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V Praze dne 6 srpna 2007, Vadym Omelchenko

2
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odhad̊um ML (MLP).

3



Title: Stable distributions and application to finance
Author: Vadym Omelchenko
Department: Department of Probability and Mathematical Statistics
Supervisor: Prof. Lev Klebanov, DrSc.
Supervisor’s e-mail address: Lev.Klebanov@mff.cuni.cz

Abstract: This work deals with the theory of the stable distributions, their
parameter estimation, and their financial application. There are given the
methods of characteristic function and method of projections, which is rel-
ative to ML-methodology, for estimation of the parameters of stable dis-
tributions. We compare these methods with the conventional estimators.
The quality of estimators is verified by the simulation of the sample having
stable distribution with known parameters and comparing the estimates of
these parameters with their real values. The aim of this work is estima-
tion of parameters of the stable laws which is applicable for modification of
ARCH/GARCH models with stable innovations.

Keywords: stable distribution, ARCH/GARCH models, characteristic func-
tion (CF) based estimators, maximum likelihood projection (MLP) estima-
tors.

4



Charles University in Prague
Mathematical Physical Faculty

DIPLOMA THESIS

Vadym Omelchenko

Stable distributions and application to
finance

Department of probability and mathematical statistics

Supervisor: Prof. Lev Klebanov, DrSc.

Study program: Mathematics

Branch of study: probability, mathematical statistics and
econometrics

2007



Contents

1 Introduction 3

2 ARCH and GARCH models 5
2.1 ARCH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 GARCH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Necessity of the generalization . . . . . . . . . . . . . . . . . . 11
2.4 Generalization according to the kind of innovation . . . . . . . 11

3 Stable Distributions 12
3.1 Properties of the stable laws . . . . . . . . . . . . . . . . . . . 13

4 Explicit Density of the Stable Distributions 18

5 Simulation 19

6 Generalization of stable distributions 23
6.1 Geometric stable distributions . . . . . . . . . . . . . . . . . . 23
6.2 Smoothly Truncated α-Stable Distributions . . . . . . . . . . . 27

7 Modified models based on the GARCH(p,q) model 31
7.1 Symmetric GARCH-stable Processes . . . . . . . . . . . . . . 31
7.2 Asymmetric GARCH-stable Processes . . . . . . . . . . . . . . 32
7.3 A Generalized NGARCH Option Pricing Model (See [2]) . . . 33

8 CF based estimators of parameters of stable distributions 37
8.1 Description of CF based estimates . . . . . . . . . . . . . . . . 37
8.2 Testing of the estimators . . . . . . . . . . . . . . . . . . . . . 50
8.3 First Method of Choosing the Power . . . . . . . . . . . . . . 59
8.4 Second Method of Choosing the Power . . . . . . . . . . . . . 60

1



8.5 Checking the Normality of the Estimators . . . . . . . . . . . 62
8.6 Comparison of the variance of α30000,5,1.5 with Fisher informa-

tion with 50 independent estimates . . . . . . . . . . . . . . . 63
8.7 Testing of the estimators of unknown (α,σ) with zero µ and β 64
8.8 general case where all parameters are unknown . . . . . . . . . 65
8.9 Test of Stability . . . . . . . . . . . . . . . . . . . . . . . . . . 66
8.10 Comparison of the CF estimates with Pickand estimate . . . . 67
8.11 Parameter Estimation of Geometric Stable Distribution . . . . 69

9 Fisher Information and MLP Estimators of α of SαS 71
9.1 Projections . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
9.2 The MLP estimates . . . . . . . . . . . . . . . . . . . . . . . . 74
9.3 MLP estimates for α of GSα(1, 0, 0) . . . . . . . . . . . . . . . 77

10 Comparison of αk and αk,N with other estimators 79

11 Methods of calculation of the Fisher Information 86

12 Conclusion 88

13 APPENDICES 90
13.1 APPENDIX A . . . . . . . . . . . . . . . . . . . . . . . . . . 90
13.2 APPENDIX B . . . . . . . . . . . . . . . . . . . . . . . . . . 93
13.3 APPENDIX C . . . . . . . . . . . . . . . . . . . . . . . . . . 94
13.4 APPENDIX D . . . . . . . . . . . . . . . . . . . . . . . . . . 95

2



Chapter 1

Introduction

Stable distributions play an important role in financial practice. First of
all, they can generalize ARCH/GARCH model and their modifications. The
classical ARCH/GARCH models are based on assumption that the random
factor or the innovation is normally distributed, but the practice show that
it is not always true. The random factor is normally distributed when the
market volatility is low, and when there isn’t such fast growth as in some
Asian economies. But when we deal with assets whose price can quickly jump
or drop, we can’t apply ARCH/GARCH models with normal distribution,
because they have a large volatility. Therefore, it is reasonable to apply
random factors with large or infinite variance and stable distributions belong
to them. They have many advantages opposed to other distributions, and
they have been shown to be effective in prediction. The core of this work will
be the parameter estimation of the stable distributions, because this theme
is not well developed, and many researchers use it for commercial purposes,
not disclosing their approach. There are many methods how to recover the
time series of random factors from modification of ARCH/GARCH models,
and they are described in many publications. But we will explore how to
estimate the unknown parameters from the stable distribution which can be
received in practice by extracting from the corresponding time series like
modification of ARCH/GARCH models. Any stable distribution is uniquely
represented by its four parameters:
1) α the most important parameter which is called the tail index, α ∈ (0, 2],
if the parameter α of the stable random variable X belongs to (0, 2) then
EXa < ∞ if 0 < a < α and EXa = ∞ if a ≥ α. From this follows that
if α < 2 the stable distribution has an infinite variance. If α = 2 then
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we deal with normal distribution, which is a particular case of the stable
distributions.
2) β ∈ [−1, 1] has the properties of skewness,
3) σ > 0 has properties of the variance,
4) µ ∈ R has properties of the mathematical expectation if α ≤ 1 and it
is a mathematical expectation if α > 1. The most important advantage of
the stable distributions is the fact that they are preserved under convolution,
and under some conditions that will be considered later the sum of random
variables converges to the stable distributions. For example, sums of Pareto
distribution with α ∈ (0, 2].

In practice there are popular such models like ARCH/GARCH and their
modifications. They contain random factor which is normally distributed.
Very often the prices of assets have such jumps and drops that are not typ-
ical for the models with the normal random factor. They show that the
random factor must have a large variance. But if we take other random fac-
tors we can lose the advantages that the classical ARCH/GARCH models
possess. But the more similar new random factor to the normal law the less
properties of classical ARCH/GARCH models lost. But the stable distrib-
utions are the best candidates to replace the normal law. They have many
properties of normal laws, e.g. preserving under convolution, it is known
from mathematical statistics that the linear combination of normal laws is a
normal law and the same holds for any stable distribution. When α is close
to 2 the density function is very similar to the normal one but the variance
of the corresponding random variable is infinite. The problem of estimating
parameters of the stable distributions is very important, that why we aim
to find the best estimate of parameters of the stable laws. First chapter is
devoted to ARCH/GARCH models and their properties. The following chap-
ters to the stable distributions and their modifications. From eighth chapter
we explore methods of the parameter estimation of the stable distributions.
The parameters will be estimated by two methods:
1) Method based on characteristic function
2) Method based on projections and Maximum Likelihood methodology.
Most of theorems will be without proofs but they can be found in referred
literature.
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Chapter 2

ARCH and GARCH models

ARCH and GARCH models were introduced by Engle in 1982. These models
describe behavior of financial assets.

ARCH(p) model (Auto-Regressive Conditional Heteroskedastic. (See [1])

hn = ln
Sn

Sn−1
, σn = hnεn

σn
2 = a0 +

p∑

k=1

h2
n−kak

ak ≥ 0; a0 > 0

and h0 = h0(ω) is a random variable independent of (εn)n≥1

GARCH(p,q) model, (Generalized ARCH)

σn = hnεn

σn
2 = a0 +

p∑

k=1

h2
n−kak +

p∑

k=1

σ2
n−kbk

ak ≥ 0; a0 > 0; bk ≥ 0

The parameter εn is a random factor which has standard normal distrib-
ution i.e. εn ∼ N(0, 1)
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2.1 ARCH

We see that in this model σn are predictable functions of h2
n−1, h

2
n−2, ..., h

2
n−p

and it is clear that large values of h2
k imply large values of σ2

n and vice versa
what explains ”cluster phenomenon”, so if the value of hn isn’t large it can
be explained by the behavior of the random factor.

Let’s consider several properties of ARCH model, for simplicity let’ s
assume p=1, i.e. let’s consider following model:

σ2
n = α0 + a1σ

2
n−1

following simple properties are obvious:

Ehn = 0, Eh2
n = α0 + a1Eh2

n−1,

E(h2
n | Fn) = σ2

n = α0 + a1h
2
n−1

If 0 < a1 < 1 then

Eh2
n ≡ α0 + a1Eh2

n−1 = α0 + a1(α0 + a1Eh2
n−2) = ...

... = α0(1 + a1 + a2
1 + a3

1 + a4
1...) =

α0

1− a1

Next, simple calculations show that

Eh4
n = Eσ4

nEε4
n = 3Eσ4

n = 3E(α0+h2
n−1)2 = 3E(α2

0+2α0a1Eh2
n−1+a1Eh4

n−1) =

3α2
0(1 + a1)
1− a1

+ 3a2
1Eh2

n−1

Hence assuming that 0 < a1 < 1 and 3a2
1 < 1 we can obtain the following

stationary solution

Eh4
n =

3α2
0(1 + a1)

(1− a1)(1− 3a1)

The previous calculations enable us to compute the ”stationary” value of
kyrtosis:

K ≡ Eh2
4

(Eh2
n)2

− 3 =
6a2

1

1− 3a2
1
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K must be equal to zero for the normal distribution. The kyrtosis can be
estimated by the following statistic:

K̂ =
1
N

∑N
k=1(hk − hN)4

( 1
N

∑N
k=1(hk − hN))2

− 3

where h̄n = 1
N

(h1 + .. + hN)
The reason of the usage of other innovation is that in many cases the

kyrtosis is very different from zero. In most cases it is positive. For 0 < a1 < 1
the sequence h=(hn) is a square integrable martingale difference, therefore it
is a sequence of orthogonal variables:

Cov(hn, hm) = 0,m 6= n

of course it doesn’t mean that they are independent. The dependence of hn

and hm is worthy to be explored. To do this we can calculate the covariation
between | hn | and | hm | or between h2

n and h2
m

Dh2
n = E(h4

n)−(Eh2
n)2 =

3α2
0(1 + a1)

(1− a1)(1− 3a2
1)
−

(
α0

1− a1

)2

=
2

1− 3a2
1

(
α0

1− a1

)2

and

Eh2
nh

2
n−1 =

1 + 3a2
1

1− 3a2
1

α2
0

1− a1

therefore

ρ(1) = Corr(h2
n, h

2
n−1) =

Cov(h2
n, h2

n−1)√
Dh2

nDh2
n−1

= a1.

Further

Eh2
nh2

n−k = E[h2
n−kE(h2

n | Fn−1)] = E[h2
n−kE(σ2

nε2
n | Fn−1)]

= E[h2
n−k(α0 + a1h

2
n−1)] = α0Eh2

n−k + a1Eh2
n−1h

2
n−k

that gives us a simple recursion relation for ρ(k). In the ’stationary case’

ρ(k) = α0Eh2
n−k + a1ρ(k − 1)
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so that
ρ(k) = ak

1

ARCH-models are connected with autoregressive models and h2
n is an AR(p)

model with the innovation νn which is a martingale difference and which
equals νn = h2

n − σ2
n.

There ARCH(1) model will become more complicated if we assume an-
other dependence in h as follows:

hn = b0 + b1hn−1 +
√

a0 + a1hn−1εn

In this case h=(hn) is governed by AR(1)/ARCH(1) model or it satisfies
Autoregressive scheme with ARCH noise

(
√

a0 + a1hn−1 · εn), n ≥ 1

.
This model is conditionally Gaussian, therefore we can represent the den-

sity pθ(h1, ..., hn) of the joint distribution Pθ of the variables h1, ..., hn for a
fixed value of the parameter θ = (a0, a1, b0, b1) as follows (h0 = 0)

pθ(h1, ...., hn) = (2π)−n/2
n∏

k=1

1√
a0 + a1h2

k−1

exp

{
−1

2

n∑

k=1

(hk − b0 − b1hk−1)2

a0 + a1h2
k−1

}

As an example of the application of this method for the parameter estima-
tions we will consider the problem of the estimation of b1 under assumption
that all other parameters are known. We will use the ML estimation. So we
have the maximum when

dpθ(h1, ..., hn)
db1

= 0

so

log(pθ(h1, ..., hn)) = log((2π)−n/2) + log

(
n∏

k=1

(a0 + a1h
2
k−1)−0.5

)
+

+ log

(
exp

{
−1

2

n∑

k=1

(hk − b0 − b1hk−1)2

a0 + a1h2
k−1

})
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The argmax of this function is the same as one of: −1
2

∑n
k=1

(hk−b0−b1hk−1)2

a0+a1h2
k−1

So deriving we get:

n∑

k=1

(hk − b0 − b1hk−1)hk−1

a0 + a1h2
k−1

= 0

Hence

n∑

k=1

(hk − b0)hk−1

a0 + a1h2
k−1

− b1

n∑

k=1

h2
k−1

a0 + a1h2
k−1

= 0

So we obtain:

b̂1 =

∑n
k=1

(hk−b0)hk−1

a0+a1h2
k−1

∑n
k=1

h2
k−1

a0+a1h2
k−1

and b̂1 = b1 + Mn

〈Mn〉 where Mn =
∑n

k=1
hk−1εk√

a0+a1h2
k−1

is a martingale and

〈Mn〉 =
∑n

k=1
h2

k−1√
a0+a1h2

k−1

is its quadratic characteristics.
Mn

〈Mn〉 −→ 0 by the strong law of large numbers therefore this estimation
is consistent.

2.2 GARCH

The success of ARCH(p) model and its ability to explain ”cluster prop-
erty” created an avalanche of generalizations of this model, first of them was
GARCH(p,q) model. GARCH(p,q) model is defined as follows:

σn = hnεn

σn
2 = a0 +

p∑

k=1

h2
n−kak +

p∑

k=1

σ2
n−kbk

ak ≥ 0; a0 > 0; bk ≥ 0

The parameter εn is a random factor which has standard normal distri-
bution i.e. εn ∼ N(0, 1) GARCH(p,q) model is advantages as against its
forefather ARCH(p) model, because it doesn’t require large values of p and
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q. In ARCH(p) model the parameter p is often pretty large. We will demon-
strate the properties of GARCH model on the easiest GARCH(1,1) model,
in which

hn = σnεn

and
σ2

n = a0 + a1h
2
n−1 + b1σ

2
n−1

with a0 > 0, a1 ≥ 0, b1 ≥ 0. It is clear that

Eh2
n = a0 + (a1 + b1)Eh2

n−1

and the ’stationary’ value exists when a1 + b1 < 1 and it is equal to:

Eh2
n =

a0

1− a1 − b1

If 3a2
1 + 2a1b1 + b2

1 < 1 then we have well-defined ’stationary’ value

Eh2
4 =

3a2
0(1 + a1 + b1)

(1− a1 − b1)(1− b2
1 − 2a1b1 − 3a2

1)

And therefore for the ’stationary’ kyrtosis we obtain

K =
Eh4

n

(Eh2
n)2

− 3 =
6a2

1

(1− b2
1 − 2a1b1 − 3a2

1)

The auto-covariance function can be easily found the same way we did it
finding the one for ARCH model.

ρ(1) =
a1(1− a1b1 − b2

1)
1− 2a1b1 − b2

1

ρ(k) = a1 + b1
k−1ρ(1), k > 1.

Finally we point out that that we can generalize the prediction for ARCH
model into GARCH as follows:

ĥ2
n+m = σ̂2

n+m = E(σ2
n+m|F h

n )

= a0
1− γm

1− γ
+ γm−1(a1h

2
n + b1σ

2
n)

where γ = a1 + b1. There are many other generalizations of ARCH models,
like TGARCH, NGARCH, HARCH, some of them will be considered in the
next chapter.
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2.3 Necessity of the generalization

As it was said above, ARCH model can explain many phenomena which take
place on the market, but it explains only part of it. Therefore, there was a
need to make some modifications of ARCH models which would have all the
advantages of ARCH models and that would explain other phenomena, which
classical ARCH model can’t explain. We can modify ARCH/GARCH model
according to time, ARCH model is discrete, according to the formula of the
dependence of volatilities and logarithm of price changes, and according to
the type of the innovation, which rules the model. But we have to be aware
that the new innovation has to be similar to the normal innovation, therefore
it is reasonable to replace the normal innovation by the stable one, because
many properties that are held for normal distribution hold for stable one.
There other alternatives like hyperbolic distributions and others but they
aren’t similar to the normal distribution.

2.4 Generalization according to the kind of
innovation

If we use ARCH(p) model with an innovation having infinite variance we
can get the model which would explain ’cluster property’ and unexpected
jumps but this model isn’t precise, moreover it can collapse as we saw from
the previous example therefore we should modify the whole model to suit
the innovation and to make it function. There exist stable-ARCH/GARCH
models which will be considered in the next chapters.
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Chapter 3

Stable Distributions

Definition of the stable distribution

There are 4 equivalent definitions of the stable distributions: (See [4],[6],[1])

1.1

A random variable X is said to have a stable distribution if for any positive
numbers A and B, there is a positive number C and a real number D such
that

AX1 + BX2 =d CX + D

where X1 and X2 are independent copies of X and =d is equality in distrib-
ution.

1.2

A random variable is said to have a stable distribution if for any n ≥ 2, there
is a positive number Cn and a real number Dn such that:

X1 + X2 + ...Xn = CnX + Dn

where X1, X2, .., Xn are independent copies of X.
Both the first and second definition specify the preserving of the proper-

ties under convolution.
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1.3

A random variable X is said to have a stable distribution if it has a that
1.4 domain of attraction, i.e., if there is sequence of i.i.d. random variable
Y1, Y2, ..., Yn and two sequences of constants (dn) and (an) such that

Y1 + Y2 + ... + Yn

dn

+ an −→d X

where −→d means convergence in distribution. The Cauchy distribution is
a stable distribution, as it is known from the mathematical statistics the av-
erage of variables having Cauchy distribution C(0,1) is Cauchy distribution
C(0,1) what suits the second definition where Cn = 1

n
and Dn = 0 and the

third where dn = n and an = 0. The third definition specifies the limit prop-
erties of the stable distributions. Pareto and geometric stable distributions,
that will be considered later, belong to the stable distributions.

