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2



Contents

List of Figures 6

List of Tables 7

List of Abbreviations 8

1 Introduction 9

2 Univariate Stable Distribution 12
2.1 Summation-Stable Distribution . . . . . . . . . . . . . . . . . 12

2.1.1 Properties of Stable Random Variables . . . . . . . . . 15
2.2 Geometric Stable Distribution . . . . . . . . . . . . . . . . . . 20

3 ARMA Sequences with Stable Innovations 23

4 The Gaussian vs. Stable Paretian Distribution in ARCH/-
GARCH Models 28
4.1 ARCH and GARCH Models in Gaussian Distribution . . . . . 28
4.2 ARCH and GARCH Models

in non-Gaussian Distribution . . . . . . . . . . . . . . . . . . . 30
4.2.1 Symmetric GARCH-stable Processes . . . . . . . . . . 31
4.2.2 Asymmetric GARCH-stable Processes . . . . . . . . . 33

5 An Empirical Application 36
5.1 Statistical Software . . . . . . . . . . . . . . . . . . . . . . . . 36
5.2 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

6 Unconditional Fitting 40

7 Conditional Gaussian Fitting 42
7.1 Homoskedastic Model . . . . . . . . . . . . . . . . . . . . . . . 42
7.2 Heteroskedastic Model . . . . . . . . . . . . . . . . . . . . . . 46

3



8 Conditional Stable Fitting 51
8.1 Simulation of Stable Distributed Innovations . . . . . . . . . . 51

8.1.1 AL∗(κ, σ) . . . . . . . . . . . . . . . . . . . . . . . . . 52
8.1.2 A Strictly GSα(λ, τ) Generator . . . . . . . . . . . . . 52
8.1.3 General GSα(c, β, δ) Generator . . . . . . . . . . . . . 53
8.1.4 A Standard Stable Sα(1, β, 0) Generator . . . . . . . . 53
8.1.5 A Standard Stable Sα(c, β, δ) Generator . . . . . . . . 54

8.2 Homoskedastic Model . . . . . . . . . . . . . . . . . . . . . . . 54
8.3 Heteroskedastic Model . . . . . . . . . . . . . . . . . . . . . . 57

9 Conclusions 59

Bibliography 61

4



Abstrakt
Názov práce: Zobecnený stabilný model vo financiách
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Katedra (ústav): Katedra pravdepodobnosti a matematickej štatistiky
Vedúci diplomovej práce: Prof. Lev Borisovich Klebanov, DrSc.
E-mail vedúceho: Lev.Klebanov@mff.cuni.cz
Abstrakt: V tejto práci je poṕısaný základný teoretický pŕıstup k stabilnému
rozdeleniu. Sú tu uvedené defińıcie stabilných rozdeleńı, vlastnosti a správa-
nie stabilne rozdelených náhodných velič́ın. Ďalej je tu rozobraté podmienené
modelovanie za platnosti stabilných zákonov. Dajú sa tu nájsť homoske-
dastické (ARMA) ako aj heteroskedastické (GARCH) štruktúry. GARCH
modely sú vysvetlené čiastočne aj pre pŕıpad Gaussovho rozdelenia. Empi-
rická časť tejto práce je založená na porovnávańı medzi modelmi, zavedenými
v teoretickej časti, pod normálnym resp. stabilným rozdeleńım, budovaných
na reálnych dátach z prostredia energetiky. Vychádza sa z nepodmiene-
ného modelovania, potom sa prechádza na podmienené ARMA modely a
nakoniec kombinované ARMA-GARCH modely. Výsledky prevedenej štatis-
tickej analýzy ukazujú, že modely založené na stabilnom rozdeleńı vystihujú
empirické rozdelenie lepšie ako modely založené na Gaussovom rozdeleńı.
Kľúčové slová: Stabilné rozdelenie, ARMA-GARCH v stabilnom rozdeleńı

Abstract
Title: General stable model in finance
Author: Róbert Chovanec
Department: Department of probability and mathematical statistics
Supervisor: Prof. Lev Borisovich Klebanov, DrSc.
Supervisor’s e-mail address: Lev.Klebanov@mff.cuni.cz
Abstract: In this contribution, a basic theoretical approach to stable laws
is described. There are mentioned some definitions of the stable distribu-
tions, properties and behavior of stable distributed random variables. Next,
conditional modeling under the stable laws are analyzed. One can find homo-
skedastic (ARMA) and heteroskedastic (GARCH) structures. The GARCH
models are explained partly for the Gaussian case too. An empirical appli-
cation of this paper is based on comparison between the models, established
in theoretical part, under the normal, and stable distribution respectively,
built on real data from energetics. One issues from unconditional, then con-
tinues with conditional ARMA and finally, there are mixed ARMA-GARCH
models. The results of interpreted statistical analysis demonstrate that the
models based on the stable distribution matched the empirical distribution
better than the the models based on the Gaussian distribution.
Keywords: Stable distribution, ARMA-GARCH in stable laws
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Chapter 1

Introduction

Modern finance still relies heavily on the assumption that the random vari-
ables under investigation follow a normal distribution. Distributional as-
sumption for financial processes have important theoretical implications.
Hence, solutions to such problems like portfolio selection, option pricing and
risk management depend critically on distributional specifications.

However, time series observed in finance often deviate from the Gauss-
ian model in that their marginal distributions are heavy-tailed and possi-
bly asymmetric. In such situations, the appropriateness of the commonly
adopted normal assumption is highly questionable. This is especially true in
financial modeling.

Benoit Mandelbrot’s fundamental work [26] in the 1960s strongly rejected
normality as a distributional model for asset returns (see also Mandelbrot [25]
and [27]). Examining various time series on commodity returns and interest
rates, he conjectured that financial return processes behave like non-Gaussian
stable processes. To distinguish between Gaussian and non-Gaussian stable
distributions, the latter are often referred to as “stable Paretian” or “Lévy
stable”.

Only stable distributed returns encompass the property that linear com-
binations of different return series (e.g., portfolios) follow again a stable dis-
tribution (see Section 2.1.1). Indeed, the Gaussian law shares this feature,
but it is only one particular member of a large and flexible class of distri-
butions, which also allows for skewness and heavy-tailedness. Mandelbrot’s
contributions give rise to a new probabilistic foundation for financial theory
and empirics.

An attractive distinctive feature of stable models – not shared by other
distributional models – is that they allow to generalize Gaussian-based finan-
cial theories and thus, to build a coherent and more general framework for

9



financial modeling. The generalizations are only possible because of specific
probabilistic properties that are unique to stable laws, namely, the stability
property, the Central Limit Theorem and the Invariance Principle for Lévy-
stable processes. The central limit theorem provides a theoretically sound
explanation for its emergence: whenever a financial variable can be regarded
as the result of many microscopic effects, it can be described by a stable
law, as this describes the fundamental “building blocks” (e.g., innovations)
that drive asset return processes. In addition to describing these “build-
ing blocks”, a complete financial model should be rich enough to encompass
relevant stylized facts such as:

• Non-Gaussian, heavy-tailed and skewed distributions;

• Volatility clustering (ARCH-effects);

• Temporal dependence of the tail behavior;

• Short and long-range dependence.

Among many desirable properties, stable models are also highly versatile.
They have many possible applications, ranging from equilibrium asset pricing
to risk management. Moreover, with the current availability of computational
power, stable models do not present serious numerical difficulties and should
quickly repay the time and effort spent in their implementation.

An important desirable property is the fact that stable Paretian distribu-
tions have domains of attraction (see Section 2.1). In general, any decision
(inference) based on observed data is a functional on the space of distribu-
tions that govern the data. Loosely speaking, any distribution in the domain
of attraction of a specified stable distribution will have properties which are
close to those of the stable distribution. Consequently, decisions will, in prin-
ciple, not be affected by adopting an “idealizing” stable distribution as the
distributional model instead of the true one.

A next attractive aspect of the stable Paretian assumption is the stability
property. This is desirable because it implies that each stable distribution has
an index of stability (shape parameter - see Definition 2.2), which remains the
same regardless of the scale adopted. The index of stability can be regarded
as an overall parameter, which can be employed for inference and decision
making.

The main goal of this text is to approach stable theory and then to ex-
amine it on real data. The described theory is implemented on the concrete
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models, which are built and fitted over the data1. The consequences of relax-
ing the normality assumption are investigated and at last the models driven
by normal and stable innovations are compared.

Generally speaking, this contribution is divided in three main parts. The
first one describes basic definitions and properties of the stable theory, and
answers the question of what are the stable laws for (see Chapter 2). The sec-
ond part enlarges on theory of conditional modeling, such ARMA (see Chap-
ter 3) and GARCH (see Chapter 4) models. Particularly GARCH models
under stable assumptions are described in detail.

The first two parts build a basis for the third main part, simulation and
the real data processing (see Chapter 5, 6, 7 and 8).

1In practice one cannot expect that observed data follow exactly the “ideal” distribution
specified by the modeler. The distributional model represents only an approximation of the
distribution underlying the observed data. This problem gives rise to the crucial question
of what is the domain of applicability of the specified model.
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Chapter 2

Univariate Stable Distribution

As it was discussed in the Introduction, in a search for satisfactory descriptive
models for financial return data, the stable laws as a model for financial
returns distribution were proposed. First the class of Paretian distributions
is represented.

2.1 Summation-Stable Distribution

To define stable Paretian laws, suppose X1, X2, . . . are independently and
identically distributed (i.i.d.), real-valued random variables (r.v.’s) with com-
mon distribution function (d.f.) H. It is assumed that H is nondegenerate.

Definition 2.1 (Zolotarev [40] or Samorodnitsky and Taqqu [35])
The d.f. H is said to be stable if there exist constants an > 0 and bn ∈ R,
such that for any n

an(X1 + · · ·+ Xn) + bn
D
= X1.

1 (2.1)

D.f. H is said to be strictly stable if (2.1) holds with bn = 0. A stable d.f.
is called symmetric if H(x) = 1−H(−x).

Note that a symmetric stable H is also strictly stable.

