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Chapter 1

Introduction

During the past few decades, computer systems became an essential part of al-

most every business in the world. In the beginning, computers with available soft-

ware solved only simple tasks, but more complex business requirements and larger

amounts of input data have increased the complexity of software. To handle this

complexity, several software engineering approaches have grown up. Component-

based software engineering (CBSE) is one of them. CBSE presents a way of building

large-scale applications using decomposition to smaller parts called components. A

component is an independent piece of code that is responsible only for solving an

exactly specified sub-task. Components are connected by using well-defined inter-

faces to realize mutual collaboration. In addition, due to its simplicity, components

can be reused effectively.

There are many component systems available. The first one is a group of pro-

prietary business oriented solutions that have widely-known code names, such as

.NET component model from Microsoft [3], Enterprise Java Bean (EJB) from Sun

Microsystems [5] or Corba Component Model (CCM) created by Object Manage-

ment Group [4]. The second one is a group of academic solutions that typically offer

models that are much more deeply thought-out. As an example, we mention SOFA

[15] or Fractal [6].

1.1 Motivation

As we described in the text above, components are interconnected to achieve ex-

pected functionality. But each of the existing systems has a connection designed

and implemented in its own way based on a different native middleware (e.g., .NET

is based on .NET Remoting, EJB is based on RMI, CCM is based on CORBA). As a

result, the final application works well in a homogenous environment. But if it is re-

quired to build a heterogenous application with more than one type of component, a

problem appears. This problem can be solved by using available middleware bridges,

1



1.1 Motivation 2

but these will work only for a particular architecture (e.g., JNBridge [12], J-Integra

[8] are used for mediating a connection between .NET and EJB components). A

more eligible solution for these heterogenous purposes are software connectors.

Another issue is a general ability of component connections monitoring at run-

time. Existing component systems offer logging tools or single-purpose monitoring

services for their supported middleware, e.g., [17]. However, as we switch to a

heterogenous environment, we cannot guarantee unified monitoring over all involved

systems. Once again, the software connectors can be a suitable solution.

The third issue is a limitation given by an underlying layer. A common situa-

tion in a business environment is that two remote instances of a component system

are needed to cooperate, but their mutual direct network visibility is not possible at

the moment (e.g., according to a requirement of low costs expended on their infras-

tructure). A solution could be a complicated adjustment of the middleware parts.

But it can bring a significant increase of project time and extra costs for the given

implementation. Software connectors utilizing parts of already existing architecture

and infrastructure also seem to be a better solution in this case.

Now we will say what exactly are these software connectors? Software con-

nectors as first-class entities realize an interaction-specific task in a component ar-

chitecture. They utilize various communication styles based on various middlewares

(e.g., remote procedure call used in CORBA [22] or Java RMI [19], messaging in

JMS [20], CORBA Message Service [23] or JORAM [13], streaming in Helix DNA [7]

or distributed shared memory in JavaSpaces [21]). Software connectors also bypass

incompatibilities among particular component systems. Because a communication

layer is a part of a connector, the connector separates a business layer of the archi-

tecture from the communication layer very well. A connector’s design also allows to

put some extra functionality into its implementation, such as measurement, logging

or adaptation.

There are many existing connector generator implementations. The simplest

solutions, such as CORBA or Java RMI, generate stubs and skeletons for a mu-

tual interconnection of objects. A similar solution is used in .NET Remoting where

proxies are generated to join remote objects. A more sophisticated solution is imple-

mented in the Openwings project [14]. This project realizes a connector as a set of

Java classes which are responsible for the binding of given components. In this case,

connector classes are prepared at design-time. An example of an advanced solution

is the Connector generator project (ConGen) [32]. It is designed for connector

generation at deployment-time. The generation is based on a template system. It

produces a bundle of connector classes based on the best evaluated architecture for

a given components specification. An original version of ConGen [27] has been

producing connector classes using a specialized set of classes instead of the class

templates. The templates have been introduced to achieve better usability of the
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solution.

In the previous text we used categories as design-time, deployment-time or

run-time. From connector system’s point of view we recognize three stages. First,

there is the design-time stage where a connector framework and all of its parts

including connector model are designed and prepared for deployment. Then, there

is the deployment-time stage where the system is deployed, e.g., as a part of the

connector, to a run-time environment. Lastly, there is the run-time stage where the

framework is on and running the connectors.

We wrote several examples saying that a connector itself in various connector

systems can be generated at each of these stages. During the design-time generation,

all possible connector types and their bindings to all possible component types are

to be prepared. This option does not allow any later adaptations of the connector

at deployment-time, e.g., based on security settings. An example is the Openwings

project. The second option is the generation at deployment-time. At this stage, only

connector parts which are required by the current architecture are generated. An

example is the ConGenproject. The third option is the generation of the connector

or connector’s parts at run-time which, for example, can be useful when new specific

references are created in components at run-time. A simple example of this approach

are EJB components where the stub and the skeletons are generated on-the-fly.

1.1.1 Goals

We already mentioned that the generation of the connectors at deployment-time

or run-time is much more flexible than preparing them at design-time. However, a

deployment environment is more restrictive than a design environment. Moving the

generation to the deployment stage makes the deployment process more expensive

than without the generation. Moreover, if we talk about the generation that takes

place at run-time, its environment is even more restrictive.

The most significant requirement in the current ConGen is that the Java SDK

is needed to generate code. A compilation using javac was also pointed out as a

performance drawback in [32]. Typically, the generation of Java classes is optimized

by using a technique called bytecode manipulation. It profits from the omission of

the Java compiler tool and its parts from the generation process.

Thus, the goal of this thesis is to try to propose an optimization of the existing

ConGen project to decrease its resources and tools needed at deployment-time and

to speed up the compilation of the connector’s code. The proposed optimization

should preserve the current project’s benefits, such as a highly usable template

system and the architecture evaluation process which makes the project very robust.
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Summarized goals of the thesis are:

• To propose a set of optimizations of the element generation in the existing

connector generator solution.

– To focus on the time needed to generate the class files of the element.

– To focus on the additional environmental resources needed for the

generation process.

– To try to keep a concept of the optimization reusable for platforms

other than Java.

• To develop appropriate supporting tools for the optimization.

• To measure and determine benefits of the proposed optimizations.

1.2 Structure of the thesis

First, in the following four chapters, the background of the connectors generation

and bytecode manipulation will be introduced. A part of the introduction is also

Chapter 4, which describes a framework used for the processing of a template con-

tent in the current version of ConGen and also to support proposed optimizations.

Second, in Chapter 6, we will find an outline of the proposed optimization. The out-

line will consist of the particular steps which will be discussed and extended more in

the following three chapters. Next, in Chapter 10, it will be evaluated how the opti-

mized solution achieves the stated goals of this work. In this chapter, measurements

of the original and the optimized solution will be compared. In Chapter 11, the

summary of the works related to this thesis will be discussed and in Chapter 12, the

entire thesis will be concluded. The appendix will introduce several code examples

demonstrating the process of the generation using the optimized solution.



Chapter 2

Connectors

Software connectors as first-class entities act as a communication channel between

components in component architectures. Furthermore, in distributed environments

connectors span different address spaces to hide the distribution from the compo-

nent’s view. This is typically realized by using middleware.

2.1 Connector model

A connector model is a tool for the designers of the connectors. It describes a

connector’s fashion and its features. A connector model is typically a result of its

primary focus.

An example of the connector model is the model introduced in [27], [26]. This

model is based on a model from [25]. It is a core model for the ConGen solution

discussed in this thesis. It follows the component paradigm (see Figure 2.1). A

connector is modeled by a connector architecture defining the first level of nesting a

set of connector units. Connector units will be discussed later.

Figure 2.1: Connector architecture sample

5



2.2 Generation process 6

2.2 Generation process

The generation process based on our connector model consists of two steps (see

Figure 2.2). One of the model’s views is used in each step. First, a human oriented

high-level connector specification given by the deployment tool for connectors or by

the connector designer is used to evaluate which architecture and layout are most

appropriate. Second, a machine oriented low-level connector configuration is used

to generate the code of the connector.

Figure 2.2: Overview of the generation process

2.2.1 High-level specification

A high-level specification of the connector is the starting input for the connector

generator. It is used by a connector’s deployment tool or a designer to specify the

connector in an abstract way that is still convenient for a human. The specification

contains a description of a communication style and a set of non-functional properties

(NFP).

The description of the communication style is per-interface and specifies what

type of communication an interface is associated with. Non-functional properties

are named attributes in the dot notation and are written in forms of restrictions of

attributes’ values.

A component designer can prescribe some NFPs at design-time by associat-

ing them with the interface. These properties can comprise, for example, security

requirements specifying that the interface provides sensitive data, or a threading

policy specifying that parallel calls to the interface are supported. At the deploy-
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ment phase, additional NFPs can be associated with the component interface or

directly with the connector by a component deployer. These properties can com-

prise features such as the monitoring of the connector traffic by logging it to a file

or by sending it to a monitoring database.

2.2.2 Low-level configuration

A low-level connector configuration defines a structure inside the concrete connector

implementation. It consists of a description of the inner elements of the connec-

tor called connector elements and element ports and all the bindings among these

ports. Analogous to the high-level connector specification, connector elements can

be nested, so they create a bound entity from several connector elements.

The idea of binding makes us to see the configuration as a tree. Because the

connector itself can be distributed over the network, the first level of the nesting is

used for connector units. A connector unit is a direct descendant of the connector

configuration tree’s root describing a part of the connector code which is intended for

a particular deployment dock. Because there are no additional specific requirements

needed for the connector unit, it is, in fact, considered as one of the connector

elements.

