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Abstract 
 

Syntheses of two series of 2’-sugar-modified pyrimido[4,5-b]indole nucleosides 

were developed. The synthetic strategy was based on functional group 

transformations of the 2’-hydroxy group of the 3’,5’-protected ribonucleoside. 

The key intermediate was prepared via stereoselective nucleobase anion 

glycosylation of the known 4,6-dichloropyrimido[4,5-b]indole nucleobase with 

2,3-O-isopropylidene-5-O-TBS-protected halogenose, subsequent deprotection 

under acidic conditions and protection of 3’- and 5’-hydroxy groups with 

Markiewicz reagent. Pyrimidoindole arabinonucleoside was then synthesized using 

a sequence of oxidation-reduction reactions of the 2’-hydroxy stereocenter. 

The synthesis of pyrimidoindole 2’-deoxy-2’-fluororibonucleoside was achieved by 

stereoselective SN2 fluorination of the THP-protected arabinoside followed by 

acidic deprotection. For the biological activity testing, two series of 4-substituted 

arabinonucleosides and 2’-deoxy-2’-fluororibonucleosides were synthesized 

employing nucleophilic substitution or Pd-catalyzed cross-coupling reactions.  
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Abstrakt 
 

Byly vyvinuty syntézy dvou sérií pyrimido[4,5-b]indolových nukleosidů 

modifikoványch v poloze 2’. Syntetický postup byl založen na transformaci 

2’-hydroxylové skupiny 3’,5’-chráněného ribonukleosidu. Klíčový intermediát byl 

připraven stereoselektivní glykosylací pomocí aniontu známé 

4,6-dichloropyrimido[4,5-b]indolové nukleobáze a 2,3-O-isopropyliden-

5-O-TBS-chráněné halogenosy, následované deprotekcí v kyselém prostředí 

a chráněním 3’- a 5’-hydroxylových skupin Markiewiczovým reagentem. 

Pyrimidoindolový arabinonukleosid byl připraven sekvencí oxidace-redukce 

2’-hydroxy stereogenního centra. Syntéza pyrimidoindolového 2’-deoxy-

2’-fluororibonukleosidu byla završena stereoselektivní SN2 fluorací 

THP-chráněného arabinosidu a následnou deprotekcí kyselou hydrolýzou. Pro testy 

biologické aktivity pak byly použitím nukleofilní substituce nebo 

Pd-katalyzovaných cross-couplingových reakcí připraveny dvě série 

4-substituovaných arabinonukleosidů a 2’-deoxy-2’-fluororibonukleosidů. 

 

Klíčová slova 

nukleosidy, heterocykly 
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List of abbreviations 
 

Ac  acetyl 

aq.  aqueous  

ATP  adenosine 5’-O-triphosphate  

ATR  attenuated total reflection 

Bn  benzyl 

BSA  N,O-bis(trimethylsilyl)acetamide 

Bz   benzoyl 

cAMP  cyclic adenosine 3’,5’-O-monophosphate 

CCRF-CEM human T-lymphoblastoid cell line 

cGMP  cyclic guanosine 3’,5’-O-monophosphate 

CoA  coenzyme A 

DAST  diethylaminosulfur trifluoride 

DCE  1,2-dichloroethane 

DCM  dichloromethane 

DMAP  4-dimethylaminopyridine 

DME  1,2-dimethoxyethane 

DMF  N,N-dimethylformamide 

DMP  Dess–Martin periodinane 

DNA  deoxyribonucleic acid 

EGFR  epidermal growth factor receptor 

eq.   equivalent 

FAD  flavin adenine dinucleotide 

FDA  U.S. Food and Drug Administration 

GTP  guanosine 5’-O-triphosphate 

HBV  hepatitis B virus 

HCV  hepatitis C virus 

HeLa S3  human cervix carcinoma cell line 

HIV  human immunodeficiency virus 

HMPT  tris(dimethylamino)phosphine 

HPFC  high performance flash chromatography 

IC50  the half maximal inhibitory concentration 
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IMC  invasive mammary carcinoma 

iPr   isopropyl 

KOD  Pyrococcus kodakaraensis DNA polymerase 

L1210  mouse lymphocytic leukemia cell line 

LG  leaving group 

MDA  methoxybenzodeazaadenine 

MDI  methoxybenzodeazainosine  

MS  mass spectrometry 

MTB  Mycobacterium tuberculosis 

NAD+  nicotinamide adenine dinucleotide 

NADP+  nicotinamide adenine dinucleotide phosphate 

NS5B  nonstructural protein 5B 

PE  petroleum ether 

PI-3 kinase  phosphatidylinositol-4,5-bisphosphate 3 kinase 

PG  protecting group 

Ph   phenyl 

Pr   propyl 

RNA  ribonucleic acid 

rRNA  ribosomal ribonucleic acid 

r.t.   room temperature 

SAM  S-adenosyl methionine 

SAR  structure-activity relationship 

SM  starting material 

SNP  single-nucleotide polymorphism 

TBAF   tetrabutylammonium fluoride 

TBS  tert-butyldimethylsilyl 

TDA-1   tris[2-(2-methoxyethoxy)ethyl]amine 

TFA  trifluoroacetic acid 

THP  tetrahydropyran-2-yl 

TIPDSCl2  1,3-dichloro-1,1,3,3-tetraisopropyldisiloxane 

TPPTS  3,3’,3’’-phosphanetriyltris(benzenesulfonic acid) trisodium salt 

TsOH  p-toluenesulfonic acid
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1 Introduction 

1.1 Purine nucleosides and their biological function in nature 

 

Purine derivatives play an important role in various biochemical processes and 

can be found everywhere in nature. Despite the fact that purine (1) is the most 

widely occurring N-heterocycle in nature, its unsubstituted form is not present 

there.1 The simplest existing form of purine in nature is the β-D-ribonucleoside 

nebularine (2) isolated from the mushroom Agaricus nebularis exhibiting antibiotic 

activity.2 Purine nucleosides adenosine (3) and guanosine (4) are building blocks of 

nucleic acids (DNA and RNA) which are responsible for carrying and expression of 

genetic information of all living organisms and viruses. Furthermore, many purine 

derivatives are involved in numerous metabolic pathways. Adenosine 

5’-O-triphosphate (ATP) is an energy rich compound used for transport and storage 

of chemical energy in many cellular processes and it also functions as a substrate 

for kinases, enzymes which have a crucial role in signal transmission and regulation 

of different processes in cells. Guanosine 5’-O-triphosphate (GTP) activates the G 

alpha subunit of the G-protein-coupled receptors in eukaryotic cell membranes. In 

signal transduction cascades, second messengers cyclic adenosine 

3’,5’-O-monophosphate (cAMP) and cyclic guanosine 3’,5’-O-monophosphate 

(cGMP) trigger different physiological processes via binding induced activation of 

corresponding protein kinases. And some adenosine derivatives such as flavin 

adenine dinucleotide (FAD), nicotinamide adenine dinucleotide (NAD+), 

nicotinamide adenine dinucleotide phosphate (NADP+), coenzyme A (CoA) and 

S-adenosyl methionine (SAM) participate in many enzymatic reactions as essential 

cofactors. Moreover, adenosine receptors can be found in all organs of the human 

body and are targets of importance in the research of purine therapeutic agents.3 

This shows that purine analogs have potential to interfere with cellular 

mechanisms, and therefore, design and development of novel pharmaceutically 

active purine derivatives has been of great interest to the field of medicinal and 

pharmaceutical chemistry. And for new biologically active compounds, naturally 

occurring substances usually function as lead structures. 
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Figure 1 Purine (1) and some examples of its nucleoside derivatives 2–4 

 

1.1.1 Biologically active natural purine and 7-deazapurine nucleosides 

 
There are few mentionable examples of purine nucleoside analogs to be found 

in nature possessing interesting biological activities. In plants, cytokines are a 

group of hormones, which regulate many cellular processes.4 It has been shown 

that their ribosides exhibit anticancer activity both in vitro and in vivo against a 

broad panel of human cancer cell lines, with ortho-topolin riboside (5) being the 

most active with IC50 value of 0.5–11.6 μM.5 Spongosine (6) was first isolated 

from demosponge Cryptotethya crypta6 and its triphosphate form is known as an 

inhibitor of DNA-polymerases.1 Arabino analog of adenosine, vidarabine (7), is 

active against herpes simplex virus encephalitis and herpes zoster virus infections.7 

This nucleoside was first synthesized in 19608 prior to its isolation from 

Streptomyces herbaceous.9  Poor solubility of vidarabine in water decreases its 

potential usefulness, however, this problem has been solved by using its soluble 

5’-O-monophospate form.7 In combination with 2’-deoxycoformycin (8), it was 

reported as an effective agent in the clinical treatment of acute monocytic 

leukemia.10 
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Figure 2 Naturally occurring purine analogs 5–8 

 

Replacement of one of the nitrogen atoms by carbon atom in purine nucleosides 

leads to another important class of compounds titled deazapurine nucleosides. 

This simple modification offers an extra valence for the introduction of various 

substituents and functional groups and therefore gives a rise to many different 

classes of biologically active compounds. In the next section, some examples of 

natural 7-dezapurine11 products with biological significance are given. 

7-Deaza analog of adenosine, tubercidin (9), is a natural antibiotic obtained 

from culture filtrates of Streptomyces tubercidius.12 Among antibacterial, 

tubercidin has also exhibited antiviral activities against vaccina (DNA-virus), 

Reovirus III and Mengovirus (RNA-viruses).13 It inhibits the growth of 

Mycobacterium tuberculosis and has shown antifungal activity against Candida 

albicans.14 Tubercidin has also displayed antiproliferative effects, which are 

explained by its incorporation into nucleic acids (both DNA and RNA) that leads 

to the inhibition of multiple metabolic processes.13 More specific in their 

biological activity are toyocamycin (10) and sangivamycin (11), the C-5 analogs of 

tubercidin (9), both produced by different species of Streptomyces bacteria.15 

Toyocamycin (10) possesses cytostatic activity against variety of human cancers,16 

but its ability to inhibit viral RNA replication in some viruses including murine 

retrovirus, adenovirus and vesicular stomatitis virus was proved to be more 

significant.17 Moreover, it is also known inhibitor of PI-3 kinase,18 a regulatory 

protein that controls key cell-functions such as cell growth, proliferation and 

differentiation. On the other hand, the antitumor effect and mechanism of action of 

sangivamycin (11) is via inhibition of protein kinase C, which is a transducer of 
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extracellular signals.19 In addition, cadeguomycin (12), 7-deaza derivative of 

guanosine, was isolated together with tubercidin from Streptomyces 

hygroscopicus.20 This nucleoside antibiotic inhibited growth of subcutaneous solid 

IMC carcinoma and pulmonary metastasis of Lewis lung carcinoma in mice.21  

 

 

Figure 3 Biologically active natural 7-deazapurine nucleosides 9–12 

 

Although natural 7-deazapurines possess broad range of interesting features, 

they often suffer from high toxicity, which makes them not suitable for use in 

clinical practice. Nevertheless, they remain an inspiration in the design and 

synthesis of novel types of nucleoside analogs leading to substances with 

improved biological effects. 

 

1.2 Synthetic analogs of nucleosides 

 

During the extensive study of purine nucleosides and their analogs over the past 

decades, a number of active compounds with significant antiviral and antitumor 

properties has been discovered.22,23 Few examples are given in Figure 4. 

Didanosine (13) and entecavir (14) belong to a group of antiretroviral drugs known 

as nucleoside reverse-transcriptase inhibitors and are being used in the treatment of 

viral infections such as HIV and HBV, respectively. Some purine derivatives are 

used as clinical therapeutics in the treatment of various types of leukemia 

(clofarabine (15) and cladribine (16)). Despite systematic research, there still 

remains a space for the design and development of novel types of nucleoside-based 
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therapeutics, mainly to overcome issues like resistance, poor oral bioavailability or 

long-term toxicity of the administered ones.24 

 

 

Figure 4 Clinically used synthetic purine analogs 13–16 

 

1.2.1 Purine and 7-deazapurine nucleosides developed in our laboratory 

 

Biological activities of modified purine and 7-deazapurine nucleobases and 

nucleosides have been systematically studied in our research group for almost two 

decades. During these years, several classes of purine nucleosides analogs with 

interesting antiviral or cytostatic features have been discovered. 

In the year 2000, a series of 6-phenylpurine nucleosides 17 was prepared and 

some of the title compounds exerted micromolar cytostatic activity in CCRF-CEM, 

HeLa S3, and L1210 cell lines.25 Additionally, their sugar-modified (5’-deoxyribo-, 

2’-deoxyribo- and 3’-deoxyribonucleoside) analogs were prepared but none of them 

has shown any considerable cytostatic activity.26 Introduction of any substituent to 

position 2 or 8 of 6-phenylpurine ribonucleosides 17 led to the loss of their 

cytostatic activity.27 The loss of the activity was also observed by their 

L-ribonucleoside analogs.28 In another work, structure-activity relationship study 

led to a discovery of 6-hetarylpurine nucleosides 18, which showed higher activity 

in CCRF-CEM and L1210 cell lines than parent nucleosides 17.29 This 6-hetaryl 

series was later extended and all the compounds were tested for cytostatic and 

anti-HCV activity.30 The most active in this series were nucleosides 19 bearing 

simple five-membered heterocyclic substituents exerting sub-micromolar anti-HCV 

activity, accompanied by significant inhibition of cellular rRNA. 
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Figure 5 Biologically active 6-substituted purine nucleosides 17–19 

 

Extensive study of 7-deazapurine nucleosides in our laboratory has revealed few 

classes of compounds with interesting biological properties. 6-Hetaryl-7-dezapurine 

ribonucleosides have been introduced as the first class of novel potent cytostatic 

agents.31 The highest activities were observed with 7-H or 7-F derivatives of 

6-furyl- or 6-thienyl-7-deazapurines 20, which have displayed low nanomolar 

cytostatic effects with the potency comparable to known cytostatic 

clofarabine (15).32 In following works,33 their cycloSal-phosphate and 

phosphoramidate prodrugs were prepared. Unfotunately, they were found to be less 

active than parent ribonucleosides due to increased efflux from cells. Similarly high 

antiproliferative effects were displayed by the class of analogs of natural cytostatic 

tubercidin (9).34 2-Thienyl derivative (AB61) 21 appeared to be the most promising 

compound of this series with high cytotoxicity against leukemic and solid tumor 

cancer cell lines and without any cytoxicity against normal human fibroblasts. 

In more specific preclinical studies, the detailed mechanism of action of AB61 (21) 

was investigated together with its in vivo antitumor activity against 

xenotransplanted human solid tumors in mice.35 It has been found that selectivity of 

AB61 (21) is caused by its more efficient phosphorylation in the leukemic 

CCRF-CEM cell line than in normal human fibroblast. AB61 triphosphate is then 

incorporated into both DNA and RNA where it induces damage of DNA and 

inhibits protein translation/folding machinery. Series of 7-hetaryl-7-deazapurine has 

been later extended with various substituents added at position 6.36  In this series, 
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7-deazahypoxanthine derivatives and 2-substituted derivatives were completely 

inactive and only several 6-substituted 7-(het)aryl- or 7-ethynyl-7-deazapurine 

ribonucleosides 22 have displayed nanomolar cytostatic effects similar to those 

obtained in 7-hetaryl-7-deazadenosine series. All three classes of compounds 20–22 

have also displayed high but nonspecific antiviral activity against HCV.31,34,36  

 

 

Figure 6 Cytostatic 7-deazapurine nucleosides 20–22 

 

Moreover, some of 6-substituted 7-dezapurine nucleosides 23 and 7-substituted 

7-deazaadenosine nucleosides 24 with bulky substituents were evaluated as strong 

and selective in vitro inhibitors of either human or MTB adenosine kinase and 

therefore were found to be potent antimycobacterial agents.37 Additionally, some 

2,6-disubstituted 7-deazapurine ribonucleosides 25 were reported also as potent and 

selective inhibitors of MTB adenosine kinase.38 

 

 

Figure 7 Antimycobacterial 7-deazapurine nucleosides 23–25 
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These studies have shown that modifications at position 7 can significantly affect 

the biological activity of 7-dezapurine nucleosides. Inspired by this fact and 

knowing that there is still some more space for further derivatization, 

pyrimido[4,5-b]indole ribonucleosides were designed and synthesized. 

 

1.2.2 Pyrimido[4,5-b]indole nucleobases and nucleosides 

 

Pyrimidoindole nucleobases can be described as benzo-fused analogs of 

7-deazapurines and their first synthesis dates back to 1972.39 Later, their interesting 

biological properties have been discovered and studied by various research 

groups.40–47 Some pyrimidoindoles have been reported as A1-adenosine receptor 

antagonists,40 whereas other ones inhibited EGFR tyrosine kinase.41,42 Zaware et al. 

reported pyrimidoindole derivative 26 as a strong inhibitor of Toxoplasma gondii 

thymidylate synthase, which is an enzyme crucial for nucleotide synthesis.43 

Compound 26 has shown high 122-fold selectivity for Toxoplasma gondii 

thymidylate synthase over human thymidylate synthase. The same laboratory has 

introduced 27 as an antimitotic agent44 or 28 as a vascular endothelial growth factor 

receptor-2 inhibitor in solid tumors.45 Moreover, 5-[(4-methylphenyl)thio]-

9H-pyrimido[4,5-b]indole-2,4-diamine (29)  was recognized as a substance  that 

combines vascular endothelial growth factor receptor-2 inhibitory activity and 

platelet-derived growth factor receptor-β inhibitory activity along with inhibition of 

human thymidylate synthase and thus affords unique chemotherapeutic potential in 

a single agent.46 In preclinical studies, this agent in vitro induced rapid cellular 

necrosis through the mitochondria and in vivo inhibited tumor growth and reduced 

lung metastases in two breast cancer mouse models better than clinically used 

docetaxel.47 
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Figure 8 Some examples of pyrimidoindoles 26–29 

 

During the years 2003–2006, Saito’s group reported synthesis and few 

biochemical applications of 2’-deoxypyrimidoindole ribonucleosides.48–51 

After incorporation into DNA using DNA synthesizer, methoxybenzodeazaadenine 

(MDA) (30) showed a remarkably high hole transport ability and potential usage as 

DNA nanowire in the development of bionanomaterials.48 Later, enzymatic 

incorporation of MDA triphosphate into DNA using KOD Dash polymerase was 

achieved.49 In other works, MDA (30) and MDI (31) were discovered as new 

base-discriminating fluorescent nucleosides for the detection of single nucleotide 

alteration50 and used for the development of a new photoelectrochemical SNP 

typing method which uses hole-transporting DNA immobilized on gold 

electrodes.51 

 

 

Figure 9 Fluorescent 2’-deoxyribonucleosides 30 and 31 

 

In order to complement the SAR of modified purine and deazapurine nucleosides 

in our group, pyrimido[4,5-b]indole ribonucleosides were synthesized and their 

biological activities were evaluated.52,53 From the first class of 
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pyrimido[4,5-b]indole ribonucleosides, derivatives 32 exerted submicromolar 

anti-Dengue virus activities.52 In the related work,53 compounds 33 and 34 

displaying antiviral activity against HCV and Dengue virus were discovered. 