Definition 2.2 (Explicit representation of characteristic function) The d.f.
H is stable if there are parameters 0 < α ≤ 2, −1 ≤ β ≤ 1, 0 ≤ c and δ ∈ R
such that the characteristic function (ch.f.) of H has the following form:∫

eitxdH(x) =

{
exp

{
−cα|t|α

[
1− iβsign(t) tan

(
πα
2

)]
+ iδt

}
, α 6= 1,

exp
{
−c|t|

[
1 + iβ 2

π
sign(t) ln |t|

]
+ iδt

}
, α = 1,

(2.2)

1Notation “D=”stands for equality in distribution.
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where sign(t) is 1 if 0 < t, 0 if t = 0 and −1 if t < 0.

The parameters are unique (β is irrelevant when α = 2). The charac-
teristic exponent α is the index of stability and can also be interpreted as
a shape parameter (or tail-index parameter), β is the skewness parameter,
δ is a location (shift) parameter and c is the scale parameter. H is called
stable Paretian or α-stable and is usually denoted by Sα = Sα(c, β, δ) and
one writes

X ∼ Sα(c, β, δ)

to indicate that X has the stable distribution Sα(c, β, δ). One also writes

X ∼ SαS

when X is symmetric α-stable (β = δ = 0).
If α = 2, the α-stable distribution coincides with the normal distribution

– in this case c is proportional to the standard deviation σ, β can be taken
to be zero and δ is the mean µ. If α ∈ (0, 2), it is fat tailed and has only
moments of orders less then α. The tail thickness increases as α decreases.
So, the distributions have infinite variance and when α ≤ 1, they have an
infinite mean as well. If α < 2 and β 6= 0, the distribution is asymmetric and
the skewness increases as β moves away from 0 to ±1. For example, when
β = 1, the d.f. H or the stable r.v. with d.f. H is said to be totally right
skewed.

See Figure 2.1 for a detailed exposition of the theory of stable laws. The
solid steel blue line corresponds to α = 2, the dotdashed magenta line cor-
responds to α = 1.5, the dashed black line corresponds to α = 1 and the
dotted dark red line corresponds to α = 0.5. The rest of the coefficients is
fixed (β = 0, c = 1 and δ = 0).

The probability densities of α-stable random variables exist and are con-
tinuous, but, with a few exceptions, they are not known in closed form
(Zolotarev [40]). The exceptions are:

(a) the Gaussian distribution S2(σ, 0, µ) = N(µ, 2σ2), whose density is

1

2
√

πσ2
e
− (x−µ)2

(2σ)2 ,

(b) the Cauchy distribution S1(σ, 0, µ), whose density is

σ

π((x− µ)2 + σ2)
,

if X ∼ S1(σ, 0, 0), then for 0 < x is P (X ≤ x) = 1
2

+ 1
π

arctan(x
σ
),

13
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Figure 2.1: Probability Density Functions for Standard Symmetric α-Stable
Random Variables with Different Values of Parameter α

(c) the Lévy distribution S 1
2
(σ, 1, µ), whose density

(
σ

2π
)1/2 1

(x− µ)3/2
exp

{
− σ

2(x− µ)

}
is concentrated on (µ,∞),

if X ∼ S 1
2
(σ, 1, 0), then for 0 < x is P (X ≤ x) = 2(1−Φ(

√
σ
x
)), where

Φ denotes the cumulative distribution function of the N(0, 1),

(d) a constant µ, which has the degenerate distribution Sα(0, 0, µ) for any
0 < α ≤ 2. A convention of this paper is to exclude degenerate distri-
butions, because they have unusual properties. For example, all mo-
ments of a degenerate distribution are finite, whereas a non-degenerate
α-stable distribution with 0 < α < 2 has infinite second moments.

Definition 2.3 (Domain of attraction of stable Paretian distributions)
The d.f. H is in domain of attraction of the α-stable distribution Sα if
for any sequence X1, X2, . . . of i.i.d. r.v.’s with common d.f. H, there exist
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sequences of constants an > 0 and bn ∈ R such that

Zn
df
= an(X1 + · · ·+ Xn)− bn

D−→ Yα, 2 (2.3)

where Yα in an Sα-distributed r.v.

It follows from Definition 2.1 that Sα belongs to its own domain of attrac-
tion. Relation (2.1) states that if Xk is assumed to be α-stable distributed,
then under certain normalization, the sum X1 + · · · + Xn has the same dis-
tribution. On the other hand, (2.3) states that if the d.f. of Xk belongs to
the domain of attraction of Sα the normalized sum Zn is asymptotically
Sα-distributed.

2.1.1 Properties of Stable Random Variables

A useful tool for studying α-stable distributions is the characteristic func-
tion (2.2). It will be used to derive some basic properties of stable random
variables and to obtain an interpretation of the parameters α, c, β and δ.

Property 2.4 Let X1 and X2 be independent random variables with Xi ∼
Sα(ci, βi, δi), i = 1, 2. Then X1 + X2 ∼ Sα(c, β, δ), with

c = (cα
1 + cα

2 )1/α, β =
β1c

α
1 + β2c

α
2

cα
1 + cα

2

, δ = δ1 + δ2.

PROOF:

• for α 6= 1. By independence and from (2.2) follows:

ln(E[exp{it(X1 + X2)}]) = ln(E[exp{itX1}]) + ln(E[exp{itX2}])
= −(cα

1 + cα
2 )|t|α + i|t|αsign(t) tan(πα/2)(β1c

α
1 + β2c

α
2 ) + it(δ1 + δ2)

= −(cα
1 + cα

2 )|t|α
[
1− i

β1c
α
1 + β2c

α
2

cα
1 + cα

2

sign(t) tan(πα/2)

]
+ it(δ1 + δ2)

• the proof for α = 1 is similar.

Q.E.D.

The parameter δ is a shift parameter because of:

2Notation “
df
=” stands for “is defined”, respectively “is set to be equal” and notation

“ D−→” stands for convergence in distribution.
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Property 2.5 Let X ∼ Sα(c, β, δ) and let b be a real constant. Then X+b ∼
Sα(c, β, δ + b).

PROOF:
This follows trivially from the form of the characteristic function (2.2).
Q.E.D.

The parameter c is called the scale parameter. Observe that when α = 1,
multiplication by a constant affects the shift parameter in a non-linear way.
Hence, the name “scale parameter” for c is a misnomer when α = 1 and
β 6= 0.

Property 2.6 Let X ∼ Sα(c, β, δ) and let b be a non-zero real constant.
Then

bX ∼ Sα(|b|c, sign(b)β, bδ) if α 6= 1

bX ∼ S1(|b|c, sign(b)β, bδ − 2bcβ
π

ln |b|) if α = 1

PROOF:

• By the ch.f. (2.2), it is for α 6= 1

ln(E[exp{it(bX)} ])

= −|bt|αcα(1− iβsign(bt) tan(πα/2)) + iδ(bt)

= −(c|b|)α|t|α(1− iβsign(b)sign(t) tan(πα/2)) + i(δb)t.

• the proof for α = 1 is similar.

Q.E.D.

The following property identifies β as a skewness parameter:

Property 2.7 X ∼ Sα(c, β, δ) is symmetric if and only if β = 0 and δ = 0.
It is symmetric about δ if and only if β = 0.

PROOF: For a random variable to be symmetric, it is necessary and sufficient
that its ch.f. is real. By (2.2), this is the case if and only if β = 0 and δ = 0.
The second statement follows from Property (2.5).
Q.E.D.

A symmetric stable random variable is strictly stable, but a strictly stable
random variable is not necessarily symmetric. In fact:

Property 2.8 Let X ∼ Sα(c, β, δ) with α 6= 1. Then X is strictly stable if
and only if δ = 0.
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PROOF: Let X1, X2 be independent copies of X and let A and B be arbitrary
positive constants. By Properties (2.4) and (2.6),

AX1 + BX2 ∼ Sα(c(Aα + Bα)1/α, β, δ(A + B)).

However, the equation

AX1 + BX2
D
= CX + D (2.4)

is equivalent to equation from Definition (2.1). Set C
df
= (Aα + Bα)1/α in

(2.4). By Properties (2.5) and (2.6),

CX + D ∼ Sα(c(Aα + Bα)1/α, β, δ(Aα + Bα)1/α + D)

and therefore D = 0 holds for (2.4) if and only if δ = 0.
Q.E.D.

Property 2.9 Let X ∼ Sα(c, β, δ) with α 6= 1. Then X−δ is strictly stable.

PROOF: It follows directly from Properties (2.5) and (2.8). Q.E.D.

Thus, any α-stable random variable with α 6= 1 can be made strictly sta-
ble by shifting. This is not true when α = 1, as the next property indicates.

Property 2.10 X ∼ S1(c, β, δ) is strictly stable if and only if β = 0.

PROOF: Let X1, X2 be independent copies of X and let A and B be arbitrary
positive constants. Then by Properties (2.4) and (2.6),

AX1 + BX2 ∼ S1((A + B)c, β, (A + B)δ − 2

π
cβ(A ln(A) + B ln(B))),

whereas

(A + B)X ∼ S1((A + B)c, β, (A + B)δ − 2

π
cβ(A + B) ln(A + B)).

Therefore D = 0 in (2.4) if and only if AX1 + BX2
D
= (A + B)X, i.e., if and

only if
β(A ln(A) + B ln(B)) = β(A + B) ln(A + B)

for any 0 < A and 0 < B. It is thus necessary and sufficient that β = 0.
Q.E.D.
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The parameter δ is the least important of the four parameters α, c, β
and δ, because it affects only location. It is often assumed for simplicity that
δ = 0.

Let now focus on the skewness parameter β. For any 0 < α < 2 holds
X ∼ Sα(c,−β, 0) ⇐⇒ −X ∼ Sα(c, β, 0). The distribution Sα(c, β, 0) is said
to be skewed to the right if 0 < β and to the left if β < 0. It is said to be
totally skewed to the right if β = 1 and totally skewed to the left if β = −1.
Random variables that are totally skewed to the right can be regarded as
basic building blocks because of the following:

Theorem 2.11 Let X has distribution Sα(c, β, 0) with α < 2. Then there ex-
ist two i.i.d. random variables Y1 and Y2 with common distribution Sα(c, 1, 0)
such that

X
D
=

(
1 + β

2

)1/α

Y1 −
(

1− β

2

)1/α

Y2

if α 6= 1, and

X
D
=

(
1 + β

2

)
Y1 −

(
1− β

2

)
Y2 + c

(
1 + β

π
ln

1 + β

2
− 1− β

π
ln

1− β

2

)
if α = 1.

