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Abstract: Estimating large covariance matrices from small samples is an impor-
tant problem in many fields. Among others, this includes spatial statistics and
data assimilation. In this thesis, we deal with several methods of covariance esti-
mation with emphasis on regularization and covariance models useful in filtering
problems. We prove several properties of estimators and propose a new filtering
method. After a brief summary of basic estimating methods used in data assi-
milation, the attention is shifted to covariance models. We show a distinct type
of hierarchy in nested models applied to the spectral diagonal covariance ma-
trix: explicit estimators of parameters are computed by the maximum likelihood
method and asymptotic variance of these estimators is shown to decrease when
the maximization is restricted to a subspace that contains the true parameter
value. A similar result is obtained for general M-estimators. For more complex
covariance models, maximum likelihood method cannot provide explicit para-
meter estimates. In the case of a linear model for a precision matrix, however,
consistent estimator in a closed form can be computed by the score matching
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with nonlinear dynamic.

Keywords: score matching, Gaussian Markov random field, nested parameter
spaces, ensemble Kalman filter, high dimension

iii



Contents

Introduction 3

1 Covariance and its properties 5
1.1 Covariance operator on a compact domain . . . . . . . . . . . . . 5

1.1.1 Spectral convergence of covariance operators . . . . . . . . 6
1.2 Spectral representation of n-periodic stationary random sequence 7

2 Covariance regularization in high dimension 10
2.1 Non-parametric methods . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.1 Shrinkage . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1.2 Tapering . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.1.3 Thresholding . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 Parametric methods . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.1 Regularization in spectral domain . . . . . . . . . . . . . . 15
2.2.2 Regularization in inverse space . . . . . . . . . . . . . . . . 18

3 Nested maximum likelihood estimators 20
3.1 Asymptotic variance of the maximum likelihood estimator . . . . 20
3.2 Asymptotic variance of nested estimators . . . . . . . . . . . . . . 21
3.3 Application: nested covariance models . . . . . . . . . . . . . . . 23

3.3.1 Sample covariance . . . . . . . . . . . . . . . . . . . . . . 23
3.3.2 Diagonal covariance . . . . . . . . . . . . . . . . . . . . . . 24
3.3.3 Diagonal covariance with prescribed decay by 3 parameters 25
3.3.4 Diagonal covariance with prescribed decay by 2 parameters 26

3.4 Computational study . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.4.1 Simulation of fields with diagonal covariance . . . . . . . . 27
3.4.2 Simulation of sparse inverse covariance of Gaussian Markov

random fields (GMRF) . . . . . . . . . . . . . . . . . . . . 30

4 Score matching estimators 32
4.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.2 Score matching estimation method . . . . . . . . . . . . . . . . . 33
4.3 Exponential family . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.4 Score Matching Estimator (SME) in matrices and vectors . . . . . 39
4.5 Continuity of SME . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.6 SME in Gaussian Markov random vector . . . . . . . . . . . . . . 44

4.6.1 Unconstrained covariance matrix . . . . . . . . . . . . . . 44
4.6.2 Linear model for the precision matrix . . . . . . . . . . . . 47
4.6.3 SME of GMRF from a triangular array of samples . . . . . 54

4.7 Computational study . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.7.1 Comparison of SME and Maximum Likelihood Estimator

(MLE) on simulated GMRF . . . . . . . . . . . . . . . . . 55
4.7.2 An illustration of modelling covariance

of real weather fields in wavelet domain . . . . . . . . . . . 57

1



5 Hierarchical structure of asymptotic variance of nested M-esti-
mators 62
5.1 A brief introduction to M-estimators . . . . . . . . . . . . . . . . 62
5.2 Comparison of asymptotic variances of nested estimators . . . . . 63
5.3 Application to SME for normal distribution . . . . . . . . . . . . 66
5.4 Application to MLE . . . . . . . . . . . . . . . . . . . . . . . . . 67

6 Data assimilation and ensemble Kalman filter 69
6.1 The linear data assimilation problem . . . . . . . . . . . . . . . . 69
6.2 Ensemble Kalman filter . . . . . . . . . . . . . . . . . . . . . . . . 70
6.3 Diagonal ensemble Kalman filter . . . . . . . . . . . . . . . . . . . 72

7 Filtering algorithms for GMRF using score matching method 73
7.1 Score matching filter with Gaussian resampling . . . . . . . . . . 73
7.2 Score matching ensemble filter . . . . . . . . . . . . . . . . . . . . 76
7.3 A non-ensemble score matching filter . . . . . . . . . . . . . . . . 76
7.4 Computational study . . . . . . . . . . . . . . . . . . . . . . . . . 77

7.4.1 Simple linear advection . . . . . . . . . . . . . . . . . . . . 78
7.4.2 Lorenz 96 . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

Conclusion 87

Bibliography 88

List of Figures 94

List of Tables 96

List of Abbreviations 97
Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
Nomenclature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

List of publications 99

A Appendix 100
A.1 Computing the optimal value (7.13) of the score matching objective

function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

2



Introduction
In many fields of applied science, e.g. finance, medicine, image processing or
climate studies, it is common to encounter situations where we are confronted with
a very high dimension of vectors of interest, be it a data vector corresponding to
an observation or a state vector, say, of a dynamical system. Often this dimension
highly exceeds the size of the sample we have at our disposal. If we are interested
in relations between variables, e.g. in filtering tasks or in data assimilation,
using sample covariance as a legitimate estimate of the true covariance matrix
is problematic. Obviously the main shortcoming of sample covariance is its low
rank, which complicates using many of the standard methods. Moreover, if we
need to estimate the precision matrix (inverse of the covariance matrix), the naive
estimator in the form of the inverse of sample covariance is unavailable. Further,
a sample covariance matrix of low rank usually contains spurious covariances
that distort the covariance structure among individual variables. Therefore, it
is desirable to find alternative covariance estimators that are more accurate and
better-conditioned than the sample covariance matrix. Any technique leading to
a covariance estimate that is regular and positive definite will be called covariance
regularization in this thesis.

Covariance estimation and the quality of the estimate form a key component
of data assimilation algorithms in meteorological sciences. In this context, the
dimension of the state vector describing the atmosphere or ocean is in the order
of millions or larger, however, due to the computational cost, the size of avail-
able sample (usually called ensemble) is in the order of tens. For example, the
Canadian Meteorological Centre (CMC) uses an ensemble with 20 members, and
the European Centre for Medium-Range Weather Forecasts (ECMWF) uses 51
members.

In data assimilation, where the state vector is composed from several 2D or
3D spatial fields, a common approach to regularization of the sample covari-
ance matrix is localization, which is usually achieved by imposing sparsity of the
covariance estimate. A simple localization method consists in multiplying the
sample covariance matrix term by term by a gradual cut-off matrix (Buehner
and Charron [12], Furrer and Bengtsson [24]) in order to suppress off-diagonal
entries corresponding to long-range spurious covariances. If the random field is
weakly stationary, we may keep the diagonal of the sample covariance matrix only
(Section 1.2) after transformation to spectral domain. Such diagonal approxima-
tion in the spectral domain is also beneficial in filtering algorithms (Parrish and
Derber [59], Kasanický et al. [37]). Beside localization, current filtering methods
use non-parametric estimating methods as shrinkage and ad hoc techniques for
dimension reduction. A summary of estimation methods used in data assimilation
is provided in Section 2.1.

In this thesis, we focus on introducing sparsity into covariance matrices or
their inverses by means of suitable parametric covariance models. We deal with
two specific aspects of covariance modelling, namely, hierarchy of nested para-
metric models and modelling of precision matrices with applications in filtering.
In Chapter 3, we study nested parametric models estimated by the maximum
likelihood method and show a hierarchical structure of their asymptotic covari-

3



ance matrices. In particular, the asymptotic variance of the maximum likelihood
estimate (MLE) is proved to decrease when the maximization is restricted to
a subspace that contains the true parameter value. We apply this result to nested
models for a diagonal covariance matrix arising, e.g., in the context of the diagonal
approximation mentioned above. In the case of a covariance matrix of a weakly
stationary random field after the spectral transform, sample covariance matrix
represents the MLE of the most general model and MLE of an unconstrained
diagonal matrix is its submodel. We also compute the MLE for parameters of
two specific models describing the decay of diagonal elements. In accordance with
the theory, such models, if realistic, outperform the simple estimate in form of
a diagonal of sample covariance matrix. The hierarchical property is illustrated
by means of a simulation and the Fisher information matrices representing the
inverse of asymptotic covariances of the computed estimators are provided as
well.

The second part of the thesis shares the parametric approach with the first
part and deals with modelling of the precision matrix. A very general linear model
for the precision matrix is investigated and applied to Gaussian Markov Random
Fields (GMRFs). Since conditional independence of variables implies zero corres-
ponding elements in the precision matrix, sparsity is taken into account as well.
In Section 4.6 we compute explicit formulas for estimators of the parameters of
this linear model by an estimation method which arose originally in the area of
graphical models and which is called score matching. Beside these formulas, we
show continuity of the score matching estimators to random perturbations for the
exponential family of distributions. The score matching estimators belong to the
class of M-estimators. This motivated an extension of the results on hierarchical
structure of asymptotic variances from maximum likelihood estimators to M-
estimators. The closed form estimator for a precision matrix of a GMRF becomes
a key component for the new filtering algorithms proposed in Chapter 7. Both
of these filters are intended for a dynamical system whose state vector can be
represented by a GMRF in every time step. The first proposed filter is the Score
matching filter with Gaussian resampling (SMF-GR) and it performs very well
under this assumption. Moreover, we prove that SMF-GR provides a consistent
estimator for the mean and covariance matrix of the true forecast distribution in
every time step. The second proposed filter is called Score matching ensemble
filter (SMEF), since it consists of the Ensemble Kalman filter employing the
score matching estimate of the precision matrix. This algorithm appears to be
more robust than SMF-GR. Simulations suggest that it works very well for small
samples and even for a non-Gaussian and non-Markov system like the Lorenz
96 model. It seems that the score matching covariance estimate improves the
filtering process significantly even though it was derived under the assumption of
normality.

Chapters 1, 2 and 6 contain summary of the known methods and provide
background for other chapters. Chapters 3, 4, 5 and 7 offer short introductions
to the problem areas followed by new results, most of which have been published
in Turčičová et al. [67] and Turčičová et al. [66].
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1. Covariance and its properties
Consider a random vector X defined on a probability space (Ω,A, P ) with va-
lues in Rn. In the context of data assimilation, X represents the state of some
dynamical system and it is usually understood as a discretization of a conti-
nuous random field defined on a one, two or three-dimensional bounded domain.
The discretization is realized by evaluating the random field on a uniform mesh
covering the domain and stacking these values vertically in a single column.

When X ∈ L2(Ω,A, P ) =: L2(Ω), we can define its covariance matrix

covX = E(X − EX)(X − EX)⊤ = E(XX⊤) − (EX)(EX)⊤.

In the whole thesis, we will assume that X ∈ L2(Ω,A, P ) and denote Σ ≡
covX. From the definition, covariance matrix is a symmetric positive semidefinite
matrix.

In the following two sections, we provide few specific properties of covariance
matrices or covariance operators that are needed later in the thesis.

1.1 Covariance operator on a compact domain
When the dimension n is very large (in practice, n is often of order 106 or more),
even in numeric processing of such fields, effects that are typical for continuous
fields emerge. These limiting properties become important for high-dimensional
covariance matrices, and it is useful to keep in mind the link to covariance ope-
rators.

Domain D ⊂ Rd is defined as an open and connected set. Assume that D is
bounded and define C(D) = {g : D → R, g continuous}, where D denotes the
closure of D. Consider a random field X on D as a collection of random variables
X(s, ·) : (Ω,A, P ) → R indexed by s ∈ D. It is assumed that X(·, ω) ∈ C(D)
for a fixed ω ∈ Ω, and X(s, ·) ∈ L2(Ω) for a fixed s ∈ D. In order to make the
notation shorter, we will omit the variable ω and use X(s) instead of X(s, ω).
The expected value of X is defined pointwise, i.e. (E X)(s) = E(X(s)) ∀s ∈ D.

The covariance function c (t, s) of X is defined as c (t, s) = cov (X(t),X(s)) ,
∀t, s ∈ D and it is assumed to be continuous on D×D. The covariance function
forms the kernel of a covariance operator T : C(D) → C(D), which is defined, for
u ∈ C(D), by

T : u ↦→ v, v (t) =
∫︂
D
c (t, s)u (s) ds, t ∈ D. (1.1)

Equation (1.1) also defines T as a bounded operator T: L2(D) → L2(D) and
from the definition of covariance, it follows that T is positive, i.e.,

⟨Tu, u⟩L2(D) ≥ 0, ∀u ∈ L2(D). (1.2)

Since the domain D is bounded, the covariance operator T is compact as
an operator on C(D) as well as an operator on L2(D). Thus, it has countably
many eigenvalues λk and eigenvectors uk ∈ L2(D), k ∈ N, defined by λkuk =
Tuk, uk ̸= 0. Also, all uk ∈ C(D). The set {λk}k∈N is bounded and has only
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zero as an accumulation point. It follows from (1.2) that all eigenvalues λk are
non-negative.

An important condition that is automatically fulfilled for finite-dimensional
random vectors but becomes nontrivial in infinite dimension is the trace-class
property specified in the following lemma, which follows immediately from the
classical Mercer’s theorem (e.g., König [39, Theorem 3.a.1]).

Lemma 1 (trace-class property). Under the assumptions made above, the co-
variance operator T is of the trace-class, i.e., it holds that

tr(T) ≡
∞∑︂

k=1
λk < ∞.

1.1.1 Spectral convergence of covariance operators
As indicated at the beginning of this section, the random vector X often arises
by a discretization of a random field X = (X(s), s ∈ D). In what follows, we
will briefly describe the spectral convergence of the covariance matrices of X to
the covariance operator of X. This result should be kept in mind together with
the trace-class property (Lemma 1) when looking for a proper model for high-
dimensional covariance matrices. Eigenvalues of the model covariance matrix
(sorted in descending order) should rapidly decay to zero for all n, in order to
fulfil the trace-class property in the limit case.

Consider a uniform mesh of points si ∈ D, i = 1, . . . , n, with spacing hn. The
discretization of u ∈ C(D) is a vector un = (u(s1), . . . , u(sn))⊤. Analogously,
the discretization of a continuous random field X is the random vector Xn =
(X (s1) , . . . ,X(sn))⊤ with covariance matrix Σn = [σij]ni,j=1 consisting of elements

σij = c (si, sj) = cov (X (si) ,X (sj)) .

Replacing the integral in (1.1) by the numerical quadrature scheme∫︂
D
c (t, s)u (s) ds ≈

n∑︂
j=1

wn,jc(t, sj)u(sj)

with weights {wn,j}n
j=1, we can interpret matrix-vector multiplication by the co-

variance matrix as a numerical approximation of the covariance operator. Define
the discrete operator Tn : C(D) → C(D) by

Tn : u ↦→ v, v (t) =
∑︂n

j=1 h
d
nc (t, sj)u (sj) . (1.3)

Since v = Tn u depends on the values of u (sj) , j = 1, . . . , n, only, operator Tn

has rank at most n and v = Tn u is determined uniquely by the values v (sj) , j =
1, . . . , n. Values v (t) elsewhere are interpolated naturally by the kernel c(·, ·)
itself. In numerical analysis, (1.3) is known as Nyström interpolation formula
(Atkinson and Han [3, Section 12.4]). The eigenvalue equation for Tn,

λnũ = Tn ũ, ũ ∈ C(D),

is equivalent to

λnũ (ti) =
∑︂n

j=1 h
d
nc (ti, sj) ũ (sj) , i = 1, . . . , n,
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which is in turn equivalent to

λnũn = hd
nΣnũn, ũn ∈ Rn.

Thus, the eigenvalues of the discretized operator Tn are the same as the eigenva-
lues of the scaled covariance matrix hd

nΣn.
It is known from the theory of collectively compact operators that on a se-

quence of meshes with hn → 0 for n → ∞, the eigenvalues of Tn converge to the
eigenvalues of T (Atkinson [4, 2]). A brief contemporary review on this topic can
be found in the introduction of Huang et al. [31].

1.2 Spectral representation of n-periodic statio-
nary random sequence

In this section, assume for simplicity that D is a line segment, which is covered
by a uniform mesh of n nodes with spacing h. Further assume that n = 2m + 1
and that the nodes {sk} are indexed by k ∈ {−m, . . . ,−1, 0, 1, . . . ,m} ≡ M, i.e.,
D = [−mh,mh] and sk = kh, k ∈ M. Denote Xk = X(sk), k ∈ M. Now, extend
D periodically to the whole R, so that the resulting infinite mesh consists of nodes
sk = kh indexed by k ∈ Z. The associated random element X∞ = (Xk)k∈Z is
then an n-periodic random sequence satisfying

Xn+j = Xj, ∀j ∈ Z.

In geophysical sciences, the random sequence X∞ represents the state of some
dynamical system, which can be often assumed to be weakly stationary, i.e., it
holds that

EXj = const., ∀j ∈ Z,
cov(Xj, Xk) = c(sj, sk) = c̃(|sj − sk|), ∀j, k ∈ Z,

where the covariance function c̃(·) depends only on the distance between sj and
sk. Without loss of generality, consider EXj = 0, ∀j ∈ Z. In order to simplify
the calculations, assume for the moment that X∞ is complex. Each component
of X∞ has the spectral representation of the form (Brockwell and Davis [11])

Xk =
∫︂ π

−π
eiνskdZ(ν) ≡ lim

max |νj−νj−1|→0

r∑︂
j=1

eiν′
jsk(Z(νj) − Z(νj−1)), (1.4)

where −π = ν0 < ν1 < . . . < vr−1 < νr = π is a partition of [−π, π], ν ′
j is an

arbitrary point from the subinterval [νj−1, νj], and Z(ν) is a centered random
process with uncorrelated increments.

The periodicity condition X−m = Xm+1 restricts the values of ν ∈ [−π, π], so

νℓ = 2πℓ
(2m+ 1)h = 2πℓ

nh
, ℓ ∈ M.

Therefore, X∞ has discrete spectrum and the right-hand side of (1.4) turns into
a simple sum of uncorrelated harmonic oscillations (Yaglom [73])

Xk =
m∑︂

ℓ=−m

Zℓe
i

2πℓsk
nh =

m∑︂
ℓ=−m

Zℓe
i 2πℓk

n , (1.5)
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where {Zℓ}ℓ∈M are random variables such that EZℓ = 0, ℓ ∈ M, and E(ZkZℓ) =
0, ℓ, k ∈ M, ℓ ̸= k.

Denote by Σ the n×n covariance matrix of Xn = (X−m, . . . , Xm)⊤. Then its
(j, k)-th entry is of the form

σjk = E(XjXk) = E
m∑︂

ℓ1=−m

m∑︂
ℓ2=−m

Zℓ1Zℓ2e
i 2π

n
(ℓ1j−ℓ2k)

=
m∑︂

ℓ=−m

E |Zℓ|2ei 2πℓ
n

(j−k) =
m∑︂

ℓ=−m

ei 2πℓ
n

j E |Zℓ|2e−i 2πℓ
n

k,

where we used that the random variables Zℓ are uncorrelated. Denote by D the
n×n matrix with E |Z−m|2, . . . ,E |Zm|2 on its diagonal and by Fc the matrix with
rows consisting of vectors u(ℓ) = [u(ℓ)

j ]j∈M, ℓ ∈ M, such that u(ℓ)
j = ei 2πℓ

n
j. Then

Σ = FcDF
⊤
c , where F⊤

c is the adjoint matrix to Fc, is the spectral decomposition
of Σ. Hence, u(ℓ) are eigenvectors of Σ and λℓ = E |Zℓ|2 ∈ R the associated
eigenvalues.

When Xn is real, then Xk = Xk, and (1.5) implies that Zℓ = Z−ℓ. Therefore,

λ−ℓ = E |Z−ℓ|2 = E |Zℓ|2 = E |Zℓ|2 = λℓ. (1.6)
In order to obtain a real basis, define real orthogonal vectors v(ℓ) = [v(ℓ)

j ]j∈M,
w(ℓ) = [w(ℓ)

j ]j∈M by linear combinations of vectors u(ℓ) of the complex basis:

v
(ℓ)
j =

u
(ℓ)
j + u

(−ℓ)
j

2 = cos
(︄

2πℓj
n

)︄
, ℓ = 0, . . . ,m, (1.7)

w
(ℓ)
j =

u
(ℓ)
j − u

(−ℓ)
j

2i = sin
(︄

2πℓj
n

)︄
, ℓ = 1, . . . ,m. (1.8)

Indeed, for k ̸= ℓ,⟨︂
v(k),v(ℓ)

⟩︂
n

=
⟨︂
w(k),w(ℓ)

⟩︂
n

=
⟨︂
v(k),w(ℓ)

⟩︂
n

= 0

and⟨︂
v(ℓ),w(ℓ)

⟩︂
n

=
⟨︄
u(ℓ) + u(−ℓ)

2 ,
u(ℓ) − u(−ℓ)

2i

⟩︄
n

= i

4

(︃⃦⃦⃦
u(ℓ)

⃦⃦⃦2

n
−
⃦⃦⃦
u(−ℓ)

⃦⃦⃦2

n

)︃
= 0,

where ⟨·, ·⟩n is the standard inner product in Rn.
This new basis V = {v(0),v(ℓ),w(ℓ), ℓ = 1, . . . ,m} has again n = 2m + 1

elements and matrix Σ can again be shown to be diagonal in this basis. The
covariance between the coefficients of Xn in the basis V equals

E
(︂⟨︂
Xn,v

(k)
⟩︂

n

⟨︂
Xn,v

(ℓ)
⟩︂

n

)︂
= E

(︃(︂
v(k)

)︂⊤
XnX

⊤
n v

(ℓ)
)︃

=
(︂
v(k)

)︂⊤
Σv(ℓ)

=
(︂
v(k)

)︂⊤
Σ
(︄
u(ℓ) + u(−ℓ)

2

)︄
=
(︂
v(k)

)︂⊤
λℓ

(︄
u(ℓ) + u(−ℓ)

2

)︄

=
(︂
v(k)

)︂⊤
λℓv

(ℓ) =
{︄

λℓ, if k = ℓ,
0, otherwise,

E
(︂⟨︂
Xn,w

(i)
⟩︂

n

⟨︂
Xn,w

(j)
⟩︂

n

)︂
=
{︄

λj, if i = j,
0, otherwise,

E
(︂⟨︂
Xn,v

(k)
⟩︂

n

⟨︂
Xn,w

(j)
⟩︂

n

)︂
= 0
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for k, ℓ = 0, . . . ,m and i, j = 1, . . . ,m, where we used the eigenvalue symmetry
(1.6) and the orthogonality of the basis vectors.

Denote by F = [w(m), . . . ,w(1),v(0),v(1), . . . ,v(m)] the matrix with basis vec-
tors in its columns. Then

Σ = FDF⊤

is the spectral decomposition of Σ.
This result can be generalized for a domain D ⊂ Rd, d ≥ 1. Since the

matrix F represents the discrete Fourier transform, we can conclude that the
covariance matrix of a periodic stationary random sequence can be diagonalized
by the discrete Fourier transform. We will take advantage of this result later in
Section 2.2.1.

For other than periodic boundary condition, the discrete Fourier transform
leads only to approximate diagonality of Σ, since the spectral coefficients Zℓ are
uncorrelated only in the limit n → ∞ (Dwivedi and Rao [21]).
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2. Covariance regularization in
high dimension
As mentioned in the introduction, estimation of a large covariance matrix or its
inverse from a small sample is an important task in many applied fields. In the
situation of low sample size, the sample covariance matrix

S = 1
N

N∑︂
i=1

(︂
Xi − X̄

)︂ (︂
Xi − X̄

)︂⊤
, (2.1)

which is the most common covariance estimator, is known to perform poorly.
The main problems appearing here are rank deficiency and spurious covari-

ances. When the matrix dimension n is larger than the number N of available
observations, S has a low rank and hence is not even invertible. Although, es-
timation of the precision matrix Σ−1 is crucial in many situations. The latter
undesirable phenomenon is the occurrence of high covariances between variables
with small true dependency. When X is a meteorological field, these spurious co-
variances typically appear between meteorological variables at distant locations
and arise only as a result of small sample size. In the context of spatial statistics,
suppression of long-term covariances is called localization.

In order to avoid the drawbacks listed above, the estimating process in case of
n >> N usually requires an extra contribution. In this thesis, by a regularization
method, we understand any estimating technique leading to positive definite co-
variance estimator without spurious covariances. Some of the methods consist of
consecutive transform of sample covariance S, and some of them impose a specific
covariance structure based on additional assumptions.

This chapter contains an overview of regularization methods suitable for high-
dimensional covariance matrices, with special attention to methods used in data
assimilation. We proceed from non-parametric methods, which usually work
element-wise, to parametric models, which take an advantage of some specific
property of the random vector. All estimators are based on a random sample
X1,X2, . . . ,XN .

2.1 Non-parametric methods
In this section, we present three estimating methods that does not assume any
particular distribution of X, neither a particular structure of Σ. They start
with the sample covariance matrix (2.1) and by means of element-wise opera-
tions transform it into a regular matrix and suppress the spurious covariances.
The estimated covariance matrix is sparse and positive definite (at least asymp-
totically). Consistency result is usually achieved under additional condition on
the relation between n and N .

2.1.1 Shrinkage
In case of sample size deficiency, the eigenstructure of the sample covariance
matrix S tends to be systematically distorted (Muirhead [56]) in the sense that
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the largest (smallest) eigenvalues are overestimated (underestimated). Below are
two methods from a wide range of attempts that deal with correction of this
phenomenon.

Linear shrinkage estimator

Ledoit and Wolf [42] assume that X has zero mean and they proposed a covari-
ance estimator that is regular and better conditioned than the sample covariance
matrix, without assuming any particular structure. The needed assumptions re-
late to boundedness of the ratio n/N and finite moments of X. The proposed
shrinkage estimator has the form

Sshr = ρνI + (1 − ρ)S0, (2.2)

where 0 < ρ < 1, ν > 0, and S0 = 1
N

∑︁N
i=1XiX

⊤
i is a sample covariance matrix

estimating covariance of a zero-mean variable. Therefore, the resulting estimator
is given by shrinking the sample covariance S0 towards a diagonal matrix. Note
that νI can be interpreted as a shrinkage target and the weight ρ as a shrinkage
intensity. In Ledoit and Wolf [42], the optimal estimates of the parameters ρ, ν
are sought by minimization of expected quadratic loss

min
ρ,ν

E ∥ρνI + (1 − ρ)S0 − Σ∥2
F .

The calculation takes into account that ES0 = Σ. Ledoit and Wolf [42, Lemma
2.1 and Theorem 2.1] found that optimal coefficients of the linear combination
(2.2) are

ν = 1
n

tr(Σ), ρ = β2

α2 + β2 = β2

δ2 , (2.3)

where

β2 = 1
n

E ∥S0 − Σ∥2
F , α2 = 1

n
∥Σ − νI∥2

F , δ2 = 1
n

E ∥S0 − νI∥2
F ,

which, unfortunately, depend on the unknown covariance matrix Σ. However,
consistent estimators of the parameters ν, α, β, δ are provided in Ledoit and Wolf
[42]. Using these estimators in the formula (2.3) gives estimators ν̂, ρ̂, which can
be plugged into (2.2) in order to get an optimal covariance estimator. For ρ̂ ̸= 0,
positive definiteness of the identity matrix ensures the resulting matrix to be
positive definite as well and therefore invertible. Moreover, in simulations carried
out by Ledoit and Wolf [42], Sshr performed incomparably better than the sample
covariance matrix S0.

The interpretation of (2.2) in Ledoit and Wolf [42] is based on the dispersion
of covariance matrix eigenvalues. The sample eigenvalues (i.e. eigenvalues of
the sample covariance) are more dispersed around their mean than the true ones
(Ledoit and Wolf [42], Muirhead [56]). By using the convex combination (2.2), the
sample eigenvalues are shrunk towards their mean, which results in an improved
estimator.