The connector elements and their subelements contain the element ports. An

element port is an entity that has been introduced for use at the bottom level of

the connector configuration tree. This port, together with its signatures, acts as a

description of an element interface. Our connector model recognizes three types of

the element ports:

• A provided port describes a locally provided interface.

• A required port describes a locally required interface.

• A remote port describes a remote interface.

As we mentioned in the previous text, a part of the connector configuration is

a binding among the element ports. The binding is based on signatures of the ports

and our connector model recognizes two types of bindings. The first one is a local

binding between a provided and a required port (and vice versa) and the second is

a remote binding among multiple remote ports.

The local binding is used for two connector elements inside one connector unit.

These elements are in one address space and therefore it is possible to perform a

call of the interface locally. Local binding is also used for a connection between a

connector element and a component.

The remote binding is used for at least two connector elements located in

more than one connector unit. The remote binding is undirected and is typically
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realized by the underlaying middleware (e.g., RMI, JMS, CORBA). To support

more complex communication styles than only a point-to-point style, our model

defines the remote binding as a hyper-edge. Therefore, for example, a broadcasting

communication style can be used. Moreover, one binding only will be needed to

describe this communication.

The bindings follow a specific order in connections among connector units

from different layers of the configuration hierarchy. If a nested connector element is

provided with the remote port, it has to be delegated to a port of its bound element.

From the generation point of view, there are two architectures of the connector

elements with their implementations, primitive and composite. The primitive ar-

chitecture is only a code template and it realizes particular functionality such as an

RMI stub, an RMI skeleton or a logger. This architecture corresponds to a leaf ele-

ment of the configuration tree. The composite architecture corresponds to a bound

element of the tree. It comprises all nested sub-elements and the bindings among

them.

Figure 2.3 shows an example of the connector configuration. It consists of a

server unit and two corresponding client units. The server unit is implemented by a

server unit element. It is a composite element comprising multiple nested elements.

Two of them are skeletons. One for local calls and the second for compressed RMI

calls with minimized network traffic. The compressing RMI skeleton consists of

an RMI skeleton element itself and an intercepting element that decompresses the

parameters compressed on a remote client’s side. The server unit also contains an

example of two standalone intercepting elements. The first one is a logger which

logs an incoming traffic and the second is a call serializer ensuring that all incoming

calls will be processed in sequence. The first of the two client units is a local client

unit and the second is a remote client unit. Both client units are implemented by

a client unit element. The client unit element is a composite element and, in both

cases, it contains a stub part for the corresponding server skeletons. For the local

skeleton element, it is a local stub which is only an interceptor that forwards the

passed parameters. For the compressed RMI skeleton, it is a pair of nested elements.

The first of them is a compressor for the passed parameters and the second is an

RMI stub itself. Multiple skeleton elements enable the server unit to serve multiple

clients concurrently.

2.2.3 Resolving connector architecture

Connector architecture resolution is a process for transforming the high-level spec-

ification described in Subsection 2.2.1 into the low-level configuration described in

Subsection 2.2.2. In addition to information about the locations of the components

in a deployment environment, the resolution process considers also communication
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Figure 2.3: An example of low-level connector configuration

styles of the components and specified non-functional properties.

The resolution traverses the tree of all possible configurations known to the

generator and determines which of them comply with the parameters from the high-

level specification. First, during the resolution, an overall architecture is evaluated

and then an architecture of the units and their subelements is recursively evaluated.

From the list of the appropriate architectures, the ”best” one is chosen. The evalu-

ation of the best configuration could generally be a very complicated process based

on various criteria to judge what is the ”best” configuration (e.g., the lowest mem-

ory consumption, CPU utilization, latency, reliability, etc.). However, our model

leaves the issue of choosing open and uses a quite simple solution which chooses the

architecture with the lowest cost of the configuration. The costs are strictly assigned

to all elements in the tree of known architectures.

2.2.4 Connector code generation

The second step of our connector generation approach is a process synthesizing the

executable code of the connector from the low-level connector configuration obtained

as an output of the first step.

As we described in Subsection 2.2.2, in terms of the connector configuration

there is no specific need to distinguish the connector unit. Thus, the connector unit

can be seen as a common connector element in the configuration hierarchy. There-
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fore, the process of generation can be simplified to the generation of the connector

elements only.

The generation of the connector element proceeds in two ways. For a primitive

element, only its code based on a template is generated. For the composite element,

both the wrapping code responsible for the creation of the nested elements and

the bindings among them are generated. In both ways, additional element-type-

specific actions can also be performed (e.g., optimizer on the code, rmic called on

the generated code, etc.).

2.3 Existing generator solution

In this thesis, we discuss the connector model and the ConGen implementation of

this model presented in [27]. The implementation was later extended in [32] to its

current version. Inner architecture of the implementation is shown in Figure 2.4.

Figure 2.4: The architecture of the connector generator

The implementation satisfies the two steps described in the text above. The

first part is an architecture resolver and the second one is the element generator.

Collaboration of the parts in the processing is controlled by the generation manager.

2.3.1 Architecture resolver

A core of the architecture resolver is adjusted to searching for the ”best” suitable

architecture. The core of the searching is implemented in Prolog. Terms in Prolog

are used to represent the low-level connector configuration. The terms are con-

structed from the database of all known architectures and connector units descrip-
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tions specified in the high-level specification. NFPs are added as additional terms.

Architectures matching to the terms cover the space of all suitable architectures.

The matching architectures are evaluated in sequence and the one with the lowest

costs is returned as the ”best” architecture.

The input database of the element architectures known to the generator is

stored as XML documents. An example of the descriptor of an RMI skeleton element

is shown in Listing 2.1. The description contains hard-coded cost of the element

usage, exposed ports of the element and NFPs related to the element. The second

part of the descriptor includes a list of actions performed to generate the code of

the element. This part is discussed later.

<element name= ” rm i ske le ton ” type= ” ske le ton ”
impl−c lass= ” RMISkeleton ”>

<a r c h i t e c t u r e cost= ” 4 ”>
<po r t name= ” l i n e ”>

<s ignature−en t ry re f−name= ” rmi ” type= ” server ” s igna tu re= ” rmi ( I ) ” />
< / po r t>
<po r t name= ” c a l l ” s igna tu re= ” I ” />

< / a r c h i t e c t u r e>

<nfp−dec la ra t i o ns>

<nfp−mapping name= ” rpc ( requ i red t ype ) ” value= ” rmi ” />
< / nfp−dec la ra t i ons>

. . . pa r t desc r ib ing generat ion ac t ions . . .

< / element>

Listing 2.1: An example of an element architecture descriptor

The input high-level specification is also represented as an XML document.

The specification is built by a deployment tool that has knowledge in a deployment

dock. The tool put the dock requirements together with NFPs into the resulting

XML document. The first level of the contained information specifies all connector

units figuring in the solution. The unit descriptor contains nested information about

exposed ports and NFPs to be satisfied. An example of the XML document is shown

in Listing 2.2.

<s p e c i f i c a t i o n>

<u n i t name= ” s e r v e r u n i t ” dock= ” host1 ”>
<po r t name= ” c a l l ” type= ” requ i red ” s igna tu re= ” j a v a i n t e r f a c e ( ’ mypackage . I f c ’ ) ” />
<nfp−requirement

p red ica te= ” nfp mapping ( Uni t , ’ communicat ion sty le ’ , ’ method invocat ion ’ ) ” />
<nfp−requirement

p red ica te= ” nfp mapping ( Uni t , rpc ( requ i red t ype ) , ’ ax is ’ ) ” />
< / u n i t>

<u n i t name= ” c l i e n t u n i t ” dock= ” host1 ”>
<po r t name= ” c a l l ” type= ” provided ” s igna tu re= ” j a v a i n t e r f a c e ( ’ mypackage . I f c ’ ) ” />
<nfp−requirement

p red ica te= ” nfp mapping ( Uni t , ’ communicat ion sty le ’ , ’ method invocat ion ’ ) ” />
< / u n i t>
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<u n i t name= ” c l i e n t u n i t ” dock= ” host2 ”>
<po r t name= ” c a l l ” type= ” provided ” s igna tu re= ” j a v a i n t e r f a c e ( ’ mypackage . I f c ’ ) ” />
<nfp−requirement

p red ica te= ” nfp mapping ( Uni t , ’ communicat ion sty le ’ , ’ method invocat ion ’ ) ” />
< / u n i t>

< / s p e c i f i c a t i o n>

Listing 2.2: An example of an element architecture descriptor

2.3.2 Element generator

In the low-level configuration obtained from the architecture resolver, we have full

information about what source code for elements and what bindings shall be gener-

ated.

For each element of the configuration, we have a descriptor defining the element

itself and the list of all actions that should be performed in sequence in order to

generate the element’s code. The range of the actions goes from producing the

temporary target source code file, through a compilation of the file or a rmic call,

up to a deletion of the temporary file. A name of each action corresponds to a Java

implementation of the action.

The most important action is called jimpl. It is responsible for the Java source

code file generation. In the ConGen implementation preceding [32] the jimpl action

was implemented through a tree of generators. Each of the generators was based

on the JimplGeneratorInterface interface. The generators were responsible for the

hierarchical processing of simple templates to the target language. In the recent

implementation, all the generators were replaced only by one consolidated generator

which uses more complex template language for the generation of Java source code

files. The template language as well as a platform used to define the language is

described in following two chapters. The previous version of the generator is still

available and can be used to generate target languages different from Java, but for

purpose of this thesis it is not necessary to discuss it in detail.

