65 2.52
P 0.03 18.76 22.48 - 0 1.46
G 0.06 16.20 7.80 - 0.04 0

S
ch

.

T 0 0 0 - 0 -
L 0 0 0 - 14.29 -
P 0 2.94 7.89 - 28.57 -
G 12.50 85.29 13.16 - 28.57 -

Table 6.6: Exploitation rate of types of recursion (%)

4Remember that there are no recursive elements in the rep category.

83

dat doc ex rep res sem

D
o
c.

T 0.2 5.0 6.4 - 0 1.0
L 0.5 65.3 45.7 - 66.7 92.6
P 0.7 12.7 26.9 - 0 6.4
G 98.5 17.0 21.0 - 33.3 0

S
ch

.

T 0 0 0 - 0 -
L 0 0 0 - 2.9 -
P 0 0.1 1.0 - 20.6 -
G 100.0 99.9 99.0 - 76.5 -

Table 6.7: Percentage representation of types of recursion (%)

Statistics dat doc ex rep res sem

Distance of closest ed-pairs
Avg. 1.9 1.5 1.6 - 2.4 1.9
Max. 3 162 6 - 9 2

Distance of furthest ed-pairs
Avg. 1.9 3.2 2.3 - 3.6 1.9
Max. 3 450 6 - 12 4

Table 6.8: Distance of closest and furthest ed-pairs in XML documents

It is not surprising that the recursion is mostly used in the doc and ex

categories (for schema instances), while in other categories the importance
of recursion seems to be only marginal (see Table 6.6).

Contrary to usual expectations according to Table 6.7 the most common
type of recursion is not the general recursion but the linear recursion which
consists of a single recursive element that does not branch out. The second
most used type of recursion is pure recursion – still containing only one
single recursive element name in the whole recursive subtree. The general
recursion comprises only a lesser part of all recursion types. Finally, the
trivial recursion, though occasionally present in the data, is not of any special
importance. Note that these findings contradict to results of other existing
papers (e.g. [29]) that claim that linear recursion is not a frequent feature and
thus insignificant. This striking difference is probably caused by the semi-
automatic way of gathering the data, though in the other previous cases our
results were mostly similar to those in existing works.

If we compare the schema part of both the tables with the part containing
results for their instances, we can see that XML schemes are probably too
broad. Not only they define recursive elements when there is clearly no reason

84

to do so, but also they almost do not specify anything but the most general
type of recursion. And neither single documents, nor whole collections do
not exploit the full generality allowed by corresponding schema definitions.

The simplicity of commonly used recursion types in data instances is also
apparent from Table 6.8. The average distance of the two closest recursive
elements is always less than 2.5, while the average distance of the furthest
pairs is between 1.9 and 3.6. The maximum values tend to be quite extreme
but they only occur in very specific documents – usually in the same ones
that had shown similarly peculiar features regarding the maximum depth
and other similar statistics.

Mixed-Content Statistics

Mixed-content statistics further analyze the average and maximum depths of
mixed content and the percentage of mixed-content and simple mixed-content
elements. There is of course no point in analyzing the depth of simple mixed-
content elements, since it is always equal to 1. The corresponding results are
listed in Table 6.9.

Statistics dat doc ex rep res sem

Depth
Avg. 1.8 4.1 1.0 - 1.9 1.2
Max. 6 448 5 - 2 3

Simple mixed contents (%) 55.9 79.4 99.6 - 1.9 78.4

Table 6.9: Mixed-content statistics for XML documents per category

Again we can observe that the structure of mixed-content elements is not
complex. The average depth is low (less than 5) and most of them are even
of the simplest types which consist only of trivial subelements (e.g. 55.9%
for dat, 79.4% for doc, or even 99.6% for ex category). In this shed of
light most of the currently used techniques for dealing with arbitrary mixed
content seem to be unnecessarily general. It would be beneficial to handle
the trivial cases separately and more efficiently.

DNA Statistics

DNA statistics focus on a new construct which we have defined on the basis
of our experience with XML data. The analysis summarizes the occurrences

85

of such patterns and their (average and maximum) widths and depths per
each category. The results are listed in Table 6.10.

Statistics dat doc ex rep res sem

D
o
c.

Elems. involved (%) 1.19 10.66 8.08 0.00 8.64 0.61
Num. of occurrences 91,571 296,880 179,556 3 551,806 40,017

Width
Avg. 5.5 4.1 2.6 2.0 4.9 7.2
Max. 57 1398 150 2 105 47

Depth
Avg. 3.1 2.7 2.5 3.0 2.6 2.9
Max. 9 361 8 3 17 9

S
ch

. Width
Avg. 4.3 - 1.8 7.3 2.4 -
Max. 11 - 10 26 6 -

Depth
Avg. 3.1 - 2.3 2.0 2.4 -
Max. 6 - 3 2 3 -

Table 6.10: DNA pattern statistics per category

The statistics show that although the pattern seems to be rather artificial,
it occurs relatively often, especially in doc (10.66% of elements), res (8.64%),
and ex (8.08%) categories. Structure of the pattern is quite simple seeing
that the high maximum widths (e.g. the highest 1398) correspond to number
of trivial subelements, whereas the highest maximum depths (e.g. the highest
361) seem to be rather exceptional. The average widths and depths are still
quite low – lower than 10 and 3 respectively.

We believe that the pattern could be handled separately and thus more
efficiently knowing that except for the exactly one degenerated branch its
structure is relatively simple.

Relational Statistics

The last mentioned set of statistics focus on relational patterns – again a new
construct. These patterns can easily be processed in relational databases (as
simple tables) or using relational approaches, since they are often a product
of various database export routines.

We analyze both relational and shallow relational patterns figuring out
their number of occurrences, (average and maximum) widths, and for rela-
tional patterns also (average and maximum) fan-out of subelements, every-
thing per each category. (In this case we do not take in results for schemes,
since they are biased due to recursion.) The results are listed in Tables 6.11

86

and 6.12. The number of occurrences indicates how often we can match the
regular relational pattern in the source data set, while the number of ele-
ments involved in the relational pattern is the total number of all elements
which could be represented using a simple tabular relationship.

Statistics dat doc ex rep res sem
Elems. involved (%) 29.23 6.23 29.53 94.29 22.66 41.56
Num. of occurrences 170,744 154,133 185,358 40,276 619,272 716,038

Repetition
Avg. 10.5 3.3 5.8 322.7 5.1 8.8
Max. 600,572 1,254 615 102,601 15,814 16,500

Fan-out
Avg. 3.6 1.5 2.2 6.2 2.3 3.5
Max. 33 10 18 26 51 113

Table 6.11: Relational pattern statistics for XML documents per category

Statistics dat doc ex rep res sem
Elems. involved (%) 0.2 4.38 3.41 0.23 17.12 3.33
Num. of occurrences 16,025 82,255 44,403 11,957 418,342 117,834

Repetition
Avg. 4.9 6.6 5.2 44.6 14.4 14.3
Max. 1,000 3,331 1,000 2,166 151 1,669

Table 6.12: Shallow relational pattern statistics for XML documents per
category

Similarly to previous case we can see that both patterns are quite frequent
(e.g. 29.23% in dat, 41.56% in sem and even 94.29% in rep category), though
the shallow relational pattern does not have that many elements involved
(almost always less than 5%). Remarkably, both the patterns are found in
all categories and even though most occurrences cover only a small number of
elements, there are some instances that are very large, consisting of thousands
or even hundreds of thousands simple elements. Since their simple structure
can easily be captured, it is probably again a good idea to handle them
separately to ensure efficient processing.

6.4 Conclusion

The results of the analysis bring two important information. Firstly, they pre-
cisely describe particular characteristics and complexity of real-world XML

87

data from various points of view. And secondly, they bring several general
conclusions. Primarily we have found out that the real data show lots of
pattern usages. We have also refuted the common hypothesis that process-
ing of recursive and mixed-content data can be omitted due to their low real
occurrence. And, on the other hand, we have learned that the complexity
of these two patterns is much lower than allowed by corresponding schemes.
This observation holds in general – the XML schemes are too general in terms
of the difference of sets of allowed and real-world instances.

88

Chapter 7

Query Evaluation

In this chapter we discuss problems related to query evaluation for stor-
age strategies generated by system UserMap proposed in Chapter 4. We deal
with two key issues – correction of the candidate set of annotations proposed
by the GAS algorithm (see Algorithm 5) and related query evaluation. In the
former case we identify and discuss situations when the proposed annotations
are either meaningless or a user interaction and/or a default choice is neces-
sary to choose from multiple possibilities. In the latter case we deal with the
interface between various storage strategies and the way the system should
cope with redundancy. For this purpose we have selected a sample represen-
tative set of annotations using which we illustrate the related issues and open
problems. Finally, we describe and discuss the architecture of experimental
implementation of the whole system.