1.4

A random variable X is said to have a stable distribution if there are four pa-
rameter α ∈ (0, 2], −1 ≤ β ≤ 1, σ > 0 and µ ∈ R such that its characteristic
function has a form:

ch(t) = E exp [itX] = exp
[
−σα|θ|α

(
1− i · β·sgn(θ) tan

(
πα

2

))
+ iµθ

]

if α 6= 1 and

ch(t) = E exp [itX] = exp
[
−σ|θ|

(
1− iβ

2
π
· sgn(θ) ln |θ|

)
+ iµθ

]
.

If α = 1. The parameter α is the index of stability. Parameter β is a
parameter showing skewness or asymetry of the model, parameter σ is a scale
parameter and parameter µ is a location parameter. The fourth definition
specifies characteristic function.

3.1 Properties of the stable laws

Theorem 1

For any stable random variable X there exist number α ∈ (0, 2], two indepen-
dent copies X1 and X2 and constants A, B, D and C such that AX1 +BX2 =

13



CX +D where Cα = Aα +Bα. If D=0 then the distribution is strictly stable.

Theorem 2.

For any stable random variable X there exists a number α ∈ (0, 2] such that
Cn in the definition 2. equals n1/α. In financial practice α always belong
to the interval (1,2], that guarantees finiteness of the expected value. The
next examples demonstrate why this is impossible. When α < 1 and the
distribution is strictly stable then there are some interesting properties of
this distribution. Suppose that α = 0.1 and we have three i.i.d. stable
random variables X1, X2 and X3. Suppose that X is an independent copy of
that two random variables. Then according to the previous theorem

X1 + X1 + X3 =d 31/0.1X = 310X = 59049X

What about ten independent copies X1, ..., X10? Then

X1 + X2 + .. + X10 =d 1010X(= 10000000000X)

What about α = 0.01? If we have only two copies of the stable distribution
then

X1 + X2 =d 2(1/0.01)X = 2100X(= 1267650600228229401496703205376X)

That is
X1 + X2 =d 1267650600228229401496703205376X

It is absolutely clear that such dependence is impossible in economic and
financial practice. The stable distributions with α ∈ (0, 1) have wide appli-
cation in physics, biology and other disciplines but not in finances. The stable
distributions having α close to 2 are very similar the normal distributions.

If X is a stable random variable with index of stability α, scale parameter
σ, location parameter µ and skewness β then we denote it as follows: X ∼
Sα(σ, µ, β).

Theorem 3.

Let X1, X2 are i.i.d. ∼ Sα(σi, µi, βi), i=1,2 then X1 +X2 ∼ Sα(σ, µ, β) where

σ = (σα
1 + σα

1 )1/α

14



β =
β1σ

2
1 + β2σ

2
2

σα
1 + σα

1

µ = µ1 + µ2

The location parameter is independent of α of the convolution of two α-stable
random variables.

Theorem 4.

Let X ∼ Sα(σ, β, µ) then X + a ∼ Sα(σ, β, µ + a)

Theorem 5.

Let X ∼ Sα(σ, β, µ) and let a be a non-zero real constant. Then

aX ∼ Sα(| a | σ, sgn(a)β, aµ)

if α 6= 1 and

a ·X ∼ Sα

(
| a | σ, sgn(a)β, aµ− 2

π
a ln |a|σβ

)

if α = 1

Theorem 6.

For any 0 < α < 2, X ∼ Sα(σ, β, µ) ⇐⇒ −X ∼ Sα(σ,−β,−µ)

Theorem 7.

X is symmetric if and only if β = 0 and µ = 0. X is symmetric about µ if
β = 0.

Theorem 8.

Let X ∼ Sα(σ, β, µ) with α 6= 0. Then X is strictly stable if and only if
µ = 0. Hence If α 6= 1 then X − µ is strictly stable.

Theorem 9.

X ∼ S1(σ, β, 0) is strictly stable if and only if β = 0.
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Theorem 10.

Fix 0 < α < 1, δ > 0 and let Nδ be a Poisson random variable with mean
ENδ = δ−α and let Yδ,k,k=1,2,.. be i.i.d. positive random variables indepen-
dent of Nδ with distribution

P (Yδ,k > γ) = δαγ−α

if γ > δ
(Yδ,k > γ) = 1

if γ < δ.Then the compound of random variables

Xδ =
Nδ∑

k=1

Yδ,k

converges in distribution as δ −→ 0 to the stable distribution X ∼ Sα(σ, 1, 0)
with

σα = Γ(1− α) cos
(
π

α

2

)

Theorem 11.

Let X have distribution X ∼ Sα(σ, β, 0) with α < 2. Then there exist two
random variables i.i.d. Y1 and Y2 with common distribution X ∼ Sα(σ, 1, 0)
such that

X =d

(
1 + β

2

)1/α

Y1 −
(

1− β

2

)1/α

Y2

if α 6= 1

X =d

(
1 + β

2

)1/α

Y1−
(

1− β

2

)1/α

Y2+σ
1 + β

π
ln

(
1 + β

2

)
−1− β

π
ln

(
1− β

2

)

if α = 1.

Theorem 12.

For all α < 1 and fixed σ the family of the distribution Sα(σ, β, 0) is stochas-
tically ordered in β,−1 ≤ β ≤ 1. If X ∼ Sα(σ, β, 0) and β1 ≤ β2 then

P (Xβ1 ≥ x) ≤ P (Xβ2 ≥ x)

for all x.
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Theorem 13.

Let X ∼ Sα(σ, β, µ) with 0 < α < 1. Then

lim
γ−→∞ γαP{X > γ} = Cα

1 + β

2
σα

and

lim
γ−→∞ γαP{X < −γ} = Cα

1− β

2
σα

Where

Cα =
(∫ ∞

0
x−α sin(x)dx

)−1

And this is a reason why the stable distributions are called Pareto-type dis-
tributions. The proofs of these theorem can be found in [4].

Remark 1.

Very often we use symmetric stable distributions with zero µ and β i.e.
Sα(σ, 0, 0). These distributions will be denoted by SαS.

Remark 2.

SαS distributions have relatively simple characteristic function

Eexp(iθX) = e−σα|θ|α

Remark 3.

If SαS distribution has scale parameter equal to 1 then it is called a stan-
dardized SαS-distribution.

Remark 4.

If α = 2 then σ2 = 1
2V ar(X), e.g. N(0, 1) = S2( 1√

2
, 0, 0)
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Chapter 4

Explicit Density of the Stable
Distributions

There only three notoriously known stable distributions whose density func-
tion is explicitly known:

Normal Distribution

α = 2, X ∼ S2(σ, 0, µ)

Cauchy Distribution

α = 1, X ∼ S1(σ, 0, µ)

Levy Distribution

α = 0.5, X ∼ S0.5(σ, 1, µ)
This enables very easily to estimate their parameters e.g. by means of method
of maximum likelihood. In general the density of the stable random variable
with arbitrary parameters isn’t known and this fact complicates the parame-
ter estimation of them.

18



Chapter 5

Simulation

1.

Let X ∼ S1(σ, 0, 0). It is the Cauchy distribution and it can be simulated
by σ tan(γ) where γ ∼ U(−π/2, π/2). X ∼ S1(σ, 0, µ) can be simulated by
σ tan(γ) + µ.

2.

Let X ∼ S1/2(σ, 1, µ). Then we can simulate it by σZ−2 + µ where Z ∼
N(0, 1).

3.

Suppose that we have to simulate S1/2m(1, 1, 0) and we have m random vari-
ables X1, X2, .., Xm ∼ N(0, 1). Then:

S1/2m(1, 1, 0) =d

m∏

j=1

X−2j
j .

Levy distribution is a particular case of this relation.

4.

Suppose that γ has uniform distribution U(−π/2.π/2) and that W is expo-
nentially distributed with unit mean. Let us also suppose that γ and W are
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independent, and define:

X =
sin(γα)

(cos(γ))1/α

(
cos((1− α)γ)

W

)(1−α)/α

is Sα(1, 0, 0). If X ∼ Sα(1, β, 0) then σX + µ ∼ Sα(σ, β, µ) if α 6= 1 and
σX + µ + 2

π
βσ ln(σ) ∼ Sα(σ, β, µ) if α = 1 so it enables to simulate any

random variable with the distribution Sα(σ, 0, µ)

5.

For the simulation of the stable random variable with arbitrary parameters
one can apply some approximations. We can use a series representation. But
we must realize that the series that we use for approximation converges very
slowly therefore there is a need to use a large number of summands.

Usage of the Series Representation for simulation of an
arbitrary stable distribution

Before this method was out of use because of the duration of the computation
but the progress in computers has enabled us to use it nowadays. Notation:

Γj =
j∑

k=1

ek

where ek ∼ exp(1)
Let {W1,W2, ..} and {Γ1, Γ2..} be two independent sequences of random

variables and {W1, W2, ..} is an i.i.d. sequence of random variables with finite
absolute α + δth moment (δ > 0). For the simulation of a stable random
variable with arbitrary parameters we will use the following theorem:

Theorem (*)

The series ∞∑

j=1

(Γ−1/α
j Wj − k

(α)
j )

with k
(α)
j = 0 if 0 < α < 1, E(W1

∫ |W1|/(j−1)
|W1|/j x−2 sin(x)dx) if α = 1 and

k
(α)
j = α

1−α
(j(α−1)/α− (j − 1)(α−1)/α)EW1 if α > 1 converges almost surely to
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a Sα(σ, β, µ) random variable with

σα =
E|W1|α

cα

cα =
∫ ∞

0

sin(x)
xα

dx

β =
E|W1|αsign(W1)

E|W1|α
Moreover in case α = 1, the series

∞∑

j=1

(Γ−1/α
j Wj − k

(1)
j )

converges almost surely to a S1(σ, β, µ) random variable, where σ and β are
as above and µ = −EW1 log |W1|. The theorem can be reformulated that
any random variable X ∼ Sα(σ, β, µ) , 0 < α < 2 can be represented as

X =d

∞∑

j=1

(Γ−1/α
j Wj − k

(α)
j )

with above defined parameters. We need to attain the random variable with
a unit skewness and a zero mean what enables us to use the formula defined
in the Theorem 13.

β =
E|W1|αsign(W1)

E|W1|α
so if W1 > 0 almost surely than β = 1 almost surely. We can choose normally
distributed random variables with such variance and mean that they would
be larger than zero almost surely according to the law of 3 sigmas for the
normal distribution. We can choose e.g. and σ2 = 4 so the probability that
this random variable is smaller than zero is very low and in this case β = 1a.s.
So if we want to simulate a random variable X ∼ Sα(σ1, β1, µ1) we can do it
as follows. We take a large number of summand for the series representation,
e.g. 10000, simulate 10000 random numbers governed by Normal Distribution
N(45,4) and ten thousand random numbers governed by Poisson Distribution
and put it to the series defined in the theorem. The sum Y converges to the
random variable Sα(σ, β, µ) . Having simulated two random numbers Y1, Y2

with the distribution Sα(σ, 1, 0) and using the Theorem 13. we get

X =d ((1 + β)/2)
1
α Y1 − ((1− β)/2)

1
α Y2
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X ∼ Sα(σ, β1, 0)

Z =
σ1

σ
X ∼ Sα(σ1, β1, 0)

FX = Z + µ1 ∼ Sα(σ1, β1, µ1)

So this is a way how we can get an approximation of a random variables
with arbitrary parameters for instance with σ = σ1, β = β1, µ = µ1. This
operation can be conducted in MATHEMATICA 5. It will be conducted
only for α > 1 because it happens is very when the innovation has an infinite
expected value.

7.

There is a formula for generation of random numbers from the stable distri-
bution Sα(σ̃, β, µ) with known α and β but with unknown σ. The formula is
following:

YA(α, β) =
2
π

[(
π

2
βφ

)
tan φ− β ln

(
(π/2)E cos φ

π/2 + βφ

)]
, α = 1

and

YA(α, β) = [1 + β2tan2(απ/2)]
1/(2α) sin(α(φ + b))

(cos φ)1/α
·

·
[

cos(φ− α(φ + b))
E

](1−α)/α

, α 6= 1, (∗)

where φ ∼ U [−π
2 , π

2 ] and E ∼ exp(1) The Kolmogorov Smirnov test rejected
that σ = 1. It can be tested as follows:
Having simulated a sample X1, X2, ..., XN from Sα(σ, β, 0)by means of (∗) we
can make a new sample X1 −X2, X2 −X4, ..., XN−1 −XN which is a sample
from Sα(σ, 0, 0). We know how to simulate symmetric stable random variable
Sα(1, 0, 0). Having simulated a sample Y1, Y2, .., YbN/2c we can compare their
empirical distribution functions and conduct Kolmogorov Smirnov test. But
it refuses the hypothesis even for (1− α) = 60%.
Therefore, we propose the following way how to simulate Sα(σ, β, µ):
1. We simulate a sample X = (X1, X2, ..., XN) by means of (*).
2. We transform it to the sequence X1 − X2, X2 − X4, ..., XN−1 − XN ∼
Sα(σ, 0, 0) and estimate unknown σ. For the estimation of σ we can use
method based on characteristic function that is described in the next chap-
ters.
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Chapter 6

Generalization of stable
distributions

6.1 Geometric stable distributions

In this chapter we consider a special case of ν-stable distributions, where
ν = νp is geometrically distributed random variable, p ∈ ∆ = (0, 1). Consider
the ch.f. given by ψ(t) = ϕ(− log(f(t))) where ϕ is the solution of the
Poincare equation:

ϕ(t) = P (ϕ(p0t))

f(t) is a ch.f. of the stable law, the solution of this equation is ϕ(t) = 1
1−t

so

ψ(t) = (1− f(t))−1. Probability distributions with ch.f.

ψ(t) =
1

1− f(t)

are known as geometric stable distributions.

Definition

A random variable Y is said to be geometric stable with respect to the
summation scheme if there exists a sequence of i.i.d. random variables
X1, X2, ..., a geometric random variable νp independent of all Xj and con-
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stants a = a(p) > 0 and b = b(p) ∈ R such that

a(p)
νp∑

j=1

(Xj + b(p)) −→d Y, as, p −→ 0

The geo-stable random variable is symmetric if for any Borel set A ∈ R

P (Y ∈ A) = P (−Y ∈ A).

(see [6])

Definition (equivalent to the previous)

A random variable Y is said to have GS-distribution if its characteristic
function has a form:

ψ(t) = (1 + σα|t|αw(t, α, β)− iµt)−1

where
w(t, α, β) =

1− β tan(πα/2)sgn(t)

if α 6= 1 and

= 1 + β
2
π

log |t|sgn(t)

if α = 1
and

0 < α ≤ 2,−1 ≤ β ≤ 1, σ ≥ 0, µ ∈ R

The parameters α, σ, β, µ are unique, the parameter β is irrelevant when α =
2. The most important parameter is the index of stability α. β is skewness
parameter and σ and µ are scale and location parameters respectively.

Remark.

Densities and distribution functions of GS-distributions are not known in
closed form, except for a few special cases: exponential distribution (σ = 0)
and Laplace distribution (α = 2). If σ = 0 then we say that this distri-
bution is improper and we call it proper otherwise. We shall denote the
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geometric distribution with parameters σ, β, µ, α (they are functions of p) by
GSα(σ, β, µ) and write

Y ∼ GSα(σ, β, µ)

for GS distributed random variables. Stable and geometric stable distribu-
tions are very similar to each other.

Theorem

Every proper geometric stable distribution is absolutely continuous with the
following representation of the distribution function GS and the density gs.
For α 6= 1

GS(x; α, σ, β, µ) =
∫ ∞

0
S

(
x− µz

σz1/α
, α, β

)
e−zdz,

gs(x; α, σ, β, µ) =
∫ ∞

0
σ−1z−1s

(
x− µz

σz1/α
, α, β

)
e−zdz.

For α = 1

GS(x; α, σ, β, µ) =
∫ ∞

0
S

(
x− µz − zσβ(2/π) log (σz)

σz1/α
, α, β

)
e−zdz,

gs(x; α, σ, β, µ) =
∫ ∞

0
σ−1z−1s

(
x− µz − zσβ(2/π) log (σz)

σz1/α
, α, β

)
e−zdz.

S and s mean the distribution function and the density of the corresponding
stable random variable with the same parameters respectively.

Corollary of the previous theorem

Let Y ∼ GSα(σ, β, µ), X ∼ Sα(σ, β, µ), Z ∼ exp(1). Let X and Z be
independent. Then

Y = µZ + Z1/ασX, if α 6= 1

and
Y = µZ + Z1/ασX + σZβ(2/π) log(Zσ), if α = 1

This corollary is very important because this formula can be applied for the
simulation of GSα(σ, β, µ) random variable. To do this we need to be able to
simulate the stable distribution Sα(σ, β, µ) and the exponential distribution
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with the unit parameter.

We know how the stable random variable can be approximated by virtue
of the series representation. The GS random variables can also be approx-
imated by means of the series representation what follows from the next
theorem.

Theorem

Let e0, e1, e2, ..., en, ... be a sequence of i.i.d. r.v. having standard exponen-
tial distribution. Suppose that R1, R2, ..., Rn, ... are i.i.d. random variables,
independent of the sequence {ei}. If the series

∞∑

k=1

(
e0

e1 + e2 + ... + ek

)1/α

Rk

converges almost surely, then it converges to a strictly geo-stable random
variable. As it was mentioned above, the geometric stable laws belong to
the domain of attraction of the stable laws. It can be proven by means of
characteristic function. We will prove it only for GSα(1, 0, 0). When we have
other parameters the proof will be analogous:
1) If X ∼ GSα(1, 0, 0) then its characteristic function equals: ψ(t) = 1

1+|t|α .
If we have n i.i.d. random variables X1, X2, ..., Xn having GSα(1, 0, 0) then
for X =

∑n
j=1 Xj holds:

E exp(i · t ·X) =
n∏

j=1

E exp(i · t ·Xj) =

(
1

1 + |t|α
)n

and the characteristic function of 1
n1/α X equals:

E exp
(
i · t · X

n1/α

)
=

n∏

j=1

E exp
(
i · t · Xj

n1/α

)
=

n∏

j=1

1

1 + |t|α
n

=
1(

1 + |t|α
n

)n

2) The characteristic function of Y ∼ Sα(1, 0, 0) equals exp(−|t|α)
3)

lim
n→∞

1(
1 + |t|α

n

)n = exp(−|t|α)

therefore, 1
n1/α

∑n
j=1 Xj is a domain of attraction of Y ∼ Sα(1, 0, 0) and con-

verges to that in distribution.