If Java is the target language of the source code file, the javac action calling a

native compiler is used to compile it. The rmic action is used to generate a stub part

for the particular remote interface implementation. This is used especially for RMI

skeleton and stub element generation. The delete action is used to delete temporary

files that are no longer needed after the generation.

<element name= ” rm i ske le ton ” type= ” ske le ton ” impl−c lass= ” RMISkeleton ”>

. . . pa r t desc r ib ing a r c h i t e c t u r e . . .

<s c r i p t>
<command ac t i on = ” j i m p l ”>

<param name= ” generator ”
value= ” org . objectweb . dsrg . congen . elemgen . generators . s t ra tego . StrategoGenerator ” />
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<param name= ” c lass ” value= ” RMISkeleton ” />
<param name= ” template ” value= ” e l l ang / rm i ske le ton . template . e l l ang ” />

< / command>

<command ac t i on = ” javac ”>
<param name= ” c lass ” value= ” RMISkeleton ” />

< / command>

<command ac t i on = ” rmic ”>
<param name= ” c lass ” value= ” RMISkeleton ” />

< / command>

<command ac t i on = ” de le te ”>
<param name= ” source ” value= ” RMISkeleton ” />

< / command>
< / s c r i p t>

< / element>

Listing 2.3: An example of an element architecture descriptor



Chapter 3

Template language

The current release of ConGen [32] discussed in Chapter 2 uses a specially designed

template language ElLang-J. This language is based on a combination of the target

language (currently Java) with a meta language ElLang.

3.1 Template language ElLang

As we wrote above, ElLang is a part of the template language ElLang-J. It is

designed from scratch as a meta language, so it can be easily encapsulated into the

target programming language statements. The scope of the language contains simple

if, foreach, rforeach or set and several more specific statements as, for example, an

extension point or an import. All of these statements will be discussed later in a

description of the merged language. Because ElLang is aimed at being embedded,

it has no expressional power without being a part of the target language.

3.2 Template description

The ElLang-J template consists of target language statements and ElLang meta

statements. The base of the template structure is a declaration of an element. The

element defines the future class and can either be a pure element or can extend

another element. The element declaration consists of included interfaces with their

implemented methods and a number of methods without an explicit link to any

interface. Furthermore, the element can contain any target language declaration

valid for the level of class members and methods declarations. One of the important

benefits of ElLang-J is the existence of method templates allowing the user to

write a simple code template for the implementation of particular interface. The

template code is then expanded for each method of the interface. Listing 3.1 shows

an example of an ElLang-J template.

14
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package ${package } ;

impor t javax . net . . . runt ime . ∗ ;

element Example extends ” p r i m i t i v e d e f a u l t . e l l ang ” {

/∗∗ Defau l t cons t r uc to r ∗ /
p u b l i c ${classname} {}

implements i n t e r f a c e P r i m i t i v e I n t e r f a c e {
/∗∗ P r i m i t i v e method ∗ /
p u b l i c vo id p r im i t i ve method ( i n t var1 ) {

/ / . . .
}

}

implements i n t e r f a c e ${ In ter faceNameVar iable} {
method template {

/ / . . .
}

}
}

Listing 3.1: An example of an ElLang-J template

3.2.1 Meta variables

A meta-variable is a part of the ElLang-J language. It is a way of meta-value’s

projection into the target language. The meta-variable has two possible forms based

on its type:

${var}
${v1 . v2 ( v3=VALUE ) . v4}

where var is a name of the variable and v1.v2(v3=VALUE).v4 is a sample

query. The first type is a scalar (i.e., ${x}) or array variable (i.e., ${y[2]}) which

can be declared in set or cycle meta-statements. The array variable can be indexed

by either another meta-variable or by a valid literal (integer or string). The second

type is a query variable. An expression contains names in a dot notation. Depending

on the names, a value from the additional XML element descriptor or from a meta-

variable containing a XML structure is selected. For more details on queries see

[32].

3.2.2 Meta expressions

A meta-expression is used whenever further processing of the meta-value is required.

It supports +, != and == operators and as operands any meta-variable or literal

(integer or string) can be used. Since the meta-expression is used as a part of some
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meta-statement, there is no explicit need to bind the meta-variable in ${...}. An

example of the expression is shown in Listing 3.2.

$set y = 2$
$set x = y + 1$
$ i f ( x == BINDINGS . BINDING( type=SRC) . p o r t n r ) $

. . .
$end$

Listing 3.2: An example of meta-expression

3.2.3 Basic meta statements

Analogous to other procedural languages, ElLang-J offers meta-statements for

setting meta-variables, cycles or conditioning.

3.2.3.1 Set statement

Set is a meta-statement for creating or changing values of meta-variables. It has the

form:

$set v = e$

where v is a name of the variable, which is being set and e is a meta-expression

whose resulting value is assigned into v. The scope of the created meta-variable is

not restricted and its value can be used subsequently after its creation within the

code of the template.

$set i = 1$
System . out . p r i n t l n ( ” Ava i l ab le remote b ind ings : ” ) ;
$foreach (BIND i n ${BINDINGS . BINDING( type=REMOTE)} ) $

System . out . p r i n t l n ( ” ${ i } − ${BIND } ” ) ;
$set i = i + 1$

$end$

Listing 3.3: An example of set and foreach meta-statements usage

3.2.3.2 Foreach cycle

Foreach is a meta-statement that results in multiple copies of the included state-

ments in the output code. It has the form:

$foreach ( v1 i n ${v2 } ) $
. . . t a r g e t language and / or ElLang statements . . .

$end$

where v1 is a simple scalar meta-variable name. V2 is any meta-variable

resulting in one or multiple values. In the case of the first type of the meta-variable,
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v2 contains a single value. In the case of the query type, v2 contains multiple values.

An example usage is shown in Listing 3.3.

3.2.3.3 Recursive foreach cycle

Rforeach meta-statement is a special instrument to make a recursive version of the

foreach cycle introduced in the previous text. It should be used if an expansion of

the included statements is needed in a recursive way and the basic foreach statement

cannot be used due to the grammar restrictions. Rforeach has the following form:

$r foreach ( v1 i n $ [ v2 } ) $
. . . t a r g e t language and / or ElLang statements . . .
$ recpo in t$
. . . t a r g e t language and / or ElLang statements . . .

$ f i n a l $
. . . t a r g e t language and / or ElLang statements . . .

$end$

where v1 and v2 have the same meaning as in the foreach statement. The

difference is that there are two sections of the statements. The first has the same

meaning as the foreach section, i.e., to be repeated. The second set of statements

beginning with the $final$ keyword, is used as the last level of recursion if there

are more than zero values in v2, or is the only resulting list of statements if there

are no values in v2. The point of recursion is marked in the first block statement by

the special $recpoint$ meta-statement.

The recursive version of foreach evaluates the final code as follows. As we said

in the previous paragraph, if there are no values given by the v2 variable, only the

final block of statements will be written to the output. Otherwise, the first value of

v2 is taken and the v1 meta-variable is evaluated in the first block of statements.

The evaluated block is added to the output. If there are still some values in v2, we

process an expansion for the second value and the $recpoint$ meta-statement is

replaced with the expansion output. Accordingly, we process the other values from

v2. As soon as there are no more values in v2, the $recpoint$ is replaced with the

final part of the statements. Listing 3.4 shows a sample usage of rforeach.

$r foreach (BIND i n ${BINDINGS . BINDING( type=REMOTE)} ) $
i f ( ” ${BIND . por t1 . i d } ” . equals ( g ivenPor t ID ) ) {

. . .
} else

$recpo in t$
$ f i n a l $

throws new Except ion ( ” Requested po r t ’ ” + g ivenPor t ID + ” ’ not found . ” ) ;
$end$

Listing 3.4: An example of rforeach meta-statement usage
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3.2.3.4 If statement

If is a meta-statement for conditional output of its contained code. There are two

types of this statements and these have the following forms:

$ i f ( e ) $
. . . t a r g e t language and / or ElLang statements . . .

$end$

$ i f ( e ) $
. . . t a r g e t language and / or ElLang statements . . .

$else$
. . . t a r g e t language and / or ElLang statements . . .

$end$

where e is a meta-expression. In the first type, the statements are generated

to an output if and only if a value of the meta-expression is not equal to 0. In the

second type, the first branch of statements is generated to the output under the

same condition, otherwise the second branch of statements is generated.

$ i f (BINDING . from . element . name == ” t h i s ” ) $
$ i f (BINDING . to . element . name == ” t h i s ” ) $

System . out . p r i n t l n ( ” F u l l y l o c a l b ind ing ” ) ;
$else$

System . out . p r i n t l n ( ” One way l o c a l b ind ing ” ) ;
$end$

$else$
$ i f (BINDING . to . element . name == ” t h i s ” ) $

System . out . p r i n t l n ( ” One way l o c a l b ind ing ” ) ;
$else$

System . out . p r i n t l n ( ” F u l l y remote b ind ing ” ) ;
$end$

$end$

Listing 3.5: An example of if meta-statement usage

3.2.3.5 Import statement

Import is a meta-statement for importing another template file. The name of the

imported file is given as a parameter. This meta-statement is used for importing

either full interface definitions or just certain methods.

$import ( ” d e f i n i t i o n s / d e f a u l t s / version methods . e l l ang ” ) $

Listing 3.6: An example of import meta-statement usage

3.2.4 Template hierarchy

As we wrote at the beginning of this section, a template can easily extend another

template. If extended, all content of the extending element is taken and added as
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part of the extended element body. The idea of this construction is to get a hier-

archical structure of the templates with simple inheritance. Cycles are not allowed.

