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Chapter 1

Introduction

Although it seems that the Earth remains static, it still continues evolving.
The word static greatly depends on what time scale we choose to study
particular phenomenon. If we watched mutual position of continents for
hours, we would not find any time dependence. If watched for thousands of
years, we would find that continents drift. Many processes connected with
geology and geophysics are very slow and when describing them, we use time
scale of years or longer. However, there are also very fast processes which
take place in the Earth in time scale of seconds.

Earthquakes usually occur near active interfaces between lithospheric
plates. In this work we recall a mathematical model which is based on con-
tinuum mechanics. Model employs linear elasticity to predict waves prop-
agation from a seismic source. Source is represented by a time-dependent
discontinuity in the displacement field. Space orientation and positioning of
the fault zone is assumed to be known a priori. This work does not attempt
to model actual rupturing processes that occur in real earthquakes. Seismic
source is considered to be kinematic, which is a geophysical term for a priori
prescribed discontinuity.

In the following two chapters we present a mathematical formulation of
the problem in the framework of continuum mechanics. Problem is first for-
mulated in standard form in the language of partial differential equations.
This so called “strong” formulation is then used as a background for cor-
responding weak formulation, which is more convenient from mathematical
point of view. Turning to weak formulation, we can establish existence and
uniqueness for the solution of the problem.

The work’s emphasis is laid on numerical approaches, which lead to ap-
proximate solution of the problem. Finite elements method is straightfor-
wardly applied on the weak formulation to reduce infinite-dimensional prob-
lem into a finite set of linear ordinary differential equations. At this point
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we introduce two methods for time-integration of resulting ODEs. Spatial
discretization is done for three-dimensional computational domains. Three-
dimensional approach fully describes fault zone geometry. Three-dimensional
domains also have their difficulties. Main difficulty we have encountered was
rapidly increasing number of degrees of freedom for resulting systems of equa-
tions.

Chapter 5 presents results obtained by previously introduced numeri-
cal methods. Static case is benchmarked against an analytic solution. Time
evolving problems are compared to results obtained by the discrete wavenum-
ber method. Certain difficulties are encountered while modeling formation
of seismic waves. Approximate solutions exhibit presence of artificial oscil-
lations, which have no physical background. Our computations suggest that
these oscillations depend on coarseness of spatial discretization.

Whole motivation for this work was to find out, whether 3D linear finite
elements method is a suitable numerical approach for seismological applica-
tions.
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Chapter 2

Formulation of the problem

2.1 Governing equations

When one tries to describe physically certain phenomena, he usually has to
focus on the dominant features and neglect those bringing only small effects.
Later, when such a description is found to be insufficient one may add subtle
features to improve the model. When we describe propagation of seismic
waves through the Earth, we are going to simplify the situation too. The
same holds for the description of the seismic source.

The first simplification comes when we choose the rheological model. We
know, that soil exhibits effects like stress relaxation for example. Since wave
propagation is a relatively fast process, it is sufficient to use only elastic-
ity. Even if we used Maxwell rheology, it would not bring any new infor-
mation, because effects based on stress relaxation would not have time to
develop. Choice of pure elasticity also assures no damping for the propa-
gating waves. There is always certain amount of damping involved in real
seismic wave propagation. We assume that the amount of energy dissipation
due to damping can be neglected. Our computation simulates displacement
field only relatively close to rupture zone. This fact is caused by a rapidly
rising computational effort in case of 3D finite elements, which limits the size
of domain that can be used.

Propagation of seismic waves in elastic medium is described by the equa-
tion of motion in elastodynamics [12]. In addition, we will use isotropic case
of the generalized Hook’s law. Of course, material properties vary with po-
sition. For example volume density depends on depth. We will suppose that
material properties are piecewise continuous functions of position. In numer-
ical computation we will consider material properties to be constant in each
element.
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Radiation of energy is emitted by a mutual shift of opposing tectonic
blocks along rupture zone. Observations from real earthquakes suggest that
rupture thickness is very small compared to other dimensions of the fault.
Therefore it is reasonable to approximate the rupture zone by a surface.
The mutual shift of opposing media creates a discontinuity in the field of
displacement. Our kinematic description of the seismic source will be repre-
sented as a time dependent displacement discontinuity along surface Γ. In
other words, the discontinuity is prescribed a priori. Effort has been made
to develop techniques of simulation and description of spontaneous rupture
propagation, but this issue will not be considered here. Dynamic response of
the elastic medium is described by the momentum equation

ρü−∇ · τ = f , (2.1.1)

where u denotes vector of displacement, τ denotes the Cauchy stress ten-
sor and f denotes volume forces density. Equation (2.1.1) holds for every
(x, t) ∈ QT ≡ Ω× [0, T ], x ∈ R3. Two dots above a function denote second
derivative with respect to time t.

Deformations that occur during the simulations are expected to be small.
This assumption allows us to use the concept of small deformations, which
greatly simplifies the treatment of the problem. The above mentioned isotropic
Hook’s law is given by

τ = λ(∇ · u)I + 2µε(u) , (2.1.2)

where I denotes the identity matrix and ε(u) denotes the tensor of small
deformations. Tensor of small deformations is given as a symmetric part of
displacement gradient

ε(u) =
1

2

(
∇u +∇uT

)
. (2.1.3)

Parameters λ, µ fully describe the behavior of an isotropic elastic medium.
In the later discussion they will be referred to as Lame coefficients.

The region Ω represents a sufficiently large neighborhood of the source
region. The top surface corresponds with the Earth’s surface. There is a
source fault Γ inside Ω. The fault surface represents the region where the
displacements discontinuity occurs and is supposed to be buried inside Ω
without any contact with other parts of the boundary.

The boundary of Ω consists of two parts ΓD , ΓN such that relation
∂Ω = ΓD ∪ ΓN holds. The two dimensional measure of parts intersection is
zero. One remark on notation - subscripts under boundary parts Γx refer to
the type of prescribed boundary condition - Dirichlet or Neumann.
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Figure 2.1: Region Ω. Fault surface Γ does not have a contact with other parts of
boundary.

The following boundary conditions are prescribed:

u(x, t) = 0 ∀(x, t) ∈ ΓD × [0, T ], (2.1.4a)

τ (x, t) · n = 0 ∀(x, t) ∈ ΓN × [0, T ], (2.1.4b)

where n denotes outer normal to ΓN . The first condition assures zero dis-
placements at the boundary. As soon as a wave reaches this boundary, it
will be reflected. This reflection does not correspond with a real situation,
where the wave would continue traveling. This fact must be taken into ac-
count when we choose time interval of computation. The second condition
corresponds with the fact that we would like to describe a free surface of the
Earth. It means that there are no forces acting on the surface.

On a buried fault Γ we assume that normal stress component is contin-
uous. Next, along the fault we allow only shear-like slips. This means that
the only direction of displacement discontinuity allowed across Γ is tangent
to the surface. This condition also ensures that material does not penetrate
itself and that no empty space is created on the fault. The condition is ex-
pressed by the fact that components of displacement normal to Γ must be
continuous. On the fault surface Γ we prescribe the following discontinuity:

[u · n]+− = 0 ∀(x, t) ∈ Γ× [0, T ], (2.1.5a)

[u− (u · n)n]+− = fΓ(x, t) ∀(x, t) ∈ Γ× [0, T ], (2.1.5b)

[τ · n]+− = 0 ∀(x, t) ∈ Γ× [0, T ], (2.1.5c)

where [...]+− denotes discontinuity across the surface Γ, or by other words the
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difference of the quantity on opposite sides of Γ and n is the normal vector
to surface Γ.

The above formulation of the problem is similar to formulations in an-
other fields of physics, namely mechanics. Concept of slip, discontinuity in
displacement field, is used to model dislocations in solids. Quite interesting
method which was applied to similar problems with slips is called extended
finite elements. This method is based on finite elements, but possesses one
advantage over standard FEM: mesh on which the problem is computed does
not have to respect discontinuities. Set of basis functions of the discrete space
is “enriched” with discontinuous functions that capture slip properties. In
the standard finite elements which are to be used here, element edges have
to be aligned with the crack surface.

11



Chapter 3

Weak formulation of the
problem

In order to get the existence and uniqueness of a solution it is preferable to
formulate the studied problem in weak sense. Weak formulation naturally
offers a way to discretize the problem by the finite elements method.

3.1 Motivation for definition of weak formu-

lation

Assume u is a smooth solution of equation (2.1.1) satisfying boundary con-
ditions discussed in the previous chapter. By the word smooth we mean that
u ∈ C2(Ω \ Γ; R3). Note, that u possesses a discontinuity across Γ.