The antiviral activity of 4-amino derivative 33 was unfortunately accompanied by 

cytotoxicity, but 4-methyl nucleoside 34 has shown only low cytotoxicity. 

Compared to 7-deazapurine ribonucleosides 20–22 (Figure 6), more specific 

anti-HCV activity but no significant activity against leukemia or cancer cell lines 

was observed in this class of base-modified ribonucleosides. These results show 

that further derivatization can raise the selectivity towards RNA-viruses and reduce 

the cytotoxicity of the parent 7-deazapurine ribonucleosides. 

 

 

Figure 10 Pyrimidoindole ribonucleosides 32–34 with antiviral activity 

 

1.2.3 Sugar-modified nucleosides 

 

The ribose moiety of the nucleoside offers numerous possibilities for further 

derivatization of these biologically active molecules and its modification is 

frequently used in the discovery of novel nucleoside analogs. Replacement of 

hydroxy groups or other atoms of the furanose ring, addition of various functional 

groups and atoms or simple inversion of configuration of stereogenic centers often 

leads to compounds with improved clinical features like higher antitumor activity, 

better selectivity towards target proteins or lower cytotoxicity. In nature, 

modification of the 2’-position of sugar part of the nucleosides causes big 

difference in the structure and functionality of DNA and RNA, which are main 
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targets in the development of novel antiviral or cytostatic agents. Therefore, some 

examples of bioactive 2’-modified nucleosides will be discussed in the next section. 

  Arabinonucleosides are considered as 2’-deoxyribonucleoside analogs and two 

of their purine derivatives have been approved for the treatment of cancer.23 

9-[β-D-Arabinofuranosyl]-2-fluoroadenine (fludarabine) (35) was first synthesized 

in 196954 and later its cytostatic properties were discovered.55 However, due to its 

poor solubility in water, fludarabine is clinically used as a 5’-O-monophosphate 

prodrug 36 and is effective in the treatment of chronic lymphocytic leukemia.56 

The mechanism of action of fludarabine starts with its dephosphorylation to the free 

nucleoside which is then transported into cells where it is phosphorylated to the 

triphosphate and incorporated into both DNA and RNA. This leads to the inhibition 

of nucleic acid synthesis.57  In enzyme assays, it has been shown that triphoshate of 

35 also inhibits DNA polymerase and ribonucleotide reductase.58 Furthermore, 

fludarabine has also demonstrated effectivity in the therapy in hairy cell leukemia.59 

Nelarabine (38), an arabino analog of guanosine (4), was approved by FDA for the 

treatment of T-cell acute lymphoblastic leukemia.60 This more water-soluble 

prodrug is first demethylated by adenosine deaminase61 to form cytotoxic 

arabinosyl guanine (37).62 After intracellular phosphorylation, which occurs 

preferentially in T-cells rather than in B-cells,63 arabinosyl guanine triphoshate is 

formed and its incorporation into DNA by DNA polymerase leads to the apoptosis 

of T-lymphoblastic cells.64 

 

 

Figure 11 Cytotoxic arabinonucleosides 35, 37 and their clinically used prodrugs 

36, 38 
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In medicinal chemistry, introduction of a fluorine atom into a molecule of a 

nucleoside is often an important strategy used to improve biological and 

pharmacokinetic properties of these bioactive compounds. The special nature of 

fluorine is based on its unique characteristics.65 Fluorine is a small and 

electronegative atom, which can mimic hydrogen atom or hydroxy group, as it is 

also a hydrogen bond acceptor. Also, increased C-F bond strength and polarization 

often leads to dramatic changes in biological activity and more stable substances. 

There are several fluorinated analogs of ribonucleosides, which have shown 

significant antiviral activities. From the series of 2’-deoxy-2’-fluororibosides, 

2’-deoxy-2’-fluoroguanosine (39) displayed the highest anti-influenza activity 

against influenza strains A and B and in vivo, it was more effective for the influenza 

therapy than ribavirin or amantadine.66 In in vitro assays, Maruyama et al. reported 

two purine 2’-deoxy-2’-fluororibonucleosides 40 as active against HIV-1 virus 

type.67 Additionally, pyrimidine analog, 2’-deoxy-2’-fluorocytidine (41) possessed 

micromolar antiviral activity against influenza A virus subtypes (H5N1, H1N1, 

H3N1)68 and it was also found to be active against both I and II type of the herpes 

virus.69 In another work, 41 has displayed anti-HCV activity, mostly through the 

inhibition of viral NS5B polymerase.70 

 

 

Figure 12 Antiviral 2’-deoxy-2’-fluororibonucleosides 39–41 
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1.3 Synthetic approaches towards modified purine nucleosides 

 

The most important synthetic step in the preparation of novel nucleoside analogs 

is usually the coupling of the nucleobase and the sugar derivative. There is a need 

for the stereoselective formation of N-glycosidic bond as β-anomers are usually the 

ones possessing biological activities. Various protocols have been introduced and 

optimized throughout the years in order to achieve this selectivity. Among them, 

the most widely used nucleoside forming reaction is the Silyl-Hilbert-Johnson 

reaction using Vorbrüggen conditions, which were used in the synthesis 

7-halogenated 7-deazapurine ribonucleosides 44 (Scheme 1).71 In this one-pot 

protocol, the nucleobase 42 is first silylated with N,O-bis(trimethylsilyl)acetamide 

(BSA) in MeCN at r.t. Silylated base then reacts with acyloxonium ion of 

1-O-acetyl-2,3,5-tri-O-benzoyl-D-ribofuranose (43), which is formed in the 

presence of trimethylsilyl trifluoromethanesulfonate (TMSOTf) as the Lewis acid 

catalyst. Nucleophilic attack of the silylated nucleobase is then forced from the 

opposite, β-face of the molecule according to Baker’s trans rule which leads 

exclusively to β-nucleoside.72 

 

Scheme 1 Synthesis of 7-deazapurine nucleosides 44 using Vorbrüggen reaction 

 

 Another frequently used reaction in the synthesis of nucleosides is the 

nucleobase anion glycosylation. In the sodium salt procedure, the nucleobase anion 

is generated in the presence of NaH and coupled with protected sugar derivative. 

Glycosylation of the anion of nucleobase 45 with bromo sugar 46 was used in the 

synthesis of 5-methyltubercidin (48) and gave the desired β-nucleoside 47 in a 25% 

yield together with its α-anomer.73    
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Scheme 2 Nucleobase anion glycosylation using sodium salt procedure 

 

The nucleobase anion glycosylation under solid-liquid conditions has been 

extensively studied in Seela’s laboratory and this method was used in the synthesis 

of tubercidin and its derivatives.74 In this protocol, the anion of the nucleobase 49 is 

prepared using powdered KOH and tris[2-(2-methoxyethoxy)ethyl]amine (TDA-1) 

as a phase-transfer catalyst, which increases the nucleophilicity of the nucleobase 

anion by complexation of the potassium cation. To this solution in MeCN, the 

freshly prepared solution of α-D-halogenose 51 in THF is added. The synthesis of 

anomerically pure halogenose 51 from lactol 50 by Appel’s chlorination was 

previously reported by Wilcox et al.75 Treatment of protected nucleoside 52 with 

aqueous TFA (90 % v/v) affords the free nucleoside 53. 

 

 

Scheme 3 Nucleobase anion glycosylation under solid-liquid conditions 
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In order to improve poor yields for the glycosylation of various nucleobases with 

different α-chloro sugars, modified conditions for this procedure were developed 

during the studies of adenosine kinase inhibitors by Ugarkar et al.76 Investigation of 

different conditions has shown that the chlorination of protected sugar 55 proceeds 

well in toluene at higher temperature (-10 °C) compared to chlorination in THF 

(-78 °C). Also, washing the reaction mixture with an ice-cold brine and drying over 

MgSO4 prolonged the half-life of the unstable α-halogenose 56 to >48 hours 

at ≤4 °C. Toluene was also used as a solvent for the glycosylation of 54 with 1 eq. 

of TDA-1, 2 eq. of KOH and 2 eq. of sugar 56, the yield of the desired nucleoside 

57 was raised from 30–35 % to 65 % and the yield of the unwanted α-nucleoside 

was reduced to trace amounts only. 

 

 
Scheme 4 Optimized nucleobase anion glycosylation procedure 

 

When this method was applied for the synthesis of a series of 6-substituted 

7-deazapurine nucleosides, the protected nucleoside 52 was prepared by the 

glycosylation of 7-deazapurine 49 with α-halogenose 51 in 63% yield as a single 

β-anomer.31 
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Scheme 5 Ugarkar’s conditions in the synthesis of 7-deazapurine ribonucleosides 

 

1.3.1 Synthesis of pyrimido[4,5-b]indole ribonucleosides 

 

The synthesis of pyrimido[4,5-b]indole ribonucleosides 60a–c, reported by 

Tichý et al., was achieved using one-pot Vorbrüggen conditions.52,53 First, the 

corresponding heterocyclic nucleobases 59a–c were constructed from commercially 

available chloronitrobenzenes 58a–c. Nucleobases 59a–c were then silylated with 

BSA for 15 min at r.t. and reacted with protected β-ribofuranose 43 and TMSOTf in 

MeCN at 70 °C for 8 hours. This resulted in the formation of protected 

β-ribonucleosides 60a–c in yields around 50 %. 

 

Scheme 6 Synthesis of protected pyrimido[4,5-b]indole ribonucleosides 60a–c 
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Various substituents were introduced to the position 4 of benzoylated 

chloropyrimidoindole nucleosides 60a employing nucleophilic substitution or 

Pd-catalyzed cross-coupling reactions. 4-Phenyl and 4-hetaryl derivatives were 

prepared by Suzuki-Miyaura or Stille cross-coupling, 4-methyl derivative was 

prepared by Pd-catalyzed alkylation with trimethylaluminium and cyclopropyl 

group was introduced by Negishi reaction. The deprotection of nucleosides was 

then performed under Zemplén deacetylation conditions affording the target free 

4-substituted ribonucleosides 61 in very good yields (7090 %).52,53 

 

Scheme 7 Synthesis of 4-substituted pyrimido[4,5-b]indole ribonucleosides 61 

 

1.3.2 Synthesis of 2’-sugar-modified nucleosides 

 

In the synthetic approach towards 2’-modified nucleosides, the glycosylation 

reaction is not very frequently used. This is mainly caused by the low selectivity of 

the coupling of nucleobase and 2-modified furanose. Absence of the acyl-protected 

hydroxyl group for the neighboring group participation, which is required for the 

Vorbrüggen reaction, or steric factors often result in the mixture of α- and 

β-anomers. Nonetheless, some examples for the glycosylations with 2-modified 

sugar derivatives can be found in the literature. One of them is the synthesis of 

4-amino-7-(β-D-arabinofuranosyl)pyrrolo[2,3-d]pyrimidine (65), arabino analog of 

tubercidin (9), via nucleobase anion glycosylation.77 The nucleobase 62 reacted 

with benzyl-protected α-bromose 63 in the mixture of DCM, DME, 50% aqueous 

NaOH and benzyltrimethylammonium chloride as the phase-transfer catalyst. 
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The target protected β-arabinonucleoside 64 was obtained in 70% yield with 15 % 

of its α-anomer. 

 

Scheme 8 Synthesis of arabino-tubercidin (65) via nucleobase anion glycosylation 

 

Another example of glycosylation reaction used in the preparation of 

2’-modified nucleosides is the synthesis of 2’-deoxy-2’-fluoroadenosine (68).78 

This method used persilylated N6-benzoyladenine 66, which is coupled with 

1-O-acetyl-2-deoxy-2-fluoro-3,5-di-O-benzoyl-β-D-ribofuranose (67) in the 

presence of SnCl4 in the mixture of MeCN and DCE. Resulting anomeric mixture 

of protected nucleosides is subsequently deprotected to give the free 2’-deoxy-

2’-fluoro-β-ribonucleoside 68 in 48% yield accompanied by 13 % of its α-anomer.  

 

  

Scheme 9 Glycosylation used in the synthesis of 2’-deoxy-2’-fluoroadenosine (68) 

 

Difficult separation of the anomeric mixtures can be avoided by the direct 

modification of the sugar moiety of the ribonucleoside. In this approach, selective 
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protection of 3’- and 5’-hydroxy group is required in order to regioselectively 

manipulate with the functional groups at the position 2’ of the nucleoside. This 

procedure was used in the synthesis of 2’-modified (arabino and 2’-deoxy-

2’-fluororibo) analogs of cytostatic 6-(het)aryl-7-deazapurine79,80 and 7-(het)aryl-

7-deazaadenosine nucleosides.81,82 The synthesis of 7-(het)aryl-7-deazaadenine 

arabinonucleosides 74 was achieved using inversion of configuration at the 

2’-position. The first step was the protection of 3’- and 5’-hydroxy groups of 

7-iodotubercidin 69 using the Markiewicz reagent, 1,3-dichloro-

1,1,3,3-tetraisopropyldisiloxane. Oxidation by CrO3 in the presence of acetic 

anhydride and pyridine gave the ketone 71, which was stereoselectively reduced to 

the arabinonucleoside 72 using NaBH4. The last step was the deprotection of 

3’- and 5’-hydroxy groups by Et3N∙3HF, which afforded the free nucleoside 73 in 

high, 93% yield. The final 7-substituted arabinonucleosides 74 were prepared by 

aqueous Suzuki cross-coupling reactions with various hetaryl- or arylboronic acids, 

Na2CO3, Pd(OAc)2 and TPPTS as ligand.81
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Scheme 10 Synthesis of 7-(het)aryl-7-deazaadenine arabinonucleosides 74 

 

The synthetic route towards 6-(het)aryl-7-deazapurine 2’-deoxy-

2’-fluororibonucleosides 81 used 3’,5’-protected arabinonucleoside 75 as the 

starting material. In the first step, the free 2’-hydroxy group was acetylated and then 

the silyl-protecting groups were replaced by THP-protecting groups to give 

THP-protected acetate 78. Treatment of 78 with methanolic ammonia at 0 ºC 

afforded arabinonucleoside 79. SN2 fluorination of arabinonucleoside 79 with 

DAST gave the crude 2’-deoxy-2’-fluororibo nucleoside 80, which was then 

deprotected under acidic conditions to provide the free nucleoside 81 in 33% yield 

over two steps. Various aryl and hetaryl substituents were then introduced 

via aqueous Suzuki cross-coupling reaction.80 
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Scheme 11 Sequence for the synthesis of 6-(het)aryl-7-deazapurine 2’-deoxy-

2’-fluororibonucleosides 82 
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2 Specific aims of the thesis 
 

 

1.        Synthesis of 4,6-dichloropyrimido[4,5-b]indole arabinonucleoside. 

2.  Synthesis of 4,6-dichloropyrimido[4,5-b]indole 2’-deoxy -2’-fluoro-              

ribonucleoside. 

3. Synthesis of two series of 2’-modified 4-substituted pyrimido[4,5-b]indole 

nucleoside derivatives for biological activity testing. 

 
 

2.1 Rationale of the specific aims 

During the long-term medicinal chemistry project of base-modified nucleobase 

and nucleoside analogs in Hocek research group, two classes of 7-deazapurine 

ribonucleosides with nanomolar cytostatic activities have been discovered.31,34 

In order to improve their biological properties, cytostatic and/or antiviral activities, 

their 2’-sugar-modified nucleoside derivatives were prepared, but most of the 

compounds were inactive or less active than the parent 7-deazapurine 

ribonucleosides.7982 Further modification at position 7 of 7-dezapurine moiety led 

to the design and synthesis of series of pyrimido[4,5-b]indole ribonucleosides, from 

which some of the compounds have shown promising anti-viral activities against 

HCV or Dengue virus.52,53  

In order to investigate the effect of modification of the ribose moiety of the 

pyrimido[4,5-b]indole ribonucleosides on their biological activity and to 

complement the SAR for this class of benzo-fused analogs of 7-deazapurine 

ribonucleosides, my task was the synthesis of 4-substituted pyrimido[4,5-b]indole 

arabinonucleosides and 4-substituted pyrimido[4,5-b]indole 2’-deoxy-

2’-fluororibonucleoside derivatives (Figure 13) for the biological activity 

screening.  
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Figure 13 Parent ribonucleosides and target 4-substituted 2’-modified nucleosides 

 

The arabino motif is inspired by clinically used cytostatics fludarabine55 and 

nelarabine.60 The inspiration for the 2’-deoxy-2’fluororibo motif is based on 

reported bioactive compounds, which have possessed interesting antiviral 

activities.6669 
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3 Results and discussion 
 

The synthetic pathway towards target 4-substituted pyrimido[4,5-b]indole 

arabinonucleosides and 2’-deoxy-2’-fluororibonucleosides is summarized 

in Scheme 12. The strategy for the preparation of final derivatives was based on 

nucleophilic substitutions or palladium catalyzed cross-coupling reactions of the 

corresponding nucleoside derivatives. Because the glycosylations with protected 

arabinose or 2’-deoxy-2’-fluororibose derivatives often lead to anomeric mixtures, 

we decided to directly modify the ribose moiety of the nucleoside. This approach 

was used mainly to avoid laborious separations of anomers and in order to achieve 

the desired regioselectivity of reactions, 3’- and 5’-hydroxy groups had to be 

selectively protected. Hence, 2’-modified intermediates were prepared using 

functional group transformations of the 2’-hydroxy group of the 3’,5’-protected 

ribonucleoside derivative. The free nucleoside intermediate was accessed via 

deprotection of the protected nucleoside, which had to be prepared by the 

glycosylation of the pyrimidoindole nucleobase with commercially or synthetically 

available sugar derivative. Therefore, the synthetic route started with the 

construction of the heterocyclic nucleobase. 
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Scheme 12 Retrosynthetic approach towards 4-substituted 2’-modified nucleosides 

 

 



35 

 

 

3.1 Synthesis of 4,6-dichloropyrimido[4,5-b]indole 

 

The first intermediate, 4,6-dichloropyrimido[4,5-b]indole (59a), was prepared 

according to the procedure which was published for the synthesis of 

pyrimido[4,5-b]indole ribonucleosides 60a–c (Scheme 13).52 The starting material 

for the construction of the heterocyclic nucleobase 59a, was the commercially 

available 2,4-dichloronitrobenzene (58a). In the first step, chlorine at position 2 was 

substituted by potassium salt of ethyl cyanoacetate using the conditions published 

by Gangjee et al.46 This aromatic substitution proceeded regioselectively to give 

ethyl-2-(2-nitrophenyl)-cyanoacetate (83). Reduction of 83 by zinc dust in acetic 

acid followed by spontaneous cyclization gave the indole derivative 84. Like in the 

published procedure,52 no external heating was needed because the reaction is 

exothermic enough to reach temperature of 55 ºC, which was necessary for the 

reaction to proceed.46 The cyclocondenstation of 84 with formamide at 190 ºC 

afforded the pyrimidoindole derivative 85. In this step, the formamide was used as 

well as the solvent and the precipitated product was isolated by filtration. Finally, 

the chlorination of indole 85 with POCl3 for two days under reflux, resulted in the 

dichloropyrimido[4,5-b]indole 59a. The nucleobase 59a was prepared using this 

4-step synthesis in very good 82 % overall yield and after drying under reduced 

pressure, it was used for the following glycosylation reactions without further 

purification. 
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Scheme 13 Synthesis of 4,6-dichloropyrimidoindole 59a 

 

3.2 Synthesis of 4,6-dichloropyrimido[4,5-b]indole ribonucleoside 

 

To be able to introduce various substituents to the position 4 of 2’-modified 

nucleosides, we needed an access to free ribonucleoside with chlorine at position 4. 