26



6.2 Smoothly Truncated α-Stable Distribu-
tions

We introduce a special class of truncated distributions which were baptized
as smoothly truncated distributions (STS-distributions).The name is due to
the special form of tail truncation, which guarantees a continuously differen-
tiable distribution function for the truncated α-stable distribution. (See [2])
Formally we have:

Definition
Let gθ denote the density of an α-stable distribution with parameter θ =
(α, σ, β, µ)T and hi, i = 1, 2 with mean νi and standard deviation τi, i = 1, 2.
Furthermore, let a, b ∈ R be two real numbers with a ≤ m ≤ b, where m
denotes the mode of gθ. The density of STS-distribution is defined by:

f(x) =





h1(x) for x < a
gθ(x) for x ∈ [a, b]
h2(x) for x > b

In order to guarantee a well-defined continuous probability density, the fol-
lowing conditions are imposed:

h1(a) = gθ(a), h2(b) = gθ(b)

and
p1 :=

∫ a

−∞
h1(x)dx =

∫ a

−∞
gθ(x)dx

and ∫ ∞

b
h2(x)dx =

∫ ∞

b
gθ(x)dx =: p2

The family of STS distributions will be denoted by S, the subclass of stan-
dardized STS distributions by S0. Element of S are denoted by S[a,b]

α (σ, β, µ).
p1 = Gθ(a) and p2 = 1 − Gθ(b) denote the ”cut-off-probabilities”. Let the
density and the cumulative distribution function of the standard normal dis-
tribution are denoted by ϕ and Φ respectively. Then the parameters (νi, τi)
of two normal distributions describing the tails of the STS distributions can
be obtained from the following two equations:

τ1 =
ϕ(Φ−1(p1))

gθ(a)
, ν1 = a− τ1Φ−1(p1)
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τ2 =
ϕ(Φ−1(p2))

gθ(b)
, ν1 = b + τ2Φ−1(p2)

So the kernel of this method lies in the replacement of the tails the sta-
ble distributions with the normal tail of the same square with such density
functions which equal the value of the stable density function at the border
points. The normal distribution is characterized by two parameters and we
can choose and set such expected values and variances that they will suit the
requirements on the STS-distribution. Therefore we can’t use many other
types of tails, because many of them cannot suit the assumptions. The STS-
distributions have many advantages because all their moments exist and can
be used for their characteristics and to the characteristics of the model that
they rule. A useful property of α-stable distributions - and normal in par-
ticular - is their scale and translation invariance, which is transmitted to the
class of STS distributions: For c, d ∈ R and X ∼ S[a,b]

α (σ, β, µ) we have that
the random variable Y = cX + d as an affine transform of the variable X is
again STS distributed, i.e.

Y ∼ S[ã,b̃]
α (σ̃, β̃, µ̃) ∈ S

where
ã = ca + d, b̃ = cb + d, σ̃ = |c|σ

µ̃ = cµ + d if α 6= 1 and µ̃ = cµ− 2
π
c log |c|σβ + d if α = 1.

Pareto Distribution.

The distribution with probability density function and distribution function

f(x) =
aba

xa+1

F (x) = 1−
(

b

x

)a

defined over the interval x ≥ b.(See [6]) If a < 1 then this distribution has
an infinite expected value and an infinite variance. If 1 < a < 2 then there
exists the expected value and is equal to ab

a−1 but the variance is infinite. As
it was noted above, the stable distributions are Pareto type distributions and
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their tails behave almost the same way. If a > 2 then there exists the second
raw moment and is equal to:

µ
′
2 =

ab2

a− 2
.

For a > n the nth central moment is

µn = abnΓ(a− n)F̃1

(
a− n,−n, 1 + a− n;

a

a− 1

)
=

= (1− a)a−n(−a)n−aabnB
(

a

a− 1
; a− n, n + 1

)

for a > n and where Γ(z) is a gamma function, F̃1 (a, b, c; d) is a regularized
hypergeometric function, and B(z; a, b) is a beta function.
The mean, variance, skewness, and kurtosis are therefore

µ =
ab

a− 1

σ2 =
ab2

(a− 1)2(a− 2)

γ1 =

√
a− 2

a

a(a + 1)
a− 3

γ2 =
6(a3 + a2 − 6a− 2)

a(a− 3)(a− 4)
provided that the corresponding moments exist. The description of the Hill
estimator can found in Appendix A. This estimator has been shown to be
unappropriate estimator of α in case of stable law but it estimates well the
parameter α of the Pareto distribution with parameters 1 and α. The results
are summarized in the following table:

α Mean Variance
1.1 1.156 0.242
1.2 1.251 0.229
1.3 1.361 0.248
1.4 1.458 0.293
1.5 1.526 0.296
1.6 1.679 0.304
1.7 1.799 0.362
1.8 1.883 0.326
1.9 1.944 0.372
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Any Pareto distribution has an explicit expression of its density therefore
it enables to estimate its parameters by virtue of ML methodology. In the
later chapters are considered characteristic function based estimators and
estimators based on the method of projections that also requires knowledge
of explicit form of characteristic function. These estimates cannot be applied
for the Pareto distributions because we don’t possess explicit form of its
characteristic function.
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Chapter 7

Modified models based on the
GARCH(p,q) model

7.1 Symmetric GARCH-stable Processes

A sequence of random variables Yn, n ∈ Z is said to be a stable GARCH(α, p, q)
if:

1.Yn = σnSn, where Sn are i.i.d. r.v.’s with standard SαS-distribution,
1 < α ≤ 2,
2. there exist nonnegative constants αi, i = 1, ..., q and βj, j = 1, ..., p and
δ > 0, such that

σn = δ +
p∑

i=1

αi|Yn−i|+
p∑

j=1

βjσn−j, n ∈ Z.

Our assumption that α > 1 is not very restrictive because most of financial
time series have finite mean. (See [7])
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7.2 Asymmetric GARCH-stable Processes

Generalizing the stable GARCH process to the asymmetric case, sequence
yt, t ∈ Z, is said to be a stable Paretian Asymmetric GARCH process if

yt = µt + ctεt, εt ∼ Sα(1, β, 0)

ct = αt +
p∑

i=1

αi|yt−i − µt−i|+
q∑

j=1

βjct−j

where Sαβ means the stable Paretian distribution with the index of stability
α and the skewness index β ∈ [−1, 1], zero location parameter and a unit
scale parameter.
More generally the expression of ct looks like

|ct|δ = α0 +
p∑

i=1

αi|yt−i − µt−i|δ +
q∑

j=1

βj|ct−j|δ

The number δ in experiment in most cases equals 1,2 or α. It can be in the
interval (1, α) because if δ ≥ α then ct and yt have an infinite variance.

An Sα,βGARCH(r, s) process with 1 < α < 2 has unique strictly station-
ary solution if αi > 0, i = 0, .., r, βj > 0, j = 1, .., s, and

γα,β

r∑

i=1

αi +
s∑

j=1

βj ≤ 1

where γα,β := E|εt| is driven by

γα,β =
2
π

Γ
(

1− 1
α

)
(1 + τ 2

α,β)
1

2α cos
( 1

α
arctan(τα,β)

)

if 1 < α < 2 and
γα,β =

√
2/π

if α = 2 with τα,β = β · tanα·π
2 . (See [7])
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7.3 A Generalized NGARCH Option Pricing
Model (See [2])

In this section we introduce a general option pricing models containing most
of the features of GARCH process. Formally the log-returns of the under-
lying asset are assumed to follow the following dynamic under the objective
probability measure P:

log St − log St−1 = rt − st + γtσt − g(σt) + σtεt, t ∈ N, εt ∼ F, εt ∼ iid, (∗)

St denotes the price of the underlying ex dividend at date t and rt and dt

denote the continuously compounded risk free rate of return and dividend
rate respectively for the period [t − 1, t]. Both quantities as well as γt are
assumed to be predictable, but can in general be modeled by separate sto-
chastic process. F denotes the marginal distribution of the innovation process
and we assume F is a standardized continuous probability distribution whose
support equals the whole real line R and whose moment generating function
is m is finite. g represents the logarithmic moment generating function of F,
i.e. we have g(u) = log

∫
exp(ux)dF . The conditional variance σ2

t is assumed
to follow an asymmetric NGARCH(1,1)-process:

σ2
t = α0 + α1σ

2
t−1(εt−1 − γ)2 + β1σ

2
t−1, t ∈ N(∗∗)

where we assume α1(1 + γ2) + β1 < 1 to guarantee the existence of a strong
stationary solution with the finite unconditional mean.
From the definition (*) we can deduce some characteristic properties of the
process dynamic of the underlying. First we mention, that if the distribution
of the innovations F equals the standard Gaussian distribution and if we
assume constants r, d and γ̄ then the equation (*) reduces to Duan option
pricing model. For α1 = β1 = 0 the model boils down to the discrete time
Black-Scholes model.
Let’s now introduce some of modifications of the models:

DGMB:

The model as given by equations (*) and (**) with constant price of risk γ̄,
standard normally distributed innovations, and constant conditional variance
α1 = β1 = 0
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Gaussian GARCH:

The model as given by equations (*) and (**) with constant price of risk
γ̄, with standard normally distributed innovations and symmetric GARCH
conditional variance (γ = 0).

Gaussian NGARCH:

The model as given by equations (*) and (**) with constant price of risk γ̄,
with standard normally distributed innovations and asymmetric NGARCH
conditional variance.

GED-NGARCH:

The model as given by equations (*) and (**) with constant price of risk γ̄,
with standardized GED-distributed innovations, and asymmetric NGARCH
conditional variance.

Skewed-t-NGARCH:

The model as given by equations (*) and (**) with constant price of risk γ̄,
with standardized skewed t-distributed innovations, and asymmetric NGARCH
conditional variance. The logarithmic moment distribution function in (*)
is replaced by one of standard normal distribution. STS-NGARCH:The
model as given by equations (*) and (**) with constant price of risk γ̄,
with standardized STS-distributed innovations, and asymmetric NGARCH
conditional variance. This case is subdivided. First we estimate the STS-
distribution with fixed parameters (STS-NGARCH fixed) and in the second
case estimate a standardized STS-distribution
(STS-NGARCH estimated).

All the models are estimated by a numerical maximum likelihood routine.
Let us assume for a moment, that the parameters of the standardized distri-
bution F governing the innovation process are known. If we denote by l the
logarithm of the corresponding density function, then the standard argument
leads to the following conditional log-likelihood function for the NGARCH
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stock-price model with innovation distribution F :

L̃(x,y)(γ̄, α0, α1, β1, γ) =
T∑

t=1

l

(
yt − rt + dt − γ̄σt + g(σt)

σt

)
− 1

2
log(σt).

The conditional variance is recursively obtained from:

σ2
t = α0 + α1σ

2
t−1(εt−1 − γ)2 + β1σ

2
t−1, t ∈ N(∗∗).

yt = St − St−1 denotes a series of log-returns. As usual the conditional like-
lihood function depends on the choice of the starting values ε0 and σ0 but
for a large sample the impact of the starting values is negligible. Maximiz-
ing the conditional likelihood function leads to estimates for the unknown
parameters (γ̄, α0, α1, β1, γ). From the estimates we can recursively recover
the time series of of empirical residuals (εt)t=1,..,T . The empirical distribution
F̂ of these residuals can now be used to update the distributional assump-
tion F by estimating new distributional parameters. The estimation of the
model parameters can now be repeated with the updated distribution and
this gives raise to an iterative procedure. After each iterative step we cal-
culate the Kolmogorov-Smirnov distance d(F, F̂ ) between the distributional
assumption and the empirical distribution of the residuals. We finish the it-
eration procedure and the estimation procedure ends as soon as this distance
stops decreasing. We judge the appropriateness of the tests by means of the
Kolmogorov-Smirnov statistic and the p-value. The practice shows that in
many cases the STS-NGARCH model fits the data the best way. Due to its
modeling flexibility, the class of STS distributions turns out to be a viable
alternative to other popular heavy-tailed distributions.
The following example will emphasize this fact. It deals with one of the
most problematic events from a statistical viewpoint in recent decades: The
October crash in 1987. This event has the reputation to be ”unexplain-
able” by every reasonable time series model. Christian Menn and Svet-
lozar T. Rachev in their book ”Smoothly Truncated Stable Distributions,
GARCH-Models and Option Pricing”, June 2005, studied the ability of dif-
ferent models to forecast the October crash. They compared all six mod-
els (DGMB,Gaussian GARCH and NGARCH, GED-NGARCH, skewed-t-
NGARCH and STS-GARCH). The data are fitted to the same data series
consisting of 1000 S&P 500 log-returns preceding the crash and ending with
the observation on Friday October 16, 1987. On the next trading day, namely
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on the 19 October, the S&P 500 dropped by more than 20%. Having esti-
mated a specific time series model, we can express the drop which occurred
on Black Monday in terms of some implied realization for the residual ε̂Oct.19.
Given the value of the ”crash residual”, we can derive the model dependent
of implicit probability p̂ = P (ε ≤ ε̂Oct.19) for such an event. Having com-
pared the log-result and using Kolmogorov-Smirnov and Anderson-Darling
statistic they concluded that that crash could have been forecasted by the
STS-NGARCH model the best. The mean time of occurrence of such event,
according to their calculations is approximately 25 years.
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Chapter 8

CF based estimators of
parameters of stable
distributions

8.1 Description of CF based estimates

Let’s have a sample X1, X2, ..., XN ∼ Sα(σ, β, µ). The problem lies in esti-
mation of the parameter θ = (α, σ, β, µ). The most difficult is an estimation
of α. Therefore, we will first of all look for the most effective estimate for
α of the standard symmetric distribution Sα(1, 0, 0) and since then we will
consider more complicated problems. There are lots of conventional methods
for α estimations, e.g. Hill estimate, Pickand estimate, MUP estimate and
others. In appendix A there are described properties of Hill and Pickand
estimators. In this work one of methods that we will apply is the method
based on the characteristic function. The characteristic function is explicitly
known for any stable distribution therefore we will look for estimate of α
comparing theoretical and empirical distribution characteristic function. Let
us denote the estimates based on characteristic function as CF-estimates.
What problems can arise when we apply this method? First of all empirical
characteristic function doesn’t converge uniformly on R as against empirical
distribution function, which converges to theoretical one uniformly, accord-
ing to Glivenko-Cantelli theorem. Moreover empirical characteristic function
behaves like periodic function. This problem can be solved if we apply Scőrgö
theorem: (See [8],[3])
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Scőrgö theorem

For any d-variate characteristic function C, if limn→∞(Tn)/n = 0 then

lim
n→∞∆n(Tn) = 0

almost surely, where
∆n = sup

|t|≤Tn

|Cn(t)− C(t)|,

C(t) =
∫

Rd
exp(i〈t, x〉)dF (x)

Cn(t) =
∫

Rd
exp(i〈t, x〉)dFn(x) =

1
n

n∑

j=1

e〈t,Xj〉

Proof

Let ε > 0 be arbitrarily small, ε ≤ 2, and choose K = K(ε, F ) so large that
∫

|x|≥K
dF (x) <

ε

8

Writing Dn(t) = Bn(t)−B(t), we have

∆n(Tn) = sup
|t|≤Tn

|Dn(t)|+ sup
|t|≤Tn

|Bn(t)−B(t)|+ sup
|t|≤Tn

|B(t)− C(t)|

with the truncated integrals

B(t) =
∫

|x|≤K
ei〈t,x〉dF (x)

Bn(t) =
∫

|x|≤K
ei〈t,x〉dFn(x) =

1
n

n∑

j=1

ei〈t,Xj〉χ(|Xj| ≤ K)

where χ(A) denotes the indicator of the event A. The second term is

1
n

sup
|t|≤Tn

∣∣∣∣∣∣

n∑

j=1

ei〈t,Xj〉χ(|Xj| > K)

∣∣∣∣∣∣
≤ 1

n
sup
|t|≤Tn

∣∣∣∣∣∣

n∑

j=1

χ(|Xj| > K)

∣∣∣∣∣∣

and these bounds converge almost surely to
∫

|x|>K
dF (x)
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which is also a bound for the third term.
Let us cover the cube [−Tn, Tn]d by Nn = ([8Kd3/2Tn/ε] + 1)

d
disjoint small

cubes Λ1, Λ2, ..., ΛNn , the edges of which are of the length ε/(4Kd3/2), and
let t1, t2, ..., tNn be the centers of these cubes. Then

sup
|t|≤Tn

|Dn(t)| ≤ max
1≤k≤Nn

|Dn(tk)|+ max
1≤k≤Nn

sup
t∈Λk

|Dn(t)−Dn(tk)| ≤

max
1≤k≤Nn

|Dn(tk)|+ ε

4

for
|Dn(s)−Dn(t)| ≤ |Bn(s)−Bn(t)|+ |B(s)−B(t)| ≤

≤ 1
n

n∑

j=1

|〈s−t,Xj〉|χ(|Xj| ≤ K)+
∫

|x|≤K
|〈s−t, x〉|dF (x) ≤ 2dK|s−t|, s, t ∈ Rd

Summing up:
∆n(Tn) ≤ max

1≤k≤Nn

|Dn(tk)|+ ε

2

almost surely for large enough n, the threshold depending on ω. Now

pn = P
{

max
1≤k≤Nn

|Dn(tk)| > ε

2

}
≤ Nn sup

t∈Rd

P
{
|Dn(t)| > ε

2

}
≤

≤ MT d
n sup

t∈Rd


P





1
n

∣∣∣∣∣∣

n∑

j=1

Rj(t)

∣∣∣∣∣∣
>

ε

4



 + P





1
n

∣∣∣∣∣∣

n∑

j=1

Ij(t)

∣∣∣∣∣∣
>

ε

4








with some constant M = M(ε, F, d), where the random variables

Rj(t) = (cos〈t, Xj〉)χ(|Xj| ≤ K)−
∫

|x|≤K
cos〈t, x〉dF (x), j = 1, .., n

are independent, |Rj(t)| ≤ 2, ERj(t) = 0, and

v2(t) =
∫

|x|≤K
cos2〈t, x〉dF (x)−

(∫

|x|≤K
cos〈t, x〉dF (x)

)2

≤ 1
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The random functions are defined with the cosine functions replaced by sine,
and hence these all are also i.i.d. with |Ij(t)| ≤ 2, EIj(t) = 0 and EI2

j (t) ≤ 1.
Therefore the Bernstein equality gives

P





1
n

∣∣∣∣∣∣

n∑

j=1

Rj(t)

∣∣∣∣∣∣
>

ε

4



 = 2 exp

(
−εn

32

)
if ε ≥ 2v2(t)

P





1
n

∣∣∣∣∣∣

n∑

j=1

Rj(t)

∣∣∣∣∣∣
>

ε

4



 = 2 exp

(
− ε2n

64v2(t)

)
if ε ≤ 2v2(t)

Since v2(t) ≤ 1 and ε ≤ 2, the probability in question is not greater than
2 exp(−ε2n/64), and the same holds for other one with the Ij’s. Thus

pn ≤ 4MT d
n exp

(
−ε2n

64

)

Let δ < ε2/(64d). Then for large enough n, Tn ≤ exp(δn), and hence

∞∑

j=1

pn < ∞.