Define V ≡ {v ∈ C∞(Ω; R3) : v |ΓD
= 0} . Let v ∈ V ∩ C1(Ω; R3). Make

a scalar product of equation (2.1.1) with function v ∈ V ∩ C1(Ω; R3) and
integrate over region Ω to get∫

Ω

ρü · v dx−
∫

Ω

(∇ · τ ) · v dx =

∫
Ω

f · v dx v ∈ V ∩ C1(Ω; R3). (3.1.1)

Suppose that density and Lame coefficients are ρ, λ, µ ∈ L∞(Ω). We will
split the region Ω into two regions ΩΓ and ΩC

Γ = Ω \ ΩΓ. Boundary of ΩΓ

consists of the fault surface Γ and the rest, which will be denoted Θ = ∂ΩΓ\Γ.
We suppose that region ΩΓ has a positive measure and that it has a Lipchitz
boundary. Figure 3.1 shows how such a region could look like. Region ΩΓ

is supposed to occupy only one side of the fault surface Γ. After we have
introduced two regions ΩΓ and ΩC

Γ we can write∫
Ω

ρü · v dx−
∫

ΩΓ

(∇ · τ ) · v dx−
∫

ΩC
Γ

(∇ · τ ) · v dx =

∫
Ω

f · v dx. (3.1.2)

12



We will split the solution u into two parts ũ and uΓ, while relation

u =

{
ũ for x ∈ ΩC

Γ ,
ũ + uΓ for x ∈ ΩΓ

(3.1.3)

holds. The idea is that the the function ũ is continuous across Γ and the dis-
continuity is created by addition of function uΓ which is known. We assume
uΓ has certain properties in order to make this decomposition meaningful.
We assume that:

• supp(uΓ) ⊂ ΩΓ,

• uΓ|Γ = fΓ for all 0 ≤ t ≤ T ,

• uΓ|Θ = 0 for all 0 ≤ t ≤ T .

For reasons which will become apparent later, we will demand a little bit
more, than the last condition. We want the function uΓ to be zero not only
directly on the boundary part Θ, but in a certain finite neighborhood of Θ.
The reason is that we need also its spatial derivatives to have a zero trace on
Θ. This demand does not restrict a class of functions which possess such a
property, because we can simply broaden the region ΩΓ beyond the part of
boundary Θ and redefine function uΓ by zero on the added region.

ΩΓ

ΓN

DΓ

Γ Θ ΩΓ
C

Figure 3.1: Slice through region Ω. Particular shape of ΩΓ does not play a signif-
icant role, because solution does not depend on choice of extension uΓ.

We will now discuss only integrals over ΩΓ and ΩC
Γ in equation (3.1.2).

Apply Green’s theorem on the first integral over ΩΓ to get∫
ΩΓ

(∇ · τ ) · v dx =

∫
Γ∪Θ

τ · n · v dS −
∫

ΩΓ

τ : ε(v) dx. (3.1.4)

13



The same procedure done on the second integral gives∫
ΩC

Γ

(∇ · τ ) · v dx =

∫
Γ∪Θ∪ΓD∪ΓN

τ · n · v dS −
∫

ΩC
Γ

τ : ε(v) dx. (3.1.5)

We have used the fact that the Cauchy stress tensor is symmetric and there-
fore (τ · v) ·n = (τ ·n) · v holds. The surface integral over union of surfaces
which have empty intersection can be written as a sum of integrals over each
surface. Integral over ΓD is equal to zero since v ∈ V and therefore such a
function is zero on ΓD. Next, integral over ΓN is also equal to zero because
of the boundary condition for free surface (2.1.4b). Now we can see that the
only integrals that now play a role are integrals over Γ and Θ. Please note
that n, which denotes outer normal, has an opposite sign for integrals in
(3.1.4) and (3.1.5). Having this in mind, we can write

−
∫

Ω

∇ · τ · v dx = −
∫

Γ∪Θ

[(τ · n) · v]+− dS +

∫
Ω

τ : ε(v) dx. (3.1.6)

Symbol [...]+− denotes a difference of the quantity on opposite sides of the sur-
face where it is evaluated. Stress tensor is a linear function of displacement,
so τ (u) = τ (ũ)+τ (uΓ). Putting this into equation (3.1.2) and incorporating
the above discussion of surface integrals yields∫

Ω

ρ¨̃u · v dx +

∫
Ω

τ (ũ) : ε(v) dx =

∫
Ω

f · v dx−
∫

ΩΓ

ρüΓ · v dx (3.1.7)

−
∫

ΩΓ

τ (uΓ) : ε(v) dx +

∫
Γ∪Θ

[(τ (u) · n) · v]+− dS.

Since we have assumed that ũ was C2(Ω; R3), it follows that
∫

S
[(τ (ũ) · n) · v]+− dS =

0 for any surface S inside Ω. If we take a closer look at the surface integral
in equation (3.1.7) we will see that∫

Γ∪Θ

[(τ (u) · n) · v]+− dS =

∫
Γ

[(τ (u) · n) · v]+− dS +

∫
Θ

[(τ (ũ) · n) · v]+− dS,

(3.1.8)
because we assumed that τ (uΓ)|Θ = 0. Recall boundary condition (2.1.5c) to
see that the integral over Γ must be zero. Smoothness of ũ ensures that the
second integral over Θ is zero too. We can see now that no surface integrals
play a role in weak formulation of the problem.

Putting all the above statements together we arrive at identity∫
Ω

ρ¨̃u · v dx +

∫
Ω

τ (ũ) : ε(v) dx =

∫
Ω

f · v dx− (3.1.9)∫
ΩΓ

ρüΓ · v dx−
∫

ΩΓ

τ (uΓ) : ε(v) dx v ∈ V ∩ C1(Ω; R3).

14



3.2 Definition of weak solution

Natural choice for the space of test functions is Sobolev space W 1,2(Ω; R3)
with zero traces on ΓD.

Definition 3.2.1. We will denote by V the space of test functions.

V ≡ {v ∈ W 1,2(Ω; R3) : v|ΓD
= 0} (3.2.1)

Traces of functions v are considered in the sense of trace theorem - see ap-
pendix A.0.1.

To simplify notation we will introduce a bilinear operator which will rep-
resent the integral containing stress tensor.

Definition 3.2.2. Let u, v ∈ W 1,2(Ω; R3). Then we define a bilinear form
A : W 1,2(Ω; R3)×W 1,2(Ω; R3) −→ R by formula

A(u, v) :=

∫
Ω

λ(∇ · u)(∇ · v) + 2µε(u) : ε(v) dx. (3.2.2)

We can slightly weaken our assumptions on the extension uΓ of disconti-
nuity function fΓ. Let fΓ be such, that there exists uΓ ∈ L2 (0, T ; W 1,2(ΩΓ; R3)),
with u̇Γ ∈ L2 (0, T ; L2(ΩΓ; R3)) and üΓ ∈ L2 (0, T ; L2(ΩΓ; R3)) with proper-
ties already mentioned when we showed motivation for definition of weak
solution.

Integral identity which we arrived at after assuming that u is a smooth
solution of the problem has a well defined meaning for functions from more
general spaces. Using definition of our bilinear operator A(., .) we can rewrite
equation (3.1.9) for test functions in V :

(¨̃u, ρv) + A(ũ, v) = (f , v)− (üΓ, ρv)− A(uΓ, v) v ∈ V . (3.2.3)

Scalar product in the space L2(Ω; R3) is denoted by (., .). Please accept that
if function uΓ appears as a argument of scalar product or operator A(., .) we
integrate only over ΩΓ. We use this convention also in the following definition
of weak solution.

Definition 3.2.3. Let ũ ∈ L2(0, T ; V ), ˙̃u ∈ L2(0, T ; L2(Ω; R3)) and ¨̃u ∈
L2(0, T ; V ′). Let uΓ satisfy the above assumptions. Then u = ũ + uΓ is a
weak solution of our problem provided

• 〈¨̃u, ρv〉+A(ũ, v) = (f , v)−(üΓ, ρv)−A(uΓ, v) ∀v ∈ V and a.e. 0 ≤
t ≤ T .
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• ũ(0) = g and ˙̃u(0) = h

where g ∈ W 1,2(Ω; R3), h ∈ L2(Ω; R3).

Let us remark that if a function ũ ∈ L2(0, T ; V ) satisfies the assump-
tions of definition (3.2.3), it is also continuously differentiable in time. Then
conditions on an initial state have a well defined meaning. The theorem
can be found in [10, pg. 286]. Energy estimates furthermore show, that
ũ ∈ L∞(0, T ; V ) with ˙̃u ∈ L∞(0, T ; L2(Ω; R3)) and ¨̃u ∈ L2(0, T ; V ′).

3.3 Sketch of proof of existence and unique-

ness

We would like to recall definition of V-ellipticity for bilinear operators: we
say that a bilinear operator A : V × V → R is V-elliptic if there exists a
constant C such that

A(v, v) ≥ C ||v||V (3.3.1)

holds for every v ∈ V . If we want to establish V -ellipticity of operator A(., .),
we have to demand certain properties of Lame coefficient to hold.

Lemma 3.3.1. Assume λ, µ ∈ L∞(Ω). Furthermore assume that λ(x) ≥ 0,
µ(x) ≥ µ0 > 0 for a.e. x ∈ Ω. Then operator A(., .) is V-elliptic.