Most of the contents of this chapter has been published in the following
paper:

Mlýnková, I. – Pokorný, J.: UserMap – an Adaptive Enhancing of User-
Driven XML-to-Relational Mapping Strategies. (Note: Paper under review
process)

The previously described proposal focuses on deeper exploitation of infor-
mation provided using schema annotations. The approach is based on the
hypothesis that structurally similar schema fragments should be stored in a
similar way. At this stage we have an XML schema S and a set of schema
annotations F consisting of two subsets:

• Forig, i.e. annotations provided originally by a user and

89

• Fadapt, i.e. annotations denoted by GAS algorithm.

The annotations from set Fadapt are considered as possible candidates for
annotating, but not all of them should be included in the final storage strat-
egy. Firstly, not all the candidate combinations can be applied on a schema
fragment at the same time. And secondly, not all the candidate annotations
have to be required by the user. As we have mentioned, a user can specify
final schema fragments, i.e. fragments which should not be influenced by the
GAS algorithm, but despite this feature the system can still propose candi-
dates unappropriate for particular application. Thus the natural following
step is correction of the set Fadapt.

Whenever the set of annotations is corrected, i.e. the final user-approved
storage strategy is determined, there remains the open problem of query eval-
uation. Firstly, the system must cope with the interface between mapping
methods, i.e. to be able to process parts of a single query using different
storage strategies. This problem occurs especially in case of overriding an-
notation intersection (see Definition 22). But the intersection of schema
fragments can be also redundant or influencing (see Definitions 21 and 23)
meaning that a single schema fragment can be stored using two (or more)
strategies at the same time. Therefore the system must be also able to effi-
ciently determine which of the available storage strategies should be used for
evaluation of a particular query.

7.1 Related Work

Firstly, let us consider the existing works from the point of view of checking
correctness of the resulting mapping strategy and query evaluation.

Papers [34] [22] which introduce system ShreX also propose definitions of
a correct and lossless mapping. In the former case it means that the mapping
produces a valid relational schema in terms of distinct table names, distinct
column names within a table, distinct CLOB names, and existence of at least
one key in each table. In the latter case lossless mapping is a mapping which
is correct and maps each element and attribute of the schema and the sibling
order of elements. The system is able to check the correctness and losslessness
of the annotations and complete incompleteness using default mapping rules.
As for the query evaluation the system ShreX does not support redundancy
and thus the choice of the most efficient storage strategy for a particular

90

query is pointless. The interface between storage strategies is solved using a
mapping API and a mapping repository. The repository is used for storing
information about how each element and attribute is stored, which mapping
is used to capture the document structure, and which tables are available
in the relational schema. Hence the system is able to get information about
storage strategy for any part of the schema and thus shred the documents as
well as evaluate queries.

On the other hand, the system XCacheDB [23] supports only a single
strategy for shredding XML data into tables which can be modified by in-
lining / outlining of a fragment, storing a fragment to a BLOB column,
and specification of corresponding table and column names and data types.
Hence, the only incorrect combination is concurrent inlining and outlining
of the same schema fragment that can be detected easily. The information
about the structure of the current schema is again stored into the database.
Contrary to ShreX, the XCacheDB system allows a kind of redundant anno-
tation intersection enabling to store a schema fragment to a BLOB column
and, at the same time, to shred it into a set of tables which needs to be
treated in a special way. The proposed enhancing of a classical query eval-
uator is quite simple but working. It always chooses the query plan with
minimal number of joins.

As it is obvious, in both the cases the set of possible situations is somehow
simplified. In the former case the set of annotation intersections is restricted,
whereas in the latter case the set of mapping strategies can be characterized
as a set of modifications of a single mapping strategy. But in our case we
consider all the three types of intersections and more complex combinations
of mapping strategies.

7.2 Correction of Candidate Set

The first step related to efficient query evaluation is correction of the candi-
date set of annotations Fadapt. Apart from checking correctness and complete-
ness [34] of schema annotations, we can distinguish three cases corresponding
to the following three steps:

1. Since not all the proposed annotations can be used at the same time,
the system removes cases which are forbidden or meaningless.

91

2. The system identifies cases where the user can choose from several
possibilities if the default choice is not satisfactory.

3. The system accepts further user-specified corrections of proposed an-
notations which do not correspond to intended future usage.

In the first two cases the system must be able to correctly identify the
situations, the last case is rather the question of user-friendly interface.

7.2.1 Missed Annotation Candidates

Despite the above described cases, we can also identify situations when the
system could automatically add more annotation candidates. We discuss
them in the following examples, where fA, f ′A, fB, f ′B denote schema frag-
ments f and f ′ annotated using storage strategies A or B respectively.

Situation A – Unidentified Annotated Subfragment

Let us consider the situation depicted in Figure 7.1 where schema S is pro-
vided with a set of annotated fragments Forig = {fA, fB}, where fB ⊂ fA,
whereas the GAS algorithm identified a set of fragments Fadapt = {f ′A} (as
depicted by schema S ′). The question is whether it is necessary to add also
fragment f ′B, where f ′B ⊂ f ′A (as depicted by schema S ′′).

Figure 7.1: Unidentified annotated subfragment

If we analyze the situation, the answer is obvious. If sim(fB, f ′B) > Tsim,
the algorithm would add f ′B to Fadapt too. Thus if f ′B is not annotated, its
similarity is not high enough and thus it should not be added to Fadapt.

92

Situation B – Unidentified Annotated Superfragment

The second situation is depicted in Figure 7.2. Schema S is again provided
with a set of annotated fragments Forig = {fA, fB}, fB ⊂ fA, but the GAS
algorithm identified a set of fragments Fadapt = {f ′B} (as depicted by schema
S ′). In this case we do not discuss whether it is necessary to add also fragment
f ′A, where f ′B ⊂ f ′A, because we can apply the same reason as in case of
Situation A. The question is whether it is necessary to add also fragment f ′A,
where f ′B = f ′A (as depicted by schema S ′′).

Figure 7.2: Unidentified annotated superfragment

In this case we cannot simply state which of the possibilities should be
chosen, because for both we can find good reasons. Thus this is the case for
user interaction and/or a default setting.

Note that in case fA = fB then, obviously, f ′A = f ′B, i.e. the system
should apply both the annotations.

7.2.2 Sample Set of Annotations

For demonstration of further open issues related to correction of candidate
set of annotations as well as query evaluation, we have chosen particular
types of fixed mapping methods. They represent typical and verified storage
strategies and, at the same time, enable to exploit all the three types of
annotation intersections. The whole set of supported annotating attributes,
their values, and corresponding mapping strategies is listed in Table 7.1.

Similarly to the existing works (see Chapter 3.2) we support inlining and
outlining of a schema fragment to/from parent table or its storing to a single
CLOB column. As for the “classical” mapping methods we support a set
of schema-oblivious storage strategies – the Edge, Attribute, and Universal
mapping [35] – and a set of schema-driven storage strategies – the Basic,
Shared, and Hybrid algorithm [67]. Last but not least, we support a kind

93

Attribute Value Function
INOUT inline,

outline
Specifies whether the annotated fragment
should be inlined or outlined to/from parent ta-
ble.

GENERIC edge,
attribute,
universal

The annotated fragment is stored using the spec-
ified type of generic-tree mapping strategy [35],
i.e. Edge, Attribute, or Universal mapping.

SCHEMA basic,
shared,
hybrid

The annotated fragment is stored using the spec-
ified type of schema-driven mapping strategy
[67], i.e. Basic, Shared, or Hybrid mapping.

TOCLOB true The annotated fragment is stored to a CLOB
column.

INTERVAL true The annotated fragment is indexed using the In-
terval encoding [73].

Table 7.1: Supported schema annotations

of numbering schema which speeds up processing of particular queries – the
Interval encoding [73].

Contrary to existing works we do not consider annotations which enable to
specify names of tables and columns or data types of columns (except for the
CLOB one), since these are related rather to user-friendliness of the system
and do not require special or complicated treatment (except for checking
correctness).

Naturally, the set of supported mapping strategies could be much wider
and involve more representatives of the existing reasonable mapping strate-
gies. But our aim was to choose well-known representatives of particular
approaches which enable to illustrate various situations.

7.2.3 Annotation Intersection

In Section 4.1.1 we have defined three types annotation intersection – over-
riding, redundant, and influencing – assuming that the system is provided
with both the set of annotations and types of their mutual intersection.
But there are also cases when a particular combination of annotations is
senseless. For instance consider the situation depicted in Figure 7.3, where
schema S contains two annotated fragments fTOCLOB and fSCHEMA, whereas
fSCHEMA ⊂ fTOCLOB and the TOCLOB annotation overrides all the previously

94

specified strategies. As it is obvious, such combination of annotations is use-
less, since there is no point in shredding a part of a schema fragment stored in
a CLOB column into a set of tables. The situation also depicts that the order
of composition of annotations is important. Obviously, the opposite order,
i.e. if fTOCLOB ⊂ fSCHEMA, is reasonable and can result in both redundant
and overriding intersection.

