
CHARLES UNIVERSITY, PRAGUE
FACULTY OF MATHEMATICS AND PHYSICS

MASTER THESIS

Tomáš Mihalčin

Web Frameworks Comparison Concerning
the Efficiency of Development

Department of Software Engineering
Advisor: RNDr. Tomáš Bureš, Ph.D.
Study Program: Computer Science

I would like to thank my advisor Tomáš Bureš for his valuable comments and advice. I would also

like to thank my consultant Tomáš Krátky. His help and professional experience in the web

frameworks area helped me to improve the quality of this thesis.

I hereby certify that I wrote the thesis by myself, using only the referenced sources. I agree with

making the thesis publicly available.

Prague, 22.7.2007 Tomáš Mihalčin

Názov práce: Porovnanie webových frameworkov s ohľadom na efektivitu vývoja

Autor: Tomáš Mihalčin

Katedra: Katedra softwarového inžinierstva

Vedúci diplomovej práce: RNDr. Tomáš Bureš, Ph.D.

e-mail vedúceho: bures@dsrg.mff.cuni.cz

Abstrakt: Skoro všetky podnikové webové projekty sú dnes implementované v nejakom webovom

frameworku. Frameworky sa líšia vo filozofii, vlastnostiach a podpore pre ostatné populárne

frameworky a technológie.

Cieľ tejto práce bolo porovnať frameworky Struts 2, Tapestry a Spring WebFlow a dať aplikačným

programátorom a architektom prehľad o procese implementácie a zložitosti každého frameworku,

aby sa mohli rozhodnúť, ktorý framework si vybrať pre svoj projekt..

Práca definuje kritériá pre porovnanie frameworkov. Porovnanie bolo vykonané na štúdii, ktorá bola

implementovaná v Struts 2 a Tapestry a bol vykonaný výskum o možnostiach integrácie Spring

WebFlow so Struts 2 a Tapestry. Proces implementácie bol detailne popísaný so všetkými

problémami, ktoré sa objavili v implementačnej fáze. Nakoniec boli vykonané merania podľa

definovaných kritérii a boli navrhnuté konečné odporúčania.

Kľúčové slová: webové frameworky, Struts 2, Tapestry, Spring WebFlow, porovnanie

Title: Web Frameworks Comparison Concerning the Efficiency of Development

Author: Tomáš Mihalčin

Department: Department of Software Engineering

Supervisor: RNDr. Tomáš Bureš, Ph.D.

Supervisor's e-mail address: bures@dsrg.mff.cuni.cz

Abstract: Almost all enterprise web projects today are implemented in some kind of web

framework. The frameworks differ in philosophy, features and support for other popular

frameworks and technologies.

The aim of this thesis was to compare Struts 2, Tapestry and Spring WebFlow frameworks and give

the application developers and architects an overview about the implementation process and

complexity of each framework to help them decide, which framework to choose for their projects.

The thesis defines criteria for the frameworks comparison. The comparison is done on a case study

which has been implemented in Struts 2 and Tapestry and research on the integration possibilities of

Spring WebFlow with Struts 2 and Tapestry has been done. The implementation process has been

described in detail with all the problems that occurred during the implementation phase. Finally, the

measurements have been made according to the defined criteria and final recommendations have

been proposed.

Keywords: web frameworks, Struts 2, Tapestry, Spring WebFlow, comparison

Contents

1. Introduction..1

1.1. Goals...1

1.2. Structure of the text...2

2. Frameworks description...4

2.1. Struts 2..4

2.1.1. History...4

2.1.2. Architecture...4

2.1.3. Example of use..7

2.1.4. Requirements...11

2.1.5. Supported Technologies..11

2.2. Tapestry...13

2.2.1. History...13

2.2.2. Architecture...13

2.2.3. Example of use..14

2.2.4. Requirements..19

2.2.5. Supported Technologies..19

2.3. Spring WebFlow...20

2.3.1. History...20

2.3.2. Architecture...20

2.3.3. Example of use..21

2.3.4. Requirements..25

2.3.5. Supported Technologies..25

3. Criteria description...26

3.1. Benchmarks..26

3.2. Features...28

3.3. Subjective judgement..28

4. Case study...30

4.1. GUI model..30

4.2. Domain model...31

4.3. Page flows...32

4.4. Modifications..34

5. Case study implementation...36

5.1. Struts 2..36

5.1.1. Setup..36

5.1.2. Implementation...36

5.2. Tapestry...37

5.2.1. Setup..37

5.2.2. Implementation...37

5.3. Struts 2 with WebFlow..37

5.4. Tapestry with WebFlow..39

6. Results..40

6.1. Benchmarks..40

6.1.1. Time spent developing pages..40

6.1.2. Time spent modifying existing application...41

6.1.3. The size of written code..42

6.1.4. Size of generated HTML code..43

6.1.5. Frameworks performance...44

6.1.6. Typical amount of files per 1 page..49

6.1.7. Page correspondence with W3C standards...49

6.2. Features...51

6.2.1. Localization support..51

6.2.2. Validation support...52

6.2.3. AJAX support..52

6.3. Subjective judgement..52

6.3.1. Technology complexity...52

6.3.2. Complexity of orientation in existing project...53

6.3.3. Complexity of setting up a new project..53

6.3.4. Quality of support...53

7. Related work...54

8. Conclusion..56

9. References..57

1. Introduction

Web applications have gained much popularity in the past decade. More and more applications are

being developed with web user interface due to the qualities these kinds of applications provide.

Users may access them through a web browser anywhere in the world, without any kind of special

software required. All they need is a connection to the Internet.

Web framework is a software framework designed to make development of the dynamic web

applications easier by providing means that allow software developers to focus on the important

parts of development. Tedious tasks such as session handling, localization, user input validation,

etc., are taken care of by the framework with minimum amount of configuration. This makes use of

web frameworks popular in web development environment, because developers do not have to

reinvent the wheel with every new project, this is being done for them by the framework.

There are many Java frameworks available today. Some are designed for a specific purpose and

others are meant for general use. Some are better for smaller applications with best performance in

mind, some are better for large scale systems, where there is the need for more added functionality.

Support for additional technologies like Spring framework, AJAX, Hibernate, iBATIS, EJB or

others vary.

Focus of this thesis are new Java frameworks – Apache Struts 2, Tapestry 4.1 and Spring WebFlow.

All of them have a different approach to development of web applications. Struts 2 is an action

based framework opposing component based Tapestry, whereas WebFlow is designed as a support

framework for capturing page flow of web applications.

All of the frameworks (or versions of frameworks) are relatively new and there has not been done a

comparison on a common case study for all of them. Therefore, this thesis will use a case study, the

same for all the frameworks, as basic means of comparison between them.

1.1. Goals

The main goal of this thesis is the comparison of above mentioned frameworks on a defined case

study. The outcome of this thesis will be information that may be useful for developers, software

engineers or software architects, when they are trying to decide which framework will be suitable

for their intended purpose.

1

The sub-goals of this thesis include:

● Definition of comparison criteria – detailed list of criteria with their justification will be

defined. Criteria will include time needed for development and modification of web

applications, amount of source code written, size of generated HTML, response times for

loading pages, support for other technologies such as AJAX, etc.

● Definition of case study – the case study will consist of 15 screens. It will contain several

types of page flow. The case study will be implemented and later modified by adding,

removing and modifying pages as well as page flows, therefore all of the common tasks of

application modification will be included in measurements.

● Case study implementation – the case study will be implemented in Struts 2 and Tapestry.

Research will be done on the possibility of integration of Struts 2 with WebFlow and

Tapestry with WebFlow. Measurements of time spent developing and debugging will be

collected during this phase.

● Final measurements and comparison of results – measurements of time spent developing

and modifying the case study implemented in all of the frameworks will be done. Other

measurements will include the size of source code files, size of generated HTML files,

compliance with HTML standards, several measurements of frameworks response times

under different conditions, etc.

● Evaluation of the results – the results will be evaluated and the final recommendations on

the selection of an appropriate framework for a project will be presented.

1.2. Structure of the text

The Chapter 2 describes Struts 2, Tapestry and Spring WebFlow frameworks. The descriptions

include framework history, architecture, example of use, requirements for framework usage and

chapter listing supported technologies. All of the descriptions are aided by several examples of

source code and framework configuration.

In Chapter 3, all of the comparison criteria are presented. Criteria are divided in three groups –

benchmarks, features and subjective judgement. Each criterion is defined along with justification of

its selection.

The Chapter 4 introduces the case study. Basic and modified GUI model, domain model and all the

page flows will be presented here.

2

The Chapter 5 deals with the implementation of the case study in all of the chosen frameworks and

frameworks combinations. Description of the implementation as well as the problems that occurred

during the implementation are mentioned in this chapter.

Comparison results are presented in Chapter 6. The results of all measurements are provided with

the comments on the outcome.

The Chapter 7 compares the results of this study with some relevant related studies which are

available.

The final conclusion is included in Chapter 8. The evaluation of goals met are provided here.

Recommendations on choosing a suitable framework for software developers are presented.

3

2. Frameworks description

In this chapter, Struts 2, Tapestry and Spring WebFlow frameworks will be closely described

starting with some background information, continuing with architecture, examples of use and

listing supported technologies and frameworks.

2.1. Struts 2

Struts 2 is an extensible open-source web framework that supports the full development cycle from

building to deploying and maintaining applications [1]. It is a new web framework with GA release

released in January 2007 and as all new frameworks it reflects progress in the development

community by supporting most of the new technologies and frameworks and by using new

methodologies and design patterns in design and implementation of the framework.

2.1.1. History

Apache Struts is an open-source framework originally developed by Craig R. McClanahan that was

taken over by the Apache Software Foundation in 2002 [4]. Since then, it became one of the most

popular web frameworks for Java and is currently the most used framework for Java web projects.