Proof.
∫

Ω
λ(∇ · v)(∇ · v) + 2µε(v) : ε(v) dx ≥ 2µ0

∫
Ω

ε(v) : ε(v) dx and
Korn’s inequality (see appendix A.0.2) completes the proof.

For static case proof of existence uses Lax-Milgam lemma. Lax-Milgram
lemma assumes that the left hand side bilinear operator is bounded and V -
elliptic. Applying Lax-Milgram gives existence and uniqueness. Property of
V -ellipticity also ensures that the matrix based on this operator on a discrete
space Vh is positive definite.

Proof of existence and uniqueness for hyperbolic evolution problem with
scalar unknown is thoroughly discussed in Evans [10, pg. 380-387]. This
proof for scalar case can be easily adapted to accommodate our particular
setting. Already adapted proof can be found in [15].

From uniqueness of a solution of the problem it can be shown that the
sum of ũ + uΓ does not depend on particular choice of the extension uΓ.
Particular shape of region ΩΓ is also arbitrary within already mentioned
properties that we demanded from it.
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Chapter 4

Numerical approximation

Weak formulation of the problem is very useful when one wants to acquire
an approximate solution. In this chapter we will discretize the infinite di-
mensional problem with the method of finite elements to get a system of
ordinary differential equations. The system of ODEs is then integrated using
two different schemes. For the upcoming discussion let us assume that Ω is
a polygonal region with a Lipschitz boundary.

4.1 Finite elements - P 1 approximation

First let us introduce finite dimensional space Vh which approximates the
space V . Let Th be a triangulation of the region Ω with the properties:

•
⋃

K∈Th
= Ω

• if Ki ∩Kj 6= ∅, i 6= j then either Ki ∩Kj is a point or a whole edge or
a whole face of the element.

Definition 4.1.1. We will denote by Vh the space of piecewise linear contin-
uous functions on the region Ω:

Vh ≡ {v ∈ V : v|K ∈ P 1(K) for every K ∈ Th}, (4.1.1)

where P 1(K) is the space of all polynomials defined on the region K of order
less or equal to one.

Let {vi}DOF
i=1 be a basis of the space Vh. Then every vector v ∈ Vh can

be decomposed into the basis: v =
∑

i civi. In the discrete formulation, our
bilinear operators are going to adopt form of matrices. Similarly, linear form
will appear as vector.

17



Definition 4.1.2. Operators appearing in the definition of weak solution
are thanks to basis in finite-dimensional space Vh represented as matrices or
vectors

Aij := Ah(vj, vi), (4.1.2)

Dij := (ρvi, vj)h, (4.1.3)

Fi := (f , vi)h. (4.1.4)

Subscript h indicates a form of operators, where numeric quadrature rules
are used to compute the integrals. Quadrature rules that were used will be
discussed later.

The discrete problem formulated as a system of ordinary differential equa-
tions for coefficients ci(t) adopts the form

Dc̈(t) + Ac(t) = F (t) t ∈ [0, T ] , (4.1.5)

c(0) = g,

ċ(0) = h,

where g, h denote the initial conditions for the system. Matrices A and D are
usually reffered to as the stifness matrix and the mass matrix respectively.

According to standard theory of ordinary differential equations the system
(4.1.5) has a unique C2 solution.

4.2 Discretization of the time domain

As we have seen in the last section, space domain discretization by finite
elements method leads to a system of ODEs for coefficients ci. The ap-
proximate solution is then obtained by making a linear combination of basis
functions using these coefficients. There remains one question: How to solve
the system of ODEs?

Let ∆t be the time step. We will use the abbreviation for a function
on i-th time level: v(ti) = vi where ti = i∆t. In following subsections we
offer two methods for integration of the system. For the first scheme we will
prove that the method exhibits a certain order of accuracy and that it is
unconditionally stable. In order to show this, we need a notion of modal
decomposition of the system (4.1.5).

4.2.1 Modal decomposition

Concept of modal decomposition was adopted from Zienkiewicz and Taylor
[18]. Suppose we have a system of n linear differential equations of second
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order in form
Dc̈ + Ac = 0, (4.2.1)

where D is the mass matrix and A is the stiffness matrix. For both matrices
we suppose they are symmetric and positive definite. General solution of
equation (4.2.1) can be written as

c = c̄ exp(iωt). (4.2.2)

Feeding this into (4.2.1) we get(
−ω2D + A

)
c̄ = 0, (4.2.3)

which is in fact the equation for eigenvalues ω2
i and eigenvectors c̄i. Eigenval-

ues can be obtained by solving equation det(−ω2D + A) = 0. It is common
in literature to fix uniqueness of eigenvectors by demanding that

c̄T
i Dc̄i = 1 (4.2.4)

holds for i = 1...n. Eigenvectors of this system have the important property
of so called modal orthogonality. It can be shown [18] that the following
holds:

c̄T
i Dc̄j = 0 for i 6= j, (4.2.5)

c̄T
i Ac̄j = 0 for i 6= j. (4.2.6)

This result was established under assumption that all eigenvalues ωi are
distinct. Furthermore relation

c̄T
i Ac̄i = ω2

i (4.2.7)

is satisfied.
Let’s consider (4.2.1) with a source term on the right-hand side

Dc̈ + Ac = F . (4.2.8)

If the equation (4.2.8) was homogeneous, general solution would have form1

c =
∑

j c̄j exp(iωjt). For inhomogeneous case we will suppose the solution
in form c =

∑
j c̄jyj(t). Feed this into equation (4.2.8) and make a scalar

product of the result with c̄i to get

c̄T
i D

∑
j

c̄j ÿj + c̄T
i A

∑
j

c̄jyj = c̄T
i F . (4.2.9)

1Please be so kind and forgive us a little inconsistency in notation. Of course i means
imaginary unit here.
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Recalling earlier established modal orthogonality, equation (4.2.9) is reduced
to a set of scalar and uncoupled equations for yi

ÿi + ω2
i yi = fi. (4.2.10)

We have used (4.2.7), (4.2.4), (4.2.5), (4.2.6). fi = c̄T
i F .

The main result of this subsection is that the system of ordinary differen-
tial equations (4.2.8) can be transformed into n scalar and uncoupled equa-
tions for coefficients yi. This property happens to be very useful in analysis
of stability of integration algorithms. Instead of analyzing the algorithm for
a complicated system of equations, we can simply establish stability results
for the corresponding scalar equation, where it is much easier.

4.2.2 Central difference, Crank-Nicolson like scheme

The first method for integration of the system (4.1.5) can be obtained as
follows. We discretize the second derivative operator by a central difference
term

v̈ −→ vi+1 − 2vi + vi−1

∆t2
. (4.2.11)

Then express the remaining terms by the mean value of functions on the fol-
lowing and past time level. Usage of a mean value resembles Crank-Nicolson
scheme. We thus obtain scheme

D
ci+1 − 2ci + ci−1

∆t2
+ A

ci+1 + ci−1

2
=

1

2

(
F i+1 + F i−1

)
. (4.2.12)

The scheme is implicit. It will be shown that it provides unconditional sta-
bility regardless on the time step ∆t and offers a second order accuracy.

To get the approximation on the next time level, one has to solve system
of equations in form:[

A +
2

(∆t)2
D

]
ci+1 = F i+1 + F i−1 − Aci−1 +

4

(∆t)2
D(ci − 2ci−1). (4.2.13)

As we shall see, the left-hand side operator that defines equation for cn+1

is a special case of an operator given by Bossak-Newmark method. System
(4.2.13) has unique solution. Furthermore a sum of two positive definite
operators appearing on the left-hand side is again a positive definite operator,
so method of conjugate gradients can be used to solve the system. In the
following discussion we show that the scheme is of second order a prove the
stability result. In order to get this, we will review a few facts from the
theory of linear multistep methods.
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Review of the theory of linear multistep methods

General theory for multistep linear methods is well developed and summary
of the theory can be found in [6]. The theory is formulated for systems of
differential equations of form ẏ = f(t, y). This case covers all situations,
because any equation which involves higher order derivatives can be reduced
to this form with simple transformation of variables. However for special
case of second order equation of form ÿ = f(t, y) it is recommended to apply
special theory developed for this case instead of reducing the equation to
first order. Particular case of equation ÿ = f(t, y) is thoroughly discussed in
[9]. The following paragraph follows this theory for second order equation.
Derivation of such theory for second order equation is very similar to one for
first order. Main ideas are the same.