PROOF:
This is a direct consequence of Properties (2.4), (2.5) and (2.6).
Q.E.D.

Note also that the support of Sα(c, β, 0) is the whole real line even for
β = ±1. However, the tails of the distribution are affected by the skewness
parameter β as the next Property (2.12) below indicates. The Property (2.12)
concerns the asymptotic behavior of the tail probabilities P (X > λ) and
P (X < −λ) as λ→∞.

In the Gaussian case (α = 2),

P (X < −λ) = P (X > λ) ∼ 1

2
√

πσλ
e−λ2/(4σ2)

as λ→∞, (Feller [14]). However, when α < 2, the tail probabilities behave
like λ−α.

Property 2.12 Let X ∼ Sα(c, β, δ) with 0 < α < 2. Then

limλ→∞λαP (X > λ) = Cα
1+β

2
cα,

limλ→∞λαP (X < −λ) = Cα
1−β

2
cα,
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where

Cα =

(∫ ∞

0

x−α sin xdx

)−1

=

{ 1−α
Γ(2−α) cos(πα/2)

if α 6= 1,

2/π if α = 1.

PROOF:
One can apply a central limit theorem type argument, as in Feller [15, The-
orem XVII.5.1.]
Q.E.D.

The tail behavior in Property (2.12) is widely used property of α-stable
distributions.

Since E|X|r =
∫∞

0
P (|X|r > λ)dλ, one has:

Property 2.13 Let X ∼ Sα(c, β, δ) with 0 < α < 2. Then

E|X|p <∞ for any 0 < p < α,
E|X|p =∞ for any α ≤ p.

The fact that α-stable random variables with α < 2 have an infinite
second moment means that many of the techniques valid for the Gaussian
case do not apply. An added complication stems from the fact that even
E|X|α is infinite. When α ≤ 1, one also has E|X| = ∞, precluding the use
of expectations.

Note that for fixed c and p and α 6= 1, E|X|p is an even function of β
and increases in |β|. Note also that if X ∼ SαS, 0 < α ≤ 2, then the
moment E|X|p determines the scale parameter c of X, and therefore the
whole distribution.

Property 2.14 When 1 < α ≤ 2, the shift parameter δ equals the mean.

PROOF: Let X ∼ Sα(c, β, δ), 1 < α ≤ 2. The r.v. X has finite mean (by
Property 2.13 in the case 1 < α < 2 and because X is Gaussian when α = 2).
Moreover, X − δ is strictly stable by Property 2.9. Let X1 and X2 be two
independent copies of X. By (2.4) the relation

A(X1 − δ) + B(X2 − δ)
D
= (Aα + Bα)1/α(X − δ)

holds for any positive A and B. Taking expectations of both sides gives

A(EX − δ) + B(EX − δ) = (Aα + Bα)1/α(EX − δ),

and thus EX = δ.
Q.E.D.
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2.2 Geometric Stable Distribution

The motivation underlying these geometric analogues is to enable to model
processes that may, with some small probability, change in each period. In
the context of asset returns we can, for example, think of major, unexpected
new events, which could occur in any period and drastically affect investor’s
behavior and hence, the overall market.

To state this formally, let Xi denote the r.v. at period t = t0 + i. R.v.’s
{Xi} are assumed to be i.i.d. with d.f.

H(u) = P (Xi ≤ u), u ∈ R. (2.5)

With probability p ∈ (0, 1) an investor may expect in any period the
occurrence of an event altering the characteristics of the underlying asset-
return process. Let T (p) denote the period in which such an event is expected
to occur. T (p) is assumed to be independent on {Xi} and to have a geometric
distribution, i.e.,

P (T (p) = k) = (1− p)k−1p, k = 1, 2, . . . . (2.6)

The time until random period T (p) may be viewed as the time, for which
an investor assumes the market fundamentals to remain unchanged and cor-
respond to the investment horizon.

In the following one replaces the deterministic variable n in the proba-
bilistic schemes considered in Section 2.1 by the geometric random variable
T (p) and investigates their properties given by the geometric randomization.
The geometric sum

Gp
df
=

T (p)∑
i=1

Xi (2.7)

represents the accumulation of the Xi’s up to the event at time t0 + T (p),
i.e., the total return of an asset over that period. Operational time is non-
random in the geometric-summation model, i.e., the number of Xi’s per unit
of calendar time is fixed, but the lengths of the time intervals are random
(i.e., T (p) is a random variable).

Definition 2.15 D.f. H is said to be strictly geometric-stable with respect
to the summation scheme – in short, strictly (geo,sum)-stable if for any
p ∈ (0, 1), there exist constants a = a(p) > 0, such that

aGp
D
= X1. (2.8)

According to Klebanov et al. [21], one has:

20



Definition 2.16 (General geometric stable distribution) A random variable
Y is said to be geometric stable with respect to the summation scheme (in
short, geometric stable, or GS) if there exists a sequence of i.i.d. random
variables X1, X2, . . ., a geometric (2.6) random variable T (p) independent of
all Xi and constants a = a(p) > 0 and b = b(p) ∈ R such that

a(p)

T (p)∑
i=1

(Xi + b(p))
D−→ Y, as p→ 0. (2.9)

If f(t) is the ch.f. ofH (i.e., f(t) = E [exp {itX1}]), then by (2.8) it follows
that f(t) satisfies

f(t) =
pf(at)

1− (1− p)f(at)
, (2.10)

see Klebanov et al. [19] and [20]. In this case, setting ϕ(t)
df
= exp {1− 1/f(t)}

in (2.10), one has

ϕ(t) = [ϕ(at)]1/p p ∈ (0, 1), (2.11)

i.e., ϕ is the ch.f. of a strictly stable distribution. This gives rise to the
following result of Klebanov et al. [19].

Definition 2.17 (Explicit representation of ch.f. of strictly GS distribution)
A nondegenerate d.f. G = Gp is strictly (geo,sum)-stable if and only if, its
ch.f., f , has the form

f(t) =
[
1 + λ|t|α exp

{
−i

π

2
θαsign(t)

}]−1

, (2.12)

where 0 < α ≤ 2, |θ| ≤ θα = min(1, 2/α− 1) and 0 < λ.

If α = 2 and θ = 0, G is a symmetric Laplace distribution, i.e.,

G(t) =
λ

2

∫ t

−∞
e−λ|u|du. (2.13)

The Laplace distribution plays among the (geo,sum)-stable distributions
a role that is analogous to that of the normal distribution in the class
of the stable Paretian distributions. The exponential distribution G(t) =
1 − e−λt, 0 < t is a strictly (geo,sum)-stable distribution and plays the role
of the discrete distribution in the class of stable Paretian distributions. Sta-
ble Paretian and (geo,sum)-stable distributions have one and the same tail
behavior for 0 < α < 2 (see Mittnik and Rachev [29]).
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Definition 2.18 (Domain of attraction of strictly GS distributions)
The d.f. H is in the domain of attraction of the strictly (geo,sum)-stable
distribution G if for any sequence X1, X2, . . . of i.i.d. r.v.’s with common
d.f. H and geometric r.v. T (p), which is independent on {Xi}, there exist
constants a(p) > 0 such that, as p = 1/E[T (p)]→ 0,

Zp = a(p)

T (p)∑
i=1

Xi
D−→ Y, (2.14)

where Y is Gp-distributed.
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Chapter 3

ARMA Sequences with Stable
Innovations

Autoregressive-moving average (ARMA) processes are often used for model-
ing empirical time series. Let p and q be non-negative integers. The sequence
{Xn, n = . . . ,−1, 0, 1, . . .} is called ARMA(p,q) if it satisfies the equations

Xn − φ1Xn−1 − · · · − φpXn−p = εn + θ1εn−1 + · · ·+ θqεn−q. (3.1)

The innovations εn are i.i.d. random variables. In the classical time series
literature, the εn are either Gaussian or non-Gaussian with finite variance
and therefore the probability that they take large values is very small.

Here, it will be supposed that the εn are i.i.d. α-stable with 0 < α ≤ 2. In
other words εn ∼ Sα(c, β, µ) if 0 < α < 2 and N(µ, 2c2) if α = 2. The finite-
dimensional distributions of the Xn depend on the coefficients θ1, . . . , θq and
φ1, . . . , φp.

Consider the system (3.1) with real coefficients φ0 = 1, φ1, . . . , φp and
θ0 = 1, θ1, . . . , θq and define the polynomials

Φ(z) = 1− φ1z − · · · − φpz
p,

Θ(z) = 1 + θ1z + · · ·+ θqz
q,

where z is complex variable. One can write (3.1) symbolically as

Φ(B)Xn = Θ(B)εn, n = . . . ,−1, 0, 1, . . . , (3.2)

where B is the backward operator, formally, B(Xn) = Xn−1, B2(Xn) =
Xn−2, . . . . As in the Gaussian case, one solves (3.1) by showing that Xn =
Φ(B)−1Θ(B)εn is well defined. It is natural to suppose:

Property 3.1 The polynomials Φ(z) and Θ(z) do not have common roots.

23



The following theorem shows that, as in the Gaussian case, a non-anticipating
solution exists if and only if Φ(z) has no roots in the closed unit disk {z :
|z| ≤ 1}.

Theorem 3.2 The system (3.1) has a unique solution of the form

Xn =
∞∑

j=0

cjεn−j, n ∈ Z, a.s. (3.3)

with real cj satisfying |cj| < Q−j eventually,1 1 < Q, if and only if Φ(z) has
no roots in the closed unit disk {z : |z| ≤ 1}. The sequence {Xn, n ∈ Z} is
then stationary and α-stable.

The cj are the coefficients in the series expansion of Θ(z)/Φ(z), |z| < 1.