Later on, a group of programmers separated from Struts development community and created a

framework called Web Work. Now, the communities have joined together to create the Struts 2

framework, which is based on Web Work 2.2 version [1].

2.1.2. Architecture

Struts 2 frameworks follows the MVC Model 2 design pattern. This design pattern divides an

application into 3 parts – Model, View and Controller. Struts 2 implements the Controller. The

framework support various technologies in the Model and View parts.

● Model – application backend – Struts 2 allows to use many technologies including

JavaBeans, Spring, Hibernate, iBATIS, EJB,etc. in the Model part.

● View – presentation layer – JSP, JSF, Velocity templates, Jasper Reports and other may be

used in the View part. Struts 2 has a native support of JSP in this layer.

● Controller – layer implemented by Struts 2. This layer ties the Model and View together,

processes events and responds to them with possible changes to the Model.

4

Typical request cycle is as follows: Web browser sends a request to a web server, where it is passed

to the Controller. Controller may execute some business logic. Execution is then passed to the View

layer, which creates response in interaction with Model (data transfer objects) and the response is

finally sent back to the client.

Struts 2 follows this design pattern, however its architecture is much more complex (see figure 2).

Initial request goes to the Servlet container, where it may be passed through several filters. Next, the

required Filter Dispatcher is called, which consults the Action Mapper, which determines whether

this request should invoke an action [3].

If the Action Mapper decides that some action should be invoked, the control is delegated by the

Filter Dispatcher to the Action Proxy, which consults the Configuration Manager (initialized from

struts.xml, the main configuration file) to find out which action class should be used to handle the

request. Action Proxy then creates Action Invocation, which implements the command design

pattern. Action Invocation invokes all required interceptors (defined in struts.xml. Interceptors are

classes, which provide certain functionality such as logging, profiling, providing access to request

or session, etc.) and finally invokes the action itself [3].

Upon the action return, the Action Invocation looks up the proper result in struts.xml. The result is

executed, which typically involves execution of a template written in JSP, or in some other

5

Figure 2.1 MVC Model 2 architecture

templating engine. During the rendering phase, the templates can make use of the Struts Tags

provided by the framework. Interceptors are executed in reverse order and finally the response is

returned to the client through filters configured in web.xml [3].

6

Figure 2.2 Struts 2 architecture

2.1.3. Example of use

There are 2 main configuration points. First is the deployment descriptor web.xml, which is

common to all web applications. The other is struts.xml, where all configuration related to Struts 2

application takes place.

This example shows configuration of web.xml deployment descriptor:

<?xml version="1.0" encoding="UTF-8"?>
<web-app id="WebApp_9" version="2.4" xmlns="http://java.sun.com/xml/ns/j2ee"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd">

 <display-name>Struts2</display-name>

 <filter>
 <filter-name>struts2</filter-name>
 <filter-class>org.apache.struts2.dispatcher.FilterDispatcher</filter-class>
 </filter>

 <filter-mapping>
 <filter-name>struts2</filter-name>
 <url-pattern>/*</url-pattern>
 </filter-mapping>

 <welcome-file-list>
 <welcome-file>index.html</welcome-file>
 </welcome-file-list>

</web-app>

Basic deployment descriptor configuration is short. All that is really needed is the Filter Dispatcher

configuration, so the Servlet container knows, which class is responsible for handling requests.

Additional information is required in case when advanced functionality is demanded (for example

using Spring as an object factory for Struts 2).

Struts.xml configuration is more complex. This is the place where user defines Struts 2

configuration properties, interceptors, actions and exception handling behavior.

Struts.xml configuration is presented in this example:

<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE struts PUBLIC "-//Apache Software Foundation//DTD Struts Configuration 2.0//EN"
 "http://struts.apache.org/dtds/struts-2.0.dtd">
<struts>
 <constant name="struts.devMode" value="true" />
 <constant name="struts.objectFactory" value="spring" />
 <constant name="struts.custom.i18n.resources" value="webcomparison.main" />

 <package name="default" namespace=“/“ extends="struts-default">
 ...
 </package>
</struts>

7

Struts.xml file includes definitions of constants for Struts 2 (such as object factory, main resource

files, etc.), include files definition (so struts.xml can be broken to several files in larger projects)

and finally package definitions.

Packages are the most interesting part of the configuration. That is the place where the action

configuration takes place. Packages group actions together and define particular behavior for them.

This example shows a package configuration in Struts 2:

<package name="default" namespace="/" extends="struts-default">
 <global-results>
 <result name="exception">Error.jsp</result>
 </global-results>

 <global-exception-mappings>
 <exception-mapping result="exception" exception="java.lang.Exception" />
 </global-exception-mappings>

 <action name="Login" method="login" class="example.LoginAction">
 <result type="chain">Main</result>
 <result name="input">/pages/Login.jsp</result>
 </action>

 <action name="Main" class="example.MainAction">
 <result>/pages/Main.jsp</result>
 </action>
</package>

This package configuration defines behavior for two actions – Login and Main. The package

extends the struts-default package, which is provided by the framework and defines several useful

interceptors and interceptor stacks (groups of interceptors).

Namespace for this package is "/". Namespace tells which package will be used to find mapping for

the client request. If the request URL is "/foo/bar.action", Action Proxy will try to locate action

"bar" in a package with namespace "foo".

Global results are common for all actions, unless overridden in action configuration. Result from

example tells that whenever result "exception" is returned from an action, Error.jsp will be returned

to the client.

Global exception mappings define exception handling behavior. Whenever an action throws

java.lang.Exception, the exception will be caught and result "exception" will be returned, which

will in this case lead to Error.jsp shown to the client.

Last part of package configuration is the action configuration. Actions define name, class and

method. Name is used to locate the action by the Action Proxy. The attribute class tells which class

8

will handle the request and the optional attribute method specifies the method to execute (default

value for the method is "execute"). After action finishes its execution, it has to return a result. The

result determines, what will happen after the action execution. Typically an action will result in a

template execution (such as JSP template), or in forwarding to another action. This is called action

chaining.

Action classes are simple POJOs (Plain Old Java Objects). They do not need to extend any

particular class, however extending ActionSupport class is recommended. ActionSupport provides

access to resource bundles, message handling system and some other useful functionality.

Basic actions are not aware of Java Servlet API. Access to request, session and request parameters is

done through implementation of the associated interfaces. IoC container (such as Spring) takes care

of injection of the requested objects.

Action class implementation is shown in this example:

public class LoginAction extends ActionSupport implements SessionAware {
private String login;
private String password; //properties correspond with form input fields on associated JSP page
private UserService userService; //business object injected by IoC container
private Map session; //injected by IoC container due to implementing SessionAware interface

public void setUserService(UserService service){
this.userService = service;

}

protected UserService getUserService(){
return userService;

}

public void setSession(Map arg0) {
session = arg0;

}

protected Map getSession(){
return session;

}

public String getLogin() {
return login;

}

public void setLogin(String login) {
this.login = login;

}

public String getPassword() {
return password;

}

public void setPassword(String password) {
this.password = password;

9

}

public String login(){
User user = getUserService().getUserByLogin(login, password);

if(user == null){
addActionError(getText("badLogin"));
return INPUT;

}

getSession().put(SessionAttributes.USER, user);

return SUCCESS;
}

}

Action handling code is implemented in method login. All methods, which are used for action

handling must not have any parameters and must return object of type String. The result will

determine the next action of the framework.

Action properties correspond with form controls. If the user inserts a text in the form input fields

login and password these properties will be automatically populated during the action initialization.

There is no need to look them up in any kind of map used in the request object. All of the work is

done by the framework.

Same procedure can be applied for the preparation of form data. Action prepares its data, stores it in

the action properties and forwards to the JSP page. All of the form controls will be filled with data

stored in the properties.

This is an example of JSP page and written with Struts 2 tags:

<%@ page contentType="text/html; charset=UTF-8" %>
<%@ taglib prefix="s" uri="/struts-tags" %>
<html>
<head>
 <title><s:text name="title" /></title>
 <link rel="stylesheet" type="text/css" href="<s:url value="/theme/main.css" />" />
</head>
<body>
 <div class="loginForm">
 <h2><s:text name="welcome.key" /></h2>
 <s:actionerror />

<s:form action="Login!login">
 <s:textfield key="login" />

 <s:password key="password" />
 <s:submit cssClass="button" align="left"/>

</s:form>
 </div>
</body>
</html>
Struts 2 provides a large set of custom JSP tags, which make JSP development easier. All that is

needed in order to use them is the taglib declaration on the top of the page. The tags include support

10

for form input fields, collections iteration, localization, URL creation and others. All tags make use

of OGNL, which is very powerful and flexible expression language.

Validation may be done in action classes or in XML validation files. Struts 2 provides all common

validators including integer, string, double, required, range check, email, url and custom validators

defined through regular expressions.

This example shows XML configuration of Struts 2 validation:

<!DOCTYPE validators PUBLIC "-//OpenSymphony Group//XWork Validator 1.0.2//EN"
"http://www.opensymphony.com/xwork/xwork-validator-1.0.2.dtd">

<validators>
 <field name="login">
 <field-validator type="requiredstring">
 <param name="trim">true</param>
 <message key="requiredString" />
 </field-validator>
 </field>
 <field name="password">
 <field-validator type="requiredstring">
 <param name="trim">true</param>
 <message key="requiredString" />
 </field-validator>
 </field>
</validators>

2.1.4. Requirements

Basic Struts 2 distribution requires:

● Servlet API 2.4

● JSP API 2.0

● Java 5

Other requirements may be necessary in case of use of some specialized plug-in or technology.

2.1.5. Supported Technologies

Struts 2 integrates well with Spring, Hibernate, iBATIS and some other technologies and

frameworks in the Model layer.

In the View layer, integration options include JSP, Velocity, FreeMarker, JFreeChart, SiteMesh,

Tiles, Jasper Reports, JSF, AJAX (dojo toolkit or GWT) and others.