When X represents a discretization of a continuous random process, then,
by making the discretization finer and finer, its covariance matrix tends to the
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covariance operator of the original process. From that point of view, using of the
identity matrix as a shrinkage target is problematic because in the limiting case
(n → ∞), it does not satisfy the trace-class property (Lemma 1).

The estimator (2.2) can be generalized to

S∗
shr = ρT + (1 − ρ)S0,

where T is a target matrix endowed with standard covariance properties like full
rank and positive definiteness. Usually, T is chosen to be diagonal.

Shrinkage effect can be achieved also implicitly by computing sample covari-
ance matrix from a random sample X1,X2, . . . ,XN augmented by additional
independent random vectors sampled from a distribution with covariance matrix
T . Construction of these new random vectors depends on the assumed statistical
properties of X. For example in spatial modelling of meteorological variables at
distant locations, it turned out to be useful to generate random vectors with spa-
tial Markov property with covariance matrix from the Matérn family. A fruitful
source of such vectors is a stochastic diffusion equation, whose stationary solution
is just like that (Simpson et al. [64]). This equation can make generating of new
vectors easier, especially in high-dimension.

Condition-number-regularized covariance estimation

An estimator proposed in Won and Kim [71] and Won et al. [72] falls into a broad
family of shrinkage estimators, however it additionally assumes a specific distri-
bution of X. The regularization effect is achieved by bounding the condition
number of the estimate by a regularization parameter κmax. This ensures the re-
sulting matrix to be invertible and well-conditioned. Since the condition number
is defined as a ratio of the largest and smallest eigenvalue, this method corrects
for overestimation of the largest eigenvalues and underestimation of the small
eigenvalues simultaneously. The resulting estimator is called a condition-number-
regularized covariance estimator and it is formulated as the MLE restricted on
the subspace of matrices with condition number bounded by κmax, i.e.,

max
Σ

ℓ(Σ) subject to cond(Σ) ≡ λmax(Σ)
λmin(Σ) ≤ κmax, (2.4)

where λmax(Σ), resp. λmin(Σ), is the largest, resp. the smallest, eigenvalue of the
covariance matrix Σ. An implicit condition is that Σ be symmetric and positive
definite. Therefore, the idea of this method is to search a MLE in a subspace
defined by covariance matrices with condition number smaller or equal to the
true condition number.

Let l1 ≥ . . . ≥ ln ≥ 0 be the ordered eigenvalues of the sample covariance
S, so that QLQ⊤ with L = diag(l1, . . . , ln) and QQ⊤ = Q⊤Q = In. For a given
κmax < cond(S), the unique solution of the problem (2.4) is a matrix Scon =
QΛ∗Q⊤ (Won and Kim [71], Won et al. [72]), where the diagonal matrix Λ∗ is
formed by

λ∗
i =

⎧⎪⎪⎨⎪⎪⎩
τ if li ≤ τ,

li if τ < li < κmaxτ,

κmaxτ if li ≥ κmaxτ.
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Therefore, the sample eigenvalues li are truncated when they are smaller than τ
or larger than κmaxτ . The optimal lower cut-off level τ equals

τ =
∑︁k1

i=1 li/κmax +∑︁n
i=k2 li

k1 + n− k2 + 1 ,

where k1 ∈ {1, . . . , n} is the largest index such that lk1 > κmaxτ and k2 is the
smallest index such that lk2 < τ . Hence, τ is an average of the (scaled and)
truncated eigenvalues. Note that when κmax ≥ cond(S), then Scon = S.

An optimal κmax is selected by maximization of the expected likelihood, which
is approximated by using K-fold cross-validation. Details of the computational
process are provided in Won et al. [72]. The authors also proved that κmax selected
in this way is a consistent estimator for the true condition number.

2.1.2 Tapering
An effective and simple way of localization of sample covariance matrix is mul-
tiplying S by a real sparse positive definite matrix M . The estimator is of the
form

Stap = S ◦M, (2.5)
where ◦ denotes the Schur product. This method is called tapering or banding
(in Pourahmadi [60]) and matrix Stap is called tapered matrix. Due to the spar-
sity of M , the matrix Stap is sparse as well, which brings many computational
advantages.

When M is real and positive definite, than, due to the Lemma 2, the matrix
Stap is real and positive definite, too.

Lemma 2 (Horn and Johnson [29, Theorem 7.5.3]). Let A,B be real matrices of
type n × n. If A is positive definite and B is positive semidefinite with positive
entries on the main diagonal, then A ◦B is positive definite.

In the context of data assimilation, regularization of a covariance matrix by
means of Schur product has been proposed in Houtekamer and Mitchell [30]
and Hamill et al. [28], based on covariance modelling by means of a covariance
function. Let X = (X(s), s ∈ D) be a continuous random field defined on
a bounded domain D ⊂ R3 (e.g. covering part of the Earth’s atmosphere) and
X = (X1, . . . , Xn)⊤ represents some discretization of X, i.e. Xi = X(si), si ∈ D.
Denote by c(s, t) = cov(X(s), X(t)) the covariance function of X. It holds that
for every discretization X, a matrix with entries c(si, sj) is positive semidefinite
and, on the contrary, when a covariance matrix with entries c(si, sj) is positive
definite for arbitrary set of points si, then c define a covariance function. In
Houtekamer and Mitchell [30], the matrix M is constructed so that it is positive
definite and its (i, j)-th entry Mij equals ϱ(∥si − sj∥3), where ϱ : [0,∞) → [0, 1]
is a function with compact support and ∥·∥3 is a norm in R3. In other words,
ϱ can be identified with a well-defined correlation function and so (2.5) models
a covariance matrix of a random field as the Schur product of sample covariance
matrix with a correlation matrix defined by means of ϱ. Construction of such
a function (in particular compactly supported) is a non-trivial task, which is
dealt with in Gaspari and Cohn [25]. Hamill et al. [28] use a function ϱ that
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is smooth and monotonically decreasing to zero, specifically, it is a polynomial
of the 5th degree (Gaspari and Cohn [25, expression (4.10)]). The shape of the
curve resembles the right half of a Gaussian curve that takes zero values at a finite
distance, which ensures the sparsity of M .

In Furrer and Bengtsson [24], M is chosen to minimize the mean square error

MSE(Stap) = E ∥Σ − Stap∥2
F = E

(︂
tr
(︂
(Σ − S ◦M)2

)︂)︂
.

To ensure that the estimator S ◦ M is positive definite, the above minimization
should be carried over the set of positive definite matrices M , which is a non-
trivial problem. Therefore, this constraint is usually ignored, which allows a term
by term minimization leading to an explicit formula for entries mij of M ,

mij =
σ2

ij

σ2
ij + (σ2

ij + σiiσjj)/N
,

where [σij]ni,j=1 are entries of Σ. Given sample data, a plug-in estimator based
on the entries sij of S is straightforwardly obtained. Note that mij tends to one
at rate 1/N . Finally, the resulting M is made to be positive definite by some
heuristic approaches (e.g. keep only the positive eigenvalues of M and set the
remaining ones equal to any small number ε > 0). Also, sparseness may be
introduced by setting mij = 0 whenever sij ≈ 0. Second attempt (inspired by
Houtekamer and Mitchell [30], Hamill et al. [28]) is to parametrize the matrix
M by a valid correlation function describing the correlation range and estimate
its parameters by minimizing of MSE. This method ensures the resulting matrix
to be positive definite, however, it does not introduce sparseness, which makes it
less computationally attractive.

2.1.3 Thresholding
High-dimensional covariance matrices of random vectors representing meteoro-
logical fields are usually supposed to be sparse and to contain many zero entries.
The idea of thresholding (Bickel and Levina [9]) is to neglect the small covariances
in order to get an improved estimate

Tt(S) ≡
(︂
sij1[|sij |≥t] : i, j = 1, . . . , p

)︂
,

where Tt(S) denotes the thresholding operator applied to the sample covariance
and t > 0 is the chosen threshold. Bickel and Levina [9] recommend to choose t
according to the following procedure. The available sample is split randomly into
two parts of size N1 = N

(︂
1 − 1

log N

)︂
and N2 = N

log N
and the associated sample

covariance matrices SN1 and SN2 are computed. This step is repeated K times
and t is chosen so as to minimize

R(t) = 1
K

K∑︂
k=1

∥Tt(SN1,k) − SN2,k∥2
F .

A big advantage of this method is its simple implementation. A potential
disadvantage is the loss of positive definiteness. However, it has been shown in
Bickel and Levina [9] that the thresholded estimator is consistent in the operator
norm as long as the true covariance matrix is sparse (in a suitable sense), the
variable X is Gaussian (or sub-Gaussian) and (log n)/N → 0.
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2.2 Parametric methods
When X can be assumed to have additional statistical properties like particu-
lar distribution and specific covariance structure, its covariance matrix can be
estimated by using a proper covariance model.

For meteorological random fields, it is often possible to assume normal dis-
tribution, covariance stationarity and spatial Markov property (see Definition 1).
Each of these properties offer a potential improvement of the covariance estima-
tor by imposing a special parametric structure, whose parameters are estimated
by standard statistical methods. Accuracy of the resulting estimate and its per-
formance in further application (e.g., data assimilation) depend on how realistic
those additional assumptions are.

In a bid to avoid complex models with a large number of parameters, many
estimating methods are based on transforming X to a space where its covariance
matrix is approximately diagonal. This leads to a large reduction in the number
of parameters.

Possibilities of using parametric models in covariance modelling are very wide.
A particular model can be used for Σ itself, its inverse, or Σ after some decom-
position or transformation. From the large number of options, we have chosen
two remarkable methods that are closely connected with the contribution of this
thesis. These methods are briefly summarized in the following subsections and
will be revisited in later chapters of the thesis.

2.2.1 Regularization in spectral domain
This approach is based on the Karhunen-Loève expansion

X = EX +
n∑︂

j=1
d

1/2
j ξjvj, (2.6)

where {dj}n
k=1 are coefficients, {ξj}n

j=1 are pairwise uncorrelated random variables
with zero mean and unit variance and {vj}n

j=1 are orthonormal vectors in Rn.
Then, the covariance matrix of X can be written as

Σ = FDF⊤, (2.7)

where D = diag(d1, . . . , dn) and columns of the matrix F are formed by vectors
vj. Since (2.7) represents the spectral decomposition of Σ, (2.6) represents X
in the basis of its principal components. However, for large n, most of the sam-
ple eigenvalues are zero and estimation of the theoretical decomposition (2.6) is
difficult. Thus, it is better to base a regularization method on an appropriate
deterministic basis (or, more generally, on frames).

For a given F , modelling of Σ through (2.7) can be based on estimating the
diagonal matrix

D = F⊤ΣF ≡ F(Σ).
If we do not accept any other assumptions on D, it is possible, as in the previous
section, to apply some non-parametric method on the sample covariance matrix
S transformed to the spectral space, i.e., on F⊤SF = F(S). Of course, this
matrix is never perfectly diagonal, but there remain (in practice usually small)
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non-zero entries. The easiest way of the regularization of F(S) is using only its
diagonal part (Kasanický et al. [37]). Essentially, it is equivalent to tapering of
F(S) according to (2.5) for M = I.

When a specific distribution of X is assumed, the diagonal entries {djj}n
j=1 of

the spectral covariance matrix D can be estimated, for instance, by the method
of maximum likelihood. In the case of normal distribution, the MLE based on
a random sample X1, . . . ,XN is (Turčičová et al. [67])

d̂jj = 1
N

N∑︂
i=1

X2
ij, j = 1, . . . , n,

where Xij denotes the j-th entry of Xi, i = 1, . . . , N .
Until now, no assumption on the specific choice of the orthogonal matrix

F has been made. In many practical applications, the random vector X =
(X1, X2, . . . , Xn)⊤ can be assumed to be weakly stationary, i.e., for k = 1, . . . , n,

EXk = const.,
cov(Xk, Xk+h) = c̃(h), ∀h ∈ R

for some function c̃. As shown in Section 1.2, the covariance matrix Σ of a weakly
stationary random vector X can be diagonalized by the discrete Fourier trans-
form. Therefore, Σ = covX has the spectral decomposition (2.7) with F repre-
senting the discrete Fourier transform.

In meteorological and geophysical applications, the random vector X often
represents a discretization of a continuous random field X = (X(s), s ∈ D),
where D is a spatial domain covering part of the Earth. Usually, D is a subset
of Rd for d = 1, 2, 3. Following Section 1.2, assume for simplicity that D is a line
segment [−mh,mh] with n = 2m + 1 nodes sk = kh, where h > 0 and k ∈
M = {−m, . . . ,−1, 0, 1, . . . ,m}. The matrix F representing the discrete Fourier
transform consists of orthonormal vectors v(ℓ) = [v(ℓ)

j ]j∈M and w(ℓ) = [w(ℓ)
j ]j∈M

with entries

v
(0)
j = 1√

n
,

v
(ℓ)
j =

√︄
2
n

cos
(︄

2πℓj
n

)︄
, ℓ = 1, . . . ,m,

w
(ℓ)
j =

√︄
2
n

sin
(︄

2πℓj
n

)︄
, ℓ = 1, . . . ,m,

obtained by normalizing eigenvectors (1.7) and (1.8). Now, we can take the
advantage of the fact that the vectors v(ℓ) and w(ℓ) are also eigenvectors of the
discrete Laplace operator L : Rn → Rn, which is in one-dimensional case identical
to the operator of second derivative and can be represented by the matrix

L = 1
h2

⎛⎜⎜⎜⎜⎜⎜⎜⎝

−2 1 0 . . . 1
1 −2 1 . . . 0

. . .
0 . . . 1 −2 1
1 . . . 0 1 −2

⎞⎟⎟⎟⎟⎟⎟⎟⎠ . (2.8)
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Then for x = [xj]j∈M ∈ Rn, the j-th element of the vector L(x) ≡ Lx equals

L(x)j = xj−1 − 2xj + xj+1

h2 ,

where j ∈ M. For values x−m−1 and xm+1 located at s−m−1 and sm+1 (beyond the
boundary of D), we can considered various boundary conditions. The definition
(2.8) corresponds to the periodic boundary condition for which x−m−1 = xm and
xm+1 = x1.

Eigenvalues of L associated to the definition (2.8) are

λℓ = − 4
h2 sin2

(︄
πℓ

n

)︄
, ℓ = 0, 1, . . . ,m, (2.9)

and it holds

L(v(ℓ)) = λℓv
(ℓ), ℓ = 0, 1, . . . ,m,

L(w(ℓ)) = λℓw
(ℓ), ℓ = 1, . . . ,m.

By denoting

F = [w(m), . . . ,w(1),v(0),v(1), . . . ,v(m)],
Λ = diag (λm, . . . , λ1, λ0, λ1, . . . , λm) ,

we get the spectral decomposition L = FΛF⊤.
Having L = FΛF⊤ and Σ = FDF⊤, it is natural to model Σ as a function of

the discrete Laplace operator. When L = FΛF⊤, then for a continuous matrix
f , it is possible to define a matrix f(L) by the spectral decomposition f(L) =
Ff(Λ)F⊤, where f(Λ) = diag (f(λm), . . . , f(λ1), f(λ0), f(λ1), . . . , f(λm)).

The eigenvalues djj (forming the diagonal ofD) can thus be modelled by a suit-
able function of the eigenvalues (2.9) of L, i.e., djj = f(λ|j−m−1|), j = 1, . . . , n.
Recall that X is assumed to represent a discretization of a continuous random
field X . According to Lemma 1, the covariance operator T associated to X needs
to have finite trace, i.e., the sum of its eigenvalues needs to be finite. Under the as-
sumption that the kernel c(s, t) = cov(X(s), X(t)), s, t ∈ D, of T is continuous,
it was shown in Section 1.1.1 that the eigenvalues {djj}n

j=1 of Σ converge to the
eigenvalues of the covariance operator T as n → ∞, i.e., as the discretization is
getting finer and finer. In order to fulfil the trace-class property in the limit case,
the eigenvalues {f(λk)}m

k=0 should also decrease rapidly to zero1 with increasing
k even for every m finite. Since {λk}m

k=0 is a decreasing sequence of negative
numbers, the function f needs to have a sufficiently fast decay for λ → −∞.
The exponential decay is used, e.g., by Mirouze and Weaver [55]. One specific
exponential model is treated in Section 3.3 for normally distributed X. Another
possible choice of a covariance model is a power model, where the eigenvalues
of the covariance are assumed to be a negative power of {−λk}m

k=0, e.g., Berner
et al. [8], Gaspari et al. [26], Simpson et al. [64]. When using those models for
modelling D, the number of parameters is reduced from n to the number of pa-
rameters of the particular model. The model adjusts the eigenstructure of the

1For results on the use of random fields, whose covariance operator does not have finite
trace, in data assimilation, we refer to Kasanický [36].

17



covariance matrix in a similar way as shrinkage, smooth down the shape of the
estimated d̂kk and so contributes to the noise reduction.

The spectral diagonal approach can be particularly beneficial for the Ensemble
Kalman filter (Section 6.2, Algorithm 1), when R = H = In (Kasanický et al.
[37]). More general and practical methods that use the Laplace operator can be
found in Lindgren et al. [46], Mirouze and Weaver [55], etc.

The idea of covariance diagonalization in a transformed space appears also in
Courtier et al. [16] for a continuous field defined on a sphere and in Pannekoucke
et al. [58] for a discrete field defined on a 1D and 2D cyclic domain.

2.2.2 Regularization in inverse space
In many applications, the need for a precision matrix Σ−1 is stronger than that
for Σ itself. Moreover, modelling of the precision matrix can be more convenient.
One of the ideas that provides a sparse estimate of the precision matrix is based
on the following result. For a subset of indices A ⊂ {1, . . . , n} denote by X−A

the subfield (Xi : i ∈ {1, 2, . . . , n} \ A).
Lemma 3 (Rue and Held [63, Theorem 2.2]). Let X be normally distributed with
mean µ and precision matrix Σ−1 > 0. Then for i ̸= j,

Xi ⊥ Xj|X−{i,j} ⇔ (Σ−1)ij = 0,

where (Σ−1)ij denotes the (i, j)-th entry of Σ−1.
This result can be particularly beneficial for normal random vectors with the

spatial Markov property. Below, we adopt its definition from Rue and Held [63]
and consider X equipped with an adjacency structure of an undirected graph.
For each Xk, denote by NXk

⊂ X−k the set of neighbours of Xk.
Definition 1 (spatial Markov property). The random vectorX is said to have the
spatial Markov property if for every k ∈ {1, . . . , n}, the conditional distribution
of Xk depends only on the neighbourhood NXk

, i.e., for every k and every Borel
set B,

P(Xk ∈ B|X−k) = P(Xk ∈ B|NXk
).

That is, each variable Xk of a Markov field X is conditionally independent on
variables outside NXk

.
This observation provides a powerful tool for a sparse representation of the

covariance matrix of a GMRF, since its inverse (the precision matrix) is a sparse,
band matrix. For illustration, in Figure 2.1, we provide three examples of two-
dimensional Gaussian Markov fields (with dimension 10 × 10) and the corre-
sponding precision matrices. The random field corresponding to the Figure 2.1a,
where only the four closest neighbours are considered, will be called the first order
GMRF in this thesis.

GMRFs naturally arise in the area of graphical models, where a common task
is to estimate the precision matrix and its associated graph from data. For further
details, we refer to e.g., Dempster [19], Whittaker [70], Giudici and Green [27].
More recent results on estimation of graphical models in high-dimension can be
found in Lin et al. [45], where the score matching method, which will be studied
in Chapter 4, is modified by using ℓ1 penalty in order to accommodate sparsity
of the graph.
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Figure 2.1: Block band-diagonal structure of inverse covariance matrix of a 10 ×
10 GMRF with columns stacked vertically. In the bottom row: diagrams of
a gridpoint and its 4, 8, 12 nearest neighbours.

Linear model for the precision matrix

Consider the model
Σ−1 = β1A1 + . . .+ βrAr, (2.10)

where A1, . . . , Ar are known, linearly independent (in the space of matrices) and
sparse matrices of type (n × n) and β = (β1, . . . , βr)⊤ are unknown parameters.
Suitable choice of A1, . . . , Ar are matrices Aij with one on the (i, j)-th position
and zero elsewhere, or symmetric matrices containing non-zero elements only on
selected subdiagonals or their parts.

Parameters β can be estimated by the maximum likelihood method (Ueno
and Tsuchiya [68]), where the numerical maximization is needed. Closed for-
mula does not exist. The score matching estimation method (Hyvärinen [33])
makes it possible to compute a closed form estimate (Turčičová et al. [66]), which
is described in Chapter 4 in greater detail. Under further assumptions, both
these methods provide consistent estimators. However, positive definiteness of
the resulting matrix estimate is guaranteed only asymptotically (as follows from
consistency).
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3. Nested maximum likelihood
estimators
The principal result of this chapter is the observation that if parameters of a dis-
tribution are fitted as the MLE, then, under some assumptions on the true pa-
rameters, the estimate using fewer parameters is asymptotically more (or equally)
accurate. Although, our result is asymptotic, the difference in accuracy is often
significant even for small samples. This observation points out the importance
of searching for a covariance model that is as accurate as possible for the given
problem because overparametrization can be very harmful. A simulation study
comparing the accuracy of covariance submodels in spectral and inverse space is
provided at the end of the chapter. The results contained in this chapter were
published in Turčičová et al. [67].

3.1 Asymptotic variance of the maximum like-
lihood estimator

First, we briefly review some standard results of maximum likelihood method
following Lehmann and Casella [43]. Suppose XN = [X1, . . . ,XN ] is a random
sample from a distribution on Rn with density f (x|θ) with unknown parameter
vector θ in a parameter space Θ ⊂ Rs. The maximum likelihood estimate θ̂N of
the true parameter θ0 is defined by maximizing the likelihood

θ̂N = arg max
θ

L (θ|XN) , L (θ|XN) =
N∏︂

i=1
L (θ|Xi) , L (θ|x) = f (x|θ) ,

or, equivalently, maximizing the log-likelihood

θ̂N = arg max
θ

ℓ (θ|XN) , ℓ (θ|XN) =
N∑︂

i=1
ℓ (θ|Xi) , ℓ (θ|x) = log f (x|θ) .

We adopt the usual assumptions (Lehmann and Casella [43, Section 6.3 and
6.5]) that

(A1) the true parameter θ0 lies in an open subset Θ̃ of Θ,

(A2) the density f determines the parameter θ uniquely in the sense that
f(x|θ1) = f(x|θ2) a.e. if and only if θ1 = θ2,

(A3) X = {x : f(x|θ) > 0} does not depend on θ,

(A4) the derivative ∂3

∂θi∂θj∂θk
f(x|θ) exists for all θ ∈ Θ̃, for almost all x ∈ X and

for every i, j, k = 1, . . . , s,

(A5)
∫︁

X
∂2

∂θi∂θj
f(x|θ)dx = 0 for all θ ∈ Θ̃ and every i, j = 1, . . . , s,

(A6) for all i, j, k = 1, . . . , s, there exists a function Mijk(x) ≥ 0 such that
EMijk(x) < ∞ and

⃓⃓⃓
∂3

∂θi∂θj∂θk
log f(x|θ)

⃓⃓⃓
≤ Mijk(x) for all θ ∈ Θ̃ and

almost all x ∈ X .
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Then the error of the estimate is asymptotically normal (Lehmann and Casella
[43, Theorem 5.1, p. 463]),

√
N(θ̂N − θ0) d−→ Nn(0, Cθ0), as N → ∞, (3.1)

where

Cθ0 = I−1
θ0 , Iθ0 = E

(︂
∇⊤
θ ℓ(θ0|X)∇θℓ(θ0|X)

)︂
, X ∼ f (x|θ0) . (3.2)

The matrix Iθ0 is called the Fisher information matrix for the parametrization
θ. Here, X, x, and θ are columns, while the gradient ∇θℓ of ℓ with respect to
the parameter θ is a row vector, which is compatible with the dimensioning of
Jacobian matrices below. The column vector (∇θℓ)⊤ is denoted by ∇⊤

θ ℓ.

3.2 Asymptotic variance of nested estimators
Now, suppose we have an additional information that the true parameter θ0 lies in
a subspace of Θ, which is parametrized by r ≤ s parameters (φ1,. . . , φr)⊤ = φ.
Denote by Jφ(θ(φ)) the s × r Jacobian matrix with entries ∂θi

∂φj
. In the next

theorem, the asymptotic covariance of the maximum likelihood estimator for φ

φ̂N = arg max
φ

ℓ (φ|XN) , ℓ (φ|XN) =
N∑︂

i=1
ℓ (φ|Xi) , ℓ (φ|x) = log f (x|θ (φ)) ,

is derived based on the asymptotic covariance of θ in (3.1).

Theorem 4. Assume that the map φ ↦→ θ(φ) is one-to-one from Φ ⊂ Rr to Θ,
the map φ ↦→ θ(φ) is continuously differentiable, Jφ(θ(φ)) is full rank for all
φ ∈ Φ, and θ0 = θ(φ0) with φ0 in the interior of Φ. Then,

√
N(φ̂N −φ0) d−→ Nr (0, Cφ0) as N → ∞, (3.3)

where Cφ0 = I−1
φ0 , with Iφ0 the Fisher information matrix of the parametrization

φ given by
Iφ0 = Jφ(θ(φ0))⊤ Iθ0Jφ(θ(φ0)) .

Proof. From (3.2) and the chain rule

∇φℓ(φ|X) = ∇θℓ(θ|X)Jφ(θ(φ)) ,

it follows

Iφ0 = E
(︂
∇⊤
φℓ(φ0|X)∇φℓ(φ0|X)

)︂
= Jφ(θ(φ0))⊤ E

(︂
∇⊤
θ ℓ(θ0|X)∇θℓ(θ0|X)

)︂
Jφ(θ(φ0))

= Jφ(θ(φ0))⊤ Iθ0Jφ(θ(φ0)) .

The asymptotic distribution (3.3) is now (3.1) applied to φ.

When the parameter θ is the quantity of interest in an application, it is useful
to express the estimate and its variance in terms of the original parameter θ
rather than the subspace parameter φ.
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Corollary. Under the assumptions of Theorem 4,
√
N (θ (φ̂N) − θ0) d−→ Nn

(︂
0, Cθ(φ0)

)︂
as N → ∞,

where

Cθ(φ0) = Jφ(θ(φ0)) I−1
φ0 Jφ(θ(φ0))⊤

= Jφ(θ(φ0))
(︂
Jφ(θ(φ0))⊤ Iθ0Jφ(θ(φ0))

)︂−1
Jφ(θ(φ0))⊤ . (3.4)

Proof. The lemma follows from (3.3) by the delta method (Rao [62, p. 387]), since
the map φ ↦→ θ(φ) is continuously differentiable.

Remark 1. The matrix Cθ(φ0) is singular, so it cannot be written as the inverse
of another matrix, but it can be understood as the inverse I−1

θ(φ0) of the Fisher
information matrix for φ, embedded in the larger parameter space Θ.

The next theorem shows that in case of two parametrizations φ and θ which
are nested, the smaller parametrization has smaller or equal asymptotic covari-
ance than the larger one. For symmetric matrices A and B, A ≤ B means that
A−B is positive semidefinite.

Theorem 5. Suppose that φ satisfies the assumptions in Theorem 4. Then,

Cθ(φ0) ≤ Cθ0 . (3.5)

In addition, if U ∼ Nn(0, Cθ(φ0)) and V ∼ Nn (0, Cθ0) are random vectors with
the asymptotic distributions of the estimates θ (φ̂N) and θ̂N , then

E ∥U∥2
n = tr

(︂
Cθ(φ0)

)︂
≤ tr (Cθ0) = E ∥V ∥2

n , (3.6)

where ∥V ∥n is the standard Euclidean norm in Rn.

Proof. Denote A = Iθ0 , B = Jφ(θ(φ0)) and define

PB = A1/2B(B⊤AB)−1B⊤A1/2.

The matrix PB is symmetric and idempotent, hence it is an orthogonal projection.
In addition,

RangePB = RangeA1/2B ⊂ Range In.