The debenzoylation with the simultaneous amination of the protected 

pyrimidoindole ribonucleosides has been reported before.53 Yet, the deprotection of 

the 4,6-dichloropyrimidoindole ribonucleoside 60a without the nucleophilic 

substitution at position 4 has not been performed. Therefore, the first attempts at the 

synthesis of the free pyrimidoindole ribonucleoside were starting from the known 

benzoylated nucleoside 60a,52 which was prepared using one-pot Vorbrüggen 

reaction in analogy to the published procedure. The nucleobase 59a was silylated 

by N,O-bis(trimethylsilyl)acetamide in MeCN and then reacted with commercially 

available protected β-ribofuranose 43 and TMSOTf at 60 ºC. The benzoyl-protected 

β-nucleoside 60a was obtained in good, 48% yield (Scheme 14). 
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Scheme 14 Synthesis of protected 4,6-dichloropyrimidoindole nucleoside 60a 

 
 

For the deprotection of the nucleoside 60a, the conditions, which were applied in 

the synthesis of 2’-C-methyl purine ribonucleosides reported by Eldrup et al., were 

tried first.83 In that work, the deprotection of benzoylated 2’-C-methyl purine 

ribonucleoside was achieved in saturated methanolic ammonia at r.t. without the 

substitution of chlorine at position 6. 

Applying these conditions for 2.5 days, free 4-amino 87 and 4-methoxy 88 

derivatives were the only products of this deprotection. Shorter reaction times gave 

again products 87 and 88, together with small amounts of the target free nucleoside 

86 (Table 1, Entries 2 and 3) and 3 hours were not enough for the complete 

deprotection of the starting nucleoside derivative 60a. We tried to lower the 

reaction temperature (Table 1, Entries 5–7), but this was not sufficient for the 

cleavage of all benzoyl-protecting groups. Also previously, during the experiments 

for the amination and subsequent debenzoylation of the protected dichloro 

ribonucleosides 60a–c was found, that at temperatures around 100 ºC, only partial 

deprotection appears and the amount of partially protected nucleoside 89 was three 

times higher than that of 87.84 This only supported the fact, that this derivative is 

highly activated towards nucleophilic aromatic substitution at the position 4, which 

occurs more readily than the cleavage of the benzoyl-protecting groups. The results 

of performed experiments are summarized in Table 1. 
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Scheme 15 Deprotection of the ribonucleoside 60a 

 

Table 1 Attempts at the deprotection of the nucleoside 60a 

Entry Temp. Time Productsa 

1 r.t. 2.5 days 87, 88 

2 r.t. 24 hours 86 (6 %)b, 87, 88 

3 r.t. 5 hours 86 (traces), 87, 88 

4 r.t. 3 hours 60a, 86, 87, partially protected 60a 

5 -20 ºC 5 days 60ac 

6 4 ºC 17 hours 89d 

7 0 ºC 3 hours 60a, 86, partially protected 60a 

aDetermined by MS from the crude reaction mixture; bIsolated yield; cNo reaction, 

only starting material recovered; dStructure based on previously performed 

experiments.84 

 

Because of these findings and also the fact, that separation of the protected 

nucleoside 60a from the unreacted pyrimidoindole 59a after the glycosylation 

reaction (Scheme 14) on a larger scale (8 mmol of 59a) was not entirely possible, 

we decided to use the acetyl-protected nucleoside 91 as the intermediate for the 
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synthesis of the target free nucleoside 86. Acetyl-protecting groups are less stable 

than benzoyl-protecting groups and therefore their cleavage should be easier under 

the basic conditions. 

The synthesis of the acetyl-protected dichloro-pyrimidoindole ribonucleoside has 

not been reported yet. Nevertheless, the Vorbrüggen conditions for the 

glycosylation of 6-chloro-3-deazapurine with 1,2,3,5-tetra-O-acetyl-

β-D-ribofuranose (90) have been applied previously.85 In analogy with this 

procedure, the nucleobase was silylated by BSA at r.t. and glycosylated with 

commercially available ribofuranose 90 to give the acetyl-protected β-nucleoside 91 

in low, 17% yield. When 2 eq. of the sugar derivative 90 were used, the yield of the 

nucleoside 91 was slightly raised to 24 % (Scheme 16). In this case, the separation 

of the product from the unreacted base 59a was even more difficult than by the 

benzoylated pyrimidoindole ribonucleoside 60a and on the larger scale (>4 mmol 

of the nucleobase 59a) it was not possible to separate 91 from 59a.   

 

 

Scheme 16 Synthesis of the acetyl-protected ribonucleoside 91 

 

Despite all that, the deprotection of the nucleoside 91 was tried out using the 

solution of methanolic ammonia. At r.t., the complete conversion of the starting 

material was observed after 1 hour, but both 4-chloro and 4-amino derivatives 86 

and 87 were present in the reaction mixture. At lower temperature (0 ºC), the 

protected nucleoside 91 was again consumed within 1 hour and after 3 hours it was 

fully deprotected to give the desired 4-chloro nucleoside 86 quantitatively 

(Scheme 17). Moreover, 4-amino derivative 87 was not formed at this temperature, 
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proving that deprotection of this system proceeds in a smoother manner than that of 

the benzoyl-protected nucleoside 60a.  

 

 

Scheme 17 Deprotection of the acetyl-protected nucleoside 91 

 

Although the deprotection of the acetyl-protected nucleoside 91 was successful, 

the complications with larger scale synthesis and the troublesome separation of the 

product from the unreacted base 59a made this approach not suitable for the 

synthesis of free 4,6-dichloro nucleoside 86. In the next attempts, we decided to use 

different hydroxyl protecting groups for the nucleoside. This was mainly because 

we wanted to avoid basic deprotection conditions under which the nucleophilic 

substitution of the activated chlorine at the position 4 takes place. This was possible 

employing the approach in which the nucleobase 59a was glycosylated with known 

2,3-O-isopropylidene-5-O-TBS-protected halogenose75 51 via nucleobase anion 

glycosylation and the deprotection of nucleoside was then performed under acidic 

conditions. 

The protected sugar intermediate 50 was prepared from D-ribose (92) following 

the literature procedure (Scheme 18).86 The 2,3-hydroxy groups of D-ribose (92) 

were protected with 2,2-dimethoxypropane in the presence of catalytic amount of 

p-toluenesulfonic acid, followed by the protection of the 5-hydroxy group with 

tert-butyldimethylsilyl chloride. The protected D-ribose 50 was obtained in good 

yield (52 %) over two steps. 
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Scheme 18 Synthesis of the sugar intermediate 50 

 

The unstable, “nonparticipating” α-chloro sugar 51 was then prepared by 

Appel’s chlorination from the lactol 50 by conditions, which were first described by 

Ugarkar et al. utilizing tris(dimethylamino)phosphine (HMPT) and carbon 

tetrachloride.76 It has been found that using toluene as the solvent for this reaction 

allows to use higher temperature for the chlorination compared to reported 

procedure with THF at -78 ºC74 and it also prolongs the half-life of the unstable 

halogenose 51. This crude halogenose 51 was then used in the displacement 

reaction with the potassium salt of the pyrimidoindole nucleobase 59a, which was 

generated using KOH and tris[2-(2-methoxyethoxy)ethyl]amine (TDA-1) as the 

phase-transfer catalyst in MeCN (Scheme 19). After stirring for 24 hours, work-up 

and purification by column chromatography, the product 93 was obtained, together 

with some unreacted sugar material. It has never been possible to get rid of all the 

impurities and entirely purify the nucleoside 93, not on a small, nor on a larger 

scale synthesis. Therefore, the crude mixture, which was received after the column 

chromatography, was used in the deprotection with 90% aqueous trifluoroacetic 

acid. After the evaporation of solvents and recrystallization from a mixture of water 

and MeOH, the free nucleoside 86 was prepared as a single β–anomer. Low yields 

of this synthesis led to attempts at the optimization of reaction conditions, of which 

results are highlighted in Table 2. 
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Scheme 19 Nucleobase anion glycosylation of the nucleobase 59a with 51 

 

Table 2 Optimization of glycosylation of the nucleobase 59a with the sugar 51 

Entry 
50 

(eq.) 

CCl4 

(eq.) 

HMPT 

(eq.) 

59a 

(eq.) 

KOH 

(eq.) 

TDA-1 

(eq.) 

Glycosylation 

solvent 

Yield 

of 86a 

1 1.5 1.5 1.3 1 2.2 0.5 toluene 18 % 

2 1.5 1.5 1.3 1 2.2 0.5 MeCN 21 %b 

3 1.8 1.5 1.3 1 2.2 0.5 MeCN 29 %b 

4 1.8 1.5 1.3 1 2.2 1 MeCN 29 %b 

5 2 2 1.7 1 2.2 0.5 toluene 25 % 

6 1.5 1.5 0.9 1 3 1 toluene 29 % 

7 2 2 1.7 1 2 1 toluene 21 % 

aAfter the deprotection (2 steps); bWith some amounts of α-ribonucleoside. 
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When literature conditions31 were applied, with 1.5 eq. of sugar 50, 2.2 eq. of 

KOH and 0.5 eq. of TDA-1 used in toluene, the free nucleoside 86 was obtained in 

18% yield as a single β-anomer. In the next experiment, MeCN was tried as the 

solvent for the glycosylation. In this case, the yield of the target nucleoside 86 was 

higher than in toluene, which might be caused by better solubility of the nucleobase 

59a in MeCN compared to toluene. However, under these conditions, some 

amounts of the unwanted α-anomer of 93 were found in the reaction mixture. This 

could be caused by the need of evaporation of toluene during the work-up of the 

chlorination, after which the crude halogenose 51 was redissolved in MeCN and 

added to the anion of the nucleobase 59a. This usually required manipulation with 

the reaction mixture at r.t. over some period of time (<1 hour). During this time, 

anomerization of the unstable α-chlorosugar 51 to its thermodynamically more 

stable β-anomer could take place.74 Another factor, which could play an important 

role is the higher polarity of MeCN compared to toluene. It has been found that the 

half-life of the chlorosugar 51 is much shorter in more polar THF than in toluene76 

and that this can affect the yields of the desired β-nucleoside 86. In the next 

experiment (Table 2, Entry 3), addition of more sugar derivative 50 led to slightly 

higher yield of 86 (29 %). The next step was the investigation of the effect of the 

amount of TDA-1. TDA-1 is a phase-transfer catalyst, which’s presence strongly 

increases the nucleophilicity of the anion of nucleobase 59a by complexation of the 

potassium cation and thus improves its reactivity. Therefore, in the next attempt, 

one full eq. of TDA-1 was used, but it did not have any effect on the reactivity, 

probably because of the sufficient solubility of the nucleobase 59a in MeCN. 

In both cases, the α-nucleoside was formed too. Trying to prevent the formation of 

the undesirable co-product, attention was turned back to use of toluene for the 

glycosylation as the α-anomer of the nucleoside 93 was not formed in this solvent 

before. Increasing the amount of the sugar derivative 50 led to higher, 25% yield 

and when 1 eq. of TDA-1 was used with 1.5 eq. of ribose 50, the yield of the 

β-nucleoside 86 was 29 %. This slight increase of the yield could be caused by 

better solubility of the nucleobase in toluene in the presence of more TDA-1.  In the 

last experiment (Table 2, Entry 7), the amounts of HMPT and CCl4 were raised and 

with 2 eq. of the sugar derivative 50, 1 eq. of TDA-1 in toluene, the desired 
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4,6-dichloropyrimidoindole β-ribonucleoside 86 was prepared in 21% yield after 

the deprotection and recrystallization. This only showed that yields of this 

glycosylation are variable and higher than 29% yield of the free nucleoside 86 

turned out to be difficult to reach. The most probable reason for this is the 

instability of the halogenose 51. Although the yields were significantly lower 

compared to glycosylation of 6-chloro-7-deazapurine,31 the scale-up synthesis 

provided enough supply of the free nucleoside 86 necessary for the following 

synthetic steps. 

Based on previous findings, acyl-protected ribonucleosides are not suitable 

compounds for the synthesis of the nucleoside intermediate 86. Basic Zemplén 

deacytelytion conditions or deprotection using methanolic ammonia, which are 

necessary for the cleavage of benzoyl- or acetyl-protecting groups, result in 

unwanted nucleophilic substitution of the chlorine at position 4. Additionally, the 

problematic separation of the product of glycosylation from the unreacted material 

on the larger scale synthesis makes this method not convenient for the preparation 

of the target nucleoside 86. Therefore, the best synthetic route towards the 

4,6-dichloropyrimido[4,5-b]indole ribonucleoside 86 proved to be the nucleobase 

anion glycosylation of pyrimidoindole 59a with 2,3-O-isopropylidene-

5-O-TBS-protected halogenose 51 followed by the deprotection under acidic 

conditions. Even though the product of the glycosylation could not be entirely 

purified, the subsequent deprotection and recrystallization from the crude reaction 

mixture gave the pure β-anomer of 86.  

 

3.3 Synthesis of pyrimido[4,5-b]indole arabinonucleosides 

 

As Vorbrüggen conditions cannot be used for the glycosylation with derivatives 

of arabinose, because the neighbouring group participation at 2’-carbon would lead 

to the steroselective formation of α-anomer and the nucleobase anion glycosylation 

usually gives an unseparable mixture of two anomers, the synthetic pathway 

towards pyrimidoindole arabinonuclesoide was based on the inversion of 

configuration of the corresponding ribonucleoside.79,81 For this, protection of 

3’- and 5’-hydroxy groups of the free nucleoside 86 was required. This was 
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achieved using the Markiewicz reagent (TIPDSCl2). The 3’,5’-protected 

ribonucleoside 94 was prepared in 69% yield. In the next step, 2’-hydroxy group 

was oxidized using Dess–Martin periodinane (DMP) in DCM to give ketone 95 in 

91% yield. When this oxidation was performed with CrO3 in the presence of acetic 

anhydride and pyridine, 95 was obtained in a slightly lower yield (88 %). 

The subsequent reduction of the oxo group of 95 was performed by sodium 

borohydride in ethanol and provided arabinoside 96 stereoselectively, in 93% yield. 

The reason for this stereoselectivity is that the attack of borohydride anion on the 

oxo group of the ketone 95 occurs from the re face of the 2’-carbon, which is 

caused by the steric hindrance of the pyrimidoindole part of the molecule. The silyl-

protecting groups were then cleaved with Et3N·3HF, affording the free 

arabinonucleoside 97 in very good, 82% yield. This reagent afforded the product 97 

in much better yield compared to the deprotection using TBAF, which gave only 

56 % of 97. Applying this 4-step procedure (Scheme 20), the free arabino 

intermediate 97 was prepared in good, 48% overall yield on the 2 mmol scale.  
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Scheme 20 Sequence for the synthesis of arabinonucleoside 97 

 

3.3.1 Synthesis of final 4-substituted arabinonucleosides 

 

Previously investigated regioselectivity of the Suzuki-Miyaura and Stille 

cross-coupling reactions of pyrimido[4,5-b]indole ribonucleosides has shown 

a selective formation of 4-substituted nucleosides.52 This could be explained by the 

higher reactivity of the chlorine at position 4, which is caused by electron-poor 

nature of the pyrimidine part of the molecule. Moreover, the distribution of the 

electrons makes this benzofused system accessible also for the nucleophilic 

substitution at position 4. On the other hand, the benzene part of the molecule 

makes the chlorine at position 6 much less reactive and in order to attach another 

substituent at this position, cross-coupling reactions under harsher conditions using 

X-Phos ligands in DMF had to be performed.52 However, none of the 

4,6-disubstituted nucleosides showed any significant antiviral activity and therefore 

we focused only on the synthesis of 4-substituted derivatives. Hence, the final 
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pyrimidoindole arabinonucleoside derivatives 99a–f were prepared employing 

nucleophilic substitution or Pd-catalyzed cross-coupling reactions (Table 3, Table 

4 and Table 5). 

At first, experiments with protected arabinoside 96 were performed in order to 

test its reactivity. Protected 4-methyl nucleoside 98a was synthesized by 

palladium-catalyzed cross coupling reaction of 96 with trimethylaluminium in 93% 

yield. In this case, deprotection of 98a with TBAF in THF was used and it afforded 

the free 4-methyl arabinonucleoside 102a in 61% yield. Nucleophilic substitution 

was used for the synthesis of 4-methylsulfanyl derivative 99b. Nucleoside 96 

reacted with sodium thiomethoxide in EtOH and was subsequently deprotected to 

give the final free nucleoside 99b in good, 63% yield over two steps (Scheme 21). 

 
 

 
Scheme 21 Synthesis of the final compounds 99a,b. Reagents: a) (Me)3Al 

(2M in toluene, 2 eq.), Pd(PPh3)4 (0.05 eq.), THF; 70 ºC; b) NaSMe (2 eq.), EtOH, 

r.t. 

 

Table 3 Yields of final nucleosides 99a,b 

   Product (yield) 

98,99 R Conditionsa Protected Deprotected 

a Me a) 98a (93 %) 99a (61 %) 

b SMe b) n.i. 99b (63 %)b 

n.i. = not isolated; aGiven in Scheme 21; bOverall yield after deprotection. 
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The other final derivatives were prepared from the free arabinoside 97. 

Nucleophilic substitution with aqueous ammonia in dioxane or sodium methoxide in 

MeOH afforded the 4-amino and 4-methoxy derivatives 99c and 99d in good yields 

(85 % and 64 % respectively) (Scheme 22). 

 

 

Scheme 22 Nucleophilic substitution of the free 97. Reagents and conditions: 

a) aq. NH3, dioxane, 100 ºC; b) 1M NaOMe in MeOH, MeOH, r.t. 

 

Table 4 Yields of final nucleosides 99c,d 

99 R Conditionsa Yield of product 

c NH2 a) 99c (85 %) 

d OMe b) 99d (64 %) 

aGiven in Scheme 22. 