The Borel-Cantelli lemma and

∆n(Tn) ≤ max
1≤k≤Nn

|Dn(tk)|+ ε

2

give the desired result.QED.
When estimating α from the sample X1, .., Xn from Sα(1, 0, 0) we have the
following representations of empirical characteristic functions and theoretical
one:

C(t, α) = exp(−|t|α)

and

Cn(t) =
1
n

n∑

j=1

cos(tXj)

because in symmetric case the imaginary part of the characteristic function
is zero, therefore in

Cn(t) =
1
n

n∑

j=1

exp(itXj) =
1
n

n∑

j=1

cos(tXj) + i
1
n

n∑

j=1

sin(tXj)
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so
<(Cn(t)) → C(t)

and
=(Cn(t)) → 0

for t ∈ [−Tn, Tn] such that:

lim
n→∞

ln(Tn)
n

= 0

In our case

∆n(Tn) = sup
|t|≤Tn

|Cn(t)− C(t, α)|, lim
n→∞

ln(Tn)
n

= 0

So if α is unknown then we can solve the problem:

(1) min
α

sup
|t|≤Tn

|Cn(t)− C(t, α)|,

The function’s fn(a) = sup|t|≤Tn
|Cn(t)−C(t, a)|, a ∈ (0, 2] minimum possible

value is evidently zero. Moreover

lim
n→∞ fn(α) = 0

according to Scőrgö theorem. So if we denote α̂n the solution of the problem
(1) then α is the solution of the limiting problem. Let’s prove that this
solution is unique. Suppose that α̃ is another solution of the problem

lim
n→∞min

α
sup
|t|≤Tn

|Cn(t)− C(t, α)|

such that α̃ ∈ (0, 2] and α 6= α̃. But in this case Cn(t) converges to another
characteristic function C(t) = exp(−|t|α̃) but this contradicts Scőrgö theo-
rem. Moreover the function | exp(−c1

a) − c2| where c1 > 0, c2 ∈ R, (c1 and
c2 are constants) is monotone in R, therefore our problem can’t have two
solutions. From this follows that α is unique solution of the problem

lim
n→∞min

α
sup
|t|≤Tn

|Cn(t)− C(t, α)|

and
α = lim

n→∞ arg min
α̃

sup
|t|≤Tn

|Cn(t)− C(t, α̃)|
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From this and the uniform convergence follows that α̂n → α. Solving this
problem is computationally very difficult. Therefore instead of looking for
minimum of the supreme we can look for the the minimum of the sum of
absolute differences. That is:

min
α̃

m∑

j=−m

|C(tj, α̃)− Cn(t)|

or

min
α̃

m∑

j=1

|C(tj, α̃)− Cn(t)|.

From

lim
n→∞ sup

|t|≤Tn

|Cn(t)− C(t, α)| = 0

follows that
lim

n→∞ |Cn(tk)− C(tk, α)| = 0

for any tk ∈ [−Tn, Tn]. Therefore if we consider the function

fm,n(a) =
m∑

j=1

|C(tj, α̃)− Cn(t)|

then evidently limn→∞ fm,n(α) = 0, for any tk ∈ [−Tn, Tn] and any m ∈ N .
And this solution is unique what follows from the same reasons as for the
minimum of the supreme. If m=1, i.e. f1,n(a) then our problem looks like

min
ã

fm,n(ã) ⇔ |C(t1, a)− Cn(t1)| = 0 ⇔ C(t1, a)− Cn(t1) = 0

exp(−|t1|a) = Cn(t1)

For large enough n, Cn(t1) will be a positive number and this equation in a
will have a solution.

exp(−|t1|a) = Cn(t1) ⇔ −|t1|a = ln(Cn(t1)) ⇔ |t1|a = ln

(
1

Cn(t1)

)

⇔ a ln(|t1|) = ln

(
ln

(
1

Cn(t1)

))
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Hence

α̂n =
ln

(
ln

(
1

Cn(t1)

))

ln(|t1|)
Checking of the unbiasedness of this estimator is difficult, but its consistency
can be easily proven. t1 ∈ [−Tn, Tn] therefore Cn(t) converges uniformly to
exp(−|t1|α) so for large enough n, we can replace Cn(t) with C(t) i.e.

α̂n =
ln

(
ln

(
1

Cn(t1)

))

ln(|t1|) ≈
ln

(
ln

(
1

C(t1)

))

ln(|t1|) =

=
ln

(
ln

(
1

exp(−|t1|α)

))

ln(|t1|) =
ln (− ln (exp(−|t1|α)))

ln(|t1|) =
ln(−(−|t1|α))

ln(|t1|) = α
ln(|t1|)
ln(|t1|) = α.

That is α̂n → α as n → ∞ i.e. this estimate is consistent. The quality of
the estimator depends on t1 because α̂n is a function of t1. Therefore it is
better to take more than one point to comprise as much of the information
as possible. α is a tail index, the more points are concentrated in the tails,
the more information about α we possess. But the information contained in
the tails of the density function corresponds to one in the vicinity of zero of
the characteristic function. Therefore the choice of points can be following:

t1 = (1∆)2, t2 = (2∆)2, t3 = (3∆)2, ..., tm = (m∆)2

where

∆ =

√
ln n

m

so that tm = ln n Tn = ln n follow all the assumptions of Scőrgö theorem,
therefore such choice is appropriate. We chose a power as a concentrator
of point in the vicinity of zero as one of possible alternatives. If m is large
enough then the points tj, j = 1, ..,m will be concentrated in the vicinity of
zero and part of them will also comprise an information about the distribution
in other parts of the characteristic function. We will also apply other choice
of points, such that:

t1 = (1∆)8, t2 = (2∆)8, t3 = (3∆)8, ..., tm = (m∆)8

where

∆ =
(ln n)1/8

m
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so that tm = ln n what implies a larger concentration of point around zero.
When m > 1 we can’t solve the problem fm,n(a) = 0 because it is a sum of
absolute values and it requires that every summand equals to zero but this
is impossible in general. Therefore we will look for a minimum of

fm,n(a) =
m∑

j=1

|C(tj, a)− Cn(tj)|

as it was proposed in the beginning of the chapter. We’ve chosen Tn = ln n
because such choice is appropriate and corresponds to all assumptions and
requirements of Scőrgö theorem. The algorithm is following:

1.

Tn = ln n, x = 2 or x = 8, ∆ =
(ln n)1/x

m
2.

t1 = (1∆)x, t2 = (2∆)x, ..., tm = (m∆)x

3.

fm,n(a) =
m∑

j=1

|C(tj, a)− Cn(tj)|

4.
α̂n = arg min

a
fm,n(a)

As it was proven above α̂n is consistent. The lack of explicit expression
for α-estimate makes it difficult to verify its unbiasedness and normality.
Therefore, we should work with the empirical distribution function of α̂n and
verify unbiasedness and normality by means of mean of sample (α̂n)k, k =
1, .., T , (where T is a number of simulations) and Kolmogorov-Smirnov test
respectively. Besides this estimator we can apply other method also based
on the characteristic function. Having the sample X1, X2, .., Xn we construct
Cn(t) and solve the following problems:

Cn(Xj) = exp(−|Xj|a) ⇒ (α̂n)j =
ln

(
ln

(
1

Cn(Xj)

))

ln(|Xj|)
Hence we calculate the mean of the sample (α̂n)j, j = 1, .., n

¯̂αn =
(α̂n)1 + (α̂n)2 + ... + (α̂n)j

n
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If |Xj| > Tn we simply exclude it from the sample. Any summand in the
sample mean converges to α therefore ¯̂αn is also a consistent estimator.

1.

σ and α are unknown, µ = 0, β = 0. C(t) = exp(−σα|t|α) i.e. the character-
istic function is real-valued therefore we apply only real part of the empirical
characteristic function i.e.

Cn(t) =
1
n

n∑

j=1

cos(tXj)

Let us define the function

fm,n(α̃, σ̃) =
m∑

j=1

|Cn(tj)− C(tj, α̃, σ̃)|

tj ∈ [−Tn, Tn], limn→∞ ln Tn/n = 0 According to Scőrgö theorem

lim
n→∞ fm,n(α, σ) = 0

for any m ∈ N and any tj ∈ [−Tn, Tn]. This solution is also unique, any
other solution will be in contradiction with Scőrgö theorem. Therefore the
solutions α̂n and σ̂n of the problem

min
α̃,σ̃

fm,n(α̃, σ̃), α̃ ∈ (0, 2], σ > 0

are consistent because of uniform convergence on [−Tn, Tn]. Most of the
information about σ is concentrated around mean in the density function in
our case around zero. Therefore we need more points lying in the tails of the
characteristic function. For this reason we only increase Tn to Tn = 2 ln n to
comprise more points lying further from zero. Or we can look for a minimum
of function

fm1+m2,n(α̃, σ̃) =
m1∑

j=1

|Cn(tj)− C(tj, α̃, σ̃)|+
m2∑

i=1

|Cn(sj)− C(sj, α̃, σ̃)|
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where tj = (j∆)8, j = 1, 2, ..., m1, ∆ = (ln n)1/8/m1, tm1 = ln n, si = i ln n
m2

,
sm2 = ln n. So we can comprise large and small values, that improve the
quality of α- and σ-estimates respectively. If m=2 then we can solve the
problem f2,n = 0 which is equivalent to the system:

(1) exp(−σα|t1|α) = Cn(t1)

(2) exp(−σα|t2|α) = Cn(t2)

−σα|t1|α = ln(Cn(t1))

−σα|t2|α = ln(Cn(t2))

−σα|t1|α
−σα|t2|α =

∣∣∣∣
t1

t2

∣∣∣∣
α

=
ln(Cn(t1))
ln(Cn(t2))

Hence

α̂n = ln

(
ln(Cn(t1))
ln(Cn(t2))

)
/ ln

∣∣∣∣
t1

t2

∣∣∣∣

Hence

−(σ|t1|)α̂n = ln Cn(t1)

(σ|t1|)α̂n = ln

(
1

Cn(t1)

)

σ|t1| =

(
ln

(
1

Cn(t1)

))1/α̂n

Hence

σ̂n =

(
ln

(
1

Cn(t1)

))1/α̂n

|t1|
Both estimates are consistent. Cn(t) → C(t) uniformly on [−Tn, Tn] and:

α̂n = ln

(
ln(Cn(t1))
ln(Cn(t2))

)
/ ln

∣∣∣∣
t1

t2

∣∣∣∣ ≈ ln

(
ln(C(t1))
ln(C(t2))

)
/ ln

∣∣∣∣
t1

t2

∣∣∣∣ =

ln

(
ln(exp(−σα|t1|α))
ln(exp(−σα|t2|α))

)
/ ln

∣∣∣∣
t1

t2

∣∣∣∣ = α ln
∣∣∣∣
σt1

σt2

∣∣∣∣/ ln
∣∣∣∣
t1

t2

∣∣∣∣ = α
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where ≈ means that for large n they are almost equal or limit limit equality.
Applying the same approach to σ̂n we can prove consistency of that estima-
tor.

2.

α and σ are known and we estimate µ and β. In financial practice α is
always larger than one, but we can’t estimate its expected value by EX =
µ, therefore we will also estimate it by the method based on characteristic
function. The empirical characteristic function for β 6= 0 and µ 6= 0 is
complex-valued.

Fm,n(β̃, µ̃) =
m∑

j=1

∣∣∣∣∣exp

(
µi− σα|tj|α

(
1 + iβ

t

|t| tan
(

πα

2

)))
− Cn(tj)

∣∣∣∣∣

According to Scőrgö theorem

lim
n→∞Fm,n(β, µ) = 0

and the solutions β̂n and σ̂n of the problem

min
b,µ̃

Fm,n(b, µ̃)

are consistent. For the location parameter nor the skewness parameter there
is no need to explore the tails therefore we don’t have to concentrate the point
around zero. When choosing the points tj, j = −m,−m+1, ..,−1, 0, 1, 2, ..,m
we will make equal distance between adjacent points. Tn = 2 ln n,

tj = sign(j)
2 ln n · j

m

Let us have a function with t > 0:

f2,m(β, µ) =

∣∣∣∣∣exp

(
µi− σα|t|α

(
1 + iβ

t

|t| tan
(

πα

2

)))
− Cn(t)

∣∣∣∣∣ +

+

∣∣∣∣∣exp

(
µi− σα| − t|α

(
1 + iβ

−t

|t| tan
(

πα

2

)))
− Cn(−t)

∣∣∣∣∣ =
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=
∣∣∣∣exp

(
µi− σα|t|α

(
1 + iβ tan

(
πα

2

)))
− Cn(t)

∣∣∣∣ +

+
∣∣∣∣exp

(
µi− σα|t|α

(
1− iβ tan

(
πα

2

)))
− Cn(−t)

∣∣∣∣
We can solve f2,n(b,m) = 0 as follows:
The problem

f2,n(b,m) = 0

is equivalent to the system:

exp
(
µi− σα|t|α

(
1 + iβ tan

(
πα

2

)))
= Cn(t)

exp
(
µi− σα|t|α

(
1− iβ tan

(
πα

2

)))
= Cn(−t)

µi− σα|t|α
(

1 + iβ tan
(

πα

2

))
= ln(Cn(t))

µi− σα|t|α
(

1− iβ tan
(

πα

2

))
= ln(Cn(−t))

ln

(
Cn(t)

Cn(−t)

)
= −σα|t|α2iβ tan(πα/2)

Hence follows

β̂n = <
ln

(
Cn(−t)
Cn(t)

)

σα|t|α2i tan(πα/2)

Cn(−t) and Cn(t) converge to C(−t) and C(t) respectively. Therefore

β̂n =
ln

(
Cn(−t)
Cn(t)

)

σα|t|α2i tan(πα/2)
≈

ln
(

C(−t)
C(t)

)

σα|t|α2i tan(πα/2)
= β

i.e. this estimate is consistent.

iµ = ln(Cn(t)) + σα|t|α
(

1− iβ̂n tan
(

πα

2

))

Hence:

µ̂n = <
(1

i

(
ln(Cn(t)) + σα|t|α

(
1− iβ̂n tan

(
πα

2

))))

From the same considerations as for the estimation of other parameters fol-
lows that µ̂n is also consistent estimate of µ.
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3.General case

Let’s have a sample
(X1, X2, ..., Xn)

from Sα(σ, β, µ) where all parameters are unknown. Then

(X1 −X2, X3 −X4, X5 −X6, ..., Xn−1 −Xn)

is a sample from Sα(σ, 0, 0).
(If X ∼ Sα(σ, β, µ) and Y ∼ Sα(σ, β, µ) and X ‖ Y then for α 6= 1

X − Y ∼ Sα(σ, 0, 0))
To find α and σ we will use the empirical characteristic function

chn(t) =
1
n

n∑

i=1

ei·t·Xi

The parameters α and σ can be estimated as follows: we choose ap-
propriate points t1, t2, ..., tm, m ∈ N and calculate |f(ti; α, σ)− chn(ti)|2,
i = 1, 2, ..., m The parameters will be found by minimizing the function

F (α, σ) =
m∑

k=1

|chn(tk)− f(tk; α, σ)|2

When we find the estimations α̂ and σ̂ we can estimate the rest the same
way. We will substitute α̂ and σ̂ into the expression of the characteristic
function

f̂(t, µ, β, α̂, σ̂) = exp

(
−σ̂α̂|t|α̂(1− iβ(sign(t)) tan

πα̂

2
)− iµt

)

and µ and β will be estimated by minimizing the function

F̂ (µ, β) =
m1∑

k=1

|chn(sk)− f̂(sk; µ, β, α̂, σ̂)|2

The found numbers α̂n, σ̂n, β̂n, µ̂n are the consistent estimates of θ = (α, σ, β, µ).
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8.2 Testing of the estimators

Notation:

(α̂n,m,z) is an CF estimator of α gained by the solution of the problem:

min
α

m∑

j=1

| exp(−tαj )− Ĉn(tj))|

where z is the concentrating power.
N=1000, Number of simulations = 1500. Number of summands = 100. The
probability that aj ∼ N [µ, σ] is in [µ − 3σ, µ + 3σ] equals Φ(3) − Φ(−3) =
0.9973, is in µ− 1.6σ, µ + 1.6σ: Φ(1.6)− Φ(−1.6) = 0.89:

α ᾱ Var[α]=σ2 ±3σ ±1.6σ
1.1 1.1025 0.0017 (0.9757,1.2292) (1.0348,1.1701)
1.2 1.1989 0.0020 (1.0617,1.3342) (1.1253,1.2706)
1.3 1.3015 0.0022 (1.1583,1.4446) (1.2251,1.3778)
1.4 1.4064 0.0025 (1.2540,1.5587) (1.3251,1.4876)
1.5 1.5004 0.0026 (1.3461,1.6553) (1.4179,1.5820)
1.6 1.6040 0.0028 (1.4430,1.7649) (1.5181,1.6898)
1.7 1.7073 0.0028 (1.5432,1.8641) (1.6181,1.7885)
1.8 1.8053 0.0027 (1.6481,1.9625) (1.7214,1.8891)
1.9 1.9012 0.0023 (1.7550,2.0473) (1.8231,1.9791)

Table 8.1: ch.f. estimator of alpha with 1000 observations

The probability that aj ∼ N [µ, σ] is in [µ−1.1σ, µ+1.1σ] equals Φ(1.1)−
Φ(−1.1) = 0.72, is in µ− 0.8σ, µ + 0.8σ: Φ(0.8)− Φ(−0.8) = 0.57:

As we can observe, the intervals for the estimation of the adjacent α-s
cover if we take 3 σ. The continue covering if we take 1.6 σ but at less rate and
they don’t cover at all if we take the interval 54% interval: [µ−0.8σ, µ+0.8σ]
The problem can be solved as follows:

1. Better choice of sample size (Increase the number of observations)
2. Better choice of
3. Better choice of the concentration
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α ᾱ Var[α]=σ2 ±1.1σ ±0.8σ
1.1 1.1025 0.0017 (1.0560,1.1489) (1.0687,1.1363)
1.2 1.1989 0.0020 (1.1480,1.2479) (1.1616,1.2343)
1.3 1.3015 0.0022 (1.2490,1.3539) (1.2633,1.3396)
1.4 1.4064 0.0025 (1.3505,1.4622) (1.3657,1.4470)
1.5 1.5004 0.0026 (1.4435,1.5564) (1.4589,1.5410)
1.6 1.6040 0.0028 (1.5449,1.6630) (1.5610,1.6469)
1.7 1.7073 0.0028 (1.6441,1.7618) (1.6602,1.7457)
1.8 1.8053 0.0027 (1.7476,1.8629) (1.7633,1.8472)
1.9 1.9012 0.0023 (1.8476,1.9547) (1.8622,1.9401)

Table 8.2: ch.f. estimator of alpha with 1000 observations

If we take 30000 observation and number of summands 100 and concen-
trate the points tj as follows: tj = (∆j)8, ∆ = ln n1/8/m then we will have
very appropriate estimate of alpha. The following table, where we observe
30 independent estimates α̂30000,100,8 of α, shows its properties:

α ᾱ Var[α]=σ2 ᾱ± 3σ ᾱ± 1.66σ
1.1 1.1005 0.000057 (1.07785,1.12315) (1.0879,1.1130)
1.2 1.1977 0.000053 (1.17586,1.21954) (1.1856,1.2097)
1.3 1.2974 0.000086 (1.26958,1.32522) (1.2820,1.3127)
1.4 1.4005 0.000081 (1.37350,1.42750) (1.3855,1.4154)
1.5 1.4990 0.000106 (1.46811,1.52989) (1.4819,1.5160)
1.6 1.5994 0.000106 (1.56851,1.63029) (1.5823,1.6164)
1.7 1.6953 0.000078 (1.66880,1.72180) (1.6806,1.7099)
1.8 1.8037 0.000077 (1.77737,1.83002) (1.7891,1.8182)
1.9 1.9012 0.000054 (1.87753,1.92166) (1.8873,1.9118)

The following tables shows any particular estimate:

1) For α = 1.1:
1.1082, 1.1106, 1.09801, 1.09351, 1.10202, 1.10637, 1.10645, 1.10321, 1.10141,
1.09503, 1.08941, 1.1138, 1.08915, 1.09104, 1.08847, 1.08957, 1.10886, 1.10434,
1.10892, 1.1053, 1.09825, 1.09933, 1.09321, 1.1055, 1.10385, 1.10196, 1.08802,
1.11072, 1.10393, 1.09877
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2) For α = 1.2:
1.20496, 1.20249, 1.19517, 1.19604, 1.20167, 1.19494, 1.18743, 1.20151, 1.19428,
1.19804, 1.18794, 1.20512, 1.196, 1.18698, 1.20481, 1.19169, 1.21027, 1.19788,
1.20406, 1.19547, 1.20514, 1.19805, 1.19988, 1.19651, 1.2037, 1.18148, 1.2028,
1.21141, 1.1872, 1.1893

3) For α = 1.3:
1.2935, 1.3151, 1.29559, 1.29847, 1.30572, 1.29071, 1.30592, 1.30491, 1.29851,
1.2842, 1.30382, 1.2773, 1.30333, 1.28713, 1.2845, 1.28981, 1.29872, 1.30761,
1.30348, 1.3049, 1.28578, 1.29711, 1.29223, 1.29298, 1.29124, 1.29064, 1.29361,
1.30026, 1.3111, 1.31368

4) For α = 1.4:
1.39429, 1.37332, 1.41154, 1.37893, 1.39565, 1.4033, 1.40493, 1.4009, 1.4029,
1.39903, 1.40091, 1.40502, 1.40194, 1.40726, 1.40317, 1.39165, 1.41048, 1.39977,
1.40614, 1.4095, 1.41253, 1.4081, 1.40045, 1.39079, 1.39246, 1.4052, 1.40406,
1.40874, 1.40441, 1.39019

5) For α = 1.5:
1.50065, 1.50034, 1.50638, 1.49664, 1.49629, 1.49527, 1.50285, 1.50114, 1.49815,
1.52136, 1.49376, 1.49189, 1.49457, 1.49533, 1.48902, 1.49971, 1.5083, 1.50469,
1.49852, 1.50014, 1.49522, 1.50339, 1.47766, 1.51644, 1.49559, 1.51264, 1.49487,
1.48305, 1.47853, 1.52043

6) For α = 1.6:
1.60539, 1.59677, 1.58844, 1.61145, 1.62125, 1.58101, 1.58802, 1.60896, 1.60007,
1.59911, 1.61678, 1.59863, 1.59, 1.59516, 1.59729, 1.59834, 1.59634, 1.59175,
1.61957, 1.59433, 1.59859, 1.59841, 1.58783, 1.59833, 1.59295, 1.59413, 1.59617,
1.61032, 1.61868, 1.58904

7) For α = 1.7:
1.69735, 1.70082, 1.70857, 1.69944, 1.69913, 1.68713, 1.68803, 1.70391, 1.70805,
1.69703, 1.69646, 1.68646, 1.70104, 1.69849, 1.68931, 1.70219, 1.68206, 1.69366,
1.671, 1.71233, 1.70166, 1.68737, 1.70235, 1.68343, 1.70086, 1.69522, 1.69474,
1.69236, 1.6924, 1.68796

8) For α = 1.8:
1.79663, 1.81661, 1.80159, 1.8116, 1.79709, 1.78594, 1.80199, 1.78413, 1.80843,
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1.81448, 1.82001, 1.79595, 1.81403, 1.80046, 1.79043, 1.79372, 1.80484, 1.80637,
1.79332, 1.81044, 1.79858, 1.80538, 1.80499, 1.80583, 1.80995, 1.80269, 1.80935,
1.81111, 1.80589, 1.80978

9) For α = 1.9:
1.90411, 1.89804, 1.89732, 1.90743, 1.91036, 1.89394, 1.89956, 1.89235, 1.89556,
1.89975, 1.90654, 1.9116, 1.90313, 1.88928, 1.89956, 1.88236, 1.89519, 1.89911,
1.89334, 1.9165, 1.89402, 1.90574, 1.8989, 1.90076, 1.89882, 1.89375, 1.90758,
1.90284, 1.90196, 1.88842

So this estimator is very effective despite we applied only 30 independent
estimators. No µ± 3σ interval of the estimates of α covers any other, more-
over they are small enough. We took such relatively small number because
it takes a plenty of time to calculate it. Disadvantage of this estimator lies
in time which we need to calculate it. If we reduce the number of summands
from 100 to 20 then we will have an estimator whose value will be calculated
more than 5 times quicker.

Time needed to calculate (α̂30000,100,8): 71.132 seconds
Time needed to calculate (α̂30000,20,4): 14.371 seconds

The table 9.3 shows the properties of (α̂30000,20,4).

α ᾱ Var[α]=σ2 ᾱ± 3σ
1.1 1.0993 0.000072 (1.07390,1.12486)
1.2 1.1968 0.000094 (1.16774,1.22598)
1.3 1.3009 0.000117 (1.26836,1.33345)
1.4 1.3991 0.000087 (1.37107,1.42718)
1.5 1.5018 0.000069 (1.47693,1.52681)
1.6 1.5972 0.000076 (1.57092,1.62355)
1.7 1.7007 0.000097 (1.67105,1.73039)
1.8 1.7969 0.000100 (1.76692,1.82693)
1.9 1.8995 0.000089 (1.87119,1.92798)

Table 8.3: Table of properties of estimator α∗30000,20,4
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If we compare this estimate with the previous it has all advantages of

(α̂30000,100,8)

but it takes much less time to calculate. Although the variance is a bit larger
on the one hand such difference is not significant on the other hand the mean
of all values is better for (α̂30000,20,4) if we compare them by means of sum of
absolute differences. For (α̂30000,100,8) it equals 0.0171 and for (α̂30000,20,4) its
value is 0.0151. These both estimates despite their quality have one impor-
tant disadvantage: it is too difficult in practice to possess 30000 observations.
Therefore we must explore from what number of observations it begins to
work. There are two factors which complicate the computation. They are the
number of summands and the number of observations. The power doesn’t
complicate the calculation, but if we take very large power then all points
except for the last point will be concentrated in such vicinity of zero and they
will differ so little that the computer will not remark the difference between
ch(ti+1) − ch(ti) i.e. it will be a computer zero and the values in the close
vicinity of zero, will be so close to one that it will give no information about
α and we will possess only the information in the point ln n which is far from
zero, and contains only little information about the tail index. The power
should be larger than 1 to concentrate the points around zero well but it has
some border whose crossing means the behavior we’ve just described. Let us
examine the samples with 5000 observations. Such number of observations
is usual for practical purposes. We will explore for what power and number
of summands it estimates the best.
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z=1
1.1 1.2 1.3 1.4 1.5

avg 1.09785 1.20023 1.30106 1.40048 1.5027
var 0.00058 0.00057 0.00077 0.00067 0.0009
±3σ [1.025,1.170] [1.128,1.272] [1.217,1.384] [1.32,1.47] [1.40,1.59]
±2σ [1.049,1.146] [1.152,1.248] [1.245,1.356] [1.34,1.45] [1.44,1.56]
1.5σ [1.061,1.134] [1.164,1.236] [1.259,1.342] [1.36,1.43] [1.45, 1.54]

1.6 1.7 1.8 1.9 1.99
avg 1.6018 1.7046 1.7958 1.8947 1.9861
var 0.00138 0.00094 0.00105 0.0011 0.0008
±3σ [1.490,1.713] [1.612,1.796] [1.698,1.893] [1.79,1.99] [1.90,2.07]
±2σ [1.527,1.676] [1.643,1.766] [1.730,1.860] [1.82,1.96] [1.92,2.04]
1.5σ [1.546,1.657] [1.658,1.750] [1.747,1.844] [1.84,1.94] [1.94,2.02]

Table 8.4: estimate with power z=1, (α5000,5,1)

(α5000,5,1.4):

z=1.4
1.1 1.2 1.3 1.4 1.5

avg 1.10348 1.9891 1.3032 1.4028 1.4993
var 0.00047 0.00049 0.00069 0.00055 0.00066
±3σ [1.037,1.169] [1.131,1.265] [1.224,1.382] [1.33,1.47] [1.42,1.57]
±2σ [1.059,1.147] [1.154,1.243] [1.250,1.355] [1.35,1.44] [1.44,1.55]
1.5σ [1.070,1.136] [1.165,1.232] [1.263,1.342] [1.36,1.43] [1.46,1.53]

1.6 1.7 1.8 1.9 1.99
avg 1.5995 1.7013 1.7999 1.9006 1.9894
var 0.00060 0.00053 0.00056 0.00044 0.00021
±3σ [1.525,1.673] [1.632,1.770] [1.728,1.871] [1.84,1.96] [1.94,2.03]
±2σ [1.550,1.648] [1.655,1.747] [1.752,1.847] [1.86,1.94] [1.96,2.01]
1.5σ [1.562,1.636] [1.666,1.735] [1.764,1.835] [1.86,1.93] [1.97,2.01]
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(α5000,5,1.5):

z=1.5
1.1 1.2 1.3 1.4 1.5

avg 1.10209 1.202 1.3024 1.4010 1.4976
var 0.00035 0.00048 0.00049 0.00054 0.00060
±3σ [1.045,1.1583] [1.136,1.267] [1.235,1.369] [1.33,1.47] [1.42,1.57]
±2σ [1.064,1.139] [1.158,1.245] [1.257,1.347] [1.35,1.45] [1.45,1.54]
1.5σ [1.073,1.1302] [1.169,1.234] [1.268,1.335] [1.36,1.43] [1.46,1.53]

1.6 1.7 1.8 1.9 1.99
avg 1.6014 1.7034 1.7988 1.8988 1.9896
var 0.00066 0.00062 0.00055 0.00032 0.00017
±3σ [1.525,1.678] [1.653,1.778] [1.728,1.869] [1.84,1.95] [1.95,2.02]
±2σ [1.549,1.653] [1.653,1.753] [1.751,1.845] [1.86,1.93] [1.96,2.01]
1.5σ [1.562,1.640] [1.665,1.740] [1.763,1.834] [1.87,1.92] [1.97,2.00]

(α5000,5,2.2):

z=2.2
1.1 1.2 1.3 1.4 1.5

avg 1.10154 1.206 1.301 1.4036 1.50262
var 0.00078 0.00097 0.00096 0.00128 0.00152
±3σ [1.017,1.185] [1.112,1.300] [1.208,1.394] [1.29,1.51] [1.38,1.61]
±2σ [1.045,1.157] [1.143,1.268] [1.239,1.363] [1.33,1.47] [1.42,1.58]
1.5σ [1.059,434] [1.159,1.253] [1.254,1.347] [1.34,1.45] [1.44,1.56]

1.6 1.7 1.8 1.9 1.99
avg 1.60753 1.69643 1.80522 1.90187 1.9871
var 0.00232 0.00266 0.00191 0.00134 0.00034
±3σ [1.462,1.752] [1.541,1.851] [1.673,1.936] [1.79,2.01] [1.93,2.04]
±2σ [1.511,1.703] [1.593,1.799] [1.717,1.892] [1.82,1.97] [1.95,2.04]
1.5σ [1.535,1.679] [1.619,1.773] [1.739,1.870] [1.84,1.95] [1.95,2.01]

Among these estimates (α5000,5,1.5) is the best. To verify this we made
5000 simulations of this estimates and the following table shows properties
of this estimator for larger sample.
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z=1.5 with 5000 simulations
1.1 1.2 1.3 1.4 1.5

avg 1.0997 1.2005 1.3000 1.3997 1.5002
var 0.00040 0.00047 0.00052 0.00055 0.00058
±3σ [1.039,1.160] [1.134,1.266] [1.231,1.368] [1.32,1.47] [1.42,1.57]
±2σ [1.059,1.140] [1.156,1.244] [1.254,1.345] [1.35,1.44] [1.45,1.54]
1.5σ [1.167,1.233] [1.169,1.234] [1.265,1.334] [1.36,1.43] [1.46,1.53]

1.6 1.7 1.8 1.9 1.99
avg 1.6009 1.6999 1.8006 1.9001 1.9902
var 0.00060 0.00056 0.00049 0.00037 0.00017
±3σ [1.527,1.674] [1.628,1.771] [1.733,1.845] [1.84,1.95] [1.95,2.02]
±2σ [1.551,1.650] [1.652,1.747] [1.755,1.845] [1.86,1.93] [1.96,2.01]
1.5σ [1.564,1.637] [1.664,1.735] [1.767,1.834] [1.87,1.92] [1.97,2.00]

5000 simulations confirm the quality of this estimator. Therefore if we
have 5000 observations of the random variable X ∼ Sα(1, 0, 0) we propose
(α̂5000,5,1.5) because this estimate doesn’t require much time for calculation
and is precise enough as it is shown in previous tables. According to Csőrgö
theorem they are also consistent therefore, if we possess more than 5000
observations we can also apply this estimate. The following table shows the
properties of (α6000,5,1.5) for 100 simulations:

z=1.5 with 100 simulations and 6000 observations
1.1 1.2 1.3 1.4 1.5

avg 1.1025 1.2048 1.2963 1.4060 1.5054
var 0.00045 0.00044 0.00036 0.00050 0.00052
±3σ [1.038,1.166] [1.141,1.268] [1.239,1.353] [1.33,1.47] [1.43,1.57]
±2σ [1.059,1.145] [1.162,1.247] [1.258,1.334] [1.36,1.45] [1.45,1.54]
1.5σ [1.070,1.134] [1.173,1.236] [1.267,1.324] [1.37,1.44] [1.47,1.53]

1.6 1.7 1.8 1.9 1.99
avg 1.6018 1.7006 1.7985 1.8975 1.9943
var 0.00042 0.00053 0.00044 0.00022 0.00014
±3σ [1.539,1.663] [1.631,1.769] [1.735,1.861] [1.85,1.94] [1.96,2.03]
±2σ [1.560,1.643] [1.654,1.746] [1.756,1.840] [1.86,1.92] [1.97,2.01]
1.5σ [1.570,1.632] [1.665,1.735] [1.766,1.830] [1.87,1.92] [1.98,2.01]
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Variance in this case is always less than the one in (α̂5000,5,1.5) except for
α = 1.1 but the difference is insignificant and can be explained by a low
number of simulations. If we take 15000 observations then the estimator
α̂15000,5,1.5 can be described by the following table:

z=1.5 with 100 simulations and 15000 observations
1.1 1.2 1.3 1.4 1.5

avg 1.1018 1.1978 1.2989 1.4018 1.4983
var 0.00013 0.00014 0.00013 0.00016 0.00013
±3σ [1.066,1.136] [1.161,1.233] [1.263,1.334] [1.36,1.43] [1.46,1.53]
±2σ [1.078,1.125] [1.173,1.221] [1.275,1.322] [1.37,1.42] [1.47,1.52]
1.5σ [1.084,1.119] [1.179,1.215] [1.281,1.316] [1.38,1.42] [1.48,1.51]

1.6 1.7 1.8 1.9 1.99
avg 1.5990 1.6992 1.7986 1.8997 1.9887
var 0.00016 0.00019 0.00016 0.00010 0.00006
±3σ [1.560,1.637] [1.657,1.740] [1.760,1.836] [1.87,1.93] [1.96,2.01]
±2σ [1.573,1.624] [1.671,1.727] [1.773,1.823] [1.88,1.92] [1.97,2.00]
1.5σ [1.579,1.618] [1.678,1.720] [1.779,1.817] [1.88,1.91] [1.98,2.01]

This estimator is qualitative, the interval 3σ is small enough to say that
the vicinity of the precise value is very small for this estimation. Two previous
tables empirically confirm the the theoretical consistency of this estimator
following from Csőrgö theorem. Based on the previous results we conclude:

If we have the observations X1, X2, ..., XN from Sα(1, 0, 0) and N ≥ 5000
then we propose to apply (ᾱN,5,1.5) with tj = (j ·∆)1.5, Tn=log(N), ∆ =

√
Tn

10·m ,
m=5.