Struts 2 provides simple plug-in architecture which makes making of plug-ins for yet unsupported

technologies easy.

11

2.2. Tapestry

Tapestry is a dynamic, robust and highly scalable open-source framework for creating Java web

applications. Tapestry builds upon the Java Servlet API, but shields developers from direct

interaction with it (URL construction, persistent state storage, validation, etc. are handled by the

framework), therefore Tapestry provides higher level of abstraction than some other popular

frameworks [7].

2.2.1. History

Tapestry was created by Howard Lewis Ship in the year 2000, and it has gone through a lot of

development and through major code and functionality changes. In 2003, Tapestry has been adopted

by Apache Software Foundation. Current stable version, described and used in this thesis, is version

4.1. Development version 5 has been rewritten from scratch and provides much more functionality

and integration support for other popular frameworks and technologies [11].

2.2.2. Architecture

Tapestry follows the same MVC design pattern as Struts 2, although Tapestry is present in the

Controller and the View part (with its native HTML templates). In the Model part, many

technologies including Spring, Hibernate, iBATIS, EJB and others may be used.

Tapestry is a component based framework and as such components are its main focus. Every web

page is generated from an HTML template file, which has an associated page class that provides

12

Figure 2.3 Tapestry scheme

business logic and data for the template. Pages are special types of components and may be built

from yet another components (which may be also built from components).

Figure 2.4 Tapestry request cycle

Request cycles in Tapestry are following: request from a web browser is handled by the Servlet

container, which passes it up for processing by Tapestry. Tapestry looks up the page responsible for

handling the request. The page may execute some business logic, prepares data and proceeds to

rendering output according to the associated HTML template. The output generation is handled by

the page, except on occasions when a component is used in the template. The component handles its

own output processing and afterwards the execution returns to the page. The resulting output is

finally sent back to the client.

2.2.3. Example of use

Tapestry has, unlike Struts 2, distributed configuration. There are 2 main configuration files:

Web.xml, which is common for all Java web applications and a Tapestry specific app.application

file. Tapestry is provided with native IoC container HiveMind designed and implemented

specifically for Tapestry. Users should include hivemodule.xml, the HiveMind configuration file, in

case of need of its services beyond the common use by Tapestry.

This example shows web.xml deployment descriptor in Tapestry:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE web-app PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"
 "http://java.sun.com/dtd/web-app_2_3.dtd">

13

<web-app>
 <display-name>Tapestry</display-name>
 <servlet>
 <servlet-name>app</servlet-name>
 <servlet-class>org.apache.tapestry.ApplicationServlet</servlet-class>
 <load-on-startup>0</load-on-startup>
 </servlet>
 <servlet-mapping>
 <servlet-name>app</servlet-name>
 <url-pattern>/app</url-pattern>
 </servlet-mapping>
</web-app>

Configuration of the deployment descriptor is short. Required configuration consists of definition of

the ApplicationServlet, which handles the client requests and of the URL mapping for the defined

servlet. Default value for the servlet mapping is "/app", which means the application URL will look

like "http://www.host.domain/MyTapestryApp/app". This default value may be overridden, but it

requires additional changes in the Tapestry configuration file.

The app.application file contains definitions of Tapestry configuration properties and page and

component definitions. Pages and components are configured separately using required

page/component file, optional properties files, optional class file and optional HTML template.

Main Tapestry configuration file – app.application – is shown in this example:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE application PUBLIC "-//Apache Software Foundation//Tapestry Specification 4.1//EN"
 "http://jakarta.apache.org/tapestry/dtd/Tapestry_4_1.dtd">

<application name="Tapestry">
 <meta key="org.apache.tapestry.page-class-packages" value="webcomparison.pages" />
 <meta key="org.apache.tapestry.component-class-packages" value="webcomparison.components" />

 <!-- Pages -->
 <page name="Home" specification-path="pages/home/Home.page"/>
 <page name="Main" specification-path="pages/main/Main.page"/>

 <!-- Components -->
 <component-type type="Menu" specification-path="components/menu/Menu.jwc"/>
 <component-type type="Language" specification-path="components/language/Language.jwc"/>

 <!-- Libraries -->
 <library id="contrib" specification-path="classpath:/org/apache/tapestry/contrib/Contrib.library"/>
</application>

The app.application configuration file contains configuration of Tapestry application such as

specification of page class and component class packages. All of the pages and components must be

specified along with the paths to their specification files. Additional component libraries may be

specified. The contrib library, available with the framework, contains lots of useful components

written by the Tapestry community.

14

This is an example of HiveMind configuration file – hivemodule.xml:

<?xml version="1.0"?>
<module id="webcomparison" version="1.0.0" package="webcomparison">

<contribution configuration-id="tapestry.state.ApplicationObjects">
 <state-object name="context" scope="session">
 <create-instance class="context.ContextObject"/>
 </state-object>
</contribution>

 <service-point id="UserService" interface="services.UserService">
 <create-instance class="services.impl.UserServiceImpl"/>
 </service-point>

 <service-point id="FlightService" interface="services.FlightService">
 <create-instance class="services.impl.FlightServiceImpl"/>
 </service-point>
</module>

Hivemodule.xml manages the configuration of the IoC container. It allows the definition of objects

with different scopes of validity. Important for web applications are objects with the session scope.

Tapestry does not allow direct access to the session object, therefore the only way to keep session

data is through definition of objects with the session scope. Other uses for HiveMind include

definition of service objects, which may provide access to business logic/database and their direct

injection to the page or component classes.

Page configuration in Tapestry is shown in this example:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE page-specification PUBLIC "-//Apache Software Foundation//Tapestry Specification 4.1//EN"
 "http://jakarta.apache.org/tapestry/dtd/Tapestry_4_1.dtd">

<page-specification class="webcomparison.pages.Home">
 <inject object="context" property="co" type="state"/>
 <inject object="Main" property="mainPage" type="page"/>
 <inject object="service:webcomparison.UserService" property="userService"/>

 <asset name="stylesheet" path="theme/main.css" />
</page-specification>

The default initial page for Tapestry has to be the Home page (this behavior may be overridden in

the app.application configuration file). Page specification must contain path to the associated class

file, otherwise the BasePage class will be used as the page class. The specification may contain

definition of injected objects (such as the session scope object, other page classes or service

classes), definition of page properties (these may be defined here or in the page class itself),

configuration of components used in the HTML template and definition of asset files (alias for

defined file in HTML template).

15

Page classes, if specified in the page configuration, must extend the BasePage class or any of its

subclasses. Page class must be abstract. Class properties do not have to be specified, only abstract

getters and setters must be provided. Finally, the listeners, which handle page events signaled by the

client must be implemented.

Page classes are subclassed at runtime and their properties and corresponding getters and setters are

supplied so they match the page class and the page configuration file.

This example shows page class in Tapestry:

public abstract class Home extends BasePage{
public abstract String getLogin();
public abstract String getPassword(); //page properties used in handling user input
public abstract boolean getError();
public abstract void setError(boolean error);

public abstract ContextObject getCo();
public abstract Main getMainPage();
public abstract UserService getUserService(); //injected objects

/**
 * login listener
 * validates login and password and forwards to main page on success
 *
 * @return MainPage
 */
public IPage login(){
 User user = getUserService().getUserByLogin(getLogin(), getPassword());

 if(user != null){
getCo().setLoggedUser(user);
return getMainPage();

 }

 setError(true);

 return null;
}

}

Listeners handle client actions. Listener may return object which identifies the page to forward to.

The listener method may define parameters. One of them is the RequestCycle object which provides

access to the Tapestry framework. Other parameters, if specified on the page, must match the

number and types of parameters defined on the page.

Page class may implement interface which enables the class to handle events such as the beginning

or the end of page rendering.

The HTML templates are files written in plain HTML. Tapestry components, which provide the

dynamic output generation, are identified with special jwcid attribute, which stands for Java Web

16

Component id. Tags without this id are copied to the output when processed. Tags with jwcid

specified are handled by corresponding components.

This example shows Tapestry HTML template:

<body>
 <div class="loginForm">
 <h2></h2>

 <table class="loginTable">
 <tr>
 <td>
 <span jwcid="@FieldLabel" field="component:login" style="font-family: Verdana;

font-size: 14px;"/>
 </td>
 <td>
 <span jwcid="login@TextField" value="ognl:login" validators="validators:required"

displayName="message:login"/>
 </td>
 </tr>
 <tr>
 <td>
 <span jwcid="@FieldLabel" field="component:password" style="font-family: Verdana;

font-size: 14px;"/>
 </td>
 <td>
 <span jwcid="password@TextField" value="ognl:password" hidden="ognl:true"

validators="validators:required" displayName="message:password"/>
 </td>
 </tr>
 <tr>
 <td colspan="2">

 </td>
 </tr>
 </table>

 </div>
</body>

Every component has a unique id and a defined set of attributes. These attributes may be bound to

the page properties. This is usually the case of form components or iterators. Tapestry, like Struts 2,

makes use of the OGNL expression language in the HTML templates.

Field validation is handled by the FieldLabel component. FieldLabel component is linked to other

form component. It provides a label and a label decoration for the component (decorations may vary

depending on the result of validation. For example if the validation fails, the label will be generated

17

in different color) as well as the possibility of specifying certain validator(s). Tapestry provides

standard set of validators and users may implement their own so there are no constraints on client

input validations on the Tapestry side.

Component specification and implementation is very similar to the page specification and

implementation. The main differences include: components have to define required attributes (these

will be linked to components data structures, so the component may use them in some calculations)

and the components must subclass the BaseComponent class, otherwise their use remains the same.

2.2.4. Requirements

Tapestry distribution requires:

● Java 1.2.2 (Java 1.4 is recommended)

● a microkernel such as HiveMind

● Java Servlet API 2.2 (version 2.3 is recommended)

2.2.5. Supported Technologies

Tapestry supports several of the most popular technologies including Spring, EJB, Hibernate,

HiveMind and AJAX. There are several Tapestry extensions which aim to make the integration

easier.