The problem of method names collision is left to a template designer’s responsibility.

3.2.5 Template extension points

Another feature provided by the ElLang-J is the concept of extension points. The

basic idea consists of defining a location inside the code or a block of the code that

can be replaced in a descendant template. The two forms of the extension point

look as follows:

/∗ f i r s t type ∗ /
$ex tPo in t (name) $

/∗ second type ∗ /
$ex tPo in t (name) $

. . . t a r g e t language and / or ElLang statements . . .
$end$

where name is an identifier of the extension point. As soon as the extension

point is defined, we can easily substitute it into an element’s descendant by using

the code:

$defExtPo in t (name) $
. . . t a r g e t language and / or ElLang statements . . .

$end$

The new given block of statements will fully replace the original location or

the marked block of the extension point’s statements.

3.2.6 Method templates

One of the advanced ideas in the ElLang-J template concept is a method tem-

plate. Many element templates in the component system need only to be adjusted,

for example, for ports available in a connector configuration or other similar mod-

ifications of some method’s code. However, there are situations when we need to

make a template for the entire method of a particular interface. For this purpose,

ElLang-J provides the method templates.

A method template is declared in an interface definition. It has the form:

implements i n t e r f a c e ${ i f c . name} {
method template {

. . . t a r g e t language and / or ElLang statements . . .
}

}
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In contrast to the code of common template methods, the code of the method

template can use several special meta-variables beginning with the prefix method..

The meta-variables are related to the method of the interface that is generated.

More specifically, there are meta-variables of the following names defined for the

scope of the method template:

• method.name - name of the generated method.

• method.variables - contains list of the method parameter names.

• method.declareReturnValue - declares a variable for a return value if the

method has a return type.

• method.returnVar - name of the variable declared in the previous declaration.

If the method does not return any value, this meta-variable contains 0.

• method.returnStm - generates a return statement. If there is a value to be

returned, the variable declared above is used.

Listing 3.7 shows a typical usage of the method template in an interface given

by a meta-variable. In this case, it is obvious that methods cannot be defined one by

one, because an interface name is not available while designing the template. The

only activity in the code of the method template is the forwarding of the call.

implements i n t e r f a c e ${por ts . po r t (name= c a l l ) . s igna tu re } {
method template {

${method . declareReturnValue}
t r y {

$ i f ( method . re tu rnVar ) $
${method . re tu rnVar} = t h i s . t a r g e t . ${method . name} ( ${method . v a r i a b l es } ) ;

$else$
t h i s . t a r g e t . ${method . name} ( ${method . v a r i a b l es } ) ;

$end$
} catch ( java . rmi . Except ion e ) {

throw new org . objectweb . dsrg . connector . ConnectorTransportExcept ion ( e ) ;
}
${method . returnStm}

}
}

Listing 3.7: An example of method template usage

3.3 Template evaluation

A process of the template evaluation, split into individual tasks, is shown in Fig-

ure 3.1. It includes all of the steps which take place to get a final ATerm. The final

ATerm is almost ready to be pretty-printed as the Java code. To see more details

about the ATerm see Section 4.3.
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Figure 3.1: Template evaluation process

An evaluation module is called from the main Stratego program elgenerator.

Elgenerator expects an XML descriptor as an input. The descriptor contains a path

to a template and all settings of an element.

The evaluation begins with the processing of extends. A path of the extended

template file, which is a parameter of the extension, is required to be relative to

the launching directory. The launching directory is equivalent to the root template

path from the XML descriptor. The extended element is firstly checked for another

extension and the body is added as part of the evaluated template. The module

also checks for cyclic dependencies, that are not allowed, but it does not check for

method name collisions.

The next step of the evaluation is the processing of imports. The path of

an imported file, which is given as a parameter, is also relative to the launching

directory. The content of the file is parsed using the sglri XT tool and the definition

table of the grammar. A possibility of using import for several levels, i.e., interface,

method or field, is given by multiple starting symbols set to the parser.

The next step is the last part of the elaboration. The template is normal-

ized, which means that statements with multiple versions of the constructor are

transformed into a unified form. An example of the normalization is the if meta-

statement, which has two forms, one with and one without an else branch. In

this step, all occurrences of the term IF(expression,statements*) denoting the

version without else branch are replaced with IF(expression,statements*,[])

having an empty statements list as the else branch. After the normalization, all

extension points are processed. This means that for each $defExtPoint(name)$

occurrence, the original point $extPoint(name)$ is found and replaced with the

new version of the code.

The fourth step moves towards meta-variables and meta-expressions, where

queries are evaluated. Each query is mapped to information from an element’s

XML descriptor structure and the new value replaces the original location of the

meta-variable. For more details on queries see [32].

In the last step, meta-statements and remaining meta-variables are processed.

This step proceeds hierarchically because of the control meta-variable’s validity in

the cycle meta-statements. Moreover, the hierarchical processing ensures that values



3.3 Template evaluation 22

of the meta-variables are used in the same order as they are set. The described way

of processing is simply realizable in Stratego using a proper traversal strategy, in

this case, the one traversing an ATerm in top-down direction.

At this point, the template needs only a few structural adjustments and the

final java code can be produced. These adjustments are also handled by the Elgen-

erator program after applying the evaluation.



Chapter 4

Overview of Stratego/XT

The current version of ConGen uses a system of templates to produce element

code. A program producing the connector element’s code is developed using Strat-

ego/XT. Part of the optimization proposed later in this thesis is a program devel-

oped using the same platform. Thus, we will briefly introduce what Stratego/XT

is.

Stratego/XT [16] is a framework combining a programming language called

Stratego and a collection of transformation tools based on the Stratego lan-

guage called XT.

Stratego is a transformation language designed for term rewriting. It pro-

vides various features such as transformation and traversal strategies, simplified

transformation rules, variables and dynamic rules. It can be used for simple pipe

transformation as well as for complex program transformation systems.

The XT bundle is a supporting set of tools making it much easier to generate

a parser, a pretty-printer or an abstract syntax tree transformation for a particular

language. It also contains a set of already generated tools for common languages,

such as XML. XT is based on the Stratego language, Syntax Definition Formal-

ism (SDF) designed for the language syntax definition and Generic Pretty-Printing

(GPP) package using the Box language for production of readable outputs.

4.1 Architecture

XT is a collection of components used to implement the transformation system.

Each component is a single executable that can handle standard input and output

as well as to read and write from / to a file. Using a shell pipe, multiple tools can

be connected together, so it makes a full transformation system. An example of a

typical sequence of tools is shown in Figure 4.1. Based on the SDF of the language,

a parser, all transformations and a pretty-printer are generated. First, a program is

23
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transformed using the parser into an abstract syntax tree (AST) form. Second, the

transformations (e.g., a desugarer, a simplifier, an optimizer) are used to produce

another AST. Finally, the pretty-printer is used to produce the original language

from the transformed AST.

A definition of the grammar plays a basic role in the transformation process.

It uses the SDF language described in Section 4.2.

Data between the XT tools are exchanged in the form of an abstract syntax

tree (AST). This tree form is equivalent to the form of prefix terms. By term, we

mean a constructor with zero or more subterms. String and Integer constants are

also valid terms. The tree is described from the top level down to its leafs. For exam-

ple, an expression (3 + a) * 4 is represented as Times(Plus(Int(3),Var("a")),

Int(4)). Because many parts are repeatedly used in a notation, the Stratego/XT

tools uses an optimized internal representation. The form is called Annotated Term

(ATerm) and it will be discussed later in Section 4.3.

Figure 4.1: An example of a typical Stratego/XT transformation system

4.2 Syntax Definition Formalism SDF

Stratego/XT uses the SDF language for defining the syntax of a programming

language. It consists of lexical and context-free definition of the syntax. The lexical

definition is used to define lexical tokens in the program and the context-free one

defines a grammar of lexical elements. To be a well-arranged structure, the syntax

definition can be split into multiple modules. SDF also includes a disambiguation

construct to declaratively define certain kinds of derivations, which are not allowed

or are prioritized, i.e., priorities or lexical restrictions.
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A syntax definition in SDF contains enough information for the generation of

various tools and descriptors of the defined language. A parser, data type definitions

and a basic pretty-printer can be easily generated from the syntax definition.

The automatically generated parser is based on Scannerless Generalized-LR

parsing [28] and it directly produces an abstract syntax tree of an input program in

the ATerm representation.

4.2.1 Abstract syntax tree

As we mentioned in the previous text, the XT tools use a tree representation of a

program for exchanging information. The representation is called Abstract syntax

tree (AST). It is based on a parsed tree obtained from an input program, but it does

not contain any unnecessary information, such as whitespace or comments. To skip

the unnecessary information, a constructor annotation extends a production defined

in SDF. The constructors create the AST output.

Stratego/XT stores the AST in a term format called ATerm described in Sec-

tion 4.3.

4.3 ATerm

The Annotated Terms (ATerms) are heavily used in Stratego/XT for storing

and exchanging an internal program representation among tools. An automatically

generated parser discussed in the previous section produces an ATerm which can be

an input for another Stratego/XT programs. The ATerms are also used internally

in programs written in the Stratego language. The format uses the principle of

sharing, so whenever the same information occurs in the tree, the second occurrence

is stored as a pointer to the the first definition. An example of the relationship

between an input program and the AST form is shown in Figure 4.2.

ATerms are constructed from the following elements:

• Constructor application - a notation c(t1,...,tn) creates a term by applying

a constructor to the list of zero or more terms.