PROOF: Suppose Φ(z) has no roots in {z : |z| ≤ 1}. The function

C(z) =
Θ(z)

Φ(z)

is, therefore, analytic in the disk {z : |z| < R}, where R > 1 is the radius of
convergence of the series C(z) =

∑∞
j=0 cjz

j. Since 1/R = lim supj→∞ |cj|1/j,

for any 1 < Q < R, |cj| < Q−j eventually. Using the relation Φ(z)C(z) =
Θ(z), which holds for |z| ≤ 1, and the fact that the series

∑∞
j=0 cjz

j converges
absolutely for |z| ≤ 1, one obtains the following system of equations:

c0 = 1,
c1 − φ1c0 = θ1,
c2 − φ1c1 − φ2c0 = θ2,
...
cq − φ1cq−1 − φ2cq−2 − · · · − φqc0 = θq,
cs − φ1cs−1 − φ2cs−2 − · · · − φsc0 = 0, q < s,

(3.4)

with the understanding that φi = 0 if p < i. It follows from (3.4) that the cj

are real and since |cj| < Q−j eventually, the series (3.3) is well defined and,
in fact, converges absolutely a.s.

To see that the process (3.3) with the cj, uniquely defined by (3.4), sat-
isfies (3.1), just use relation (3.4) and the fact that the series (3.3) converges
absolutely a.s. Rearranging the terms in

∞∑
j=0

cjεn−j − φ1

∞∑
j=0

cjεn−1−j − · · · − φp

∞∑
j=0

cjεn−p−j

1“aj − bj eventually” means that there is a a j0 such that aj < bj for all j > j0
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yields (3.1).
To prove the converse suppose that the system of equations (3.1) has

a solution of the form (3.3) with the cj satisfying |cj| < Q−j eventually for
some 1 < Q. One wants to show that Φ(z) 6= 0 for |z| ≤ 1.

Consider the series C(z) =
∑∞

j=0 cjz
j, which, under assumptions, con-

verges absolutely and uniformly in the closed unit disk {z : |z| ≤ 1}. Setting

Θ̃(z)
df
= Φ(z)C(z)

df
=

∞∑
j=0

θ̃jz
j, |z| ≤ 1, (3.5)

one obtains
θ̃0 = c0

θ̃s = cs − φ1cs−1 − · · · − φsc0, 1 ≤ s.
(3.6)

Since, for any n, the series
∑∞

j=0 cjεn−j converges absolutely a.s., (3.1)
and (3.6) imply

q∑
j=0

θjεn−j = Xn − φ1Xn−1 − · · · − φpXn−p =
∞∑

j=0

θ̃jεn−j a.s.,

which, in turn, yields θ̃j = θj for j = 0, 1, . . . , q and θ̃j = 0 for q < j. Thus,

Θ̃(z) = Θ(z) and by (3.5)

Φ(z) =
Θ(z)

C(z)
, |z| ≤ 1.

As C(z) is bounded on {z : |z| ≤ 1}, Φ(z) = 0 implies Θ(z) = 0. But
Φ(z) and Θ(z) do not have common roots, so Φ(z) 6= 0, for all |z| ≤ 1,
proving the converse.

The solution (3.3) is α-stable, because it is a linear combination of α-
stable random variables. It is clearly stationary.
Q.E.D.

The condition that Φ(z) has no roots in the closed unit disk {z : |z| ≤ 1}
is a natural one for it ensures that the system of equations (3.1) has the
stationary non-anticipating solution (3.3). It will be supposed from now on
that this condition holds.

The cj are obtained by identifying the coefficients of C(z) =
∑∞

j=0 cjz
j

with those in the power series expansion of Θ(z)/Φ(z). Since this is the same
procedure as in the Gaussian case, the explicit form of the cj for specific
ARMA(p,q) models can be readily found in the time series literature.
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Example 3.3 Consider the autoregressive process {Xn} of order 2 defined
by

Xn − φ1Xn−1 − φ2X2 = εn.

If Φ(z) = 1 − φ1z − φ2z
2 has two different roots z1 and z2, satisfying 1 <

|zi|, i = 1, 2, then

Φ(z) =
1

z1z2

(z − z1)(z − z2)

and

1

Φ(z)
=

z1z2

z2 − z1

(
1

z1 − z
− 1

z2 − z

)
=

z1z2

z2 − z1

(
z−1
1

1− (z/z1)
− z−1

2

1− (z/z2)

)
.

The coefficients cj in the series expansion of 1/Φ(z) are, therefore,

cj =
z1z2

z2 − z1

(
z−j−1
1 − z−j−1

2

)
, 0 ≤ j.

If Φ(z) has complex conjugate roots ρe±iµ, µ 6= kπ, then it is not difficult to
see that

cj =
sin µ(j + 1)

sin µ
ρ−j.

The ARMA(p,q) time series is invertible if there exists a sequence of
constants {cj} such that

∑∞
j=0 |c̃j| < ∞ and

∑∞
j=0 c̃jXn−j = εn, n ∈ Z,

where convergence holds in probability. Invertibility is particularly useful
for prediction, because it allows Xn to be expressed in terms of the previous
observations Xj, j ≤ n. The following theorem provides a condition for
invertibility.

Theorem 3.4 Suppose that Θ(z) has no roots in the closed unit disk {z :
|z| ≤ 1}. Then ARMA(p,q) is invertible, i.e.,

∞∑
j=0

c̃jXn−j = εn, n ∈ Z, a.s. .

The c̃j are the coefficients in the series expansion of Θ−1(z)Φ(z), |z| < 1.

PROOF: See Samorodnitsky and Taqqu [35]. Q.E.D.

Since the coefficients cj of the moving average (3.3) satisfy |cj| < Q−j

eventually with 1 < Q, they lie within two exponentially decreasing functions.
As for the codifference τ(n) = τXn,X0 , one has:
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Theorem 3.5 Suppose that Φ(z) has no roots in the closed unit disk {z :
|z| ≤ 1} and let 1 < Q be as in Theorem 3.2. Then there are constants K1

and K2 depending on α, Q and the cj such that

lim supn→∞ Qn|τ(n)| ≤ K1 for 1 ≤ α ≤ 2

lim supn→∞ Qαn|τ(n)| < K2 for 0 < α < 1.

PROOF: See Kokoszka and Taqqu [22]. Q.E.D.

If 1 < α a similar result holds for the covariation, namely

lim sup
n→∞

Qn| [Xn, X0]α| < K3,

because

Qn|[Xn, X0]α| ≤
∞∑

j=0

Qn|cj+n||cj|α−1

≤ const.
∞∑

j=0

QnQ−(j+n)Q−(α−1)j = const.
∞∑

j=0

Q−αj <∞.
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Chapter 4

The Gaussian vs. Stable
Paretian Distribution in
ARCH/GARCH Models

In this chapter, alternative ways to model changing volatility of a time series
yt+1 will be considered. Section 4.1 presents univariate Autoregressive Con-
ditionally Heteroskedastic (ARCH) and Generalized Autoregressive Condi-
tionally Heteroskedastic (GARCH) models under Gaussian distribution. The
next Section 4.2 presents this models under stable distribution.

4.1 ARCH and GARCH Models in Gaussian

Distribution

First, in order to concentrate on volatility, it is assumed that yt+1 is an inno-
vation, which has mean zero conditional on time t information. In a finance
application, yt+1 might be the innovation in an asset return. Let σ2

t be de-
noted as the time t conditional variance of yt+1 or equivalently the conditional
expectation of y2

t+1. One assumes that conditional on time t information, the
innovation is normally distributed, i.e.,

yt+1 ∼ Nt(0, σ
2
t ). (4.1)

The unconditional variance of the innovation yt+1 is denoted σ2 and is just
the unconditional expectation of σ2

t ,

σ2 df
= E[σ2

t ] = E[Et[y
2
t+1]] = E[y2

t+1]. (4.2)

Thus variability of σ2
t around its mean does not change the unconditional

variance σ2.
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The variability of σ2
t does, however, affect higher moments of the un-

conditional distribution of yt+1. In particular, with time-varying σ2
t the un-

conditional distribution of yt+1 has fatter tails than a normal distribution.
A useful measure of tail thickness for the distribution of a random vari-
able y is the normalized fourth moment, respectively kurtosis, defined by

K(y)
df
= E[y4]/(E[y2])2. One first writes (see Campbell et al. [8]):

yt+1 = σtεt+1,

where εt+1 is an i.i.d. random variable with zero mean and unit variance
that is normally distributed. It is well known that the kurtosis of a normal
random variable is 3, hence K(εt+1) = 3. But for innovation yt+1, one has

K(yt+1) =
E[σ4

t ]E[ε4
t+1]

(E[σ2
t ])

2

=
3E[σ4

t ]

(E[σ2
t ])

2

≥ 3(E[σ2
t ])

2

(E[σ2
t ])

2
= 3,

where the first equality follows from the independence of σt and εt+1, and
the inequality is implied by Jensen’s inequality.

However intuitively, the unconditional distribution of yt+1 is a mixture
of normal distributions, some with small variances that concentrate mass
around the mean and some with large variances that put mass in the tails
of the distribution. Thus the mixed distribution has fatter tails than the
normal one.

A basic observation about asset return data is that large returns (of ei-
ther sign) tend to be followed by more large returns (of either sign). In
other words, the volatility of asset returns appears to be serially correlated.
To capture the serial correlation of volatility, Engle [12] proposed the class
of Autoregressive Conditionally Heteroskedastic, or ARCH, models. These
write conditional variance as a distributed lag of past squared innovations:

σ2
t = δ + α(L)y2

t , (4.3)

where α(L) is a polynomial in the lag operator. To keep the conditional
variance positive, δ and the coefficients in α(L) must be nonnegative.

As a way to model persistent movements in volatility without estimating
a very large number of coefficients in a high-order polynomial α(L), Boller-
slev [2] suggested the Generalized Autoregressive Conditionally Heteroske-
dastic, or GARCH, model

σ2
t = δ + β(L)σ2

t−1 + α(L)y2
t , (4.4)
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where β(L) is also a polynomial in the lag operator. By analogy with ARMA
models, this is called a GARCH(p,q) model when the order of the polynomial
β(L) is p and the order of the polynomial α(L) is q.