18

2.3. Spring WebFlow

Spring WebFlow is an open-source framework designed for capturing the application page flow.

The main goal of this framework is to collect all the information about an application page flow in

one place so the developer will not have to look it up in several places spread across multiple files.

2.3.1. History

Spring WebFlow has been developed as a part of Spring Framework mainly to support Spring MVC

framework, but has been designed to support any of the Java web frameworks. The first public

preview release of Spring WebFlow appeared in March 2005 and the first official release was

released in October 2006.

2.3.2. Architecture

In the MVC design pattern, Spring WebFlow addresses the Controller part. The View and Model

parts support the technologies of the main framework, which is aided by Spring WebFlow.

Spring WebFlow divides an application into smaller units called flows. The flow is a set of states,

beginning with exactly one start state and ending with several end states. The flow may contain

other flows as subflows.

Figure 2.5 Application consisting of flows and subflows

19

States can be of two types: action states and view states. The action state executes some business

logic while the view state interacts with user typically through a web page by processing events

such as a form submit. The navigation between states is done through transitions. Each state defines

its own set of transitions (global transitions for the whole flow may be defined as well) and

depending on the outcome of the state (event signaled by the user in the view state or the result of a

business logic execution in an action state) a transition is identified and the next state is chosen and

executed. The framework keeps track of the current state of the execution and allows to execute

only valid, defined transitions.

A state may define a set of entry actions and a set of exit actions so the source code may be broken

down into small highly reusable pieces. Spring WebFlow also supports exception handling by

allowing each state to define its own exception handler.

This example shows template of a state in Spring WebFlow [12]:

<?xml version="1.0" encoding="UTF-8"?>
 <flow xmlns="http://www.springframework.org/schema/webflow"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="
 http://www.springframework.org/schema/webflow
 http://www.springframework.org/schema/webflow/spring-webflow-1.0.xsd">
 <start-state idref="myStateId"/>

 <xxx-state id="myStateId">
 <attribute name="..." value="..."/>

 <entry-actions>
 ...
 </entry-actions>

 <transition on="..." to="..."/>
 <transition on-exception="..." to="..."/>

 <exit-actions>
 ...
 </exit-actions>

 <exception-handler .../>
 </xxx-state>

 </flow>

2.3.3. Example of use

Spring WebFlow has more complicated setup than the previous frameworks. The configuration is

split into several files including configuration of Spring Framework. First to configure is the

obligatory web deployment descriptor web.xml. Then follows the configuration of Spring MVC and

Spring WebFlow in the Spring Framework configuration files and the last to come is the

20

configuration of the flows in the Spring WebFlow configuration files.

Example of web.xml deployment descriptor configuration for Spring WebFlow [13]:

<?xml version="1.0" encoding="ISO-8859-1"?>
<web-app xmlns="http://java.sun.com/xml/ns/j2ee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd"
 version="2.4">

<context-param>
<param-name>contextConfigLocation</param-name>
<param-value>

classpath:org/springframework/webflow/samples/phonebook/stub/services-
config.xml

</param-value>
</context-param>

<listener>
<listener-class>org.springframework.web.context.ContextLoaderListener</listener-class>

</listener>

<servlet>
<servlet-name>phonebook</servlet-name>
<servlet-class>org.springframework.web.servlet.DispatcherServlet</servlet-class>
<init-param>

<param-name>contextConfigLocation</param-name>
<param-value>

/WEB-INF/phonebook-servlet-config.xml
/WEB-INF/phonebook-webflow-config.xml

</param-value>
</init-param>

</servlet>

<servlet-mapping>
<servlet-name>phonebook</servlet-name>
<url-pattern>*.htm</url-pattern>

</servlet-mapping>

<welcome-file-list>
<welcome-file>index.jsp</welcome-file>

</welcome-file-list>
</web-app>

The context-param and listener elements configure the Spring Frameworks usage. The following

lines configure the Spring MVC web framework. The servlet element provides the name of the

servlet class, which will handle all of the incoming requests, and supplies the servlet with the

location of the configuration files.

This example shows configuration of Spring MVC for Spring WebFlow [13]:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.springframework.org/schema/beans

 http://www.springframework.org/schema/beans/spring-beans-2.0.xsd">

21

<bean id="viewResolver"
class="org.springframework.web.servlet.view.InternalResourceViewResolver">

<property name="prefix" value="/WEB-INF/jsp/"/>
<property name="suffix" value=".jsp"/>

</bean>
</beans>

The Spring MVC configuration tells the framework where to locate the view pages. Each view in

the view states from Spring WebFlow flow definitions will be located in the "/WEB-INF/jsp"

directory and will be provided with suffix jsp. That means that when the Spring MVC will want to

render a view with name login, it will use "/WEB-INF/jsp/login.jsp" page to render it.

This example shows configuration of Spring WebFlow in the Spring Framework configuration files

[13]:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:flow="http://www.springframework.org/schema/webflow-config"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans-2.0.xsd
 http://www.springframework.org/schema/webflow-config
 http://www.springframework.org/schema/webflow-config/spring-webflow-config-1.0.xsd">

<flow:executor id="flowExecutor" registry-ref="flowRegistry"/>

<flow:registry id="flowRegistry">
<flow:location path="/WEB-INF/flows/**-flow.xml"/>

</flow:registry>
</beans>

This configuration properly sets up the internals of the Spring WebFlow. By changing the

flow:location path attribute, it is possible to modify the location, where will the Spring WebFlow

search for its flow definitions.

This is an example of flow with a view state configuration in Spring WebFlow [13]:

<?xml version="1.0" encoding="UTF-8"?>
<flow xmlns="http://www.springframework.org/schema/webflow"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.springframework.org/schema/webflow
 http://www.springframework.org/schema/webflow/spring-webflow-1.0.xsd">

<start-state idref="enterCriteria"/>

<view-state id="enterCriteria" view="searchCriteria">
<transition on="search" to="displayResults"/>

</view-state>

<view-state id="displayResults" view="searchResults">
<transition on="newSearch" to="enterCriteria"/>

22

<transition on="select" to="...detail module..."/>
</view-state>

</flow>

This flow example contains two view states. A flow must define a start state, so the enterCriteria

state will also be our start state. Upon entering the view state a searchCriteria view will be rendered

(that means "/WEB-INF/jsp/searchCriteria.jsp" will be executed). Spring WebFlow will wait for

users response "search" and then it will invoke a transition to the displayResults view state.

Spring WebFlow offers more configuration options including execution of actions upon entering or

exiting the view state or upon rendering the view. All of the configuration options may be found in

Spring WebFlow documentation [14].

This is an example of a JSP page written using Spring WebFlow tags [13]:

<form:form commandName="searchCriteria" method="post">
<table>

<tr>
<td>Search Criteria</td>

</tr>
<tr>

<td colspan="2">
<hr/>

</td>
</tr>
<spring:hasBindErrors name="searchCriteria">
<tr>

<td colspan="2">
<div class="error">Please provide valid search criteria</div>

</td>
</tr>
</spring:hasBindErrors>
<tr>

<td>First Name</td>
<td>

<form:input path="firstName" />
</td>

</tr>
<tr>

<td>Last Name</td>
<td>

<form:input path="lastName" />
</td>

</tr>
<tr>

<td colspan="2">
<hr/>

</td>
</tr>
<tr>

<td colspan="2" class="buttonBar">
<input type="hidden" name="_flowExecutionKey" value="${flowExecutionKey}"/>
<input type="submit" class="button" name="_eventId_search" value="Search"/>

</td>
</tr>

23

</table>
</form:form>

The JSP page is a standard JSP page written in Spring MVC framework. The only difference is the

need to include two special values into every form and every link on the page. Flow execution key

tells Spring WebFlow the state of the application and the eventId parameter tells which event will

be signaled and which transition to invoke.

This example shows a flow with an action state configuration [12]:

<?xml version="1.0" encoding="UTF-8"?>
 <flow xmlns="http://www.springframework.org/schema/webflow"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="
 http://www.springframework.org/schema/webflow
 http://www.springframework.org/schema/webflow/spring-webflow-1.0.xsd">

 <start-state idref="executeSearch"/>

 <action-state id="executeSearch">
 <action bean="searchAction" method="executeSearch"/>
 <transition on="success" to="displayResults"/>
 </action-state>

 </flow>

Action state definition resembles the view state definition. The difference is that the action state

must define an action to be executed and does not declare a view page. Action state will execute an

action and upon the result of the action the framework will decide what will be the next state.

2.3.4. Requirements

Spring WebFlow distribution requires:

● Spring Framework 1.2.7

● Java 1.3

● Java Servlet API 2.3

2.3.5. Supported Technologies

Spring WebFlow is a support framework for other web frameworks and by itself does not provide

support for any technologies. Supported technologies will be those, which the main web framework

supports.

24

3. Criteria description

This chapter contains detailed list of the comparison criteria along with the justification of their

selection. Criteria are divided into three chapters – benchmarks, features and subjective judgement.

Some of the benchmarks have been made during the implementation of the case study in all of the

selected frameworks. The rest of the benchmarks, features and subjective judgement criteria has

been described for every implementation of the case study after the implementation has been done.

3.1. Benchmarks

This chapter contains a list of the measurable criteria. All of the criteria here will be precisely

measured and the results will be shown in the chapter 6.

● time spent developing pages – it is very important to know the approximate time spent

creating and debugging pages. The more time the project needs to be finished the more

expensive the project will be, therefore this has been one of the most important criteria

measured. The measurements include time spent developing and debugging each single page

as well as the average of time needed to develop 1 page. The measurements have been done

during the implementation of the case study.