• Tuple - a notation (t1,...,tn) creates a constructor application without

constructor.

• List - a notation [t1,...,tn] creates an ordered list of zero or more terms.

• String - a constant written in double quotes is a String term. Special characters

such as double quotes, newlines or backslashes should be escaped using a

backslash character.
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• Integer - a constant written as a set of the decimal digits is an Integer term.

• Annotation - previous elements create the structural part of terms. Besides, a

notation t{t1,...,tn} can be used to annotate the term with a list of other

terms. Typically, these terms carry additional semantic information.

Figure 4.2: Steps to get AST from an input program

4.4 Stratego programming language

Stratego is a programming language designed for program transformations. It

is based on the paradigm of rewriting using programmable rewriting strategies and

dynamic rules. To represent a program it uses ATerm form discussed in Section 4.3.

4.4.1 Program representation

Analogous to the SDF language, Stratego programs are divided into modules

for better organization and reusability. The modules are identified by a unique

hierarchical name and can be mutually imported. The Stratego programs consist

of three types of sections introduced by the following keywords:

• signature - begins a section containing term declarations. It contains informa-

tion about sorts and their constructors. Mostly, it is automatically generated

from the SDF grammar definition, but additional declarations can be manually

added.

• strategies - begins a section of rewriting strategies’ definitions.

• rules - begins a section of rewriting rules’ definitions. In fact, the rewriting

rule is only a syntactic sugar for the rewriting strategy.
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Listing 4.1 shows an example of a Stratego program aimed at pretty-printing

of an XML file. First, it includes the common Stratego library liblib, the XT

library strategoxt-xtc-tools for handling a standard set of XT tools command

line options and the latter two libraries for handling an XML document. Second,

there is a main strategy defined in the section of strategies. It calls a wrapping

strategy xtc-io-wrap for handling input and output based on the standard XT

parameters and options. Parsing and pretty-printing strategies are passed as pa-

rameters to the wrapper.

/∗∗
∗ Stratego example .
∗ /

module MyPPXML

impor ts
l i b l i b
s t ra tegox t−xtc−t o o l s
xml−xtc−t o o l s
xml−i n f o

s t r a t e g i e s
io−MyPPXML = xtc−io−wrap ( xtc−parse−xml−i n f o ; xtc−pp−xml−i n f o )

Listing 4.1: An example of a Stratego program

These strategies use terms and matching variables put in a sequential order.

They handle the failed calls of other strategies and use plenty of instruments prede-

fined in the common libraries. For more detailed information about the Stratego

syntax, see [16].
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Bytecode manipulation

At the beginning of the thesis, we mentioned that the typical way of optimizing

generation of Java code is bytecode manipulation. Because later we will propose an

approach that utilizes this technique, this chapter introduces some aspects of the

manipulation.

5.1 Java architecture

Before we get to the manipulation itself, we give a brief summary of the Java archi-

tecture.

In past years, the Java technology has entered almost all fields of the IT world.

As it was designed for networks, almost any device able to connect to a network is

also capable of running certain forms of Java program.

Java architecture consists of four parts [33]. The Java programming language,

the Java class file, the Java API and the Java Virtual Machine. When a developer

writes a program in Java, he certainly touches all of these four technologies. First,

he types the program in the Java language. Second, he compiles it into the class file

form. Last, he runs it in a Java virtual machine environment and calls the Java API

instruments. Figure 5.1 shows the relationship among the four parts of the Java

architecture.

Together, the Java virtual machine and the Java API make up the platform

for which all programs are compiled. The Java platform is a part of the architecture

that can be implemented on different kinds of devices so it can run the compiled

Java program.

The heart of Java’s orientation to networks is the Java virtual machine. It

supports all three requirements of the network orientation: platform independency,

security and mobility over the network.

The Java virtual machine (JVM) is an abstract computer. Its specification

28



5.1 Java architecture 29

Figure 5.1: Java programming environment

sets up only certain required features of every JVMs, but many decisions are still

left to the particular implementation designers. An example of the requirement is

that JVM must be able to run Java bytecode, but they are free in choosing the

technique used to execute it. It can be run completely in a software environment

or can be supported, at least partially, in a hardware level. Flexible specification

allows JVM to be implemented on wide field of devices and computers.

A primary task of JVM is to load and run code program code. JVM consists

of a class loader and an execution engine. The class loader reads the class files

from various resources and passes them to the engine responsible for interpreting

the code. There are four kinds of execution engines. The first kind is the simplest

one. It only interprets the code, one at a time. Another kind of execution engine

is a just-in-time compilation. The speed benefit obtained from translating bytecode

of class’s methods to the much faster native code of the target platform is paid by a

higher memory requirement. The just-in-time compilation was the first significant

optimization that the Sun Microsystems company brought to the original Sun JVM.

The third kind of execution engine is an adaptive optimizer. In this approach, JVM

starts to interpret the bytecode, but then it monitors the activity of the running code

and identifies often used locations in the program. The most often running parts are

concurrently compiled to the native code and strongly optimized. The rest of the

bytecode remains being interpreted by JVM. A typical example of this approach is

the Hotspot technology that was firstly released in Sun Java 1.3 [18]. The last kind

of the execution, which stands outside of the first three software oriented executions,

is a hardware JVM. This JVM is built on top of a chip that is capable of running

Java bytecode natively.

From the previous list of execution engine types, it is obvious that if we do

not want to prioritize any target platform, we cannot perform any platform-specific
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optimizations. Thus, to produce general code it is more convenient for compilers to

leave the optimizations to JVM. As a benefit, the class file code is easy to be further

processed.

In the previous text, we mentioned the Java bytecode multiple times. The

bytecode is a machine language of JVM. Compared to the source code from which

the bytecode is compiled, the bytecode is less abstract, more compact and rather

computer-centric, which makes it less human-readable. Although, when being ac-

cessed by one of the available bytecode frameworks, particular operations are easily

distinguishable.

5.1.1 Java class file

For a better understanding of the following introduction of bytecode manipulation,

it is useful to have some general knowledge of the structure of a Java class file as

specified in [31].

Generally, a class file consists of:

• Header containing the version information of the file

• Constant pool containing the list of constants identified by their indexes in

this list

• Access rights descriptor containing information about modifiers used for this

class

• Superclass of this class or interface (if the class file realizes the interface, this

information must always be java.lang.Object)

• Implemented interfaces list specifying all directly implemented interfaces

(not those implemented by transitive closure)

• Field list containing a record consisting of the name, descriptor, access rights

for each field and a set of attributes (for instance, the initial value of the

static field)

• Method (plus constructors and optional static method) list containing

records consisting of the name, descriptor, access rights for each method and

set of attributes (for instance, exceptions thrown by the method or the code

of the method)

• Class attribute list that contains general information about the class or

interface (for instance, the source file)
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All textual descriptors and names are realized by indexes of the constant pool

items, which contain the actual values. This is also used for instructions that use

textual descriptors. These instructions contain the index of the required constant

pool item.

Internal descriptors of the fully qualified class or interface names use a slash

(‘/’) symbol instead of ASCII periods (‘.’). For example java.lang.String will be

described as "java/lang/String".

The internal descriptor of a field distinguishes three types:

• Basic type where the type is represented by the respective letter (B, C, D, F,

I, J, S, Z for byte, char, double, float, integer, long, short, boolean)

• Object type in the form "L<classname>;" where <classname> is an internal

description of the fully qualified class or interface name

• Array type in the form "[<array component>" where <array component>

can be any basic, object or array type

The internal descriptors of methods have the following syntax:

(<parameter type>∗)< r e t u r n type>

where <parameter type>* denotes zero or more internal field descriptors and

<return type> denotes either an internal field descriptor or V letter if the

method returns void. An example is shown in Listing 5.1.

double [ ] [ ] FooMethod ( S t r i n g s , long l ) {}

/∗ descr ibed as ∗ /

( L java / lang / S t r i n g ; J ) [ [ D

Listing 5.1: An example of internal java method descriptor

5.2 Manipulation objectives

There are many techniques used to implement dynamically adaptable systems. Most

of them use a certain form of interposition, e.g., interposition objects, meta objects.

This technique includes, for example, modification of semantics of components by

modifying functional or non functional properties. It can also dynamically add or

remove additional properties.

Most of the interposition techniques utilize some tools for code generation or

for modifying existing code. Apparently, the interposition object must be of the
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same type as the object it hides, which makes it possible to install the interposition

object to the original location. Another situation is when we implement a meta

object protocol. Code manipulation tools must be used to inline the interposition

code directly at a meta element’s location in the base class or at least to generate

the class linked from the location.

Thus, the bytecode manipulation and generation tools are useful for imple-

menting adaptable systems. There are two ways of their typical usage. They can

be used either statically or dynamically. Although the static solution is simpler

to develop, the dynamic way is more practical for the user. An example of the

dynamic approach is on-demand rmic compiler call at run-time. In open systems,

the dynamic solution is even required, because new inestimable object types can be

required on the fly. Generated interposition code is used to load the type.

One of the dynamic solutions is to generate source code and then dynamically

compile it. But this approach significantly increases the time and space overhead of

the application, because Java SDK (including for example javac or rmic compilers)

has to be included in the distribution package of an application. Therefore, to have

an optimal solution it is necessary to use one of the existing bytecode manipulation

tools that allow a user to perform operations on bytecode without any additional

requirements (e.g., Java SDK).

5.3 Major manipulation frameworks

In the previous section, we explained the reason for using manipulation frameworks.

The manipulation tools are generally aimed at the higher level of accessing the class

file structure, its contained fields and methods and the bytecode of the methods.