If we take N=100 then the average of large samples of the estimates of
α based on characteristic function and minimizing the sum is close to the
real value of the parameter, but the variance is so large that ᾱ± 3σ interval
covers for any α ∈ [1, 2] the whole interval [1,2] therefore, we can’t rely on
any estimator of α if we possess such a small number of observations. If we
have N=4000 then the estimator (α4000,5,1.4) then the interval ±1.5σ is thin
yet and this estimator works with 0.86% probability.
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When we have 1000 observations we can look for the best estimate as fol-
lows. Having chosen number of summands and the points tj we will look for
such power, that minimizes the corresponding intervals. The width of the
intervals depends on the variance. Therefore having estimated ¯̄α and var(α̂)
of α = 1.1, 1.2, 1.3, ..., 1.8, 1.9 and 1.99 we will calculate the sum of variances
for any estimate (or the average) and choose such z that minimizes the sum.
We can do this by two methods:
1) we will calculate that sum for a large number of z and choose such z for
which that sum is minimal.
2) we will conduct regression analysis of the dependence of the sum on the
power and will choose the appropriate minimum of the corresponding regres-
sion function.

8.3 First Method of Choosing the Power

We simulate 100 estimators (α1000,15,z) for 18 values of z. The results de-
scribed in the following table:

z Sum
0.500 0.296817
1.000 0.037670
1.300 0.023993
1.360 0.023610
1.380 0.022058
1.390 0.226670
1.395 0.023160
1.400 0.022040
1.410 0.021772
1.415 0.022900
1.420 0.025020
1.440 0.022511
1.500 0.025991
1.600 0.026501
2.200 0.688980
3.000 0.161500
6.000 1022.950
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The minimum sum is attained for z = 1.41 therefore let us simulate
α1000,15,1.41 1500 times to have reliable intervals for ᾱ. The following table
shows the results and compares α1000,100,8 with α1000,15,1.41

α ᾱ Var[α]=σ2 ±3σ,(α1000,100,8) ±3σ,(α1000,15,1.41)
1.1 1.10258 0.0021 (0.9757,1.2292) (0.9650,1.2401)
1.2 1.20261 0.0022 (1.0617,1.3342) (1.0608,1.3444)
1.3 1.3026 0.0024 (1.1583,1.4446) (1.1538,1.4514)
1.4 1.4023 0.0026 (1.2540,1.5587) (1.2985,1.5060)
1.5 1.5031 0.0028 (1.3461,1.6553) (1.3430,1.6632)
1.6 1.6030 0.0029 (1.4430,1.7649) (1.4403,1.7657)
1.7 1.7012 0.0027 (1.5432,1.8641) (1.5442,1.8583)
1.8 1.8012 0.0024 (1.6481,1.9625) (1.6532,1.9491)
1.9 1.9022 0.0016 (1.7550,2.0473) (1.7794,2.0250)

The intervals from α = 1.1 to α = 1.6 are thiner for α1000,100,8 but begin-
ning with α = 1.7 the estimator α1000,15,1.41 has thinner ᾱ±3σ intervals. But
the difference of the width of both estimators is insignificant but α1000,15,1.41

can be calculated more than 5 times quicker. Therefore we can recommend
this estimate but it will estimate α with the precision 0.01 with probability
0.72 because it corresponds to the interval ±1.1σ.

8.4 Second Method of Choosing the Power

We conduct regression analysis based on the value from the table of z and
corresponding sums. From the observations we see that the sum increases
from 1.41 to 2.2 and decreases from 0.5 to 1.41. Therefore the dependence
cannot be linear. Suppose that the dependence is polynomial. There is one
outlier. For z=6 the sum equals 1022.9 therefore we will analyze both models
where we exclude this observation and when we take it into the model.
I. The regression model when we exclude the outlier:
First model: Sum ∼ {1, z, z2}:

Parameter Table Estimate SE TStat R-Squared p-Value
1 0.481415 0.0478379 10.1278 0.88 0
x -0.523574 0.0543815 -9.6278 0
x2 0.141504 0.0144629 9.78389 0
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The R-Squared can be increased by changing the power of the polynomial.
If we take the regression dependence Sum ∼ {1, z, |z|1.1} then we will have
the following table:

Parameter Table Estimate SE TStat R-Squared p-Value
1 0.71098 0.0491 14.471 0.93 0
x -4.4568 0.321 -13.867 0

|x|1.2 3.834 0.276 13.848 0

I chose such power because it maximizes the R-squared among other choices.
From here we get the following dependence:

Sum = 0.710− 4.456z + 3.834|z|1.1 + ε

This function attains the minimum value in 1.73. If we include the out-
lier into the model polynomial regression we will have the determination
coefficient equal to 0.99 and the function:

Sum = 0.710− 4.456z + 3.834|z|1.1

It attains minimum at 1.73. If we apply the quadratic polynomial we will
have the following results:

R− Squared = 0.98, Sum = 145.882− 190.219z + 55.741z2

whose minimum is attained for z=1.706.
As it is clear from the table, this estimator is worse than (α1000,15,1.41)

therefore when we possess 1000 simulations we propose to use this estimate.
It will work for any N larger than 1000 because of consistency of any es-
timator of this kind, but if N ≥ 5000 than the estimator (αN,5,1.5) can be
calculated faster with suitable precision, therefore based on just conducted
research we propose the following estimators for α:

1. If N ≥ 5000 we propose (αN,5,1.5)
2. If 5000 ≥ N ≥ 1000 we propose (αN,15,1.41)
3. If N < 1000 but it is close to this value then we can apply (αN,15,1.41) or
(αN,m,1.41) where m ≥ 15. If N is small in comparison to 1000 than no CF
estimator is reliable.
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α ᾱ Var[α]=σ2 ±3σ,(α1000,100,8) ±3σ,(α1000,15,1.73)
1.1 1.10016 0.0020 (0.9757,1.2292) (0.9637,1.2365)
1.2 1.20355 0.0027 (1.0617,1.3342) (1.0462,1.3608)
1.3 1.30554 0.0029 (1.1583,1.4446) (1.1412,1.4698)
1.4 1.4061 0.0033 (1.2540,1.5587) (1.2314,1.5807)
1.5 1.5055 0.0039 (1.3461,1.6553) (1.3178,1.69322)
1.6 1.6009 0.0040 (1.4430,1.7649) (1.4094,1.7925)
1.7 1.6994 0.0103 (1.5432,1.8641) (1.3938,2.0051)
1.8 1.8014 0.0032 (1.6481,1.9625) (1.6295,1.9734)
1.9 1.9039 0.0024 (1.7550,2.0473) (1.7554,2.0524)

Figure 8.1: Table of CF estimates

8.5 Checking the Normality of the Estima-
tors

1. First we will check the normality of (α5000,5,1.5).
When α = 1.1 we simulate 5000 estimates of this parameter. The average of
the sample equals 1.09977, the variance equals 0.00040. We can compare the
the cumulative distribution function of N(1.09977,

√
0.0040) (N(µ, σ)) with

the empirical distribution function based on 5000 thousand observations:8.2
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1

Figure 8.2: Graph of the empirical distribution function

And let us take a look at the comparison of the graph of CDF of the
corresponding normal distribution with the empirical distribution function,
see the figure 10.3:
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Figure 8.3: Graph of the CDF of N(1.09977,
√

0.0040) and the empirical
distribution function, they are so similar that their graphs intersect and the
difference is invisible

Kolmogorov Smirnov test didn’t refuse the hypothesis of normality for
(1 − α) = 98%. The empirical distribution function and the distribution
function of the normal distribution with mean equal to the average of the
sample and the variance equal to the empirical variance of the sample cover
each other and K-S test doesn’t refuse normality for large enough values of
(1 − α). The same situation holds if we have 1000 observations. The more
simulations the more evident normality from the graph. There isn’t explicit
expression of any (αN,m,z) therefore we have to rely only on empirical data.
In Appendix D there is a graph showing how ¯̂α5000,5,1.5 (i.e. mean of the
estimates of α of X ∼ S1.3(1, 0, 0)) converges to 1.3.

8.6 Comparison of the variance of α30000,5,1.5

with Fisher information with 50 indepen-
dent estimates

In the following table we compare the variance of the estimator α30000,5,1.5

with the Fisher information calculated by the following formula:

I(α) = [4(2− α)| ln(2− α)|]−1

when α is close to 2. This theorem and its proof can be found in ”CHANCE
and STABILITY Stable Distributions and their Applications” by Vladimir
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V. Uchaikin and Vladimir M. Zolotarev, VSP 1999, page 249.(book: [10])

α Var(α30000,5,1.5) 1/(30000 · I(α)) ratio %
1.7 0.000084365 0.0000481589 57 %
1.8 0.000074794 0.0000429183 57 %
1.9 0.000068985 0.0000307011 44 %
1.93 0.000058339 0.0000248198 42 %
1.96 0.000043466 0.0000171673 39 %
1.99 0.000034410 6.14023 ·10−6 17 %

1.9996 0.000037898 4.17282 ·10−7 1.1 %

In the last two chapters we propose the method based on projections
invented by Kagan and developed for the stable distributions by Klebanov
and Melamed. Here are results obtained by method based on projections:

α Var(α30000,5,1.5) 1/(30000 · I(α)) ratio %
1.7 0.000084365 0.000067 79 %
1.8 0.000074794 0.000056 75 %
1.9 0.000068985 0.000038 55 %
1.93 0.000058339 0.000030 52 %
1.96 0.000043466 0.000020 46 %
1.99 0.000034410 7.4791 ·10−6 21 %

1.9996 0.000037898 5.8594 ·10−7 1.5 %

From both tables we can see that the function obtained by Zolotarev and
Uchaikin converges to I(α) for the values which are ”too” close to 2 and their
deviation from 2 is insignificant. Moreover the values of α that are so close
to 2 have no place in financial practice. If we approximate the value of the
Fisher information by this formula then it will always be exaggerated.

8.7 Testing of the estimators of unknown (α,σ)
with zero µ and β

If we apply the estimator (α̂, σ̂)30000,20,8 of the parameters from the distribu-
tion Sα(2, 0, 0) then we can observe its properties from the following table:
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σ α ¯̂α Var[α̂]=σ2 ¯̂σ Var[σ̂]
1.1 1.09932 0.000063 2.12512 0.0002288
1.2 1.20263 0.000097 2.12158 0.0003309
1.3 1.30006 0.000114 2.11718 0.0002135
1.4 1.40343 0.000193 2.12500 0.0001914
1.5 1.50146 0.000061 2.12082 0.0002073
1.6 1.60420 0.001510 2.12370 0.0002163
1.7 1.70547 0.000817 2.12042 0.0002876
1.8 1.80084 0.000106 2.12632 0.0001501
1.9 1.90067 0.000049 2.12014 0.0001103

8.8 general case where all parameters are un-
known

As it was mentioned when we have a sample X1, X2, ..., XN ∼ Sα(σ, β, µ)
we have to make differences X1 − X2, X2 − X4, ..., XN−1, XN ∼ Sα(σ, 0, 0)
and estimate the tail and scale parameter. Then having substituted the
computed values into the corresponding functions, we estimate β and µ. We
tested this method by virtue of estimating parameters of the sample from
S1.4(1, 0.23, 0.1) with 30000 thousand numbers, applying 2000 simulations.
We simulated the samples applying the formula:

YA(α, β) =
2
π

[(
π

2
βφ

)
tan φ− β ln

(
(π/2)E cos φ

π/2 + βφ

)]
, α = 1

and

YA(α, β) = [1 + β2tan2(απ/2)]
1/(2α) sin(α(φ + b))

(cos φ)1/α

[
cos(φ− α(φ + b))

E

](1−α)/α

if α 6= 1, (∗) where φ ∼ U [−π/2, π/2] and E ∼ exp(1). After estimation of
the scale parametr from the sample and making elementary algebraic trans-
formations we have Sα(σ, β, µ) simulated. Having simulated Sα(σ, β, µ) we
can commence estimating of their parameters. We tested this method on
S1.44(1, 0.23, 0). The results are following:
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α ᾱ SD of α σ σ̄ SD of σ β β̄ SD of β
1.44 1.4405 0.011 1.00 1.004 0.007 0.23 0.25 0.01

Where SD means standard deviation. When estimating the parameters there
were used 2000 simulations.

8.9 Test of Stability

Let us have a sample X1, X2, ..., XN . If we want to check stability of the
given sample we have to do this in two steps:

1. First we estimate parameters of the model by virtue of the methods
represented in previous chapters. Suppose that the corresponding values of
parameters are equal to (α̂,σ̂,β̂,µ̂)

2. Having estimated the parameters of the sample under hypothesis that
it is stably distributed we simulate lots of Samples from Sα̂(σ̂, β̂, µ̂) and check
the equality in distribution by virtue of Kolmogorov Smirnov test.

If the estimate of α based on characteristic function is larger than 2 for
a large (≥ 5000) sample of observation then this is also a reason to reject
stability. Therefore we recommend to go to the second step only if the
estimate θ̂ = (α̂, σ̂, β̂, µ̂) belongs to the set (0, 2)× (0,∞)× [−1, 1]×R
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8.10 Comparison of the CF estimates with
Pickand estimate

α Type of estimator Mean Variance ±3σ
1.1 α3000,5,1.5 1.1001 0.00007 [1.0747,1.1255]

Pickand 1.1034 0.00133 [0.9938,1.2130]
1.2 α3000,5,1.5 1.2002 0.00008 [1.1724,1.2279]

Pickand 1.2275 0.00103 [1.1311,1.3239]
1.3 α3000,5,1.5 1.3000 0.00007 [1.2732,1.3267]

Pickand 1.3652 0.00077 [1.2817,1.4487]
1.4 α3000,5,1.5 1.4003 0.00008 [1.3723,1.4283]

Pickand 1.4904 0.00056 [1.4191,1.5618]
1.5 α3000,5,1.5 1.5004 0.00009 [1.4713,1.5295]

Pickand 1.6135 0.00087 [1.5250,1.7021]
1.6 α3000,5,1.5 1.5995 0.00008 [1.5713,1.6277]

Pickand 1.7270 0.00102 [1.6308,1.8232]
1.7 α3000,5,1.5 1.7004 0.00008 [1.6728,1.7279]

Pickand 1.8342 0.00088 [1.7451,1.9233]
1.8 α3000,5,1.5 1.7997 0.00007 [1.7738,1.8257]

Pickand 1.8542 0.00095 [1.7616,1.9467]
1.9 α3000,5,1.5 1.9006 0.00006 [1.8759,1.9254]

Pickand 1.9225 0.00123 [1.8169,2.0282]

Table 8.5: Comparison of Unconditional Pickand Estimator with α30000,5,1.5

When we apply unconditional Pickand estimator we face the problem of
finding the best k. In Appendix A this estimator is described. Based on
Monte Carlo simulations I’ve concluded that the quality of the estimates
based on the choice of k depends on α. But we should eliminate this de-
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pendence because α is unknown. To do this we simulated the large number
of samples with 30000 elements with α = 1.1, 1.2, 1.3, ..., 1.9 for any α and
any sample we found the best k, and from the samples of the best k I took
the average for any α. Let denote k1 the average best k for α = 1.1, k2 the
average best k for α = 1.2, etc. k9 the best k for α = 1.9. When applying
kj for the estimation of α = 1 + j

10 we mentioned that the variance of this
estimate is relatively low therefore we used following method. Having the
sample X1, X2, .., X30000 we substitute k1 into the estimate at first. If the
calculated Pickand estimate is larger than 1.2 then we take the following k
(k2), calculate the Pickand estimate with k=k2 and if the value of the Pickand
estimate is larger then 1.3 we take the following k and continue this operation
until it is larger than 2 and in this case we take the Pickand estimate to be
equal to 2. As only one of the previous conditions doesn’t hold we take the
calculated value of the Pickand estimate as an estimate of α. The results of
this approach are summarized in the previous table.

The reason why we don’t propose to use aver-
age as an estimate of µ in general

If we have a sample X1, X2, .., XN and X i.i.d. from Sα(σ, β, µ) and α > 1
as it is always in financial practice, then X̄ is a consistent estimator of µ. It
follows from elementary properties of stable law:

X̄ =
X1 + X2 + ... + XN

N
=d

N1/αX

N
=

=
1

N1−1/α
X ∼ Sα

( 1
N1−1/α

σ, β,
1

N1−1/α
µ

)

The consistency follows from the relations:

X̄=d
1

N1−1/α
X, lim

N−→∞
1

N1−1/α
X = 0.

But X̄ is a stably distributed i.e. has an infinite variance therefore it is not
reasonable to apply such estimator but there is one exception: it is clear that
the quality of the estimate depends on α. To empirically test the quality of
this estimator we simulated samples with 30000 elements from S1.1(1, 0, 0),
S1.5(1, 0, 0) and S1.9(1, 0, 0). The desirable value of X̄ is zero. We made 5000
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α average variance
1.1 0.307396 161.495
1.5 0.001902 77.5086
1.9 0.000335 0.00015

Table 8.6: Table of estimates of µ for α = 1.1, 1.5, 1.9

simulations. The table 9.6 shows the results of computation: From the table
we can see that when α is small then this estimator doesn’t work even for
samples with 30000 elements. But when it is close to 2 then it works well.
The largest value in the sample of 5000 estimates of µ when α = 1.9 is equal
to 0.2175 and the smallest value equals -0.11. Therefore we propose to use
this estimator only when we know α and when it is larger than 1.9. In any
other case we propose to estimate the location parameter by virtue of other
methods e.g. by CF method.