● time spent modifying existing application – time spent developing the basic application is

important, but maintenance has to be accounted for as well. The time spent modifying

existing application (adding, removing, joining pages) tells how good is the framework

configuration organized and how expensive will be the maintenance of the application in the

future. The measurements include the time spent modifying pages and the number of

(configuration) files changed to accomplish the task.

Four modifications to the case study implementations have been done. The modifications

comprise of joining pages, removing pages and adding new pages. The measurement of time

spent modifying the applications has been done during the modification process. The

modifications are more closely described in the next chapter.

● the size of written code – this criterion is closely related to the first criterion (time spent

developing pages). It will help to estimate the overall time spent developing the application.

If the results will not be approximately the same as the first criterion results, it may indicate

that one framework may be more complicated to understand and use than the other. This is

important for developers new to the framework. It may take more time to be fully productive

25

with framework with steeper learning curve. This criterion may also show the benefits of

using the component based framework over the action based, because in the component

based framework, the code reuse is expected to be on much higher level. The measurements

will be divided into the size of written configuration, class pages and view templates (either

JSP in Struts 2 or HTML templates in Tapestry). The results consist of measurements of the

size (in bytes) of all of the files used to implement each page and of average size of files per

one page.

● size of generated HTML code – nowadays, most people have access to high speed Internet

connection, but people need to access information systems from various places at different

time, so the amount of generated HTML code is still important. Less code means less time

spent waiting for the page to load. People do not like waiting for a long time for the

application response and if the time is too long, they will search for alternatives.

Every framework generates the web pages in a different way and includes various metadata

and JavaScript in the resulting code, therefore the resulting size of the generated HTML

pages may vary. The size of generated HTML code has been measured in bytes on a per

page basis. Results also include the average size of 1 page.

● frameworks performance – frameworks performance along with the size of generated

HTML code affect the page loading time. Even if the HTML code is small in size, it may

still take long time to load the page due to low performance of the framework.

The measurements consist of two tests. One has been measuring repeated requests for one

page, the other has been cycling through all of the pages multiple times.

The JMeter [22] tool has been used for this benchmark.

● typical amount of files per 1 page – this criterion tells how complicated is the page

configuration. Less files means less configuration and better orientation in the source code

for the developer. If the page needs too many files to configure, changes take more time and

are more confusing to do.

The measurements include the amount of files needed to implement every page as well as

the average amount of files needed to implement one page.

● page correspondence with W3C standards – it is important to know if the HTML

generator follows W3C standards for HTML. Different people use different web browsers

26

and in order for pages to display correctly they have to follow the standards.

HTML 4.01 Transitional and XHTML 1.0 Transitional standards have been checked using

the W3C validator [20] and the resulting number of validation errors has been included in

the results chapter along with the average number of errors per one page.

3.2. Features

This chapter contains criteria that focus on various features, which are provided by most of the

current frameworks. The comparison results include yes or no answer to support of a certain feature

along with more information on the quality of the support.

● localization support – most of the current frameworks provide some kind of support for

localization. All of the localization possibilities have been mentioned in this comparison.

● validation support – like in the previous point, most frameworks support this feature.

Differences are in the quality of the support. Some frameworks provide only field

validation, some allow definition of complex form validations, client side validations or

even specifying own validators. The quality of validation support has been discussed in this

comparison.

● AJAX support – AJAX is relatively new technology that gained popularity very fast upon

its introduction. In many projects, AJAX is used to minimize the traffic between the client

and the server. New frameworks usually support AJAX in a native way, although not all do

and it may require a good deal of configuration to make it work. Also supported AJAX

toolkits vary. The quality of AJAX support has been discussed in this comparison.

3.3. Subjective judgement

This chapter contains criteria, which represent personal opinions about the experience with

development with the selected frameworks.

● technology complexity – this criterion is closely related to the amount of time spent on the

development and the size of written code. This is a personal opinion that sums up the

previous two mentioned criteria and may be useful in deciding which framework to pick up.

● complexity of orientation in existing project – this criterion sums up two of the previous

criteria – typical amount of files per page and time spent modifying existing project along

with personal opinion about the frameworks complexity.

27

● complexity of setting up a new project – describes whether all requirements for the project

setup can be easily found and acquired, how long did it take for the project from

downloading requirements to running the project and whether there were any problems

during the setup.

● quality of support – states the quality and the amount of documentation provided by the

community which supports each framework along with the support provided by the

community upon solving framework specific problems.

28

4. Case study

This chapter covers the case study. The case study is an application consisting of 15 screens and

represents a part of an aviation company management software. The application deals with the

management of users, flight crews, aircrafts, destinations and flight planning. The application is

divided into several modules. User with different roles may access different modules, therefore a

login screen with password checking will be implemented. The application is localized in the

English and Czech language.

At first, the GUI model will be described, following with domain model and the list of used page

flows along with their justification. At last, the case study modifications will be presented.

4.1. GUI model

The application is divided into several modules. First is a simple login page, where the user is

required to enter his login name and password. All pages and user actions pass through access

privileges checking routine to ensure that the user may access only those pages for which he is

authorized. After the login page follows the main page with menu, which gives access to all of the

applications modules.

Pages and access rights are divided into 4 groups (modules): administration, aircraft, planning and

crew.

Users with administration rights have access to the administration module. They may add, modify

and delete all users in the system. Administration module consists of 2 pages. The first contains list

of all users with filtering option enabled. The second page serves for editing users.

Aircraft module is used for aircraft administration purposes – it enables the users to add, modify or

delete the aircrafts in the system. The first of 2 pages contains a simple list of all aircrafts and the

second is used for editing aircrafts.

Planning module serves the crew members. It allows them to look up the information about their

planned flights for several time periods.

The largest is the crew module. It allows privileged users to add, modify or remove special types of

users – pilots and stewards. Module consists of 8 pages starting with the list of crew members. The

next is the page where may be the common data for pilots and stewards edited. Other pages include

pages for editing specific data for pilots and stewards, pages for entering stewards language skills

29

and pages for entering crew members contacts.

Figure 4.1 Case study page flow model

4.2. Domain model

The domain model consists of 9 JavaBeans and 2 service classes, which provide the business logic.

The domain model provides the infrastructure upon which the application is built. It remains the

same for all of the implementations to ensure that it does not affect the performance benchmarks.

Four of the classes represent the users in the system. User class is the base class for users and

contains basic information about a person, along with login, password and access rights

information. This class is used for the basic user.

Two other kinds of users exist in the system: Pilot and Steward. Both subclass the Crew class,

which subclasses the User class. Crew class holds data common for both Pilot and Steward. Pilot

and Steward classes add their own specific information.

Crew class contains a list of Contacts and a list of Flights. Flights are connected to the Destination

class to identify the departure and arrival destinations.

30

Pilot class holds the information about pilots current Aircraft certifications, and at last, the Steward

class contains a list of references to Language class, which represent his language proficiencies.

There are 2 service classes: FlightService and UserService. FlightService contains Aircraft and

Flight operations while the UserService provides methods for working with Users.

Figure 4.2 Case study domain model

4.3. Page flows

As can be seen on Figure 6, there are several types of page flows present in the case study:

● star page flow – menu is a typical example of the star page flow. It is directly connected to

several different pages. In this case study, the star page flow connects the Main page to all of

the main module pages – Crew, Aircraft, Planning and Administration.

31

Figure 4.3 Example of star page flow

● cycle page flows – these can be found in the Administration module, Aircraft module and

two cycles which act as subflows may be found in the Crew module (Language and

Contacts pages).

Figure 4.4 Example of cycle page flow

● master-detail page flow – all of the main module pages contain master-detail page flow.

Master-detail contains some filtering options which are followed by displaying a list of

objects with the option of viewing detail of one selected object.

● fork and join – the flow divides in one place and joins in another. This is shown in the

process of adding new Crew member.

32

Figure 4.5 Example of fork and join page flow

● wizard – it is a logical sequence of related pages. It can be found in the Crew module.

Figure 4.6 Example of wizard page flow

4.4. Modifications

The modifications of the case study are the subject of significant part of the measurements.

Following modifications have been implemented:

● joining two pages – Steward and Language skills pages have been joined together. The

Steward page went through major modification.

● removing a page – the Planning page has been removed. The menu component had to be

modified.

● adding a page – new page for Destinations management has been added to the

Administration module. The Administration page has been modified as well.

● adding a page – new page has been added to the Crew module. A Summary page has been

inserted before the Contacts page. The two forked flows join in this page, so it has been a

major modification to the flow itself.

33

Figure 4.7 Modified page flow of the case study

34

5. Case study implementation

This chapter covers details about the implementation of the case study in Struts 2 and Tapestry and

the integration of Struts 2 with WebFlow and Tapestry integration with WebFlow. All information

about the progress and problems with implementation are mentioned here.

5.1. Struts 2

5.1.1. Setup

Setting up a new Struts 2 application was painless and straightforward. On the Struts 2 download

page [21] are presented all of the required and optional libraries. Struts 2 community even provides

a distribution with example blank application, which can be deployed and launched as provided.

The only minor problem was setting up Spring as the IoC container for Struts 2. After adding

logging configuration for Log4J library, Spring informed about the missing configuration in

web.xml and misplaced Spring configuration file. When the corrections were done, the application

ran without problems.

5.1.2. Implementation

There were only few minor problems during the implementation phase. Spring was used as the IoC

container for Struts 2 and the Struts 2 action classes were initialized by Spring. The only problem in

configuration was that Spring initializes its beans by default as Singletons. Problems with user input

validation occurred until this bug was fixed. Springs default behavior had to be overridden by

setting singleton attribute in bean elements to false.

Other problems involved proper setup of interceptors. The documentation was very resourceful on

this subject, so the issues were quickly fixed.

The last problem was with validation of field with value of type double. There were problems with

setting customized validation error messages to display to the user (there were no problems with

any of the other types of validations).

Overall, the implementation problems were a minor ones and did not cause larger delay in the

implementation phase.