Figure 7.3: Forbidden
intersection of annota-
tions

Figure 7.4: Intersec-
tion of multiple anno-
tations I.

Figure 7.5: Intersec-
tion of multiple anno-
tations II.

Another question is for which subsets of the supported schema annota-
tions should the intersection type be specified. Consider the situation de-
picted in Figure 7.4, where schema S contains three annotated fragments fA,
fB, and fC , whereas fB = fC and fB, fC ⊆ fA. At this situation we naturally
need to know the result of intersection of all the three annotations together.
And with the above finding, it can also differ depending on the order of their
mutual composition. Therefore, we should theoretically specify the result of
intersection of all possible subsets of the annotation set ΩA and all respective
orders. But, in fact, as there are pairs of annotations or their orders which
are forbidden, the number of such specifications significantly decreases. And,
in addition, such specifications need to be stated for the whole system only
once, not for each mapping task separately.

We demonstrate both the situations for the sample set of annotations in
the following chapters.

Intersections of Pairs of Annotations

The specification of allowed types of intersections for pairs of annotations
is relatively simple. Four our sample set of annotations they are listed in
Tables 7.2 and 7.3, where ∅ represents no effect of intersection, × represents
forbidden intersection, and Xrepresents allowed intersection. Each field of

95

the table represents the result of applying the mapping strategy in the row
on the mapping strategy in the column.

I
N
O
U
T

G
E
N
E
R
I
C

S
C
H
E
M
A

T
O
C
L
O
B

I
N
T
E
R
V
A
L

INOUT ∅ × × × ×
GENERIC × ∅ X × ×
SCHEMA × X ∅ × ×
TOCLOB × X X ∅ ×
INTERVAL × × × × ∅

Table 7.2: Overriding and redundant
annotation intersection

I
N
O
U
T

G
E
N
E
R
I
C

S
C
H
E
M
A

T
O
C
L
O
B

I
N
T
E
R
V
A
L

INOUT ∅ X X × ×
GENERIC × ∅ × × ×
SCHEMA × × ∅ × ×
TOCLOB × × × ∅ ×
INTERVAL × X X × ∅

Table 7.3: Influencing annotation in-
tersection

As can be seen from the tables, the amount of reasonable and thus allowed
combinations of mapping methods is relatively low in comparison with the
theoretically possible options. Firstly, we assume that the combination of two
identical annotations results in an empty operation, i.e. it has no effect as
depicted at diagonals. And, in addition, in our case the results for overriding
and redundant annotations are identical and thus listed in one common table.

Another two obvious cases are INOUT and INTERVAL annotations which
are supposed to influence any other method. Therefore, they can occur
only in case of influencing intersections and only in one particular order
of composition. Naturally, they can be applied only on methods which shred
a schema fragment into a set of tables.

Considering the TOCLOB annotation, it can be also applied on a method
which shreds a schema fragment into one or more tables, since the whole
fragment is then viewed as a single attribute. As for the composition orders,
as depicted in Figure 7.3, the TOCLOB annotation can be applied only on a
mapping strategy, but not vice versa. Note that from another point of view
the TOCLOB annotation can be regarded as influencing, rather than overriding.
Similarly to the INOUT annotation it influences the given storage strategy
treating a schema fragment as a single attribute. But it is only a question of
semantics.

Last but not least, note that if the intersecting fragments are equivalent,
i.e. the order of composition of mapping strategies is not obvious, we take
as the result union of both the possible orders.

96

Intersections of Multiple Annotations

As for the intersection of multiple annotations together we need to distinguish
several cases. We demonstrate them using the example depicted in Figure
7.5, where schema S contains three annotated fragments fA, fB, and fC ,
whereas fC ⊂ fB ⊂ fA. The question is what will be the result of annotation
for their intersection.

As for the first situation let us assume that the intersection of fA and
fB is overriding. Than the situation transforms to the case of intersection of
two methods (i.e. fB and fC) as defined in the previous chapter.

The second situation occurs when the intersection of fA and fB is re-
dundant, meaning that the common schema fragment is stored using both
the strategies A and B. Then the situation of intersection with strategy C
transforms to union of separate intersections of two pairs of methods (i.e.
fA, fC and fB, fC). Or, also in this case the user can specify on which of the
two strategies A and B should strategy C be applied.

The third situation involves the last case when the intersection of fA and
fB is influencing. In this case the resulting intersection must be defined for all
the possible cases. For our sample set of annotations, the solution again cor-
responds to union of separate intersections of two pairs of methods (whereas
one of them always results in forbidden intersection). But, in general, the
result can lead to a brand new one method and therefore a new set of rules
for intersecting.

Note that also in this case if the intersecting fragments are equivalent,
i.e. the order of composition of mapping strategies is not obvious, we again
take as the result union of all the possible orders. And similar discussion can
be done for larger sets of annotations as well.

Multiple Annotation Candidates

As it is obvious, there are situations when multiple options for determining
the resulting storage strategy are available. At first glance a solution would
be a set of priorities assigned to the possibilities. But the problem is that
such specification cannot be done beforehand, since priorities suitable for
one type of schema fragment and particular application do not have to suit
another one. Therefore a user intervention and/or a default choice should be
exploited also in these cases.

97

7.2.4 Examples of Schema Annotations

The annotations supported by system UserMap (see Table 7.1) are expressed
using attributes from a name space called usermap and can be associated
with element definitions of XSDs. As we have mentioned, similarly to paper
[34] they could be associated also with attributes, attribute groups, element
groups, etc. But we restrain to elements for simplicity.

Example 1 – Exploitation of CLOBs

The exploitation of CLOBs enables to speed up reconstruction of schema
fragments. It is useful especially in cases when the user knows that particular
schema fragment is rather document-oriented and will be retrieved as a whole.
A similar idea is exploited in paper [39] which automatically shreds structured
parts of a schema into relations and stores semi-structured ones into a single
text column with the support of XML-aware full-text operations.

Consider the example in Figure 7.6 where a fragment of XSD of the
Internet Movie Database (IMDb)1 contains information about actors. Each
actor has name consisting of first name and last name and filmography, i.e. a
list of movies each consisting of title and year. For better lucidity the element
names are underlined and schema annotations are in boldface.

Figure 7.6: Exploitation of CLOBs – XML schema

1http://www.imdb.com/

98

According to the specified annotations, the whole fragment, i.e. element
Actor, should be stored using the Hybrid algorithm, as specified by the
SCHEMA="hybrid" annotation, its subelement Name should be stored into a
CLOB column (TOCLOB="true"), and subelement Title should be outlined
to a separate table (INOUT="outline").

As depicted in Tables 7.2 and 7.3 the intersection of SCHEMA and TOCLOB

annotations can be either overriding or redundant. Firstly, let us consider
the overriding case. The resulting relational schema is depicted in Figure 7.7
(b).

Figure 7.7: Exploitation of CLOBs – relational schemes

As it is expectable the resulting relational schema corresponds to the
result of classical Hybrid algorithm (depicted in Figure 7.7 (a)) except for
two cases. Firstly, the element Name is treated as an element having a text
content and stored into a single CLOB column. And secondly, the element
Title is stored into a separate table, although the classical Hybrid algorithm
would inline it to table Movie too.

Example 2 – Redundant Mapping Strategies

Let us again consider the XSD example in Figure 7.6, but this time assum-
ing that the intersection of SCHEMA and TOCLOB annotations is redundant.
Though the redundancy in general leads to a significant space overhead, it
can have reasonable applications, where the need of retrieval efficiency ex-
ceeds this disadvantage. The resulting relational schema is depicted in Figure
7.7 (c). In this case the element Name is stored twice, using both the strate-
gies, i.e. into two columns corresponding to classical Hybrid algorithm and,
at the same time, into one CLOB column.

99

Note that a similar type of storage strategy can be defined also using
the system XCacheDB [23] which enables both redundant and overriding
mapping to a CLOB column. The main difference is that the system sup-
ports only one particular type of shredding into a set of tables which can be
modified by inlining and outlining.

Example 3 – Influencing Mapping Strategies

Last but not least, consider an example of influencing intersection of mapping
strategies. In example depicted in Figure 7.8 we use the same fragment of
IMDb XSD, but with different annotations. This time the element Actor

should be stored using schema-oblivious Edge mapping (GENERIC="edge"),
whereas queries over its subelement Filmography are enhanced using the
Interval encoding (INTERVAL="true").

Figure 7.8: Influencing mapping strategies – XML schema

Figure 7.9 depicts both the classical Edge mapping (a) and the result of
the strategy specified by the annotations (b). In the former case all the edges
of the graph are stored into a single table Edge. In the latter case edges of
subelement Filmography are stored into a separate table EdgeFilmography

having additional columns (intervalStart and intervalEnd) for storing
values of Interval encoding. Note that the influencing enables to skip the
column order, since the Interval encoding involves total ordering.