 

Phenyl and 2-thiophenyl substituents were introduced by Pd-catalyzed aqueous-

phase Suzuki cross-coupling reactions87 using corresponding aryl- or hetaryl-

boronic acids in the presence of Na2CO3 as a base, Pd(OAc)2 as a catalyst and 

TPPTS as a ligand in water-MeCN mixture (2:1) at 100 °C. The arabinonucleosides 

99e (70 %) and 99f (58 %) were obtained in good yields after the reversed-phase 

HPFC purification and recrystallization (Scheme 23). 
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Scheme 23 Aqueous Suzuki cross-couplings of 97 

 

Table 5 Aqueous Suzuki cross-coupling reactions 

99 R Yield of product 

e 
 

99e (70 %) 

f 
 

99f (58 %) 

 

 

3.4 Synthesis of pyrimido[4,5-b]indole 2’-deoxy-2’-

fluororibonucleosides 

 

To avoid the difficult separation of the anomeric mixture, which frequently 

arises from the glycosylation of the nucleobase with 2-modified ribose derivatives, 

the direct modification of the ribose moiety of nucleoside was chosen for the 

synthesis of the 2’-deoxy-2’-fluororibonucleoside 104. Intermediate 104 was 

prepared utilizing stereoselective SN2 fluorination of the 3’,5’-THP-protected 

arabinonicleoside 103. This sequence of reactions started from 3’,5’-disilyl-

protected arabinoside 96 (Scheme 24). Because the silyl protecting groups are not 

stable under fluorination conditions, they had to be replaced by THP-protecting 

groups. To achieve selective protection, in the first step, the free 2’-hydroxy group 

of 96 was acetylated to give acetate 100, using acetic anhydride in the presence of 

Et3N and catalytic amount of DMAP. Removal of the silyl protecting groups by 

treatment with Et3N∙3HF in THF afforded compound 101 in 84% yield. 

3’- and 5’-hydroxy groups of the acetate 101 were then protected by reaction with 

3,4-dihydro-2H-pyran in the presence of TsOH in DMF, leading to the 
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THP-protected acetate 102. In the next step, aminolysis of the acetyl group by 

methanolic ammonia at 0 ºC gave the 3’,5’-THP-protected arabinonucleoside 103. 

THP-intermediates 102 and 103 were not characterized by NMR, but the formation 

of products was in both cases confirmed by mass spectrometry and crude mixtures 

with some impurities were used in following steps. Stereoselective SN2 fluorination 

of the protected arabinoside 103 with DAST in the presence of pyridine in DCM 

and subsequent cleavage of THP-protecting groups under acidic conditions provided 

the free pyrimidoindole 2’-deoxy-2’-fluororibonucleoside 104 in moderate yield 

(38 % over four steps from 101). This 6-step sequence of reactions led to the target 

free fluoro intermediate 104 in 32% overall yield on the 2 mmol scale. 
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 Scheme 24 Sequence for the synthesis of 2’-deoxy-2’-fluororibonucleoside 104 
 

3.4.1 Synthesis of final 4-substituted 2’-deoxy-2’-fluororibonucleosides 

 

A series of 4-substituted derivatives was then prepared from the fluororibo 

intermediate 104 via nucleophilic substitution reactions or Pd-catalyzed 

cross-coupling reactions (Table 6 and Table 7). Reaction of 104 with aqueous 

ammonia in dioxane at 100 ºC afforded the 4-amino nucleoside 105a in 82% yield. 

4-Methoxy and 4-methylsulfanyl derivatives 105b and 105c were prepared by 



52 

 

 

reaction of 104 with sodium methoxide and sodium thiomethoxide respectively, in 

very good yields (80 % for 105b and 87 % for 105c) (Scheme 25). 

 

 

Scheme 25 Nucleophilic substitution of the free 104. Reagents and conditions: 

a) aq. NH3, dioxane, 100 ºC; b) 1M NaOMe in MeOH, MeOH, r.t.; c) NaSMe 

(2 eq.), EtOH, r.t. 

 

Table 6 Yields of final nucleosides 105a–c 

105 R Conditionsa Yield of product 

a NH2 a) 105a (82 %) 

b OMe b) 105b (80 %) 

c SMe c) 105c (87 %) 

aGiven in Scheme 25. 

 

Pd-catalyzed methylation of intermediate 104 with trimethylaluminium led to the 

4-methyl fluororibonucleoside 105d in good, 65% yield. Aqueous-phase Suzuki 

cross-coupling reaction was used for the synthesis of the final thiophene-2-yl 

nucleoside 105e. This reaction was performed using corresponding hetaryl boronic 

acid in the presence of Na2CO3, TPPTS as the ligand and palladium (II) acetate as 

the catalyst in a mixture of water and MeCN (2:1) at 100 °C. The thiophene-2-yl 

derivative 105e was obtained in very good 89% yield (Scheme 26). 
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Scheme 26 Synthesis of the final 2’-deoxy-2’-fluororibonucleosides 105d,e. 

Reagents and conditions: a) (Me)3Al (2M in toluene, 2 equiv.), Pd(PPh3)4 (0.05 

equiv.), THF; 70 ºC; b) R-B(OH)2 (1.5 eq.), Na2CO3 (3 eq.), Pd(OAc)2 (0.05 eq.), 

TPPTS (0.12 eq.), H2O/MeCN (2:1), 100 °C. 

 

Table 7 Yields of final nucleosides 105d,e 

105 R Conditionsa Yield of product 

d Me a) 105d (65 %) 

e 
 

b) 
105e (89 %) 

aGiven in Scheme 26. 
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4 Conclusion 
 

 

Syntheses of two series of 2’-sugar modified pyrimido[4,5-b]indole nucleosides 

were developed using multistep sequence of reactions, which started from the 

unprotected 4,6-dichloropyrimidoindole ribonucleoside. Initial attempts at the 

synthesis of this intermediate via deprotection of the known 4,6-dichloro-

9-(2,3,5-tri-O-benzoyl-β-D-ribofuranosyl)-9H-pyrimido[4,5-b]indole failed as the 

chlorine at position 4 was substituted under basic deprotection conditions.   

Although, the basic deprotection of the acetyl-protected pyrimidoindole nucleoside 

without the unwanted substitution of chlorine at position 4 was achieved, the larger 

scale synthesis of this nucleoside could not be done due to problematic purification 

of the product. Therefore the key ribonucleoside intermediate was prepared via 

stereoselective nucleobase anion glycosylation of the 4,6-

dichloropyrimido[4,5-b]indole nucleobase with 2,3-O-isopropylidene-5-O-TBS-

protected halogenose and subsequent deprotection under acidic conditions. Small 

optimization of the reaction conditions for this glycosylation provided the desired 

ribonucleoside in 29% yield as a single β-anomer. Pyrimido[4,5-b]indole 

arabinonucleoside was then prepared by inversion of the configuration at the 

2’-carbon of the 3’,5’-protected ribonucleside using the sequence of oxidation-

reduction reactions in good 48% yield over 4 steps. Pyrimido[4,5-b]indole 

2’-deoxy-2’-fluororibonucleoside intermediate was obtained in 32% overall yield by 

the 6-step synthesis concluded by stereoselective SN2 fluorination of the 

THP-protected arabinoside followed by acidic deprotection. Different substituents 

were then introduced into position 4 of the pyrimido[4,5-b]indole arabinonucleoside 

and  2’-deoxy-2’-fluororibonucleoside by nucleophilic substitution or Pd-catalyzed 

cross-coupling reactions in good to very good yields (58–89 %). Screening of 

biological activities of final 4-substituted 2’-modified pyrimido[4,5-b]indole 

nucleosides against viruses (HCV, RSV, HSV-1, HIV, Dengue, coxsackie B3 virus, 

influenza, ebola), cancer cell lines (HepG2, HL 60, HeLaS3, CCRF-CEM) and 

microbes (Enterococcus faecalis CCM 4224, Staphylococcus aureus CCM 3953, 

Escherichia coli CCM 3954, Pseudomonas aeruginosa CCM 3955, Staphylococcus 

aureus MRSA 4591, Staphylococcus haemolyticus A/16568, Escherichia coli 

C/16702, Pseudomonas aeruginosa A/16575) is now in progress.  



55 

 

 

5 Experimental section 

5.1 General remarks 

 
All the reagents and solvents were purchased from commercial suppliers and 

used as recieved.  

HPFC purifications were performed on ISCO Combiflash Rf system-1 apparatus 

with RediSep Rf Gold Silica Gel Disposable columns for normal-phase or Reverse 

Phase (C18) RediSep Rf columns for reversed-phase HPFC. Merck Silica gel 60 

was used for column chromatography. Monitoring of reactions was performed 

using TLC Silica gel 60 F254 plates. Compounds were detected using shortwave 

(254 nm) UV lamp or by a solution of 4-anisaldehyde in ethanol and 10 % of 

sulfuric acid. NMR spectra were recorded on Bruker Avance 400 MHz 

spectrometer (400.1 MHz for 1H and 100.6 MHz for 13C) or on Bruker Avance 500 

MHz spectrometer (500 MHz for 1H, 125.7 MHz for 13C and 470.3 MHz for 19F), in 

CDCl3 (TMS was used as internal standard) or DMSO-d6 (referenced to the 

residual solvent signal). Chemical shifts are given in ppm (δ-scale), coupling 

constants (J) in Hz. Complete assignment of all NMR signals was performed using 

a combination of H,H-COSY, H,H-ROESY, H,C-HSQC and H,C-HMBC 

experiments. Low resolution mass spectra were measured on LCQ Fleet (Thermo 

Fisher Scientific) using electrospray ionization (ESI). High resolution mass spectra 

were measured on LTQ Orbitrap XL (Thermo Fisher Scientific). Melting points 

were measured on Stuart automatic melting point SMP40 and are uncorrected. IR 

spectra (wavenumbers in cm-1) were recorded on Brucker ALPHA FT-IR 

spectrometer using attenuated total reflection (ATR). Optical rotations were 

measured at 25 °C in DMSO on Autopol IV (Rudolps Research Analytical) 

polarimeter, [α]D
20 values are given in 10-1 deg·cm2·g-1. Purity of all final 

compounds (unprotected nucleosides) was determined by clean NMR spectra and 

analytical HPLC. 

 

 



56 

 

 

5.1.1 General procedure for the aqueous Suzuki cross-coupling reaction:38 

An argon-purged mixture of free nucleoside (1 eq.), the appropriate boronic acid 

(1.5 eq.), Na2CO3 (3 eq.), Pd(OAc)2 (0.05 eq.), and 3,3’,3’’-phosphanetriyltris-

(benzenesulfonic acid) trisodium salt (TPPTS; 0.12 eq.) in H2O/MeCN (2:1) was 

stirred at 100 °C for 4 hours. After cooling down, the mixture was neutralized by 

the addition of aqueous HCl (1M) and diluted with MeOH (20 ml). Solvents were 

removed under reduced pressure and the residue was purified by reversed-phase 

HPFC (C18 column, 10→100% MeOH in H2O).  

 

5.2 Synthesis of 4,6-dichloropyrimido[4,5-b]indole and protected 

ribose 

 

Ethyl 2-(5-chloro-2-nitrophenyl)-2-cyanoacetate (83) 

Compound 83 was prepared according to modified literature conditions.46 

Ice-cooled solution of ethyl cyanoacetate (30.7 ml, 0.26 mol) in anhydrous THF 

(250 ml) under the argon atmosphere was treated with potassium tert-butoxide 

(29.2 g, 0.26 mol). The suspension was stirred for 20 min and then 

2,4-dichloronitrobenzene (58a) (25 g, 0.13 mol) was added. Reaction mixture was 

heated to 75 °C for 20 hours, then diluted with water and acidified to pH~2 

with 2M HCl. This mixture was extracted with ether (3×150 ml). Combined organic 

layers were dried over Na2SO4 and solvents were evaporated. After drying under 

reduced pressure, compound 83 (30 g) was obtained as a brown oil. Crude material 

was used directly for the next step. 1H NMR is in agreement with literature.88  

 

Ethyl 2-amino-5-chloro-1H-indole-3-carboxylate (84) 

Compound 84 was prepared according to literature conditions.52 Crude 83 (30 g) 

was dissolved in glacial acetic acid (350 ml) and zinc dust (30 g) was added by 

5 parts during 45 min. Resulting mixture was stirred for 2 hours without external 

heating, filtered through a pad of celite and the pad was washed well with 200 ml of 

acetic acid. Solvent was evaporated and residue was washed with 600 ml of water. 

After drying under reduced pressure compound 84 (33 g) was obtained as a brown 
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powder. Crude material was used directly for the next step. 1H NMR is in agreement 

with literature.89 

 

6-Chloro-3H-pyrimido[4,5-b]indol-4(9H)-one (85) 

Compound 85 was prepared according to literature conditions.52 Crude 84 (33 g) 

was dissolved in formamide (110 ml) and heated to 185 °C for 20 hours. Cooled 

reaction mixture was filtered and washed well with 1.5 l of water. After drying 

under reduced pressure compound 85 (38 g) was obtained as a dark powder. Crude 

material was used directly for the next step. 1H NMR is in agreement with 

literature.52  

 

4,6-Dichloro-9H-pyrimido[4,5-b]indole (59a) 

Pyrimidoindole 59a was prepared according to literature conditions.52 Crude 85 

(38 g) was dissolved in POCl3 (330 ml) and heated to 120 °C for 3 days. POCl3 was 

evaporated under reduced pressure, residue was diluted with ice-cold water and 

cooled with ice. Solution was slowly neutralized with aqueous ammonia to pH~7, 

filtered and washed with cold water, 2M hydrochloric acid (200 ml) and again with 

cold water until neutral pH. After drying under reduced pressure compound 59a 

(25.5 g) was obtained as a dark powder. Crude material was used for the 

glycosylation reaction without purification. 1H NMR is in agreement with 

literature.52 Overall yield of the 4-step synthesis of the compound 59a was 82 %.  

 

2,3-O-Isopropylidene-5-O-tert-butyldimethylsilyl-D-ribofuranose (50) 

Protected sugar 50 was prepared according to modified literature conditions.86
 

D-Ribose (92) (20 g, 0.13 mol) was dissolved in acetone (70 ml) and treated with 

2,2-dimethoxypropane (25 ml) and TsOH∙H2O (950 mg, 5 mmol). The reaction 

mixture was stirred for 1 hour at r.t., then neutralized with solid NaHCO3 (600 mg, 

7.1 mmol) and filtered. The filtrate was concentrated in vacuo, dissolved in 

anhydrous DCM (250 ml) and cooled to 0 °C. Then, tert-butyldimethylsilyl 

chloride (20.77 g, 0.14 mol) and imidazole (21.65 g, 0.32 mol) were added, the 

reaction mixture was allowed to warm to r.t. and stirred for 2 hours. The reaction 

mixture was washed with water (2×100 ml), organic layer was dried over Na2SO4, 
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solvent was evaporated under reduced pressure and residue was purified by column 

chromatography on silica gel (PE-EtOAc 7:1) to give 50 (21.2 g, 52 %) as an 

anomeric mixture, which spontaneously crystallized to a white crystalline solid. 1H 

NMR is in agreement with literature.86
 

 

5.3 Synthesis of pyrimido[4,5-b]indole arabinonucleosides 
 

4,6-Dichloro-9-(2,3-O-isopropylidene-5-O-tert-butyldimethylsilyl-β-D-

ribofuranosyl)-9H-pyrimido[4,5-b]indole (93) 

To a solution of protected ribose 50 (960 mg, 3.2 mmol) and carbon tetrachloride 

(0.45 ml, 6.7 mmol) in anhydrous toluene (10 ml) at -30 °C, 

tris(dimethylamino)phosphine (0.5 ml, 2.8 mmol) was added dropwise. After 

10 min of vigorous stirring at -30 °C, the reaction mixture was quickly washed with 

ice-cold brine (10 ml), dried over MgSO4 and added to a vigorously stirred 

suspension of pyrimidoindole 59a, powdered KOH (355 mg, 6.3 mmol), TDA-1 

(0.7 ml, 2.1 mmol) in anhydrous toluene (15 ml). The reaction mixture was stirred 

for 24 hours at r.t. After filtration and evaporation under reduced pressure, the 

reaction mixture was purified by HPFC (silica column, 0→5 % EtOAc in PE) to 

give the crude nucleoside 93 (400 mg) as a yellow oil, which was used directly in 

the next step. 

1H NMR (500.0 MHz, DMSO-d6): -0.054, -0.048 (2 × s, 2 × 3H, CH3Si); 0.81 (s, 

9H, (CH3)3CSi); 1.32, 1.58 (2 × s, 2 × 3H, (CH3)3C); 3.73 (dd, 1H, Jgem = 11.3, J5'b,4' 

= 5.3, H-5'b); 3.81 (dd, 1H, Jgem = 11.3, J5'a,4' = 4.4, H-5'a); 4.18 (ddd, 1H, J4',5' = 

5.3, 4.4, J4',3' = 4.2, H-4'); 5.10 (dd, 1H, J3',2' = 6.7, J3',4' = 4.2, H-3'); 5.54 (dd, 1H, 

J2',3' = 6.7, J2',1' = 3.2, H-2'); 6.64 (d, 1H, J1',2' = 3.2, H-1'); 7.67 (dd, 1H, J7,8 = 8.9, 

J7,5 = 2.1, H-7); 8.02 (d, 1H, J8,7 = 8.9, H-8); 8.33 (d, 1H, J5,7 = 2.1, H-5); 8.93 (s, 

1H, H-2). 

13C NMR (125.7 MHz, DMSO-d6): -5.32 (CH3Si); 18.23 ((CH3)3CSi); 25.50 

((CH3)2C); 25.91 ((CH3)3CSi); 27.29 ((CH3)2C); 62.80 (CH2-5'); 80.27 (CH-3'); 

82.25 (CH-2'); 85.57 (CH-4'); 88.48 (CH-1'); 111.32 (C-4a); 114.32 ((CH3)2C); 

114.46 (CH-8); 119.59 (C-4b); 121.92 (CH-5); 127.50 (C-6); 128.69 (CH-7); 
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136.58 (C-8a); 152.55 (C-4); 154.70 (CH-2); 155.36 (C-9a).ESI MS m/z (rel. %): 

524 (6) [M+H], 546 (25) [M+Na]. 

HR MS (ESI) for C24H31O4N3Cl2NaSi [M+Na]: calcd 546.13531; found 546.13532. 

 

4,6-Dichloro-9-(β-D-ribonofuranosyl)-9H-pyrimido[4,5-b]indole (86) 

Crude protected nucleoside 93 (400 mg) was treated with aqueous TFA (90 % v/v, 

5 ml) and stirred at r.t. for 30 min. Then, the volatiles were removed under reduced 

pressure and the residue was co-evaporated few times with MeOH. Free nucleoside 

86 (225 mg, 29 % over 2 steps) was obtained as a white solid after recrystallization 

(MeOH-H2O 4:1). 

m.p. 253–256 °C. 

[α]D
20 -49.3 (c 0.209, DMSO). 

1H NMR (500.0 MHz, DMSO-d6): 3.69 (dd, 1H, Jgem = 12.0, J5′b,4′ = 3.7, H-5′b); 

3.72 (dd, 1H, Jgem = 12.0, J5′a,4′ = 3.3, H-5′a); 4.01 (ddd, 1H, J4′,5′ = 3.7, 3.3, J4′,3′ = 

2.8, H-4′); 4.23 (dd, 1H, J3′,2′ = 5.7, J3′,4′ = 2.8, H-3′); 4.72 (dd, 1H, J2′,1′ = 7.4, J2′,3′ = 

5.7, H-2′); 5.12 - 5.42 (bm, 3H, OH-2′,3′,5′); 6.49 (d, 1H, J1′,2′ = 7.4, H-1′); 7.69 

(dd, 1H, J7,8 = 8.9, J7,5 = 2.2, H-7); 8.25 (d, 1H, J8,7 = 8.9, H-8); 8.33 (d, 1H, J5,7 = 

2.2, H-5); 8.91 (s, 1H, H-2). 