35

5.2. Tapestry

5.2.1. Setup

The configuration of Tapestry was more complicated than Struts 2. In Tapestry, only the core

libraries are provided and the dependencies like Javassist and OGNL have to be downloaded

separately and the project structure needs to be created from scratch.

There were some problems configuring HiveMind, where the application would not launch due to

problems with HiveMind configuration files, although the files were placed on the required place in

the project.

One of the main problems was configuration of services in HiveMind, so they could be injected to

the Page and Component classes. There was a lack of documentation on the integration of Tapestry

and HiveMind, therefore it took some time to configure it properly.

5.2.2. Implementation

There was only one major problem during the implementation phase. It was the validation of user

input. Validation was implemented on the login page for the first time without any problem.

Another attempt at implementing validation on other pages brought unpleasant behavior. Although

the validation configuration followed the same pattern, only the validation on the login page worked

as expected. The validations on the other pages did not work the way they were configured to and

after their failure the login page validation failed as well. It took a server restart for the login

validation to start working properly again.

Besides problems with validation, there was only one small problem with the change of locale for

the application. Tapestry is unable to change the locale for currently selected page. The page needs

to forward to different page before the change of locale is reflected in the application. There exist

one workaround for this problem. Page needs to be redirect to a temporary page which redirects

back to the original page before rendering its output.

36

5.3. Struts 2 with WebFlow

The base for this integration was taken from the application written in Struts 2. All that was needed

was the addition of the Spring WebFlow libraries and the Spring WebFlow plug-in library for Struts

2. Additional configuration of WebFlow in Springs configuration file was required as was

mentioned in chapter 2.3.3 along with the definition of special Spring bean called

struts2FlowAdapter.

The plug-in provides very limited support for the possibilities WebFlow offers. There has to be

defined a new Struts 2 action for every flow. The action must define a flowId parameter, which

identifies the flow (it must be the same as the name of the file where is the flow defined).

This example shows flow action configuration in Struts 2:

<action name="AircraftFlow" class="com.googlecode.struts2webflow.FlowAction">
 <interceptor-ref name="myStack" />

<param name="flowId">aircraft-flow</param>
<result name="aircraftListAction" type="redirect">Aircraft_input.action</result>
<result name="aircraftEditJSP">/pages/AircraftEdit.jsp</result>

</action>

The actions must define the FlowAction in the class attribute. The flowId parameter identifies the

flow. The results have a special meaning for the view states (this will be described later in this

chapter).

The action states are the only states that may execute some business logic. They are limited to

execute one action and return a result. No support for entry or exit actions is provided.

This example shows action state configuration in Struts 2:

<action-state id="Aircraft_edit">
<action bean="struts2FlowAdapter" />
<transition on="edit" to="aircraftEdit" />

</action-state>

The id of the action state must match a name of an action in struts.xml. The action is invoked upon

entering the action state and the actions result is mapped to the transition with corresponding name.

All other types of actions or exception handling mechanism WebFlow provides support only Spring

beans and are unusable in a Struts 2 application.

View state configuration in Struts 2 can be found in this example:

<view-state id="aircraftList" view="aircraftListAction">
<transition on="edit" to="Aircraft_edit" />
<transition on="new" to="Aircraft_addNew" />
<transition on="delete" to="Aircraft_delete" />

37

</view-state>

The id has no special meaning for the view states. When a view state is executed, the value of the

view attribute is matched against result names in the associated Struts 2 flow action and the

matching result is executed. As in the action states, no support for the entry or exit actions is

provided.

The plug-in uses an interceptor to store the flow execution key in the session object on the server.

This works very well until the user decides to hit the browsers back button (the application will not

update its state) and resubmit the form or click another link. The state of the application on the

server and on the client will not be synchronized, what will cause an application error.

The solution proposed by the author of the plug-in involves leaving the interceptor out of the action

configuration and use the flowExecutionKey directly like in any other WebFlow application, but the

key does not update properly without the interceptor being used. This renders the plug-in unusable

and as the result this application was not fully implemented. Moreover, when the Spring WebFlow

is used with the Spring MVC, the original action configuration for the Spring MVC is not needed,

so the size of the configuration does not increase much as it does when the WebFlow is used in

integration with Struts 2. The original action configuration must be kept, new actions for flows must

be defined and the flows themselves must be defined. The resulting configuration is more than

doubled, what makes the orientation in the configuration much harder.

5.4. Tapestry with WebFlow

When the first official release of Spring WebFlow was released, the authors wanted to support most

of the popular frameworks that were available including the Tapestry framework. As of today, no

working solution for the integration of Tapestry with WebFlow exists. The only support which can

be used to a higher degree is provided for Struts and JSF. Therefore this integration could not be

implemented.

38

6. Results

In this chapter, the comparison results are presented. The results are organized in chapters, which

correspond with criteria defined in chapter 3. The comparison has been done on Struts 2 and

Tapestry frameworks. The integrations with WebFlow are not included because the implementations

were not feasible (see previous chapter).

My previous experience with the frameworks should be mentioned here so it may be possible to

obtain the information about frameworks learning curves from the results.

I have had about 9 months experience with Struts and 2 months of experience with Tapestry. Struts

2 is similar to Struts in many ways, what made learning Struts 2 easier, but I had no previous

experience with Struts 2.

The pages have been implemented in the order they are shown in the tables so the increase of

productivity is plainly visible by the reducing amount of time needed to implement successive

pages.

6.1. Benchmarks

6.1.1. Time spent developing pages

The approximate time spent developing pages has been measured on a per page basis. Results are

divided into 3 groups: time spent developing, time spent debugging and the sum of previous two.

Time was measured in minutes.

Figure 6.1 Time spent developing pages – Struts 2

39

Comment
Login 50 30 80 problems with configuring Struts 2 actions in Spring to validate correctly
Main 40 0 40 20 minutes – creating menu, 20 minutes – change of locale
Planning 40 0 40
Aircraft list 35 0 35
Aircraft edit 30 20 50 problems with validations and interceptor configuration
Administration list 30 0 30 20 minutes – user list, 10 minutes filtering form
Administration edit 30 5 35
Crew list 10 0 10
Crew edit 25 0 25 problems with customizing error message for validation of field with type double
Pilot 25 0 25
Contacts list 20 0 20
Contacts edit 10 0 10
Steward 10 0 10
Languages list 10 5 15
Languages edit 10 0 10
SUM 375 60 435

Development
time

Debugging
time

Total
time

Figure 6.2 Time spent developing pages – Tapestry

The approximate average times spent developing 1 page (given the circumstances such as my

previous experience):

Struts 2 – 29 minutes, Tapestry – 47 minutes.

6.1.2. Time spent modifying existing application

Four modifications to the existing application have been done: removing of Planning module,

adding Destination management to the Administration module, joining Steward page with Language

list page and adding Summary page before Contact list in Crew module.

The results show the approximate time needed to accomplish each modification and the number of

files changed for each modification. Time was measured in minutes.

Figure 6.3 Time spent modifying existing application – Struts 2

40

Time needed Number of files changed

5 10

30 10

15 11

15 7
SUM 65 38

Removing Planning
module

Adding Destination
management

Joining Steward and
Language list page

Adding Summary
page

Comment
Login 80 0 80
Main 105 0 105 45 minutes – menu component, 60 minutes – locale change component
Planning 60 30 90
Aircraft list 25 5 30
Aircraft edit 25 0 25
Administration list 25 0 25 15 minutes – filtering form
Administration edit 60 0 60
Crew list 15 5 20
Crew edit 60 15 75
Pilot 50 5 55
Contacts list 25 20 45
Contacts edit 50 0 50
Steward 10 0 10
Languages list 30 0 30
Languages edit 10 0 10
SUM 630 80 710

Development
time

Debugging
time

Total
time

5 minutes – propertySelection for dropdown list

Figure 6.4 Time spent modifying existing application – Tapestry

The approximate average time needed for one modification in Struts 2: 16 minutes.

The approximate average time needed for one modification in Tapestry: 11 minutes.

6.1.3. The size of written code

The size of written code is divided into size of configuration files, size of class file and size of

JSP/HTML template. The results are shown in bytes for each page separately as well as an average

for all of the pages.

The Struts 2 results do not show the size of configuration files (there is only one struts.xml in whole

application). Instead, they show the size of validation files (where the validation files are present).

Figure 6.5 The size of written code – Struts 2

41

Time needed Number of files changed

3 9

22 11

8 14

13 10
SUM 46 44

Removing Planning
module

Adding Destination
management

Joining Steward and
Language list page

Adding Summary
page

Validation Class JSP SUM
Login 591 1427 816 2834
Main 0 352 553 905
Administration list 0 2555 1978 4533
Administration edit 1984 2608 1632 6224
Aircraft list 0

3505
1483 3235,5

Aircraft edit 391 1130 3273,5
Planning 0 2304 1564 3868
Crew list 0 1745 1760 3505
Crew edit 2256 6242 1752 10250
Pilot 697 2779 1046 4522
Steward 444 1468 911 2823
Languages 0

3796
1621 3519

Languages edit 386 1129 3413
Contacts 0

4122
1612 4213

Contacts edit 385 1120 4106
Average 475.6 2193,53 1340.47 4208.85

Figure 6.6 The size of written code – Tapestry

The action based orientation of Struts 2 made it possible to implement only one action for more

pages as can be seen in the table for Aircraft, Languages and Contacts pages.

The overall results between Struts 2 and Tapestry are almost equal giving Tapestry slight advantage.

6.1.4. Size of generated HTML code

The size of generated HTML code has been measured in bytes on a per page basis. Requests for

pages have been sent to the server and the size of the received pages has been measured. The

average size of 1 page is included as well.