The closest example can be found in case of system ShreX [34] which
supports annotation structurescheme specifying how the structure of the

100

Figure 7.9: Influencing mapping strategies – relational schemes

whole schema is captured, i.e. using keys and foreign keys, Interval encoding,
or Dewey decimal classification. This feature can be considered as a special
type of influencing mapping, though its purpose is slightly different.

Auxiliary Columns

As the above described examples of relational schemes are illustrative, they
only represent the characteristics of the mapping strategies. In fact, when
the schemes are generated automatically, we cannot use directly, e.g., the
element and attribute names for table and column names of the schema. In
addition, each of the data tables contains also auxiliary information. The
most important ones are a unique ID of the document the data originate
from (docID) and a unique ID of each record (recordID). The former one
enables to distinguish where the data originate from, but it is in the following
examples omitted for simplicity. The latter one is exploited in two cases for
similar reason. Since each of the storage strategies can have structurally
different tables we use this uniform ID to enable their joining, as well as
for uniform resulting value of the SQL query. We illustrate its usage in the
following text.

7.3 Query Evaluation

The basic idea of XML query evaluation in (O)RDBMS-based storage strate-
gies is relatively simple. An XML query posed over the data stored in the
database is translated to a set of SQL queries (which is usually a singleton)
and the resulting set of tuples is transformed to an XML document. We
speak about reconstruction of XML fragments. As it is analyzed in detail in
[42], the amount of works which focus on efficient XML-to-SQL query trans-

101

lation is enormous (the analysis considers about 40 papers), can be classified
according to various purposes, and focus on various aspects of the prob-
lem. Two key metrics for query evaluation are functionality, i.e. the variety
of types of supported XML queries, and performance, i.e. the efficiency of
evaluation of the query.

The main idea of our proposed system is to enable a user to create a
hybrid XML-to-relational storage strategy, i.e. a relational schema which
consists of multiple subschemes having different structure. Assuming that
each of the subschemes can (and usually does) require a different XML-
to-SQL query translation algorithm, we focus on the problem of interface
between the storage strategies, i.e. the problem of evaluation of parts of a
single XML query using various storage strategies. Second issue is related to
redundancy that can occur in case of intersection of annotations, in particular
redundant and influencing ones, where a single schema fragment is stored
using two or more strategies. Therefore a natural assumption is that the
system can estimate the cost of query evaluation using all possible strategies
and choose the optimal one. For this purpose we again exploit our sample
set of annotations (see Table 7.1) and using simple examples we illustrate
the related issues.

7.3.1 Interface between Schema Annotations

Let us consider the three types of annotation intersections separately and
discuss their difference from the point of view of query evaluation. In case of
overriding intersection of strategies A and B, the interface must allow joining
(one or more) tables of strategy A with (one or more) tables of strategy B. In
case of redundant intersection of strategies A and B the situation is similar
but, in addition, the interface must enable to use any of the strategies. The
last type of annotation intersection, i.e. the influencing one, requires a brief
discussion: Under a closer investigation we can see that there are two types of
annotations, i.e. mapping strategies, that can influence another one. Each of
them is represented by one of the annotations of the sample set. The INOUT

annotation enables to modify the structure of the resulting storage strategy,
i.e. the amount of tables and/or columns. Therefore it is processed before the
schema is mapped to relations and having the information about the structure
it does not need to be taken into account later. We call these annotations
early binding. (Note that the TOBLOB annotation can be viewed as a kind
of early binding annotation as well.) On the other hand, the INTERVAL

102

annotation enhances a given storage strategy with additional information
which is exploited as late as a query is evaluated. We call these annotations
late binding.

Structural Tables

Since the resulting storage strategy is not fixed and can be influenced by
many factors, we need to store the information about the structure of each
mapped XML schema. Similarly to papers [34] [23] we store the informa-
tion into supplemental tables. This simple idea enables to parse the schema
annotations only once and not every time a document is shredded into rela-
tions or a query is posed, as well as it enables to make the processing to be
independent on the way the mapping is specified.

In particular for the sample set of annotation strategies we use the fol-
lowing tables:

xmlSchemaTable(uri,schemaID)

contains information about XML schemes for which there exists a mapping
in the repository, i.e. URI of the XML schema (uri) and ID of the schema
(schemaID) unique within all the stored schemes.

xmlDocTable(schemaID,url,docID)

that contains information about XML documents stored in a database schema
created for particular XML schemes, i.e. URL of the XML document (url)
and ID of the document (docID) unique within all the documents valid
against a schema (schemaID) stored in the repository.

xmlAttrTable(schemaID,attrID,mapID,xmlName,paramID)

contains information about storage strategies for particular attributes in the
schema, i.e. ID of the attribute (attrID) unique within a schema (schemaID),
ID of the storage strategy for the attribute (mapID), name of the attribute
(xmlName), and ID of additional parameters (paramID) corresponding to the
respective storage strategy, or null if there is no such information needed.

Note that the attributes could be treated similarly to elements with text
content, i.e. different storage strategies could be defined for an element
and for its attributes. But for simplicity the experimental implementation
assumes that the storage strategy for attributes is always denoted by the
storage strategy for corresponding element.

103

xmlElemTable(schemaID,elemID,mapID,xmlName,paramID)

contains information about storage strategies for particular elements in the
schema, i.e. ID of the element (elemID) unique within a schema (schemaID),
ID of the storage strategy for the element (mapID), name of the element
(xmlName), and ID of additional parameters (paramID) corresponding to the
respective storage strategy, or null if there is no such information needed.

xmlElemAttrTable(schemaID,elemID,attrID)

contains information about relationship between an element (elemID) and
its attribute (attrID) in a schema (schemaID).

Note that this information could be stored into the xmlAttrTable as well,
but assuming that XSDs enable to specify global attributes and attribute
groups which can be referenced from several elements, the relationship can
be in general M:N.

xmlElemElemTable(schemaID,elemID,subElemID)

contains information about M:N relationship between an element (elemID)
and its subelements (subElemID) in a schema (schemaID).

Last but not least, there remains the structure of tables containing the
additional parameters necessary for particular mapping strategies. Since
each of the strategies can require different information we have outlined the
parameters from tables describing elements and attributes and we store it
separately, though the relationship between the tables is 1:1.

If we consider the sample set of annotations, we obviously do not need any
other information for the TOCLOB and INOUT annotations themselves, since
both of them are early binding annotations which influence the amount of
tables of another strategy.

As for the GENERIC annotation, in case of pure Edge and Universal map-
ping the target schema is fixed regardless the source data. But in case of
Attribute mapping which requires a separate table for each distinct element
or attribute name in the schema, or when inlining or outlining is applied on
any of the three cases, we need to know the name of table where the element
/ attribute is stored.

In case of SCHEMA annotation the situation is particularly complicated
since the resulting relational schema is given by the structure of the source
XML schema. And, in addition, TOCLOB or INOUT annotations can be applied

104

on any of the three algorithms and influence the structure as well. Therefore,
for each element and attribute we need to store the information where and
how it is stored. For this purpose we use table

xmlBSHTable(mapID,mapType,tableName,columnName)

that contains mapping type (mapType) of the element / attribute, where
n denotes numeric data type, s denotes string data type, and e denotes
element content (of an element), name of table for storing the element / at-
tribute (tableName), and name of column for storing the element / attribute
(columnName).

Last but not least, there remains the late binding INTERVAL annotation.
As we have mentioned it is considered as an additional index that can speed
up processing of particular approaches. Hence for element and attributes
enhanced with this index we need to know the names of columns where the
corresponding values are stored.

An example of content of structural tables for the three relational schemes
(a), (b), (c) in Figure 7.7 is depicted in Figure 7.10. Since there are no
attributes in the sample schema, we only deal with structural tables related
to elements. The processing of attributes would be very similar. (We do not
use particular IDs of the 1:1 relationship for simplicity; the related tables are
mentioned in separate rows.)

As it is obvious, the tables contain all the information necessary for both
document shredding and query evaluation. For each element of the sample
schema we know its storage strategy and related details, i.e. the way it is
stored and the target table and/or column. Note the way we treat redun-
dant intersection of annotations. In this case we create two instances of the
redundant fragment, each having its own ID and type of storage strategy.

7.3.2 Document Shredding

Having the information from structural tables, the process of document
shredding is relatively simple. For instance, if we consider the relational
schemes in Figure 7.7, for storing an element we generally need two infor-
mation – ID of its parent element and constructors of its subelements that
are mapped to the same table. Therefore the process can be described as a
recursive creation of constructor for the current element from constructors
of its subelements (and attributes). During the top-down progress the ID

105

Figure 7.10: Exploitation of CLOBs – structural tables

of the current element e is propagated to be stored in parentID columns of
its subelements e1, e2, ..., ek mapped to tables. During the bottom-up return
from the recursion its subelements ek+1, ek+2, ..., en mapped to simple types
hand over their constructors and column names. Then element e creates its
own constructor.