13C NMR (125.7 MHz, DMSO-d6): 61.62 (CH2-5′); 70.15 (CH-3′); 70.90 (CH-2′); 

85.94 (CH-4′); 87.37 (CH-1′); 111.06 (C-4a); 115.51 (CH-8); 119.65 (C-4b); 

121.73 (CH-5); 127.22 (C-6); 128.60 (CH-7); 136.52 (C-8a); 152.37 (C-4); 154.61 

(CH-2); 156.23 (C-9a). 

ESI MS m/z (rel. %): 370 (100) [M+H], 392 (67) [M+Na]. 

HR MS (ESI) for C15H14O4N3Cl2 [M+H]: calcd 370.03559; found 370.03566. 

IR (ATR): ν = 3257, 1590, 1551, 1445, 1228, 1106, 1075, 1055, 1031, 1004, 835, 

621, 430 cm–1. 

 

4,6-Dichloro-9-[3,5-O-(tetraisopropyldisiloxan-1,3-diyl)-β-D-ribofuranosyl]-

9H-pyrimido[4,5-b]indole (94) 

Free nucleoside 86 (1.39 g, 3.7 mmol) was dissolved in anhydrous pyridine (40 ml) 

and TIPDSCl2 (1.2 ml, 3.7 mmol) was added. The reaction mixture was stirred 

at r.t. for 4 hours and then solvent was removed under reduced pressure. Residue 
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was dissolved in EtOAc (50 ml) and extracted with water (50 ml). The organic 

layer was dried over MgSO4 and evaporated under reduced pressure. The crude 

product was purified by HPFC (silica column, 0→10% EtOAc in PE) to give 

nucleoside 94 (1.6 g, 69 %) as a yellowish solid. 

m.p. 145–147 °C. 

1H NMR (500.0 MHz, CDCl3): 0.88 – 1.22 (m, 28H, (CH3)2CHSi); 3.22 (bs, 1H, 

OH-2′); 4.04 – 4.088 (m, 3H, H-4′,5′); 4.94 (td, 1H, J2′,3′ = 6.1, J2′,1′ = 2.0, H-2′); 

5.28 (m, 1H, H-3′); 6.30 (d, 1H, J1′,2′ = 2.0, H-1′); 7.57 (dd, 1H, J7,8 = 8.8, J7,5 = 2.1, 

H-7); 7.64 (d, 1H, J8,7 = 8.8, H-8); 8.36 (d, 1H, J5,7 = 2.1, H-5); 8.72 (s, 1H, H-2). 

13C NMR (125.7 MHz, CDCl3): 12.58, 12.76, 13.01, 13.27 ((CH3)2CHSi); 16.93, 

17.00, 17.02, 17.15, 17.27, 17.35, 17.38, 17.42 ((CH3)2CHSi); 61.60 (CH2-5′); 

70.72 (CH-3′); 73.44 (CH-2′); 81.56 (CH-4′); 89.40 (CH-1′); 111.95 (CH-8); 112.28 

(C-4a); 119.80 (C-4b); 122.90 (CH-5); 128.40 (C-6); 128.79 (CH-7); 137.12 (C-

8a); 153.20 (C-4); 153.92 (CH-2); 155.43 (C-9a). 

ESI MS m/z (rel. %): 612 (100) [M+H], 634 (85) [M+Na]. 

HR MS (ESI) for C27H40O5N3Cl2Si2 [M+H]: calcd 612.18781; found 612.18798. 

IR (ATR): ν = 2875, 1440, 108/7, 1032, 868, 693, 615, 449 cm–1. 

 

4,6-Dichloro-9-[3,5-O-(tetraisopropyldisiloxan-1,3-diyl)-β-D-erythro-

pentofuran-2-ulosyl]-9H-pyrimido[4,5-b]indole (95) 

Dess-Martin periodinane (3.13 g, 7.4 mmol) was dissolved in anhydrous DCM 

(20 ml) and cooled to 0 °C and then the solution of 94 (1.51 g, 2.46 mmol) in 

anhydrous DCM (20 ml) was added. The reaction mixture was stirred 10 min at 

0 °C and then it was allowed to warm to r.t. and stirred overnight. Reaction mixture 

was then diluted with DCM (60 ml) and the solution of Na2S2O3∙5H2O (19.2 g) in 

aqueous NaHCO3 (saturated, 150 ml) was added. The organic phase was washed 

with water, dried over MgSO4 and evaporated under reduced pressure. Purification 

by HPFC (silica column, 0→10% EtOAc in PE) afforded the product 95 (1.37 g, 

91 %) as a yellowish foam. 

1H NMR (500.0 MHz, CDCl3): 0.99 – 1.26 (m, 28H, (CH3)2CHSi); 4.08 (ddd, 1H, 

J4′,3′ = 9.9, J4′,5′ = 2.9, 2.5, H-4′); 4.15 (dd, 1H, Jgem = 13.2, J5′b,4′ = 2.9, H-5′b); 4.20 

(dd, 1H, Jgem = 13.2, J5′a,4′ = 2.5, H-5′a); 5.62 (d, 1H, J3′,4′ = 9.9, H-3′); 6.01 (s, 1H, 
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H-1′); 7.52 (d, 1H, J8,7 = 8.8, H-8); 7.58 (dd, 1H, J7,8 = 8.8, J7,5 = 2.1, H-7); 8.34 (d, 

1H, J5,7 = 2.1, H-5); 8.60 (s, 1H, H-2). 

13C NMR (125.7 MHz, CDCl3): 12.40, 12.49, 12.90, 13.46 ((CH3)2CHSi); 16.74, 

16.77, 16.81, 16.91, 17.19, 17.27, 17.29, 17.31 ((CH3)2CHSi); 60.56 (CH2-5′); 

72.27 (CH-3′); 78.59 (CH-4′); 79.56 (CH-1′); 110.80 (CH-8); 112.32 (C-4a); 119.95 

(C-4b); 123.14 (CH-5); 128.92 (C-6); 128.99 (CH-7); 137.15 (C-8a); 153.31 (C-4); 

153.77 (CH-2); 155.26 (C-9a); 206.22 (C-3′). 

ESI MS m/z (rel. %): 610 (23) [M+H], 632 (12) [M+Na]. 

HR MS (ESI) for C27H38O5N3Cl2Si2 [M+H]: calcd 610.17216; found 610.17223. 

 

4,6-Dichloro-9-[3,5-O-(tetraisopropyldisiloxan-1,3-diyl)-β-D-arabinofuranosyl]-

9H-pyrimido[4,5-b]indole (96) 

Ketone 95 (1.7 g, 2.8 mmol) was dissolved in ethanol (99 %, 50 ml) and cooled to 

0 °C. Then the solution of sodium borohydride (212 mg, 5.6 mmol) in ethanol 

(99 %, 50 ml) was slowly added and the reaction mixture was stirred at r.t. for 

1 hour. Then, aqueous NH4Cl (saturated, 30 ml) was added and the reaction mixture 

was extracted with EtOAc (150 ml). The organic layer was washed with water 

(100 ml), dried over MgSO4 and evaporated under reduced pressure. After the 

purification by HPFC (silica column, 0→15% EtOAc in PE), the arabinonucleoside 

96 (1.62 g, 93 %) was obtained as a white foam. 

1H NMR (500.0 MHz, CDCl3): 0.97 – 1.18 (m, 28H, (CH3)2CHSi); 3.81 (ddd, 1H, 

J4′,3′ = 7.7, J4′,5′ = 4.1, 3.4, H-4′); 3.98 (dd, 1H, Jgem = 12.7, J5′b,4′ = 4.1, H-5′b); 4.03 

(dd, 1H, Jgem = 12.7, J5′a,4′ = 3.4, H-5′a); 4.76 (t, 1H, J2′,1′ = J2′,3′ = 6.6, H-2′); 4.85 

(dd, 1H, J3′,4′ = 7.7, J3′,2′ = 6.6, H-3′); 6.55 (d, 1H, J1′,2′ = 6.6, H-1′); 7.56 (dd, 1H, 

J7,8 = 8.9, J7,5 = 2.1, H-7); 7.82 (d, 1H, J8,7 = 8.9, H-8); 8.36 (d, 1H, J5,7 = 2.1, H-5); 

8.72 (s, 1H, H-2). 

13C NMR (125.7 MHz, CDCl3): 12.45, 13.01, 13.08, 13.55 ((CH3)2CHSi); 17.01, 

17.04, 17.09, 17.10, 17.39, 17.45, 17.54 ((CH3)2CHSi); 61.18 (CH2-5′); 76.40 (CH-

3′); 78.35 (CH-2′); 80.49 (CH-4′); 83.83 (CH-1′); 112.55 (C-4a); 113.80 (CH-8); 

119.97 (C-4b); 122.72 (CH-5); 128.65 (C-6); 129.06 (CH-7); 138.20 (C-8a); 153.46 

(CH-2); 153.53 (C-4); 155.39 (C-9a). 

ESI MS m/z (rel. %): 612 (46) [M+H], 634 (100) [M+Na]. 
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HR MS (ESI) for C27H39O5N3Cl2NaSi2 [M+Na]: calcd 634.16975; found 

634.16989. 

 

4,6-Dichloro-9-(β-D-arabinofuranosyl)-9H-pyrimido[4,5-b]indole (97) 

Et3N·3HF (655 µl, 4 mmol) was added to a solution of silyl-protected nucleoside 96 

(1.2 g, 2 mmol) in anhydrous THF (30 ml). The reaction mixture was stirred 

overnight at r.t. and evaporated under reduced pressure. Purification by reversed-

phase HPFC (C18 column, 10→100% MeOH in H2O) afforded the free 

arabinonucleoside 97 (610 mg, 82 %) as a white solid after recrystallization from 

H2O/MeOH (4:1). 

m.p. 217–219 °C. 

[α]D
20 -19.1 (c 0.204, DMSO). 

1H NMR (500.0 MHz, DMSO-d6): 3.76 – 3.88 (m, 3H, H-4′,5′); 4.15 (td, 1H, J3′,4′ = 

J3′,OH = 4.8, J3′,2′ = 3.3, H-3′); 4.23 (td, 1H, J2′,1′ = J2′,OH = 4.8, J2′,3′ = 3.3, H-2′); 5.16 

(t, 1H, JOH,5′ = 5.3, OH-5′); 5.33 (d, 1H, JOH,2′ = 4.8, OH-2′); 5.62 (d, 1H, JOH,3′ = 

4.8, OH-3′); 6.81 (d, 1H, J1′,2′ = 4.9, H-1′); 7.62 (dd, 1H, J7,8 = 9.0, J7,5 = 2.2, H-7); 

8.16 (d, 1H, J8,7 = 9.0, H-8); 8.26 (d, 1H, J5,7 = 2.2, H-5); 8.89 (s, 1H, H-2). 

13C NMR (125.7 MHz, DMSO-d6): 60.98 (CH2-5′); 76.44 (CH-3′); 77.69 (CH-2′); 

84.18 (CH-4′); 86.02 (CH-1′); 110.88 (C-4a); 117.86 (CH-8); 119.29 (C-4b); 

121.02 (CH-5); 126.63 (C-6); 128.12 (CH-7); 138.42 (C-8a); 152.02 (C-4); 154.53 

(CH-2); 155.58 (C-9a). 

ESI MS m/z (rel. %): 392 (100) [M+Na]. 

HR MS (ESI) for C15H13O4N3Cl2Na [M+Na]: calcd 392.01753; found 392.01764. 

IR (ATR): ν = 3302, 1590, 1442, 1296, 1219, 1157, 1064, 1033, 830, 

566, 426 cm-1. 

 

5.3.1 Synthesis of 4-substituted arabinonucleosides 

 

6-Chloro-4-methyl-9-[3,5-O-(tetraisopropyldisiloxan-1,3-diyl)-β-D-

arabinofuranosyl]-9H-pyrimido[4,5-b]indole (98a) 

Nucleoside 96 (250 mg, 0.41 mmol) and Pd(PPh3)4 (24 mg, 0.021 mmol) were 

dissolved in anhydrous THF (4 ml) and Me3Al (2M in toluene, 410 µl) was added. 
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The reaction mixture was stirred for 18 hours at 70 °C. After evaporation of 

solvents under reduced pressure and HPFC purification (silica column, 10→50% 

EtOAc in PE), the product 98a (225 mg, 93 %) was obtained as a white foam. 

1H NMR (500.0 MHz, DMSO-d6): 0.94 – 1.23 (m, 28H, (CH3)2CHSi); 2.95 (s, 3H, 

CH3); 3.84 (ddd, 1H, J4′,3′ = 8.6, J4′,5′ = 3.4, 3.1, H-4′); 4.03 (dd, 1H, Jgem = 12.9, 

J5′b,4′ = 3.1, H-5′b); 4.20 (dd, 1H, Jgem = 12.9, J5′a,4′ = 3.4, H-5′a); 4.50 (ddd, 1H, J2′,1′ 

= 7.0, J2′,3′ = 6.6, J2′,OH = 5.8, H-2′); 4.63 (dd, 1H, J3′,4′ = 8.6, J3′,2′ = 6.6, H-3′); 5.46 

(d, 1H, JOH,2ʹ = 5.8, OH-2ʹ); 6.86 (d, 1H, J1′,2′ = 7.0, H-1′); 7.40 (dd, 1H, J7,8 = 8.9, 

J7,5 = 2.2, H-7); 7.97 (d, 1H, J8,7 = 8.9, H-8); 8.19 (d, 1H, J5,7 = 2.2, H-5); 8.84 (s, 

1H, H-2). 

13C NMR (125.7 MHz, DMSO-d6): 12.10, 12.62, 12.85, 13.05 ((CH3)2CHSi); 

16.95, 17.02, 17.06, 17.14, 17.42, 17.48, 17.57, 17.67 ((CH3)2CHSi); 22.92 (CH3); 

60.70 (CH2-5′); 76.24 (CH-2′); 76.80 (CH-3′); 79.09 (CH-4′); 83.20 (CH-1′); 

111.37 (C-4a); 115.49 (CH-8); 121.19 (C-4b); 122.12 (CH-5); 126.08 (C-6); 126.37 

(CH-7); 137.76 (C-8a); 154.32 (CH-2); 154.89 (C-9a); 160.70 (C-4). 

ESI MS m/z (rel. %): 592 (100) [M+H], 614 (73) [M+Na]. 

HR MS (ESI) for C28H43O5N3ClSi2 [M+H]: calcd 592.24243; found 592.24254. 

 

9-(β-D-Arabinofuranosyl)-6-chloro-4-methyl-9H-pyrimido[4,5-b]indole (99a) 

Protected nucleoside 98a (185 mg, 0.31 mmol) was dissolved in anhydrous THF 

(5 ml) and solution of tetrabutylammonium fluoride (195 mg, 0.62 mmol) 

in ahydrous THF (0.5 ml) was added dropwise at 0 °C. The reaction mixture was 

then stirred at r.t. for 30 min., solvent was evaporated under reduced pressure and 

the crude product was purified by reversed-phase HPFC (C18 column, 

10→100% MeOH in H2O). Recrystallization (H2O/MeOH 4:1) afforded product 

99a (67 mg, 61 %) as a white crystalline solid. 

m.p. 233–235 °C. 

[α]D
20 -10.7 (c 0.206, DMSO). 

1H NMR (500.0 MHz, DMSO-d6): 2.97 (s, 3H, CH3); 3.76 – 3.87 (m, 3H, H-4′,5′); 

4.16 (dd, 1H, J3ʹ,4ʹ = 4.5, J3ʹ,2ʹ = 3.3, H-3ʹ); 4.22 (td, 1H, J2ʹ,1ʹ = 4.9, J2ʹ,3ʹ = 3.3, H-2ʹ); 

6.81 (d, 1H, J1′,2′ = 4.9, H-1′); 7.53 (dd, 1H, J7,8 = 8.9, J7,5 = 2.2, H-7); 8.11 (d, 1H, 

J8,7 = 8.9, H-8); 8.17 (d, 1H, J5,7 = 2.2, H-5); 8.93 (s, 1H, H-2). 
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13C NMR (125.7 MHz, DMSO-d6): 22.48 (CH3O); 61.06 (CH2-5′); 76.59 (CH-3′); 

77.64 (CH-2′); 83.99 (CH-4′); 85.50 (CH-1′); 111.50 (C-4a); 117.31 (CH-8); 120.94 

(C-4b); 121.67 (CH-5); 126.12 (C-6); 126.86 (CH-7); 138.01 (C-8a); 153.70 (CH-

2); 154.55 (C-9a); 159.89 (C-4).  

ESI MS m/z (rel. %): 350 (12) [M+H], 372 (100) [M+Na]. 

HR MS (ESI) for C16H16O4N3ClNa [M+Na]: calcd 372.07215; found 372.07232. 

IR (ATR): ν = 3271, 1564, 1475, 1068, 1030, 836, 567, 425 cm–1. 

 

9-(β-D-Arabinofuranosyl)-6-chloro-4-methylsulfanyl-9H-pyrimido[4,5-b]indole 

(99b) 

Nucleoside 96 (250 mg, 0.41 mmol) and sodium thiomethoxide (60 mg, 

0.86 mmol) were dissolved in anhydrous EtOH (10 ml) and stirred for 1.5 hours 

at r.t. The solvent was evaporated under reduced pressure, the crude product 98b 

was dissolved in anhydrous THF (7 ml) and cooled to 0 °C. Then, the solution of 

tetrabutylammonium fluoride (260 mg, 0.82 mmol) in ahydrous THF (1 ml) was 

added dropwise. The reaction mixture was stirred at r.t. for 1 hour, solvent was 

removed under reduced pressure and the crude product was purified by 

reversed-phase HPFC (C18 column, 10→100% MeOH in H2O). After 

recrystallization (H2O/MeOH 4:1), the product 99b (100 mg, 63 % over two steps) 

was furnished as a white solid. 

m.p. 181–183 °C. 

[α]D
20 -14.9 (c 0.276, DMSO). 

1H NMR (500.0 MHz, DMSO-d6): 2.80 (s, 3H, CH3S); 3.76 – 3.85 (m, 3H, H-4′,5′); 

4.15 (td, 1H, J3ʹ,4ʹ = J3ʹ,OH = 4.8, J3ʹ,2ʹ = 3.2, H-3ʹ); 4.20 (td, 1H, J2ʹ,1ʹ = J2ʹ,OH = 4.9, 

J2ʹ,3ʹ = 3.2, H-2ʹ); 5.11 (t, 1H, JOH,5′ = 5.2, OH-5′); 5.30 (d, 1H, JOH,2′ = 4.9, OH-2′); 

5.56 (d, 1H, JOH,3′ = 4.8, OH-3′); 6.79 (d, 1H, J1′,2′ = 4.9, H-1′); 7.52 (dd, 1H, J7,8 = 

8.9, J7,5 = 2.2, H-7); 8.01 (d, 1H, J5,7 = 2.2, H-5); 8.10 (d, 1H, J8,7 = 8.9, H-8); 8.87 

(s, 1H, H-2). 