8.11 Parameter Estimation of Geometric Sta-
ble Distribution

The same technique that we applied for estimation of the parameters of stable
distributions we can apply for the estimation of the parameter of geometric
stable laws. If we know how to simulate the stable law X ∼ Sα(σ, β, µ) then
the geometric stable law can be simulated by means of the following formula:

Y =dµZ + Z1/αX, Y ∼ GSα(σ, β, µ), α 6= 1

The characteristic function of the geometric stable law equals:

ψ(t) = (1 + σα|t|α exp(−iβ(π/2)K(α))sgn(t)− iµt)−1
,

K(α) = α− 1 + sgn(1− α)

We consider only the cases when α > 1 therefore K(α) = α − 2. If β = 0
then

ψ(t) =
1

1 + σα|t|α
This gives us possibility to estimate parameters by virtue of the same tech-
nique as for the stable laws. The following table shows properties of α∗15000,5,1.5:
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α ᾱ Var[α]=σ2 ᾱ± 3σ
1.1 1.0983 0.000185 (1.05751,1.13919)
1.2 1.2003 0.000213 (1.15661,1.24418)
1.3 1.3019 0.000209 (1.25849,1.34543)
1.4 1.3979 0.000267 (1.34896,1.44703)
1.5 1.5007 0.000289 (1.44967,1.55175)
1.6 1.5994 0.000264 (1.55064,1.64826)
1.7 1.6989 0.000228 (1.65358,1.74433)
1.8 1.8001 0.000238 (1.75384,1.84648)
1.9 1.9000 0.000171 (1.86074,1.93926)

Table 8.7: Table of properties of estimator α∗15000,5,1.5 of α of GSα(1, 0, 0)

If X, Y ∼ GSα(σ, β, µ) and i.i.d. then the characteristic function of X−Y
equals:

ψ(t) = E exp(it(X − Y )) = E exp(itX)E exp(−itY ) =
1

1 + |t|α
1

1 + | − t|α

=

(
1

1 + |t|α
)2

But this is not a geometric stable law. From this follows that geometric
stable laws aren’t preserved under convolution. Therefore we can’t apply
the method of differences, that we applied for stable law. Therefore when
we don’t know all four parameters we have to estimate them by solving
the minimum problem of the corresponding function of four parameters α,
σ, β, and µ. The technique of the estimation is the same as one of the
stable distributions. It is enough to replace the characteristic function of
Sα(σ, β, µ) by the one of GSα(σ, β, µ) and apply to it the same methodology,
taking into account that the geometric stable distribution isn’t preserved
under convolution including difference.
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Chapter 9

Fisher Information and MLP
Estimators of α of SαS

9.1 Projections

As it was mentioned in previous chapters the density function of any general
stable distribution doesn’t have any explicit form, therefore the calculation of
Fisher information and ML-estimator are very problematic and we can’t con-
duct it without approximations. The idea of the method described below was
given by Kagan (See [5]) and the method itself was developed by Klebanov
and Melamed. There are some important identities of the ML-estimates:

J(x, α) =

(
∂p(x,α)

∂α

)

p(x, α)

I(α) =
∫ ∞

−∞
J2(x, α)p(x, α)dx

α̂ML =



α :

n∑

j=0

J(x, α) = 0





where p(x, α) is the density function. The method that was just mentioned
enables to calculate approximately the function J(x, α) by projection of it to
the space {1, exp(it1x), exp(it2x), exp(it3x), ..., exp(itkx)}, that is

Jk(x, α) =
k∑

j=0

aj exp(itjx) =
k∑

j=0

aj cos(tjx) + i
k∑

j=0

aj sin(tjx)
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Where aj, j = 1, 2, .., k are unknown coefficients that will be calculated from
the linear equations and tj, j = 0, 1, 2, .., k are chosen known points. We
project to the space with scalar multiplication given as follows:

X ∼ Sα(1, 0, 0)

〈exp(itmX), exp(itnX)〉 = E exp(itmX) · exp(itnX) = E exp(iX(tm + tn)) =

=
∫ ∞

−∞
p(x, α) exp(ix(tm + tn))dx = exp (−|tm + tn|α)

For any projection Jk(x, α) holds:

(Jk(x, α)− J(x, α)) ⊥ exp(itjx), j = 1, 2, .., k

in other words:

〈(Jk(X, α)− J(X, α)), exp(itjX)〉 = 0, j = 1, 2, .., k

or
E((Jk(X,α)− J(X,α)) · exp(itjX)) = 0, j = 1, 2, .., k

From this follows:
∫ ∞

−∞
(Jk(x, α)− J(x, α))p(x, α) exp(itjx)dx = 0

Hence
∫ ∞

−∞
Jk(x, α)p(x, α) exp(itjx)dx =

∫ ∞

−∞
J(x, α)p(x, α) exp(itjx)dx

Let us calculate both integrals from the above equality separately:

∫ ∞

−∞
Jk(x, α)p(x, α) exp(itjx)dx =

∫ ∞

−∞

k∑

v=0

av exp(itvx)p(x, α) exp(itjx)dx =

=
k∑

v=0

av

∫ ∞

−∞
exp(itvx)p(x, α) exp(itjx)dx =

k∑

v=0

av

∫ ∞

−∞
p(x, α) exp(ix(tj+tv))dx =

=
k∑

v=0

av exp (−|tv + tj|α), j = 1, 2, .., k

We could change sum and integral because the sum is finite. The second
integral will be calculated as follows:
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∫ ∞

−∞
J(x, α)p(x, α) exp(itjx)dx =

∫ ∞

−∞

(
∂p(x,α)

∂α

)

p(x, α)
p(x, α) exp(itjx)dx

=
∫ ∞

−∞
∂p(x, α)

∂α
exp(itjx)dx =

∂

∂α

∫ ∞

−∞
p(x, α) exp(itjx) =

∂

∂α
exp (−|tj|)α

The integral and derivative could be replaced because p(x, α) ≥ 0. Hence
follows the system of linear equations, where av, v = 0, 1, .., k are unknown:

k∑

v=0

av exp (−|tv + tj|)α =
∂

∂α
exp (−|tj|)α, j = 1, 2, .., k

that can be written in the form:

∂

∂α
exp (−|tj|)α = − exp (−|tj|)α · |tj|α · ln |tj|

k∑

v=0

av exp (−|tv + tj|α) = − exp (−|tj|)α · |tj|α · ln |tj|, j = 1, 2, .., k

In matrix form the system looks as folows:




1 e−|t1|
α

... e−|tk|
α

e−|t1|
α

e−|t1+t1|α ... e−|t1+tk|α

... ... ...

... ... ...

... ... ...
e−|tk|

α

e−|tk+t1|α ... e−|tk+tk|α




·




a0

a1

a2

..

..
ak




=




0
−|t1|α ln |t1|e−|t1|α
−|t2|α ln |t2|e−|t2|α

..

..
−|tk|α ln |tk|e−|tk|α




Kagan was making projections to the space {1, x, x2, x3, x4, ...} but in case
of stable distributions such method can’t be applied because stable distri-
butions have finite moments beginning with 2. Therefore, we have chosen
trigonometric base.
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Notation

For the estimates based on Maximum likelihood estimator we will need the
following notation:

A(α) =




1 e−|t1|
α

... e−|tk|
α

e−|t1|
α

e−|t1+t1|α ... e−|t1+tk|α

... ... ...

... ... ...

... ... ...
e−|tk|

α

e−|tk+t1|α ... e−|tk+tk|α




b(α) =




0
−|t1|α ln |t1|e−|t1|α
−|t2|α ln |t2|e−|t2|α

..

..
−|tk|α ln |tk|e−|tk|α




The coefficients aj and we will have the following representation of Jk:

t = (0, t1, t2, t3, ..., tk)T

F (t, x) =




1
2 cos(t1x)
2 cos(t2x)
2 cos(t3x)

..

..
2 cos(tkx)




9.2 The MLP estimates

Let us denote the estimates based on projections and method of maximum
likelihood as MLP estimates.

Jk(x, α) =
k∑

j=1

âj exp(itjx)
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For Jk holds the following limit equality:

lim
k−→∞

Jk(x, α) = J(x, α)

The proof of this assertion can be found in the mentioned publication of
Kagan for general case. From that equality follows:

lim
k−→∞

<(Jk(x, α)) = J(x, α)

and
lim

k−→∞
=(Jk(x, α)) = 0

Let us denote the approximation of the Fisher information received by the
projections as Ik(α) and the estimate of α received the same way as α̂k. Then

Ik(α) = EJ2
k (x, α)

and

α̂k =



α :

n∑

j=1

Jk(Xj, α) = 0





where Xj, j = 1, 2, .., n is a random choice from Sα(1, 0, 0). The calculation
of Fisher information is easier because in this case α is known but when we
estimate the parameter α then any quotient âj of Jk is a function of α i.e.
âj = âj(α). Hence

Jk(x, α) =
k∑

j=1

âj(α) exp(−itjx) = ((A(α))−1 · b(α))
T · F (t, x)

Hence

Jk,n(α) =
n∑

j=1

Jk(Xj, α) =
n∑

j=1

((A(α))−1 · b(α))
T · F (t, Xj) =

= ((A(α))−1 · b(α))
T

n∑

j=1

F (t,Xj)

This function is computationally complicated, particularly when k=500 or
more. Therefore the calculation of the root or Minimum of Jk,n(α) takes
up a long time, therefore it is reasonable to calculate Jk,n(αj) for N points
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αj where αj = 1 + j/N , j = 1, 2, .., N . (We don’t consider the case when
α ≤ 1). From these αj we choose the one for which |Jk,n(αj)| has a minimum
value. Let us denote such estimator of alpha as αk,N . It is evident that
limN→∞ αk,N = αk. Otherwise when k is comparably small we can directly
calculate the root of Jk,n(α) and it will be αk. From the fact that

lim
k→∞

Jk = J

follows that
lim
k→∞

αk = αML

From mathematical statistics it is known that:

√
n(αML − α) → N

(
0,

1
I(α)

)
, as n →∞

where αML is a maximum likelihood estimator of α from the sample with n
elements.

Ik(α) → I(α), as k →∞
therefore for large k it holds that

√
n(αk − α) ∼ N

(
0,

1
Ik(α)

)

and this identity will be used to testify the quality of the estimator αk. The
calculation of the estimate of α can be made faster by means of the fact
that both Jk(x, α) and Jk,n(α) are monotone in α therefore we can accelerate
calculation by virtue of dividing the interval.

The Choice Of t = 0, t1, .., tk That We Recommend

Let us choose the following representation of J:

J∗(x, α) =
k∑

j=−k

aj exp(itjx), where a−j = aj and t−j = −tj, j = 1, 2, .., k

Then

J∗(x, α) = a0 +
k∑

j=1

aj(exp(itjx) + exp(−itjx)) = a0 + 2
k∑

j=1

aj cos(tjx)
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From this representation we will get the system:

k∑

v=0

av(exp (−|tv − tj|)α + exp (−|tv + tj|)α) = −|tj|α ln |tj| exp(−|tj|α),

j=0,1,..,k. And, solving this system we will get the vector of coefficients
(âj), j = 0, 1, .., k. The advantage of this function is that it is real, moreover
it shows to converge quicker than general function. Having chosen such shape
of J(x, α) we propose to choose the points t = (0, t1, .., tk)T as follows:

tj = j ·∆,

∆ =
1√

k + 1
.

The proposition is based on applicable principle i.e. my estimates of α and
Fisher information are of the biggest quality under such choice.

9.3 MLP estimates for α of GSα(1, 0, 0)

Geometric stable distributions have an explicit form of the characteristic
function. And this fact gives us the possibility to calculate Jk(x, α) for geo-
metric stable distributions. Let us have the following representation of Jk

for GSα(1, 0, 0) :

Jk(x, α) =
k∑

j=0

aj exp(itjx)

Then
E(Jk(X,α)− J(X,α)) exp(itjX) = 0

if Jk(x, α) is projection. Then

∫ ∞

−∞
Jk(x, α) exp(itjx)p(x, α)dx =

∫ ∞

−∞

k∑

v=0

av exp(itvx) exp(itjx)p(x, α)dx =

=
k∑

v=0

av

∫ ∞

−∞
exp(itvx) exp(itjx)p(x, α)dx =

k∑

v=0

av

∫ ∞

−∞
exp(i(tv+tj)x)p(x, α)dx =

=
k∑

v=0

av

1 + |tv + tj|α
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and

∫ ∞

−∞
J(x, α) exp(itjx)p(x, α)dx =

∂

∂α

(
1

1 + |tj|α
)

= − |tj|α ln |tj|
(1 + |tj|α)2

Hence follows the system of linear equations:

k∑

v=0

av

1 + |tv + tj|α = − |tj|α ln |tj|
(1 + |tj|α)2 , j = 0, 1, 2, .., k

whose solution gives us the representation of Jk(x, α) for geometric stable
distribution Geα(1, 0, 0).
When

Jk(x, α) = a0 + 2
k∑

j=1

aj cos(tjx)

then we have the following system of the linear equations:

k∑

v=0

av

(
1

1 + |tv + tj|α +
1

1 + |tv − tj|α
)

= − |tj|α ln |tj|
(1 + |tj|α)2 , j = 0, 1, 2, .., k

In this work we will not demonstrate the ML-like estimates of α of the stan-
dard geometric stable distributions because the core of their estimation is
the same as one of the standard SαS distributions.
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Chapter 10

Comparison of αk and αk,N
with other estimators

α Type of estimator Mean Variance ±2σ
1.1 α̂150,50 1.1371 0.0015 [0.9997,1.1840]

Hill 0.9709 0.6425 [-0.6322,2.5740]
1.2 α̂150,50 1.2313 0.0019 [1.1426,1.3199]

Hill 0.8279 0.6385 [-0.7701,2.4261]
1.3 α̂150,50 1.3292 0.0021 [1.2368,1.4215]

Hill 0.8157 0.4968 [-0.5939,2.2255]
1.4 α̂150,50 1.4150 0.0021 [1.3228,1.5079]

Hill 0.6272 0.4305 [-0.6850,1.9395]
1.5 α̂150,50 1.5243 0.0024 [1.4259,1.6226]

Hill 0.6207 0.4179 [-0.6721,1.9136]
1.6 α̂150,50 1.6164 0.0016 [1.5345,1.6982]

Hill 0.6991 0.4851 [-0.6939,2.0922]
1.7 α̂150,50 1.7152 0.0021 [1.6227,1.8077]

Hill 0.5346 0.3888 [-0.7125,1.7818]
1.8 α̂150,50 1.8016 0.0017 [1.7188,1.8844]

Hill 0.5013 0.3377 [-0.6608,1.6635]
1.9 α̂150,50 1.8997 0.0013 [1.8265,1.9731]

Hill 0.4258 0.3483 [-0.7546,1.6063]

Table 10.1: Estimators of alpha with 1000 observations. For Hill estimate
we took k=2
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α Type of estimator Mean Variance ±2σ
1.1 α̂150,50 1.13710 0.00153 [0.99976,1.18400]

Pickand 0.96719 0.09602 [0.34742,1.58695]
1.2 α̂150,50 1.23130 0.001965 [1.14263,1.31997]

Pickand 1.06231 0.09158 [0.45706,1.66757]
1.3 α̂150,50 1.32920 0.00213 [1.23680,1.42150]

Pickand 1.17840 0.12286 [0.47734,1.87945]
1.4 α̂150,50 1.41505 0.00215 [1.32208,1.50792]

Pickand 1.26820 0.12629 [0.55752,1.97907]
1.5 α̂150,50 1.52433 0.00241 [1.42590,1.62260]

Pickand 1.34944 0.12255 [0.64927,2.04960]
1.6 α̂150,50 1.61649 0.00167 [1.53455,1.69825]

Pickand 1.41827 0.14474 [0.65737,2.17917]
1.7 α̂150,50 1.71526 0.00213 [1.62269,1.80771]

Pickand 1.51282 0.14024 [0.76382,2.26181]
1.8 α̂150,50 1.80165 0.00171 [1.71885,1.88445]

Pickand 1.58867 0.13059 [0.86592,2.31142]
1.9 α̂150,50 1.89979 0.00134 [1.82648,1.97311]

Pickand 1.64280 0.15890 [0.84563,2.44014]

Table 10.2: This table shows advantages of α150,100 opposed to Pickand esti-
mate
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α Type of estimator Mean Variance ±2σ
1.1 α̂150,100 1.1052 0.0003 [1.070,1.139]

α̂5000,5,1.5 1.0997 0.0004 [1.059,1.140]
1.2 α̂150,100 1.2054 0.00035 [1.167,1.243]

α̂5000,5,1.5 1.2005 0.00047 [1.059.1.140]
1.3 α̂150,100 1.3000 0.00035 [1.262,1.337]

α̂5000,5,1.5 1.3000 0.00052 [1.254,1.345]
1.4 α̂150,100 1.4074 0.00049 [1.363,1.451]

α̂5000,5,1.5 1.3997 0.00055 [1.350,1.440]
1.5 α̂150,100 1.5010 0.00046 [1.458,1.543]

α̂5000,5,1.5 1.5002 0.00058 [1.450,1.540]
1.8 α̂150,100 1.8004 0.00033 [1.764,1.836]

α̂5000,5,1.5 1.8006 0.00044 [1.755,1.845]
1.9 α̂150,100 1.8988 0.00023 [1.868,1.929]

α̂5000,5,1.5 1.9000 0.00037 [1.860,1.931]

Table 10.3: This table compares the CF estimator α̂5000,5,1.5 with α̂150,100

when we possess 5000 observations. Let us remind that α̂5000,5,1.5 is CF-based
estimator of α with 5 summands, and z equal to 1.5
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α Type of estimator Mean Variance ±2σ
1.1 α̂150,50 1.1371 0.0015 [0.9997,1.1840]

α̂1000,100,8 1.10255 0.0021 [1.0110,1.1942]
1.2 α̂150,50 1.2313 0.0019 [1.1426,1.3199]

α̂1000,100,8 1.2026 0.0022 [1.1088,1.2964]
1.3 α̂150,50 1.3292 0.0021 [1.2368,1.4215]

α̂1000,100,8 1.3026 0.0024 [1.2046,1.4006]
1.4 α̂150,50 1.4150 0.0021 [1.3221,1.5079]

α̂1000,100,8 1.4023 0.0026 [1.3003,1.5042]
1.5 α̂150,50 1.5243 0.0024 [1.4259,1.6226]

α̂1000,100,8 1.5031 0.0028 [1.3972,1.6089]
1.6 α̂150,50 1.6164 0.0016 [1.5345,1.6982]

α̂1000,100,8 1.6030 0.0029 [1.4953,1.7107]
1.7 α̂150,50 1.7152 0.0021 [1.6227,1.8077]

α̂1000,100,8 1.7012 0.0027 [1.5973,1.8051]
1.8 α̂150,50 1.8016 0.0017 [1.7188,1.8844]

α̂1000,100,8 1.8012 0.0024 [1.7032,1.8991]
1.9 α̂150,50 1.8997 0.0013 [1.8264,1.9731]

α̂1000,100,8 1.9022 0.0016 [1.8222,1.9822]

Table 10.4: From the this table we can see that the variance is lower for
α̂150,50 and for α = 1.9, 1.8 and 1.6 its interval µ± 2σ lies totally in the same
interval of α1000,100,8. For other points it insignificantly exceeds that interval.
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α Type of estimator Mean Variance ±2σ
1.1 α̂150 1.11584 0.00056 [1.0684,1.1632]

α̂1000,100,8 1.10255 0.0021 [1.0109,1.1942]
1.2 α̂150 1.20275 0.00174 [1.1191,1.2863]

α̂1000,100,8 1.2026 0.0022 [1.1087,1.2964]
1.3 α̂150 1.29915 0.00213 [1.2067,1.3915]

α̂1000,100,8 1.30260 0.0024 [1.2046,1.4005]
1.4 α̂150 1.39966 0.00181 [1.3145,1.4847]

α̂1000,100,8 1.4023 0.0026 [1.3003,1.5042]
1.5 α̂150 1.49584 0.00206 [1.4049,1.5867]

α̂1000,100,8 1.5031 0.0028 [1.3972,1.6089]
1.6 α̂150 1.59134 0.00151 [1.5135,1.6691]

α̂1000,100,8 1.6030 0.0029 [1.4953,1.7107]
1.7 α̂150 1.70204 0.00187 [1.6154,1.7886]

α̂1000,100,8 1.7012 0.0027 [1.5972,1.8051]
1.8 α̂150 1.79173 0.00159 [1.7118,1.8717]

α̂1000,100,8 1.8012 0.0024 [1.7032,1.8991]
1.9 α̂150 1.89991 0.00113 [1.8326,1.9671]

α̂1000,100,8 1.9022 0.0016 [1.8222,1.9822]

Table 10.5: This table compares α150 with the CF estimator when we possess
1000 observations.