In the present situation, there are several frameworks available. Mostly two of

them are used. These are the BCEL project [2] and the ASM project [29]. BCEL

started up sooner than ASM. In fact, ASM was a reaction to BCEL’s robustness

and its poor performance.

Byte Code Engineering Library (BCEL) is a toolkit for static analysis or dy-

namic creation and transformation of Java class files. It enables a programmer to

implement bytecode manipulation code at a high level of abstraction without deal-

ing with the internal details of the class file structure. A part of the project is also

its own repository, where classes reside parsed, and which takes responsibility for

looking for and parsing another class file if it is needed, e.g., when being linked

from another class file. An integral part of the framework is the project’s bytecode

verifier called JustIce, which is a powerful tool to reveal any problems in the code.

Like BCEL, ASM is a toolkit designed to dynamically manipulate and trans-

form Java class files. It is aimed at performance. Compared to BCEL, it is more
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than ten times smaller (21kB compared to 350kB) and processing overhead adds

about 60% to the system class loading time compared to 700% in BCEL [29]. ASM

brings a new technique into the class files manipulation. While BCEL parses a class

file and represents various structures of the class as a tree class structure, ASM uses

the visitor approach which simply traverses all items from the class file and makes

a given visitor visit them. The visits proceed as the information is fetched from the

file and it is not kept in memory. BCEL also supports the visitor approach, but it

is implemented on top of the complete memory representation of the class file, so

there is no performance benefit.

Since BCEL is designed as a robust solution, it provides class files parsed in

a well-formed tree structure, where all information can be accessed at any time.

On the other hand, this approach requires a lot of memory to keep the structure

and even special overhead needed to build it. ASM uses the visitor approach which

optimizes both mentioned drawbacks, but also makes the solution less abstract. For

a better understanding, both approaches are shown in Figure 5.3 and Figure 5.2.

Figure 5.2: An example of class parsing using BCEL

Figure 5.3: An example of class parsing using ASM
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Solution outline

In the previous text, we presented the existing connector element generator together

with its language for templates ElLang-J. The ElLang-J language is a mixture of

a target language (in the current solution it is Java) and a meta language enabling

the adjustability of code. The connector elements are designed in this solution

in the form of template files. To produce the code of the element, there are two

steps at connector’s deployment-time - processing the ElLang-J template using

a Stratego program, which outputs Java source code, and compiling the Java

file using javac. This approach offers a very comfortable tool for the designer of

the element, because it primarily provides a full view of the code. On the other

hand, the approach brings non-trivial requirements to the deployment stage, namely

the Stratego program for producing the code and the Java SDK needed for its

compilation. Using the required external parts, especially the SDK, makes the

solution too expensive.

As we stated at the beginning of the thesis, we want to optimize the solution

to decrease its resource requirements. We also require, that the particular steps of

the optimization will preserve the usability benefits of the template approach as well

as the robust concept of the overall connector generation.

There are two possible places to focus on, the Stratego program elgenerator

and the Java compiler javac. As we explained in Subsection 1.1.1, we have decided

to focus on the Java compiler that is bringing the whole Java SDK and is therefore,

a more significant burden for overall generation.

The basic idea of entire the optimization is to precompile all elements’ tem-

plates at design-time, when it has already been designed. The reason to do the

precompilation, is to process the code at deployment-time in a much simpler way

without using javac. However, the template evaluation at deployment-time can only

evaluate the ElLang-J form of the template. Therefore, the precompiled form must

match the ElLang-J syntax. Moreover, it has to keep the most important informa-

tion obtained from the Java compiler, which is the bytecode of the class methods.
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The precompilation takes place at design-time. First, it has to transforms the

template so it can be compiled by javac. Second, it has to decompile the produced

class file into an original ElLang-J shape with all of its meta-information. The

only difference will be that the actual Java code will be replaced with its bytecode

form.

As an alternative approach to the precompilation, we have also considered

modifying one of the available open source Java compilers to replace the javac (e.g.,

Janino compiler [9] or Jikes [11] projects). But each of the compilers was either too

limited (e.g., supporting only Java 1.4) or too big, so the replacement would not

optimize the environment requirements at all.

Because each of the summarized steps of the precompilation is non-trivial,

we will develop a prototype set of tools as a part of the proposal to support the

optimizations. The tools should fit into the existing ConGen framework written in

Java and if possible, it should not extend the current requirements of the framework.

Other requirements would decrease the meaning of this work.

The following three chapters will describe, in detail, the architectural changes

introduced in the proposed solution and each of the steps needed for operating with

the precompiled templates. In Chapter 10, we will present a set of the optimized

solution’s measurements in comparison with the existing ConGen solution. The

measurements should emphasize the benefits obtained by the avoidance of the javac

compilation at deployment-time.
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Architecture changes

The connector element generator is currently implemented for the target language

of Java. A generation process consists of two steps. The first one is producing Java

source code based on an element descriptor and a template written in ElLang-

J language. This part is processed by the Stratego program Elgenerator. The

second one is the compilation of the generated files using the javac compiler.

As we said, there are two possible parts to be optimized. However, one of the

requirements for the proposed changes is to preserve the comfort of the template

language. Therefore, there is no option of removing the Stratego part. It could

be replaced, for example, by a more independent part written in Java and doing

the same work. But the other program processing the template would have to deal

with a task of the same complexity and would save at maximum one native program

call. Moreover, we have decided to focus on Java SDK which seems to be a more

significant performance drawback. Let us have a closer look at the compilation part

changes described in the previous chapter.

The proposed idea is to precompile ElLang-J templates at design-time, so

javac could be replaced by some simpler and less demanding instrument. For a

better understanding of the approach, Figure 7.1 shows the existing element code

generation and Figure 7.2 shows the proposed solution using the precompilation of

the templates.

Figure 7.1: Original element code generation

The way of the precompilation is to precompile at design-time the designed
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Figure 7.2: Proposed element code generation

element template written in the ElLang-J language into a form which does not

require a full java compilation at the deployment stage. Instead, it is already com-

piled and stored in a way syntactically identical to the ElLang-J form and is only

translated to a proper class file. Because the essential information for the Java class

file format is the bytecode of the involved methods, it is crucial to store the bytecode

information in the precompiled form. For this form, the name ElLang-J-BC was

selected and it is described in the following subsection.

7.0.1 Ellang-J-BC variant of the Ellang-J language

The basic idea of the ElLang-J-BC form of the ElLang-J language is that we

want to use the current template evaluation process without any changes, but we

want to record a bytecode in method bodies. To fulfill the first part, ElLang-J-BC

must use the completely same structure of a file as its ancestor. For the second part,

we will use the syntax of the Java method body for recording the bytecode. This

means that bytecode instructions will be written as Java function calls. Parameters

of the call will be written in a numeric form or as a string literals.

Each bytecode instruction has its binary code that identifies it in a method

body in an actual class file. Each bytecode instruction also has a name created by

using a mnemonic code expressing its semantics. This name is used to identify the

instruction in ElLang-J-BC. Because all labels consist of letter characters only

and there are no special symbols used, the prefixed form of the syntax used in Java

is very convenient. Moreover, because all variable information (e.g., field names,

method names or used classes) are put in bytecode as parameters to the bytecode

instruction, it allows us to use meta-variables at any place as it was in ElLang-J

code.

However, it is not as direct as it seems. As we described in Chapter 5, the

notation of class type descriptors and field type descriptors in a class file differ from

their forms in Java code. Because we need to be able to insert this information using

the meta-variable, the descriptors must be recorded in a Java source code fashion.

This means that, for example, the instructions NEW and PUTFIELD will appear

as
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NEW( ” java . lang . S t r i n g ” ) ;
PUTFIELD ( ” package . MyClass ” , ” myField ” , ” java . i o . S t r i n g ” ) ;

instead of

NEW( ” java / lang / S t r i n g ” ) ;
PUTFIELD ( ” package / MyClass ” , ” myField ” , ” L java / i o / S t r i n g ; ” ) ;

Another problem to be solved is parameter usage in method templates. In

Java bytecode, there are no named local variables. The local variables, among

which the method parameters belong, are identified by a local variable integer id.

Therefore, during the precompilation step, we have to keep track of the method

template parameters usage in order to be able to identify them in the precompiled

template using the original meta-variable for the method template parameters. This

way is syntactically correct, because numeric and textual parameters in the method

call are exchangeable in the Java grammar.

In Listing 7.1, an example of a precompile ElLang-J-BC template is shown.