General multistep method for second order equation ÿ = f(t, y) can be
written in form

k∑
j=0

αjyn+j = ∆t2
k∑

j=0

βjfn+j, (4.2.14)

where ∆t is the time step. We use notation yk = y(tk), where tk = ∆tk. For
method (4.2.14) first and second characteristic polynomials are defined by

ρ(ξ) =
k∑

j=0

αjξ
j, σ(ξ) =

k∑
j=0

βjξ
j. (4.2.15)

Local discretization error can be expressed by

L[y(t), ∆t] =
k∑

j=0

[αjy(t + j∆t)−∆t2βj ÿ(t + jh)], (4.2.16)

assuming that y has as many derivatives as we need for this definition. Taylor
expansion around point t gives

L[y(t), ∆t] = C0y(t) + C1∆tẏ(t) + ... + Cq∆tqy(q)(t) + o(hq+1). (4.2.17)
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Coefficients Cq have form:

C0 =
k∑

j=0

αj, (4.2.18a)

C1 = α1 + 2α2 + ... + kαk, (4.2.18b)

C2 =
1

2!
(α1 + 22α2 + ... + k2αk)−

k∑
j=0

βj, (4.2.18c)

Cq =
1

q!
(α1 + 2qα2 + ... + kqαq)− (4.2.18d)

1

(q − 2)!
(β1 + 2q−2β2 + ... + kq−2βk) q = 3, 4, ... .

Definition 4.2.1. The multistep method is said to be of order p if C0 =
C1 = ... = Cp+1 = 0 and Cp+2 6= 0.

Concerning stability, it can be shown that total error ẽn = y(tn) − ỹn,
where {ỹn} is the approximate solution, satisfies equation

ẽn =
k∑

s=1

dsr
n
s −

Φ

∆t2
λ

k∑
j=0

βj, (4.2.19)

where ds are arbitrary constants, rs are roots of stability polynomial2. Sta-
bility polynomial is defined by

π(r, h) = ρ(r)− hσ(r), h = ∆t2λ. (4.2.20)

Definition 4.2.2. Method is called absolutely stable, if for a given h all
roots of (4.2.19) satisfy |rs| ≤ 1 for s = 1, 2, ..., k.

The importance of absolute stability rests in the fact that the total error
ẽn remains bounded. We can now turn our attention to the particular case
of scheme (4.2.12).

Order and stability

For the purpose of the discussion of method (4.2.12) we will not consider
right hand side terms. In the view of subsection 4.2.1 we can reduce our

2During the derivation of this relation derivative ∂f(t,y)
∂y = λ was assumed constant,

and local truncation error Φn = Φ was also assumed constant. In our linear case the
assumption on λ is satisfied exactly
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attention on scalar equation ÿ + ω2y = 0. If we apply the scheme introduced
at the beginning of this subsection, we will arrive at yi+2 − 2yi+1 + yi =
∆t2ω2

2
(yi+2 + yi). Following notation introduced for discussion of multistep

methods, this particular method is characterized by parameters

k = 2 (4.2.21a)

α0 = 1 β0 =
1

2
(4.2.21b)

α1 = −2 β1 = 0 (4.2.21c)

α2 = 1 β2 =
1

2
, (4.2.21d)

(4.2.21e)

and first and second characteristic polynomials are

ρ(ξ) = (ξ − 1)2, σ(ξ) =
1

2
(ξ2 + 1). (4.2.22)

We immediately see, recalling definition 4.2.1, that the method is of order
2. Stability will be investigated through properties of stability polynomial
(4.2.19). Again, it is sufficient to analyze equation ÿ = −ω2y, ω > 0. In this
case λ = −ω2. Stability polynomial then takes form

π(r, h) =

(
1 +

1

2
∆t2ω2

)
r2 − 2r +

(
1 +

1

2
∆t2ω2

)
. (4.2.23)

Roots of this polynomial are:

r1,2 =
1± i

√
2(1

2
∆t2ω2) + (1

2
∆t2ω2)2

1 + 1
2
∆t2ω2

. (4.2.24)

Computation of norm for both roots shows that |r1,2| = 1 regardless on
timestep ∆t. We can therefore say that the method is absolutely stable for
equation ÿ = −ω2y and then for our equation Dc̈ + Ac = 0. Since the
absolute stability does not depend of the time step ∆t, we can talk about
unconditional stability.

4.2.3 Bossak-Newmark scheme

Consider a set of linear second order differential equations in form3

Dc̈ + Cċ + Ac = F , (4.2.25)

3Let me remark that in our case no damping matrix will be present, but the Bossak-
Newmark scheme will be shown with it.
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where D is the mass matrix, C is the damping matrix and A is the stiffness
matrix. Bossak, Wood and Zienkiewicz proposed the following algorithm
based on Newmark scheme for integrating this system of ODEs [17]:

ci+1 = ci + ∆tċn + (∆t)2

(
1

2
− β

)
c̈i + (∆t)2βc̈i+1, (4.2.26)

ċi+1 = ċn + ∆t(1− γ)c̈i + ∆tγc̈i+1, (4.2.27)

(1− α)Dc̈i+1 + αDc̈i + Cċi+1 + Aci+1 = F i+1. (4.2.28)

In the case of α = 0 this algorithm reduces to Newmark’s method [14].
Additional parameter α was added to the scheme to introduce artificial damp-
ing. The purpose of this numerical dissipation is to reduce spurious oscil-
lations, which sometimes occur during the computation. For α = 0 we get
no additional dissipation. The method is referred to in literature as WBZ-α
method, each letter for one author, namely Wood, Bossak, Zienkiewicz.

The aim of artificial damping introduced by the presence of parameter
α is to damp high frequency oscillations. The method is commonly used
on the system of equations coming from FEM spatial discretization. Spatial
resolution of finite elements may be poor, so it is desirable to damp out high
frequency modes. There were efforts to design a method which would not
dissipate much at lower frequencies while maintaining its dissipation at high
frequencies. Bossak’s method is a member of such family of methods. The
most recent one was proposed by Chung and Hulbert. The method is called
the generalized-α method [5]. The generalized-α method ensures that for
desired amount of high frequency dissipation the low frequency dissipation
is minimized. We use slightly less complicated Bossak-Newmark method.

Performance of the scheme is controlled by three parameters α, β, γ. To
get a second order accuracy with unconditional stability, we have to satisfy
conditions

β ≥ γ

2
≥ 1

4
, α =

1

2
− γ. (4.2.29)

To obtain a second order method that is unconditionally stable with pos-
itive artificial damping, condition (4.2.29) must be satisfied with sharp in-
equalities

β >
γ

2
>

1

4
, α =

1

2
− γ. (4.2.30)

The above conditions are derived from theory of multi-step linear methods
of second order. The theory is discussed for example in [9, pg. 253-260].
Authors derived conditions for stability and second order from analysis of
the method for equation ÿ + ω2y = 0, ω > 0. Authors show that for this
equation the method is equivalent to a four step linear method.
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Equation for cn+1

Equations (4.2.26), (4.2.27), (4.2.28) reveal the principle of the method but
are useless when one wants to really use it. These equations have to be
slightly modified in order to get an equation for displacement on the next
time level. This is one of ways to get the equation for cn+1. From (4.2.26)
express the acceleration on (n+1)th time level

c̈i+1 =
1

β(∆t)2
(ci+1 − ci)− 1

β∆t
ċi +

(
1− 1

2β

)
c̈i. (4.2.31)

Substitute from the above equation into (4.2.27) for cn+1 to obtain

ċi+1 =
γ

β∆t
(ci+1 − ci) +

(
1− γ

β

)
ċi + ∆t

(
1− γ

2β

)
c̈i. (4.2.32)

Finally substitute (4.2.31), (4.2.32) into equation (4.2.28) to get[
1− α

β(∆t)2
D + C

γ

β∆t
+ A

]
ci+1 = Fi+1 + (4.2.33)

D

[
1− α

β(∆t)2
ci +

1− α

β∆t
ċi −

(
1 +

α− 1

2β

)
c̈i

]
+

C

[
γ

β∆t
ci +

(
γ

β
− 1

)
ċi + ∆t

(
γ

2β
− 1

)
c̈i

]
.

A simpler version of the equation without damping matrix C which we ac-
tually use is written as[

1− α

β(∆t)2
D + A

]
ci+1 = Fi+1 + D

[
1− α

β(∆t)2
ci +

1− α

β∆t
ċi −

(
1 +

α− 1

2β

)
c̈i

]
.

(4.2.34)
When we have a solution ci+1 we can compute velocity and acceleration

on (i + 1)th time level. First compute the acceleration and finally compute
velocity on the next time level:

c̈i+1 =
1

β(∆t)2
(ci+1 − ci)− 1

β∆t
ċi +

(
1− 1

2β

)
c̈i, (4.2.35)

ċi+1 = ċi + ∆t(1− γ)c̈i + γ∆tc̈i+1. (4.2.36)

Bossak-Newmark’s advantage is that we automatically obtain approxi-
mation for velocity and acceleration.

Let me add one remark concerning the actual implementation. In order
to maximize performance of the method, it is reasonable to use all the infor-
mation we have about the problem. Since we have to solve a system of linear
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algebraic equations on each time level, it would be nice if we had a way to ac-
celerate the computation. A small amount of effort can be saved by properly
choosing the first approximation for the solution of equation (4.2.34). The
closer to actual solution we choose the first approximation, the less iterations
we have to compute. We can make use of our knowledge of displacement,
velocity and acceleration on the i-th level by using Taylor expansion to get
as close as possible to the next time level solution. We can express this idea
by

ci+1
CG0 = ci + ∆tċi +

1

2
(∆t)2c̈i. (4.2.37)

Subscript CG0 denotes the starting approximation of solution for CG algo-
rithm. This approach actually saves a few iterations.