42

Configuration Class HTML SUM
Login 549 1121 1246 2916
Main 500 577 131 1208
Administration list 673 1749 2871 5293
Administration edit 673 2049 3019 5741
Aircraft list 686 1550 932 3168
Aircraft edit 941 1733 896 3570
Planning 612 2036 1570 4218
Crew list 670 1452 1090 3212
Crew edit 747 4137 3372 8256
Pilot 684 1810 1189 3683
Steward 602 1203 749 2554
Languages 762 2005 1045 3812
Languages edit 685 1994 780 3459
Contacts 679 2067 1038 3784
Contacts edit 680 3254 1351 5285
Average 676.2 1915.8 1418.6 4010.6

Figure 6.7 Size of generated HTML code

The results of this measurement favor Struts 2. Tapestry includes additional meta information and

JavaScript code in the generated HTML. The form handling mechanism also works differently and

Tapestry stores a lot of information about form fields on the page. This results in a larger HTML

code generated by Tapestry.

6.1.5. Frameworks performance

Two benchmarks for each of the frameworks have been done. One benchmark simulated 50 users

requesting single page 100 times each (5000 requests) and the other simulated 100 users cycling

through all of the pages 10 times (15000 requests together – 100 users * 15 pages * 10 cycles). The

Crew Edit page has been chosen for this measurement, because it is the largest page in the case

study.

The benchmarks have been done using JMeter benchmarking tool and the applications have both

been deployed on the same Tomcat web server. The measurements have been done after a warm up

phase of 5000 requests to eliminate the effects of JIT (Just In Time compiler) and the "warming up"

of the frameworks.

The benchmarks recorded response times (in milliseconds on the graphs and hundreds of

microseconds in the tables), median and average times, standard deviation and throughput (number

of pages processed per second/minute) for each request.

43

Struts 2 Tapestry
Login 1181 2640
Main 1353 2821
Administration list 4415 8450
Administration edit 5500 5442
Aircraft list 3407 5147
Aircraft edit 2142 3716
Planning 2021 3334
Crew list 2664 3886
Crew edit 5955 6004
Pilot 3295 4282
Steward 2407 3628
Languages list 1811 3044
Languages edit 2075 3562
Contacts list 1801 3027
Contacts edit 2061 3931
Average 2805.87 4194.27

The graphs always show the results for first 600 requests, because JMeter can not correctly handle

graphs with more than 2000 samples.

All results are shown in the color of their label. The X axis represents index of a sample.

Data values represent the times of each request, average values represent the average time for all

previous samples (for example value for sample 10 shows the average for first 10 samples), the

median and deviation are calculated the same way as the average.

Throughput curve does not correspond with the Y axis. It shows the progress of throughput in time.

Figure 6.8 Struts 2 – single page benchmark

As can be seen on this graph, the average time lessens in time until it settles at the value of about

300ms, which probably indicates the peak value for this measurement.

Figure 6.9 Struts 2 – single page benchmark

The final results for 5000 requests are a little lower at the approximate value of 290ms, which gives

the final throughput of approximately 17 pages per second.

44

Figure 6.10 Tapestry single page benchmark

The results of Tapestry in this benchmark are approximately 10 times better than those of Struts 2.

The average response time is 25ms coming after rise in the beginning and fall at the end. This may

be caused by creation of page classes, which are pooled by Tapestry. This may cause the overhead

in the beginning and good performance towards the end.

Figure 6.11 Tapestry – single page benchmark

The final results for Tapestry, as was the case for Struts 2, are still lower than results for 600

requests. The average time is about 21ms and the final throughput rounds up to almost 230 pages

per second. The pooling strategy of Tapestry showed its better face in this benchmark.

Now follow results of the second benchmark:

45

Figure 6.12 Struts 2 cycle benchmark

The average response times for first 600 requests show the average time of about 220ms with

almost constant throughput after about first 200 requests.

Figure 6.13 Struts 2 cycle benchmark

The average time for all 15000 requests comes up to 600ms. The higher values were expected due

to variation of pages. The approximate final throughput is almost 17 pages per second.

46

Figure 6.14 Tapestry cycle benchmark

The average times for first 600 requests are about 36ms. The throughput curve is constant at the

bottom of the graph.

Figure 6.15 Tapestry cycle benchmark

Tapestry outperformed Struts 2 again. The average time of about 1400ms is more than 4 times better

than that of Struts 2, although the difference is not as significant as in the single page benchmark.

The throughput values are also approximately 4 times better.

The caching system of Tapestry showed its strength in this benchmark. The overwhelming result

came at the cost of higher memory consumption. The allocatable heap memory for Tomcat had to

47

be increased for this benchmark to run successfully, otherwise Tomcat threw OutOfMemory

exceptions.

Overall, Tapestry proved to be the more efficient framework in this benchmark.

6.1.6. Typical amount of files per 1 page

Configuration of one action in Struts 2 requires a record in struts.xml, action class, localization

properties file (one per each supported language), validation XML file (if page has any form, which

requires validation) and JSP page. Overall, it takes about 5 files per one action (two localization

properties files were used in this case study. Struts.xml is common for all actions). Actions in these

examples were grouped in classes to map one class to one page.

Several other configuration files, base classes and actions have to be accounted for. Total of 69 files

(domain model classes are not included) were required to implement 15 pages. The approximate

result is 4,5 files per one page.

Tapestry page configuration requires a record in app.application file, page class, page configuration

file, localization properties files and an HTML template. This sums up to 5 files (again two

properties files and app.application file is one in whole application) per one page.

Total sum of files needed to implement 15 pages, including all other configuration files and files

needed to implement reusable components, is 96 files. The approximate result is 6,5 files per one

page.

This criterion shows that the configuration of Tapestry is little more complicated requiring almost 2

files more than Struts 2 to implement one page.

6.1.7. Page correspondence with W3C standards

Two standards have been chosen for this comparison. HTML 4.01 Transitional and XHTML 1.0

Transitional. The pages were generated and uploaded to W3C validator to check the correspondence

to both of the standards. There were done no modification to the pages between measurements. The

results show number of errors on each page according to the definition of the standard.

48

Figure 6.16 Page correspondence with W3C standards – Struts 2

All Struts 2 pages were completely error free according to the HTML 4.01 Transitional standard.

XHTML standard generated errors due to unclosed meta and link tags (closed tags generate errors

in HTML standard) and with uppercase letters in the form method type (the only error that is not

possible to fix because it is rendered by the Struts 2 form tag).

Figure 6.17 Page correspondence with W3C standards – Tapestry

Tapestry generated a lot more errors than Struts 2. This is caused mostly by the extra meta

49

HTML XHTML
Login 0 3
Main 0 2
Administration list 0 3
Administration edit 0 3
Aircraft list 0 2
Aircraft edit 0 3
Planning 0 3
Crew list 0 2
Crew edit 0 3
Pilot 0 3
Steward 0 3
Languages 0 2
Languages edit 0 3
Contacts 0 2
Contacts edit 0 3
Average 0 2.67

HTML XHTML
Login 6 5
Main 12 11
Administration list 12 11
Administration edit 13 12
Aircraft list 22 21
Aircraft edit 13 12
Planning 8 7
Crew list 16 15
Crew edit 13 12
Pilot 12 11
Steward 12 11
Languages 12 11
Languages edit 13 12
Contacts 12 11
Contacts edit 13 12
Average 12.6 11.6

information and JavaScript inserted by the framework. Also in Struts 2, the developer has more

control over the resulting HTML code. Tapestry components are on a higher level and do not

provide that much control over the code generation.

The overall results favor Struts 2 with approximately 0 : 12 errors for HTML and 3 : 12 errors for

XHTML standard.

6.2. Features

This chapter covers several features like localization, validation and AJAX support. This criteria

could not be precisely measured, therefore the results are yes or no answers with closer description

of the level of support.

6.2.1. Localization support

Both of the frameworks support localization in a native way. The difference is in the quality of

support.

Struts 2 defines a hierarchy of localization files. Localization messages can be defined for each

action, base class, interface and package separately. Furthermore, it allows definition of extra

resource bundles, which can be accessed through special tags and global resource bundle may be

defined as well in the main configuration file. The localized message is searched for through a

hierarchy of bundles (precise hierarchy is defined in the Struts 2 documentation) and the closest

match is returned.

Changing of the locale is a matter of a definition of a special URL tag. Overall, the localization

system is sufficient for most of the projects.

Tapestry allows to define localization file for each component, each class and a global resource

bundle. The shortage of possibilities is balanced by the possibility to define a localized version of

the page itself (for example, countries where people read from right to left may have different

HTML template).

Change of the locale is more complicated in Tapestry. The change itself is simple – the only thing

needed is the change of the locale for the page in the page listener. However, the change of the

locale does not apply to the currently loaded/processed page. Therefore, in order to instantly change

the locale for the current page, the application must redirect to a different page and redirect back

again. This issue is solvable by defining a new page, which redirects back to original page right

after it loads itself, although it is not very clean solution.

50

6.2.2. Validation support

Struts 2 and Tapestry provide means for user input validation. Both of them allow the definition of

input field validators and the definition of more complex validation, which may include more fields

or complex expressions.

Both frameworks provide standard validators like required, integer, double, date, email, url, etc.

More complex validations may be defined through the regexp (regular expressions) validator. User

defined validators may be defined as well.

The major difference is the place of the definition of the validation. Tapestry allows to define

validations on the HTML template or in the page configuration file. Struts 2 has only its validation

XML files.

Both frameworks support client side validations as well.

The validation support from both frameworks is on a satisfiable level. All common validators are

provided and extra validators may be defined by the user.

6.2.3. AJAX support

AJAX is a relatively new technology, which makes dynamic web pages more interactive. Both

frameworks support AJAX by providing special tags or components. DOJO toolkit is supported by

both frameworks. Struts 2 supports Google Web Toolkit through a plug-in as well.

No extra configuration is needed in any of the frameworks for AJAX to work properly. By using

special tags in Struts 2 or components in Tapestry, users are given direct access to AJAX features.