For instance, consider the element Movie in relational schema (b) in Fig-
ure 7.7. Being provided with parent ID, the shredding process first identifies
that the element Movie has element content. Therefore it generates its ID
and recursively processes its subelements. The subelement Title stores itself
to own table, but the subelement Year returns the constructor of the integer
value and name of the corresponding column. Hence the constructor of the
Movie element consists of three items – ID, Year, and parentID.

106

7.3.3 Query Evaluation

Similarly to the process of document shredding, with the information from
structural tables the query evaluation is quite straightforward. Using the fol-
lowing examples we illustrate the related key ideas. Assuming that wild-card
queries are usually converted into union of several simple path queries with
predicates, one for each satisfying wild-card substitution [41], we consider
only examples of simple-path queries.

Example 1 – Early Binding Annotations

Let us consider the example of query

/Actor/Filmography/Movie[Year=2007]/Title

and relational schema depicted in Figure 7.7 (b). Firstly, the table where
element Actor is stored, is added to the FROM clause. Seeing that element
Filmography is mapped to the same table, this step has no effect. Then, since
the element Movie is mapped to its own table, the table Movie is added to the
WHERE clause and joined using IDs. The processing of predicate Year=2007

first requires analysis of the query on the left. Since element Year is mapped
to column of the Movie table, it does not cause new joins, but only adding
the condition to the WHERE clause. The Title element is again detected to
be stored in a separate table resulting in another join. Finally, the SELECT

clause is provided with the reference to its record ID, resulting in the following
query:

SELECT t.recordID

FROM Actor a, Movie m, Title t

WHERE m.parentID = a.ID AND

m.Year = 2000 AND

t.parentID = m.ID

Note that using the knowledge of semantics of the XML schema, i.e.
on the basis of analysis of structural tables, this query could be further
optimized, in particular, table Actor can be omitted.

From the point of view of evaluation of a single query using several storage
strategies, the described example of query evaluation copes with an early
binding influencing annotation INOUT applied on annotation SCHEMA. Thus

107

the translation approach is similar to classical Hybrid algorithm, except for
slightly different structure which is captured using the structural tables. A
similar effect would occur in case of overriding annotation TOCLOB.

Example 2 – Structurally Different Tables

Now, let us consider the same query but a situation, where element Actor is
associated with annotation SCHEMA="hybrid" and element Movie with anno-
tation GENERIC="edge" as depicted in Figure 7.11, whereas the intersection
is overriding.

Figure 7.11: Join of structurally different tables – XML schema

Hence, we need to join structurally different tables whose IDs have quite
different meaning. As for the first part of the query /Actor/Filmography

the translation remains the same as in the previous example. As for the sec-
ond part of the query /Movie[Year=2007]/Title, we need to join the Edge

table three times, i.e. for Movie and Title elements and for the predicate
Year=2007 resulting in a query:

SELECT t.recordID

FROM Edge m, Edge y, Edge t

WHERE m.toID = y.fromId AND

y.value = 2000 AND

m.toID = t.fromId

108

Finally, for the purpose of joining the two tables, i.e. Actor and Edge, we
exploit the auxiliary recordID column of both the tables and information
from another structural table

xmlInterTable(docID,anotID,parentID)

which contains pairs of parent-child relationships between recordID of an
annotated element (anotID) and recordID of its parent element (parentID).
Then the resulting query translation is as follows:

SELECT t.recordID

FROM Actor a, xmlInterTable i, Edge m, Edge y, Edge t

WHERE a.recordID = i.parentID AND m.recordID = i.anotID AND

m.toID = y.fromId AND

y.value = 2000 AND

m.toID = t.fromId

The example depicts that a join with xmlInterTable is added every time
the query “passes borders” of two mapping strategies. The obvious exception
is the case of early binding influencing annotations.

Naturally more complex mapping strategies could require another infor-
mation about their mutual interface, but for our particular sample set this
information is sufficient.

7.3.4 Exploitation of Redundancy

The above described algorithm of query evaluation assumes that there is
always one possible way it can be performed. Naturally each SQL query can
have multiple query plans, each having its cost depending on the order tables
are joined, selectivity of WHERE conditions, usage of ORDER BY clauses, etc.
But in this chapter we deal with the set of distinct mapping strategies that
“cover” the query.

Consider again the same sample query and the annotated schema in Fig-
ure 7.11, where element Actor is associated with annotation SCHEMA="hybrid"

and element Movie with annotation GENERIC="edge", whereas the intersec-
tion is now redundant. Then we have two possibilities how to evaluate the
query – either using purely the Hybrid mapping or using both the Hybrid
and Edge mapping and their interface. In the former case the query would

109

require joining of two tables – Actor and Movie (the classical Hybrid algo-
rithm inlines the element Title). The query translation of the later case
was discussed above and involves joining of five tables – table Actor of
the Hybrid mapping, three Edge tables from the Edge mapping, and table
xmlInterTable carrying the interface information between the two strate-
gies. If we use a simple cost metric which considers purely the amount of join
operations necessary for query evaluation, the former translation strategy is
naturally better choice.

In general, there can exist a plenty of possibilities how to evaluate a query
Q. For this purpose we first analyze the structural tables and search for all
the possible sequences of strategies using which Q can be evaluated and we
build and auxiliary evaluation graph Geval. Consider the sample situation in
Figure 7.12.

Figure 7.12: Example of evaluation graph Geval

The figure schematically depicts that query Q is divided into fourth parts
Q1, Q2, Q3, and Q4, determined by four annotations, i.e. mapping strategies
it “traverses”. Part Q1 can be evaluated only using strategy A1. Part Q2

can be evaluated either using strategy A2 or A3 meaning that the intersection
of the two annotations is redundant (denoted by the union sign), but they
override annotation A1. As for the part Q3 the respective strategy is again
only A4 which overrides the previous two strategies A2 and A3. And finally,
part Q4 can be evaluated using both A4 or influencing intersection of A4 and
A5 (denoted by the plus sign).

On the right-hand side of the figure is depicted corresponding evaluation
graph Geval whose edges correspond to storage strategies and nodes to in-
terfaces among them. The graph also contains two auxiliary nodes 0 and 1
which represent the beginning and end of the query and respective auxiliary

110

edges.
The construction of Geval is relatively simple:

1. The auxiliary node 0 is created.

2. Starting with the set of storage strategies A = {A1, A2, ..., Ak} for the
root element of query Q, respective k outgoing edges of node 0 are
created.

3. Each edge and corresponding storage strategy Ai is processed recur-
sively: Traversing the query Q and structural tables we search for each
interface of Ai and Aj, s.t. Ai 6= Aj.

(a) In case of redundant intersection of Ai and Aj, for both Ai and
Aj new outgoing edges are created.

(b) In case of late binding influencing intersection of Ai and Aj, for
both Ai and Ai + Aj new outgoing edges are created.

(c) In case of overriding intersection of Ai and Aj, a new outgoing
edge for Aj is created.

4. The auxiliary node 1 and respective edges connecting all leaves of the
graph with node 1 are created.

For the purpose of searching for the best evaluation sequence of storage
strategies, each edge eij ∈ Geval is assigned its length which expresses the cost
costeval(Qi, Aj) of evaluating of a query part Qi using a strategy Aj and cost
costinter(Aprev, Aj) of the interface between strategy Aprev used for evaluation
of Qi−1 and current strategy Aj.

Definition 33 Length of edge eij = 〈vx, vy〉 of evaluation graph Geval is
defined as follows:

length(eij) =





costeval(Qi, Aj) vx = 0
costeval(Qi, Aj) + costinter(Aprev, Aj) vx 6= 0
0 vy = 1

Now, having a graph Geval and corresponding lengths of its edges, the
problem of finding the optimal evaluation sequence of strategies transforms
to the shortest path problem, i.e. searching the shortest path from node 0
to 1, which can be solved, e.g., using the classical Dijkstra’s algorithm.

111

Reconstruction of XML Fragments

Similarly to query evaluation also in case of reconstruction of resulting XML
fragments there can occur multiple ways of retrieval of the relevant data.
Consider the situation depicted in Figure 7.8, where element Actor is associ-
ated with annotation GENERIC="edge" and element Filmography with late
binding influencing annotation INTERVAL="true", and query

/Actor/Filmography/Movie[Year=2007]

whose SQL translation returns a set R = {r1, r2, ..., rk} containing values of
recordID column of records from table EdgeFilmography which fulfill the
query. The required XML result is a set of elements Movie, each containing
subelements Title and Year with corresponding values. With regard to the
specified annotations we have two possibilities how to retrieve corresponding
information – the Edge mapping or the Interval encoding.