4.3 Energy balance

Energy balance can be formally obtained after testing the weak formulation
by velocity u̇. This discussion follows [16]. We do not bother with the ques-
tion whether velocity is sufficiently smooth do so at the moment. Consider
u which is a weak solution of the problem and satisfies∫

Ω

ρü · v dx +

∫
Ω

τ : ε(v) dx =

∫
Ω

f · u dx v ∈ V . (4.3.1)

Note, that the solution u possesses a discontinuity across Γ as demanded by
boundary conditions (2.1.5a), (2.1.5b) and therefore such a function does not
belong to the space of test functions V . Nevertheless, a function which does
belong there is u − uΓ, where uΓ is an extension of discontinuity function
fΓ into region ΩΓ. We assume that uΓ satisfies conditions which where
demanded on it in discussion about weak solution. Such a function no longer
has a discontinuity across Γ and neither does its time derivative [u− uΓ]+− =

0 = [u̇− u̇Γ]+−. Assume that u̇− u̇Γ can be used as a test function to get∫
Ω

ρü · u̇ dx +

∫
Ω

τ : ε(u̇) dx =

∫
Ω

f · u̇ dx + Ed(ḟΓ), (4.3.2)

where we have used the abbreviation

Ed(fΓ) :=

∫
ΩΓ

ρü · uΓ dx +

∫
ΩΓ

τ (u) : ε(uΓ) dx−
∫

ΩΓ

f · uΓ dx, (4.3.3)

where uΓ is an extension of fΓ into region ΩΓ. Value Ed really depends only
on the discontinuity prescribed and not on the extension uΓ which was used.
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Let there be two extensions u1
Γ and u2

Γ of the same discontinuity function fΓ

which thus satisfy (u1
Γ − u2

Γ)|Γ = 0. Then functional Ed gives

Ed(0) =

∫
ΩΓ

ρü·(u1
Γ−u2

Γ) dx+

∫
ΩΓ

τ (u) : ε
(
u1

Γ − u2
Γ

)
dx−

∫
ΩΓ

f ·(u1
Γ−u2

Γ) dx = 0.

(4.3.4)
This equality holds because u is a solution and therefore it satisfies (4.3.1).
The difference of two extensions z := u1

Γ−u2
Γ then belongs to W 1,2

0 (ΩΓ; R3).
Such functions can be extended by zero to the whole region Ω. Therefore
z (extended by zero) is an admissible test function from V and the identity
holds. Functional Ed(ḟΓ) has a meaning of power generated by the disconti-
nuity in displacement on Γ.

Consider a general case of Hook’s law, where τ = Cε(u). Using this
notation, we can rewrite expression (4.3.2) into

d

dt

∫
Ω

ρ

2
|u̇|2 dx +

d

dt

∫
Ω

1

2
ε(u) : Cε(u) dx =

∫
Ω

f · u̇ dx + Ed(ḟΓ), (4.3.5)

where we can see clearly the meaning of each term. The first term on the
left-hand side is a rate of change of kinetic energy. The second term on the
left-hand side represents the rate of change of stored energy in the elastic
medium. First term on the right-hand side represents the power of volume
forces. The last term on the left-hand side has a meaning of power generated
by the prescribed discontinuity in displacement.

4.3.1 Energy balance in the approximate solution

In this subsection u denotes an approximate solution, which is a linear com-
bination of basis functions of Vh. Kinetic energy in the approximate solution
can be expressed as

Ekin =

∫
Ω

ρ

2
u̇ · u̇ dx =

∑
i,j

1

2
ċiċj

∫
Ω

ρvi · vj dx =
1

2
ċ ·Dċ, (4.3.6)

where c is a vector of coefficients of u in the basis of {vi}.
Stored elastic energy in the approximate solution can be expressed simi-

larly

Eela =

∫
Ω

1

2
τ : ε(u) dx =

∑
i,j

1

2
cicj

∫
Ω

λ(∇·vi)(∇·vj)+2µε(vi) : ε(vj) dx =
1

2
c·Ac.

(4.3.7)
Relations (4.3.6) and (4.3.7) provide an easy way to compute the kinetic and
elastic energy in the approximate solution. Using these we can investigate
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conservation of energy in the particular time-integration algorithm. Although
this is not an exact proof, we also immediately see that matrices A, D must be
positive definite. The reason is that they are operators that produce elastic
and kinetic energy respectively. One always expects these two kinds of energy
to be nonnegative. For the matrix A the positive definiteness follows from V
ellipticity of bilinear operator A. Positive definiteness is important, because
we finally end up solving systems of linear equations with these matrices
on the left-hand side. Since matrices are also symmetric, we can use the
method of conjugate gradients to solve the system. We will present plots
of total energy versus time in later sections which show actual results of
computations to show that time-integration schemes really conserve energy.

4.4 Implementation

The first step in carrying out computation is to generate a suitable mesh. In
our case we have chosen to use tetrahedral elements with first order approx-
imation. For generation of meshes we use Netgen 4.4 [2]. Netgen is suitable
for generating tetrahedral meshes for domains with not too complicated ge-
ometry. The geometry of domain is defined by making unions, intersections,
differences of simple geometric entities. These entities are for example a
half-space, a cylinder, a sphere, a cone. Netgen also provides a simple way
to define granularity of the mesh. Having a possibility to alter coarseness is
crucial, because we would like to reach a compromise between discretization
error and computational effort.

I have developed a simple program which takes the mesh generated by
Netgen, computes matrix entries and solves the systems of linear equations
defined by them. Since the matrix A is symmetric and positive definite, the
method of conjugate gradients can be applied to solve the system (either in
static or dynamic case).

The program uses library SparseLib++ [3]. It is an object oriented library
designed to deal with sparse matrices. It offers advantages of object oriented
design while maintaining speed of matrix vector multiplication. The multipli-
cation is computed with help of routines from BLAS, so speed is guaranteed.
Sparselib++ is accompanied by library IML++, which implements iterative
methods for solving linear algebraic systems. Although it offers many meth-
ods for more general matrices, we use conjugate gradients because our matrix
which defines the system is always symmetric and positive definite.

Preconditioners are used in order to gain a faster convergence of CG.
Incomplete Choleski preconditioner gives the best results (fastest conver-
gence), but also spends a lot of memory. Convergence of approximations is
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significantly slower with diagonal preconditioning than with Choleski pre-
conditioning. However for cases, where the computer is likely to run out of
memory, it is better to use diagonal preconditioner because it requires less
memory. As a stopping criterion we use condition ||r||

||b|| < TOL, where r is
the residual of current approximation, b is a left-hand side and TOL is an a
priori given tolerance.

4.4.1 Building matrices

Both A and D have the same sparse structure. The sparse structure is de-
termined by mesh geometry and a substantial role plays node numbering.
The number of nonzero elements in the matrix is invariant with respect to
the nodes numbering, but better numbering can bring most nonzero entries
close to the diagonal. I did not experiment with nodes renumbering. The
i, j-th entry is nonzero if supports of basis functions corresponding to these
nodes have a nontrivial intersection. In the case of first-order approxima-
tion this demand is satisfied whenever nodes i and j are connected with an
edge, or equivalently when there exists an element (tetrahedron) containing
both nodes. A fast way to build the matrix is to use concept of element
based assembly [8, pg.76,77]. At the beginning the sparse structure must be
determined and all entries set to zero.

Consider that we are in scalar case and that the element’s nodes num-
bers are: p1, p2, p3, p4. Then this element contributes to matrix entries with
indices p1p1, p1p2, p1p3 and so on. The contributions are computed using
a quadrature rule on the particular element. So in this case each element
contributes to 42 entries. In our case we solve vector problem, so all matrices
have dimension 3∗(number of nodes). Generally each element contributes to
122 entries in the vector case. Using this way to assemble matrices, we only
have to go through each element once. Time consumed to assemble a matrix
depends linearly on the number of elements.

Quadrature rules

When assembling matrix A, we integrate constants over each element, be-
cause gradients of basis functions are constant. Integral over the element is
simply the constant multiplied by the volume of the element.