An original ElLang-J form of the same template is shown in Listing 7.2.

package ${package } ;

element ElementExample {
p u b l i c java . lang . S t r i n g getElement In fo ( java . lang . S t r i n g arg0 ) {

LABEL ( 0 ) ;
NEW( ” java . lang . S t r i n g B u i l d e r ” ) ;
DUP( ) ;
INVOKESPECIAL ( ” java . lang . S t r i n g B u i l d e r ” ,” < i n i t > ” , ” vo id ( ) ” ) ;
ASTORE( 2 ) ;
LABEL ( 1 ) ;
ALOAD( 2 ) ;
NEW( ” java . lang . S t r i n g B u i l d e r ” ) ;
DUP( ) ;
INVOKESPECIAL ( ” java . lang . S t r i n g B u i l d e r ” ,” < i n i t > ” , ” vo id ( ) ” ) ;
ALOAD( 1 ) ;
INVOKEVIRTUAL ( ” java . lang . S t r i n g B u i l d e r ” , ” append ” ,

” java . lang . S t r i n g B u i l d e r ( java . lang . S t r i n g ) ” ) ;
LDC(S ( ” Implementat ion : ${ implementat ion}\n ” ) ) ;
INVOKEVIRTUAL ( ” java . lang . S t r i n g B u i l d e r ” , ” append ” ,

” java . lang . S t r i n g B u i l d e r ( java . lang . S t r i n g ) ” ) ;
INVOKEVIRTUAL ( ” java . lang . S t r i n g B u i l d e r ” , ” t o S t r i n g ” , ” java . lang . S t r i n g ( ) ” ) ;
INVOKEVIRTUAL ( ” java . lang . S t r i n g B u i l d e r ” , ” append ” ,

” java . lang . S t r i n g B u i l d e r ( java . lang . S t r i n g ) ” ) ;
POP( ) ;
LABEL ( 2 ) ;
LINE ( 1 1 9 ) ;
ALOAD( 2 ) ;
INVOKEVIRTUAL ( ” java . lang . S t r i n g B u i l d e r ” , ” t o S t r i n g ” , ” java . lang . S t r i n g ( ) ” ) ;
ARETURN( ) ;

}
}

Listing 7.1: An example of a precompiled ElLang-J-BC template
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package ${package } ;

element ElementExample {
p u b l i c S t r i n g getElement In fo ( S t r i n g inden t ) {

S t r i n g B u i l d e r r e s u l t = new S t r i n g B u i l d e r ( ) ;
r e s u l t . append ( inden t + ” Implementat ion : ${STR implementation}\n ” ) ;
r e t u r n r e s u l t . t o S t r i n g ( ) ;

}
}

Listing 7.2: An example of an original ElLang-J template
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Design-time template

precompilation

In this chapter, we will clarify how to get the precompiled form of the ElLang-J

templates.

The precompilation basically consists of four parts. The first one is the trans-

formation of the template into java code which is acceptable by the Java compiler.

The second part is the compilation step. The third one is the decompilation of the

class file to an ElLang-J-BC form with all original meta-information included.

And the last one is the redirecting of the element’s descriptor to the precompiled

template. The entire process is shown in Figure 8.1.

Figure 8.1: Precompilation process

The precompilation of ElLang-J templates takes place at the design-time

of the connector generator. This step proceeds along with the compilation of the

entire framework written in Java. Therefore, it is not a problem that an essential

requirement for its second substep is the Java compiler.
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8.0.2 Preparation of Ellang-J template using Stratego

The preparation of an ElLang-J template into a compilable form is the first step of

the precompilation. The main idea of this step rests in replacing the meta-statements

and meta-variables with a unique pattern of code. This pattern allows us to recognize

the original location of the meta-information later in the decompiling part. The

original information is stored separately and indexed by a unique identifier, which

is then used as part of the code pattern. Particular code patterns are discussed in

the following subsection.

The most convenient way of modifying and replacing ElLang-J grammar’s

elements is to use Stratego. Thus, for this step we have developed a new Strat-

ego program called elprecomp. This program fetches an element descriptor from

a connector template repository and prepares all ElLang-J templates that the

descriptor references. The prepared templates are stored as .java files. Together

with the prepared templates, the related meta-information is also stored as XML

files in the same directory. The elprecomp program finally outputs names of all the

prepared files.

Another Stratego utility was developed to format the meta-information in

the output XML file. It is called pp-ellang and its responsibility is to transform

an ElLang-J ATerm into the original ElLang-J language fashion. The utility is

launched from the elprecomp program.

8.0.2.1 Tagging meta-artifacts

The elprecomp program transforms templates into compilable Java source code. It

tags a location of every occurrence of meta-information with appropriate java code

that is recognizable later in the decompilation part. Meta-statements are replaced

with a special method call and meta-variables with a special constant or a reference.

Meta-expressions used in all meta-statements and queries used in meta-variables are

not kept in the code. Instead, they are stored in a separate XML file and indexed

by a unique identifier. This identifier is used as a parameter of the replacement

method call or as a part of the replacement constant or reference. We can use a

method replacement without any limitations, because the meta-statement is mapped

in ElLang-J grammar to a Java statement.

Two steps are performed before elprecomp starts tagging the meta-information.

First, all extends, includes and extension points are evaluated. All of these instru-

ments do not need to be tagged for later reconstruction. This is because, in terms

of the element generation performed at deployment-time, the set of template files is

fixed. Second, the method template declarations are expanded.

The expansion of the method template proceeds as follows. The basic question

with regard to the meta-variables related to the method template is whether the
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method returns a value or not (see Subsection 3.2.6). Thus, the body of the method

template is copied twice into the final code. Once as a method returning a value

and a second time as a void method. There is only one integer value declared as a

parameter of each of the methods. All occurrences of meta-variables related to the

method template are evaluated according to the particular methods in the bodies

ofboth added methods. These values do not need to be tagged, because its usage

has the meaning in a specific location only where they are easily recognizable. For

example, a location where values of the method parameters are used is denoted by

the method.variables meta-variable. This place is recognized based on the number

of the internal local variable, which is fixed for method parameters.

During the processing, all meta-information is processed sequentially. This

means that after the decompilation step all set meta-statements will still be in the

original order.

Every occurrence of the set meta-statement is tagged in the code by a method

call:

org . objectweb . dsrg . congen . meta . MetaClass . rep lace se t ( ID ) ;

where ID is a unique identifier of the original meta-expression in the output

XML. The counting of IDs starts at 987651234 and increases by 1. The reason of

choosing the threshold is discussed later in the text.

Every occurrence of the if meta-statement is tagged in the code by one of the

two following sets of method calls according to an else branch presence:

org . objectweb . dsrg . congen . meta . MetaClass . r e p l a c e i f ( ID ) ;
. . .
org . objectweb . dsrg . congen . meta . MetaClass . replace end ( ) ;

/∗ or ∗ /

org . objectweb . dsrg . congen . meta . MetaClass . r e p l a c e i f ( ID ) ;
{

. . .
}
org . objectweb . dsrg . congen . meta . MetaClass . rep lace e l se ( ) ;
{

. . .
}
org . objectweb . dsrg . congen . meta . MetaClass . replace end ( ) ;

where ID is a unique identifier of the condition’s meta-expression in the out-

put XML. As you can see, the version with the else branch encloses both sets of

statements into the block of statements. This ensures that two local variables of

the same name will not cause a conflict during compilation. Although, this variable

should also not be used in the code after the if meta-statement.

Every occurrence of the foreach meta-statement is tagged in the code by the
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following method calls:

org . objectweb . dsrg . congen . meta . MetaClass . rep lace fo reach ( ID ) ;
. . .
org . objectweb . dsrg . congen . meta . MetaClass . replace end ( ) ;

where ID is a unique identifier of the inner meta-expression of the foreach

meta-statement.

Every occurrence of the rforeach meta-statement is tagged in the code by the

following method calls:

org . objectweb . dsrg . congen . meta . MetaClass . rep lace r fo reach ( ID ) ;
. . .
org . objectweb . dsrg . congen . meta . MetaClass . r e p l a c e r e c p o i n t ( ) ;
. . .
org . objectweb . dsrg . congen . meta . MetaClass . r e p l a c e f i n a l ( ) ;
. . .
org . objectweb . dsrg . congen . meta . MetaClass . replace end ( ) ;

where ID is a unique identifier of the inner meta-expression of the rforach

meta-statement. Moreover, we have to deal with the unreachable code problem.

According to the Java language specification, unreachable code should be an error

[30]. But the syntax of the rforeach meta-statement allows the user to write a

construction which causes the unreachable code problem after the meta-statement

tagging. An example of such a problematic construction is shown in Listing 8.1.

The very last replace_end() method call will certainly cause the failure of the

compilation. One solution of this problem is to wrap all return and raise statements

with a dummy condition

i f ( t r ue ) {
r e t u r n ;

}

in all methods containing rforeach. This step will guarantee that every state-

ment in the method will be reachable. A particular drawback of the solution is that

the user has to pay special attention to a real unreachable code.

org . objectweb . dsrg . congen . meta . MetaClass . rep lace r fo reach (987651234);
i f ( ” ${PORT. name} ” . equals ( portName ) ) {

Object r e s u l t = subElements . get ( ” ${PORT. l i n k e d . name } ” ) ;
r e t u r n r e s u l t ;

} else
org . objectweb . dsrg . congen . meta . MetaClass . r e p l a c e r e c p o i n t ( ) ;

org . objectweb . dsrg . congen . meta . MetaClass . r e p l a c e f i n a l ( ) ;
throw new Except ion ( ” Por t not found ” ) ;

org . objectweb . dsrg . congen . meta . MetaClass . replace end ( ) ;

Listing 8.1: An example of problematic recursive foreach construction

Now we get to the meta-variables tagging. Since every situation of using the

meta-variable is specific, we will discuss all the situations separately.
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If the ${package} meta-variable is found in the package descriptor, it is di-

rectly replaced with the path of the package containing the templates.

If the meta-variable is used as a type of the field, it is replaced with the

universal class

org . objectweb . dsrg . congen . meta . MetaFieldType fieldName ;

and the fieldName is used as an identifier in the output XML. This is the only

kind of a textual identifier in the XML.

If the meta-variable is used as a type of the implemented interface, it is replaced

with new dynamically created interface. An integer identifier of the meta-variable

for the output XML is used as a part of the interface name. The implemented

interface, for example, appears as follows:

c lass TestElement
implements

org . objectweb . dsrg
. congen . conrep . elements . templates . e l l ang . temp . MetaInterface987651235 {

. . .
}

The identifier in the name of the interface is also used as a part of the names

of the expanded method templates to bind the methods with the interface.