13C NMR (125.7 MHz, DMSO-d6): 11.83 (CH3S); 61.05 (CH2-5′); 76.54 (CH-3′); 

77.68 (CH-2′); 83.99 (CH-4′); 85.57 (CH-1′); 109.33 (C-4a); 117.38 (CH-8); 120.28 

(C-4b); 120.87 (CH-5); 125.89 (C-6); 126.40 (CH-7); 137.38 (C-8a); 153.10 (C-

9a); 154.03 (CH-2); 162.32 (C-4).  
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ESI MS m/z (rel. %): 404 (100) [M+Na]. 

HR MS (ESI) for C16H16O4N3ClNaS [M+Na]: calcd 404.04423; found 404.04433. 

IR (ATR): ν = 3278, 1557, 1473, 1433, 1292, 1236, 1163, 1119, 1072, 943, 844, 

802, 593, 565 cm–1. 

 

4-Amino-9-(β-D-arabinofuranosyl)-6-chloro-9H-pyrimido[4,5-b]indole (99c) 

Arabinoside 97 (120 mg, 0.32 mmol) was dissolved in dioxane (3 ml) and aqueous 

ammonia (30%, 3 ml) was added. The reaction mixture was stirred in screw-cap 

pressure glass tube at 100 °C for 20 h and then solvents were evaporated under 

reduced pressure. Purification by reversed-phase HPFC (C18 column, 

10→100% MeOH in H2O) and recrystallization from H2O/MeOH mixture (4:1) 

afforded the 4-amino arabinonucleoside 99c (95 mg, 85 %) as a white solid. 

m.p. 298–301 °C. 

[α]D
20 0 (c 0.228, DMSO). 

1H NMR (500.0 MHz, DMSO-d6): 3.69 – 3.85 (m, 3H, H-4′,5′); 4.10 – 4.17 (m, 2H, 

H-2ʹ,3′); 5.14 (t, 1H, JOH,5′ = 5.2, OH-5′); 5.33 (d, 1H, JOH,2′ = 5.2, OH-2′); 5.51 (d, 

1H, JOH,3′ = 4.7, OH-3′); 6.69 (d, 1H, J1′,2′ = 4.7, H-1′); 7.30 (dd, 1H, J7,8 = 8.9, J7,5 

= 2.2, H-7); 7.37 (bs, 2H, NH2); 7.92 (d, 1H, J8,7 = 8.9, H-8); 8.30 (s, 1H, H-2); 

8.42 (d, 1H, J5,7 = 2.2, H-5).  

13C NMR (125.7 MHz, DMSO-d6): 61.24 (CH2-5′); 76.73 (CH-3′); 77.67 (CH-2′); 

83.75 (CH-4′); 85.32 (CH-1′); 94.95 (C-4a); 116.22 (CH-8); 120.06 (CH-5); 121.56 

(C-4b); 123.99 (CH-7); 125.41 (C-6); 136.09 (C-8a); 155.21 (CH-2); 155.53 (C-

9a); 157.78 (C-4).  

ESI MS m/z (rel. %): 351 (100) [M+H], 373 (56) [M+Na]. 

HR MS (ESI) for C15H16O4N4Cl [M+H]: calcd 351.08546; found 351.08557. 

IR (ATR): ν = 3120, 1654, 1597, 1460, 1319, 1218, 1033, 907, 855, 795, 525 cm–1. 

 

9-(β-D-Arabinofuranosyl)-6-chloro-4-methoxy-9H-pyrimido[4,5-b]indole (99d) 

A mixture of nucleoside 97 (145 mg, 0.39 mmol) and sodium methoxide 

(1M in MeOH, 2 ml) in anhydrous MeOH (5 ml) was stirred for 4 hours at r.t. After 

evaporation of the solvent, purification by reversed-phase HPFC (C18 column, 
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10→100% MeOH in H2O) and recrystallization (H2O/MeOH 4:1), the product 99d 

(90 mg, 64 %) was obtained as a white solid. 

m.p. 238–241 °C. 

[α]D
20 -8.4 (c 0.298, DMSO). 

1H NMR (500.0 MHz, DMSO-d6): 3.75 – 3.85 (m, 3H, H-4′,5′); 4.15 (td, 1H, J3ʹ,4ʹ = 

J3ʹ,OH = 4.8, J3ʹ,2ʹ = 3.3, H-3ʹ); 4.20 (td, 1H, J2ʹ,1ʹ = J2ʹ,OH = 4.9, J2ʹ,3ʹ = 3.3, H-2ʹ); 4.20 

(s, 3H, CH3O); 5.32 (t, 1H, JOH,5′ = 5.1, OH-5′); 5.32 (d, 1H, JOH,2′ = 4.9, OH-2′); 

5.55 (d, 1H, JOH,3′ = 4.8, OH-3′); 6.77 (d, 1H, J1′,2′ = 4.9, H-1′); 7.45 (dd, 1H, J7,8 = 

8.9, J7,5 = 2.2, H-7); 7.95 (d, 1H, J5,7 = 2.2, H-5); 8.04 (d, 1H, J8,7 = 8.9, H-8); 8.68 

(s, 1H, H-2). 

13C NMR (125.7 MHz, DMSO-d6): 54.38 (CH3O); 61.12 (CH2-5′); 76.57 (CH-3′); 

77.67 (CH-2′); 83.93 (CH-4′); 85.65 (CH-1′); 98.31 (C-4a); 117.22 (CH-8); 120.15 

(C-4b); 120.61 (CH-5); 125.68 (CH-7); 125.82 (C-6); 136.92 (C-8a); 154.85 (CH-

2); 156.33 (C-9a); 163.81 (C-4).  

ESI MS m/z (rel. %): 388 (100) [M+Na]. 

HR MS (ESI) for C16H16O5N3ClNa [M+Na]: calcd 388.06707; found 388.06722. 

IR (ATR): ν = 3299, 1598, 1566, 1460, 1323, 1294, 1192, 1124, 1052, 943, 769, 

722, 588, 560 cm–1. 

 

9-(β-D-Arabinofuranosyl)-6-chloro-4-(thiophene-2-yl)-9H-

pyrimido[4,5-b]indole (99e) 

Arabinoside 97 (120 mg, 0.32 mmol) was reacted with 2-thienylboronic acid 

(62 mg, 0.48 mmol) in 3 ml of H2O/MeCN (2:1) according to the general procedure 

for aqueous Suzuki-cross coupling. The product 99e (94 mg, 70 %) was obtained as 

a tan solid after recrystallization (H2O/MeOH 4:1). 

m.p. 192–194 °C. 

[α]D
20 +18.1 (c 0.260, DMSO). 

1H NMR (500.0 MHz, DMSO-d6): 3.77 – 3.87 (m, 3H, H-4′,5′); 4.16 (td, 1H, J3ʹ,4ʹ = 

J3ʹ,OH = 4.8, J3ʹ,2ʹ = 3.2, H-3ʹ); 4.25 (td, 1H, J2ʹ,1ʹ = J2ʹ,OH = 4.8, J2ʹ,3ʹ = 3.2, H-2ʹ); 5.13 

(t, 1H, JOH,5′ = 5.0, OH-5′); 5.35 (d, 1H, JOH,2′ = 4.8, OH-2′); 5.59 (d, 1H, JOH,3′ = 

4.8, OH-3′); 6.88 (d, 1H, J1′,2′ = 4.8, H-1′); 7.43 (dd, 1H, J4,5 = 5.0, J4,3 = 3.7, H-4-

thienyl); 7.54 (dd, 1H, J7,8 = 9.0, J7,5 = 2.2, H-7); 7.99 (dd, 1H, J5,4 = 5.0, J5,3 = 1.1, 
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H-5-thienyl); 8.06 (dd, 1H, J3,4 = 3.7, J3,5 = 1.1, H-3-thienyl); 8.15 (d, 1H, J8,7 = 9.0, 

H-8); 8.20 (d, 1H, J5,7 = 2.2, H-5); 8.98 (s, 1H, H-2). 

13C NMR (125.7 MHz, DMSO-d6): 61.06 (CH2-5′); 76.66 (CH-3′); 77.69 (CH-2′); 

84.06 (CH-4′); 85.71 (CH-1′); 108.77 (C-4a); 117.61 (CH-8); 120.16 (C-4b); 

120.58 (CH-5); 125.65 (C-6); 127.36 (CH-7); 128.69 (CH-4-thienyl); 129.83 (CH-

3-thienyl); 131.48 (CH-5-thienyl); 138.42 (C-8a); 141.16 (C-2-thienyl); 153.07 (C-

4); 154.30 (CH-2); 156.06 (C-9a).  

ESI MS m/z (rel. %): 418 (100) [M+H]. 

HR MS (ESI) for C19H17O4N3ClS [M+H]: calcd 418.06228; found 418.06235. 

IR (ATR): ν = 3358, 1562, 1447, 1217, 1172, 1138, 1057, 918, 707, 632, 483 cm–1. 

 

9-(β-D-Arabinofuranosyl)-6-chloro-4-phenyl-9H-pyrimido[4,5-b]indole (99f) 

Arabinoside 97 (120 mg, 0.32 mmol) was reacted with phenylboronic acid (59 mg, 

0.48 mmol) in 3 ml of H2O/MeCN (2:1) according to the general procedure for 

aqueous Suzuki-cross coupling. The product 99f (76 mg, 58 %) was obtained as 

a tan solid after recrystallization (H2O/MeOH 4:1). 

m.p. 183–185 °C. 

[α]D
20 -6.5 (c 0.168, DMSO). 

1H NMR (500.0 MHz, DMSO-d6): 3.78 – 3.88 (m, 3H, H-4′,5′); 4.18 (td, 1H, J3ʹ,4ʹ = 

J3ʹ,OH = 4.8, J3ʹ,2ʹ = 3.2, H-3ʹ); 4.26 (td, 1H, J2ʹ,1ʹ = J2ʹ,OH = 4.8, J2ʹ,3ʹ = 3.2, H-2ʹ); 5.13 

(t, 1H, JOH,5′ = 5.3, OH-5′); 5.36 (d, 1H, JOH,2′ = 4.8, OH-2′); 5.59 (d, 1H, JOH,3′ = 

4.8, OH-3′); 6.90 (d, 1H, J1′,2′ = 4.8, H-1′); 7.50 (dd, 1H, J7,8 = 9.0, J7,5 = 2.2, H-7); 

7.64 (d, 1H, J5,7 = 2.2, H-5); 7.67 – 7.72 (m, 3H, H-m,p-Ph); 7.88 (m, 2H, H-o-Ph); 

8.13 (d, 1H, J8,7 = 9.0, H-8); 9.08 (s, 1H, H-2). 

13C NMR (125.7 MHz, DMSO-d6): 61.10 (CH2-5′); 76.67 (CH-3′); 77.68 (CH-2′); 

84.10 (CH-4′); 85.66 (CH-1′); 110.16 (C-4a); 117.61 (CH-8); 120.30 (C-4b); 

120.50 (CH-5); 125.44 (C-6); 127.21 (CH-7); 128.91 (CH-o-Ph); 129.09 (CH-m-

Ph); 130.62 (CH-p-Ph); 137.83 (C-i-Ph); 138.39 (C-8a); 154.64 (CH-2); 155.66 (C-

9a); 159.88 (C-4).  

ESI MS m/z (rel. %): 412 (100) [M+H], 434 (59) [M+Na]. 

HR MS (ESI) for C21H19O4N3Cl [M+H]: calcd 412.10586; found 412.10594. 
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IR (ATR): ν = 3365, 1561, 1448, 1219, 1174, 1058, 918, 883, 767, 702, 640, 601, 

483 cm–1. 

 

5.4 Synthesis of pyrimido[4,5-b]indole 2’-deoxy-

2’-fluororibonucleosides 

 

4,6-Dichloro-9-[2-O-acetyl-3,5-O-(tetraisopropyldisiloxan-1,3-diyl)-β-D- 

arabinofuranosyl]-9H-pyrimido[4,5-b]indole (100) 

Protected arabinonucleoside 96 (3.49 g, 5.7 mmol) was dissolved in anhydrous 

MeCN (100 ml) and Et3N (0.95 ml, 6.8 mmol), DMAP (70 mg, 0.57 mmol) and 

acetic anhydride (0.65 ml, 6.8 mmol) were added. The reaction mixture was stirred 

at r.t. for 1 hour and then evaporated under reduced pressure. Residue was dissolved 

in EtOAc (60 ml), extracted with water (50 ml) and aqueous NaHCO3 (saturated, 

30 ml), dried under MgSO4 and after evaporation under reduced pressure, acetate 

100 (3.62 g, 96 %) was obtained as a yellowish foam. 

1H NMR (500.0 MHz, CDCl3): 0.98 – 1.28 (m, 28H, (CH3)2CHSi); 1.32 (s, 3H, 

CH3CO); 3.90 (ddd, 1H, J4′,3′ = 8.5, J4′,5′ = 3.8, 3.2, H-4′); 4.14 (dd, 1H, Jgem = 12.7, 

J5′b,4′ = 3.2, H-5′b); 4.27 (dd, 1H, Jgem = 12.7, J5′a,4′ = 3.8, H-5′a); 5.11 (bdd, 1H, J3′,4′ 

= 8.5, J3′,2′ = 6.5, H-3′); 5.56 (dd, 1H, J2′,1′ = 6.9, J2′,3′ = 6.5, H-2′); 7.00 (d, 1H, J1′,2′ 

= 6.9, H-1′); 7.51 (dd, 1H, J7,8 = 8.9, J7,5 = 2.2, H-7); 7.79 (d, 1H, J8,7 = 8.9, H-8); 

8.33 (d, 1H, J5,7 = 2.2, H-5); 8.80 (s, 1H, H-2). 

13C NMR (125.7 MHz, CDCl3): 12.44, 13.03, 13.13, 13.33 ((CH3)2CHSi); 16.80, 

16.84, 16.91, 16.96, 17.36, 17.43, 17.52, 17.54 ((CH3)2CHSi); 19.56 (CH3CO); 

60.85 (CH2-5′); 74.09 (CH-3′); 79.19 (CH-2′); 80.02 (CH-4′); 81.74 (CH-1′); 111.57 

(C-4a); 114.54 (CH-8); 119.80 (C-4b); 122.42 (CH-5); 128.29 (C-6); 128.51 (CH-

7); 137.09 (C-8a); 153.02 (C-4); 154.11 (CH-2); 155.89 (C-9a); 169.49 (COCH3). 

ESI MS m/z (rel. %): 676 (100) [M+Na]. 

HR MS (ESI) for C29H41O6N3Cl2NaSi2 [M+Na]: calcd 676.18032; found 

676.1804215. 
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4,6-Dichloro-9-(2-O-acetyl-β-D-arabinofuranosyl)-9H-pyrimido[4,5-b]indole 

(101) 

To a solution of acetate 100 (3.55 g, 5.4 mmol) in anhydrous THF (80 ml), 

Et3N∙3HF (1.77 ml, 10.8 mmol) was added. The reaction mixture was stirred 

overnight at r.t. After evaporation under reduced pressure and HPFC purification 

(silica column, 0→2% MeOH in DCM), the product 101 (1.86 g, 84 %) was 

obtained as a yellowish foam. 

1H NMR (500.0 MHz, DMSO-d6): 1.25 (s, 3H, CH3CO); 3.79 (dd, 1H, Jgem = 12.0, 

J5′b,4′ = 5.1, H-5′b); 3.84 (dd, 1H, Jgem = 12.0, J5′a,4′ = 3.5, H-5′a); 3.91 (ddd, 1H, J4′,3′ 

= 6.4, J4′,5′ = 5.1, 3.5, H-4′); 4.48 (bdd, 1H, J3′,4′ = 6.4, J3′,2′ = 3.8, H-3′); 5.51 (bs, 

1H, OH-5ʹ); 5.27 (dd, 1H, J2′,1′ = 5.4, J2′,3′ = 3.8, H-2′); 5.92 (bs, 1H , OH-3ʹ); 7.02 

(d, 1H, J1′,2′ = 5.4, H-1′); 7.70 (dd, 1H, J7,8 = 8.9, J7,5 = 2.2, H-7); 8.10 (d, 1H, J8,7 = 

8.9, H-8); 8.27 (d, 1H, J5,7 = 2.2, H-5); 8.92 (s, 1H, H-2). 

13C NMR (125.7 MHz, DMSO-d6): 19.71 (CH3CO); 60.25 (CH2-5′); 73.58 (CH-3′); 

79.91 (CH-2′); 82.94 (CH-1′); 83.29 (CH-4′); 110.77 (C-4a); 116.88 (CH-8); 119.31 

(C-4b); 121.37 (CH-5); 127.16 (C-6); 128.48 (CH-7); 137.16 (C-8a); 152.27 (C-4); 

154.71 (CH-2); 155.54 (C-9a); 169.22 (COCH3). 

ESI MS m/z (rel. %): 434 (100) [M+Na]. 

HR MS (ESI) for C17H15O5N3Cl2Na [M+Na]: calcd 434.02810; found 434.02816. 

 

4,6-Dichloro-9-[2-O-acetyl-3,5-di-O-(tetrahydropyran-2-yl)-β-D-

arabinofuranosyl]-9H-pyrimido[4,5-b]indole (102) 

Compound 101 (1.83 g, 4.4 mmol) and TsOH∙H2O (840 mg, 8.8 mmol) were 

dissolved in anhydrous DMF (50 ml) and the reaction mixture was cooled to 0 °C. 

3,4-Dihydro-2H-pyran (12.2 ml, 134 mmol) was added and the reaction mixture 

was allowed to warm to r.t. and stirred overnight. The reaction mixture was diluted 

with EtOAc (100 ml) and extracted with aqueous NaHCO3 (saturated, 50 ml). 

The organic layer was dried over MgSO4 and evaporated under reduced pressure. 

HPFC purification (silica column, 10→50% EtOAc in PE) furnished the crude 

product 102 (2.43 g) as a yellow oil. This intermediate was not characterized by 

NMR and was used directly in the next step. 

ESI MS m/z (rel. %): 580 (14) [M+H], 602 (100) [M+Na]. 
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HR MS (ESI) for C27H31O7N3Cl2Na [M+Na]: calcd 602.14313; found 602.14319. 

 

4,6-Dichloro-9-[3,5-di-O-(tetrahydropyran-2-yl)-β-D-arabinofuranosyl]-9H-

pyrimido[4,5-b]indole (103) 

Crude THP-protected acetate 102 (2.4 g) was dissolved in methanolic ammonia 

(27 %, 200 ml) at 0 °C and stirred for 4 hours at 0 °C. The evaporation of the 

solution under reduced pressure resulted in crude THP-protected arabinoside 103 

(2.1 g) as a yellow oil. This intermediate was not characterized by NMR and was 

used directly in the next step. 

ESI MS m/z (rel. %): 538 (14) [M+H], 560 (100) [M+Na]. 

HR MS (ESI) for C25H29O6N3Cl2Na [M+Na]: calcd 560.13256; found 560.13257. 

 

4,6-Dichloro-9-(2-deoxy-2-fluoro-β-D-ribofuranosyl)-9H-pyrimido[4,5-b]indole 

(104) 

THP-protected arabinonucleoside 103 (2.1 g, 3.9 mmol) was dissolved in 

anhydrous DCM (55 ml) and anhydrous pyridine was added (2.4 ml, 9.75 ml). 