When computing entries of matrix D, we integrate a quadratic function.
Therefore it is desirable to use a quadrature rule of a second order of accuracy.
Let K̂ be a reference element, see figure 4.1. All elements can be mapped on
the reference element with an affine linear mapping of form F (x) = Bx + b.
Matrix B is nonsingular. Hence all computations of integrals can be done on
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the reference element. Note that since the mapping F is linear, Jacobian is
constant. I used the following open rule to get exact quadratures of quadratic
function on the reference element∫

K̂

f(x) dx =
4∑

i=1

ωif(ni) + E(f), (4.4.1)

where E(f) is an error of the rule, ωi are weights and ni are nodes of the
rule. This particular rule is exact for polynomial functions of order less or
equal to two. Weights of the rule are

ωi =
1

24
for i = 1..4. (4.4.2)

If we denote by a = 5+3
√

5
20

and b = 5−
√

5
20

, nodes can be expressed as

n1 = (a, b, b), (4.4.3a)

n2 = (b, a, b), (4.4.3b)

n3 = (b, b, a), (4.4.3c)

n4 = (b, b, b). (4.4.3d)

This particular quadrature rule can be found in [7].

x

z

p = [0,1,0]

p = [1,0,0]

p = [0,0,0]

y

p =  [0,0,1]
3

4

2

1

Figure 4.1: The reference element K̂. All elements can me mapped on the reference
element with an affine linear mapping of form F (x) = Bx + b.
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Γ

Figure 4.2: Situation in two dimensions. Support of discrete function uΓ is colored
in pink. In process of assembling matrices AΓ and DΓ we integrate only over
elements which are pink.

4.4.2 Representation of the source function uΓ in dis-
crete form

The trick with assumption, that the solution is given as a sum of two compo-
nents, is usually used when one needs to satisfy non-zero Dirichlet boundary
conditions. Our setting of the problem shares the need of two-component
solution with the case of non-zero Dirichlet boundary conditions. In order
to simplify the following discussion and to avoid complicated notation, we
will outline the idea for a scalar problem. The space Vh is generated by basis
functions {vi}DOF

i=1 . Functions vi are piecewise linear on each element and
vi(xj) = δij holds. If we want to capture the discontinuity, we must be able
to generate a mesh, where element faces coincide with the fault surface.

Function uΓ in discrete form: if x are coordinates of a node lying directly
on Γ, then discrete version and the original uΓ gives the same values. If
the node is not on the fault surface Γ, then the discrete uΓ is zero. Crucial
moment is, that the discrete uΓ is a linear combination of modified basis
functions. The modification rests in a reduction of support of those basis
functions, whose support spreads on both sides of the fault surface. If this
is the case, then the new basis function remains untouched on the side of Γ
where we add the source function. On the opposite side the function equals
to zero. A modified basis function corresponding to vi will be denoted by
vi. Note that such modified basis functions do not belong to Vh any more,
because they are discontinuous.
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Let’s define matrices

(AΓ)i,j := Ah(vj, vi), (4.4.4)

(DΓ)i,j := (vi, vj)h. (4.4.5)

The right-hand side contribution to the equation (4.1.5) coming from
extension of slip function uΓ =

∑
i(cΓ)ivi can be very easily expressed in

terms of the above matrices AΓ and DΓ:

Dc̈ + Ac = F − AΓcΓ −DΓc̈Γ, (4.4.6)

where cΓ are coefficients of decomposition of discrete function uΓ into mod-
ified basis functions and F denotes contribution of volume forces. Entries
of matrices AΓ, DΓ can be computed the same way as the entries of A and
D. The only change is, that we only consider contributions from elements,
which lie on one particular side of the fault surface - see figure 4.2. Omitting
elements from the opposite side ensures, that we cut off the support of basis
functions which have its base node directly on Γ.
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Chapter 5

Results

This chapter presents results achieved with the methods introduced in previ-
ous chapters and sections. The first part shows how finite elements work in
the static case for two slip functions. The approximate solution is compared
to an analytic solution for the first case of circular shear crack. Turning to
time dependent slip function, there is no analytic solution available. Our
data are compared to a reference solution obtained by the discrete wavenum-
ber method. We use P 1 approximation for displacement field and stress field
is then computed from displacement using Hook’s law. Approximate solution
for stresses is therefore a piecewise constant function.

All results show behavior of solution only relatively close to fault zone.
If we wanted to accommodate a large neighbourhood of the fault into our
computational domain, we would not be able to carry out the computation
because of the size of the problem. Size of neighbourhood of the fault is
limited by our hardware equipment.

Following two sections 5.1 and 5.2 show static modifications of problems
defined at the beginning of this paper. Static equations are original equations
defining the problem where term with ü is omitted. In words of numerics we
solve one system of equations for coefficients c of displacement field in the
basis of Vh.

All quantities in equations are considered to be dimensionless.

5.1 The static circular-crack model

Setting of this problem is well known, because an analytic solution exists for
this problem. The problem is qualitatively discussed in [11]. Since there is an
analytic solution, it was the first test of the method. The analytic solution,
which is known for the case of whole R3, can be found in [4]. Of course, our
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numerical results are computed on a bounded domain. Computed solution
was compared to analytic solution directly on the fault plane and close to it.
Since we are interested only in solution directly on the fault plane and close
to it, the computational domain can be chosen relatively small. All meshes
we used for computation had a shape of a sphere with radius equal to three.
The sphere’s centre is at the origin. Zero Dirichlet boundary conditions are
prescribed on the whole boundary of Ω. Crack is represented as a circular
fault zone of unit radius with the centre at the origin.

y

z

ΓDΓ

x

d

Figure 5.1: Schematically depicted computational domain for both circular-crack
model and cosine slip model. Relative size of fault zone and bounding sphere is
preserved. Vector d indicates direction of the slip.

The source is defined by

Γ = {x ∈ R3 : x3 = 0, ‖x‖ < 1}, (5.1.1)

[u]+− = e1
24

7π

√
r2 − 1, r ≤ 1, (5.1.2)

where ei denotes unit vector in i-th direction and r denotes distance from
the origin. Discontinuity on the fault plane Γ has a constant direction with
a ball shaped amplitude.

The analytic solution for τ is known in the fault plane z = 0:

τ 13 =

{
−1 for r < 1,
2
π

[
−arctan(

√
r2 − 1) + 1√

r2−1
+ 1

7r2
1√

r2−1
cos(2θ)

]
for r > 1,

(5.1.3)
where θ is an angle between radius vector r and e1. Distance from the
origin is denoted by r = |r|. Note that the analytic solution for stress has
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a singularity at r = 1. Analytic solution is known for all stress components,
but we present only one. Results of the benchmark for the static problem
defined by (5.1.1), (5.1.2) are shown in figure 5.2.
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 0

 0.5

 1

 1.5
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 0  0.5  1  1.5  2

τ 
13

x

MESH13
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analytic solution

Figure 5.2: Plot shows τ 13(x, 0, 0) on the first coordinate axis. Crosses refer to two
meshes on which the computation was carried out. In MESH13, element diameter
directly on the fault plane Γ was diam(K) ∼ 0.03. MESH17 had the element
diameter diam(K) ∼ 0.015.

We can see, that refining the mesh results in a better approximation of
the analytic solution. As the caption attached to the figure suggests, the
second approximate solution is computed on elements half the size of those
in the first solution (this holds only for elements directly on Γ). We can also
see, that although computational domain is relatively small, it gives quite
good approximation for the stress outside the crack.

Presence of the singularity in analytic solution suggested that we should
try to compare our approximate solution also in a case where stresses are
smooth. We believe that the singularity at unit circle is created by the fact,
that the slip function is only C0 on the unit circle. Therefore, the idea arises
that if we prescribe slip function smooth on the boundary of Γ, it will give
no singularity in stresses.
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5.2 Cosine static slip

In the case of cosine static slip the fault plane Γ remains the same as in
section 5.1. The only difference is in the prescribed slip function

[u]+− =
1

2
(cos(πr) + 1)e1 r ≤ 1. (5.2.1)

Slip amplitude has a shape of a cosine, while the slip direction remains par-
allel to x-axis. Unfortunately, now there is no analytic solution available. In
order to verify our method we compare our results to a solution (which we
call a reference solution) obtained by the discrete wavenumber method. Ref-
erence results, which contain data for stresses in the fault plane, were kindly
provided by Jan Burjánek. The nature of discrete wavenumber method as-
sumes that the problem is defined on whole R3. Results for cosine slip func-

-2

-1.5

-1

-0.5

 0

 0.5

 0  0.5  1  1.5  2

τ 
13

x

MESH13
MESH17

reference solution

Figure 5.3: Plot presents the τ 13(x, 0, 0) component as a function of x on the
first coordinate axis. Reference solution is obtained by the discrete wavenumber
method. Two colours of crosses refer to two meshes on which the computation was
carried out. Element diameter on the fault plane for MESH13 was diam(K) ∼
0.03. For MESH17 the element diameter on the fault plane is diam(K) ∼ 0.015.

tion are shown in figure 5.3. Note, that in the case of static cosine slip (5.2.1)
we have used the same meshes as in the case of static circular-crack (5.1.2).
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Mesh is most refined on the fault plane, where we also present the results.
If smaller elements are used, we get better agreement with the reference so-
lution. This should not be surprising; finite elements just converge. One
remark about presented figures 5.3, 5.2: stresses are symetric with respect
to x, i.e. τ 13(x, 0, 0) ≈ τ 13(−x, 0, 0) for approximate solution. Therefore
figures present solutions only for x positive.