In the former case we process each recordID ri ∈ R ; i = 1, 2, ..., k
separately: Firstly, we create a new Movie node of DOM tree TDOM of the
XML result. Then we select the set of all its subelements (and attributes)
from the EdgeFilmography table. Subelements having a text content are
added to the result, i.e. for each element a corresponding node in TDOM is
created. Subelements having element content are processed recursively. In
general, for the purpose of the reconstruction we need to perform O(k · n)
select queries from the EdgeFilmography table, where n is the maximum
number of non-leaf nodes of XML fragments rooted at element Movie.

In the latter case, i.e. when exploiting the Interval encoding, the retrieval
of the relevant information is much easier. The Interval encoding enables to
retrieve information of the whole XML fragment at once and totally ordered.
Having the set R = {r1, r2, ..., rk} we need a single query which contains a
single join of two tables EdgeFilmography:

SELECT *

FROM EdgeFilmography m, EdgeFilmography e

WHERE m.recordID IN (r1, r2, ..., rk) AND

m.intervalStart <= e.intervalStart AND

e.IntervalEnd <= m.intervalEnd

ORDER BY e.intervalStart

Thus, also in case of document reconstruction we need to choose the most
efficient way of retrieval of the data. For this purpose we can use the same

112

approach as in case of query evaluation. The only difference is, that the
costs of the strategies can differ. As for our sample set of annotations the
most striking example is the TOCLOB storage strategy, where in case of query
evaluation it has a high cost assuming that it requires preprocessing of the
CLOB content, whereas in case of reconstruction its cost is low.

7.4 Architecture of the System

As depicted in Figure 7.13 the architecture of experimental system UserMap
consists of several modules which can be divided according to phases of pro-
cessing they belong to. The particular modularity is given not only by logical
partitioning of the system, but it is also influenced by the needs of experi-
ments and corresponding ability to omit various modules.

Phase I. Preparation

Being given an annotated XSD schema S the system first checks its validity
using the Xerces Java parser [59] and builds its DOM tree TS [17]. Then,
for easier processing, the DOM tree is transformed into a DOM graph GS

[49], i.e. a graph representation of XSD schema similar to DTD graph (see
Definition 5) extended for XML Schema constructs. For the same purpose
the graph builder extracts the set of annotated fragments Forig.

Phase II. Searching for Annotation Candidates

At this phase of the processing the BAS module performs the BAS algorithm
(see Algorithm 4) and then the GAS module performs the GAS algorithm
(see Algorithm 5) being given the schema S and the set of user-specified
annotations Forig. The former module identifies the set of annotation candi-
dates FBAS, the latter one the set of annotation candidates FGAS. This way
the system enables to skip any of the approaches, to compare their results,
and thus to compare the efficiency of the resulting storage strategies. The
resulting set of annotation candidates Fadapt = FBAS ∪ FGAS.

We also assume that the similarity measure exploited in both the ap-
proaches is tuned according to the approach specified in Chapter 5. But
since the similarity evaluator is a separate module evaluating similarity of
two given schema fragments f and g, it can be easily replaced with any other
method.

113

Figure 7.13: Architecture of the system

114

Phase III. Correction of Candidate Set

At this phase the candidate set of annotations Fadapt needs to be corrected.
As described in Chapter 7.2 there are two types of correction – automatic
and user-specified – resulting in set of corrected annotations F ′

adapt. In the
former case the annotation analyzer automatically searches and removes the
forbidden annotations, in the latter case a user interaction is required. In the
experimental implementation of the system the user interaction is omitted
and a default possibility is always applied. But as mentioned in the Conclu-
sion, the very next enhancement of the system will focus on user interaction,
user-friendliness, and appropriate GUI. Then also the incorrect situations
can be identified and solved using the user interaction as well.

Phase IV. XML-to-Relational Mapping

At this phase the annotation processor parses the set of corrected annotations
and maps the corresponding schema fragments into the data repository using
the respective approaches. As described in Chapter 7.3.1, at the same time
the system stores the information about schema mapping into supplemental
structural tables in the mapping repository.

Phase V. Document Shredding and Query Evaluation

At this phase the system is ready for the intended application. It involves
two operations:

• shredding a document D valid against XML schema S into correspond-
ing tables and

• evaluation of query Q posed over the schema S which returns document
DQ containing corresponding results.

The document shredder reads the XML document using a SAX parser
and on the basis of the information from mapping repository generates an
SQL script for storing appropriate tuples into the data repository. The query
evaluator firstly identifies the most efficient evaluation sequence (as described
in Chapter 7.3.4) and then, also using information from mapping repository,
translates the XML query into an SQL query. Similarly, the resulting tu-
ples are then transformed to corresponding XML fragments using the most
efficient reconstruction sequence.

115

7.5 Conclusion

As can be seen, there are several interesting issues related to the relatively
simple idea of hybrid user-driven mapping strategy. In this chapter we have
outlined the key components of the whole system and using simple examples
illustrated the related problems. As it is obvious, most of the approaches
(such as, e.g., efficient query translation, cost estimation of the queries, etc.)
can be significantly optimized, since a detailed research has already been
done in these areas. But this is already out of the scope of this thesis and
remains in the list of future work.

116

Chapter 8

Conclusion

The main aim of this thesis was to illustrate that since the idea of database-
based XML processing methods is still up-to-date, the techniques should and
can be further enhanced. On this account we have analyzed the disadvantages
and weak points of currently most efficient methods of this type, so-called
adaptive ones, and proposed their enhancing – a hybrid user-driven adaptive
XML-to-relational mapping algorithm. This approach is able to exploit the
user given information, i.e. schema annotations, more deeply and, at the
same time, to propose more appropriate candidate mapping strategy for the
not annotated schema parts using an adaptive approach. For the purpose of
the method we have proposed a similarity measure focussing on structural
similarity of the data and an algorithm for realistic tuning of its parameters.
Most parts of the proposal (such as, e.g., the tuning process or the exper-
imental tests) were based on the results of statistical analysis of real-world
XML data, i.e. a reasonable real source of information. Finally, we have
dealt with the correctness and structure of the resulting storage strategy and
the key aspects of related query evaluation. In particular we have focussed
on evaluation of parts of a single XML query using various storage strategies
and exploitation of redundancy.

The very next step of our future work is an elaborate implementation
of the proposed system with the emphasis on all the “side” aspects of the
proposal including the omitted user-friendly interface which is definitely and
important requirement for a system based on user interaction. During the
research experimental and prototype implementations of the most important
modules of the system were created for the purpose of evaluation or verifi-
cation of important algorithms. But at this stage we intend to implement

117

the system as a complete and robust application, similarly to systems de-
scribed in [34] or [23]. And this plan is also closely related to the mentioned
open issue of optimization of the query evaluator. Similarly to paper [36]
we intend to exploit a cost evaluator which is able to dynamically adapt the
statistics to the newly coming data and, at the same time, to conform to the
assumption of multiple storage strategies used within a single schema.

As mentioned in Chapter 3 there are several further possible ways of
improving XML data management using (O)RDBMS. Probably the most
important as well as difficult one is the dynamic adaptability, i.e. the ability
to adapt the relational schema to the changing requirements. Such system
would solve the most striking disadvantage of current adaptive methods –
the fact that the target schema is adapted only to a single initial application.
Therefore if the data or queries slightly change, the efficiency of processing
can significantly decrease, sometimes even below the efficiency of a general
fixed method. And it is obvious that such changes of the application are very
probable. On the other hand, we can expect that though the changes can
occur, probably they will not be radical. Thus also the resulting changes of
the relational schema will be rather local. With this assumption a research
can be done on the impact of such local changes on the total efficiency of
query evaluation, types of such changes and their consequences, the optimal
frequency of schema adaptation, etc.

A first step towards the dynamic adaptability could be a combination
of the proposed system with a classical adaptive strategy. We could as-
sume that the user provides not only a set of annotations but also sample
XML documents and XML queries. Then we can use a combination of the
annotation-based and classical adaptive method. We can naturally expect
that such combination will result in more efficient storage strategy, especially
with respect to the provided queries. Nevertheless, the key shortcoming of
such approach is evident – the user is expected to provide too many infor-
mation. But assuming that the sample queries and data can be gathered
dynamically, also this disadvantage disappears.

As we have mentioned in the Introduction, the scientific research has
already proven that management of XML data using (O)RDBMS is possi-
ble, but undoubtedly less efficient than the native approaches. As we have
discussed, since there is currently no robust and verified implementation of
a native XML database which could compete with database systems such
as Oracle Database [14], IBM DB2 [11], Microsoft SQL Server [12], etc.,
the research focussing on further improvements of XML processing based on

118

(object-)relational databases is still important and necessary. On the other
hand, the question is how long such research should be maintained. From one
point of view we could say that until the native methods reach the necessary
level of reliability, i.e. maybe few more years. But, on the other hand, we
can ask whether the native databases will be able to reach the popularity of
classical relational database systems. The history has already showed that
the practical world prefers simple and easy-to-learn solutions and this re-
quirement the basic ideas of relational model satisfy perfectly. The question
is whether we will not witness the same situation as in case of object-oriented
databases which were not able to compete with this advantage.