Consequently, PB ≤ I holds from standard properties of orthogonal projections,
and (3.5) follows.

To prove (3.6), note that for random vectorX with EX = 0 and finite second
moment, E ∥X∥2

n = tr (covX). The proof is concluded by using the fact that for
symmetric matrices, A ≤ B implies trA ≤ trB, cf. e.g., Carlen [15].

Remark 2. In the practically interesting cases when there is a large difference in
the dimensions of the parameters φ and θ, many eigenvalues in the covariance of
the estimation error become zero. The computational tests in Section 3.4 show
that the resulting decrease of the estimation error can be significant.
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3.3 Application: nested covariance models
A frequent assumption in data assimilation is the weak stationarity, which leads
to diagonality in spectral space (Courtier et al. [16], Pannekoucke et al. [58]), as
described in Section 1.2. Besides, part of the assimilation methods that dominate
today’s practice of meteorological services (the so called variational methods)
usually employ a covariance model based on a series of transformations leading
to independence of variables (Bannister [5], Michel and Auligné [54]). One way or
other, it results in an estimation problem for a diagonal covariance matrix. The
distribution is not normal but formulas derived from the normal distribution are
used anyway.

In what follows, we introduce the particular covariance structures, state some
known facts on full and diagonal covariance, propose parametric models for the
diagonal and compute corresponding MLE.

3.3.1 Sample covariance
Assume that the top-level parameter space Θ consists of all symmetric positive
definite matrices, resulting in the parametrization Σ with n(n+1)

2 independent
parameters. Recall that XN = [X1, . . . ,XN ] denotes a matrix with columns
formed by vectors X1, . . . ,XN . The likelihood of Σ given a sample XN from
Nn(0,Σ0) is

L (Σ|XN) = 1
(det Σ)N/2 (2π)nN/2 e

− 1
2 tr(Σ−1XNX⊤

N).

If N ≥ n, it is well known (e.g. Muirhead [57, p. 83]) that the likelihood is
maximized at the sample covariance matrix

S(µ=0) = 1
N

N∑︂
i=1
XiX

⊤
i . (3.7)

The Fisher information matrix for the maximum likelihood covariance estimator
(Magnus and Neudecker [49, p. 356]) is

Ivec(Σ0) = 1
2Σ−1

0 ⊗ Σ−1
0 ,

where ⊗ stands for the Kronecker product and vec is an operator that transforms
a matrix into a vector by stacking the columns of the matrix one underneath the
other. This matrix has dimension n2 × n2.
Remark 3. If S(µ=0) is singular, L

(︂
S(µ=0)|XN

)︂
cannot be evaluated because that

requires the inverse of S(µ=0). Also, in that case, the likelihood L (Σ|XN) is not
bounded above on the set of all Σ > 0, thus the maximum of L (Σ|XN) does not
exist. To show that, consider an orthonormal change of basis so that the vectors
in span (XN) come first, write vectors and matrices in the corresponding 2 × 2
block form, and let

S ′
(µ=0) =

[︄
S ′

11 0
0 0

]︄
, S ′

11 > 0.
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Then lima→0+ X⊤
N

(︂
S ′

(µ=0) + aI
)︂−1

XN exists, but lima→0+ det
(︂
S ′

(µ=0) + aI
)︂

= 0,
thus

lim
a→0+

L
(︂
S ′

(µ=0) + aI
⃓⃓⃓
XN) = ∞.

Note that when the likelihood is redefined in terms of the subspace span (XN)
only, the sample covariance can be obtained by maximization on the subspace
(Rao [62, p. 527]).

Suppose
X ∼ Nn(0, D0), (3.8)

where X denotes the random vector after an appropriate transform and D0 is
a diagonal matrix.

When the true covariance is diagonal (i.e., Σ0 ≡ D0, cf. (3.8)), a significant
improvement can be achieved by setting the off-diagonal terms of sample covari-
ance (3.7) to zero, which is equivalent to tapering of S(µ=0) according to (2.5)
with M = In, i.e.,

Stap = diag
(︂
S(µ=0)

)︂
. (3.9)

It is known that using only the diagonal of the unbiased sample covariance

S̃(µ=0) = 1
N − 1

N∑︂
i=1
XiX

⊤
i

results in smaller (or equal) Frobenius norm of the error pointwise,

E
⃦⃦⃦
diag

(︂
S̃(µ=0)

)︂
−D0

⃦⃦⃦
F

≤ E
⃦⃦⃦
S̃(µ=0) −D0

⃦⃦⃦
F
, (3.10)

cf. Furrer and Bengtsson [24] for the case when the mean is assumed to be
known like here, and Kasanický et al. [37] for the unbiased sample covariance and
unknown mean.

3.3.2 Diagonal covariance
The parameter space Θ1 ⊂ Θ consisting of all diagonal matrices with positive
diagonal, with n parameters d = (d1, . . . , dn)⊤, can be viewed as a simple class of
models for either covariance or its inverse. The log-likelihood function for D =
diag(d1, . . . , dn) as covariance with a given random sample XN = [X1, . . . ,XN ]
from Nn (0, D0) is

ℓ(D|XN) = −N

2 log ((2π)n detD) − 1
2

N∑︂
i=1
X⊤

i D
−1Xi

and has its maximum at

d̂k = 1
N

N∑︂
i=1

X2
i,k, k = 1, . . . , n,

where Xi,k denotes the k-th entry of Xi. The sum of squares S2
k = ∑︁N

i=1 X
2
i,k is a

sufficient statistic for the variance dk. Thus, the maximum likelihood estimator
of covariance in the class of diagonal matrices is

D̂
(1)
N = 1

N
diag

(︂
S2

1 , . . . , S
2
n

)︂
. (3.11)
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Denote D(1)
0 = diag(d01, . . . , d0n). It is easy to compute the Fisher information

matrix explicitly,

I
D

(1)
0

= diag
(︄

1
2d2

01
, . . . ,

1
2d2

0n

)︄
,

which is an n × n matrix and gives the asymptotic covariance of the estimation
error

1
N
C

D
(1)
0

= 1
N

I−1
D

(1)
0

= 1
N

diag
(︂
2d2

01, . . . , 2d2
0n

)︂
from (3.1).

3.3.3 Diagonal covariance with prescribed decay by 3 pa-
rameters

A more specific situation appears when we have an additional information that
the matrix D0 = diag(d01, . . . , d0n) is not only diagonal, but its diagonal entries
have a prescribed decay. For instance, this decay can be governed by a model of
the form dk = ((c1 + c2hk)fk(α))−1, k = 1, . . . , n, where c1, c2 and α are unknown
parameters, h1, . . . , hn are known positive numbers, and f1, . . . , fn are known
differentiable functions. For easier computation it is useful to work with

τk = 1
dk

= (c1 + c2hk)fk(α).

Maximum likelihood estimators for the true parameters c01, c02, and α0 can be
computed efficiently from the likelihood

ℓ(D|XN) = −N

2 n log(2π) + N

2

n∑︂
k=1

log τk − 1
2

n∑︂
k=1

τkS
2
k

by using the chain rule. It holds that

∂ℓ

∂c1
=

n∑︂
k=1

∂ℓ

∂τk

∂τk

∂c1
=

n∑︂
k=1

(︄
N

2τk

− S2
k

2

)︄
∂τk

∂c1

= N

2

n∑︂
k=1

(︄
1

(c1 + c2hk)fk(α) − 1
N
S2

k

)︄
fk(α).

Setting this derivative equal to zero we get
n∑︂

k=1

(︃ 1
c1 + c2hk

− 1
N
S2

kfk(α)
)︃

= 0. (3.12)

Analogously,

∂ℓ

∂c2
=

n∑︂
k=1

∂ℓ

∂τk

∂τk

∂c2
= N

2

n∑︂
k=1

(︄
1

(c1 + c2hk)fk(α) − 1
N
S2

k

)︄
hkfk(α),

so the equation for estimating the parameter c2 is
n∑︂

k=1

(︄
hk

c1 + c2hk

− 1
N
S2

khkfk(α)
)︄

= 0. (3.13)
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Similarly,

∂ℓ

∂α
=

n∑︂
k=1

∂ℓ

∂τk

∂τk

∂α
= N

2

n∑︂
k=1

(︄
1

(c1 + c2hk)fk(α) − 1
N
S2

k

)︄
(c1 + c2hk)∂fk(α)

∂α

= N

2

n∑︂
k=1

(︄
1

fk(α) − 1
N
S2

k(c1 + c2hk)
)︄
∂fk(α)
∂α

and setting the derivative to zero, we get
n∑︂

k=1

(︄
1

fk(α)
∂fk(α)
∂α

− 1
N
S2

k(c1 + c2hk)∂fk(α)
∂α

)︄
= 0. (3.14)

The maximum likelihood estimator for D0 is then given by

D̂
(2) = diag

{︂
((ĉ1 + ĉ2hk)fk(α̂))−1, k = 1, . . . , n

}︂
, (3.15)

where (ĉ1, ĉ2, α̂) is the solution of the system (3.12, 3.13, 3.14). This expression
corresponds to searching a maximum likelihood estimator of D0 in the subspace
Θ2 ⊂ Θ1 ⊂ Θ formed by matrices of the form

diag
{︂
((c1 + c2hk)fk(α))−1, k = 1, . . . , n

}︂
.

For completeness, the asymptotic covariance of the estimation error of

D
(2)
0 = diag {dk(c01, c02, α0), k = 1, . . . , n} ,

based on a sample of size N is

1
N
C

D
(2)
0

= 1
N

∇d(c01, c02, α0)I−1
c01,c02,α0 (∇d(c01, c02, α0))⊤

from (3.4), where the Fisher information matrix Ic01,c02,α0 is the 3 × 3 matrix

Ic1,c2,α =⎡⎢⎢⎢⎣
1
2
∑︁n

k=1
1

(c1+c2hk)2
1
2
∑︁n

k=1
hk

(c1+c2hk)2
1
2
∑︁n

k=1
1

(c1+c2hk)fk(α)
∂fk(α)

∂α

1
2
∑︁n

k=1
hk

(c1+c2hk)2
1
2
∑︁n

k=1
h2

k

(c1+c2hk)2
1
2
∑︁n

k=1
hk

(c1+c2hk)fk(α)
∂fk(α)

∂α

1
2
∑︁n

k=1
1

(c1+c2hk)fk(α)
∂fk(α)

∂α
1
2
∑︁n

k=1
hk

(c1+c2hk)fk(α)
∂fk(α)

∂α
1
2
∑︁n

k=1
1

f2
k

(α)

(︂
∂fk(α)

∂α

)︂2

⎤⎥⎥⎥⎦
evaluated at (c01, c02, α0) and

d(c01, c02, α0) = (d1(c01, c02, α0), . . . , dn(c01, c02, α0))⊤

=
(︂
((c01 + c02h1)f1(α0))−1, . . . , ((c01 + c02hn)fn(α0))−1

)︂⊤
.

3.3.4 Diagonal covariance with prescribed decay by 2 pa-
rameters

Consider an even more specific model for diagonal elements with two parameters:
dk = (cfk(α))−1, i.e. τk = cfk(α), k = 1, . . . , n, where c and α are unknown
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parameters. Maximum likelihood estimators for c0 and α0 can be computed
similarly as in the previous case. The estimating equations have the form

1
c

= 1
n

n∑︂
k=1

1
N
S2

kfk(α),

1
c

n∑︂
k=1

1
fk(α)

∂fk(α)
∂α

=
n∑︂

k=1

1
N
S2

k

∂fk(α)
∂α

,

which can be rearranged to

1
c

= 1
n

n∑︂
k=1

1
N
S2

kfk(α), (3.16)

0 =
n∑︂

k=1
S2

kfk(α)
⎛⎝ 1
fk(α)

∂fk(α)
∂α

− 1
n

n∑︂
j=1

1
fj(α)

∂fj(α)
∂α

⎞⎠ . (3.17)

Equation (3.17) is an implicit formula for estimating α0. Its result can be used
for estimating c0 through (3.16). The maximum likelihood estimator for D0 is
then given by

D̂
(3) = diag

(︂
(ĉf1(α̂))−1, . . . , (ĉfn(α̂))−1

)︂
, (3.18)

where ĉ and α̂ are MLEs of c0 and α0. It corresponds to searching a maximum
likelihood estimator of D0 in the subspace Θ3 ⊂ Θ2 ⊂ Θ1 ⊂ Θ formed by
diagonal matrices of the form diag {(cfk(α))−1, k = 1, . . . , n}.

The covariance of the asymptotic distribution of the estimator D̂(3) is

1
N
C

D
(3)
0

= 1
N

∇d(c0, α0)I−1
c0,α0 (∇d(c0, α0))⊤ ,

from (3.4), where Fisher information matrix Ic0,α0 is the 2 × 2 matrix

Ic,α =

⎡⎢⎣ n
2c2

1
2c

∑︁n
k=1

1
fk(α)

∂fk(α)
∂α

1
2c

∑︁n
k=1

1
fk(α)

∂fk(α)
∂α

1
2
∑︁n

k=1
1

f2
k

(α)

(︂
∂fk(α)

∂α

)︂2

⎤⎥⎦
evaluated at c0, α0 and

d(c0, α0) = [d1(c0, α0), . . . , dn(c0, α0)]⊤ =
[︂
(c0f1(α0))−1, . . . , (c0fn(α0))−1

]︂⊤
.

3.4 Computational study
In Section 3.2, it has been shown that in the sense of asymptotic variance and se-
cond moment (mean-squared) error, the maximum likelihood estimator computed
in a smaller space containing the true parameter is more (or equally) precise. For
small samples, this behaviour is illustrated by means of simulations.

3.4.1 Simulation of fields with diagonal covariance
The simulation is carried out with a covariance stationary random field. As
mentioned in Section 2.2.1, the spectral covariance of such a field is diagonal and
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can be modelled by means of eigenvalues of Laplace operator. The simulation set-
up was similar to the Section 3.3. First, a diagonal matrixD0 was prepared, whose
diagonal entries decay according to the model dk = 1

c
eαλk , k = 1, . . . , n, where c

and α are parameters and λk are the eigenvalues of discrete Laplace operator in
two dimensions on 10 × 10 nodes (so n = 100). Note that all λk, k = 1, . . . , n,
are negative. Such models are useful in modelling smooth random fields, e.g., in
meteorology. Then, random samples were generated from Nn(0, D0) with sample
sizes N = 5, . . . , 20. For each sample, four covariance matrix estimators were
computed:

• sample covariance matrix S(µ=0), cf. (3.7),

• MLE D̂
(1) in the space of diagonal matrices, cf. (3.11),

• MLE D̂
(2) = diag{(ĉ1 − ĉ2λk)−1eα̂λk , k = 1, . . . , n} with 3 parameters c1, c2

and α, cf. (3.15), and

• MLE D̂
(3) = diag{ĉ−1eα̂λk , k = 1, . . . , n} with 2 parameters c and α, cf.

(3.18).

The difference of each estimator from the true matrix D0 was measured in the
Frobenius norm. To reduce the sampling noise, 50 replications have been done
for each sample size and the mean of squared Frobenius norm can be found in
Figure 3.1.
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Figure 3.1: Nested covariance models (simulation): Errors of estimators D̂(j)
∈

Θj, j = 1, 2, 3, of a diagonal covariance D0 measured by ∥D̂
(j)

−D0∥2
F . The error

of S(µ=0) is also added. The random field had dimension n = 10×10. Eigenvalues
of D0 decay exponentially, i.e. dk = c−1

0 eα0λk , where λk < 0, k = 1, . . . , n, with
parameters c0 = 1/30 and α0 = 0.002. The full line is the order of convergence
const(N−1) fitted to the error of the sample covariance.
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For the diagonal MLE, given by (3.11), (3.15), and (3.18), we can expect from
(3.6) that these estimators should satisfy asymptotically

E
⃦⃦⃦⃦
D̂

(j)
−D0

⃦⃦⃦⃦2

F
≈ 1
N

tr
(︃

I−1
D

(j)
0

)︃
, j = 1, 2, 3,

even if convergence in distribution does not imply convergence of moments with-
out additional assumptions. This conjecture can be supported by a comparison
of Figures 3.3 and 3.2, where the same decay is observed. From the nesting, it is
known that (cf. (3.6))

tr
(︃

I−1
D

(3)
0

)︃
≤ tr

(︃
I−1

D
(2)
0

)︃
≤ tr

(︃
I−1

D
(1)
0

)︃
and it can be expected that the Frobenius norm should decrease for more restric-
tive models, that is,

E
⃦⃦⃦⃦
D̂

(3)
−D0

⃦⃦⃦⃦2

F
≤ E

⃦⃦⃦⃦
D̂

(2)
−D0

⃦⃦⃦⃦2

F
≤ E

⃦⃦⃦⃦
D̂

(1)
−D0

⃦⃦⃦⃦2

F
, (3.19)

which is confirmed by the simulations (see Figure 3.2, resp. 3.3).

Figure 3.2: Nested covariance models (simulation): Comparison of sums of es-
timated asymptotic variances 1

N
tr(I−1

D̂
(j)) for three estimators D̂(j)

∈ Θj, j =
1, 2, 3, of a diagonal matrix D0 = diag{c−1

0 eα0λk , k = 1, . . . , n}, where c0 = 1/30
and α0 = 0.002.

The comparisons (3.19) of the Frobenius norm of the error in the mean squared
complement the pointwise comparison (3.10) between the sample covariance and
its diagonal. Relying on MLE for that comparison is not practical, because the
sample size of interest here is N < n, and, consequently, S(µ=0) is singular and
cannot be cast as MLE with an accompanying Fisher information matrix, cf.
Remark 3 in Section 3.3.1. But it is evident that for small sample sizes, estimators
computed in the proper subspace perform better. Hence, the hierarchical order
seems to hold even when N < n.
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Figure 3.3: Nested covariance models (simulation): Averaged errors ∥D̂
(j)

−D0∥2
F

(based on 50 replications) of estimators D̂(j)
∈ Θj, j = 1, 2, 3, of a diagonal

matrix D0 = diag{c−1
0 eα0λk , k = 1, . . . , n}, where c0 = 1/30 and α0 = 0.002.

3.4.2 Simulation of sparse inverse covariance of GMRF
The second simulation is related to a simple GMRF (cf. Section 2.2.2) and it
illustrates another way to bring in assumed covariance structure. In the GMRF
on a rectangular mesh, a variable on a gridpoint is conditionally independent on
the rest of the gridpoints, given values on neighbouring gridpoints. It follows
from Lemma 3 that nonzero entries in the inverse of the covariance matrix can be
only between neighbour gridpoints. Adding more details, we start with 4 neigh-
bours (as in Figure 2.1a), and adding neighbours gives rise to a sequence of nested
covariance models. If the columns of the mesh are stacked vertically, their inverse
covariance matrix will have a band-diagonal structure as has been already seen
at Figure 2.1.

The inverse covariance model for GMRF fitted by MLE was introduced by
Ueno and Tsuchiya [68] and applied on data from oceanography. The corre-
sponding Fisher information matrix may be found as the negative of the Hessian
matrix (Ueno and Tsuchiya [68, eq. (C17)]). Later, in Section 4.6, we will es-
timate parameters of such inverse covariance model also by the score matching
method.

The simulation has been carried out as follows. First, a sample of realizations
of the GMRF has been generated with dimensions 10 × 10 (resulting in n = 100)
and inverse covariance structure as in Figure 2.1. The values on the diagonals of
the precision matrix have been set to constant, since we assume the correlation
with left and right neighbour to be identical, as well as the correlation with upper
and lower neighbour. In particular, the main diagonal of precision matrix was
set to the value 5, the elements that correspond to the dependence between lower
and upper neighbours were set to -0.2 and the elements describing the dependence
between left and right neighbours were set to 0.5. This leads to a sequence of
nested models with 3 parameters for 4 neighbours, 5 parameters for 8 neighbours
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and 7 parameters for 12 neighbours,
The structure of Σ−1

0 with 4 neighbours (Figure 2.1a) was set as the “truth”
and random samples were generated from Nn(0,Σ0) with sample sizes N =
10, 15, 20, . . . , 55. As already said, the values on first, second and tenth diagonal
have been set as 5, -0.2 and 0.5. For each sample, we computed successively the
MLE with 3, 5 and 7 unknown parameters numerically by Newton’s method, as
described in Ueno and Tsuchiya [68].

The difference of each estimate from the true matrix Σ0 was measured again
in the Frobenius norm. In order to reduce the sampling error, 50 simulations
of the same size were generated and the mean of squared Frobenius norm was
computed. The results can be found in Figure 3.4.
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Figure 3.4: Nested covariance models for a GMRF (simulation): Errors of MLEs
of four nested covariance models measured in the Frobenius norm. Compared
estimators: sample covariance and models with 4, 8, 12 neighbours, i.e. 5, 9, 13
nonzero diagonals in the inverse covariance matrix.

As expected, the MLE with 3 parameters outperforms the estimates with 5
and 7 parameters and the Frobenius norm for sample covariance stays one order
worse than all parametric estimates.
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4. Score matching estimators
When estimating parameters of a distribution, the maximum likelihood method is
usually the first choice. However, sometimes this method is not suitable because
of some computational difficulties, e.g., when only numerical maximization is
possible or when the normalization constant in the density function is unknown.
In that situations, the score matching estimation method published by Hyvärinen
[33] in 2005 provides a consistent estimator that may be easy to accomplish.

Because the score matching estimation method is less known than the ma-
ximum likelihood method, a brief summary of this method, following Forbes and
Lauritzen [23] and Hyvärinen [33, 34], is provided in Section 4.2. The general
result from Hyvärinen [33] is supplemented by later results from Forbes and
Lauritzen [23] concerning the case when the model distribution belongs to the
exponential family and the estimator is available in a closed form. This method is
applied to estimating parameters of a precision matrix of GMRF that will be taken
an advantage of later, in Chapter 7, where we propose three filtering algorithms
based on this estimator. Score matching provides an explicit estimating formula
that is easy to compute and the resulting matrix is a consistent estimator.

Asymptotic variances of score matching estimators corresponding to nested
parametrizations follow a hierarchical structure similar to the MLE in the pre-
vious chapter. This is proved in Chapter 5 in a slightly more general case of
M-estimators.

4.1 Notation
Let X be a random vector with values in a set X ⊂ Rn. In this chapter, the
expected value of X with respect to a probability density p(x) is denoted by

EX∼p (X) =
∫︂

X
xp(x)dx.

The Euclidean norm of x ∈ Rn is denoted by ∥x∥n, which is a shortcut of ∥x∥Rn ,
and the inner product by ⟨x,v⟩n , x,v ∈ Rn. A column vector (x1, . . . , xn)⊤ is
sometimes written as [xj]nj=1, in order to make the notation shorter. A matrix
consisting of columns v1, . . . ,vm ∈ Rn is denoted by [v1, . . . ,vm] and a matrix of
elements vjk, j = 1, . . . ,m, k = 1, . . . , n, by [vjk]m,n

j,k=1, or [vjk]nj,k=1, when m = n.
For a scalar function g of vector argument x = (x1, . . . , xn)⊤ ∈ Rn, ∆x stands

for the Laplacian and ∇x for the gradient,

∆xg(x) =
∑︂n

i=1
∂2g

∂x2
i

(x) , ∇xg(x) =
(︄
∂g

∂x1
(x) , . . . , ∂g

∂xn

(x)
)︄
.

If the gradient is needed as a column vector, we denote ∇⊤
x g(x) = (∇xg(x))⊤.

The Jacobian matrix of a vector function h = (h1, . . . , hm)⊤ : Rn → Rm is denoted
by

Jx(h(x)) =
[︄
∂hi

∂xj

(x)
]︄m,n

i,j=1
.
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4.2 Score matching estimation method
For the unknown probability density function p(x) of the random vector X,
consider a parametrized density model of the form

f(x|θ) = 1
Z(θ)q(x|θ), Z(θ) =

∫︂
X
q(x|θ)dx, (4.1)

where the normalization constant Z(θ) may be difficult to compute, and θ varies
over Θ, which is an open set in a finite dimensional vector space L. The objective
is to find an estimate θ̂ ∈ Θ of θ and to approximate p(x) by f(x|θ̂) without
the use of Z(θ).

The idea of score matching estimation (Hyvärinen [33]) is to make inference
about θ using the gradient with respect to x of the log-density

∇x log f(x|θ) (4.2)

instead of the density itself. The function (4.2) is called the score function in
Hyvärinen [33] because it is the Fisher score function (Barndorff-Nielsen and
Cox [7, expr. (2.5)], Hyvärinen [34]), with respect to a hypothetical location
parameter: assuming an additional location parameter vector ξ, (4.2) can be
obtained by taking the gradient of log f(x− ξ|θ) with respect to ξ and evaluate
it at ξ = 0.

The principal observation is that

∇x log f(x|θ) = ∇x (log q(x|θ) − logZ(θ)) = ∇x log q(x|θ), (4.3)

thus the score function ∇x log f(x|θ) does not depend on Z(θ). The parameter
θ in f(x|θ) is then estimated by matching the score function of the model to the
score function of the data by minimizing the expectation of the squared distance

S(θ) =
∫︂

X

⃦⃦⃦
∇⊤
x log q(x|θ) − ∇⊤

x log p(x)
⃦⃦⃦2

n
p(x)dx

= EX∼p

⃦⃦⃦
∇⊤
x log q(X|θ) − ∇⊤

x log p(X)
⃦⃦⃦2

n
. (4.4)

Estimating parameters by matching the model and data scores gave the procedure
its name. The Score Matching Estimator (SME) of θ is

θ̂ = argmin
θ∈Θ

S(θ).

SME relies on the following assumptions:

(B1) p(x) and ∇x log q(x|θ) are differentiable in X ,

(B2) EX∼p

⃦⃦⃦
∇⊤
x log q(x|θ)

⃦⃦⃦2

n
is finite for all θ ∈ Θ,

(B3) EX∼p

⃦⃦⃦
∇⊤
x log p(x)

⃦⃦⃦2

n
is finite, and

(B4) function g(x|θ) = log q(x|θ) : Rn → R satisfies that p(x)∇⊤
x g(x|θ) → 0 for

any θ ∈ Θ when x → ∂X and the boundary ∂X of X is sufficiently regular
for integration by parts, in particular∫︂

X

⟨︂
∇⊤
x p(x),∇⊤

x g(x|θ)
⟩︂

n
dx = −

∫︂
X
p(x)∆xg(x|θ)dx, ∀θ ∈ Θ.
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Remark 4. When g(x|θ) is polynomial for any θ ∈ Θ, assumption (B4) is sa-
tisfied for a large class of probability distributions. For example for the normal
distribution, where X = Rn, the Fubini theorem implies∫︂

Rn

⟨︂
∇⊤
x p(x),∇⊤

x g(x|θ)
⟩︂

n
dx =

n∑︂
j=1

∫︂
R

∂p(x)
∂xj

∂g(x|θ)
∂xj

dxj =

=
n∑︂

j=1

⎛⎝[︄p(x)∂g(x|θ)
∂xj

]︄xj=∞

xj=−∞
−
∫︂
R

∂2g(x|θ)
∂x2

j

p(x)dxj

⎞⎠
= −

∫︂
Rn
p(x)∆xg(x|θ)dx,

because p(x)∂g(x|θ)
∂xj

→ 0 as xj → ±∞ due to the exponential decay of the Gaus-
sian density.

When assumptions (B1)-(B4) hold, it can be shown (Hyvärinen [33, Theo-
rem 1]) by integration by parts that the objective function (4.4) equals to

S(θ) = EX∼p

[︃1
2
⃦⃦⃦
∇⊤
x log q(X|θ)

⃦⃦⃦2

n
+ ∆x log q(X|θ)

]︃
+ c, (4.5)

where c = EX∼p

⃦⃦⃦
∇⊤
x log p(X)

⃦⃦⃦2

n
does not depend on θ. Thus, the squared dis-

tance of the model score function from the data score function can be computed
as an expectation of certain functions of the unnormalized model density q(x|θ).