5.3 Time dependent cosine slip

After we had gained some experience with static behaviour, we approached
to the case with a time-dependent slip. Slip function, which was prescribed,
will be shown in a few moments. At the initial time displacement and ve-
locity fields are assumed to be zero. Orientation and position of the fault
plane in space are the same as in the static case - see equation (5.1.1). The
slip function which we prescribed was suggested by Jan Burjánek. The slip
function describes propagation of rupture front with a constant rupture ve-
locity. As soon as the rupture reaches a certain point, its slip varies in time
from zero value to some static value. After reaching a static value of slip, it
remains constant in time. Particular example of such a function is described
by the following equations (5.3.2), (5.3.3), (5.3.4).

Static cosine slip function remains the same as in the static cosine slip

f r(r) =
1

2
[1 + cos(πr)] e1, r ≤ 1. (5.3.1)

Rupture propagation begins at time t0 at an initial point xn = [0, 0, 0].
Rupture front propagates with velocity vr. As soon as the rupture reaches a
certain point, displacement discontinuity at this point rises to a static value
given by function f r. The rise has a duration tn. There is no slip before
rupture reaches this point.

[u(r, t)]+− = 0 for t− t0 <
r

vr

(5.3.2)

As soon as the rupture arrives, slip rises according to function given by the
following equation

[u(r, t)]+− =
1

2

[
1− cos

(
π

tn
(t− r

vr

− t0)

)]
f r(r) (5.3.3)

for
r

vr

≤ t− t0 ≤
r

vr

+ tn.
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As soon as the slip finishes rising, it remains constant and equal to the
case of static cosine slip

[u(r, t)]+− = ur(r) for
r

vr

+ tn < t− t0. (5.3.4)

To be prepared completely for computation, we need to know second time
derivative of the slip function, which is given by

[ü(r, t)]+− =
π2

2tn
2

[
cos

(
π

tn
(t− r

vr

− t0)

)]
f r(r) (5.3.5)

for
r

vr

+ t0 ≤ t− t0 ≤
r

vr

+ tn

and equal to zero else.
The above definition of slip function can be rewritten in a more compact

way using the Heaviside step function. To shorten the following formula, we
use notation tr := t− t0 − r

vr
.

[u(r, t)]+− =
1

2

{
H(tr)

[
1− cos

(
tr
tn

π

)]
+ H(tr − tn)

[
1 + cos

(
tr
tn

π

)]}
f r(r)

(5.3.6)

In our computations we have employed the following dimensionless values of
parameters: vr = 0.8, tn = 1, t0 = 0. The remaining parameters are λ = 1.0,

µ = 1.0, ρ = 1.0. With these parameters we get cp =
√

λ+2µ
ρ

=
√

3. The

relation between wave propagation speed and material parameters is derived
for example in [12].

Figure 5.4 presents time dependence of energy (in the sense of section
4.3). Since initial conditions are zero for both displacement and velocity
fields, initial energy is zero, too. As development of the rupture proceeds,
energy rises to a nearly constant value, which is reached as soon as the
slip function stops evolving. Presented graph shows how Bossak-Newmark
scheme preserves energy. Energy in this particular situation remains constant
to a relative error ∼ 10−4. All time-evolution problems were computed using
Bossak-Newmark scheme. Central differences integration scheme gives the
same results differing only in order of a truncation error.

Figures 5.5, 5.6 show behavior of our finite element solution. Results of
our finite element computation were compared to a solution obtained using
the discrete wavenumber method. We show graphs of (1, 3)-th component of
stress versus time at two points. Both points are in the fault plane. Point A
is defined by coordinates A = [2, 0, 0], while B = [0, 2, 0]. Time step used for
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Figure 5.4: Time evolution of energy stored in solution. Kinetic energy is multi-
plied by factor 10.

this computation was ∆t = 0.02. We can see that computed solution agrees
quite well with solution produced by the discrete wavenumber method. Fi-
nite elements in addition produce artificial oscillations that have no physical
background. We can see them in both graphs. One can reduce these os-
cillations by refining mesh. Ideal situation would be if we computed on a
homogenous mesh with sufficiently small elements. This cannot be achieved
in practice, because computational effort rises rapidly with refinement of the
mesh. Presented figures were obtained from a solution computed on a mesh
with about 200000 nodes and about 106 elements. It seems that spurious os-
cillations are present due to parts of the mesh that are coarsely discretized.
If there are only small elements between source and receiver, we observe a
significant reduction of these oscillations.
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Figure 5.5: Time evolution of τ 13 at point A = [2, 0, 0] compared to solution
obtained with the discrete wavenumber method.
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Figure 5.6: Time evolution of τ 13 at point B = [0, 2, 0]. Red line represents
solution from the discrete wavenumber method.
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5.4 Effects of mesh coarsening on spectra

To gain an insight into the reason why artificial oscillations appear, we stud-
ied spectra of seismograms for the previous problem setting. We focused our
attention on effects caused by mesh coarsening.

Let TS be the sampling period and its reciprocal value be the sampling
frequency fS = 1/TS. Suppose we have a discrete signal x[nTS] where n =
0..N − 1. Square brackets are used to emphasise that the signal is discrete.
Signal discretization contains N samples. We consider the case with a purely
real input signal.

Discrete Fourier transform is defined by

X[ωk] =
1

N

N−1∑
n=0

x[nTS] exp(−iωkn), (5.4.1)

where ωk = 2πk
NTS

. We will limit our discussion of discrete Fourier transform
only to its properties which are directly connected with our purpose - i.e. to
study a spectrum of a discrete signal. Result of a discrete Fourier transform
is a set of N complex numbers, which correctly scaled gives an information
about the spectrum of the signal. Original signal x[nTS] can be expressed as
a sum of complex exponentials

x[nTS] =
N−1∑
k=0

X[ωk] exp(inTSωk), (5.4.2)

using its Fourier transform X[ωk]. Norms of complex numbers X[ωk] give the
amplitude with which the particular frequency fk = ωk

2π
is contained in the

signal x[nTs]. If we wanted to directly evaluate quantities X[ωk], it’s time
consumption would be of order N2. The advantage of DFT is that there are
algorithms which compute faster. Family of such algorithms is usually called
Fast Fourier Transform. We use library FFTW 3.1.2 [1] in our computations,
which is a well tested implementation of FFT written in C.

We have studied spectrum of artificial oscillations by the following proce-
dure. We compared seismograms and their spectra for several receivers close
to the source fault. Computation was done repeatedly on different meshes
varying in elements diameter, because we wanted to study the effect of spa-
tial resolution on artificial oscillations. Results were studied for three cases
computed on different meshes. Each mesh was generated to have a different
mean element diameter. With our hardware it is impossible to compute on
completely homogenous mesh with reasonably small elements. Test meshes
had a finely discretized inner ball of radius equal to 4 and a more coarsely
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discretized outer ball with radius equal to 8. Boundary of the outer ball
coincides with the boundary of domain Ω. Zero Dirichlet boundary condi-
tions are prescribed on ∂Ω. All receivers are contained in the inner ball.
Three test meshes differ in diameter of elements in the inner ball. Outer
ball discretization coarseness is the same for all meshes. The same holds for
elements directly on the fault. Seismic source considered here is exactly the
same as in the previous section 5.3.

Results of our investigation are presented in figures 5.7 and 5.8. Note
that input signal is multiplied by an extended cosine bell window function
which erases the ends of investigated interval. Extended cosine bell window
function is defined by

b[n] = 1 for
N

10
≤ n ≤ 9N

10
and b[n] =

1

2

[
1− cos

(
10π

n

N

)]
else,

(5.4.3)
where N is number of samples. Figures show seismograms for two receivers,
plots for other receivers look qualitatively the same. Labelling of three lines
follows the mean element diameter in the particular mesh. Although there
are significant differences in plots of velocity versus time for three meshes,
these do not seem to project into plots spectra with some simple pattern. In
both sets of figures we can see repeating peak in frequency domain in the
vicinity of 2 for mesh marked as diam 0.15, which vanishes as mesh is refined.
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Figure 5.7: Seismograms and corresponding spectra of three velocity components
for receiver at point [-2,-2,0].
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Figure 5.8: Seismograms and corresponding spectra of three velocity components
for receiver at [2,0,2].
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5.5 Piecewise planar fault surface

Γ
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Figure 5.9: Geometry of a piecewise planar fault surface Γ. Dashed lines with
arrows indicate slip direction. Point N = [0.0,−0.5, 0.0] is a starting point for
rupture propagation in the second case of our computation.

One of great advantages of finite elements is its ability to deal with com-
plicated geometries. In majority of physical models of seismic source the fault
zone is considered to be planar. In this section we weaken this assumption
on the fault geometry and study effects which are caused by a more compli-
cated fault geometry. We begin with a piecewise-planar fault, because it is
the easiest natural way of complicating the fault geometry. In the following
model we will assume that the fault surface Γ consists of two planar parts
with slightly different normal vectors. Suggested geometry is schematically
depicted in figure 5.9. Whole setting of the problem adopts many properties
of the previous model with time-dependent cosine slip - recall section 5.3.