From another point of view we can observe that the requirement of man-
aging various kinds of data in the same repository is not of marginal impor-
tance. Therefore all the database vendors extend their system enabling to
store and process, e.g., bitmaps, multimedia data, multidimensional vectors,
meta data, etc. Thus another question is whether it is reasonable to focus on
database systems which are able to manage only a single XML data format.

We can find many arguments for and against the possible answer to the
above open issues. But only the future will show which approach is more
suitable for practical exploitation that is the most reasonable metric of mean-
ingfulness of any research.

119

120

Bibliography

[1] Available at: http://www.ibiblio.org/bosak/.

[2] Available at: http://monetdb.cwi.nl/xml/index.html.

[3] Available at: http://inex.is.informatik.uni-duisburg.de:2004/.

[4] Available at: http://www.freedb.org/.

[5] Available at: http://www.cs.wisc.edu/niagara/data.html.

[6] Available at: http://www.nlm.nih.gov/mesh/meshhome.html.

[7] Available at: http://arthursclassicnovels.com/.

[8] Available at: http://research.imb.uq.edu.au/rnadb/.

[9] DB2 XML Extender. IBM. http://www.ibm.com/.

[10] DocBook Technical Committee Document Repository. OASIS. http:

//www.oasis-open.org/docbook/.

[11] IBM DB2. IBM. http://www-306.ibm.com/software/data/db2/.

[12] Microsoft SQL Server. Microsoft Corporation. http://www.microsoft.
com/sql/default.mspx.

[13] OpenOffice.org Project. Sun Microsystems. http://www.openoffice.

org/.

[14] Oracle Database. Oracle Corporation. http://www.oracle.com/

database/index.html.

[15] Oracle XML DB. Oracle Corporation. http://www.oracle.com/.

121

[16] The Semantic Web Homepage. W3C. http://www.w3.org/2001/sw/.

[17] Document Object Model (DOM). W3C, 2005. http://www.w3.org/

DOM/.

[18] XHTML 1.0 The Extensible HyperText Markup Language (Second Edi-
tion). W3C, August 2002. http://www.w3.org/TR/xhtml1/.

[19] Scalable Vector Graphics (SVG) 1.1 Specification. W3C, January 2003.
http://www.w3.org/TR/SVG/.

[20] M. Altinel and M. J. Franklin. Efficient Filtering of XML Documents
for Selective Dissemination of Information. In VLDB ’00: Proc. of the
26th Int. Conf. on Very Large Data Bases, pages 53–64, San Francisco,
CA, USA, 2000. Morgan Kaufmann Publishers Inc.

[21] S. Amer-Yahia. Storage Techniques and Mapping Schemas for XML.
Technical Report TD-5P4L7B, AT&T Labs-Research, 2003.

[22] S. Amer-Yahia, F. Du, and J. Freire. A Comprehensive Solution to the
XML-to-Relational Mapping Problem. In WIDM ’04: Proc. of the 6th
Annual ACM Int. Workshop on Web Information and Data Manage-
ment, pages 31–38, New York, NY, USA, 2004. ACM Press.

[23] A. Balmin and Y. Papakonstantinou. Storing and Querying XML
Data Using Denormalized Relational Databases. The VLDB Journal,
14(1):30–49, 2005.

[24] D. Beckett. RDF/XML Syntax Specification (Revised). W3C, February
2004. http://www.w3.org/TR/rdf-syntax-grammar/.

[25] E. Bertino, G. Guerrini, and M. Mesiti. A Matching Algorithm for
Measuring the Structural Similarity between an XML Document and a
DTD and its Applications. Inf. Syst., 29(1):23–46, 2004.

[26] G. J. Bex, F. Neven, and J. Van den Bussche. DTDs versus XML
Schema: a Practical Study. In WebDB ’04: Proc. of the 7th Int. Work-
shop on the Web and Databases, pages 79–84, New York, NY, USA,
2004. ACM Press.

[27] P. V. Biron and A. Malhotra. XML Schema Part 2: Datatypes (Second
Edition). W3C, October 2004. http://www.w3.org/TR/xmlschema-2/.

122

[28] T. Bray, J. Paoli, C. M. Sperberg-McQueen, E. Maler, and F. Yergeau.
Extensible Markup Language (XML) 1.0 (Fourth Edition). W3C,
September 2006. http://www.w3.org/TR/REC-xml/.

[29] B. Choi. What Are Real DTDs Like? In WebDB ’02: Proc. of the
5th Int. Workshop on the Web and Databases, pages 43–48, Madison,
Wisconsin, USA, 2002. ACM Press.

[30] I. Choi, B. Moon, and H.-J. Kim. A Clustering Method Based on Path
Similarities of XML Data. Data Knowl. Eng., 60(2):361–376, 2007.

[31] U. Chukmol, R. Rifaieh, and A.-N. Benharkat. EXSMAL: EDI/XML
Semi-Automatic Schema Matching Algorithm. In CEC ’05: Proc. of
the 7th IEEE Int. Conf. on E-Commerce Technology, pages 422–425,
Munchen, Germany, 2005. IEEE Computer Society.

[32] D. DeHaan, D. Toman, M. P. Consens, and M. T. Ozsu. A Comprehen-
sive XQuery to SQL Translation Using Dynamic Interval Encoding. In
SIGMOD ’03: Proc. of the 22nd ACM SIGMOD Int. Conf. on Manage-
ment of Data, pages 623–634, New York, NY, USA, 2003. ACM Press.

[33] H. H. Do and E. Rahm. COMA – A System for Flexible Combination
of Schema Matching Approaches. In VLDB ’02: Proc. of the 28th Int.
Conf. on Very Large Data Bases, pages 610–621, Hong Kong, China,
2002. Morgan Kaufmann Publishers Inc.

[34] F. Du, S. Amer-Yahia, and J. Freire. ShreX: Managing XML Documents
in Relational Databases. In VLDB ’04: Proc. of the 30th Int. Conf. on
Very Large Data Bases, pages 1297–1300, Toronto, ON, Canada, 2004.
Morgan Kaufmann Publishers Inc.

[35] D. Florescu and D. Kossmann. Storing and Querying XML Data Using
an RDMBS. IEEE Data Eng. Bull., 22(3):27–34, 1999.

[36] J. Freire, J. R. Haritsa, M. Ramanath, P. Roy, and J. Simeon. StatiX:
Making XML Count. In SIGMOD ’02: Proc. of the 21st ACM SIGMOD
Int. Conf. on Management of Data, pages 181–192, Madison, Wisconsin,
USA, 2002. ACM Press.

[37] J. H. Holland. Adaptation in Natural and Artifical Systems. University
of Michigan Press, Ann Arbor, MI, USA, 1975.

123

[38] S. Kirkpatrick, C. D. Gerlatt Jr., and M.P. Vecchi. Optimization by
Simulated Annealing. Science, 220(4598):671–680, 1983.

[39] M. Klettke and H. Meyer. XML and Object-Relational Database Sys-
tems – Enhancing Structural Mappings Based on Statistics. In Selected
papers from the 3rd Int. Workshop WebDB ’00 on The World Wide Web
and Databases, pages 151–170, London, UK, 2001. Springer-Verlag.

[40] M. Klettke, L. Schneider, and A. Heuer. Metrics for XML Document
Collections. In XMLDM Workshop, pages 162–176, Prague, Czech Re-
public, 2002.

[41] R. Krishnamurthy, V. Chakaravarthy, and J. Naughton. On the Dif-
ficulty of Finding Optimal Relational Decompositions for XML Work-
loads: A Complexity Theoretic Perspective. In ICDT ’03: Proc. of the
9th Int. Conf. on Database Theory, pages 270–284, Siena, Italy, 2003.
Springer.

[42] R. Krishnamurthy, R. Kaushik, and J. Naughton. XML-to-SQL Query
Translation Literature: The State of the Art and Open Problems. In
XSym ’03: Proc. of the 1st Int. XML Database Symp., volume 2824,
pages 1–18, Berlin, Germany, 2003. Springer.

[43] A. Kuckelberg and R. Krieger. Efficient Structure Oriented Storage of
XML Documents Using ORDBMS. In Proc. of the VLDB ’02 Workshop
EEXTT and CAiSE ’02 Workshop DTWeb, pages 131–143, London,
UK, 2003. Springer-Verlag.

[44] D. Lee and W. W. Chu. Constraints-Preserving Transformation from
XML Document Type Definition to Relational Schema. In ER ’00: Proc.
of the 19th Int. Conf. on Conceptual Modeling, volume 1920 of Lecture
Notes in Computer Science, pages 323–338. Springer, 2000.