The most commonly used model in the GARCH class is the simple
GARCH(1,1), which can be written as:

σ2
t = δ + βσ2

t−1 + αy2
t

= δ + (α + β)σ2
t−1 + α(y2

t − σ2
t−1)

= δ + (α + β)σ2
t−1 + ασ2

t−1(ε
2
t − 1),

where in the second equality, the term (y2
t −σ2

t−1) has mean zero, conditional
on time t − 1 information and can be thought of as the shock to volatility.
The coefficient α measures the extent, to which a volatility shock today feeds
through into next period’s volatility, while (α+β) measures the rate at which
this effect dies out over time. The third equality rewrites the volatility shock
as σ2

t−1(ε
2
t − 1), the square of a standard normal less its mean – that is,

a demeaned χ2(1) random variable – multiplied by past volatility σ2
t−1.

The GARCH(1,1) model can also be written in terms of its implications
for squared innovations y2

t+1:

y2
t+1 = δ + (α + β)y2

t + (y2
t+1 − σ2

t )− β(y2
t − σ2

t−1).

Hence, the GARCH(1,1) model can be represented as an ARMA(1,1)
for squared innovations. However, it is needed to pay attention, because
a standard ARMA model has homoskedastic shocks, while here the shocks
(y2

t+1 − σ2
t ) are themselves heteroskedastic.

4.2 ARCH and GARCH Models

in non-Gaussian Distribution

The GARCH models, which are considered in the previous section, imply
that the distribution of returns, conditional on the past history of returns, is
normal. Equivalently, the standardized residuals of these models, εt+1(θ) =
yt+1/σt(θ), should be normal. Unfortunately, in practice, there is an excess
kurtosis in the standardized residuals of GARCH models, albeit less than
in the raw returns. To handle this problem, one can explicitly model the
fat-tailed distribution of the innovations driving a GARCH process.

In the next sections, the necessary and sufficient conditions for existence
and uniqueness of a stationary solution of the stable GARCH equation will
be provided.
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4.2.1 Symmetric GARCH-stable Processes

One restricts itself to symmetric, strictly stable random variables, that is one
assumes β = µ = 0, see (2.2) in Section 2.1. A symmetric α-stable random
variable X with scale parameter σ is denoted by SαS(σ), i.e., its ch.f. equals
exp{−|σt|α}.

Recall first the definition of the stable GARCH process.

Definition 4.1 A sequence of random variables {Yn, n ∈ Z} is said to be
a stable GARCH(α,p,q) process if:

(i) Yn = σnSn , where Sn are i.i.d. r.v.’s distributed as SαS(1), 1 < α ≤ 2,

(ii) there exist nonnegative constants αi, i = 1, . . . , q and βj, j = 1, . . . , p
and 0 < δ, such that

σn = δ +

q∑
i=1

αi|Yn−i|+
p∑

j=1

βjσn−j, n ∈ Z. (4.5)

The assumption 1 < α ≤ 2 is not very restrictive in practice, because
most of the financial time series have finite mean. For α = 2, one obtains
a L1-version of the classical Gaussian GARCH(p,q) model.

To show the existence and uniqueness of strictly stationary solutions of
equation (4.5), one uses the results of Bougerol and Picard [5]. Following
their notation one defines:

• B = [δ, 0, . . . , 0]′ ∈ Rp+q−1,

• Xn = [σn+1, . . . , σn−p+2, |Yn|, . . . , |Yn−q+2| ] ∈ Rp+q−1,

• tn = [β1 + α1|Sn|, β2, . . . , βp−1] ∈ Rp−1,

• zn = [ |Sn|, 0, . . . , 0] ∈ Rp−1,

• α = [α2, . . . , αq−1] ∈ Rq−2,

•

An =


tn βp α αq

Ip−1 0 0 0
zn 0 0 0
0 0 Iq−2 0

 (p + q − 1× p + q − 1), (4.6)
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where Ip−1 and Iq−2 are identity matrices of size (p− 1) and (q − 2), respec-
tively.

Then, one has
Xn+1 = An+1Xn + B, n ∈ Z. (4.7)

Clearly, existence of solutions of (4.7) is equivalent to existence of solutions
of (4.5). The major role in what follows is played by a Lyapunov exponent
associated with matrices {An, n ∈ Z}. The definition of the top Lyapunov
exponent will be recalled next.

Let || · || be any norm on Rd and define an operator norm on the set
M(d) of (d × d) matrices by ||M || = sup{||Mx||/||x||, x ∈ Rd, x 6= 0}, for
any M ∈ M(d). Then, the top Lyapunov exponent associated with the
sequence {An, n ∈ Z} of i.i.d. random matrices, is defined by

γ = inf E

[
1

n + 1
log ||A0A−1 · · ·A−n||

]
, n ∈N ,

when E[ log+ ||A0|| ] < ∞ (where log+ x = max(log x, 0)). It follows, see
Bougerol and Picard [4], that, almost surely,

γ = lim
n→∞

1

n
log ||A0A−1 · · ·A−n||.

Given that r.v.’s Sn are i.i.d., random matrices An defined in (4.6) are also
i.i.d. Because γ ≤ E[ log ||A0|| ] and E[ log ||A0|| ] <∞ (because E|S0| <∞),
γ is well defined for the sequence {An, n ∈ Z}. Clearly, E[ log+ ||B|| ] <
∞. Thus, by Bougerol and Picard [4, Theorem 3.2], one has the following
theorem:

Theorem 4.2 The stable GARCH(α,p,q) process with 0 < δ, 2 ≤ p and
2 ≤ q has a stationary solution if the Lyapunov exponent of {An, n ∈ Z} is
strictly negative. The series Xn = B +

∑∞
i=1 AnAn−1 · · ·An−i+1B converges

almost surely for all n, and the process {Xn, n ∈ Z} is the unique strictly
stationary and ergodic solution of (4.7).

To obtain the conditions on the coefficients αi, i = 1, . . . , q and βj, j =
1, . . . , p for an existence of the strictly stationary solution, the characteristic
polynomial of E[A0] is considered:

f(z) = det(Iz − E[A0]) = zp+q−1

(
1− a

q∑
i=1

αiz
−i −

p∑
j=1

βjz
−j

)
,

where a = E|S1| = Γ(1− 1/α)/
∫∞

0
u−2 sin2(u)du.
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Theorem 4.3 (Bougerol and Picard [4, Collary 2.2])
If 0 < δ and a

∑q
i=1 αi +

∑p
j=1 βj ≤ 1, then the stable GARCH(α,p,q) with

2 ≤ p and 2 ≤ q, has a unique strictly stationary solution.

The case when p = q = 1 has to be treated separately, because then
the matrices {An, n ∈ Z} from (4.6) have zero columns and the results of
Kesten and Spitzer [18] do not apply. The largest Lyapunov exponent can
be computed for stable GARCH(α,1,1) directly as follows:

||A0A−1 · · ·A−n|| =
n∏

i=1

(β1 + α1|Si|) max(β1 + α1|S0|, 1, |S0|),

and by the Law of Large Numbers one obtains

γ =
1

n + 1
[ log(max(β1 + α1|S0|, 1, |S0|))

+
n∑

i=0

log(β1 + α1|Si|) ]
p−→ E[log(β1 + α1|S0|)].

If E[log(β1 + α1|S0|)] < 1, then stable GARCH(α,1,1) has a strictly sta-
tionary solution. A stationary condition β1 + aα1 < 1 compatible with the
results of Theorem 4.3 is obtained by using Jensen’s inequality.

4.2.2 Asymmetric GARCH-stable Processes

Generalizing the stable GARCH process to the asymmetric case.

Definition 4.4 Sequence yt, t ∈ Z is said to be a stable Paretian Asymmet-
ric GARCH process, in short, an Sα,βGARCH process, if

yt = µt + ctεt, εt
iid∼ Sαβ, (4.8)

where

ct = α0 +
r∑

i=1

αi|yt−i − µt−i|+
s∑

j=1

βjct−j, (4.9)

and where Sαβ denotes the standard asymmetric stable Paretian distribution
with stable index α, skewness parameter β ∈ [−1, 1], zero location parameter
and unit scale parameter.

By letting E(yt) = µt in (4.8) to be time-varying, one allows for a broad
range of mean equations, including e.g., regression or/and ARMA structures.
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According to Liu and Brorsen [24] and Panorska et al. [31], it is assumed
that α ∈ (1, 2], to avoid a number of technical problems arising from the fact
that α ≤ 1 implies such fat tails that εt and thus yt and ct do not even possess
the first moments. However, the restriction does not seem to have practical
relevance in empirical work, because the existence of the first moments is
hardly rejected in financial or economic time series.

Liu and Brorsen [24] state the conditional volatility equation 4.9 more
generally as

|ct|δ = α0 +
r∑

i=1

αi|yt−i − µt−i|δ +
s∑

j=1

βj|ct−j|δ.

In their empirical applications, they experiment by different settings of δ.

Observe that, as α approaches 2, model (4.8) becomes the so-called ab-
solute value GARCH model with normal innovations, originally proposed by
Taylor [37] and Schwert [36]. Nelson and Foster [30] have shown that, com-
pared to GARCH models in c2

t , the absolute value GARCH model is a more
efficient filter of the conditional variance in the presence of leptokurtic error
distributions (i.e., compared to the normal distribution they are typically
fat-tailed and more peaked around the center, a phenomenon, which is com-
monly observed with asset-return data).

Bougerol and Picard [4] have shown that a mean-corrected GARCH(r,s)
process driven by normally distributed innovations has a unique strictly sta-
tionary solution if

r∑
i=1

αi +
s∑

j=1

βj ≤ 1. (4.10)

The following result implies that condition (4.10) does not apply to Sα,β-
GARCH models with α < 2.