Similarly to the previous model the fault zone is a circle, but now it is
oriented vertically. The slip function is the same as in the previous section.
This also means that the amplitude of slip depends on the distance from
the origin. Breaking the fault zone into two planar parts introduces a non-
physical discontinuity in slip at the vertical line, which is an intersection
of the two planes. This discontinuity would not appear if we considered
slip which vanishes near the edge of fault zone. In numerical approximation
there is an abrupt change in direction rather that a discontinuity. Direction
of the slip is −e2 for the part of Γ whose normal is n1. On the second part
of the fault whose normal is n2 slip direction is still in plane z = 0 and
perpendicular to n2.

We have studied two cases which differ in the point from which fracture
begins its propagation. In the first case, rupture propagates from the origin.
Note that such a starting point lies directly on the intersection of two planes
defining the fault zone. In the second case the initial point lies at the point
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Γ

Figure 5.10: Slip direction on piecewise planar fault.

N = [0.0,−0.5, 0.0]. We can therefore look into effects which are caused by
arrival of fracture to the edge in the fault geometry. We are also interested
in resulting stresses in the vicinity of the fault zone.

In order to study dependence of resulting displacements and stresses on
the fault geometry, we have carried out the computation for three configura-
tions of geometry. Each fault zone consists of two planar parts, each part has
a different normal vector. Two parts of piecewise planar fault zone intersect
on the z-axis. One half of the fault zone remains untouched, while on the
other half we add nonzero y component into the normal vector n2. We study
three cases of fault geometries: cases are denoted by the y component of nor-
mal vector n2, while x component remains equal to unity and z component
is zero. Normal vectors of two planar parts are:

n0
1 = (1.0, 0, 0) n0

2 = (1, 0.0, 0), (5.5.1)

n1
1 = (1.0, 0, 0) n1

2 = (1, 0.1, 0), (5.5.2)

n2
1 = (1.0, 0, 0) n2

2 = (1, 0.2, 0). (5.5.3)

Slip direction changes abruptly in the vicinity of intersection of two planes.
In finite elements method we represent the source function uΓ by its discrete
version. Figure 5.10 shows slip direction behavior close to planes intersection.
Direction changes linearly between two nodes. Note, that between two nodes
where slip direction is different boundary condition (2.1.5a) that demanded
slip to be tangent to Γ is violated. The region where such violation occurs
only occupies width of the edge-neighboring element, as can be seen in figure
5.10.

Figures 5.11, 5.12, 5.13 present results for stress field in the plane x = 0.
Each figure is titled by ni

2, where i refers to previously defined normal vectors
of piecewise planar fault - recall (5.5.1)–(5.5.3). Because figures are generated
at surface x = 0, for piecewise planar cases the second part of fault zone
with normal vector ni

2 does not coincide with the plotting plane. That is the
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Figure 5.11: Fault normal force acting on the plane x = 0 at time t = 6.0.
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Figure 5.12: Force in the slip direction acting on plane x = 0 at time instant
t = 6.0.

reason why stresses seem to fade out on the right half of figures. All figures
show, that introduction of an edge in fault geometry results in generation of
additional stresses in close neighborhood of the edge. Presented snapshots
of normal stress are plotted at a time when the whole rupturing process has
already developed.

Next setting we had studied was exactly the same as already discussed,
except that the nucleation point of the rupturing process was shifted into
point N = (0.0,−0.5, 0.0). Rupture front propagates with the same velocity
vr = 3. We were motivated by the belief that the arrival of rupture front to
the edge of planar part of the fault should have some effect on the resulting
wave field. We present snapshots of first velocity component in the plane
z = 0, which is perpedicular to the fault zone and intersects the fault right in
the center. Figures 5.14, 5.15 show snapshots for two source geometries – the
first is planar and labeled by n0

2, the second one labeled n2
2 - recall (5.5.3).
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Figure 5.13: Fault tangent slip-perpendicular force acting on plane x = 0.

There are noticeable changes in the wave field. The most apparent change
in two fields is that the direction in which the fault radiates with biggest
amplitude changes accordingly to changes in the fault geometry. Figure
5.16 presents the difference of two wave fields presented in figures 5.14 and
5.14. The figure suggests that the arrival of the rupture to the edge actually
produces a disturbance in the wave field which propagates from the edge.
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Figure 5.14: Snapshots of first velocity component at time t = 3.6 for two source
geometries.
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Figure 5.15: Snapshots of first velocity component at time t = 4.4 for two source
geometries.
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Figure 5.16: Difference of first components of velocities for two time instants
t = 3.6 and t = 4.4. Two velocity fields were computed for geometries labeled as
n0

2 and n2
2.
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Chapter 6

Summary

Whole work was aimed at numerical methods for obtaining an approximate
solution for various settings of problems. Relevance of kinematic models
greatly depends on physical sense for the problem of the one who designs
them.

Although mathematical formulation of the problem seems straightfor-
ward, there are several issues concerning creation of discontinuity that de-
serve a closer look. Weak formulation of the problem is identical to one
already used by Tomáš Pergler in his master thesis [15]. We did not show
exact proof of existence and uniqueness, because it can be easily obtained
from given references. Neither we have shown the independence of result
on the choice of slip function extension. This assertion can be shown very
similarly to the case of non-zero Dirichlet boundary conditions.

Results presented in the work were computed on a 3GHz, 3Gb RAM
personal computer. Thanks to contemporary computers, we were able to
compute problems with up to approximately 700 000 degrees of freedom.
However, this often was not sufficient to reduce spurious oscillations in our
results. When we compared outcomes of our computations with data ob-
tained by another numerical methods, we found that our results contain
artificial oscillations. These artificial oscillations are believed to be gener-
ated by poor spatial resolution [5]. Literature offers several algorithms for
time-integration that exhibit artificial damping to reduce these spurious os-
cillations. We have presented two algorithms for time-integration. One which
does not dissipate and one that does. After several tests made, we found that
two algorithms give the same results, so only Bossak’s algorithm was used
for all computations. For most of computations we had used algorithm with
such parameters which assured no dissipation.

We have attempted to study spectra of seismograms and their depen-
dence on spatial resolution of mesh. Receivers for which seismograms were

50



recorded were situated very close to the source fault. Our results show, that
quite narrow band of frequencies was affected by the resolution variance. We
believe that sufficient spatial resolution will give results with small spurious
oscillations pollution.

In the last section we have studied effects of nonplanar source geometry.
We have made computations for several cases of piecewise planar fault, vary-
ing in the angle made by two parts of fault surface. We presented figures
of a normal stress on the fault surface. Results for normal stresses on the
fault zone show, that introduction of an edge in geometry generates addi-
tional stresses close to the edge. We have also studied a velocity field. We
have presented figures which show that the wave field is significantly altered
by geometry of the fault. Difference of two velocity fields computed for two
geometries indicates that arrival of rupture front to the edge of geometry
generates a disturbance which then propagates from the edge.

It has become obvious, that proposed numerical method is not suitable
for simulation of long distance wave propagation, but rather for evaluation of
displacements or stresses very close to the source, where also finite dimensions
of source can be appreciated in resulting approximate solution.
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Appendix A

Important theorems

Theorem A.0.1. ( TRACE THEOREM ) Assume Ω is bounded and ∂Ω is
C1. Then there exists a bounded linear operator

T : W 1,p(Ω) → Lp(∂Ω)

such that

• Tu = u|∂Ω if u ∈ W 1,p(Ω) ∩ C(Ω)

• and
||Tu||Lp(∂Ω) ≤ C ||u||W 1,p(Ω)

for each u ∈ W 1,p(Ω), with the constant C depending only on p and Ω. Tu
is called the trace of u on ∂Ω.

Theorem A.0.2. ( KORN’S INEQUALITY ) Let Ω be a bounded region,
with ∂Ω = ΓD ∪ ΓN . ΓD ∩ ΓN = ∅. Let V ≡ {v ∈ W 1,2(Ω; R3) : v|ΓD

= 0}.
Let ΓD have positive two dimesional measure. Then∫

Ω

ε(v) : ε(v) ≥ ||v||W 1,2(Ω;R3) ∀v ∈ V (A.0.1)

Proof. Proof of this statement can be found in [13].
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[6] Vitásek Emil. Numerické metody. SNTL, Prague, 1987.

[7] Patrick Keast. Moderate degree tetrahedral quadrature formulas. Com-
puter Methods in Applied Mechanics and Engineering, 55:pages 339–348,
1986.

[8] Peter Knabner and Lutz Angermann. Numerical methods for elliptic
and parabolic partial differencial equations. Springer, 2003.

[9] J. B. Lambert. Computational Methods in Ordinary Differential Equa-
tions. London : Wiley, 1973.

[10] Evans L.C. Partial differential equations. AMS, 1997.

[11] R. Madariaga. Eartquake source theory: a review, in: Earthquakes:
Observation theory and interpretation. North-Holland, 1983.
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