[45] J. Madhavan, P. A. Bernstein, and E. Rahm. Generic Schema Match-
ing with Cupid. In VLDB ’01: Proc. of the 27th Int. Conf. on Very
Large Data Bases, pages 49–58, San Francisco, CA, USA, 2001. Morgan
Kaufmann Publishers Inc.

[46] A. McDowell, C. Schmidt, and K. Yue. Analysis and Metrics of XML
Schema. In SERP ’04: Proc. of the Int. Conf. on Software Engineering,

124

Research and Practice, pages 538–544, Las Vegas, Nevada, USA, 2004.
CSREA Press.

[47] L. Mignet, D. Barbosa, and P. Veltri. The XML Web: a First Study. In
WWW ’03: Proc. of the 12th Int. Conf. on World Wide Web, Volume
2, pages 500–510, New York, NY, USA, 2003. ACM Press.

[48] T. Milo and S. Zohar. Using Schema Matching to Simplify Heteroge-
neous Data Translation. In VLDB ’98: Proc. of the 24th Int. Conf. on
Very Large Data Bases, pages 122–133, San Francisco, CA, USA, 1998.
Morgan Kaufmann Publishers Inc.

[49] I. Mlynkova and J. Pokorny. From XML Schema to Object-Relational
Database – an XML Schema-Driven Mapping Algorithm. In ICWI
’04: Proc. of the 3rd IADIS Int. Conf. WWW/Internet, pages 115–
122, Madrid, Spain, 2004. International Association for Development of
the Information Society.

[50] I. Mlynkova and J. Pokorny. XML in the World of (Object-)Relational
Database Systems. In ISD ’04: Proc. of the 13th Int. Conf. on Infor-
mation Systems Development, pages 63–76, Vilnius, Lithuania, 2004.
Springer Science+Business Media Inc.

[51] I. Mlynkova, K. Toman, and J. Pokorny. Statistical Analysis of Real
XML Data Collections. In COMAD ’06: Proc. of the 13th Int. Conf.
on Management of Data, pages 20–31, New Delhi, India, 2006. Tata
McGraw-Hill Publishing Company Limited.

[52] I. Mlynkova, K. Toman, and J. Pokorny. Statistical Analysis of Real
XML Data Collections. Technical report 2006/5, Charles University,
Prague, Czech Republic, June 2006.

[53] C.-H. Moh, E.-P. Lim, and W. K. Ng. DTD-Miner: A Tool for Mining
DTD from XML Documents. In WECWIS ’00: Proc. of the 2nd Int.
Workshop on Advanced Issues of E-Commerce and Web-Based Informa-
tion Systems, pages 144–151, Milpitas, CA, USA, 2000. IEEE Computer
Society.

[54] M. Murata, D. Lee, and M. Mani. Taxonomy of XML Schema Languages
Using Formal Language Theory. ACM Trans. Inter. Tech., 5(4):660–704,
2005.

125

[55] S. Nestorov, S. Abiteboul, and R. Motwani. Extracting Schema from
Semistructured Data. In SIGMOD ’98: Proc. of the 17th ACM SIGMOD
Int. Conf. on Management of Data, pages 295–306, Seattle, Washington,
DC, USA, 1998. ACM Press.

[56] P. K.L. Ng and V. T.Y. Ng. Structural Similarity between XML Docu-
ments and DTDs. In ICCS ’03: Proc. of the Int. Conf. on Computational
Science, pages 412–421, Berlin, Heidelberg, 2003. Springer.

[57] A. Nierman and H. V. Jagadish. Evaluating Structural Similarity in
XML Documents. In WebDB ’02: Proc. of the 5th Int. Workshop on
the Web and Databases, pages 61–66, Madison, Wisconsin, USA, 2002.
ACM Press.

[58] J. Pokorny. XML Data Warehouse: Possibilities and Solutions. In Con-
structing the Infrastructure for the Knowledge Economy: Methods &
Tools, Theory & Practice, pages 531–542, Dordrecht, The Netherlands,
2004. Kluwer Academic Publishers.

[59] The Apache XML Project. Xerces Java Parser 1.4.4. The Apache
Software Foundation, 2005. http://xerces.apache.org/xerces-j/.

[60] E. Rahm and P. A. Bernstein. A Survey of Approaches to Automatic
Schema Matching. The VLDB Journal, 10(4):334–350, 2001.

[61] E. Rahm and T. Bohme. XMach-1: A Benchmark for XML Data Man-
agement. Database Group Leipzig, 2006.

[62] M. Ramanath, J. Freire, J. Haritsa, and P. Roy. Searching for Ef-
ficient XML-to-Relational Mappings. In XSym ’03: Proc. of the 1st
Int. XML Database Symp., volume 2824, pages 19–36, Berlin, Germany,
2003. Springer.

[63] N. Rishe, J. Yuan, R. Athauda, S.-C. Chen, X. Lu, X. Ma, A. Vaschillo,
A. Shaposhnikov, and D. Vasilevsky. Semantic Access: Semantic Inter-
face for Querying Databases. In VLDB ’00: Proc. of the 26th Int. Conf.
on Very Large Data Bases, pages 591–594, San Francisco, CA, USA,
2000. Morgan Kaufmann Publishers Inc.

[64] K. Runapongsa and J. M. Patel. Storing and Querying XML Data
in Object-Relational DBMSs. In EDBT ’02: Proc. of the Worshops

126

XMLDM, MDDE, and YRWS on XML-Based Data Management and
Multimedia Engineering-Revised Papers, pages 266–285, London, UK,
2002. Springer-Verlag.

[65] A. Sahuguet. Everything You Ever Wanted to Know About DTDs,
But Were Afraid to Ask (Extended Abstract). In WebDB ’00: Se-
lected Papers from the 3rd Int. Workshop on The World Wide Web and
Databases, pages 171–183, London, UK, 2001. Springer-Verlag.

[66] A. Schmidt, M. L. Kersten, M. Windhouwer, and F. Waas. Efficient
Relational Storage and Retrieval of XML Documents. In Selected papers
from the 3rd Int. Workshop WebDB ’00 on The World Wide Web and
Databases, pages 137–150, London, UK, 2001. Springer-Verlag.

[67] J. Shanmugasundaram, K. Tufte, C. Zhang, G. He, D. J. DeWitt, and
J. F. Naughton. Relational Databases for Querying XML Documents:
Limitations and Opportunities. In VLDB ’99: Proc. of the 25th Int.
Conf. on Very Large Data Bases, pages 302–314, San Francisco, CA,
USA, 1999. Morgan Kaufmann Publishers Inc.

[68] M. Smiljanic, M. van Keulen, and W. Jonker. Using Element Clustering
to Increase the Efficiency of XML Schema Matching. In ICDEW ’06:
Proc. of the 22nd Int. Conf. on Data Engineering Workshops, pages
45–54, Los Alamitos, CA, USA, 2006. IEEE Computer Society.

[69] I. Tatarinov, S. D. Viglas, K. Beyer, J. Shanmugasundaram, E. Shekita,
and C. Zhang. Storing and Querying Ordered XML Using a Relational
Database System. In SIGMOD ’02: Proc. of the 21st ACM SIGMOD
Int. Conf. on Management of Data, pages 204–215, Madison, Wisconsin,
USA, 2002. ACM Press.

[70] H. S. Thompson, D. Beech, M. Maloney, and N. Mendelsohn. XML
Schema Part 1: Structures (Second Edition). W3C, October 2004. http:
//www.w3.org/TR/xmlschema-1/.

[71] W. Xiao-ling, L. Jin-feng, and D. Yi-sheng. An Adaptable and Ad-
justable Mapping from XML Data to Tables in RDB. In Proc. of the
VLDB ’02 Workshop EEXTT and CAiSE ’02 Workshop DTWeb, pages
117–130, London, UK, 2003. Springer-Verlag.

127

[72] B. B. Yao and M. T. Ozsu. XBench – A Family of Benchmarks for XML
DBMSs. University of Waterloo, School of Computer Science, Database
Research Group, 2002.

[73] M. Yoshikawa, T. Amagasa, T. Shimura, and S. Uemura. XRel: A Path-
Based Approach to Storage and Retrieval of XML Documents Using
Relational Databases. ACM Trans. Inter. Tech., 1(1):110–141, 2001.

[74] Z. Zhang, R. Li, S. Cao, and Y. Zhu. Similarity Metric for XML Docu-
ments. In FGWM ’03: Proc. of Workshop on Knowledge and Experience
Management, Karlsruhe, Germany, 2003.

[75] S. Zheng, J. Wen, and H. Lu. Cost-Driven Storage Schema Selection
for XML. In DASFAA ’03: Proc. of the 8th Int. Conf. on Database
Systems for Advanced Applications, pages 337–344, Kyoto, Japan, 2003.
IEEE Computer Society.

128