The reaction mixture was cooled to 0 °C and DAST (2.6 ml; 19.7 mmol) was 

added. The reaction mixture was allowed to warm to r.t. and stirred overnight. 

Then, it was diluted with DCM (60 ml) and neutralized with aqueous NaHCO3 

(saturated, 90 ml). The organic phase was washed with water (90 ml), dried over 

MgSO4 and evaporated under reduced pressure. The crude product was then 

dissolved in aqueous TFA (90 % v/v, 20 ml) and stirred at r.t. for 2 hours. 

The solution was evaporated under reduced pressure and several times 

co evaporated with MeOH. After reversed-phase HPFC purification (C18 column, 

10→100% MeOH in H2O) and recrystallization (H2O/MeOH 3:1), the free 

fluororibonucleoside 104 (640 mg, 38 % over four steps) was obtained as a beige 

solid. 

m.p. 249–251 °C. 

[α]D
20 -26.2 (c 0.240, DMSO). 

1H NMR (500.0 MHz, DMSO-d6): 3.61 (dd, 1H, Jgem = 12.3, J5'b,4' = 4.5, H-5'b); 

3.74 (dd, 1H, Jgem = 12.3, J5'a,4' = 2.6, H-5'a); 4.02 (dddd, 1H, J4',3' = 6.3, J4',5' = 4.5, 

2.6, JH,F = 1.0, H-4'); 4.63 (ddd, 1H, JH,F = 14.8, J3',4' = 6.3, J3',2' = 5.4, H-3'); 5.71 
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(ddd, 1H, JH,F = 53.6, J2',3' = 5.4, J2',1' = 3.9, H-2'); 6.72 (dd, 1H, JH,F = 19.3, J1',2' = 

3.9, H-1'); 7.71 (dd, 1H, J7,8 = 8.9, J7,5 = 2.1, H-7); 8.18 (d, 1H, J8,7 = 8.9, H-8); 

8.31 (d, 1H, J5,7 = 2.1, H-5); 8.91 (s, 1H, H-2). 

13C NMR (125.7 MHz, DMSO-d6): 60.78 (CH2-5'); 68.45 (d, JC,F = 15.7, CH-3'); 

84.20 (CH-4'); 86.02 (d, JC,F = 34.0, CH-1'); 91.75 (d, JC,F = 187.0, CH-2'); 111.41 

(C-4a); 114.60 (CH-8); 119.53 (C-4b); 121.85 (CH-5); 127.55 (C-6); 128.92 (CH-

7); 136.78 (C-8a); 152.54 (C-4); 154.70 (CH-2); 155.67 (C-9a). 

19F NMR (470.4 MHz, DMSO-d6): -198.47 (ddd, JF,H = 53.6, 19.3, 14.8). 

ESI MS m/z (rel. %): 372 (100) [M+H]. 

HR MS (ESI) for C15H13O3N3ClF [M+H]: calcd 372.03125; found 372.03137. 

IR (ATR): ν = 3279, 1589, 1443, 1295, 1227, 1104, 1057, 1028, 1003, 833, 808, 

537 cm–1.  

 

5.4.1 Synthesis of 4-substituted 2’-deoxy-2’-fluororibononucleosides 

 

4-Amino-6-chloro-9-(2-deoxy-2-fluoro-β-D-ribofuranosyl)-9H-

pyrimido[4,5-b]indole (105a) 

Fluororiboside 104 (90 mg, 0.24 mmol) was dissolved in dioxane (3 ml) and 

aqueous ammonia (30%, 3 ml) was added. The reaction mixture was stirred in 

screw-cap pressure glass tube at 100 °C for 20 h and then solvents were evaporated 

under reduced pressure. Purification by reversed-phase HPFC (C18 column, 

10→100% MeOH in H2O) and recrystallization from H2O/MeOH mixture (3:1) 

afforded the 4-amino derivative 105a (69 mg, 82 %) as a white solid. 

m.p. 275–278 °C. 

[α]D
20 -44.9 (c 0.207, DMSO). 

1H NMR (500.0 MHz, DMSO-d6): 3.59 (ddd, 1H, Jgem = 12.2, J5'b,OH = 5.9, J5'b,4' = 

4.5, H-5'b); 3.72 (ddd, 1H, Jgem = 12.2, J5'a,OH = 5.2, J5'a,4' = 2.6, H-5'a); 3.97 (dddd, 

1H, J4',3' = 5.8, J4',5' = 4.5, 2.6, JH,F = 1.2, H-4'); 4.56 (dddd, 1H, JH,F = 13.0, J3',OH =  

6.2, J3',4' = 5.8, J3',2' = 5.5, H-3'); 5.16 (dd, 1H, JOH,5ʹ = 5.9, 5.2, OH-5ʹ); 5.65 (ddd, 

1H, JH,F = 54.1, J2',3' = 5.5, J2',1' = 4.4, H-2'); 5.69 (d, 1H, JOH,3ʹ = 6.2, OH-3ʹ); 6.60 

(dd, 1H, JH,F = 19.3, J1',2' = 4.4, H-1'); 7.41 (dd, 1H, J7,8 = 8.8, J7,5 = 2.1, H-7); 7.51 
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(bs, 2H, NH2);  7.90 (d, 1H, J8,7 = 8.8, H-8); 8.31 (s, 1H, H-2); 8.51 (d, 1H, J5,7 = 

2.1, H-5). 

13C NMR (125.7 MHz, DMSO-d6): 61.18 (CH2-5'); 68.61 (d, JC,F = 15.5, CH-3'); 

84.09 (CH-4'); 85.45 (d, JC,F = 33.3, CH-1'); 91.45 (d, JC,F = 186.9, CH-2'); 95.37 

(C-4a); 112.85 (CH-8); 120.93 (CH-5); 121.28 (C-4b); 124.88 (CH-7); 126.48 (C-

6); 134.57 (C-8a); 155.50 (CH-2); 155.67 (C-9a); 157.99 (C-4).  

19F NMR (470.4 MHz, DMSO-d6): -199.28 (ddd, JF,H = 54.1, 19.3, 13.0). 

ESI MS m/z (rel. %): 353 (100) [M+H], 375 (31) [M+Na]. 

HR MS (ESI) for C15H15O3N4ClF [M+H]: calcd 353.08112; found 353.08124. 

IR (ATR): ν = 3163, 1575, 1463, 1303, 1198, 1059, 901, 857, 799, 775, 425 cm–1. 

 

6-Chloro-9-(2-deoxy-2-fluoro-β-D-ribofuranosyl)-4-methoxy-9H-

pyrimido[4,5-b]indole (105b) 

Nucleoside 104 (90 mg, 0.24 mmol) was dissolved in dry MeOH (5 ml) and sodium 

methoxide (1M in MeOH, 2 ml) was added. The reaction mixture was stirred for 

3 hours at r.t. After evaporation of the solvent, purification by reversed-phase 

HPFC (C18 column, 10→100% MeOH in H2O) and recrystallization 

(H2O/MeOH 3:1), the product 105b (71 mg, 80 %) was obtained as a white solid. 

m.p. 201–205 °C. 

[α]D
20 -33.6 (c 0.217, DMSO). 

1H NMR (500.0 MHz, DMSO-d6): 3.60 (ddd, 1H, Jgem = 12.2, J5'b,OH = 5.6, J5'b,4' = 

4.6, H-5'b); 3.73 (dd, 1H, Jgem = 12.2, J5'a,OH = 5.3, J5'a,4' = 2.6, H-5'a); 4.00 (dddd, 

1H, J4',3' = 6.3, J4',5' = 4.6, 2.6, JH,F = 1.0, H-4'); 4.20 (s, 3H, CH3O); 4.60 (dtd, 1H, 

JH,F = 13.8, J3',4' = J3',OH =  6.3, J3',2' = 5.4, H-3'); 5.07 (dd, 1H, JOH,5ʹ = 5.6, 5.3, OH-

5ʹ); 5.69 (ddd, 1H, JH,F = 53.6, J2',3' = 5.4, J2',1' = 4.2, H-2'); 5.73 (d, 1H, JOH,3ʹ = 6.3, 

OH-3ʹ); 6.67 (dd, 1H, JH,F = 19.2, J1',2' = 4.2, H-1'); 7.54 (dd, 1H, J7,8 = 8.8, J7,5 = 

2.2, H-7); 8.00 (d, 1H, J5,7 = 2.2, H-5); 8.05 (d, 1H, J8,7 = 8.8, H-8); 8.71 (s, 1H, H-

2). 

13C NMR (125.7 MHz, DMSO-d6): 54.52 (CH3O); 60.97 (CH2-5'); 68.52 (d, JC,F = 

15.6, CH-3'); 84.11 (CH-4'); 85.74 (d, JC,F = 33.5, CH-1'); 91.64 (d, JC,F = 187.1, 

CH-2'); 98.91 (C-4a); 113.96 (CH-8); 120.39 (C-4b); 121.45 (CH-5); 126.59 (CH-

7); 126.86 (C-6); 135.39 (C-8a); 155.20 (CH-2); 156.39 (C-9a); 164.06 (C-4). 
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19F NMR (470.4 MHz, DMSO-d6): -199.04 (ddd, JF,H = 53.6, 19.2, 13.8). 

ESI MS m/z (rel. %): 368 (79) [M+H], 390 (100) [M+Na]. 

HR MS (ESI) for C16H15O4N3ClFNa [M+Na]: calcd 390.06273; found 390.06282. 

IR (ATR): ν = 3313, 1600, 1460, 1327, 1189, 1109, 1069, 1045, 894, 851, 536, 432 

cm–1. 

 

6-Chloro-9-(2-deoxy-2-fluoro-β-D-ribofuranosyl)-4-methylsulfanyl-9H-

pyrimido[4,5-b]indole (105c) 

Nucleoside 104 (90 mg, 0.24 mmol) and sodium thiomethoxide (35 mg, 

0.50 mmol) were dissolved in anhydrous EtOH (10 ml) and stirred for 2 hours at r.t. 

The solvent was then evaporated under reduced pressure. The purification by 

reversed-phase HPFC (C18 column, 10→100% MeOH in H2O) and 

recrystallization (H2O/MeOH 3:1) afforded the product 105c (80 mg, 87 %) as 

a white solid. 

m.p. 205–209 °C. 

[α]D
20 -34.6 (c 0.188, DMSO). 

1H NMR (500.0 MHz, DMSO-d6): 2.80 (s, 3H, CH3S); 3.59 (ddd, 1H, Jgem = 12.2, 

J5'b,OH = 5.5, J5'b,4' = 4.6, H-5'b); 3.73 (dd, 1H, Jgem = 12.2, J5'a,OH = 5.3, J5'a,4' = 2.6, 

H-5'a); 4.00 (dddd, 1H, J4',3' = 6.2, J4',5' = 4.6, 2.6, JH,F = 1.3, H-4'); 4.62 (dtd, 1H, 

JH,F = 13.8, J3',4' = J3',OH =  6.2, J3',2' = 5.4, H-3'); 5.07 (dd, 1H, JOH,5ʹ = 5.5, 5.3, OH-

5ʹ); 5.69 (ddd, 1H, JH,F = 53.8, J2',3' = 5.4, J2',1' = 4.0, H-2'); 5.75 (d, 1H, JOH,3ʹ = 6.2, 

OH-3ʹ); 6.69 (dd, 1H, JH,F = 19.5, J1',2' = 4.0, H-1'); 7.62 (dd, 1H, J7,8 = 8.8, J7,5 = 

2.1, H-7); 8.04 (d, 1H, J5,7 = 2.1, H-5); 8.11 (d, 1H, J8,7 = 8.8, H-8); 8.88 (s, 1H, H-

2). 

13C NMR (125.7 MHz, DMSO-d6): 11.92 (CH3S); 60.91 (CH2-5'); 68.50 (d, JC,F = 

15.6, CH-3'); 84.08 (CH-4'); 85.74 (d, JC,F = 33.8, CH-1'); 91.75 (d, JC,F = 186.8, 

CH-2'); 109.74 (C-4a); 114.15 (CH-8); 120.51 (C-4b); 121.71 (CH-5); 126.94 (C-

6); 127.32 (CH-7); 135.84 (C-8a); 153.24 (C-9a); 154.27 (CH-2); 163.16 (C-4). 

19F NMR (470.4 MHz, DMSO-d6): -198.57 (ddd, JF,H = 53.8, 19.5, 13.8). 

ESI MS m/z (rel. %): 384 (81) [M+H], 406 (100) [M+Na]. 

HR MS (ESI) for C16H15O3N3ClFNaS [M+Na]: calcd 406.03989; found 406.03999. 
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IR (ATR): ν = 3247, 1558, 1472, 1433, 1295, 1235, 1049, 966, 906, 839, 794, 594, 

535 cm–1. 

 

 

6-Chloro-9-(2-deoxy-2-fluoro-β-D-ribofuranosyl)-4-methyl-9H-

pyrimido[4,5-b]indole (105d) 

Nucleoside 104 (90 mg, 0.24 mmol) and Pd(PPh3)4 (14 mg, 0.012 mmol) were 

dissolved in anhydrous THF (4 ml) and Me3Al (2M in toluene, 250 µl) was added. 

The reaction mixture was stirred at 70 °C for 24 hours. After evaporation of 

solvents under reduced pressure, reversed-phase HPFC purification (C18 column, 

10→100% MeOH in H2O) and recrystallization (H2O/MeOH 3:1) the product 105d 

(55 mg, 65 %) was obtained as a white solid. 

m.p. 247–251 °C. 

[α]D
20 -45.2 (c 0.179, DMSO). 

1H NMR (500.0 MHz, DMSO-d6): 2.95 (s, 3H, CH3); 3.59 (ddd, 1H, Jgem = 12.2, 

J5'b,OH = 5.5, J5'b,4' = 4.7, H-5'b); 3.73 (dd, 1H, Jgem = 12.2, J5'a,OH = 5.3, J5'a,4' = 2.6, 

H-5'a); 4.00 (dddd, 1H, J4',3' = 6.2, J4',5' = 4.7, 2.6, JH,F = 1.0, H-4'); 4.62 (dtd, 1H, 

JH,F = 14.0, J3',4' = J3',OH =  6.2, J3',2' = 5.4, H-3'); 5.08 (dd, 1H, JOH,5ʹ = 5.5, 5.3, OH-

5ʹ); 5.71 (ddd, 1H, JH,F = 53.9, J2',3' = 5.4, J2',1' = 4.1, H-2'); 5.75 (d, 1H, JOH,3ʹ = 6.2, 

OH-3ʹ); 6.70 (dd, 1H, JH,F = 19.4, J1',2' = 4.1, H-1'); 7.62 (dd, 1H, J7,8 = 8.8, J7,5 = 

2.1, H-7); 8.09 (d, 1H, J8,7 = 8.8, H-8); 8.23 (d, 1H, J5,7 = 2.1, H-5); 8.89 (s, 1H, H-

2). 

13C NMR (125.7 MHz, DMSO-d6): 23.03 (CH3); 60.97 (CH2-5'); 68.53 (d, JC,F = 

15.6, CH-3'); 84.07 (CH-4'); 85.54 (d, JC,F = 33.6, CH-1'); 91.57 (d, JC,F = 186.9, 

CH-2'); 111.84 (C-4a); 113.92 (CH-8); 121.27 (C-4b); 122.59 (CH-5); 126.94 (C-

6); 127.56 (CH-7); 136.30 (C-8a); 154.60 (CH-2); 154.73 (C-9a); 161.33 (C-4). 

19F NMR (470.4 MHz, DMSO-d6): -198.88 (ddd, JF,H = 53.9, 19.4, 14.0). 

ESI MS m/z (rel. %): 352 (100) [M+H], 374 (60) [M+Na]. 

HR MS (ESI) for C16H16O3N3ClF [M+H]: calcd 352.08587; found 352.08597. 

IR (ATR): ν = 3309, 1580, 1449, 1371, 1299, 1183, 1133, 1103, 1068, 1024, 859, 

828, 808, 621, 525, 480, 425, 389 cm–1. 
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6-Chloro-9-(2-deoxy-2-fluoro-β-D-ribofuranosyl)-4-(thiophene-2-yl)-9H-

pyrimido-[4,5-b]indole (105e) 

Nucleoside 104 (90 mg, 0.24 mmol) was reacted with 2-thienylboronic acid (46 mg, 

0.36 mmol) in 3 ml of H2O/MeCN (2:1) according to the general procedure for 

aqueous Suzuki-cross coupling. The product 105e (94 mg, 70 %) was obtained as a 

tan solid after recrystallization (H2O/MeOH 3:1). 

m.p. 206–211 °C. 

[α]D
20 -37.1 (c 0.186, DMSO). 

1H NMR (500.0 MHz, DMSO-d6): 3.62 (ddd, 1H, Jgem = 12.2, J5'b,OH = 5.5, J5'b,4' = 

4.6, H-5'b); 3.75 (ddd, 1H, Jgem = 12.2, J5'a,OH = 5.3, J5'a,4' = 2.6, H-5'a); 4.02 (dddd, 

1H, J4',3' = 6.3, J4',5' = 4.6, 2.6, JH,F = 1.0, H-4'); 4.65 (dtd, 1H, JH,F = 14.4, J3',4' = 

J3',OH =  6.3, J3',2' = 5.4, H-3'); 5.09 (dd, 1H, JOH,5ʹ = 5.5, 5.3, OH-5ʹ); 5.74 (ddd, 1H, 

JH,F = 53.8, J2',3' = 5.4, J2',1' = 4.0, H-2'); 5.78 (d, 1H, JOH,3ʹ = 6.3, OH-3ʹ); 6.77 (dd, 

1H, JH,F = 19.7, J1',2' = 4.0, H-1'); 7.43 (dd, 1H, J4,5 = 5.0, J4,3 = 3.7, H-4-thienyl); 

7.65 (dd, 1H, J7,8 = 8.8, J7,5 = 2.1, H-7); 8.01 (dd, 1H, J5,4 = 5.0, J5,3 = 1.1, H-5-

thienyl); 8.09 (dd, 1H, J3,4 = 3.7, J3,5 = 1.1, H-3-thienyl); 8.15 (d, 1H, J8,7 = 8.8, H-

8); 8.25 (d, 1H, J5,7 = 2.1, H-5); 9.00 (s, 1H, H-2). 

13C NMR (125.7 MHz, DMSO-d6): 60.95 (CH2-5'); 68.52 (d, JC,F = 15.6, CH-3'); 

84.11 (CH-4'); 85.75 (d, JC,F = 34.0, CH-1'); 91.67 (d, JC,F = 186.8, CH-2'); 109.17 

(C-4a); 114.26 (CH-8); 120.52 (C-4b); 121.55 (CH-5); 126.67 (C-6); 128.30 (CH-

7); 128.80 (CH-4-thienyl); 130.17 (CH-3-thienyl); 131.84 (CH-5-thienyl); 136.80 

(C-8a); 140.94 (C-2-thienyl); 153.70 (C-4); 154.52 (CH-2); 156.24 (C-9a). 

19F NMR (470.4 MHz, DMSO-d6): -198.28 (ddd, JF,H = 53.8, 19.7, 14.4). 

ESI MS m/z (rel. %): 420 (100) [M+H], 442 (79) [M+Na]. 