Given a sample XN = {X1, . . . ,XN} from the density p, the expected value
in (4.5) can be approximated by the sample mean,

SN (θ|XN ) = 1
N

N∑︂
i=1

(︃1
2

⃦⃦⃦
∇⊤
x log q(Xi|θ)

⃦⃦⃦2

n
+ ∆x log q(Xi|θ)

)︃
+ cN (XN ) , (4.6)

where cN (XN) = 1
N

∑︁N
i=1

⃦⃦⃦
∇⊤
x log p(Xi)

⃦⃦⃦2

n
does not depend on θ. The coefficient

1/N and the constant cN , for a fixed sample XN , do not affect the point where
the minimum in (4.6) is attained. Thus, we obtain the empirical estimate

θ̂N = argmin
θ∈Θ

(︄
N∑︂

i=1

1
2
⃦⃦⃦
∇⊤
x log q(Xi|θ)

⃦⃦⃦2

n
+ ∆x log q(Xi|θ)

)︄
. (4.7)

4.3 Exponential family
Following Forbes and Lauritzen [23], suppose in addition, that the density model
(4.1) belongs to the exponential family , i.e.,

log f(x|θ) = ⟨T (x),θ⟩L − a(θ) + b(x), (4.8)

where ⟨·, ·⟩L is the inner product of the vector space L ⊃ Θ. Further assume that
Θ is such that Z(θ) < ∞ for all θ ∈ Θ. Function T (x) is the canonical sufficient
statistics and θ is the canonical parameter. For density from the exponential
family, the expressions in the objective function (4.5),

∇x log q(x|θ) = ∇x⟨T (x),θ⟩L + ∇xb(x), (4.9)
∆x log q(x|θ) = ∆x⟨T (x),θ⟩L + ∆xb(x),
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are linear functions of θ. Substituting into (4.6), we obtain an empirical scoring
function quadratic in θ,

SN(θ|XN) = 1
N

N∑︂
i=1

[︃1
2
⃦⃦⃦
∇⊤
x ⟨T (Xi),θ⟩L + ∇⊤

x b(Xi)
⃦⃦⃦2

n
+ ∆x⟨T (Xi),θ⟩L

+ ∆xb(Xi)
]︃

+ cN (XN)

= 1
N

N∑︂
i=1

[︃1
2
⃦⃦⃦
∇⊤
x ⟨T (Xi),θ⟩L

⃦⃦⃦2
+
⟨︂
∇⊤
x b(Xi),∇⊤

x ⟨T (Xi),θ⟩L

⟩︂
n

+ ∆x⟨T (Xi),θ⟩L

]︃
+ c∗

N (XN) , (4.10)

where

c∗
N (XN) = 1

N

N∑︂
i=1

⃦⃦⃦
∇⊤
x log p(Xi)

⃦⃦⃦2

n
+ 1
N

N∑︂
i=1

[︃1
2
⃦⃦⃦
∇⊤
x b(Xi)

⃦⃦⃦2

n
+ ∆xb(Xi)

]︃
does not depend on θ. For a fixed x, define linear operator D(x) by

D(x) : L → Rn, D(x)θ = ∇⊤
x ⟨T (x),θ⟩L, (4.11)

its adjoint operator D∗(x) by

D∗(x) : Rn → L, ⟨θ, D∗(x)v⟩L = ⟨D(x)θ,v⟩n, ∀θ ∈ L, ∀v ∈ Rn, (4.12)

and the Laplacian vector ∆xT (x) by

∆xT (x) ∈ L : ⟨∆xT (x),θ⟩L = ∆x⟨T (x),θ⟩L, ∀θ ∈ L. (4.13)

Then, (4.10) becomes

SN(θ|XN) = 1
N

N∑︂
i=1

[︃1
2 ∥D(Xi)θ∥2

n + ⟨D∗(Xi)∇⊤
x b(Xi),θ⟩L+

+ ⟨∆xT (Xi),θ⟩L

]︃
+ c∗

N (XN) . (4.14)

Since the feasible set Θ is open and the quadratic form 1
N

∑︁N
i=1 ∥D(Xi)θ∥2

n is
positive semidefinite, SN(θ|XN) attains minimum on Θ if and only if

∇⊤
θ SN(θ|XN) = 0. (4.15)

In addition, if ∑︁N
i=1 ∥D(Xi)θ∥2

n is positive definite and the minimum of SN(θ|XN)
on Θ exists, then the minimum is unique. Equation (4.15) provides the linear
estimating equation for θ

N∑︂
i=1

(D∗(Xi)D(Xi))θ +
N∑︂

i=1

(︂
D∗(Xi)∇⊤

x b(Xi) + ∆xT (Xi)
)︂

= 0, (4.16)

where D∗(x)D(x) is a linear map on L and D∗(x)∇⊤
x b(x) + ∆xT (x) ∈ L. If∑︁N

i=1 (D∗(Xi)D(Xi)) is invertible, (4.16) has a unique solution in L,

θ̂N = argmin
θ∈L

SN(θ|XN)

= −
(︄

N∑︂
i=1

D∗(Xi)D(Xi)
)︄−1 N∑︂

i=1

(︂
D∗(Xi)∇⊤

x b(Xi) + ∆xT (Xi)
)︂
. (4.17)

35



In the Section 4.6, we will take an advantage of (4.17), and derive SME for
the mean and covariance matrix of a Gaussian Markov random vector.

Hereafter, we will assume that the true density p(x) = f(x|θ0) for a unique θ0,
where f(x|θ) belongs to the exponential family. Under that condition, the SME
(4.7) can be shown to be consistent. In Theorem 6 below, an exact statement
based on Forbes and Lauritzen [23] with a detailed proof is provided for the SME
(4.17), because it will be helpful later on, in Section 4.5.

In addition to assumptions (B1)-(B4), we need the exponential family distri-
bution to satisfy that

(C1) EX∼p ∥∆xT (X)∥L < ∞,

(C2) EX∼p

⃦⃦⃦
∇⊤
x b(X)

⃦⃦⃦2

n
< ∞,

(C3) EX∼p ∥D(X)∥2
op < ∞,

where ∥D(X)∥2
op = sup

{︂
∥D(X)θ∥2

n : θ ∈ L, ∥θ∥L ≤ 1
}︂
, and

(C4) assumption (B4) holds with g(x|θ) = ⟨T (x),θ⟩L in place of g.

Remark 5. For distributions with b(x) = 0, assumption (C2) is fulfilled automa-
tically and assumption (C4) coincides with (B4).

Since p(x) = f(x|θ0), assumption (B3) follows from (B2). Moreover, assump-
tion (B2) follows from (C2) and (C3), because

EX∼p

⃦⃦⃦
∇⊤
x log q(X|θ)

⃦⃦⃦2

n
= EX∼p

⃦⃦⃦
D(X)θ + ∇⊤

x b(x)
⃦⃦⃦2

n

≤ EX∼p

(︂
∥D(X)θ∥n +

⃦⃦⃦
∇⊤
x b(x)

⃦⃦⃦
n

)︂2

≤ 2 EX∼p ∥D(X)∥2
op ∥θ∥2

L + 2 EX∼p

⃦⃦⃦
∇⊤
x b(x)

⃦⃦⃦2

n
.

Theorem 6 (Consistency of SME, Forbes and Lauritzen [23]). Assume that
p(x) = f(x|θ0) for a unique θ0 ∈ Θ and that q(x|θ) > 0 for all x ∈ X and
all θ ∈ Θ. Further assume that f(x|θ) satisfies conditions (B1), (B4), (C1)-
(C4) and that EX∼p (D∗(X)D(X)) is invertible. Let X1, . . . ,XN be the random
sample from p(x). Then, the SME (4.17) exists with probability approaching one
as N → ∞, and it is a consistent estimator of θ0, i.e.

θ̂N
P−−−→

N→∞
θ0.

Proof. Denote by {ℓk}s
k=1 an orthonormal basis of the vector space L. Then the

components {ϕk}s
k=1 of any ϕ ∈ L in this basis are given by

ϕ =
s∑︂

k=1
⟨ϕ, ℓk⟩L⏞ ⏟⏟ ⏞

ϕk

ℓk.

Take ϕ equal to the last sum in (4.17), i.e.,

ϕ(X) = D∗(X)∇⊤
x b(X) + ∆xT (X) ∈ L (4.18)
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and evaluate the coefficients EX∼p (ϕk(X)) for k = 1, . . . , s,

EX∼p (ϕk(X)) = EX∼p⟨ϕ(X), ℓk⟩L =
∫︂

X
p(x)⟨D∗(x)∇⊤

x b(x), ℓk⟩Ldx+

+
∫︂

X
p(x)⟨∆xT (x), ℓk⟩Ldx, (4.19)

where the Laplacian is defined by (4.13),

⟨∆xT (x), ℓk⟩L = ∆x⟨T (x), ℓk⟩L.

The first integral in (4.19) is finite as a consequence of the Cauchy-Schwartz
inequality in L2(Ω)∫︂

X
p(x)

⃦⃦⃦
D∗(x)∇⊤

x b(x)
⃦⃦⃦

L
dx ≤

∫︂
X

p(x) ∥D∗(x)∥op ·
⃦⃦⃦
∇⊤
x b(x)

⃦⃦⃦
L

dx

≤
(︃∫︂

X
p(x) ∥D∗(x)∥2

op dx

)︃ 1
2
(︃∫︂

X
p(x)

⃦⃦⃦
∇⊤
x b(x)

⃦⃦⃦2

n
dx

)︃ 1
2

=
(︂
EX∼p ∥D∗(X)∥2

op

)︂ 1
2
(︃

EX∼p

⃦⃦⃦
∇⊤
x b(X)

⃦⃦⃦2

n

)︃ 1
2

combined with assumptions (C2) and (C3) and by the linearity of the inner
product∫︂

X
p(x)⟨D∗(x)∇⊤

x b(x), ℓk⟩Ldx =
⟨︃∫︂

X
p(x)D∗(x)∇⊤

x b(x)dx, ℓk

⟩︃
L
.

The second integral in (4.19) is finite due to assumption (C1) and again by
the linearity of the inner product. Moreover, the integration by parts imply∫︂

X
p(x)∆x⟨T (x), ℓk⟩Ldx = −

∫︂
X

⟨︂
∇⊤
x p(x),∇⊤

x ⟨T (x), ℓk⟩L

⟩︂
n
dx, (4.20)

due to assumption (C4). From (4.11) and (4.12), it follows that⟨︂
∇⊤
x p(x),∇⊤

x ⟨T (x), ℓk⟩L

⟩︂
n

=
⟨︂
∇⊤
x p(x), D(x)ℓk

⟩︂
n

=
⟨︂
D∗(x)∇⊤

x p(x), ℓk

⟩︂
L
,

and hence (4.20) results in∫︂
X
p(x)∆x⟨T (x), ℓk⟩Ldx = −

∫︂
X

⟨︂
D∗(x)∇⊤

x p(x), ℓk

⟩︂
L
dx. (4.21)

Due to (4.3), p(x) = f(x|θ0) implies ∇x log p(x) = ∇x log q(x|θ0). By substitut-
ing

∇⊤
x p(x) = p(x)∇⊤

x log p(x) = p(x)
(︂
D(x)θ0 + ∇⊤

x b(x)
)︂
,

from (4.9) and (4.11),

∇⊤
x log p(x) = D(x)θ0 + ∇⊤

x b(x) ∈ Rn

into (4.21), we get∫︂
X
p(x)∆x⟨T (x), ℓk⟩Ldx = −

∫︂
X
p(x)

⟨︂
D∗(x)∇⊤

x log p(x), ℓk

⟩︂
L
dx

= −
∫︂

X
p(x)

⟨︂
D∗(x)

(︂
D(x)θ0 + ∇⊤

x b(x)
)︂
, ℓk

⟩︂
L
dx
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for every k = 1, . . . , s. This is the same as

EX∼p⟨∆xT (X), ℓk⟩L = − EX∼p

⟨︂
D∗(X)D(X)θ0 +D∗(X)∇⊤

x b(X), ℓk

⟩︂
L
.

(4.22)

Substituting (4.22) into (4.19) results in

EX∼p (ϕk(X)) = − EX∼p⟨D∗(X)D(X)θ0, ℓk⟩L. (4.23)

Multiplication of both sides of (4.23) by ℓk and summation over k gives

EX∼p(ϕ(X)) = − EX∼p (D∗(X)D(X))θ0. (4.24)

Finally, by comparing (4.18) and (4.24), we get

EX∼p

(︂
D∗(X)∇⊤

x b(X) + ∆xT (X)
)︂

= − EX∼p (D∗(X)D(X))θ0. (4.25)

By the Khinchin’s weak law of large numbers

1
N

N∑︂
i=1

(︂
D∗(Xi)∇⊤

x b(Xi) + ∆xT (Xi)
)︂

P−−−→
N→∞

− EX∼p (D∗(X)D(X))θ0

and similarly

1
N

N∑︂
i=1

D∗(Xi)D(Xi) P−−−→
N→∞

EX∼p (D∗(X)D(X)) .

The weak law of large numbers assumes that EX∼p [D∗(X)D(X)] is finite, which
is ensured by (C3) together with the Cauchy-Schwarz inequality in L2(Ω),

EX∼p ∥D∗(X)D(X)∥op ≤ EX∼p

(︂
∥D(X)∥op · ∥D∗(X)∥op

)︂
≤
(︂
EX∼p ∥D(X)∥2

op

)︂ 1
2
(︂
EX∼p ∥D∗(X)∥2

op

)︂ 1
2 .

Since EX∼p (D∗(X)D(X)) is invertible by assumption, we get

θ̂N = −
(︄

N∑︂
i=1

D∗(Xi)D(Xi)
)︄−1 N∑︂

i=1

(︂
D∗(Xi)∇⊤

x b(Xi) + ∆xT (Xi)
)︂

P−−−→
N→∞

θ0,

where the inverse exists with probability approaching one (cf., Lemma 7 below
for BN = 1

N

∑︁N
i=1 D

∗(Xi)D(Xi) and A = EX∼p (D∗(X)D(X))).

Lemma 7. Suppose that {BN}N∈N are random operators with values in a finite
dimensional normed space V. Assume that BN

P−→ A as N → ∞ and that A−1

exists. Then, Pr
(︂
B−1

N exists
)︂

→ 1 and B−1
N

P−→ A−1 as N → ∞.

Proof. Note that if ∥A−BN∥op ≤ 1/ ∥A−1∥op for a given N ∈ N, then B−1
N exists,

and ⃦⃦⃦
A−1 −B−1

N

⃦⃦⃦
op

≤
∥A−1∥2

op ∥A−BN∥op

1 − ∥A−1∥op ∥A−BN∥op

.

38



The last inequality follows from

A−1 −B−1
N = A−1(BN − A)B−1

N ,

B−1
N = A−1(I − (A−BN)A−1)−1,

which together yields

A−1 −B−1
N = A−1(BN − A)A−1(I − (A−BN)A−1)−1.

Let ε > 0 and δ > 0. Without loss of generality, suppose δ < 1/
(︂
2 ∥A−1∥op

)︂
.

Since BN
P−−−→

N→∞
A by assumption, there exists N1 such that for every N ≥ N1,

Pr
[︂
∥A−BN∥op < δ

]︂
≥ 1 − ε. Thus, for every N ≥ N1, with probability at least

1 − ε, B−1
N exists, and

⃦⃦⃦
A−1 −B−1

N

⃦⃦⃦
op

≤
∥A−1∥2

op ∥BN − A∥op

1 − ∥A−BN∥op ∥A−1∥op

(4.26)

≤
⃦⃦⃦
A−1

⃦⃦⃦2

op

δ

1 − δ ∥A−1∥op

< 2
⃦⃦⃦
A−1

⃦⃦⃦2

op
δ.

Since ∥A−BN∥op < δ implies
⃦⃦⃦
A−1 −B−1

N

⃦⃦⃦
op
< 2 ∥A−1∥2

op δ, then

1 − ε ≤ Pr
[︂
∥A−BN∥op < δ

]︂
≤ Pr

[︃⃦⃦⃦
A−1 −B−1

N

⃦⃦⃦
op
< 2

⃦⃦⃦
A−1

⃦⃦⃦2

op
δ
]︃
,

which means that B−1
N

P−−−→
N→∞

A−1.

4.4 SME in matrices and vectors
When L is the entire space Rs and ⟨·, ·⟩L is the usual Euclidean inner product
⟨·, ·⟩s, the SME simplifies further (Hyvärinen [34]). In the notation here, which
is from Forbes and Lauritzen [23], the canonical density (4.8) becomes

log f(x|θ) =
∑︂s

k=1 Tk(x)θk − a(θ) + b(x),

the linear operator D in (4.11) becomes

D(x)θ =
[︄
∂

∂xj

∑︂s

k=1 Tk(x)θk

]︄n

j=1
=
[︄∑︂s

k=1
∂Tk(x)
∂xj

θk

]︄n

j=1
= Jx(T (x))⊤ θ,

where

Jx(T (x)) =

⎡⎢⎢⎣
∂T1
∂x1

· · · ∂T1
∂xn... . . . ...

∂Ts

∂x1
· · · ∂Ts

∂xn

⎤⎥⎥⎦
is the Jacobian matrix of T , so D(x) is the Jacobian transposed,

D(x) = Jx(T (x))⊤ ,
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the adjoint operator in (4.12) becomes simply the Jacobian itself,

D∗(x) = Jx(T (x)) . (4.27)

and (4.13) becomes the Laplacian applied to T entry by entry,

∆xT (x) =

⎛⎜⎜⎝
∆xT1(x)

...
∆xTs(x)

⎞⎟⎟⎠ (4.28)

and the estimate (4.17) becomes

θ̂N = −
(︄

N∑︂
i=1

Jx(T (Xi)) Jx(T (Xi))⊤
)︄−1 N∑︂

i=1

(︂
Jx(T (Xi)) ∇⊤

x b(Xi) + ∆xT (Xi)
)︂
.

where ∇xb (x) =
(︂

∂b(x)
∂x1

, . . . , ∂b(x)
∂xn

)︂
.

4.5 Continuity of SME
In Chapter 7, where the filtering method using SME is proposed, we will need
continuity of SME with respect to random perturbations. We start with two
well-known statements that will be used several times in this thesis. Then, we
continue with a weak law of large numbers for triangular arrays. In addition to
the notation from Section 4.1, we denote by covX∼f(·|θ) (X) the covariance of X
with respect to its probability density f (x|θ).

Lemma 8. Let X be a random variable with values in Rn, which has the den-
sity f(x). Assume that h : Rn → Rm is a Borel measurable function such that
EX∼f

(︂
h(X)h(X)⊤

)︂
exists. Then, EX∼f h(X) exists.

Proof. From the Cauchy inequality,

(EX∼f ∥h(X)∥m)2 = (EX∼f (∥h(X)∥m · 1))2 ≤ EX∼f

(︂
∥h(X)∥2

m

)︂
EX∼f (1)

= EX∼f ∥h(X)∥2
m = EX∼f tr

(︂
h(X)h(X)⊤

)︂
= tr

(︂
EX∼f

(︂
h(X)h(X)⊤

)︂)︂
,

which is finite by assumption.

Theorem 9 (Continuous mapping, Van der Vaart [69, Theorem 2.3 (ii)]). Let
g : Rk → Rm be continuous at every point of a set C such that Pr(X ∈ C) = 1.
If XN

P−−−→
N→∞

X, then g(XN) P−−−→
N→∞

g(X).

Lemma 10. Suppose that f (x|θ) is a parametric probability density with respect
to Lebesgue measure on a measurable set X ⊂ Rn with parameter θ ∈ Θ ⊂ L,
with Θ open, such that covX∼f(·|θ) (X) exists and is continuous from Θ to Rn×n.
Suppose that θN are random parameters with values in Θ such that θN

P−→ θ0 ∈ Θ
as N → ∞, and, for each N ,

{︂
XN

i : i = 1, . . . , kN

}︂
is a sample from f (x|θN),

with kN → ∞ as N → ∞. Then,

1
kN

kN∑︂
i=1
XN

i − EXN
1 ∼f(·|θN )

(︂
XN

1

)︂
P−−−→

N→∞
0.
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Proof. Since covXN
1 ∼f(·|θN )

(︂
XN

1

)︂
exists by assumption, EXN

1 ∼f(·|θN )

(︂
XN

1

)︂
exists

from Lemma 8. In order to simplify the notation, we will denote

EXN
1 ∼f(·|θN )

(︂
XN

1

)︂
= E

(︂
XN

1 |θN

)︂
, and

covXN
1 ∼f(·|θN )

(︂
XN

1

)︂
= cov

(︂
XN

1 |θN

)︂
= C(θN).

Further, denote

WN
i = XN

i − E
(︂
XN

1 |θN

)︂
, W̄

N = 1
kN

∑︂kN

i=1W
N
i .

We need to show that W̄N P−→ 0 as N → ∞. Fix N and θN . Then,

E
(︂
WN

1 |θN

)︂
= 0,

cov
(︂
WN

1 |θN

)︂
= cov

(︂
XN

1 |θN

)︂
= C (θN) ,

and, since WN
i are uncorrelated, by the standard L2 law of large numbers argu-

ment,

E
(︃⃦⃦⃦
W̄

N
⃦⃦⃦2

n
|θN

)︃
= 1
k2

N

∑︂kN

i=1 E
(︃⃦⃦⃦
WN

i

⃦⃦⃦2

n
|θN

)︃
= 1
kN

E
(︃⃦⃦⃦
WN

1

⃦⃦⃦2

n
|θN

)︃
= 1
kN

tr
(︂
cov

(︂
WN

1 |θN

)︂)︂
= 1
kN

tr (C (θN)) .

Let ε > 0 and δ > 0. Using the Markov inequality, we have

Pr
(︃⃦⃦⃦
W̄

N
⃦⃦⃦2

n
≥ ε2|θN

)︃
≤

E
(︃⃦⃦⃦
W̄

N
⃦⃦⃦2

n
|θN

)︃
ε2 = tr (C (θN))

ε2kN

.

Since C (θ) is continuous function of θ, there exists η > 0 such that

tr (C (θ)) < tr (C (θ0)) + 1, if ∥θ − θ0∥L < η.

Since θN
P−→ θ0, there exists N1 such that

Pr (∥θN − θ0∥L ≥ η) < δ

2 , if N ≥ N1.

Then, by the law of total probability,

Pr
(︂⃦⃦⃦
W̄

N
⃦⃦⃦

n
≥ ε

)︂
= Pr

(︂⃦⃦⃦
W̄

N
⃦⃦⃦

n
≥ ε| ∥θN − θ0∥L ≥ η

)︂
⏞ ⏟⏟ ⏞

≤1

Pr (∥θN − θ0∥L ≥ η)⏞ ⏟⏟ ⏞
< δ

2

+ Pr
(︂⃦⃦⃦
W̄

N
⃦⃦⃦

n
≥ ε| ∥θN − θ0∥L < η

)︂
⏞ ⏟⏟ ⏞

≤ tr C(θ0)+1
ε2kN

Pr (∥θN − θ0∥L < η)⏞ ⏟⏟ ⏞
≤1

<
δ

2 + tr (C (θ0)) + 1
ε2kN

, if N ≥ N1.

Since kN → ∞, there exists N2 such that

tr (C (θ0)) + 1
ε2kN

<
δ

2 , if N ≥ N2.
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Then, finally,

Pr
(︂⃦⃦⃦
W̄

N
⃦⃦⃦

n
≥ ε

)︂
<
δ

2 + δ

2 = δ, if N > max {N1, N2} ,

which proves that W̄N P−−−→
N→∞

0.

We now apply Lemma 10 to functions of samples from exponential family
distribution.

Lemma 11. Suppose that f (x|θ) is a parametric probability density on X ⊂ Rn

of the exponential family (4.8) with parameter θ ∈ Θ ⊂ L, Θ open. Further,
suppose that h : Rn → Rm is Borel measurable and such that∫︂

X
∥h (x)∥2

m f (x|θ) dx < ∞ for all θ ∈ Θ. (4.29)

Finally, suppose that θN are random parameters with values in Θ such that
θN

P−−−→
N→∞

θ0, and, for each N ,
{︂
XN

i : i = 1, . . . , kN

}︂
is a sample from f (x|θN),

and kN −−−→
N→∞

∞. Then,

1
kN

kN∑︂
i=1

h
(︂
XN

i

)︂
P−−−→

N→∞
EX∼ f(·|θ0) h (X) .

Proof. We use Lemma 10 with h
(︂
XN

i

)︂
in place of XN

i . From (4.29) and Lemma
8, the integrals

M (θ) =
∫︂

X
h (x)h (x)⊤ f (x|θ) dx=e−a(θ)

∫︂
X
e⟨T (x),θ⟩Lh (x)h (x)⊤ eb(x)dx

m (θ) =
∫︂

X
h (x) f (x|θ) dx=e−a(θ)

∫︂
X
e⟨T (x),θ⟩Lh (x) eb(x)dx (4.30)

exist for all θ ∈ Θ. Since M (θ) and m (θ) are the Fourier-Laplace transform of
the sufficient statistics T (x), they are analytic in Θ (Lehmann and Romano [44,
Theorem 2.7.1], Barndorff-Nielsen [6, Theorem 7.2]) and, in particular continuous.
Thus,

C (θ) = covX∼f(·|θ) (h (X)) = M (θ) −m (θ)m (θ)⊤

exists and is continuous from Θ to Rn×n. Now, from Lemma 10,

1
kN

kN∑︂
i=1

h
(︂
XN

i

)︂
− EXN

1 ∼ f(·|θN )

(︂
h
(︂
XN

1

)︂)︂
P−−−→

N→∞
0.

Next, writing the expectation as the integral (4.30),

EXN
1 ∼ f(·|θN )

(︂
h
(︂
XN

1

)︂)︂
= m (θN) ,

which is a continuous function of θ, we have

EXN
1 ∼ f(·|θN )

(︂
h
(︂
XN

1

)︂)︂
= m (θN) P−−−→

N→∞
m(θ0) = EX∼ f(·|θ0) (h (X)) ,

by the continuous mapping theorem (cf., Theorem 9).
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For the following theorem, we need stronger versions of assumptions (C1)-
(C3). Assume that

(C1b) EX∼p ∥∆xT (X)∥2
L < ∞,

(C2b) EX∼p

⃦⃦⃦
∇⊤
x b (X)

⃦⃦⃦4

n
< ∞, and

(C3b) EX∼p ∥D(X)∥4
op < ∞.

We are now ready to prove continuity of SME to random perturbations of the
parameter of the exponential family.

Theorem 12. Suppose that p(x) = f(x|θ0) for a unique θ0 ∈ Θ, where f (x|θ) =
q(x|θ)/Z(θ) is a parametric density on X from an exponential family (4.8) that
satisfies assumptions:

(B1) f(x|θ0) and ∇x log q(x|θ) are differentiable in X ,

(B4) f(x|θ0)∇⊤
x log q(x|θ) → 0 when x → ∂X and the boundary ∂X of X is

sufficiently regular for integration by parts,

(C4) f(x|θ0)∇⊤
x ⟨T (x),θ⟩L → 0 when x → ∂X ,

(C1b) EX∼f(·|θ0) ∥∆xT (X)∥2
L < ∞,

(C2b) EX∼f(·|θ0)

⃦⃦⃦
∇⊤
x b (X)

⃦⃦⃦4

n
< ∞, and

(C3b) EX∼f(·|θ0) ∥D(X)∥4
op < ∞.

Let θN , N = 1, 2, . . ., be random parameters with values in an open set Θ ⊂ L

such that θN
P−−−→

N→∞
θ0 ∈ Θ. Assume that the inverse of EX∼f(·|θ0) (D∗(X)D(X))

exists. For each N ∈ N, denote by θ̂N the SME computed by (4.17) using a
sample XN

1 , . . . ,X
N
N from f(x|θN). Then θ̂N

P−−−→
N→∞

θ0.