From both previous tables we can see that the variance is the lowest
for α150. The second lowest variance has α150,50. The CF estimator has a
higher variance than ML-like estimates but there isn’t such a great difference.
The next table summarizes the variances of all considered estimators and
compares them with the variance of ML-estimate which equals:

1
I(α)1000
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if the number of observations is 1000.

α Hill Pickand α̂1000,100,8 α̂150,50 α̂150
1

I(α)1000

1.1 0.6425 0.0967 0.0021 0.0015 0.0006 0.0016
1.2 0.6385 0.0915 0.0022 0.0019 0.0017 0.0018
1.3 0.4968 0.1228 0.0024 0.0021 0.0021 0.0020
1.4 0.4305 0.1262 0.0026 0.0021 0.0018 0.0021
1.5 0.4117 0.1225 0.0028 0.0024 0.0020 0.0022
1.6 0.4851 0.1447 0.0029 0.0016 0.0015 0.0021
1.7 0.3888 0.1402 0.0027 0.0021 0.0018 0.0020
1.8 0.3377 0.1306 0.0024 0.0017 0.0015 0.0016
1.9 0.4258 0.1589 0.0016 0.0016 0.0011 0.0011

Table 10.6: Table of comparison different estimator by their variance

We can see from the table that the variance of the estimator α̂150 is even
lower than the one calculated by the Fisher information but can be explained
by biasedness of this estimator, a low number of estimates, (we have taken
only 100 of them and calculated variance of that sample) or by low num-
ber of observations. If we increase the number of observations to 5000 then
the variance of α̂150 will be higher, e.g. when α = 1.5 then the Variance
of the sample with 100 estimates of α equals 0.00047 and the variance of
ML-estimate equals 0.00044, if α = 1.6 then the variance of the sample with
100 elements equals to 0.0004752 and the one of ML-estimate is equal to
0.00043, and so on. Moreover the oscillations of α150 are statistically in-
significant. Among all considered estimators we propose to use αk, k can
be 150 or higher. This estimator begins to work well from number of ob-
servations equal to 500. When α = 1.6 then the Mean of the sample of 100
estimates is equal to 1.60993 and the standard deviation equals to 0.076,
if α = 1.5 then mean = 1.48994 and the standard deviation = 0.074. The
Fisher information is the least in the points 1.5 and 1.6 therefore, the variance
will be lower for the rest of points. The deviation less than 0.1 is appropriate
for practical purposes therefore, we conclude that from 500 observation the
estimator α500 is applicable in practice. Although this is the estimator for
the distribution Sα(1, 0, 0) this method can be expanded to the problem of
estimating multivariate parameters e.g. (α, σ) or (α, σ, β, µ) and instead of
the Fisher information we will consider the Fisher information matrix. We
will only outline the case when other parameters are unknown. If σ and α
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are unknown and β = µ = 0. Then the characteristic function will be of the
form:

ψ(t, α) = exp(−σα|t|α),

and
∂ψ(t, α)

∂α
= exp (−σα|t|α)(−σα|t|α ln(σ)− σα|t|α ln |t|) =

= exp (−σα|t|α)(−σα|t|α ln(σ|t|))
If we project J(x, α, σ) to {1, exp(it1x), exp(it2x), ..., exp(itkx)} we will

have the following scalar multiplication:

〈exp(itmX), exp(itnX)〉 = exp(−σα|tm + tn|α)

and the system of equations:

k∑

v=0

av exp(−σα|tv + tj|α) = exp (−σα|tj|α)(−σα|tj|α ln(σ|tj|)), j = 0, 1, 2, .., k

From this system we will calculate am,m = 0, 1, 2, .., k and substitute it to the
expression of Jk(x, α.σ). Then we substitute this sample into the expression
of Jk,n(x, α, σ) i.e.

Jk,n(α, σ) =
n∑

j=1

Jk(Xj, α, σ)

and find the root of the problem

Jk,n(α, σ) = 0.

The ML-like estimates of α and σ will be as follows:

{(α, σ) : Jk,n(α, σ) = 0}
The function Jk,n(α, σ) is monotone in α and σ therefore, the solution of that
problem will be unique. Suppose the next problem when α and σ are known
and we have to estimate β and µ. Then making the same transformations
we will have analogous results for µ and β.
If we have a sample (X1, X2, .., X2n) from Sα(σ, β, µ) where all 4 parameters
are unknown then transforming it to (X1−X2, X3−X4, .., X2n−1−X2n) we will
get a sample from Sα(σ, 0, 0) with n elements. The estimation of parameters
of this problem was just described. Taking into account the estimates (α̂ and
σ̂) of α and σ we will get the problem where α and σ are known and β and µ
are unknown. This problem was also just described. So we get the following
estimator of θ = (α, σ, β, µ)T which equals (αk,n, σk,n, βk,2n, µk,2n).
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Chapter 11

Methods of calculation of the
Fisher Information

There are many methods of calculation of the Fisher information. To do this
we can apply projections. I’ll shows two method of the calculation:

First method:

Using the notation shown in the previous section we can calculate the Fisher
information as follows:

Ik(α) = (A(α) · c(α))T · c(α)

The figure 12.1 shows the convergence of Ik(α) to the Fisher information.
It is enough to take only 100 summands. If we compare the graphs with
100 and 500 summands they will simply intersect so much that it will be
impossible to differ them visually.

If

Jk(x, α) = a0 +
k∑

j=1

aj cos(x · tj)

then its integration is very easy task.

Ik(α) =
∫ ∞

−∞
J2

k (x, α)p(x, α)dx

J2
k (x, α) can be expressed as a sum of sines and cosines. Then, knowledge of

the characteristic function and oddness of sine enables to precisely calculate
Ik(α)
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0.6

0.8

1.2

Figure 11.1: The graphs with 10 (blue line), 20 (green line), 400 (black line)
summands
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Chapter 12

Conclusion

The stable laws have wide application in financial practice, particularly when
there is necessity to describe the value of assets whose price can dramatically
jump or drop. The examples are following: price of petrol, price of currency of
countries having crisis or very dynamically developing economy. The model
NGARCH with smoothly truncated stable innovation, has been proven by
Christian Menn and Svetlozar Rachev to be the best predictor of Black Mon-
day. The technique of estimation of the parameters is based on setting initial
value of parameters of the stable law. Based on given parameters of the sta-
ble law, we estimate the parameters of the modification of GARCH-model
and from them we can recover the time series of residuals and estimate its
parameters and then based on these parameters estimate the parameters of
the model, continuing this until Kolmogorov-Smirnov or some other crite-
rion distance stop decreasing. For this method it is very important to have
quick and precise estimates of the parameters of the parameters of stable
innovation therefore we devoted so much strength to solving this problem.
The theory created by Kagan has been shown to applicable very well for pa-
rameter estimation of the stable distributions. Before some researchers were
estimating parameters of the stable distributions by means of approximation
of J(x, α) by knowledge of the characteristic function and integral expression
of the density, but method, similar to ML methodology, was very slow and
not precise enough. The estimates of α gained by the method of projections
have the least variance among all known estimates of α. This methodology
can be applied in modification of ARCH/GARCH models for the parameter
estimation of the stable distributions and grant more precise estimates than
before. When we have a sample about which we suppose that it has stable
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distribution, we propose to conduct test of stability, described in previous
chapters, to be sure that the innovation is stable, otherwise we can apply
modifications of stable laws like geometric stable and others.
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Chapter 13

APPENDICES

13.1 APPENDIX A

Hill estimator

This estimator is based on the fact that the stable distributions are Pareto-
type i.e. for large numbers it holds:

1− F (x) ≈ cx−αP , (αP > 0, c > 0)

(See [8]) Alpha can be measured by virtue of this estimator but not precisely
what will be explained later. Hill estimate is given explicitly by:

α̂Hill =
1

(1/k)
∑k

j=1 ln X(n+1−j) − ln X(n−k)

with the error

STD(α̂Hill) =
kα̂Hill

(k − 1)
√

(k − 2)
,

k > 2.
Where X(j) is j−th order statistic. This estimation is asymptotically nor-
mally distributed:

(α̂−1
Hill − α−1)k1/2 ∼ N(0, α−2)

for large values of n and appropriate k.
As it is said above this estimator is not so good for measuring index of sta-
bility. We publish it only to demonstrate theoretical properties of the stable
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laws. The densities of table laws are asymptotically Pareto-densities, i.e. for
very large numbers they behave as Pareto-density. Suppose that a0 and b0

are the numbers such that in the intervals (−∞, a0) and (b0,∞) the density
of the stable law behaves as a Pareto density function. In practice most of
observations lie outside the intervals (b0,∞) and (−∞, a0) and sometimes we
need to simulate more than million observations to have one in the set

(b0,∞) ∪ (−∞, a0)

That’s why this estimator is not appropriate in spite of intuitive feeling.
Moreover many times a Hill estimate of α exceeds 2 and can even reach
20, 30, etc. The reason is simple. Most of observations lie in the interval
(a0, b0) where the density doesn’t behave like Pareto-type density. In that
interval the slope is relatively high and if we estimate α under assumption
that the density function is Pareto then the estimate of α will be higher than
α. Therefore α is almost always overestimated when we use Hill estimator.

Unconditional Pickand Estimator

book: [8]
We can construct this estimator using infinite Bergstroem series for α-stable
distribution and applying order statistics:

Sα(x) = 1 +
1
π

∞∑

m=1

(−1)m Γ(αm)
m!

x−αm sin
αmπ

2

as x →∞.

Sα(X(n−j+1)) = 1 +
1
π

∞∑

m=1

(−1)m Γ(αm)
m!

X−αm
(n−j+1) sin

αmπ

2
=

n− j + 1
n

1− Sα(X(n−j+1)) = 1− n− j + 1
n

=
j − 1

n

=
1
π

∞∑

m=1

(−1)m+1 Γ(αm)
m!

X−αm
(n−j+1) sin

αmπ

2

hence follows the equality:

j − 1
n

=
1
π

∞∑

m=1

(−1)m+1 Γ(αm)
m!

X−αm
(n−j+1) sin

αmπ

2
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If we take only one number from this infinite series we’ll get for j = k and
j = 2k

k − 1
n

≈ cαX−α̂
(n−k+1)

2k − 1
n

≈ cαX−α̂
(n−2k+1)

Further we have:
k−1
n

2k−1
n

≈ cαX−α̂
(n−k+1)

cαX−α̂
(n−2k+1)

For large k holds:

2 ≈ X−α̂
(n−2k+1)

X−α̂
(n−k+1)

ln 2 ≈ α̂(ln X(n−k+1) − ln X(n−2k+1))

Hence

α̂UP =
ln 2

ln X(n−k+1) − ln X(n−2k+1)

This estimate is not Pareto-type and it takes into account approximation of
the distribution function. Heavy tails which appear in the expression of the
density and distribution functions endanger preciseness of the estimator. The
reason is the same as for the Hill estimator but that factor which worsens
precision is reduced because it is based on theoretical properties of stable
laws, not on asymptotical as for Hill estimator. Hill estimator takes into
account only heavy tails, unconditional Pickand estimator takes into account
all the values which the stable random variable can reach but it takes into
account only one number in the Bergstroem series but if we take more than
one number then the estimator won’t have an explicit form but it will have
a better preciseness. If we take two summands then we will have Modified
Unconditional Pickand Estimator. But even in this case such approximation
of the distribution function isn’t very effective. Even if we have a precise
explicit expression of the distribution function where α is one of variables
we also have a problem of estimating of the index of stability because if our
sample isn’t large enough we don’t have observations lying in tails of the
distribution i.e. lying in the set:

(b1,∞) ∪ (−∞, a1)
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And this will also affect preciseness. The estimator based on distribution and
density functions requires that the sample is large enough to have a number
of points lying in

(b1,∞) ∪ (−∞, a1)

comparable to the theoretical probabilities, i.e. if we denote n1 the number
of points in that interval and N the sample size, than it must hold:

n1

N
≈

∫ a1

−∞
f(x)dx +

∫ ∞

b1

f(x)dx

It can be attained only for very large number of observations which ex-
ceeds 10000 and depends on α. The smaller α the larger number of observa-
tions we need.

13.2 APPENDIX B

The stable distributions have a wide application beyond the world of finances.
They have applications in Physics, Astrophysics, Theory of stochastic frac-
tals, Biology and other spheres of human activities. Stable distributions with
α < 1 have wide application in physics and biology. The applications of are
perfectly described in work by Zolotarev V. and Uchaikin V. CHANCE and
STABILITY Satble Distributions and their Applications (book: [9]).
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13.3 APPENDIX C
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Figure 13.1: Checking the normality. Graph of the empiri-
cal distribution function for α as a part of the overall estimator
(α30000,50,8, σ30000,50,8, β30000,50,1, µ30000,50,1)and N(µ, σ)where µ equals an av-
erage of the sample of the estimates of α and σ is their standard deviation
and (α, σ, β, µ) = (1.4, 1.05, 0.23, 0). For 2000 simulations the difference be-
tween theoretical and empirical distribution function is so small that the
difference is invisible
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Figure 13.2: Checking the normality. Graph of the empiri-
cal distribution function for σ as a part of the overall estimator
(α30000,50,8, σ30000,50,8, β30000,50,1, µ30000,50,1)and N(µ, σ∗)where µ equals an av-
erage of the sample of the estimates of σ and σ∗ is their standard deviation
and (α, σ, β, µ) = (1.4, 1.05, 0.23, 0). For 2000 simulations the difference be-
tween theoretical and empirical distribution function is so small that the
difference is invisible

13.4 APPENDIX D

13.16:

95



0.22 0.24 0.26 0.28 0.3

0.2

0.4

0.6

0.8

1

Figure 13.3: Checking the normality. Graph of the empiri-
cal distribution function for β as a part of the overall estimator
(α30000,50,8, σ30000,50,8, β30000,50,1, µ30000,50,1)

-7.5 -5 -2.5 2.5 5 7.5

0.2

0.4

0.6

0.8

1

1.2

1.4

Figure 13.4: graph of the density function of S1.7(1.2, 0.9, 0)
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Figure 13.5: graph of the density function of S1.7(1.2,−0.9, 0)
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Figure 13.6: Two previous graphs on one picture. This is one more evident
reason why we can use the differences X1 − X2 ∼ Sα(σ, 0, 0), X1, X2 ∼
Sα(σ, β, µ) for parameter estimation along with the fact, that α is preserved
under any convolution
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Figure 13.7: The role of the parameter σ. The red graph is the graph of
the density function of S1.7(1.5, 0.9, 0) nad the blue graph is the graph of the
density function of S1.7(4.5, 0.9, 0)
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Figure 13.8: Theoretical characteristic function and real part of the empirical
characteristic function of S1.1(1, 0, 0) when we possess only 70 observations.
We have 2 independent samples with 70 numbers therefore here are 3 graphs.
Blue graph is a graph of theoretic ch.f.(This is one more reason why we can’t
rely on any CF estimator of α when we possess only few observation)
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Figure 13.9: Theoretical characteristic function and real part of empirical
characteristic function of S1.4(1, 0, 0) when we possess only 70 observations.
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Figure 13.10: Theoretical characteristic function and real part of empirical
characteristic function of S1.7(1, 0, 0) when we possess only 70 observations.
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Figure 13.11: Theoretical characteristic function and real part of empirical
characteristic function of S1.6(1, 0, 0) when we possess only 140 observations.
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Figure 13.12: Theoretical characteristic function and real part of empirical
characteristic function of S1.7(1, 0, 0) when we possess 630 observations.
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Figure 13.13: Theoretical characteristic function and real part of empirical
characteristic function of S1.1(1, 0, 0) when we possess 1050 observations.

-4 -2 2 4

0.2

0.4

0.6

0.8

1

Figure 13.14: Theoretical characteristic function and real part of empirical
characteristic function of S1.65(1, 0, 0) when we possess 1050 observations.
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Figure 13.15: Theoretical characteristic function and real part of empirical
characteristic function of S1.9(1, 0, 0) when we possess 1610 observations.
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Figure 13.16: Graph of the averages of the sample of α5000,5,1.5 from 1 to 5000
sample sizes, where α = 1.3

103



Bibliography

[1] Albert N. Shiryaev(1999): ESSENTIALS OF STOCHASTIC FI-
NANCE. Facts, Models, Theory: World Scientific

[2] C. Menn, S.T. Rachev, ”Smoothly Truncated Stable Distributions,
GARCH-Models and Option Pricing”, 2005

[3] G.P. Patil S. Kotz J.K. Ord(1975) Statistical Distributions in Scientific
Work: Nato Advanced Study Institutes Series, Series C: Mathematical
and Physical Sciences.Pages: 88-93

[4] Gennady Samorodnitsky Murad S. Taqqu(1994)Stable Non-Gaussian
Random Processes: Chapman & Hall/CRC

[5] Kagan, A. M. Fisher information contained in a finite-dimensional lin-
ear space, and a properly formulated version of the method of moments.
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