Theorem 4.5 An Sα,βGARCH process defined by (4.8) and (4.9) with 1 <
α < 2 has a unique strictly stationary solution if 0 < αi, i = 0, . . . , r, 0 <
βj, j = 1, . . . , s and

λα,β

r∑
i=1

αi +
s∑

j=1

βj ≤ 1 (4.11)

where λα,β
df
= E|εt| is given by

λα,β =

{
2
π
Γ(1− 1

α
)(1 + τ 2

α,β)
1
2α cos( 1

α
arctan τα,β), 1 < α < 2,√

2
π
, α = 2,

(4.12)
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with τα,β
df
= β tan απ

2
.

In the symmetric case, i.e. β = 0, (4.12) reduces to

λα,β =

{
2
π
Γ(1− 1

α
), 1 < α < 2,√

2
π
, α = 2.

(4.13)

The value of parameter λα,β defined in (4.12) and (4.13) depends on the
stable index α and the skewness parameter β. For α < 2 one has 1 < λα,β.
This implies that stationary condition (4.11) is more restrictive than in the
normal case. Observe also that, in the normal case λ2,0 =

√
2/π < 1,

implying that
∑r

i=1 αi +
∑s

j=1 βj could be greater than one and not violate
the stationarity condition.

In case of normally distributed innovations for the variance-GARCH mod-
el, Engle and Bollerslev [13] referred to GARCH processes satisfying the
borderline condition

r∑
i=1

αi +
s∑

j=1

βj = 1 (4.14)

as an integrated GARCH or IGARCH process. Condition (4.14) implies that
autoregressive polynomial 1−(α1+β1)L−· · ·−(αn+βn)Ln with n = max(r, s),
when rewriting the GARCH process in an ARMA form in terms of ε2

t , has a
unit root.

In the Sα,βGARCH case, the analogue to (4.14) is

λα,β

r∑
i=1

αi +
s∑

j=1

βj = 1, (4.15)

giving rise to integrated Sα,βGARCH or Sα,βIGARCH processes. The implied
autoregressive polynomial for the ARMA representation of |ct| is

1− (λα,βα1 + β1)L− · · · − (λα,βαn + βn)Ln,

in which case one has the persistence of the conditional volatility.

The GARCH(1,1) model is most commonly specified in empirical work.
Stationarity of an Sα,βGARCH(1,1) process requires

λα,βα1 + β1 ≤ 1.

Thus, when estimating an Sα,βIGARCH(1,1) model the restriction β1 = 1−
λα,βα1 needs to be imposed during estimation.

Note that all proofs of results from sections 4.2.1 and 4.2.2 can be found,
e.g., in Rachev and Mittnik [34].
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Chapter 5

An Empirical Application

5.1 Statistical Software

All statistical computations were performed with the statistical software
R 2.5.0 for Mac OS X Aqua GUI, Copyright c© 2004-2007 The R Foundation
for Statistical Computing (http://www.R-project.org). This software pack-
age is distributed as a free software under the terms of the Free Software
Foundation’s GNU General Public License in source code form.

Statistical tests, which are not incorporated in “R”, were written by the
author of this text directly in “R” environment.

5.2 Data

As an illustration of modeling of returns, it is reported on a single time
series, whose behavior will be described bellow. These real data become from
energetic field of activity. The data set relates on the consumption of energy
of an economical subject during one year period (2006). The consumption of
energy was recorded every hour in sequential mapping. So there is a sample
of 8760 observations in equidistant time spots. The January levels of this
time series are shown in Figure 5.1 (only January, because the levels for
longer period would not be comprehensive).

One can observe everyday peaks during rush hours, decays and saddles
of current consumption. It is visible that this subject has his main activity
during working days – there is obvious decrement at the weekends.

As a first step, a test based on reversion points was performed (see
Cipra [10]). This test rejects the hypothesis, that the investigated time series
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Figure 5.1: January Levels of Time Series

is a pure stochastic process, with probability 95%. The term, that a time
series is stochastic, means, that the time series does not have any patterns,
like cyclic or seasonal. It means that it behaves only as a pure white noise.

For historical reasons, the standard convention was accepted and return rt

in period t was counted by

rt
df
= ln

(
Pt

Pt−1

)
× 100,

where Pt is the consumption of the subject at time t. The January return
series is shown in Figure 5.2.

To provide a visual impression, Figure 5.3 shows the empirical density of
the returns obtained via kernel density estimation. The graph is consistent.
From the Figures 5.1, 5.2 and 5.3 extreme kurtosis, as well as volatility
clustering, are clearly visible.

Table 5.1 summarizes the basic statistical properties of the return series.
The returns show the evidence of fat tails. A negative skewness statistic
indicates that the distribution is skewed to the left, i.e., compared to the right
tail, the left tail is elongated. The kurtosis statistic reflects the significant
peakedness of the center compared to that of the normal distribution (a value
near three would be indicative of normality). Although formal tests could, in
principle, be conducted, it should be kept in mind that under the non-Gaussi-
an stable hypothesis, second and higher moments do not exist, rendering such
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Figure 5.2: January Returns of Time Series

−500 0 500

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

0.
06

Empirical Density Function

N = 8759   Bandwidth = 1.141

D
en

si
ty

Figure 5.3: Empirical Density Function of Returns
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Mean Standard Deviation Skewness Kurtosis
-0.0004212325 14.47665 -0.2227454 1469.197

Table 5.1: Statistical Properties of Returns

tests useless. The numbers in the Table 5.1, as well as the Figure 5.3, indicate
considerable deviation from normality. Formal tests, such as Shapiro-Wilk
or Kolmogorov-Smirnov normality test, confirmed this too.
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Chapter 6

Unconditional Fitting

Considering the unconditional case, the ML estimate of θ = (α, β, c, δ) is
obtained by maximizing the logarithm of the likelihood function

L(θ) =
T∏

t=1

Sα,β

(
rt − δ

c

)
c−1.

Evaluation of the probability density function and thus, the likelihood
function of the Sα,β distribution is nontrivial, because it lacks an analytic
expression. The estimation of α-stable models is approximate in the sense
that the α-stable density function Sα,β((rt− δ)/c) needs to be approximated.
One numerically approximates the α-stable density via FFT (fast Fourier
transformation) of the ch.f. rather than some series expansion.

The ML estimation of the unconditional return distribution led to the esti-
mates given in Table 6.1, where the parameter labels correspond to ch.f. (2.2).
Output of the “R” software does not provide standard deviations of this es-
timations. Note that the scale for the normal case is given by the estimated
standard deviation of the return series and not by parameter c in (2.2), so
that the entries cannot be compared directly (between stable and normal
case). The same situation is with the shift parameter δ, which is given by
the estimation of mean in Gaussian case. The skewness parameter for normal

Distribution α̂ (index) β̂ (skewness) ĉ (scale) δ̂ (location)

NORMAL 2 0 14.4758284435 -0.0004212325
α-STABLE 1.8023219 -0.1254743 5.8689991 0.1587154

Table 6.1: ML Estimates of Unconditional Distributions

40



−40 −20 0 20 40

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

0.
06

Unconditional Fit

N = 8759   Bandwidth = 1.141

D
en

si
ty

Figure 6.1: Fitted Unconditional Normal and α-Stable Densities

case is zero and the shape parameter two by the definition. The estimated
shape parameter of the α-stable distribution is well below α = 2, the Gauss-
ian case. However, one can observe in Table 6.1 the substantial differences
between the numbers for the normal and stable distribution.

Figure 6.1 clearly indicates that the fitted α-stable distribution domi-
nates that of the normal. This picture shows the empirical density obtained
via kernel density estimation (black dashed line), along with the fitted nor-
mal distributions (dark red solid line) and fitted α-stable distribution (steel
blue solid line). The graph is consistent with the fit estimations reported
in Table 6.1. As one can see, the α-stable approach provides a much closer
approximation to the empirical density function.
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Chapter 7

Conditional Gaussian Fitting

7.1 Homoskedastic Model

The unconditional results ignore possible temporal dependencies in the return
series. Typical serial dependence in a time series is modeled by ARMA
structures. Such models allow conditioning of the process mean on past
realizations and have been proven successful for the short-term prediction of
time series.

To obtain conditional models, as the first an ARMA model under nor-
mal assumptions will be demonstrated, employing (approximate) conditional
maximum-likelihood (ML) estimation. The ML estimation is conditional, in
the sense that, when estimating, for example, an ARMA(p,q) model, one
conditions on the first p realizations of the sample, rp, rp−1, . . . , r1, and set
innovations εp, εp−1, . . . , εp−q+1 to their unconditional mean E[εt] = 0.

A peculiar feature of ARMA models is that the conditional (prediction
error) variances are, in fact, independent of past realizations, i.e., they are
conditionally homoskedastic (i.e., constant-conditional-volatility). In view
of the facts, the assumption of conditional homoskedasticity is commonly
violated in financial data, where volatility clusters are typically observed,
implying that a large return is often followed by more large returns, which
more or less slowly decay. Such behavior can be captured by AutoRegressive
Conditional Heteroskedastic – ARCH and GARCH models (see Engle [12]
and Bollerslev [2]), possibly in combination with ARMA model, referred to
as an ARMA-GARCH model. They express the conditional variance as an
explicit function of past information and permit conditional heteroskedastic-
ity (i.e., varying-conditional-volatility).

The homoskedastic case will be considered first, before moving to the
more interesting conditional heteroskedastic case. An ARMA model of au-
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Figure 7.1: Sample Correlation Function of Returns

toregressive order p and moving average order q is of the form

rt = µ +

p∑
i=1

airt−i + εt +

q∑
j=1

bjεt−j, (7.1)

where {εt} is a white noise process. To specify the orders p and q in (7.1),
standard Box-Jenkins identification techniques are followed (see, for example,
Box and Jenkins [6], Wei [38], Brockwell and Davis [7] or Johnston [17])
and inspected sample autocorrelation function (SACF) and sample partial
autocorrelation function (SPACF) of the return series, as shown in Figures 7.1
and 7.2.