Proof. From Lemma 11 with h (x) = D∗(x)D(x) and assumption (C3b), it fol-
lows that

1
N

N∑︂
i=1

D∗(XN
i )D(XN

i ) P−−−→
N→∞

EX∼ f(·|θ0) (D∗(X)D(X)) . (4.31)

Next, we apply Lemma 11 with h (x) = D∗(x)∇⊤
x b(x) + ∆xT (x). By Cauchy

inequality and (C2b) together with (C3b),(︃∫︂
X

⃦⃦⃦
D∗(x)∇⊤

x b (x)
⃦⃦⃦2

L
f (x|θ) dx

)︃2
≤
∫︂

X
∥D∗ (x)∥4

op f (x|θ) dx·

·
∫︂

X

⃦⃦⃦
∇⊤
x b (x)

⃦⃦⃦4

n
f (x|θ) dx < ∞,

which yields (4.29). Thus, by Lemma 11,

1
N

N∑︂
i=1

D∗(XN
i )∇⊤

x b(XN
i ) + ∆xT (XN

i ) P−−−→
N→∞

EX∼ f(·|θ0)
(︂
D∗(X)∇⊤

x b(X) + ∆xT (X)
)︂
.
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It was shown in (4.25) (inside the proof of Theorem 6) that

EX∼ f(·|θ0) (D∗ (X)D (X))θ0 + EX∼ f(·|θ0)
(︂
D∗ (X) ∇⊤

x b (X) + ∆xT (X)
)︂

= 0.
(4.32)

Thus, from (4.31), (4.32), and the continuous mapping theorem (cf., Theorem 9),
(︄

N∑︂
i=1

D∗(XN
i )D(XN

i )
)︄−1 N∑︂

i=1

(︂
D∗(XN

i )∇⊤
x b(XN

i ) + ∆xT (XN
i )
)︂

P−−−→
N→∞

(︂
EX∼ f(·|θ0) (D∗(X)D(X))

)︂−1
EX∼ f(·|θ0)

(︂
D∗(X)∇⊤

x b(X) + T (X)
)︂

= θ0.

Existence of the inverse on the left-hand side follows from Lemma 7 with BN =
1
N

∑︁N
i=1 D

∗(XN
i )D(XN

i ) and A = EX∼ f(·|θ0) (D∗(X)D(X)).

4.6 SME in Gaussian Markov random vector
In this section, the covariance matrix of a GMRF (defined in Section 2.2.2) will
be estimated by the score matching method together with its expected value.
First, an unconstrained covariance matrix, which corresponds to a degenerate
case with no conditional independence between the entries of the random vector,
is considered for completeness. In that case, it is shown that the score match-
ing estimation method leads to the same estimator as the maximum likelihood
method. Covariance regularization can be achieved through a linear model (2.10)
for the precision matrix after replacing the parameter β = (β1, β2, . . . , βr)⊤ by
its SME, which is addressed in Section 4.6.2.

4.6.1 Unconstrained covariance matrix
Random vector following normal distribution Nn(µ0,Σ0) with unconstrained Σ0
can be considered as a special case of GMRF. The computational procedure is
based on Hyvärinen [33] with missing arguments added.

The SME of (µ0,Σ0) in this case can be most easily computed by minimizing
the score matching objective function (4.6). In order to compute the minimum,
we take derivative of the objective function with respect to a symmetric matrix,
which is addressed in the following lemma.

Lemma 13. Define Sn = {B ∈ Rn×n : B = B⊤} with an inner product
⟨A,B⟩Sn = tr(AB) ∀A,B ∈ Sn. For A ∈ Sn define

g1 : Sn → R, g1(Z) = tr(ZAZ), and
g2 : Sn → R, g2(Z) = tr(Z).

Then, the derivative g′
1(Z) is represented by ZA+ AZ and g′

2(Z) by In.
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Proof. The derivative of g1(Z), resp. g2(Z), in direction H ∈ Sn is

g′
1(Z)H = lim

t→0

g1(Z + tH) − g1(Z)
t

= lim
t→0

tr (ZAZ + tZAH + tHAZ + t2HAH) − tr(ZAZ)
t

= lim
t→0

1
t

tr
(︂
tZAH + tHAZ + t2HAH

)︂
= tr(ZAH) + tr(HAZ) = 2 tr(ZAH),

g′
2(Z)H = lim

t→0

g2(Z + tH) − g2(Z)
t

= lim
t→0

tr (Z + tH) − tr(Z)
t

= tr (H) ,

since the trace is linear and invariant under transposition and since A,Z and H
are symmetric.

Linear functionals g′
1(Z) and g′

2(Z) has the Riesz representation

g′
1(Z)H = ⟨B1, H⟩Sn , ∀H ∈ Sn,

g′
2(Z)H = ⟨B2, H⟩Sn , ∀H ∈ Sn,

for some B1, B2 ∈ Sn. The right choice is B1 = ZA+ AZ and B2 = In, which is
easy to verify,

g′
1(Z)H = ⟨B1, H⟩Sn = ⟨ZA+ AZ,H⟩Sn = tr ((ZA+ AZ)H)

= tr (ZAH) + tr (AZH) = 2 tr (ZAH)
g′

2(Z)H = ⟨B2, H⟩Sn = ⟨In, H⟩Sn = tr (H) ,

where we again used the linearity of trace and its invariance under transposition
and cyclic permutation, which provide tr (AZH) = tr (HAZ) = tr

(︂
(HAZ)⊤

)︂
=

tr (ZAH), due to the symmetry of Z,A,H. Hence, g′
1(Z) is represented by ZA+

AZ ∈ Sn and g′
2(Z) by In ∈ Sn.

In order to show that the minimum of the objective function is unique, we
will need Lemma 14.
Lemma 14. Suppose S ∈ Rn×n is symmetric positive definite and define operator
T : Rn×n → Rn×n by T (P ) = PS + SP . Then, T is injective.
Proof. A linear mapping is injective if and only if its kernel is {0}. Therefore,
the objective is to show that the only solution of

PS + SP = 0 (4.33)

is P = 0.
Since S > 0, all its eigenvalues are positive and there exists a basis of Rn

consisting of eigenvalues of S. By multiplying (4.33) by an eigenvector v ∈ Rn of
S, we get

0 = P (Sv) + S(Pv)
0 = P (λv) + S(Pv),

which implies S(Pv) = −λ(Pv). Since all the eigenvalues of S are positive, i.e.
λ > 0, Pv cannot be an eigenvector of S and it follows that Pv = 0. This holds
for every eigenvector of S and so P = 0.
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We are now ready to prove that the score matching estimate of the covariance
matrix equals to the sample covariance.

Theorem 15 (Hyvärinen [33, Section 3.1]). Let XN = {X1,X2, . . . ,XN} be
a random sample from Nn(µ0,Σ0) with regular Σ0. Then, the score matching
estimator of (µ0,Σ0) based on XN is

(µ̂, Σ̂) =
(︂
X̄, S

)︂
,

if the sample covariance matrix S is regular.

Proof. It will be more convenient to work with a parameter θ = (µ, P ), where P
stands for the precision matrix, instead of (µ,Σ). By assumption, P is symmetric
and positive definite. The logarithm of the density of Nn(µ,Σ) is

log f(x|θ) = −n

2 log(2π) + 1
2 log(detP ) − 1

2(x− µ)⊤P (x− µ)

and its part that depends on the data is

log q(x|θ) = −1
2(x− µ)⊤P (x− µ).

Since the gradient of a scalar function y⊤Ay, A ∈ Sn, with respect to y ∈ Rn is

∇⊤
y (y⊤Ay) = 2Ay, (4.34)

we get

∇⊤
x log q(x|θ) = −P (x− µ) = P (µ− x)

∆x log q(x|θ) = ∇x · (∇x log q(x|θ)) = ∇x ·
(︂
(µ− x)⊤P

)︂
= − tr(P ),

and the objective function (4.6) turns into

SN(θ|XN) = 1
N

N∑︂
i=1

(︃1
2 ∥P (µ−Xi)∥2

n − tr(P )
)︃

+ cN(XN)

= 1
N

N∑︂
i=1

(︃1
2(µ−Xi)⊤P 2(µ−Xi) − tr(P )

)︃
+ cN(XN) (4.35)

= tr
(︄
P

(︄
1

2N

N∑︂
i=1

(µ−Xi)(µ−Xi)⊤
)︄
P − P

)︄
+ cN(XN)

= tr
(︃1

2PSµP − P
)︃

+ cN(XN), (4.36)

where Sµ = 1
N

∑︁N
i=1(Xi − µ)(Xi − µ)⊤ and cN(XN) is a constant that does not

depend on parameters.
To obtain the SME, we minimize SN(θ|XN) over (µ, P ) with symmetric po-

sitive definite P . For this purpose, compute the derivatives of SN(θ|XN) with
respect to µ and P , which give the conditions for the minimizer (µ̂, P̂ ). The
derivative with respect to µ can be most easily computed from (4.35) by using
(4.34):

∂SN

∂µ
(θ|XN) = P 2(µ− X̄) = 0, (4.37)
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where X̄ = 1
N

∑︁N
i=1Xi. By using Lemma 13 with Z = P and A = Sµ, we can

compute the derivative with respect to P from (4.36),

∂SN

∂P
(θ|XN) = 1

2 (PSµ + SµP ) − In = 0. (4.38)

It is easy to see that µ̂ = X̄ and P̂ = S−1
µ̂ is a solution of (4.37, 4.38). By

Lemma 14, P̂ is determined by (4.38) uniquely. Since P̂ is positive definite, from
(4.37), µ̂ is also unique. Hence, the score matching estimator of θ0 = (µ0, P0) is

θ̂ = (X̄, S−1
µ̂ ),

where Sµ̂ = 1
N

∑︁N
i=1(Xi − X̄)(Xi − X̄)⊤ = S.

4.6.2 Linear model for the precision matrix
Suppose that the precision matrix of a GMRF follows the linear model (2.10),

Σ−1 = β1A1 + β2A2 + . . .+ βrAr. (4.39)

This model is formed by a linear combination of linearly independent known
matrices {Ak}r

k=1, which are called design matrices by Ueno and Tsuchiya [68].
The unconstrained covariance matrix in Section 4.6.1 can be considered to fol-
low the linear model (4.39) with design matrices Aij, i = 1, . . . , n, j = 1, . . . , i,
such that Aij has value 1 at positions (i, j) and (j, i) and zeros elsewhere. By
choosing a more restrictive set of design matrices, the linear model (4.39) can
provide a regularization of the precision matrix. In Ueno and Tsuchiya [68], the
parameters β1, . . . , βr of this model are estimated by the maximum likelihood
method, which, however, is not a linear problem in this case, and the maximiza-
tion has to be done numerically. In this section, it will be shown that the score
matching method provides estimators in a closed form. Regularization of the
covariance matrix by means of the Markov property has been also considered in
Spantini et al. [65]. Linear estimation of the precision matrix by score matching
was studied in Forbes and Lauritzen [23].

The following theorem provides the explicit formulas of SME of the mean value
and a linear model for the precision matrix of normal distribution Nn(µ0,Σ0).
This result is essential for filtering algorithms presented in Chapter 7. Since the
computation is for one fixed N , we can drop the subscript N here.

Theorem 16 (Turčičová et al. [66]). Assume that X1, . . . ,XN is a sample from
Nn(µ0,Σ0), suppose that Σ0 is regular, and consider the model ∑︁r

k=1 βkAk for the
precision matrix Σ−1, where {Ak}r

k=1 are given symmetric and linearly indepen-
dent matrices. Denote β = (β1, ..., βr)⊤. Then, the score matching estimator of
(µ0,β0) is

(µ̂, β̂) =
(︃
X̄,

(︂
[tr (SAkAl)]rk,l=1

)︂−1
(tr(A1), . . . , tr(Ar))⊤

)︃
, (4.40)

where X̄ and S are the sample mean and sample covariance (2.1), assuming that
the inverse exists.
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Proof. Normal distribution belongs to the exponential family of distributions, so
we can compute SME based on (4.17). Note that the model density f(x|µ,Σ) is
assumed to coincide with the true density p(x) for some (µ0,Σ0). Dimension of
the parameter space is s = n+r. The density of Nn(µ,Σ) with Σ−1 = ∑︁r

k=1 βkAk

is
f(x|µ,Σ) = q(x|µ,Σ)∫︁

Rn q(x|µ,Σ)dx , (4.41)

where

log q(x|µ,Σ) = − 1
2(x− µ)⊤

r∑︂
k=1

βkAk(x− µ) (4.42)

=
⟨︄⎛⎝ x

−1
2

(︂
x⊤A1x, . . . ,x

⊤Arx
)︂⊤

⎞⎠ ,(︄ ∑︁r
k=1 βkAkµ
β

)︄⟩︄
n+r

− 1
2

⟨︄
µ,

r∑︂
k=1

βkAkµ

⟩︄
n

= ⟨T (x),η⟩n+r − a(η)

is of the exponential family with a new parametrization

η =
(︄
η1
η2

)︄
=
(︄ ∑︁r

k=1 βkAkµ
β

)︄
(4.43)

with sufficient statistics

T (x) =
⎛⎝ x

−1
2

(︂
x⊤A1x, . . . ,x

⊤Arx
)︂⊤

⎞⎠ (4.44)

and
a(η) = 1

2

⟨︄
µ,

r∑︂
k=1

βkAkµ

⟩︄
n

.

The original parameters (µ,β) define probability density by (4.41) if and only
if

(µ,β) ∈ Θ̃ =
{︄

(µ,β)
⃓⃓⃓⃓
⃓µ ∈ Rn,

r∑︂
k=1

βkAk is positive definite
}︄
.

Define
Θ =

{︄
η ∈ Rn+r

⃓⃓⃓⃓
⃓

r∑︂
k=1

η2kAk is positive definite
}︄
,

where η2 = [η2k]rk=1. Lemma 17 (below) shows that (4.43) defines a one-to-one
correspondence between η ∈ Θ and (µ,β) ∈ Θ̃.

Now, the estimate (4.17) can be evaluated. From (4.27),

D∗(x) = Jx(T (x)) = Jx

⎛⎝ x

−1
2

(︂
x⊤A1x, . . . ,x⊤Arx

)︂⊤

⎞⎠ =
[︄

In

− [A1x, . . . , Arx]⊤

]︄

and then D is the transpose,

D(x) = [In,− [A1x, . . . , Arx]] .
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So,

D∗(x)D(x) =
[︄

In

− [A1x, . . . , Arx]⊤
]︄

[In,− [A1x, . . . , Arx]]

=
[︄

In − [A1x, . . . , Arx]
− [A1x, . . . , Arx]⊤ [x⊤AkAlx]rk,l=1

]︄
. (4.45)

For every k = 1, . . . , r, we have

∆x

(︃
−1

2x
⊤Akx

)︃
= ∇x ·

(︃
∇x

(︃
−1

2x
⊤Akx

)︃)︃
= −∇x ·

(︂
x⊤Ak

)︂
= − tr(Ak)

and due to (4.28), the Laplacian of the sufficient statistics from (4.44) is

∆xT (x) =
(︄

0
− (tr(A1), . . . , tr(Ar))⊤

)︄
. (4.46)

With a random sample X1, . . . ,XN , we have the SME (4.17),

η̂ = −
(︄

1
N

N∑︂
i=1

D∗(Xi)D(Xi)
)︄−1 1

N

N∑︂
i=1

∆xT (Xi) (4.47)

= −
[︄
E11 E12
E21 E22

]︄−1 (︄ 0
(tr(A1), . . . , tr(Ar))⊤

)︄
,

where[︄
E11 E12
E21 E22

]︄
=
[︄

In − 1
N

∑︁N
i=1 [A1Xi, . . . , ArXi]

− 1
N

∑︁N
i=1 [A1Xi, . . . , ArXi]⊤ 1

N

∑︁N
i=1[X⊤

i AkAlXi]rk,l=1

]︄
.

Using the formula for the inverse of 2 × 2 block matrix,[︄
E11 E12
E21 E22

]︄−1

=
[︄
M11 M12
M21 M22

]︄
=
[︄
E11

−1
(︂
In + E12M22E21E11

−1
)︂

−E11
−1E12M22

−M22E21E11
−1 S−1

22

]︄
,

where

S22 = E22 − E21E11
−1E12

=
[︄

1
N

N∑︂
i=1
X⊤

i AkAℓXi

]︄r

k,ℓ=1
−

− 1
N

[︄
N∑︂

i=1
A1Xi, . . . ,

N∑︂
i=1

AsXi

]︄⊤ 1
N

[︄
N∑︂

i=1
A1Xi, . . . ,

1
N

N∑︂
i=1

AsXi

]︄

=
⎡⎣ 1
N

N∑︂
i=1
X⊤

i AkAℓXi − 1
N

N∑︂
i=1
X⊤

i Ak
1
N

N∑︂
j=1

AℓXj

⎤⎦r

k,ℓ=1

(4.48)

=
⎡⎣tr

⎛⎝⎛⎝ 1
N

N∑︂
i=1
XiX

⊤
i − 1

N

N∑︂
j=1
Xj

1
N

N∑︂
i=1
X⊤

i

⎞⎠AkAℓ

⎞⎠⎤⎦r

k,ℓ=1

= [tr (SAkAℓ)]rk,ℓ=1 . (4.49)
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Since S−1
22 exists by assumption, the inverse in (4.47) exists, and

η̂ = −
[︄
M11 M12
M21 M22

]︄(︄
0

(tr(A1), . . . , tr(Ar))⊤

)︄

=
[︄

−E11
−1E12S

−1
22

S−1
22

]︄
(tr(A1), . . . , tr(Ar))⊤

=
[︄

−E11
−1E12
In

]︄
S−1

22 (tr(A1), . . . , tr(Ar))⊤ ,

which gives

η̂2 = β̂ =
(︂
[tr (SAkAℓ)]rk,ℓ=1

)︂−1
(tr(A1), . . . , tr(Ar))⊤

and

η̂1 = −E11
−1E12η̂2 = 1

N

N∑︂
i=1

[A1Xi, . . . , ArXi] β̂

= 1
N

N∑︂
i=1

r∑︂
k=1

β̂kAkXi =
r∑︂

k=1
β̂kAkX̄.

By (4.43), η1 = ∑︁r
k=1 βkAkµ, and since the mapping of the parameters (η1,η2)

and the original parameters (µ,β) is one-to-one by Lemma 17 below, it follows
that µ̂ = X̄.

Remark 6. Note that the form (4.48) will be cheaper to compute than the elegant
form (4.49).

Lemma 17. Let all the assumptions of Theorem 16 hold and denote

Θ̃ =
{︄

(µ,β)
⃓⃓⃓⃓
⃓µ ∈ Rn,

r∑︂
k=1

βkAk is positive definite
}︄

Θ =
{︄
η =

(︄
η1
η2

)︄ ⃓⃓⃓⃓
⃓η1 ∈ Rn,

r∑︂
k=1

η2kAk is positive definite
}︄
.

Then
η =

(︄
η1
η2

)︄
=
(︄ ∑︁r

k=1 βkAkµ
β

)︄
(4.50)

defines a homeomorphism between η ∈ Θ and (µ,β) ∈ Θ̃.

Proof. Evaluating (4.50), (µ,β) ∈ Θ̃ gives a unique η ∈ Θ. In the opposite
direction, if η ∈ Θ, then η2 = β and, since ∑︁r

k=1 βkAk is nonsingular, µ =
(∑︁r

k=1 βkAk)−1 η2.
The mapping (µ,β) ↦→ η is continuous from the continuity of vector space

operation, while the continuity of the inverse mapping follows using also the
continuity of the mapping A ↦→ A−1, cf. (4.26).

Following through the steps of the proof of Theorem 16 omitting µ as a pa-
rameter, we get the following result.
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Theorem 18. When µ0 is known, then the score matching estimator of β0 is

β̂ =
(︂
[tr (Sµ0AkAl)]rk,l=1

)︂−1
(tr(A1), . . . , tr(Ar))⊤ (4.51)

with Sµ0 = 1
N

∑︁N
i=1(Xi − µ0)(Xi − µ0)⊤ (if the inverse exists).

Proof. From (4.42), we have

log q(x|Σ) = log q(x|β) = −1
2(x− µ0)⊤

r∑︂
k=1

βkAk(x− µ0)

=
⟨︃

−1
2
(︂
(x− µ0)⊤A1(x− µ0), . . . , (x− µ0)⊤Ar(x− µ0)

)︂⊤
,β
⟩︃

r

= ⟨T (x),β⟩r

with the sufficient statistics

T (x) = −1
2
(︂
(x− µ0)⊤A1(x− µ0), . . . , (x− µ0)⊤Ar(x− µ0)

)︂⊤
.

From (4.27),

D∗(x) = Jx(T (x))

= Jx

(︃
−1

2
(︂
(x− µ0)⊤A1(x− µ0), . . . , (x− µ0)⊤Ar(x− µ0)

)︂⊤
)︃

= − [A1(x− µ0), . . . , Ar(x− µ0)]⊤

and then D is the transpose,

D(x) = − [A1(x− µ0), . . . , Ar(x− µ0)] .

So,

D∗(x)D(x) =
[︂
(x− µ0)⊤AkAl(x− µ0)

]︂r
k,l=1

.

Similarly as in (4.46),

∆xT (x) = − (tr(A1), . . . , tr(Ar))⊤ .

With a random sample X1, . . . ,XN , we have

1
N

N∑︂
i=1

D∗(Xi)D(Xi) = 1
N

N∑︂
i=1

(Xi − µ0)⊤AkAl(Xi − µ0)

= tr
(︄

1
N

N∑︂
i=1

(Xi − µ0)(Xi − µ0)⊤AkAl

)︄
= tr (Sµ0AkAl) .

Then, the SME (4.17) is

β̂ = −
(︄

1
N

N∑︂
i=1

D∗(Xi)D(Xi)
)︄−1 1

N

N∑︂
i=1

∆xT (Xi)

=
(︂
[tr (Sµ0AkAl)]rk,l=1

)︂−1
(tr(A1), . . . , tr(Ar))⊤ .
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We now show that the SME of the distribution of GMRF is consistent. In
order to emphasize that the sample covariance matrix depends on N , we will use
the notation SN instead of S in the following theorem. Similarly, we will use X̄N

instead of X̄.

Theorem 19. Assume that all the assumptions of Theorem 16 are satisfied and
denote by β̂N the SME of β0 from (4.40) based on a sample of size N , if the in-
verse of [tr(SNAkAl)]rk,l=1 exists. Further assume that EX∼f(·|µ0,β0) (D∗(X)D(X))
defined by (4.45) is invertible. Then, (X̄N , β̂N) is a consistent estimator of
(µ0,β0), and, in particular, ∑︁r

k=1 β̂NkAk is a consistent estimator of Σ−1
0 .

Proof. Denote β0 = [β0k]rk=1. We will apply Theorem 6 to the parameter

η =
(︄ ∑︁r

k=1 βkAkµ
β

)︄
,

which provides

η̂N
P−−−→

N→∞
η0 =

(︄∑︁r
k=1 β0kAkµ0

β0

)︄
,

where Pr (η̂N exists) → 1 as N → ∞. Then, the convergence

(X̄N , β̂N) P−−−→
N→∞

(µ0,β0)

will result from the continuous mapping theorem (cf., Theorem 9) applied to the
mapping of η to (µ,β), which is continuous by Lemma 17.

We need to verify the assumptions of Theorem 6. Recall that

log f(x|η) = ⟨T (x),η⟩n+r − a(η) + b(x),

where for normal distribution b(x) = 0 and the sufficient statistics (4.44) for η is

T (x) =
⎡⎣ x

−1
2

(︂
x⊤A1x, . . . ,x

⊤Arx
)︂⊤

⎤⎦ .
The density of normal distribution and the gradient of its logarithm are diffe-
rentiable, as required in assumption (B1). Since all moments of normal distri-
bution are finite, assumptions (C1) and (C3) are fulfilled. Since b(x) = 0 for
normal distribution, (C2) is fulfilled automatically, and further, ∇x log q(x|θ) =
∇x⟨T (x),θ⟩n+r, which implies that assumption (C4) coincides with (B4). It is
evident that T is continuous and polynomial, and, therefore,

lim
∥x∥n→∞

f(x|η0)
∂ log q(x|η)

∂xj

= lim
∥x∥n→∞

f(x|η0)
∂

∂xj

n+r∑︂
k=1

Tk(x)ηk = 0

for all j = 1, . . . , n and for any η, because of the exponential decay of f(x|η0).
Thus, assumption (B4) is satisfied (cf., Remark 4). The inverse of

EX∼f(·|η0) (D∗(X)D(X)) = EX∼f(·|η0)

⎡⎣ In − [A1X, . . . , ArX]
− [A1X, . . . , ArX]⊤

[︂
tr
(︂
AkAlXX

⊤
)︂]︂r

k,l=1

⎤⎦
exists by assumption.
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Corollary. Under the assumptions of Theorem 19, Σ̂N =
(︂∑︁r

k=1 β̂NkAk

)︂−1
(when

the inverse exists) is a consistent estimator of Σ0.

Proof. From Theorem 19,
r∑︂

k=1
β̂NkAk

P−−−→
N→∞

Σ−1
0 .

Since Σ−1
0 exists by assumption, the consistency of Σ̂N follows from Lemma 7.

The matrices Ak, k = 1, . . . , r, are usually chosen as sparse matrices, whose
diagonals and subdiagonals can effectively model the appropriate precision matrix
(e.g. as in Figure 2.1). The design matrices Ak also need to be selected in a way
that the inverse in (4.40) (and hence the whole SME) exists.

Theorem 20. The matrix [tr (SAkAl)]rk,l=1, where S is the sample covariance of
X1, . . . ,XN , is invertible if and only if the matrices Ak

[︂
X1 − X̄, . . . ,XN − X̄

]︂
,

k = 1, . . . , r, are linearly independent as elements of Rn×N .

Proof. From (4.48),

[tr (SAkAℓ)]rk,ℓ=1 =

⎡⎢⎣ 1
N

N∑︂
i=1

⎛⎝Xi − 1
N

N∑︂
j=1
Xj

⎞⎠⊤

AkAℓ

⎛⎝Xi − 1
N

N∑︂
j=1
Xj

⎞⎠
⎤⎥⎦

r

k,ℓ=1

= 1
N

[︄
N∑︂

i=1

(︂
Xi − X̄

)︂⊤
A⊤

k Aℓ

(︂
Xi − X̄

)︂]︄r

k,ℓ=1

which is a nonzero multiple of the Gram matrix of the vectors

Ak

[︂
X1 − X̄, . . . ,XN − X̄

]︂
=
[︂
Ak

(︂
X1 − X̄

)︂
, . . . , Ak

(︂
XN − X̄

)︂]︂
∈ Rn×N ,

for k = 1, . . . , r, with Rn×N equipped with the Frobenius inner product, which
can be written as

⟨[U1, . . . ,UN ] , [V1, . . . ,VN ]⟩n×N =
N∑︂

i=1
U⊤

i Vi,

where Ui,Vi ∈ Rn for i = 1, . . . , N.

Corollary. A necessary condition for [tr (SAkAl)]rk,l=1 to be invertible is that the
set of design matrices {Ak, k = 1, . . . , r} is linearly independent.
Corollary. If [tr (SAkAl)]rk,l=1 is invertible for a set of design matrices A =
{Ak, k = 1, . . . , r}, then it is invertible for any nonempty subset of A.
Remark 7. The assumed model ∑︁r

k=1 βkAk for Σ−1 does not contain any restric-
tion that would ensure the positive definiteness of the resulting estimator, which
is equivalent with positive definiteness of the associated covariance matrix esti-
mator. Positive definiteness of ∑︁r

k=1 β̂NkAk cannot be guaranteed, because the
set of positive definite matrices is not closed and so the objective function may
not achieve its minimum in this set. The matrix ∑︁r

k=1 β̂NkAk only converge to
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the positive definite matrix with probability tending to 1, due to the consistency
stated in Theorem 19.

When the estimate of precision matrix is not required to be invertible, we can
get a positive semidefinite estimate by taking a set of positive semidefinite design
matrices {Ak}r

k=1 and working only with nonnegative coefficients β̂1, . . . , β̂r. The
existence and consistency of SME of a parameter from Rr

+ was studied by Yu et al.
[74]. However, matrices ∑︁r

k=1 βkAk with (β1, . . . , βr)⊤ ∈ Rr
+ form only a subset of

the space of all positive semidefinite matrices, so this method would reduce the
parameter space dramatically.