HR MS (ESI) for C19H16O3N3ClFS [M+H]: calcd 420.05794; found 420.05797. 

IR (ATR): ν = 3090, 1569, 1443, 1291, 1051, 965, 804, 717, 539, 436 cm–1. 

 

 
 
 
 
 
 
 
 
 



76 

 

 

6 References 
 

(1) Rosemeyer, H. Chem. Biodivers. 2004, 1, 361401. 

(2) Löfgren, N.; Lüning, B. Acta. Chem. Scand. 1953, 1, 225225. 

(3) a) van der Wenden, E. M.; von Frijtag Drabbe Künzel, J. K.; Mathôt, R. A. 

A.; Danhof, M.; IJzerman, A. P.; Soudijn, W. J. Med. Chem. 1995, 38, 

40004006. b) Barbieri, D.; Franceschi, C.; Camaioni, E.; Costanzi, S.; 

Vittori, S.; Volpini, R.; Cristalli, G. Bioorg. Med. Chem. Lett. 1998, 8, 

25332538. c) Legraverend, M.; Grierson, D. S. Bioorg. Med. Chem. 2006, 

14, 39874006. 

(4) Chen, C.-M. Physiol. Plant. 1997, 101, 665673. 

(5) Voller, J.; Zatloukal, M.; Lanobel, R.; Doležal, K.; Béreš, T.; Kryštof, V.; 

Spíchal, L.; Niemann,  P.;  Džubák,  P.;  Hajdúch,  M.;  Strnad,  M.  

Phytochemistry  2010,  71, 13501359. 

(6) Searle, P. A.; Molinsk, T. F. J. Nat. Prod. 1994, 57, 14521454. 

(7) Whitley, R. J.; Tucker, B. C.; Kinkel, A. W.; Barton, N. H.; Pass, R. F.; 

Whelchel, J. D.; Cobbs, C. G.; Diethelm, A. G.; Buchanan, R. A. 

Antimicrob. Agents Chemother. 1980, 18, 709715. 

(8) Lee, W. W.; Benitez, A.; Goodman, L.; Baker, B. R. J. Am. Chem. Soc. 

1960, 82, 2648–2649. 

(9) Awaya, J.; Matsuyama, K.; Iwai, Y.; Omura, S. J. Antibiot. 1979, 32, 

10501053. 

(10) a) Honma,  Y.;  Niitsu,  N.  Leuk.  Lymphoma  2000,  39,  5766.  b)  

Honma,  Y. Leuk. Lymphoma 2001, 42, 953962. 

(11) 7-deazapurine is a semitrivial name, 7H-pyrrolo[2,3-d]pyrimidine is 

recommended to be used according to the IUPAC nomenclature.   

(12) Mizuno, Y.; Ikehara, M.; Watanabe, K.; Suzaki, S. Chem. Pharm. Bull. 

1963, 11, 10911094.  

(13) Acs, G.; Reich, E.; Mori, M. P. Natl. Acad. Sci. USA 1964, 52, 493501.  

(14) Grage, T. B.; Rochlin, D. B.; Weiss, A. J.; Wilson, W. L. Cancer Res. 1970, 

30, 7981. 



77 

 

 

 

(15) Tolman, R. L.; Robins, R. K.; Townsend, L. B. J. Am. Chem. Soc. 1968, 90, 

524526. 

(16) Gunic, E.; Girardet, J.-L.; Pietrzkowski, Z.; Esler, C.; Wang, G. Bioorg. 

Med. Chem. 2001, 9, 163170.  

(17) Bergstrom, D. E.; Brattesani, A. J.; Ogawa, M. K.; Reddy, P. A.; 

Schweickert, M. J.; Balzarini, J.; De Clercq, E. J. Med. Chem. 1984, 27, 

285292.   

(18) Nishioka, H.; Sawa, T.; Hamada, M.; Shimura, N.; Imoto, M.; Umezawa, K. 

J. Antibiot. 1990, 43, 15861589. 

(19) Loomis, C. R.; Bell, R. M. J. Biol. Chem. 1988, 263, 16821692. 

(20) Tanaka, N.; Wu, R. T.; Okabe, T.; Yamashita, H.; Shimazu A.; Nishimura, 

T. J. Antibiot. 1982, 35, 272278. 

(21) Yuan, B. D.; Wu, R. T.; Sato, I.; Okabe, T.; Suzuki, H.; Nishimura, T.; 

Tanaka, N. J. Antibiot. 1985, 38, 642648.  

(22) a) De Clercq, E. J. Clin. Virol. 2001, 22, 7389. b) Robak, P.; Robak, T. 

Cancer Treat. Rev. 2013, 39, 851861.  

(23) Parker, W. B. Chem. Rev. 2009, 109, 28802893.   

(24) a) Ghosh. R. K.; Ghosh, S. M.; Chawla, S. Expert Opin. Pharmacother. 

2011, 12, 3146. b) Jordheim, L. P.; Durantel, D.; Zoulim, F.; Dumontet, C. 

Nat. Rev. Drug Discov. 2013, 12, 447464.  

(25) Hocek, M.; Holý, A.; Votruba, I.; Dvořáková, H. J. Med. Chem. 2000, 43, 

18171825. 

(26) a) Hocek, M.; Holý, A.; Votruba, I.; Dvořáková, H. Collect. Czech. Chem. 

Commun. 2000, 65, 16831697. b) Hocek, M.; Šilhár, P.; Pohl, R. Collect. 

Czech. Chem. Commun. 2006, 71, 14841496.  

(27) a) Hocek, M.; Holý, A.; Dvořáková, H. Collect. Czech. Chem. Commun. 

2002, 67, 325335. b) Hocek, M.; Hocková, D.; Štambaský, J. Collect. 

Czech. Chem. Commun. 2003, 68, 837848. 

(28) Hocek, M.; Šilhár, P.; Shih, I.; Mabery, E.; Mackman, R. Bioorg. Med. 

Chem. Lett. 2006, 16, 52905293. 



78 

 

 

 

(29) Hocek, M.; Holý, A.; Votruba, I.; Dvořáková, H. Collect. Czech. Chem. 

Commun. 2001, 66, 483499. 

(30) Hocek,  M.;  Nauš,  P.;  Pohl,  R.;  Votruba,  I.;  Furman,  P.;  Tharnish,  P.;  

Otto,  M. J.  Med. Chem. 2005, 48, 58695873. 

(31) Nauš, P.; Pohl, R.; Votruba, I.; Džubák, P.; Hajdúch, M.; Ameral, R.; 

Birkuš, G.; Wang, T.; Ray, A.; Mackman, R.; Cihlar, T.; Hocek, M. J. Med. 

Chem. 2010, 53, 460470.  

(32) Takahashi, T.; Kanazawa, J.; Akinaga, S.; Tamaoki, T.; Okabe, M. Cancer 

Chemother. Pharmacol. 1999, 43, 233240.  

(33) a) Spáčilová, P.; Nauš, P.; Pohl, R.; Votruba, I.; Snášel, J.; Zábranská, H.; 

Pichová, I.; Ameral, R.; Birkuš, G.; Cihlář, T.; Hocek, M. Chem. Med. 

Chem. 2010, 5, 13861396. b) Perlíková, P.; Pohl, R.; Votruba, I.; Shih, R.; 

Birkuš, G.; Cihlář, T.; Hocek, M. Bioorg. Med. Chem. 2011, 19, 229242.  

(34) Bourderioux, A.; Nauš, P.; Perlíková, P.; Pohl, R.; Pichová, I.; Votruba, I.; 

Džubák, P.; Konečný, P.; Hajdúch, M.; Stray, K.; Wang, T.; Ray, A.; Feng, 

J.; Birkuš, G.; Cihlar, T.; Hocek, M. J. Med. Chem. 2011, 54, 5498507. 

(35) Perlíková, P.; Rylová, G.; Nauš, P.; Elbert, T.; Tloušťová, E.; Bourderioux, 

A.; Poštová Slavětínská, L.; Motyka, K.; Doležal, D.; Znojek, P.; Nová, A.; 

Harvanová, M.; Džubák, P.; Šiller, M.; Hlaváč, J.; Hajdúch, M.; Hocek, M. 

Mol. Cancer Ther. 2016, 15, 922–937. 

(36) Nauš,  P.;  Caletková,  O.;  Konečný,  P.;  Džubák,  P.;  Bogdanová,  K.;  

Kolář,  M.;  Vrbková,  J.; Slavětínská, L.; Tloušt’ová, E.; Perlíková, P.; 

Hajdúch, M.; Hocek, M. J. Med. Chem. 2014, 57, 10971110.  

(37) a) Perlíková, P.; Konečný, P.; Nauš, P.; Snášel, J.; Votruba, I.; Džubák, P.; 

Pichová, I.; Hajdúch, M.; Hocek, M. Med. Chem. Commun. 2013, 4, 

14971500. b) Snášel, J.; Nauš, P.; Dostál, J.; Hnízda, A.; Fanfrlík, J.; 

Brynda, J.; Bourderioux, A.; Dušek, M.; Dvořáková,  H.;  Stolaříková,  J.;  

Zábranská,  H.;  Pohl,  R.;  Konečný,  P.;  Džubák,  P.;  Votruba,  I.; 

Hajdúch, M.; Řezáčová, P.; Veverka, V.; Hocek, M.; Pichová, I. J. Med. 

Chem. 2014, 57, 82688279. 



79 

 

 

 

(38) Malnuit, V.; Slavětínská, L.; Nauš, P.; Džubák, P.; Hajdúch, M.; 

Stolaříková, J.; Snášel, J.; Pichová, I.; Hocek, M. Chem. Med. 

Chem. 2015, 10, 10791093. 

(39) Hyatt, J. A.; Swenton, J. S. J. Heterocycl. Chem. 1972, 9, 409410.  

(40) Műller, C. E.; Geis, U.; Grahner, B.; Lanzner, W.; Eger, K. J. Med. Chem. 

1996, 39, 24822491.  

(41) Traxler, P. M.; Furet, P.; Mett, H.; Buchdunger, E.; Meyer, T.; Lydon, N. J. 

Med. Chem. 1996, 39, 22852292.  

(42) Showalter, H. D. H.; Bridges, A. J.; Zhou, H.; Sercel, A. D.; McMichael, A.; 

Fry, D. W. J. Med. Chem. 1999, 42, 54645474.  

(43) Zaware, N.; Sharma, H.; Yang, J.; Devambatla, R. K. V.; Queener, S. F.; 

Anderson, K. S.; Gangjee, A. ACS Med. Chem. Lett. 2013, 4, 11481151.  

(44) Gangjee, A.; Zaware, N.; Devambatla, R. K. V.; Raghavan, S.; Westbrook, 

C. D.; Dybdal-Hargreaves, N. F.; Hamel, E.; Mooberry, S. L. Bioorg. Med. 

Chem. 2013, 21, 891902.  

(45) Gangjee, A.; Zaware, N.; Raghavan, S.; Disch, B. C.; Thorpe, J. E.; Bastian, 

A.; Ihnat, M. A. Bioorg. Med. Chem. 2013, 21, 18571864.   

(46) Gangjee, A.; Zaware, N.; Raghavan, S.; Ihnat, M.; Shenoy, S.; Kisliuk, R. L. 

J. Med. Chem. 2010, 53, 15631578.  

(47) Bastian, A.; Thorpe, J. E.; Dish, B. C.; Bailey-Downs, L. C.; Gangjee, A.; 

Devambatla , R. K. V.; Henthorn, J.; Humphries, K. M.; Vadvalkar, S. S.; 

Ihnat, M. A. J. Pharmacol. Exp. Ther. 2015, 353, 392404. 

(48) Okamoto, A.; Tanaka, K.; Saito, I. J. Am. Chem. Soc. 2003, 125, 

50665071.   

(49) Okamoto, A.; Tanaka, K.; Nishiza, K.; Saito, I. Bioorg. Med. Chem. 2004, 

12, 58755880.  

(50) Okamoto, A.; Tanaka, K.; Fukuta, T.; Saito, I. J. Am. Chem. Soc. 2003, 125, 

92969297.  

(51) Okamoto, A.; Kamei, T.; Saito, I. J. Am. Chem. Soc. 2006, 128, 658662.  

(52) Tichý, M.; Pohl, R.; Xu, H. Y.; Chen, Y. L.; Yokokawa, F.; Shi, P.-Y.; 

Hocek, M. Bioorg. Med. Chem. 2012, 20, 61236133. 



80 

 

 

 

(53) Tichý, M.; Pohl, R.; Tloušťová, E.; Weber, J.; Bahador, G.; Lee, Y.-J.; 

Hocek, M. Bioorg. Med. Chem. 2013, 21, 53625372. 

(54) Montgomery, J. A.; Hewson, K. J. Med. Chem. 1969, 12, 498504.   

(55) Brockman, R. W.; Schabel, F. M., Jr.; Montgomery, J. A. Biochem. 

Pharmacol. 1977, 26, 21932196.  

(56) Keating, M. J.; Kantarjian, H.; Talpaz, M.; Redman, J.; Koller, C.; Barlogie, 

B.; Velasquez, W.; Plunkett, W.; Freireich, E. J.; McCredie, K. B. Blood 

1989, 74, 1925.   

(57) Huang, P.; Chubb, S.; Plunkett, W. J. Biol. Chem. 1990, 265, 1661716625.    

(58) White, E. L.; Shaddix, S. C.; Brockman, R. W.; Bennet, L. L., Jr. Cancer 

Res. 1982, 42, 22602264.  

(59) Kantarjian, H. M.; Schachner, J.; Keating, M. J. Clin Trials 1991, 67, 

12911293. 

(60) Cohen, M. H.; Johnson, J. R.; Justice, R., Pazdur, R. Oncologist 2008, 13, 

709714.  

(61) Lambe, U. C.; Averett,  D. R.; Paff,  M. T.;  Reardon, J. E.; Wilson, J. G.; 

Krenitsky, T. A. Cancer Res. 1995, 55, 33523356. 

(62) Cohen, A.; Lee, J. W. W.; Gelfand, E. W. Blood 1983, 61, 660666.  

(63) Verhoef, V.; Fridland, A. Cancer Res. 1985, 45, 36463650.  

(64) Rodriguez, C. O., Jr.; Gandhi, V. Cancer Res. 1999, 59, 49374943.  

(65) Liu, P.; Sharon, A.; Chu, C. K. J. Fluorine Chem. 2008, 129, 743766.    

(66) Tisdale, M.; Appleyard, G.;  Tuttle, J. V.;  Nelson, D. J.;  Nusinoff-

Lehrman,S; Al Nakib, W.; Stables, J. N.; Purifoy, D. J. M.; Darby, G. 

Antivir. Chem. Chemother. 1993, 4, 281287.  

(67) Maruyama, T.; Utzumi, K.; Sato, Y.; Richman, D.D. Nucleos. Nucleot. 

1994, 13, 527537.    

(68) Kumaki, Y.; Day, C. W.; Smee, D. F.; Morrey, J. D.; Barnard, D. L. 

Antiviral Res. 2011, 92, 329340.  

(69) Wohlrab, F.; Jamieson, A T.; Hay, J.; Mengel, R.; Guschlbauer, W. 

Biochim. Biophs. Acta 1985, 824, 233242.  



81 

 

 

 

(70) Stuyver, L. J.; MvBrayer, T. R.; Whitaker, T.; Tharnish, P. M.; Ramesh, M.; 

Lostia, S.; Cartee, L.; Shi, L.; Hobbs, A.; Shinazi, R. F.; Watanabe, K. A.; 

Otto, M. J. Antimicrob. Agents Chemother. 2004, 48, 651654. 

(71) Seela, F.; Ming, X. Tetrahedron 2007, 63, 98509861.  

(72) Seela, F.; Peng, X. Curr. Top. Med. Chem. 2006, 6, 867892.    

(73) Kondo, T.; Ohgi, T.; Goto, T. Agric. Biol. Chem. 1977, 41, 15011507.  

(74) Rosemeyer, H.; Seela, F. Helv. Chim. Acta 1988, 71, 15731585.  

(75) Wilcox, C. S.; Otoski, R. M. Tetrahedron Lett. 1986, 27, 10111014.  

(76) (a) Ugarkar, B. G.; DaRe, J. M.; Kopcho, J. J.; Browne, C. E., III; 

Schanzer, J. M.; Wiesner, J. B.; Erion, M. D. J. Med. Chem. 2000, 43, 

28832893. (b) Ugarkar, B. G.; Castellino, A. J.; DaRe, J. M.; Kopcho, J. J.; 

Wiesner, J. B.; Schanzer, J. M.; Erion, M. D. J. Med. Chem. 2000, 43, 

28942905.  

(77) Winkeler, H.-D.; Seela, F. Chem. Ber. 1980, 113, 20692080.    

(78) Mikhailopulo, I. A.; Sivets, G. G.; Poopeiko, N. E.; Khripach, N. B. 

Carbohydr. Res. 1995, 278, 7189.   

(79) Nauš, P.; Perlíková, P.; Pohl, R.; Hocek, M. Collect. Czech. Chem. 

Commun. 2011, 76, 957988. 

(80) Perlíková, P.; Jornet Martínez, N.; Slavětínská, L.; Hocek, M. 

Tetrahedron 2012, 68, 83008310. 

(81) Nauš, P.; Perlíková, P.; Bourderioux, A.; Pohl, R.; Slavětínská, L.; Votruba, 

I.; Bahador, G.; Birkuš, G.; Cihlář, T.; Hocek, M. Bioorg. Med. 

Chem. 2012, 20, 52025214.  

(82) Perlíková, P.; Eberlin, L.; Ménová, P.; Raindlová, V.; Slavětínská, L.; 

Tloušťová, E.; Bahador, G.; Lee, Y.-J.; Hocek, M. ChemMedChem 2013, 8, 

832846.  

(83) Eldrup, A. B.; Allerson, C. R.; Bennett, C. F.; Bera, S.; Bhat, B.; Bhat, N.; 

Bosserman, M. R.; Brooks, J.; Burlein, C.; Carroll, S. S.; Cook, P. D.; Getty, 

K. L.; MacCoss, M.; McMasters, D. R.; Olsen, D. B.; Prakash, T. P.; 

Prhavc, M.; Song, Q.; Tomassini, J.; Xia, J. J. Med. Chem. 2004, 47, 

22832295.  



82 

 

 

 

(84) Tichý, M. Unpublished results.  

(85) Nauš, P.; Kuchař, M.; Hocek, M. Collect. Czech. Chem. Commun. 2008, 73, 

665678.  

(86) Kim, Y. A.; Sharon, A.; Chu, C. K.; Rais, R. H.; Al Safarjalani, O. N.; 

Naguib, F. N. M.; el Kouni, M. H. J. Med. Chem. 2008, 51, 39343945. 

(87) Hervé, G.; Sartori, G.; Enderlin, G.; Mackenzie, G.; Len, C. RSC Adv. 2014, 

4, 1855818594.  

(88) Zheng, S.; Yu, C.; Shen, Z. Org. Lett. 2012, 14, 36443647.  

(89) Kobayashi, K.; Komatsu, T.; Yokoi, Y.; Konitshi H. Synthesis 2011, 

764768.  

 

 

 

 

 