6.3. Subjective judgement

This chapter covers personal opinion about the frameworks in several areas.

6.3.1. Technology complexity

The size of the written code for both frameworks is almost equal. The size of the code written in

Tapestry is actually smaller, although the development time has been more than 150% of the

development time in Struts 2.

I have had a lot of experience in working with Struts, which is similar to Struts 2 in many ways and

I have had about two months of experience working with Tapestry. Even thought I had no

experience working with Struts 2, I still found Struts 2 as easier to learn and comprehend. It may be

51

a better choice for programmers who have experience with Struts and want to use a new framework

with new features and support for new technologies, but who do not have time (or simply do not

want) to learn a completely different framework.

6.3.2. Complexity of orientation in existing project

Although Tapestry requires more configuration files to configure one page, the configuration is

spread in three places, the same as in Struts 2. The overall time spent modifying the application

came up better for Tapestry, which may indicate better productivity once the framework is learned.

Overall, both frameworks are well designed and with good project structure. The orientation in

existing project should not pose big problems.

6.3.3. Complexity of setting up a new project

Struts 2 came out better in this comparison as the community provides all dependencies in one place

along with a sample blank application, which is ready for deployment and modification. The setup

phase took 40 minutes.

Tapestry does not provide all dependencies by itself. Third party libraries have to be downloaded

separately and the web project structure has to be created from scratch. There were minor problems

configuring HiveMind and the overall setup time was 90 minutes.

6.3.4. Quality of support

The weakest place in both frameworks is the quality of the documentation. The documentation is

incomplete, contains few examples and is badly organized. It does not cover all the functionality

and the information has to be looked up in other sources on the Internet.

The troubleshooting support is on a lot better level. All questions regarding problems encountered

by users are answered promptly by some of the developers involved in the frameworks.

52

7. Related work

This chapter discusses other studies that deal with Java web frameworks and their results.

There are several comparisons to be found on the Internet. Most of them cover more than two

frameworks (Struts 2 is included in only one of the studies, although more deal with WebWork, the

Struts 2 predecessor), but none of them compares data acquired from serious measurements.

Studies Comparing Web Frameworks([15] and [16]) done by Matt Raible are popular, but they are

based just on a personal experience of the author. No case study has been implemented and the

results reflect authors personal opinion on the usage of selected frameworks.

The studies describe several frameworks with examples of source code. The author defines

comparison criteria, some of which are the same as in this thesis like internationalization, validation

and AJAX support. The author included some reasonable criteria like testability and the number of

tools, which are available to ease the development process, however he did include several criteria,

which are not professional enough and change in time like the number of jobs available for

programmers with knowledge of certain framework.

Overall, the study did not include any measurable criteria and the results are based solely on the

personal opinion of the author, therefore it cannot be compared to this thesis.

The study Comparison of Java Web Frameworks [17] covers 6 different Java web frameworks. The

study starts with description of MVC design pattern and continues with description of all of the

frameworks.

The architecture and main feature of each framework are shortly described and discussed. No

examples aid the descriptions, no criteria for comparison are defined.

The author provides simple evaluation at the end of the study, however the evaluation is short and it

does not compare the frameworks from any point of view, which really matters to most of

application developers. The evaluation criteria are the following: transparent infrastructure,

innovative ideas and high cohesion and low coupling. These criteria do not tell anything about the

development process or the performance of the frameworks, therefore this study does not give much

useful information.

The work Web Framework Comparison [18] starts with the definition of comparison criteria. Some,

such as community support, internationalization and performance, are the same as criteria defined

53

in this study, other are completely different, but reasonable enough to include in serious study.

The criteria definition is followed by the evaluation of each framework according to the criteria.

The evaluation is based on a personal opinion without any real measurements being done.

The summary gives the result in form of one chosen framework without much justification of the

selection.

The only study, where the comparison has been done on a real implementation of some case study is

Comparing webapp frameworks [19]. The case study consists of 3 pages and contains very simple

domain model.

The study is implemented in a large number of frameworks/technologies, but to be able to

accomplish this, the author chose very simple case study, which is incapable of showing many

features or capabilities of each framework.

The study provides examples of code for each of the implementations, but it does not define any

real criteria for comparison. It just gives an overview of the development process in each

framework but does not provide any evaluation that could be of any use to the developers.

54

8. Conclusion

The main goal of this thesis has been to provide information about several Java web frameworks for

application developers and architects, when they are trying to choose suitable framework for their

projects.

The sub-goals of this thesis have been to define criteria for frameworks comparison, define a case

study, implement the case study in selected frameworks and measure and evaluate the results based

on the defined criteria.

The goals of this thesis have been fulfilled. The comparison criteria were defined and described in

detail.

The basic case study along with its modifications has been defined and implemented in both Struts

2 and Tapestry frameworks.

The research on the possibility of integration of Spring WebFlow with Struts 2 and Tapestry has

been done. The result of this research showed that the integration support for Struts 2 is not in a

functional state and the support of Tapestry has not been implemented yet.

The measurements have been successfully accomplished and showed the strengths and weaknesses

of both frameworks.

The final recommendations are:

● both frameworks are capable of providing services, which most of current projects demand.

● both frameworks are suitable for projects from small to large scale.

● Struts 2 may be the better choice for developers with the knowledge of Struts as their design

is very similar. Therefore, Struts 2 is easy to learn with the knowledge of Struts.

● Tapestry may be better for larger projects where the pages are divisible into highly reusable

components, where it may save a lot of development time.

● Tapestry showed a lot better performance so it may be the better choice if one of the most

important criteria is the performance.

55

9. References

[1] Struts 2 homepage. http://struts.apache.org/2.x/

[2] Using Struts 2, Matt Raible, 2007. http://appfuse.org/display/APF/Using%20Struts%202

[3] Struts 2 Architecture, Patrick Lightbody, 2007, http://struts.apache.org/2.x/docs/big-picture.html

[4] Struts 2 features. http://www.roseindia.net/struts/struts2/struts-2-features.shtml

[5] MVC pattern, Sang Shin, 2007. http://www.javapassion.com/j2ee/MVCPatternAndFrameworks.pdf

[6] Wikipedia. http://en.wikipedia.org/wiki/

[7] Tapestry homepage. http://tapestry.apache.org/

[8] Tapestry 4.1 homepage. http://tapestry.apache.org/tapestry4.1/

[9] Tapestry users guide. http://tapestry.apache.org/tapestry4.1/usersguide/index.html

[10] Introduction to Tapestry, Neal Ford , 2006.

http://www.nealford.com/downloads/conferences/2006_nfjs_canonical/Neal_Ford-

Introduction_to_Tapestry-slides.pdf

[11] Tapestry 101, Warner Onstine, 2006.

http://sourcebeat.com/titles/tapestrylive/public/Rev_1/TapestryLive_SampleChapter.pdf

[12] Spring WebFlow flow definition. http://static.springframework.org/spring-

webflow/docs/current/reference/flow-definition.html

[13] Spring WebFlow – A practical introduction, Erwin Vervaet, 2007.

http://www.ervacon.com/products/swf/intro/index.html

[14] Spring WebFlow homepage. http://www.springframework.org/webflow

[15] Comparing Web Frameworks, Matt Raible, 2006. https://equinox.dev.java.net/framework-

comparison/WebFrameworks.pdf

[16] Comparing Web Frameworks, Matt Raible, 2007.

http://static.raibledesigns.com/repository/presentations/ComparingJavaWebFrameworks.pdf

[17] Comparison of Java Web Frameworks, Neal Ford.

http://bdn1.borland.com/article/borcon/files/6000/paper/6000.html

[18] Web Framework Comparison, Pieter Hartsook, 2006.

http://chandlerproject.org/bin/view/Projects/WebFrameworkComparison

[19] Comparing webapp frameworks, Simon Brown, 2005.

http://weblogs.java.net/blog/simongbrown/archive/2005/11/comparing_webap.html

[20] W3C validator, http://validator.w3.org/

[21] Struts 2 download page, http://struts.apache.org/download.cgi

[22] JMeter homepage, http://jakarta.apache.org/jmeter/

56

	1. Introduction
	1.1. Goals
	1.2. Structure of the text

	2. Frameworks description
	2.1. Struts 2
	2.1.1. History
	2.1.2. Architecture
	2.1.3. Example of use
	2.1.4. Requirements
	2.1.5. Supported Technologies

	2.2. Tapestry
	2.2.1. History
	2.2.2. Architecture
	2.2.3. Example of use
	2.2.4. Requirements
	2.2.5. Supported Technologies

	2.3. Spring WebFlow
	2.3.1. History
	2.3.2. Architecture
	2.3.3. Example of use
	2.3.4. Requirements
	2.3.5. Supported Technologies

	3. Criteria description
	3.1. Benchmarks
	3.2. Features
	3.3. Subjective judgement

	4. Case study
	4.1. GUI model
	4.2. Domain model
	4.3. Page flows
	4.4. Modifications

	5. Case study implementation
	5.1. Struts 2
	5.1.1. Setup
	5.1.2. Implementation

	5.2. Tapestry
	5.2.1. Setup
	5.2.2. Implementation

	5.3. Struts 2 with WebFlow
	5.4. Tapestry with WebFlow

	6. Results
	6.1. Benchmarks
	6.1.1. Time spent developing pages
	6.1.2. Time spent modifying existing application
	6.1.3. The size of written code
	6.1.4. Size of generated HTML code
	6.1.5. Frameworks performance
	6.1.6. Typical amount of files per 1 page
	6.1.7. Page correspondence with W3C standards

	6.2. Features
	6.2.1. Localization support
	6.2.2. Validation support
	6.2.3. AJAX support

	6.3. Subjective judgement
	6.3.1. Technology complexity
	6.3.2. Complexity of orientation in existing project
	6.3.3. Complexity of setting up a new project
	6.3.4. Quality of support

	7. Related work
	8. Conclusion
	9. References