The exponentially decaying SAFC and the second large spike in the
SPACF strongly suggest the appropriateness of an AR(2) structure. The
formal statistical test based on Quenouille approximation confirmed that the
point of truncation in SPACF is really at lag two. The test did not reject the
hypothesis that the lag-values of the SPACF — from the third one — are
not distinguished from zero. However, both the SACF and SPACF exhibit
relatively large spikes at lag one, possibly suggesting either a subset AR(1)
or MA(1) or the combinations ARMA(1,1), or ARMA(2,1) respectively. So,
these options were analyzed:
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Figure 7.2: Sample Partial Correlation Function of Returns

• AR(2)

• AR(1)

• MA(1)

• ARMA(1,1)

• ARMA(2,1)

As the decision criteria, AIC (Akaike-Information-Criterion, see Akaike [1]),
the estimated variance of the white noise (variance of innovations) and the
maximum-likelihood value were used.

As the next step, the estimations of all parameters for all suggested mod-
els and comparison of all decision criteria were proceeded. The conditional
ML estimations were used to establish the normal ARMA models. The low-
est AIC, the lowest estimated variance of the white noise and the highest
likelihood value for the return series had the model ARMA(2,1). So, it was
opted for this variant. The intercept parameter µ of the chosen model seemed
to be redundant (notable standard deviation of its estimation), therefore was
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â1 â2 b̂1

ESTIMATIONS -0.6326 -0.2992 0.2186
S.E. 0.0107 0.0160 0.0464

Table 7.1: Parameter Estimates of ARMA(2,1)

α̂ (index) β̂ (skewness) ĉ (scale) δ̂ (location)
2 0 5.9338265147 0.0001858718

Table 7.2: ML Estimates of Conditional Homoskedastic Normal Distribution

excluded from the next computation. Other parameters were statistically sig-
nificant. Table 7.1 shows all estimations of the parameters and their standard
errors (standard deviations).

Finally, the best model, which was obtained and statistically confirmed,
has this form:

rt = −0.6326rt−1 − 0.2992rt−2 + εt + 0.2186εt−1. (7.2)

The estimation of the variance of the white noise is σ̂2
ε = 174.3.

The parameter estimates of the fitted conditional distribution are re-
ported in Table 7.2 (output of the “R” does not provide standard deviations
of this estimations). Comparing the results to those of the fitted uncondi-
tional normal distributions, one can see considerable difference in the scale
parameter ĉ and location parameter δ̂. This is not surprising in light of the
relatively strong ARMA components.

To provide a visual impression, Figure 7.3 shows the empirical density ob-
tained via kernel density estimation (dashed lines), along with fitted ARMA
model under normal distributions. The graph is consistent with the values
reported in Table 7.1. One can observe how much close is the approximation
of the estimated model to the empirical one.

For comparison reasons, this ARMA model driven by the stable dis-
tributed innovations (not Gaussian like in this case) will be investigated in
the next text.
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Figure 7.3: Normal ARMA(2,1) Residuals

7.2 Heteroskedastic Model

While there exist several popular model classes designed to parsimoniously
and effectively fit return data, the GARCH class of models is arguably the
most common.

An ARCH or GARCH model extends the mean equation, here the form
(7.2), by assuming that

εt = ctut,

where, in the normal case, ut ∼ N(0, 1) and

c2
t = ω +

r∑
i=1

αiε
2
t−i +

s∑
j=1

βjc
2
t−j, 0 < ct. (7.3)

A standard approach to detecting GARCH-dependencies in a time se-
ries yt, is to compute the SACF of the squared series, y2

t . Figure 7.4 and
7.5 show the SACF and PACF of the squared returns. The returns show
substantial evidence of ARCH effects, as judged by the autocorrelations in
Figure 7.4. The first order autocorrelation is significant, but they immedi-
ately decline. Standard Box-Jenkins methodology would suggest the need for
a mixed model, i.e., one with r and s both greater than zero. As is common
in economical GARCH modeling (see, for example, Bollerslev et al. [3]), it
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Figure 7.4: Sample Correlation Function of Squared Returns

0 10 20 30 40

−
0.

2
0.

0
0.

2
0.

4

Lag

P
ar

tia
l A

C
F

SPACF of Squared Returns

Figure 7.5: Sample Partial Correlation Function of Squared Returns
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â1 â2 b̂1

ESTIMATIONS -0.7158821 -0.4048588 0.6157279
S.E. 0.01628052 0.01373888 0.01345973

ω̂ α̂1 β̂1

ESTIMATIONS 8.2386495 0.2340199 0.7139701
S.E. 0.66475579 0.01265286 0.01404709

Table 7.3: Parameter Estimates of ARMA(2,1)-GARCH(1,1)

was found that r = s = 1 is adequate in capturing the correlation structure
for this squared series (absolute series as well, but is not shown).

The conditional mean was modeled with the same ARMA parameteriza-
tion as used in the homoskedastic case. The following conditional heteroske-
dastic model for the return series was specified:

• ARMA(2,1)-GARCH(1,1)

The parameters in the ARMA and GARCH equation of the model were
jointly estimated via conditional ML, where it is assumed that the scaled in-
novations, ut = εt/ct, are i.i.d. normal and ct satisfies GARCH recursion (7.3).
The parameter estimates are reported in Table 7.3. The three coefficients in
the variance equation (7.3) are listed as ω̂, the intercept; α̂1, the first lag of
the squared return and β̂1, the first lag of the conditional variance.

One can observe that the estimates of ARMA parameters from already
estimated ARMA-GARCH model, which correspond now to the scaled in-
novations, ut, are larger in absolute value than those in Table 7.1. All the
estimated parameters are statistically significant, as it follows from the p-
values, computed by the “R” software.

Figure 7.6 and 7.7 show the SACFs corresponding to both the ARMA(2,1)-
GARCH(1,1) residuals themselves and their squares. One can see that the
parsimoniously parameterized ARMA(2,1)-GARCH(1,1) model is capable of
extracting the majority of the outstanding serial correlation exhibited by
both the mean and variance of the returns. Clearly, the autocorrelations are
reduced from that observed in the portfolio returns themselves.

The associated SPACFs were qualitatively similar and are not shown.
The GARCH(1,1) model can be generalized to a GARCH(p,q) model–

that is, a model with additional lag terms. Such higher-order models are
often useful when a long span of data is used, like several decades of daily
data or a year of hourly data (the case of this returns). With additional lags,
such models allow both fast and slow decay of information. A particular
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Figure 7.6: SACF of Conditional Heteroskedastic Residuals
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Figure 7.7: SACF of Conditional Heteroskedastic Squared Residuals
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Figure 7.8: Fitted Normal ARMA(2,1)-GARCH(1,1) Densities

α̂ (index) β̂ (skewness) ĉ (scale) δ̂ (location)
2 0 5.5347405100 0.0003108482

Table 7.4: ML Estimates of Conditional Heteroskedastic Normal Distribution

specification of the GARCH(2,2), sometimes called the “component model”,
is a useful starting point to this approach. Therefore, it was tried to “over”-
parameterize (“under”- as well) the chosen ARMA(2,1)-GARCH(1,1) model,
but there were not better results (for example, neither in AIC nor in ML
value).

The parameter estimates of the fitted conditional distribution are re-
ported in Table 7.4. Comparing the results to those of the fitted uncondi-
tional normal distributions - Table 6.1, one can see a significant difference
in the scale parameter ĉ and in location parameter δ̂ again. One can observe
considerable changes against the results in Table 7.2 too.

Similar to the Figure 6.1 and Figure 7.3, Figure 7.8 shows the kernel den-
sity, and as well fitted density of the residuals corresponding to the normal
conditional heteroskedastic model. The result demonstrates the dominance
of combined ARMA-GARCH fit over the more simple ARMA fit, when com-
paring with the Figure 7.3.
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Chapter 8

Conditional Stable Fitting

8.1 Simulation of Stable Distributed Innova-

tions

In this section the practical matters of simulation, according to Klebanov et
al. [21] and Devroye [11], are discussed.

A random variate with a given non-uniform distribution can often be
generated in one assignment statement if an uniform source and some simple
functions are available. In next text, such one-line methods for stable distri-
butions will be reviewed. The simplest end of the spectrum — the generators
that can be implemented in the one line of code, will be explored and sur-
veyed. Random variate generators that are conceptually simple and quick to
program become invariably popular, even if they are not as efficient as some
more complicated methods.

The standard way of generating sequences of random variables given by
a distribution function F is the inversion method (see, e.g., Devroye [11]),
consisting of generating uniform [0, 1] variates Ui and returning F−1(Ui),
where F−1 is the inverse of F . The inversion method is based upon the prop-
erty that F−1(Ui) has distribution function F if Ui is uniformly distributed
on [0, 1]. It leads to one-liners only if F is explicitly invertible in terms of
functions that are in F — one may think of a one-liner as an expression
tree in which the leaves are uniform [0, 1] random variables or constants, and
the internal nodes are the operators or functions in the accepted class of
operators, which will be called F .

This method can be applied to geometric stable (GS) laws with α = 2,
since the skew Laplace distribution functions are available in closed forms.

Here is an algorithm based on the representation in terms of two i.i.d.
uniform variables.
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8.1.1 AL∗(κ, σ)

1. Generate a standard uniform variate U1

2. Generate a standard uniform variate U2, independent on U1

3. Set Y ← σ√
2
log

Uκ
1

U
1/κ
2

4. Return Y

The inversion method is not directly applicable to the general GS case,
since there are no analytic expressions for the relevant distribution functions
and their inverses. The solution to the problem of computer simulation of
GS random variables can be obtained through the representation formula in
the following Theorem:

Theorem 8.1 Let E0, E1, . . . , En, . . . be a sequence of i.i.d. standard expo-
nential variables and let R1, . . . , Rn, . . . be a sequence of i.i.d. random vari-
ables, independent of the sequence {Ej}. If the series

∞∑
k=1

(
E0

E1 + · · ·+ Ek

)1/α

Rk (8.1)

converges a.s., then it converges to a strictly geometric stable random vari-
able.

PROOF: See Klebanov et al. [21] Q.E.D.

Bellow, in the next subsections, several algorithms taken from Kozubow-
ski [23] are presented.

8.1.2 A Strictly GSα(λ, τ) Generator

Here is a generator of a strictly GS random variable Y , given by the
ch.f. (2.12).