Due to the fact that the positive definiteness of the resulting estimate cannot
be guaranteed by any prior restrictions on the model, this problem needs to be
addressed in a different way. In Section 7.4.2, positive definiteness of estimates
based on small samples is ensured by the process of model selection.

4.6.3 SME of GMRF from a triangular array of samples
In the following theorem, we will apply the continuity result from Section 4.5
on the parameters µ,β = [βk]rk=1 of normal distribution Nn

(︂
µ, (∑︁r

k=1 βkAk)−1
)︂
.

It will be a key component in the proof of consistency of the filtering algorithm
proposed in Section 7.1 and it may be also of independent interest.

Theorem 21. Let f(·|µ0,β0) be the density of Nn

(︂
µ0, (

∑︁r
k=1 β0kAk)−1

)︂
, and

assume that EX∼f(·|µ0,β0) (D∗(X)D(X)) defined by (4.45) is invertible. Further,
assume that (µN ,βN) P−→ (µ0,β0) as N → ∞ and denote Σ−1

N = ∑︁r
k=1 βN,kAk.

Let X̄N

N , β̂N be the SMEs computed from formula (4.40) based on a random sample
XN

1 , . . . ,X
N
N from Nn(µN ,ΣN). Then

(X̄N

N , β̂N) P−−−→
N→∞

(µ0,β0). (4.52)

Proof. The proof follows the same scheme as the proof of Theorem 19. The
convergence (4.52) results from the Theorem 12 applied to the parameter

η =
(︄ ∑︁r

k=1 βkAkµ
β

)︄
,

followed by the continuous mapping theorem applied to the mapping of η to
(µ,β).

As in the proof of Theorem 19, we only need to verify the assumptions of
Theorem 12 for normal distribution. Assumptions (B1), (B4) and (C4) have
been already discussed within the proof of Theorem 19. Assumptions (C1b)-
(C3b) represent stronger version of assumptions (C1)-(C3). However, since the
normal distribution has finite moments of all orders, assumptions (C1b)-(C3b) are
satisfied as well. The inverse of EX∼f(·|η0) (D∗(X)D(X)) exists by assumption.

4.7 Computational study
The following simulations illustrate that, unlike the unconstrained SME in Sec-
tion 4.6.1, the SME (4.40) gives only very similar (but not the same) results as
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the maximum likelihood method for the same linear model (4.39), which was
described in Ueno and Tsuchiya [68]. However, computing SME is incomparably
faster since it is given as a solution of a system of linear equations and avoids
numerical maximization of an intricate likelihood function.

4.7.1 Comparison of SME and MLE on simulated GMRF
In order to compare estimates computed by the score matching method with
those obtained from maximum likelihood, we created a precision matrix Σ−1

0 =∑︁r
k=1 β0kAk displayed in Figure 4.2a corresponding to a first-order GMRFX with

dimension 5 × 5 with 4 neighbours of every gridpoint (see the scheme in Figure
2.1a). The values on the main diagonal, resp. two subdiagonals, were generated
from the uniform distribution on interval [4, 8], resp. [-2,-0.5]. We compose our
set of design matrices, {Ak}r

k=1, from linearly independent matrices such that for
each point (i, j) on the main diagonal and the subdiagonals, the corresponding
Ak has value 1 at positions (i, j) and (j, i) and zeros elsewhere. Thus, the number
of parameters is r = 65. A random sample XN = {X1, . . . ,XN} was generated
from Nn(0,Σ0). The SME of β0 = (β01, . . . , β0r)⊤ was computed from (4.51) and
the MLE was obtained by numerical maximization of the log-likelihood

ℓ(β|XN) = −Nn

2 log(2π) + N

2 log
(︄

det
(︄

r∑︂
k=1

βkAk

)︄)︄
− 1

2

N∑︂
i=1
X⊤

i

r∑︂
k=1

βkAkXi,

both using the same sample. The numerical comparison of resulting estimates is
depicted in Figure 4.1 and the corresponding estimates of the precision matrix in
Figures 4.2b and 4.2c.

The score matching and maximum likelihood estimates do not exhibit sub-
stantial differences in their values. As expected for the sample size of 20, the
error of both estimates was large for many of βk’s.

Figure 4.1: Simulated first-order GMRF(dimensions 5 × 5, columns stacked ver-
tically): Comparison of the score matching (sme) and the maximum likelihood
(mle) estimates with the true parameters [β0k]65

k=1. Sample size was N = 20. First
25 entries correspond to the diagonal of Σ−1

0 .
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(a) True precision matrix.

(b) Estimate based on the score
matching method.

(c) Estimate based on the maximum
likelihood method.

Figure 4.2: Simulated first-order GMRF (dimensions 5 × 5, columns stacked
vertically): The precision matrix and its estimates based on a sample of size
N = 20.
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4.7.2 An illustration of modelling covariance
of real weather fields in wavelet domain

One of the standard approaches to modelling covariance matrix in atmospheric
data assimilation lies in transforming the variables which enter the assimilation
process (such as temperature, air pressure, wind velocity etc.) to another space,
often spectral, such as Fourier or wavelet space. For spatial data, the wavelet
transform is often preferred because it enables us to model not only wave (spec-
tral) characteristics but also local properties tied to location in space. Similarly
as in the Fourier transform, wavelet transform is based on a decomposition of X,

X = EX +
n∑︂

j=1
d

1/2
j ξjvj, (4.53)

where vj are now the vectors of the wavelet basis, ξj are random variables that
have unit variance but that are not necessarily independent and dj are determin-
istic real coefficients. We then have a decomposition of the covariance matrix

Σ = FDF⊤, (4.54)
where matrix D may not be diagonal in general but there are important situ-
ations where it is approximately diagonal and/or sparse. For example, local
stationarity of the random field may often be an appropriate assumption and
Pannekoucke et al. [58] prove that “a wavelet diagonal approach amounts to
locally averaging the correlations”, i.e. modelling Σ with a diagonal matrix D
in (4.54) represents a locally stationary approximation of the field X. Another
theoretical justification for employing models with sparse covariance matrix in
wavelet space is in Matsuo et al. [53] and in the references therein. Roughly
speaking, the decay of the off-diagonal elements of D in (4.54) is quantified under
fairly general assumptions and it depends on the distance of locations.

We do not need a deeper insight into wavelet theory nor technical details
here. For our purpose it is sufficient to keep in mind that the wavelet transform
performs a multiscale decomposition of the field. A comprehensive treatment of
wavelets is found in, e.g., Burrus et al. [14]. The theory is covered in Daubechies
[18].

The transformation matrix F in (4.54) is composed of basis functions gene-
rated from scaling functions, which keep the lowest frequencies of the transform
and ensure that the whole spectrum is covered, and wavelets, which keep higher
frequencies and provide more detailed information. It is possible and sometimes
advantageous to require the scaling functions and wavelets to be orthogonal. The
scaling functions and wavelets are organized into bands. Each band involves
a number of wavelets of the same frequency but shifted in space differently. In
practice, the wavelet transform is computed by successive application of a filter
bank consisting of a low-pass and a high-pass filter. In this manner, coefficients,
which correspond to several levels, arise. The wavelet compression technique,
common in engineering literature, lies in discarding some levels which are not
essential for the task at hand. In this study, we will use Daubechies 2 wavelets
(often denoted as DB2) defined in Daubechies [17].

In the original physical space, the variables of interest can often be well
approximated by a spatial GMRF. The scaling coefficients in the lowest frequency
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sub-bands have a spatial covariance structure similar to the original physical
space, and thus, they may be modelled by a GMRF as well. Hence, we propose
to model the inverse of their covariance matrix by a linear model of type (2.10),

Σ−1 =
r∑︂

k=1
βkAk. (4.55)

After estimating the parameters β1, . . . , βr, we obtain a sparse estimate of the
precision matrix of the low frequency wavelets. By inverting and transforming
back to the physical space, we obtain a covariance matrix estimate adjusted for
noise. The coefficients of scaling functions represent the coarse information in
the data and so their covariance structure is strong. By contrast, the coefficients
of high frequency wavelets representing the finer “details” have a much smaller
variance and negligible correlation structure; we propose to neglect them. This
wavelet compression is similar to denoising in image analysis, where the neglected
coefficients usually correspond to the bands of higher frequency wavelets.

The particular data used in this study contains model fields of a control vari-
able called unbalanced temperature1. To simplify the computations, we selected
a domain with dimension 128 × 128. The data consists of 480 temperature fields
- model fields in 12 consequential days and two different day-times (00 and 12
UTC) and we have an ensemble of 20 members for each time. For covariance
modelling, we use departures from ensemble mean in the corresponding time. As
it is a common practice, they are considered to be nearly independent. The field
of sample variances in the chosen domain is given in Figure 4.3.

Figure 4.3: Real temperature data: Sample variances of unbalanced temperature
computed from 480 temperature fields.

Since the domain is two-dimensional, the wavelet decomposition was made
in each dimension separately, which results in four sub-bands of basis functions:
A (scaling functions in both direction), H (scaling functions horizontally, wavelets
vertically), V (scaling functions vertically, wavelets horizontally) and D (wavelets

1More precisely, potential temperature used in algorithms of data assimilation in numeric
weather prediction. The data come from the Global Ensemble Forecast System of NCEP, USA,
downscaled by the WRF model of NCAR, USA. We selected the lowest vertical level, 15 m
above ground.
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in both directions). We use Daubechies wavelets DB2 up to level 4. In Fi-
gure 4.4, it can be seen that only the level 4 coefficients in sub-bands A4, V4, H4
(three blocks of size 64 × 64) have significant variances. Therefore, the level 1, 2
and 3 covariance coefficients are discarded as well as the D sub-band in level 4.
The sample covariance matrix of the remaining 192 coefficients is displayed in
Figure 4.5. As seen from this figure, the major part of variance is concentrated
in the “compressed image” A4. A much smaller part of the variance is in the
sub-bands H4 and V4 (compressed in one directions and wavelet transformed in
another). Since the variance in the remaining sub-bands (D4, complete levels
1,2,3) is insignificant, our model for the rest of the coefficients is zero.

Figure 4.4: Real temperature data: Sample variances of wavelet coefficients cor-
responding to basis functions in different sub-bands. Based on 480 temperature
fields. A4 represents the coarse informations and corresponds to scaling functions
in both directions. We keep only coefficients from A4, H4 and V4. Coefficients
from the remaining sub-bands were neglected.

The covariance structure in the wavelet space is different for particular sub-
bands and our model for the precision matrix has to reflect that. For the A4
sub-band, we assume each gridpoint to have 12 neighbours, which results in
a structure of 13 diagonals displayed in Figure 2.1c.

In Section 4.7, we used “elementary” design matrices with one or two ones only
and zero otherwise. Here we use more restrictive choice of design matrices, which
results in further reduction of the number of parameters and spatial smoothing of
covariances. We divide each subdiagonal into sections corresponding to rows of
the field of wavelet coefficients. Each section is modelled as a linear combination
of B-spline basis along each section (the basis is displayed in Figure 4.6). Hence,
every design matrix Ak in (4.55) consists of one B-spline on the subdiagonal
section. For wavelet detail sub-bands H4 and V4, we use design matrices formed
by constant diagonal segments corresponding to simple stencils of two neighbours.
For the H4 sub-band, these neighbours are in horizontal direction, and for the
V4 sub-band in the vertical direction. In total, we have r = 201 design matrices.
The vector of parameters β = (β0, . . . , β200)⊤ consists of coefficients associated
with the B-splines for the precision matrix in the A4 sub-band and coefficients
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Figure 4.5: Real temperature data: Sample covariance matrix of coefficients cor-
responding to basis functions from A4, H4 and V4 sub-band. Based on 480
temperature fields.

associated with constant subdiagonals for the rest of level 4. Parameters were
estimated by the maximum likelihood method (Ueno and Tsuchiya [68]) and
the score matching method. Comparison of the coefficients estimates can be
found in Figure 4.7. The resulting regularized precision matrix and regularized
correlation matrix are depicted in Figure 4.8. Similarly as in the previous section,
the estimates by SME and MLE do not show substantial differences.

Figure 4.6: The B-spline basis for setting the design matrices intended for mo-
delling the part of precision matrix corresponding to the A4 sub-band.
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Figure 4.7: Real temperature data: Comparison of the maximum likelihood
and score matching estimates of parameters β0, . . . , β200 of the model Σ−1 =∑︁200

k=0 βkAk for the precision matrix of wavelet coefficients. Based on 480 tempe-
rature fields.

(a) MLE of the precision matrix. (b) Correlation matrix associated to (a).

(c) SME of the precision matrix. (d) Correlation matrix associated to (c).

Figure 4.8: Real temperature data: Estimates of the correlation and precision
matrix of wavelet transform coefficients. Based on 480 temperature fields. Pa-
rameters estimated by the maximum likelihood and the score matching method.
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5. Hierarchical structure of
asymptotic variance of nested
M-estimators
This chapter is concerned with asymptotic normality of M-estimators. Namely,
it is proved that the asymptotic variance of nested M-estimators follow similar
hierarchical structure as the MLE in Section 3.2. In particular, this result is
applied to MLE and SME, which are special cases of M-estimators.

5.1 A brief introduction to M-estimators
We start with an introduction to M-estimators, based on Van der Vaart [69].

Consider a random sample XN = {X1, . . . ,XN} from a distribution depend-
ing on a parameter θ ∈ Θ ⊂ Rs. M-estimator θ̂N is defined as the maximizing
value of the criterion function

MN(θ|XN) = 1
N

N∑︂
i=1

m(Xi,θ), (5.1)

over Θ, where m(·,θ) : Rn → R are known functions. The maximum is often
sought by setting the derivative ∇θMN(θ|XN) equal to zero, i.e. the estimator
θ̂N satisfies

∇θMN(θ̂N |XN) = 0⊤, (5.2)
provided that the derivatives exist. In order to simplify the notation, denote

ψ(X,θ) = ∇⊤
θm(X,θ), (5.3)

which is a vector-valued function. Estimators satisfying systems of estimating
equations of the type (5.2) are sometimes also called Z-estimators. Under mild
conditions on MN , resp. ψN , which are specified in Van der Vaart [69], M-
estimator θ̂N is consistent for θ. In the cases of our interest (MLE and SME),
we have consistency from other arguments. Moreover, it can be proved that the
M-estimator asymptotically follows the normal distribution:
Theorem 22 (Van der Vaart [69], Theorem 5.41). Let X be a random vector
from the distribution Pθ0 depending on a parameter θ0 from an open subset Θ of
Rs. For θ ∈ Θ, let θ ↦→ ψ(x,θ) be twice continuously differentiable for every
x. Suppose that Eψ(X,θ0) = 0, E ∥ψ(X,θ0)∥2

s < ∞ and that the expectation
of the Jacobian matrix E Jθ(ψ(X,θ)) exists and is non-singular at θ0. Further
assume that the second-order partial derivatives of ψ(x,θ) with respect to θ are
dominated by a fixed integrable function d(x) for every θ in a neighbourhood of
θ0. For each N ∈ N and a given sample X1, . . . ,XN from Pθ0, suppose that θ̂N

satisfying 1
N

∑︁N
i=1ψ(Xi, θ̂N) = 0 is a consistent estimator of θ0. Then,

√
N(θ̂N − θ0) d−−−→

N→∞
Nn(0, Cθ0),

where
Cθ0 = (E Jθ(ψ(X,θ0)))−1 E

[︂
ψ(X,θ0)(ψ(X,θ0))⊤

]︂
(E Jθ(ψ(X,θ0)))−1 . (5.4)
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The inverse of matrix (5.4) is sometimes called the Godambe information
matrix because it plays the role of the Fisher information matrix for more ge-
neral estimators and V. P. Godambe initiated the theory of unbiased estimating
equations. It can be said that (5.4) is the inverse Godambe information.

5.2 Comparison of asymptotic variances of nes-
ted estimators

First, we will express the covariance matrix (5.4) in terms of function m. The
column vector ψ(X,θ) = (ψ1, ψ2, . . . , ψs)⊤ in (5.3) has entries ψi = ∂m(X,θ)

∂θi
,

i = 1, 2, . . . , s, therefore

ψ(X,θ)(ψ(X,θ))⊤ = ∇⊤
θm(X,θ)∇θm(X,θ) =

[︄
∂m

∂θi

∂m

∂θj

]︄s

i,j=1
.

The Jacobian matrix Jθ(ψ(X,θ)) in (5.4) is a s× s matrix of the form

Jθ(ψ(X,θ)) = Jθ
(︂
∇⊤
θm(X,θ)

)︂
=
[︄
∂2m(X,θ)
∂θj∂θi

]︄s

i,j=1
= Hθ(m(X,θ)),

where Hθ stands for the Hessian with respect to θ. Hence, the asymptotic co-
variance matrix (5.4) of an M-estimator is equal to

Cθ0 = (EHθ(m(X,θ0)))−1 E
[︂
∇⊤
θm(X,θ0)∇θm(X,θ0)

]︂
(EHθ(m(X,θ0)))−1.

(5.5)
Denote by A the negative expectation of the Hessian matrix, i.e.,

A = − EHθ(m(X,θ)). (5.6)

If m is concave, then A is positive semidefinite, which will be assumed. Because
A is symmetric,

√
NA1/2(θ̂N − θ0) d−−−→

N→∞
Nn

(︂
0, A1/2Cθ0A

1/2
)︂
. (5.7)

In order to compare precision of estimators based on nested parametrizations, we
are interested in comparing their asymptotic variances as in Section 3.2. Here, the
comparison is in terms of the sum of variances tr(A1/2Cθ0A

1/2) of the asymptotic
distribution (5.7). Similarly as in Section 3.2, suppose that the true parameter
θ0 lies in a subspace Φ of Θ, which is parametrized by r ≤ s parameters (φ1,. . . ,
φr)⊤ = φ, however the quantity of interest is the original parameter θ. Assume
that θ0 = θ(φ0). The estimator θ(φ̂N), resulting from substituting the M-
estimate φ̂N into the function θ(φ), has the asymptotic covariance matrix Cθ(φ0),
which can be compared with Cθ0 . The next theorem shows that the asymptotic
distribution of estimator θ(φ̂N) based on the smaller parametrization φ has total
variance tr(A1/2Cθ(φ0)A

1/2) that is not larger than that of θ̂N . This corresponds
to the comparison of asymptotic covariance matrices in the basis of eigenvectors
of the matrix A scaled by the square roots of its eigenvectors.
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Theorem 23. Let X be a random vector with distribution Pθ0, where θ0 is a pa-
rameter belonging to an open parameter set Θ. Assume θ0 being estimated by
maximizing the criterion function (5.1) with ψ(X,θ) = ∇⊤

θm(X,θ) satisfying
all the assumptions of Theorem 22. Denote A = − EHθ(m(X,θ)). Suppose
φ ↦→ θ(φ) is a one-to-one map from Φ ⊂ Rr to Θ and continuously differen-
tiable with Jφ(θ(φ)) that is non-singular for all φ ∈ Φ. Assume θ0 = θ(φ0) with
φ0 in the interior of Φ. Then

tr
(︂
A1/2Cθ(φ0)A

1/2
)︂

≤ tr
(︂
A1/2Cθ0A

1/2
)︂
. (5.8)

Proof. The estimator based on the parametrization θ has the asymptotic co-
variance matrix (5.5). Analogically, the estimator of the submodel φ has the
asymptotic covariance matrix

Cφ0 = (E Hφ(m(X,φ0)))−1 E
[︂
∇⊤
φm(X,φ0)∇φm(X,φ0)

]︂
(E Hφ(m(X,φ0)))−1.

(5.9)
From the chain rule, we obtain

∂

∂φi

m(X,φ) = ∂

∂φi

m(X,θ (φ)) =
s∑︂

k=1

∂m(X,θ)
∂θk

∂θk

∂φi

,

which has the vector form

∇φm(X,φ) = ∇θm(X,θ)Jφ (θ) ,

where Jφ (θ) is the s× r Jacobian matrix with entries ∂θk

∂φi
. Now, we express the

expected Hessian,

EHφ(m(X,φ)) = E
[︄
∂2m(X,φ)
∂φi∂φj

]︄r

i,j=1
,

in (5.9) by using the chain rule as

E ∂2m(X,φ)
∂φi∂φj

= E ∂

∂φi

(︄
∂m(X,φ)

∂φj

)︄
= E ∂

∂φi

(︄
s∑︂

k=1

∂θk

∂φj

∂m(X,θ)
∂θk

)︄

=
s∑︂

k=1

(︄
∂

∂φi

(︄
∂θk

∂φj

)︄)︄
E
(︃

∂m(X,θ)
∂θk

)︃
+

s∑︂
k=1

∂θk

∂φj
E
(︃

∂

∂φi

(︃
∂m(X,θ)

∂θk

)︃)︃
.

Evaluating the above expression at φ0, we obtain

E ∂
2m(X,φ)
∂φi∂φj

⃓⃓⃓⃓
⃓
φ=φ0

=
s∑︂

k=1

s∑︂
l=1

∂θk

∂φj

E
(︄
∂2m(X,θ)
∂θk∂θl

)︄
∂θl

∂φi

⃓⃓⃓⃓
⃓
φ=φ0

=
[︃
Jφ(θ)⊤ EHθ(m(X,θ))Jφ(θ)

⃓⃓⃓
φ=φ0

]︃
ij
,

because E ∇⊤
θm(X,θ) = Eψ(X,θ) is zero at θ0 = θ(φ0) by assumption. Thus,

we have shown that there is the following equality:

EHφ(m(X,φ0)) = Jφ(θ0)⊤ EHθ(m(X,θ0))Jφ(θ0).
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It follows that the asymptotic covariance matrix (5.9) of the submodel φ is

Cφ0 =
(︂
Jφ(θ0)⊤ E Hθ(m(X,θ0))Jφ(θ0)

)︂−1
Jφ(θ0)⊤ E

(︂
∇⊤
θ m(X,θ0)∇θm(X,θ0)

)︂
·

· Jφ(θ0)
(︂
Jφ(θ0)⊤ E Hθ(m(X,θ0))Jφ(θ0)

)︂−1
.

The delta method (Lehmann and Romano [44, Theorem 11.2.14]) provides
the following asymptotic covariance matrix of the estimator θ(φ̂N):

Cθ(φ0) = Jφ(θ0) Cφ0Jφ(θ0)⊤

= Jφ(θ0)
(︂
Jφ(θ0)⊤ E Hθ(m(X,θ0))Jφ(θ0)

)︂−1
Jφ(θ0)⊤ E

(︂
∇⊤
θ m(X,θ0)∇θm(X,θ0)

)︂
· Jφ(θ0)

(︂
Jφ(θ0)⊤ E Hθ(m(X,θ0))Jφ(θ0)

)︂−1
Jφ(θ0)⊤ .

In order to compare this with (5.5), denote

A = − EHθ(m(X,θ0))

as in (5.6) and

B = Jφ(θ0) ,
C = E

(︂
∇⊤
θm(X,θ0)∇θm(X,θ0)

)︂
.

Then, the covariance matrices can be written as

Cθ0 = A−1CA−1

Cθ(φ0) = B(B⊤AB)−1B⊤CB(B⊤AB)−1B⊤,

and after multiplying both these matrices by A1/2 from the right and left, we
have

A1/2Cθ0A
1/2 = D (5.10)

A1/2Cθ(φ0)A
1/2 = PDP, (5.11)

where D = A−1/2CA−1/2 is positive semidefinite and

P = A1/2B(B⊤AB)−1B⊤A1/2

is symmetric and idempotent, and hence, an orthogonal projection.
If P and D have the same eigenvectors, i.e. if they commute, then D ≥ PDP

and hence, Cθ0 ≥ Cθ(φ0) holds in the sense of comparison of symmetric positive
semidefinite matrices, i.e., that Cθ0 − Cθ(φ0) is positive semidefinite.

In general, we can choose an orthonormal basis, whose vectors form columns
of an orthonormal matrix U , such that

U⊤PU =
[︄
I 0
0 0

]︄

and
U⊤DU =

[︄
D11 D12
D21 D22

]︄
.
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Then
U⊤PDPU =

[︄
D11 0
0 0

]︄
and, consequently,

trD = tr(U⊤DU) = trD11 + trD22 ≥ trD11 = tr(U⊤PDPU) = tr(PDP )

because D is symmetric positive semidefinite so it has non-negative diagonal in
any basis. Hence, by substituting from (5.10) and (5.11),

tr
(︂
A1/2Cθ0A

1/2
)︂

≥ tr
(︂
A1/2Cθ(φ0)A

1/2
)︂
.

5.3 Application to SME for normal distribution
Score matching estimators are a special case of M-estimators with

MN(θ|XN) = 1
N

N∑︂
i=1

m(Xi,θ) = −SN(θ|XN),

where

m(X,θ) = −
⃦⃦⃦
∇⊤
x log q(X|θ) − ∇⊤

x log p(X)
⃦⃦⃦2

n
. (5.12)

When the true distribution p(x) coincides with f(x|θ0) for a unique θ0 ∈ Θ, it
can be easily seen from (5.12) that θ0 is the maximizing value of Em(X,θ). As
we have that ψ(X,θ) = ∇⊤

θm(X,θ), it follows that Eψ(X,θ0) = 0.
When the model density f(x|θ) belongs to the family of exponential distri-

butions (4.8), SN(θ|XN) is given in (4.14) and the function ψ(X,θ) is of the
form

ψ(X,θ) = −D∗(X)D(X)θ −D∗(X)∇⊤
x b(X) − ∆xT (X) (5.13)

given in (4.16). Evidently, the function (5.13) is twice continuously differentiable
in θ for all X. The second order partial derivatives of (5.13) with respect to θ
are zero, and therefore, they can be dominated by any constant function d(X) ≡
d ∈ (0,∞). Since E d = d, this dominating function is integrable.

In the case of the normal distribution Nn(µ0,Σ0) from Theorem 16,

ψ(X,θ) =
[︄

−In [A1X, . . . , ArX]
[A1X, . . . , ArX]⊤ −[X⊤AkAlX]rk,l=1

]︄
θ +

[︄
0

(tr(A1), . . . , tr(Ar))⊤

]︄
,

(5.14)
which results by substituting (4.45) and (4.46) in (5.13). The expectation of its
Jacobian matrix,

E Jθ(ψ(X,θ)) = E
[︄

−In [A1X, . . . , ArX]
[A1X, . . . , ArX]⊤ −[X⊤AkAlX]rk,l=1

]︄
,
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exists for all θ, and

E Jθ(ψ(X,θ0)) =
⎡⎣ −In [A1µ0, . . . , Arµ0]
[A1µ0, . . . , Arµ0]⊤ −

[︂
tr
(︂
AkAl(Σ0 + µ0µ

⊤
0 )
)︂]︂r

k,l=1

⎤⎦
is non-singular under the assumption that the matrix [tr(AkAlΣ0)]rk,l=1 is regular.
This can be seen by using the formula for determinant of a block matrix,

det(E Jθ(ψ(X,θ0))) = det(In) det
(︃[︂

tr(AkAl(Σ0 + µ0µ
⊤
0 ))
]︂r

k,l=1
−
[︂
µ⊤

0 AkAlµ0
]︂r

k,l=1

)︃
= 1 · det

(︂
[tr(AkAlΣ0)]rk,l=1

)︂
.

Since the normal distribution has finite moments of all orders, it follows from
(5.14) that E ∥ψ(X,θ0)∥2

s < ∞.
Under the additional assumption that the matrix [tr(AkAlΣ0)]rk,l=1 is regular,

all assumptions of Theorems 22 and 23 are satisfied and it follows that asymptotic
covariance matrices of SMEs of the mean and the parameters of the linear model
for precision matrix based on two nested parametrizations φ and θ satisfy the
hierarchical property (5.8).

5.4 Application to MLE
In this section, we show what Theorem 23 becomes for maximum likelihood esti-
mators. Assume that the standard assumptions (A1)-(A5) listed at the beginning
of Section 3.1 hold.

In the case of the maximum likelihood method, m(X,θ) is equal to the log-
density and so

ψ(X,θ) = ∇⊤
θ log f(x|θ).

Hence, the middle term E
[︂
ψ(X,θ) (ψ(X,θ))⊤

]︂
of (5.4) represents the common

definition of the Fisher information matrix Iθ. Its (i, j)-element is

[Iθ]ij = E
[︄
∂ log f(X|θ)

∂θi

∂ log f(X|θ)
∂θj

]︄
=
∫︂

X

∂θi
f(x|θ)
f(x|θ)

∂θj
f(x|θ)
f(x|θ) f(x|θ)dx,

(5.15)

where X = {x : f(x|θ) > 0} and ∂θi
f(x|θ) = ∂f(x|θ)

∂θi
. From

∂2 log f(x|θ)
∂θi∂θj

= ∂θi

(︄
∂θj
f(x|θ)
f(x|θ)

)︄
=
∂2

θiθj
f(x|θ)

f(x|θ) −
∂θj
f(x|θ)∂θi

f(x|θ)
f(x|θ)2 ,

it follows that

∂θj
f(x|θ)∂θi

f(x|θ)
f(x|θ)2 =

∂2
θiθj

f(x|θ)
f(x|θ) − ∂2

θiθj
log f(x|θ). (5.16)

By substituting (5.16) into (5.15), we obtain

[Iθ]ij =
∫︂

X
∂2

θiθj
f(x|θ)dx−

∫︂
X

(︂
∂2

θiθj
log f(x|θ)

)︂
f(x|θ)dx. (5.17)
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By assumption (A5), it holds∫︂
X
∂2

θiθj
f(x|θ)dx = 0,

and hence, (5.17) turns into

[Iθ]ij = −
∫︂

X

(︂
∂2

θiθj
log f(x|θ)

)︂
f(x|θ)dx.

We thus obtain
Iθ = − EHθ(log f(X|θ)), (5.18)

which we denoted by A in Theorem 23.
The asymptotic covariance matrix (5.5) of the MLE θ̂N equals to

Cθ0 = (Iθ0)−1Iθ0(Iθ0)−1 = I−1
θ0 , (5.19)

which is a well-known result. Then, by using (5.18) and (5.19), we obtain

tr
(︂
A1/2Cθ0A

1/2
)︂

= tr (ACθ0) = tr
(︂
Iθ0I−1

θ0

)︂
= tr(Is) = s.

On the other hand, from (3.4) and the invariance of trace under cyclic permuta-
tion, we have that

tr
(︂
ACθ(φ0)

)︂
= tr

(︃
Iθ0Jφ(θ(φ0))

(︂
Jφ(θ(φ0))⊤ Iθ0Jφ(θ(φ0))

)︂−1
Jφ(θ(φ0))⊤

)︃
= tr(Ir) = r.

Hence, (5.8) turns into
r ≤ s.

Therefore, it simply compares dimensions of the parameter spaces. Note that in
Theorem 5, we obtained a different result,

Cθ0 − Cθ(φ0) ≥ 0,

and
tr (Cθ0) ≥ tr

(︂
Cθ(φ0)

)︂
.
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6. Data assimilation and
ensemble Kalman filter
The purpose of this chapter is to provide a brief introduction to data assimila-
tion problem and present one of the most famous algorithm called the Ensemble
Kalman filter. The whole topic is discussed in the context of discrete-time dy-
namical systems, as it is the case in practical applications.

6.1 The linear data assimilation problem
The origin of data assimilation can be found in geographical sciences and the
initial drivers for evolution of the field were atmospheric sciences, weather pre-
diction and oceanography (Law et al. [40]). Nowadays, other applications are
taking advantage of the methodology of data assimilation, e.g., in neuroscience,
geophysical sciences, and oil industry.

In general, the data assimilation problem can be formulated for nonlinear
dynamical systems with non-Gaussian perturbations. However, the theory pre-
sented in this and the following chapter will focus only on the linear and Gaussian
case. This simpler formulation is also considered in practical algorithms in geo-
physical systems such as weather forecasting, since the general formulation would
be beyond the current algorithmic and computational capability.

Consider a discrete-time stochastic linear dynamical system and observation
model (Katzfuss et al. [38, eq. (6,7)])

Xt = MXt−1 + eXt , t ∈ N, (6.1)
Yt = HXt + eYt , t ∈ N, (6.2)

with initial conditionX0 ∼ Nn(µ0,Σ0). Here, Xt is an unobservable system state
and Yt is its observation available up to an error eYt . The model operator M ∈
Rn×n represents the system dynamics, H ∈ Rn×m is the observation operator,
which selects m locations with available observations. The index t ∈ N denotes
the time index. The additive random perturbations eXt ∼ Nn (0, Q) and the
additive observation errors eYt ∼ Nm (0, R) are independent mutually and also
as a sequence of t ∈ N.

The objective of data assimilation is to estimate the hidden system stateXt at
particular time t based on the observed realizations yt of Yt and a prior knowledge.
Mathematically, it is a problem of conditioning the random variable Xt on the
observed data yt. In geosciences, the prior distribution of Xt conditioned on
y1, . . . ,yt−1 is called the forecast, and the posterior, or filtering, distribution of
Xt conditioned on y1, . . . ,yt is called the analysis.

For the system (6.1, 6.2), the forecast distribution is

Xf
t = (Xt|Y1 = y1, . . . ,Yt−1 = yt−1) ∼ Nn

(︂
µf

t ,Σf
t

)︂
(6.3)

for some µf
t and Σf

t , which results from the normality assumption on eXt and eYt
and from the invariance of normal distribution under linear transform.
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Since the distribution of Yt|Xt is normal, then by application of the Bayes’s
formula (Law et al. [40, Section 1.1.4]), we obtain the filtering distribution at
time t (Law et al. [40, Section 2.4 and 4.1]), as

Xa
t = (Xt|y1, . . . ,yt) ∼ Nn(µa

t ,Σa
t )

with parameters

µa
t = µf

t + Σf
tH

⊤(HΣf
tH

⊤ +R)−1(yt −Hµf
t ), (6.4)

Σa
t = Σf

t − Σf
tH

⊤(HΣf
tH

⊤ +R)−1HΣf
t . (6.5)

This can be rewritten using the Woodbury matrix formula (Law et al. [40, Lemma
4.4]) as

µa
t =

(︂
(Σf

t )−1 +H⊤R−1H
)︂−1 (︂

(Σf
t )−1µf

t +H⊤R−1yt

)︂
, (6.6)

Σa
t =

(︂
(Σf

t )−1 +H⊤R−1H
)︂−1

. (6.7)

Applying model (6.1), we get the forecast distribution (6.3) at time t + 1, with
the parameters

µf
t+1 = Mµa

t + eXt , (6.8)
Σf

t+1 = MΣa
tM

⊤ +Q. (6.9)

The forecast covariance Σf
t is unknown, while the covariances R and Q of the

observation and the model error, respectively, are assumed to be known.
The sequential algorithm given by equations (6.4, 6.5), or (6.6, 6.7), for assimi-

lation of the data vector and (6.8, 6.9) for advancing the distribution parameters
from time t to time t+ 1 is known as Kalman filter (Kalman [35]). The key diffe-
rence between the update formulas in (6.4, 6.5) and those in (6.6, 6.7) is that in the
former, matrix inversion takes place in the data space (with dimension m), while
in the latter, matrix inversion takes place in the state space (with dimension n).
Thus, in applications where m << n, the former formulation is more frequently
employed. Alternatively, if the observations in the data vector are independent,
it is possible to solve a system of size of ensemble Mandel et al. [51, p. 58] or
assimilate them one by one (Anderson [1], Hunt et al. [32]).

6.2 Ensemble Kalman filter
In its original form, the Kalman filter is restricted to linear Gaussian problems,
which makes it possible to represent the probability distributions only by their
mean and covariance matrix. However, in weather prediction and similar ap-
plications, the state vector Xt, t ≥ 0, consists of the values of a simulation on
a computational grid in a spatial domain and so its dimension is very high, often
millions and more. In such a case, computing or even storing the exact covari-
ance matrix of the system state is somewhat impractical. In addition, the model
is nonlinear so the state is necessarily non-Gaussian and advancing the state
covariance requires approximations.
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One of the most successful data assimilation methods that addresses this
problem is the Ensemble Kalman filter (EnKF) (Evensen [22]). EnKF is an
approximation of the Kalman filter, in which the state probability distribution
at time t ≥ 1 is represented by a set of realizations Xt1, . . . ,XtN . This set is
called an ensemble instead of a sample because it does not fulfil the definition
of a random sample - the vectors are usually not independent and may not be
identically distributed.

Denote by i the ensemble member index and by N the ensemble size. The i-th
ensemble member Xti at time t is updated and advanced in time by the Kalman
filter formulas (6.4) (or (6.6)) and (6.8), where the forecast covariance matrix
Σf

t is estimated by the sample covariance matrix computed from the forecast
ensemble. Specifically, the algorithm proceeds as follows:

Algorithm 1: Ensemble Kalman filter (with linear dynamics) (EnKF)
Initial condition: The initial ensemble Xa

01, . . . ,X
a
0N is sampled from

a given initial distribution Nn(µ0,Σ0).
for t ≥ 1 do

Forecast: For all i = 1, . . . , N :
Xf

ti = MXa
t−1,i + eXti , where eXti ∼ Nn(0, Q)

Compute
X̄

f

t = 1
N

∑︁N
i=1X

f
ti

S̃
f

t = 1
N−1

∑︁N
i=1

(︃
Xf

ti − X̄f

t

)︃(︃
Xf

ti − X̄f

t

)︃⊤

Yti ∼ Nm (yt, R), i = 1, . . . , N (perturbed observations)

Analysis: For all i = 1, . . . , N :
Xa

ti = Xf
ti + S̃

f

tH
⊤(HS̃f

tH
⊤ +R)−1(Yti −HXf

ti)
end

The perturbed observations Yti, i = 1, . . . , N , are artificial observations found
by perturbing the given observation yt with additional noise. They are necessary
in the calculation of the analysis ensemble, which otherwise has a too low variance
(Burgers et al. [13]). Consequently, the analysis ensemble mean and sample
covariance does not correspond to the parameters (6.4, 6.5) of the correct analysis
distribution, which negatively affects the evolution of the filter.

When the state estimate is required, it can be obtained from the ensemble
mean. The sample covariance matrix provides a quantification of uncertainty.
Moreover, the mean and sample covariance of the analysis ensemble converge in
the limit for large ensembles to the mean and covariance of the true filtering dis-
tribution in Lp for all p ∈ [1,∞) (Mandel et al. [52], Le Gland et al. [41]). Hence,
in every time step, EnKF (with linear dynamic) provides consistent estimates of
the true mean and covariance matrix of the analysis and forecast distribution.

Even though the algorithm is motivated as an approximation of the Kalman
filter, which is restricted to Gaussian problems, distribution of the ensemble mem-
bers is not prescribed to be Gaussian. Since the sample covariance matrix is
computed from all ensemble members together, the first analysis step introduces
dependence among the members and destroys their normality. Despite this fact,
it was proved by Mandel et al. [52] and also by Le Gland et al. [41] that the
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EnKF converges to the Kalman filter in the limit of infinite ensemble in the case
of linear dynamics.

Since the EnKF does not need to maintain the state covariance matrix, it
can be implemented efficiently for high-dimensional problems. Moreover, the
algorithm can be used for nonlinear dynamical models and it can be modified
also for nonlinear observation functions (e.g. Mandel et al. [50, p. 59]), which
makes it very computationally appealing.

There exist also other algorithms that approximate the state probability distri-
bution by means of an ensemble. Beside EnKF and its variants, which produce
the analysis ensemble from the forecast ensemble and the data in a stochastic
manner through the perturbed observations, an analysis ensemble with correct
covariance can be formed also in a deterministic way by computing the square
root of a matrix. The resulting unbiased square root filters (Livings et al. [47])
include, e.g., the ensemble transform Kalman filter (Bishop et al. [10], Hunt et al.
[32]), the ensemble adjustment Kalman filter (Anderson [1]), etc.

6.3 Diagonal ensemble Kalman filter
Sometimes, the filter is performed in a space where the entries of the system
state can be assumed to be independent, e.g., in the spectral or wavelet space (cf.
Section 2.2.1). In that case, the covariance estimate can be improved by using
only the diagonal of sample covariance (Parrish and Derber [59], Kasanický et al.
[37]). The resulting algorithm is called the diagonal EnKF in this thesis and its
algorithm is summarized below. In the next chapter, we will use this algorithm
to demonstrate the importance of estimating some off-diagonal elements of the
covariance matrix.

Algorithm 2: Diagonal ensemble Kalman filter (diag EnKF)
Initial condition: The initial ensemble Xa

01, . . . ,X
a
0N is sampled from

a given initial distribution Nn(µ0,Σ0).
for t ≥ 1 do

Forecast: For all i = 1, . . . , N :
Xf

ti = MXa
t−1,i + eXti , where eXti ∼ Nn(0, Q)

Compute
X̄

f

t = 1
N

∑︁N
i=1X

f
ti

Df
t = diag

(︄
1

N−1
∑︁N

i=1

(︃
Xf

ti − X̄f

t

)︃(︃
Xf

ti − X̄f

t

)︃⊤
)︄

Yti ∼ Nm (yt, R), i = 1, . . . , N (perturbed observations)

Analysis: For all i = 1, . . . , N :
Xa

ti = Xf
ti +Df

t H
⊤(HDf

t H
⊤ +R)−1(Yti −HXf

ti)
end
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7. Filtering algorithms for
GMRF using score matching
method
We briefly review the filter setting from Section 6.1 in order to recall the notation
and terminology. Consider the state space model

Xt = MXt−1 + eXt , t ∈ N, (7.1)
Yt = HXt + eYt , t ∈ N, (7.2)

whereX0 ∼ Nn(µ0,Σ0). Recall that M ∈ Rn×n, H ∈ Rn×m and that the additive
random errors eXt ∼ Nn (0, Q) and eYt ∼ Nm (0, R) are independent mutually and
also between as a sequence of t ∈ N. The covariances Q and R are assumed to
be known and diagonal.

The estimate of Xt given y1, . . . ,yt is specified by the analysis distribution,

Xa
t = (Xt|y1, . . . ,yt) ∼ Nn(µa

t ,Σa
t ) (7.3)

with parameters

µa
t =

(︂
(Σf

t )−1 +H⊤R−1H
)︂−1 (︂

(Σf
t )−1µf

t +H⊤R−1yt

)︂
(7.4)

Σa
t =

(︂
(Σf

t )−1 +H⊤R−1H
)︂−1

. (7.5)

The prior estimate of Xt+1 given y1, . . . ,yt is specified by the forecast distri-
bution

Xf
t+1 = (Xt+1|y1, . . . ,yt) ∼ Nn(µf

t+1,Σf
t+1) (7.6)

with parameters
µf

t+1 = Mµa
t , Σf

t+1 = MΣa
tM

⊤ +Q.

Due to the high dimension of the problem, the estimation of Σf
t in practical

applications is not a straightforward task and different regularization methods,
many of them heuristic, are used to produce practically useful estimates.

Our objective is to build a filter resting on the assumption thatXt is a GMRF
and using a linear model for its precision matrix. Parameters of the model are
estimated by the score matching approach. This approach provides the explicit
formula (4.17) for parameter estimators and avoids a heuristic regularization of
the sample covariance.

7.1 Score matching filter with Gaussian resam-
pling

Assume that X0 has the Markov property so that the inverse of Σ0 is sparse.
Further, assume that the matrix M , representing the dynamics, has sparse inverse
so that Xf

1 = X1 = MX0 + eX1 is again a GMRF. For a short assimilation time
step, this is a realistic assumption in meteorological sciences because values of
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meteorological variables at one location are assumed to be influenced only by
points from its immediate neighbourhood. By assuming also the sparsity of H,
the distribution of the analysis Xa

1 = X1|Y1 resulting from Bayes’s theorem has
a sparse covariance matrix and therefore, Xa

1 is also a GMRF. Sparsity of H
means that observations are available only at a small number of locations, which
is common in meteorological applications. By induction, we can consider the
forecast Xf

t = (Xt|Y1, . . . ,Yt−1) and the analysis Xa
t = (Xt|Y1, . . . ,Yt) to be

Gaussian Markov random fields for all t ∈ N.
Some dynamical models may be assumed to be linear, however they are not

accessible as a matrix. We may have use of the model only in the form of an algo-
rithm that is able to forward a state vector in time. In this case, we are left with
ensemble filtering algorithms. In Algorithm 3, we propose an ensemble filtering
algorithm called the Score matching filter with Gaussian resampling (SMF-GR)
that provides ensembles that approximate distributions (7.3) and (7.6). As op-
posed to the EnKF, SMF-GR does not need to perturb the observation and it
preserves the normal distribution in every time step. Moreover, the algorithm
estimates Σf

t through a linear model for its inverse (2.10) instead of using sample
covariance and hence, it is better adapted for GMRFs. Parameters of the forecast
precision matrix are estimated by the score matching method (estimator (4.40)),
which gave the algorithm its name.

Algorithm 3: Score matching filter with Gaussian resampling (SMF-GR)
Initial condition: The initial ensemble Xa

01, . . . ,X
a
0N is sampled from

a given initial distribution Nn(µ0,Σ0).
for t ≥ 1 do

Forecast: For all i = 1, . . . , N :
Xf

ti = MXa
t−1,i + eXti , where eXti ∼ Nn(0, Q)

Compute
X̄

f

t = 1
N

∑︁N
i=1X

f
ti

Sf
t = 1

N

∑︁N
i=1

(︃
Xf

ti − X̄f

t

)︃(︃
Xf

ti − X̄f

t

)︃⊤

β̂t = (β̂t1, . . . , β̂tr)⊤ =
(︃[︂

tr
(︂
AtlS

f
t A

⊤
tk

)︂]︂rt

k,l=1

)︃−1
[tr(Atk)]rt

k=1

Analysis: For a given data vector yt, the analysis mean and
covariance are found by substituting X̄f

t and β̂t into the formulas
for the conditional mean (7.4) and covariance (7.5) :
µ̂a

t =
(︂∑︁rt

k=1 β̂tkAtk +H⊤R−1H
)︂−1 (︂∑︁rt

k=1 β̂tkAtkX̄f

t +H⊤R−1yt

)︂
Σ̂a

t =
(︂∑︁rt

k=1 β̂tkAtk +H⊤R−1H
)︂−1

The ensemble Xa
t1, . . . ,X

a
tN is then sampled from Nn(µ̂a

t , Σ̂
a

t ).
end

The set of design matrices {Atk : k = 1, . . . , rt} is selected in every time step t
in order to capture the most important parts of Σf

t and to make ∑︁rt
k=1 β̂tkAtk

positive definite. This covariance selection process is addressed in Section 7.4.2.
The following theorem states that Algorithm 3 provides a consistent estima-

tor of the mean and covariance of the forecast distribution in every time step.
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A consistency result for the analysis distribution then follows immediately from
the continuous mapping theorem (cf., Theorem 9).

Theorem 24 (SMF-GR). Assume the discrete-time stochastic linear dynamical
system (7.1, 7.2) with X0 ∼ Nn(µ0,Σ0) being a GMRF and with M and H
sparse. Assume also that the forecast and analysis ensemble are generated by
Algorithm 3, and, at every time t, the covariance matrix Σf

t of the forecast is
regular and its inverse is in the span of the design matrices at time t, i.e.,

(Σf
t )−1 =

r∑︂
k=1

βtkAtk, (7.7)

for some βtk ∈ R. Suppose that E
(︂
D∗(Xf

t )D(Xf
t )
)︂

defined by (4.45) is invertible
for all t ≥ 1. ForXf

t1, . . . ,X
f
tN , let X̄f

t and β̂N
t be the SME computed from (4.40).

Assume that ∑︁r
k=1 β̂

N

tkAtk is invertible and denote Σ̂N

t =
(︃∑︁r

k=1 β̂
N

tkAtk

)︃−1
. Then,

for all t ≥ 1,

(X̄f

t , Σ̂
N

t ) P−→ (µf
t ,Σf

t ) as N → ∞. (7.8)

Proof. At t = 1, Theorem 19 provides

(X̄f

1 , β̂
N
1 ) P−−−→

N→∞
(µf

1 ,β
f
1 ),

since (Σf
t )−1 is assumed to be of form (7.7). Then, by the continuous mapping

theorem (cf. Theorem 9), there is the convergence(︄
X̄

f

t ,
r∑︂

k=1
β̂

N

tkAtk

)︄
P−−−→

N→∞

(︂
µf

1 , (Σf
1)−1

)︂

and (7.8) for t = 1 follows from Lemma 7. Suppose now that (7.8) holds with t−1
in place of t for some t ≥ 1. Then, by the continuous mapping theorem applied
to the mapping (µf

t−1,Σf
t−1) ↦→ (µa

t−1,Σa
t−1) defined by (7.4, 7.5), we obtain the

convergence
(µ̂a

t−1, Σ̂
a

t−1)
P−−−→

N→∞
(µa

t−1,Σa
t−1).

The forecast ensemble at time t is then a sample from Nn(Mµ̂a
t−1,MΣ̂a

t−1M
⊤+Q)

and due to the sparsity of M and H, each its member is a GMRF. Consider
(X̄f

t , β̂
N
t ) computed from the forecast ensemble by using the expression (4.40).

Then, it follows from Theorem 21 that X̄f

t and β̂N
t converge, i.e.,

(X̄f

t , β̂
N
t ) P−−−→

N→∞
(µf

t ,β
f
t ),

and therefore, ⎛⎝X̄f

t ,

(︄
r∑︂

k=1
β̂

N

tkAtk

)︄−1
⎞⎠ P−−−→

N→∞
(µf

t ,Σf
t ),

since the inverse was assumed to exist.
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7.2 Score matching ensemble filter
When there is a need for covariance regularization in filtering, the standard at-
tempt is to insert the regularized covariance into the EnKF formula. This results
in a filter that we call the Score matching ensemble filter (SMEF). The algorithm
is summarized below.

Algorithm 4: Score matching ensemble filter (SMEF)
Initial condition: The initial ensemble Xa

01, . . . ,X
a
0N is sampled from

a given initial distribution Nn(µ0,Σ0).
for t ≥ 1 do

Forecast: For all i = 1, . . . , N :
Xf

ti = MXa
t−1,i + eXti , where eXti ∼ Nn(0, Q)

Compute
X̄

f

t = 1
N

∑︁N
i=1X

f
ti

Sf
t = 1

N

∑︁N
i=1

(︃
Xf

ti − X̄f

t

)︃(︃
Xf

ti − X̄f

t

)︃⊤

β̂t = (β̂t1, . . . , β̂tr)⊤ =
(︃[︂

tr
(︂
AtlS

f
t Atk

)︂]︂rt

k,l=1

)︃−1
[trAtk]rt

k=1

Yti ∼ Nm (yt, R), i = 1, . . . , N (perturbed observations)

Analysis: For all i = 1, . . . , N :
Xa

ti =
(︂∑︁rt

k=1 β̂tkAtk +H⊤R−1H
)︂−1 (︂∑︁rt

k=1 β̂tkAtkX
f
ti +H⊤R−1Yti

)︂
.

end

The set of design matrices {Atk}rt
k=1 can again be chosen adaptively and there-

fore, it can change over time.
Unlike the SMF-GR, in this filter, the ensembles are not normally distributed

even for t = 1 and therefore, the score matching estimator of (µf
t ,βt) cannot be

shown to be consistent by the same method as in Theorem 24.
On the other hand, the filter from Algorithm 4 performs very well and in

some situations can beat the standard EnKF (Algorithm 1) or the diagonal EnKF
(Algorithm 2).

7.3 A non-ensemble score matching filter
In “small” models, we may be able to work with the matrix M , construct the
model adjoint M⊤, or at least to evaluate the product of a sparse design matrix
with the model matrix M . Then a non-ensemble filter that avoids generating
analysis ensemble from the estimated posterior distribution may be set-up. The
method proceeds directly in terms of the parameters µf

t , βt and µa
t of the forecast

and analysis distribution.
At t = 1, let X̄f

1 and β̂1 be the score-matching estimators of µf
1 and β1 from

Theorem 16 (i.e. constructed from an initial ensemble). For t ≥ 2, we shall derive
the forward model for µf

t and βt from the explicit form of the SME. Having the
estimators X̄f

t and β̂t, the analysis follows from conditioning. As in the previous
section, the set of design matrices {Ak}r

k=1 can change over time, which we again
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point out by adding a subindex t.
The estimators of the forecast mean and covariance at time t are

X̄f

t = MX̄a

t−1,

Σ̂f

t = MΣ̂a

t−1M
⊤ +Q = M

⎛⎝rt−1∑︂
j=1

β̂t−1,jAt−1,j +H⊤R−1H

⎞⎠−1

M⊤ +Q,

and therefore, the estimator of βt is

β̂t =

⎛⎜⎝
⎡⎢⎣tr

⎛⎜⎝
⎛⎜⎝M

⎛⎝rt−1∑︂
j=1

β̂t−1,jAt−1,j + H⊤R−1H

⎞⎠−1

M⊤ + Q

⎞⎟⎠AtkAtl

⎞⎟⎠
⎤⎥⎦

rt

k,l=1

⎞⎟⎠
−1

·

· [tr(Atk)]rt
k=1

=

⎛⎜⎝
⎡⎢⎣tr

⎛⎜⎝
⎛⎝rt−1∑︂

j=1
β̂t−1,jAt−1,j + H⊤R−1H

⎞⎠−1

(AtkM)⊤ AtlM + AtlQAtk

⎞⎟⎠
⎤⎥⎦

rt

k,l=1

⎞⎟⎠
−1

·

· [tr(Atk)]rt
k=1 ,

where we used invariance of trace under cyclic permutation. Summarizing, we
obtain Algorithm 5.

Algorithm 5: Non-ensemble score matching filter
Initial condition: From the initial ensemble Xf

11, . . . ,X
f
1N compute the

sample mean X̄f

1 and sample covariance S1. Then µ̂f
1 = X̄f

1 and
β̂1 =

(︂
[tr (S1A1kA1l)]r1

k,l=1

)︂−1
[trA1k]r1

k=1, where {A1k}r1
k=1 are selected so

that
(︂
Σ̂f

1

)︂−1
:= ∑︁r1

k=1 β̂1kA1k is positive definite. Finally,
µ̂a

1 =
(︂∑︁r1

k=1 β̂1kA1k +H⊤R−1H
)︂−1 (︂∑︁r1

k=1 β̂1kA1kµ̂
f
1 +H⊤R−1y1

)︂
.

for t ≥ 2 do
Forecast:
µ̂f

t = Mµ̂a
t−1

β̂t =
(︃[︃

tr
(︃(︂∑︁rt−1

j=1 β̂t−1,jAt−1,j + H⊤R−1H
)︂−1

(AtkM)⊤ AtlM+

+AtlQAtk

)︂]︃rt

k,l=1

)︃−1
· [tr(Atk)]rt

k=1

Analysis: For a given data vector yt :
µ̂a

t =
(︂∑︁rt

k=1 β̂tkAtk +H⊤R−1H
)︂−1 (︂∑︁rt

k=1 β̂tkAtkµ̂
f
t +H⊤R−1yt

)︂
.

end

The consistency of the estimated analysis mean µ̂a
t and covariance Σ̂a

t :=(︂∑︁rt
k=1 β̂tkAtk +H⊤R−1H

)︂−1
follows from the consistency of (µ̂f

1 , β̂1) and the
continuous mapping theorem (cf., Theorem 9).

7.4 Computational study
In this section, we carry out a computational study comparing the performance
of the proposed Score matching filter with Gaussian resampling and the Score
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matching ensemble filter with the standard EnKF and the diagonal EnKF.
First, we consider a simple example of a Gaussian Markov system with linear

dynamics, where the assumptions of Theorem 24 are nearly satisfied. In the
second simulation, we test both these score matching filters on the Lorenz 96
model, which is neither Gaussian nor Markov but even in this case, the SMEF
algorithm seems to be useful.