1. Set p← (1+τ)
2

2. Generate a standard exponential variate Z

3. Generate uniform [0, 1] variate U1 independent of Z

4. IF U1 ≤ p
THEN set ρ← αp and J = 1
ELSE set ρ← α(1− p) and J = −1
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5. IF ρ = 1
THEN set W ← 1

ELSE {
generate uniform [0, 1] variate U2, independent of Z and U1;
set W ← sin(πρ) cot(πρU2)− cos(πρ) }

6. Set Y ← J · Z · (λ ·W )1/α

7. Return Y

8.1.3 General GSα(c, β, δ) Generator

1. Generate a standard exponential variate Z

2. Generate standard stable variate X ∼ Sα(1, β, 0), independent of Z
(see,e.g., Section 8.1.4 or 8.1.5)

3. IF α 6= 1
THEN set Y ← δZ + Z1/αcX
ELSE set Y ← δZ + ZcX + cZβ(2/π) log(Zc)

4. Return Y

8.1.4 A Standard Stable Sα(1, β, 0) Generator

To generate the stable Sα(1, β, 0) r.v. X one can use the stable generator
discussed in Weron [39].

1. Generate a standard exponential variate W

2. Generate uniform (−π/2, π/2) variate V , independent of W

3. IF α = 1
THEN set X ← 2

π

[
(π

2
+ βV ) tan V − β log( W cos V

π/2+βV
)
]

ELSE {
set b← arctan(β tan(πα/2))

α

set s← [1 + β2 tan2(πα
2

)]1/2α

set X ← s · sin(α(V +b))

(cos V )1/α ·
(

cos(V−α(V +b))
W

) 1−α
α

}

4. Return X
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8.1.5 A Standard Stable Sα(c, β, δ) Generator

Chambers et al. [9] suggested this algorithm:

1. Set K(α)← α− 2I1<α

2. Set θ ← βK(α)
α

3. Set Bα(z)← sin(πα(z+θ)
2 )

cos(π((α−1)z+αθ)
2 )

(
cos(π((α−1)z+αθ)

2 )
cos(πz

2
)

)1/α

4. Generate a standard exponential variate Z

5. Generate uniform [0, 1] variate U independent of Z

6. For β ∈ [−1, 1], IF α 6= 1
THEN set X ← Bα(U − 1/2)Z1−1/α

ELSE (α = 1) set X ← B1(U − 1/2)− 2β
π

log Z,

where B1(z) = 2β
π

log
(

1+βz
cos(πz

2
)

)
+ (1 + βz) tan(πz

2
)

7. Return X

8.2 Homoskedastic Model

Now, the ARMA(2,1) model from the Section 7.1 will be driven by stable dis-
tributed innovations. Two case studies will be discussed: one for a standard
α-stable distribution and one for a GS distribution.

As the first thing, standard α-stable random variables were simulated.
To obtain such innovations, one moves according to the Section 8.1.5. Then,
GS variables according to the Section 8.1.3 were simulated.

Using the form (7.2), the fitted values of the ARMA(2,1) model driven
by this already generated α-stable and GS innovations were counted. Also,
the coefficients of the model are the same as for the normal case (compare
Table 7.1), only the innovations have been changed. With this method, the
residuals for the α-stable conditional homoskedastic case and as well for the
GS conditional homoskedastic case were obtained.

Similar to the Figure 7.3, Figure 8.1, or 8.2 respectively, show the kernel
density (dashed line) and fitted densities of the residuals corresponding to
the normal (red line) and to the α-stable, or GS respectively, (steel blue line)
conditional homoskedastic model. One is clearly able to compare both cases:
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Figure 8.1: ARMA(2,1) Driven by α-Stable (steel blue line) and Normal (red
line) Innovations

the normal vs. the α-stable conditional homoskedastic model and the normal
vs. the GS homoskedastic model. One can see that in both figures the stable
model overwhelms the normal one. Comparing α-stable and GS case, one
can observe that the GS one renders the real data distribution better.

Again, conditional ML estimation was used to estimate both the fitted
α-stable and GS distributions of the ARMA(2,1) model, whereby one took
the first 2 values of the return series to be fixed. The parameter estimates
of fitted conditional distributions are reported in Table 8.1 for both cases.
One can observe that there are considerable discrepancies between them.
Comparing the results to those of the normal fitted conditional distributions
in Table 7.2, one can see a significant reduction in the scale parameters ĉ
and a significant increase in the location parameters δ̂. The shape (index)
parameter α̂, of the α-stable distribution is slightly bellow 2, the normal
case. For the GS conditional distribution, one can observe that the shape
parameter is lower than in the α-stable case, therefore the excess of the
kurtosis is covered better by the GS case, as one can see in Figure 8.2.

Note that the estimation of all stable models is approximate in the sense
that the stable density function, Sα(c, β, δ), is approximated via FFT of the
α-stable characteristic function (2.2), or (2.12) respectively.

55



−40 −20 0 20 40

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

0.
06

ARMA(2,1) GS Stable vs. Normal Residual Fit

N = 8759   Bandwidth = 1.141

D
en

si
ty

Figure 8.2: ARMA(2,1) Driven by GS (steel blue line) and Normal (red line)
Innovations

α̂ (index) β̂ (skewness) ĉ (scale) δ̂ (location)

α-Stable case 1.786640295 -0.009850426 1.124063689 0.010957325
GS case 1.575808071 0.006353435 0.957653547 0.008025484

Table 8.1: ML Estimates of Conditional Homoskedastic Stable Distributions
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8.3 Heteroskedastic Model

It turns out that ARCH-type models driven by normally distributed inno-
vations (“building blocks”) imply unconditional distributions, which them-
selves possess heavier tails (see Section 4.1). However, many studies have
shown that GARCH-filtered residuals are themselves heavy-tailed, so that
stable distributed innovations would be a reasonable distributed assump-
tion. Thus, a combination of fat-tailed innovations and a GARCH structure
appears necessary to successfully account for the excess kurtosis in this time-
series research.

One uses the α-stable and the GS innovations, which were simulated in
the previous section – Section 8.2.

This innovations were fitted to the ARMA(2,1)-GARCH(1,1) model, ob-
tained in the Section 7.2. The coefficients of the model are the same as for
the normal case (compare Table 7.3) again, only the innovations have been
changed.

The graphical results of the ARMA(2,1)-GARCH(1,1) model driven by
the α-stable and GS innovations are optically almost identical. Therefore,
one provides only the α-stable case for graphical comparison. Also, similar
to the Figure 8.1 and 8.2, Figure 8.3 shows the kernel density (dashed line)
and fitted densities of the residuals corresponding to normal (red line) and α-
stable (steel blue line) conditional ARMA-GARCH model. One is clearly able
to compare the normal vs. the α-stable conditional heteroskedastic model.
However, one can see that the α-stable model outperforms the normal one.

Once again, conditional ML estimation was used to estimate both the
fitted α-stable and the GS distributions of the ARMA(2,1)-GARCH(1,1)
model. The parameter estimates of the fitted conditional distributions are
reported in Table 8.2 for both cases. One can observe that there are not con-
siderable discrepancies between them. Comparing the results to those of the
normal fitted conditional distributions in Table 7.4, one can see a significant
reduction in the scale parameters ĉ and a significant increase in the location
parameters δ̂. The shape (index) parameters α̂ are slightly bellow 2, the nor-
mal case. One can see that the estimates of stable index α, which correspond
now to the scaled innovations, ut, are larger than those for the distributions
in Table 8.1 and 6.1. This is what one expects, as ARCH/GARCH com-
ponents absorb a portion of the excess of the kurtosis of the unconditional
distribution. The skewness parameter β̂ has a notable increase in his abso-
lute value. However, one should keep in mind that as α̂ increases towards 2,
the effect of the skewness parameter diminishes. For the α̂ near 1.828, even
a skewness component of −0.415 is very mild, so that the large change is
somewhat illusory.
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Figure 8.3: ARMA(2,1)-GARCH(1,1) Driven by α-Stable (steel blue line)
and Normal (red line) Innovations

α̂ (index) β̂ (skewness) ĉ (scale) δ̂ (location)

α-Stable case 1.8285234 -0.4153421 2.3169318 0.2186468
GS case 1.8284702 -0.4153296 2.3228284 0.2192745

Table 8.2: ML Estimates of Conditional Heteroskedastic Stable Distributions
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Chapter 9

Conclusions

Many researchers in stable distribution area argue that the Gaussian mod-
eling of the real data is not sufficient describing all aspects of reality. They
try to cover possible skewness and heavy tails by building more sophisticated
models. Rendering such structures should be much more effective.

This paper investigates a couple of the stable laws (α-stable and GS) and
compares it to the Gaussian one on a sample of real data from energetic field
of economy. In successive steps, an unconditional, a conditional homoskedas-
tic and a conditional heteroskedastic model is demonstrated. The stable and
the normal approach to the data is confronted in all three cases. The obtained
results clearly confirm that the stable models are more forcible describing the
data than the normal one. However, the GS distributional assumption was
found to be superior comparing to the classic Paretian α-stable, at least for
the ARMA model.

Furthermore, the usual assumption, and that which is implemented in
popular software packages, is that the driving innovations are either normally
or Student’s t distributed. The former is the “standard” assumption in finan-
cial and even most econometric or statistical models, but fails demonstrably
in empirical applications (see, e.g., Gouriéroux [16]). Indeed, normality is
a special, limiting case of the stable Paretian distribution, which, otherwise,
allows for fatter-than-normal tails and skewness, these being precisely two of
the typical “stylized facts” associated with the real returns data.

The problem is that despite of the former facts, there is almost none
complex statistical software for ARMA-GARCH processes driven by stable
innovations (such as SAS, SPSS, R or S-plus) until these days. There exists
only a couple of small questionable commercial softwares for stable GARCH
fitting and these are designed only for this purpose. (Maybe, there exists one
exception and that is a “stable” library package for S-plus, but which is also
extra paid.) Therefore, one can see future development of the stable laws,
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among the other things, in building of useful statistical utilities for the next
academic research and applied mathematicians.

Further discussion along these lines and a test for the summability prop-
erty in the context of ARMA-GARCH models were proposed in Rachev [33,
Chapter 9], Paolella [32] and further applied in Mittnik et al. [28].
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