In both cases, the performance of the methods is measured by the root-mean-
square-error of the analysis ensemble mean given by

RMSEt =
√︄

1
n

⃦⃦⃦
Xt − X̄a

t

⃦⃦⃦2

n
(7.9)

for every time step t ≥ 1. Recall that n is the state vector dimension, Xt denotes
the true system state and X̄a

t is the analysis ensemble mean produced by the
given filtering algorithm.

7.4.1 Simple linear advection
Consider a dynamical system (7.1) with M being a simple linear advection model
from Raanes et al. [61], which evolves according to a simple cyclic permutation
with additive noise

Xt+1,j = Xt,j−1 + et+1,j, t ∈ N, j = 1, . . . , n, (7.10)

where Xt,j denotes the j-th component of the state vector Xt and et,j the j-th
component of the model error vector et ∼ Nn(0, Q). We assume Xt,0 = Xt,n,
so the system domain is a circle. The initial precision matrix Σ−1

0 was set-up as
a band matrix with two subdiagonals (involving the two corners), which corre-
sponds to the first order Markov property on a circle. The structure of the initial
precision and covariance matrix is depicted in Figure 7.1.

The matrix M which corresponds to (7.10) is sparse and orthogonal and with-
out the presence of model error, the band structure of the precision matrix would
have been preserved over time. The additive error contributing to the covariance
matrix spoils the Markov property but for the values chosen below the departures
are not large.

The initial state X0 with dimension n = 100 was drawn from Nn(µ0,Σ0),
where µ0 = (µ0,1, . . . , µ0,n)⊤ was generated as a sum of 25 sinusoids of random
amplitude and phase (cf. Raanes et al. [61, expr. (62)])

µ0,j = 1
2

25∑︂
k=1

ak sin
(︃

2πk
[︃
j

n
+ φk

]︃)︃
. (7.11)

The ak and φk in (7.11) are drawn independently and uniformly from the interval
(0, 1) for each k. In the sequel, µ0 is fixed. The model error covariance matrix is
Q = 0.01 · Σ0 (Raanes et al. [61, expr. (63)]). Figure 7.2 illustrates the evolution
of the state vector for the first three time steps.

We choose a simple linear observation operator H selecting every fifth com-
ponent of X, so the observation vector has dimension m = 20. The observation
error covariance matrix is R = 0.01 · Im.
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(a) Precision matrix Σ−1
0 . (b) Covariance matrix Σ0.

Figure 7.1: The initial precision and covariance matrix of a simulated random
vector defined on a circle and possessing the first order Markov property.

The initial ensemble of N members arises from Gaussian perturbations of X0
with zero mean and covariance matrix Σ0. Then the system evolves according
to (7.1) and (7.2); at t = 1 the forecast ensemble has a multivariate normal
distribution with mean Mµ0 and covariance matrix Σ1 = MΣ0M

⊤ + Q, etc.
The observations are assimilated by means of the standard EnKF (Algorithm 1),
SMF-GR (Algorithm 3) and also by SMEF (Algorithm 4). The set of design
matrices {Aij : i = 1, . . . , n − 1, j = i, i + 1} ∪ {An1, Ann} consists of symmetric
matrices Aij that have value 1 at positions (i, j) and (j, i) and zeros elsewhere.
In the reported simulation, the precision matrix estimated by the score matching
method was positive definite in every time step.

Theorem 24 refers to the asymptotic behaviour of SMF-GR. However, for finite
ensemble sizes, it is useful to centre the sampled analysis ensemble around the
estimated mean µ̂a

t (specified in Algorithm 3) in order to minimize the sampling
error.

The performance of every filter in each time was measured by the RMSE (7.9)
and plotted into Figure 7.3. It is evident that for smaller ensemble (N = 50),
SMEF performs slightly better than SMF-GR, and that EnKF is the worst. When
the ensemble size increases to the value of n (or more), we can observe that SMF-
GR has the smallest RMSE. SMEF is slightly worse and EnKF has the worst
performance. The mean RMSE computed as an average over all 500 time steps for
each filter is in Table 7.1. For ensemble size smaller than 40, the precision matrix
estimated by the score matching method sometimes happened to be negative
semidefinite and the simulation was stopped. Since this section tends to illustrate
the asymptotic behaviour of SMF-GR stated in Theorem 24, we decided to use
only larger ensemble sizes. The problem of negative semidefiniteness for small
ensemble size is addressed within Section 7.4.2.

79



Figure 7.2: Linear advection: Random vector X0 = (X0,j)n
j=1 ∼ Nn(µ0,Σ0)

evolving in time by the model Xt+1,j = Xt,j−1 + et+1,j, et = (et,j)n
j=1 ∼ Nn(0, Q).

The mean µ0 is specified in (7.11), Σ0 is plotted in Figure 7.1b and Q = 0.01 ·Σ0.

ensemble size N
50 100 200

EnKF 0.0905 0.0720 0.0631
SMF-GR 0.0612 0.0556 0.0518
SMEF 0.0573 0.0571 0.0560

Table 7.1: Linear advection (simulation): RMSE of different filtering algorithms
averaged from 500 time steps. Minimum in each column is displayed in bold font.
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Figure 7.3: Linear advection (simulation): Comparison of SMF-GR (Algorithm
3), SMEF (Algorithm 4) and EnKF (Algorithm 1) for a Gauss Markov system
with linear advection dynamics. The state vector dimension was n = 100 and the
ensemble size was N = 50, 100, 200. Observations were available for every 5-th
variable and the observation error has covariance R = 0.01 · Im.
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7.4.2 Lorenz 96
This model was published by Lorenz [48] as a simplified one-dimensional equato-
rial atmospheric model. The system state at time t is represented by a random
vector Xt = (Xt,1, . . . , Xt,n)⊤ defined on a circle with n = 40 points. The time
evolution of each component Xt,j, j ∈ {1, . . . , n}, is defined by the equation

Xt+1,j = Xt,j + dXt,j

dt
, t ∈ N, with

dXt,j

dt
= (Xt,j+1 −Xt,j−2)Xt,j−1 −Xt,j + F, (7.12)

where Xt,−1 = Xt,n−1, Xt,0 = Xt,n, Xt,n+1 = Xt,1. The components X0,j, j =
1, . . . , n, of the initial vector were sampled from uniform distribution on interval[︂
−1

2 ,
1
2

]︂
. The forcing term F was set to 8, which is a known value that causes

chaotic behaviour. Due to this chaotic behaviour, the dynamic model does not
need to contain any additive noise. The Lorenz system does not have the spa-
tial Markov property in the traditional sense of Definition 1, however, equation
(7.12) foreshadows some kind of relationship between each point and its three
neighbours. This guess is further supported by the shape of inverse of the sample
covariance matrix computed from a sample of 5000 random vectors resulting after
1000 steps of evolution by Lorenz 96, which is depicted in Figure 7.4. Even if
the inverse of covariance matrix of forecast distribution could have slightly diffe-
rent structure than the matrix from Figure 7.4, we suggest to approximate it by
a band matrix with one main diagonal and 3 subdiagonals on each side (including
the two corners since the system is defined on a circle). The set of chosen design
matrices

A = {Aij : i = 1, . . . , n, j = i, i+ 1, i+ 2, i+ 3,
where n+ k ≡ k and 1 − k ≡ n− k + 1 for k = 1, 2, 3}

consists of symmetric matrices Aij that have value 1 at positions (i, j) and (j, i)
and zeros elsewhere.

Rather than using the covariance matrix from the free run (Figure 7.4), par-
ticle filters (Doucet et al. [20]) could be in principle used to approximate the
exact filtering distribution, from which we could calculate the covariance and its
inverse. However, the chosen set A seems to perform well in simulations. Since
every design matrix corresponds only to one element (up to symmetry), the model
is very flexible. We want to model the important parts of the precision matrix
adaptively, and at the same time, we have to keep the estimates of covariance
matrix positive definite. To this point we propose a selection method described
in the following subsection.
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Figure 7.4: Lorenz 96 (simulation): Inversion of the sample covariance matrix
computed from 5000 vectors of length n = 40 starting from the uniform distribu-
tion on

[︂
−1

2 ,
1
2

]︂
at each point and advanced by Lorenz 96 (with F = 8) for 1000

time steps.

Backward selection of design matrices

The form ∑︁r
k=1 βkAk of the precision matrix model does not guarantee its score

matching estimate to be positive definite. Sometimes, the SME based on an
ensemble XN = {X1, . . . ,XN} may overestimate the model fit as it corresponds
to the minimum of the objective function SN(µ,β|XN) over the entire space
L = {(µ,β) |µ ∈ Rn,β ∈ Rr } rather than over

Θ̃ =
{︄

(µ,β)
⃓⃓⃓⃓
⃓µ ∈ Rn,

r∑︂
k=1

βkAk is positive definite
}︄

⊂ L.

This problem occurs mainly for small ensemble sizes. For larger ensemble sizes,
the estimate tends to be positive definite due to the consistency of SME, as stated
in Lemma 7. In order to make the score matching filters practically applicable
even for small ensemble sizes, we need a method for finding acceptable value of
(µ̂, β̂) in Θ̃ in the situation when the minimum of SN(µ,β|XN) lies in L \ Θ̃.
Since there is no restriction on µ, we keep µ̂ associated with the minimum of
SN(µ,β|XN) and focus on adjusting β̂.

The main idea is to model Σ−1 only by means of a subset A∗ of A that leads
to a positive definite score matching estimate and contributes significantly to the
objective function (4.14).

The set A0 of design matrices spanning the diagonal of Σ−1 has to be involved
in A∗ in any case. Denote by β0 the set of parameters corresponding to matrices in
A0. For each design matrix Ajk ∈ A\A0, which is associated with an off-diagonal
element of Σ−1, we compute the optimal value of the objective function (4.14)
associated with the SME β̂jk (given by (4.40)) of the parameter βjk = (β⊤

0 , βjk)⊤.
The optimal value of SN(µ,β|XN) (up to constants 1/N and c∗

N(XN), which do
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not depend on parameters) is equal to

1
N

SN(X̄, β̂jk|XN) − 1
N
c∗

N(XN) = −1
2
(︂

tr(A11), . . . , tr(Ann), tr(Ajk)
)︂
β̂jk. (7.13)

The exact computation of (7.13) is provided in Appendix A.1. Afterwards, all
matrices Ajk ∈ A \ A0 are ordered in ascending manner according to their value
of (7.13). Thus the Ajk yielding the largest contribution to the objective function
when added to the set which spans the diagonal, are ranked first in the list. Then,
design matrices from the opposite end of the list are successively discarded until
we reach a positive definite matrix. A treshold for the minimal eigenvalue of the
estimated covariance can also be set in this way.

Even though we do not have any optimality result to justify this approach, it
worked well in practice.

Simulation results

The simulation was carried out as follows. At the beginning, we took a random
vector sampled from the uniform distribution on [−1

2 ,
1
2 ] and performed 1000

steps of free run (the so called spin-up), so as to let the system to catch the
attractor. After the spin-up, we generate a vector representing the truth and
an initial ensemble of N vectors by adding white noise to each component of
the spin-up vector. Then we start the assimilation process. We choose a linear
observation operator H selecting every second component of X and we observe
in every time step with the observation error matrix R = 0.5 · Im. Beside the
EnKF (Algorithm 1), SMF-GR (Algorithm 3) and the SMEF (Algorithm 4), we
used also the diagonal EnKF (Algorithm 2). The RMSE (7.9) of the analysis
ensemble mean for all these filters is plotted in Figure 7.5. The averaged RMSE
from all time steps is recorded in Table 7.2.

ensemble size N
10 30 80

EnKF 4.6679 4.5796 0.2570
SMF-GR 4.6650 1.9357 0.4940
SMEF 0.7008 0.4705 0.4317
diag EnKF 1.3748 1.4754 1.7292
free run 4.9194 5.1320 4.8785

Table 7.2: Lorenz 96 (simulation): RMSE of different filtering algorithms ave-
raged from 500 time steps. Minimum in each column displayed in bold font.

We see in Figure 7.5 that for small ensembles, the SMEF has constantly the
lowest RMSE, even though the structure of the regularized precision matrix was
derived under the assumption of normality. The diagonal EnKF performs better
than EnKF but not as well as SMEF. This confirms the fact that estimating
off-diagonal elements of the forecast covariance is beneficial in small samples.
The performance of EnKF is similar to the free run. Since the system state is
not Gaussian, the SMF-GR (which preserves normality by resampling) performs
poorly, however, especially for N = 30, it is still better than the EnKF.
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When the ensemble size significantly exceeds the dimension of the state, the
sample covariance matrix becomes the best available estimate of the true co-
variance, which results in the excellent performance of EnKF (cf., the very last
picture in Figure 7.5).
Remark 8. In this simulation study we did not employ any of the heuristic tech-
niques of Section 2.1 or inflation of the ensemble. Apart from the simulations
presented here, we performed a number of experiments where some of these tech-
niques were employed. The performance of both traditional and proposed filters
improved. Also, hybrid approach combining regularization with resampling was
successful in some cases. These considerations are beyond the scope of this thesis
and will be treated elsewhere.
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Figure 7.5: Lorenz 96 (simulation): Comparison of SMF-GR (Algorithm 3),
SMEF (Algorithm 4), EnKF (Algorithm 1) and diagonal EnKF (Algorithm 2).
Spin-up was 1000 steps. The state vector had dimension n = 40 and the ensemble
size was N = 10, 30, 80. Observations were available for every second variable
and the observation error had covariance R = 0.5 · Im.
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Conclusion
Many applied problems require an estimate of a covariance matrix or its inverse.
In such problems, the matrix dimension can be large compared to the sample size.
In the first part of this thesis, we have provided an overview of several estimating
methods with focus on their use in data assimilation.

After summarizing basic estimating techniques, that are usually based on
element-wise transformation of the sample covariance matrix, we shifted our at-
tention on parametric models for the covariance matrix or its inverse. The associ-
ated parameters were estimated by the maximum likelihood or the score matching
method. Both of these techniques were supplemented by several new results. We
have shown that asymptotic covariance matrices of nested M-estimators have a hi-
erarchical structure, which, in particular, applies to the maximum likelihood and
score matching estimators. The hierarchical comparison was in terms of traces
of asymptotic covariance matrices of two nested parametrizations after a specific
transform. For the maximum likelihood estimators, we have derived a stronger
result that compares the whole asymptotic covariance matrices of two nested
parametrizations in terms of positive definiteness. Moreover, we derived explicit
formulas for parameter estimators for two particular covariance models. First, we
computed maximum likelihood estimators of parameters in models intended for
the decay of eigenvalues of a covariance matrix of weakly stationary random field.
Second, we computed score matching estimators for parameters of a linear model
for the precision matrix of a Gaussian Markov random field. These covariance
models allow a compromise between realistic assumptions and relatively cheap
computations.

The second part of the thesis deals with filtering algorithms used in data
assimilation. The performance of these filtering algorithms is highly influenced
by the quality of the covariance estimate. We proposed three filtering algorithms
based on the score matching estimator of a covariance model for a Gaussian
Markov random field. We proved that the Score matching filter with Gaussian
resampling provides consistent estimates of the mean and covariance matrix of
the true forecast distribution in every time step. The key component in the proof
is the continuity of score matching estimators to random perturbations, which we
have also shown. The second proposed filter, called the Score matching ensemble
filter, is directly based on the well-known Ensemble Kalman filter and it seems
to work well even for a large class of dynamical systems (even without normality
or Markov property). However, its limit properties for large ensembles are not
studied in this thesis and they are left as a subject of further research. One
problem in using a linear model for a precision matrix in filtering algorithms is
that positive definiteness of the resulting estimator is not guaranteed and has to
be addressed separately. In our algorithm, we proposed a method of covariance
selection. However, an optimal way of making the estimated covariance positive
definite is a non-trivial open problem.

The main contribution of this thesis is contained in Chapters 3, 4, 5 and 7.
All these results together with other outcomes from related topics that we have
dealt with during my PhD studies, have been published in papers listed in the
“List of publications” at the end of this thesis.

87



Bibliography
[1] J. L. Anderson. An ensemble Adjustment Kalman filter for data assim-

ilation. Monthly Weather Review, 129:2884–2903, 2001. doi: 10.1175/
1520-0493(2001)129⟨2884:AEAKFF⟩2.0.CO;2.

[2] K. Atkinson. Convergence rates for approximate eigenvalues of compact
integral operators. SIAM Journal on Numerical Analysis, 12(2):213–222,
1975. doi: 10.1137/0712020.

[3] K. Atkinson and W. Han. Theoretical numerical analysis: A functional
analysis framework, volume 39 of Texts in Applied Mathematics. Springer,
Dordrecht, third edition, 2009. doi: 10.1007/978-1-4419-0458-4.

[4] K. E. Atkinson. The numerical solutions of the eigenvalue problem for com-
pact integral operators. Transactions of the American Mathematical Society,
129:458–465, 1967. doi: 10.2307/1994601.

[5] R. N. Bannister. A review of forecast error covariance statistics in atmo-
spheric variational data assimilation II: Modelling the forecast error covari-
ance statistics. Quarterly Journal of the Royal Meteorological Society, 134
(637):1971–1996, 2008. doi: 10.1002/qj.340.

[6] O. Barndorff-Nielsen. Information and Exponential Families in Statistical
Theory. Wiley Series in Probability and Mathematical Statistics. John Wiley
& Sons, Ltd., Chichester, 1978.

[7] O. E. Barndorff-Nielsen and D. R. Cox. Inference and Asymptotics. Mono-
graphs on Statistics and Applied Probability. Springer Science+Business Me-
dia, 1994.

[8] J. Berner, G. J. Shutts, M. Leutbecher, and T. N. Palmer. A spectral stochas-
tic kinetic energy backscatter scheme and its impact on flow-dependent pre-
dictability in the ECMWF ensemble prediction system. Journal of the At-
mospheric Sciences, 66(3):603–626, 2009. doi: 10.1175/2008JAS2677.1.

[9] P. Bickel and E. Levina. Covariance regularization by thresholding. Annals
of Statistics, 36(6):2577–2604, 12 2008. doi: 10.1214/08-AOS600.

[10] C. H. Bishop, B. J. Etherton, and S. J. Majumdar. Adaptive sampling with
the ensemble transform Kalman filter. Part I: Theoretical aspects. Monthly
Weather Review, 129:420–436, 2001. doi: 10.1175/1520-0493(2001)129⟨0420:
ASWTET⟩2.0.CO;2.

[11] P. Brockwell and R. Davis. Time Series: Theory and Methods. Springer
Science + Business Media, LLC, New York, 2006.

[12] M. Buehner and M. Charron. Spectral and spatial localization of
background-error correlations for data assimilation. Quarterly Journal of the
Royal Meteorological Society, 133(624):615–630, 2007. doi: 10.1002/qj.50.

88



[13] G. Burgers, P. J. van Leeuwen, and G. Evensen. Analysis scheme in the
ensemble Kalman filter. Monthly Weather Review, 126:1719–1724, 1998.

[14] C. Burrus, R. Gopinath, and H. Guo. Introduction to Wavelets and Wavelet
Transforms: A Primer. Prentice Hall, New Jersey, 1998.

[15] E. Carlen. Trace inequalities and quantum entropy: An introductory course.
In Entropy and the quantum, volume 529 of Contemp. Math., pages 73–140.
Amer. Math. Soc., Providence, RI, 2010. doi: 10.1090/conm/529/10428.

[16] P. Courtier, E. Andersson, W. Heckley, D. Vasiljevic, M. Hamrud,
A. Hollingsworth, F. Rabier, M. Fisher, and J. Pailleux. The ECMWF im-
plementation of three-dimensional variational assimilation (3D-Var). I: For-
mulation. Quarterly Journal of the Royal Meteorological Society, 124(550):
1783–1807, 1998. doi: 10.1002/qj.49712455002.

[17] I. Daubechies. Orthonormal bases of compactly supported wavelets. Com-
munications on Pure and Applied Mathematics, 41(7):909–996, 1988. doi:
10.1002/cpa.3160410705.

[18] I. Daubechies. Ten Lectures on Wavelets, volume 61 of CBMS-NSF Re-
gional Conference Series in Applied Mathematics. Society for Industrial
and Applied Mathematics (SIAM), Philadelphia, PA, 1992. doi: 10.1137/1.
9781611970104.

[19] A. P. Dempster. Covariance selection. Biometrics, 28(1):157 – 175, 1972.
doi: 10.2307/2528966.

[20] A. Doucet, N. de Freitas, and N. Gordon, editors. Sequential Monte Carlo
in Practice. Springer, 2001.

[21] Y. Dwivedi and S. S. Rao. A test for second-order stationarity of a time series
based on the discrete fourier transform. Journal of Time Series Analysis, 32
(1):68–91, September 2010. doi: 10.1111/j.1467-9892.2010.00685.x.

[22] G. Evensen. Data Assimilation: The Ensemble Kalman Filter. Springer,
second edition, 2009. doi: 10.1007/978-3-642-03711-5.

[23] P. G. M. Forbes and S. Lauritzen. Linear estimating equations for ex-
ponential families with application to Gaussian linear concentration mod-
els. Linear Algebra and its Applications, 473:261–283, 2015. doi: https:
//doi.org/10.1016/j.laa.2014.08.015. Special issue on Statistics.

[24] R. Furrer and T. Bengtsson. Estimation of high-dimensional prior and pos-
terior covariance matrices in Kalman filter variants. Journal of Multivariate
Analysis, 98(2):227 – 255, 2007. doi: https://doi.org/10.1016/j.jmva.2006.
08.003.

[25] G. Gaspari and S. E. Cohn. Construction of correlation functions in two and
three dimensions. Quarterly Journal of the Royal Meteorological Society, 125
(554):723–757, 1999. doi: 10.1002/qj.49712555417.

89



[26] G. Gaspari, S. E. Cohn, J. Guo, and S. Pawson. Construction and application
of covariance functions with variable length-fields. Quarterly Journal of the
Royal Meteorological Society, 132(619):1815–1838, 2006. doi: 10.1256/qj.05.
08.

[27] P. Giudici and P. J. Green. Decomposable graphical gaussian model deter-
mination. Biometrika, 86(4):785–801, 1999. doi: https://doi.org/10.1093/
biomet/86.4.785.

[28] T. Hamill, J. Whitaker, and C. Snyder. Distance-dependent filtering of
background error covariance estimates in an ensemble Kalman filter. Monthly
Weather Review, 129(11):2776–2790, 2001. doi: 10.1175/1520-0493(2001)
129⟨2776:DDFOBE⟩2.0.CO;2.

[29] R. A. Horn and C. R. Johnson. Matrix Analysis. Second edition. Cambridge
University Press, 2013.

[30] P. Houtekamer and H. Mitchell. A sequential ensemble Kalman filter for
atmospheric data assimilation. Monthly Weather Review, 129(1):123–137,
2001. doi: 10.1175/1520-0493(2001)129⟨0123:ASEKFF⟩2.0.CO;2.

[31] C. Huang, H. Guo, and Z. Zhang. A spectral collocation method for eigen-
value problems of compact integral operators. Journal of Integral Equations
and Applications, 25(1):79–101, 2013. doi: 10.1216/JIE-2013-25-1-79.

[32] B. R. Hunt, E. J. Kostelich, and I. Szunyogh. Efficient data assimilation for
spatiotemporal chaos: A local ensemble transform Kalman filter. Physica D:
Nonlinear Phenomena, 230:112–126, 2007. doi: 10.1016/j.physd.2006.11.008.

[33] A. Hyvärinen. Estimation of non-normalized statistical models by score
matching. Journal of Machine Learning Research, 6:695–709, 2005.

[34] A. Hyvärinen. Some extensions of score matching. Computational Statistics
& Data Analysis, 51(5):2499–2512, 2007. doi: 10.1016/j.csda.2006.09.003.

[35] R. E. Kalman. A new approach to linear filtering and prediction problems.
Transactions of the ASME – Journal of Basic Engineering, Series D, 82:
35–45, 1960. doi: 10.1115/1.3662552.
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A. Appendix

A.1 Computing the optimal value (7.13) of the
score matching objective function

For a sample XN = {X1, . . . ,XN}, the precision matrix model selection in Section
7.4.2 is based on the sample version (4.14) of the score for normal distribution,
where ∇⊤

x b(X) = 0,

SN(η|XN) =
N∑︂

i=1

(︃1
2η

⊤D∗(Xi)D(Xi)η + η⊤∆xT (Xi)
)︃

+ c∗
N(XN), (A.1)

where the constant c∗
N(XN) does not depend on parameter and η is defined in

(4.43) as

η =
(︄
η1
η2

)︄
=
(︄ ∑︁r

k=1 βkAkµ
β

)︄
. (A.2)

By substituting for D∗(Xi)D(Xi) from (4.45), we get

η⊤D∗(Xi)D(Xi)η = η⊤
1 η1 −

r∑︂
j=1

η2jη
⊤
1 AjXi −

r∑︂
j=1

η2jX
⊤
i Ajη1+

+
r∑︂

j=1

r∑︂
k=1

η2jη2kX
⊤
i AjAkXi. (A.3)

By substituting for η from (A.2), the terms in (A.3) are

η⊤
1 η1 =

r∑︂
k=1

r∑︂
j=1

βkβjµ
⊤AkAjµ, (A.4)

r∑︂
j=1

η2jη
⊤
1 AjXi =

r∑︂
k=1

r∑︂
j=1

βkβjµ
⊤AkAjXi, (A.5)

r∑︂
j=1

η2jX
⊤
i Ajη1 =

r∑︂
k=1

r∑︂
j=1

βjβkX
⊤
i AjAkµ, (A.6)

r∑︂
j=1

r∑︂
k=1

η2jη2kX
⊤
i AjAkXi =

r∑︂
j=1

r∑︂
k=1

βjβkX
⊤
i AjAkXi. (A.7)

By using (4.46) for ∆xT (Xi), the second term of the sum in (A.1) is

η⊤∆xT (X) = (η⊤
1 , η

⊤
2 )
(︄

0
[− trAk]rk=1

)︄
= −

r∑︂
k=1

βk trAk. (A.8)

100



Now, we can rewrite the objective function SN(η|XN) in terms of (µ,β) by subs-
tituting (A.4)-(A.8) into (A.1):

SN (µ,β|XN ) − c∗
N (XN ) =

N∑︂
i=1

1
2

[︃ r∑︂
k=1

r∑︂
j=1

βkβjµ
⊤AkAj(µ−Xi)−

−
r∑︂

k=1

r∑︂
j=1

βkβjX
⊤
i AkAj(µ−Xi)

]︃
− N

r∑︂
k=1

βk tr(Ak)

=
N∑︂

i=1

1
2

r∑︂
k=1

r∑︂
j=1

βkβj(µ⊤ −X⊤
i )AkAj(µ−Xi) − N

r∑︂
k=1

βk tr(Ak)

=
N∑︂

i=1

1
2

r∑︂
k=1

r∑︂
j=1

βk tr
(︂
AkAj(µ−Xi)(µ−Xi)⊤

)︂
βj − N

r∑︂
k=1

βk tr(Ak)

= N

2 β
⊤
[︄
tr
(︄

AkAj
1
N

N∑︂
i=1

(µ−Xi)(µ−Xi)⊤
)︄]︄r

k,j=1
β − Nβ⊤ [tr(Ak)]rk=1 .

By evaluating SN(µ,β|XN) at (X̄, β̂), which represents arguments of its ma-
ximum, we get its optimal value

SN

(︂
X̄, β̂|XN

)︂
= N

2 β̂
⊤ [tr (AkAjS)]rk,j=1 β̂ −N β̂

⊤[tr(Ak)]rk=1 + c∗
N(XN),

where S denotes the sample covariance matrix computed from X1, . . . ,XN .
From (4.40),

[tr (SAkAl)]rk,l=1 β̂ = [tr(Ak)]rk=1 ,

and therefore,

1
N

SN

(︂
X̄, β̂|XN

)︂
− 1
N
c∗

N(XN) = 1
2 tr

(︂
β̂⊤[tr(Ak)]rk=1

)︂
− β̂⊤[tr(Ak)]rk=1

= 1
2 β̂

⊤[tr(Ak)]rk=1 − β̂⊤[tr(Ak)]rk=1

= −1
2 β̂

⊤[tr(Ak)]rk=1.
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