If the ${classname} meta-variable is found in the constructor name, it is di-

rectly replaced with the name of the currently processed element. Since constructor

is unambiguously recognizable in the class file, it is not needed to store this meta-

variable usage.

A special case arises when using a meta-variable inside a Java string literal.

For this purpose, ElLang-J defined a new mechanism of treating string literals

in Java statements. However, the only step during the preparation process is the

replacing of the meta-variable with a unique string value containing the identifier to

the XML output. The string value, for example, appears as follows:

System . out . p r i n t l n ( ” org . objectweb . dsrg . congen . meta . MetaString987651237 ; ” ) ;

Another peculiar usage of the meta-variable is a typecasting. In this case, we

will assume that the only target of this typecasting is an assignment to the field of

the type given by the meta-variable. As it was written above, such a field’s type is

always replaced with the same intermediate type. This type will also be used as a

replacement in the typecasting. Since there can be more meta-typed fields in one

class and the replacement type does not contain the identifier, we cannot directly

determine the replaced meta-variable. Thus, as the identifier for the reconstruction,

we will use the name of the field, which is the target of the type casted value’s

assignment.
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If the meta-variable is used as an array index, we will use the identifier of the

value in the output XML as the index value. The only limitation of this approach

is that there should not be constant indexes in a certain range of values specified by

the user. This is one of the reasons that the identifiers start at the high value.

Analogous to the previous situation is the situation in which the meta-variable

is used as an index in an array allocation. The identifier of the meta-variable is also

used as the index in the allocation.

The most tricky usage of the meta-variable is, when the meta-variable stands

for a constructor name in the new allocation. In this case, we do not have enough

information to build a call, because we need the exact method descriptor of the

constructor. One solution would be to use the types of parameters given to the

constructor call. Unfortunately, this solution does not comply with optional im-

plicit typecasting of the parameter values. Thus, the correct solution is to extend

the ElLang-J grammar with a special syntax for using the meta-variable as the

constructor name in the new allocation. This meta-variable has to bring the pa-

rameter types with it to build the descriptor of constructor. The change of the

grammar is discussed later. The second problem in the new call is the type of the

allocated object. This type is dynamic, so we cannot exactly say what the expected

type will be. The solution is to use the null value, instead of the output value of

new and to call the original new statement as the next statement. This fact should

be considered later in the decompilation part to merge the split command again.

For a simplicity, we assume that the dynamic constructor call is used only in an

assignment statement.

Most of the replacements introduced above contain the numeric identifier that

determines the index of the original meta-information stored in the additional XML

output. As we already said, the identifier starts at value 987651234. The first reason

to start with the high number as a way of loading constants in bytecode is because

multiple basic constant values close to 0 have a dedicated instruction to load it, but

all the higher numbers use the LDC instruction. Therefore, to start the indexing at

0 would cause slightly complicated reconstruction of the code. The second reason,

which is more important, was already explained in the paragraph describing the

replacement in the array indexed by the meta-variable. Since users typically do

not use such high indexes as constants, we will use this particular range for our

purposes. The range is bound to the maximum of 512 indexed meta-information,

so the constants higher than 987651234 + 512 can be used by the user as an index

again.
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8.0.2.2 ElLang-J grammar changes

As we explained in the previous text, for the purpose of the precompilation, we

have to extend the existing ElLang-J grammar. This extension is related to the

meta-variable used as a constructor name a new allocation. In this operation we

need the full type information about the parameters of the constructor. Therefore,

we extend the meta-variable for this situation:

new ${var as ( type1 , type2 , . . . ) } ( par1 , par2 , . . . ) ;

where var is a name of the variable, typei is a type of i-th parameter and pari

is the value of i-th parameter given to the call. This change does not affect any

other part of the grammar.

8.0.3 Java class file decompiler

As soon as the Java code is produced out of the elprecomp program, the additional

temporary interfaces and classes are created and the prepared program is compiled

using javac. The product of the compilation step is a class file. The class file is

decompiled in the last step.

All the meta-information is reconstructed during the decompilation. To recog-

nize the original meta-information’s locations in bytecode, the decompiler searches

for the specific code patterns described in the previous text. A part of most of the

code patterns is an identifier of the meta-information. This identifier is the search

key for the additional output XML file obtained from the elprecomp program.

The way of the meta-information’s embedding into the ElLang-J-BC lan-

guage was already described in the previous text.

In Chapter 5, we introduced the major frameworks for bytecode manipulation.

For our purposes we chose ASM, which is more efficient, although it does not con-

tain many addition features in comparison with BCEL. Thus, a structure of the

decompiled class as well as every single bytecode instruction is read using the ASM

framework.

There are several remarkable points in the decompilation process. The first one

is a recording of conditional and unconditional jumps, try-catch blocks and switch

decision in the bytecode. Since the deployment-time evaluation of the element’s

template can replace one instruction with multiple others, it is inefficient to store

the jump target as an absolute position in the bytecode. Instead, there are num-

bered labels inserted as additional pseudo-instructions and the jumping instructions

use the numbers from the label as parameters. An example of code is shown in

Listing 8.2.
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package ${package } ;

element ElementExample {
p u b l i c vo id exampleMethod ( S t r i n g inden t ) {

LABEL ( 0 ) ;
LDC(S ( ” l i n e ” ) ) ;
ALOAD( 1 ) ;
INVOKEVIRTUAL ( ” java . lang . S t r i n g ” , ” equals ” , ” boolean ( java . lang . Object ) ” ) ;

/∗ I f the java . lang . S t r i n g . equals c a l l re tu rned 0 , the code cont inues a t the LABEL( 1 ) ∗ /
IFEQ ( 1 ) ;
LABEL ( 2 ) ;
GETSTATIC ( ” java . lang . System ” , ” out ” , ” java . i o . Pr in tSt ream ” ) ;
LDC(S ( ” Value i s l i n e ” ) ) ;
INVOKEVIRTUAL ( ” java . i o . Pr in tSt ream ” , ” p r i n t l n ” , ” vo id ( java . lang . S t r i n g ) ” ) ;

/∗ Target o f the c o n d i t i o n a l jump ∗ /
LABEL ( 1 ) ;
RETURN;

}
}

Listing 8.2: An example of labels in ElLang-J-BC template

A part of the decompilation is also the reconstruction of the method tem-

plates. We already described the way of binding the method templates’ implemen-

tations to an implemented interface. While decompiled, both implementations of the

one original method template are merged together using the meta-condition state-

ment. The decompiled form is also marked using the additional pseudo-instruction

TEMPLATE();. The described code pattern is shown in Listing 8.3. However, there

is one limitation of this approach. It is the fact that a relative modification of the

meta-variables is performed twice. For example, if there is

$set var = var + 1$

used in a method template, it will be performed twice. The result value will be

different from the expected number, so a potential usage of the meta-variable var in

latter code is incorrect. Fortunately, if the template’s designer keeps this limitation

in mind, he can write the code in a different way.

. . .
method template {

TEMPLATE ( ) ;
$ i f ( method . re tu rnVar ) $

/∗ Bytecode f o r methods r e t u r n i n g a value ∗ /
$else$

/∗ Bytecode f o r vo id methods ∗ /
$end$

}
. . .

Listing 8.3: A merge pattern used while decompiling a method template

The last noteworthy step of the decompilation procedure is the processing of

the implemented interfaces. Some of the interfaces can be used while processing the
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method templates. The others are simply added to the decompiled template with

an empty body. The original information which binds the interfaces to groups of

methods is unnecessary for further evaluation of the template.

The decompilation step is a part of the ElLangJPrecompiler program written

in Java. This program is responsible for calling the javac compiler for the code

produced out of the elprecomp program. ElLangJPrecompiler is called from the

build script of the ConGen framework. The script calls the Stratego preparation

program followed by the Java decompilation program. The final product of the

whole precompilation is stored in the same directory as the original ElLang-J

template with a new extension .ellang.bc.

If the precompilation of an element succeeds, the element’s descriptor is auto-

matically redirected to the new precompiled template and the new compiler. The

redirection is processed by the SwitchElLangElementDesc program.



Chapter 9

Deployment-time ElLang-J-BC

compilation

This chapter will explain the construction of the class file without calling the Java

compiler at deployment-time.

As we already described, our proposed solution preserves the original step

of evaluating the code of the template. The precompiled templates syntactically

correspond to the ElLang-J format expected by the elgenerator program. The

set of bytecode instructions in the form of the Java statements is stored as method

bodies of the precompiled methods. Thus, elgenerator will generate a Java source

file containing methods consisting of bytecode instructions.

As soon as we obtain the precompiled source code of the element we can get

to its compilation. Since we want to keep the compilation step as simple as possible,

we decided for the form of a single Java program. This program reads the input file

as a textual stream and it generates a class, fields of the class, methods of the class

and the code of the methods on-the-fly.

An important issue in the reading of the input file are syntax aberrations in

the stored code. To read the input file without any advanced parsing techniques,

we need a guarantee that the code has a strict form and there are no aberrations.

Namely, the rules are:

• There will not be any Java comments going over multiple rows.

• Every Java statement, which actually represents the bytecode instruction, will

always be stored at most one per row.

• A row containing a Java statement will not contain any comments.

• Method and field definitions will not be going over multiple rows.

49
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Fortunately, the code of the prepared file is generated by the pp-java program

(a pretty-printer for the Java language) called from elgenerator, which formats Java

code in the form that is fully compliant with the given rules.

Analogous to the decompilation step of the precompilation process, we use

the ASM framework to create the final class file structure and to construct the

code of the methods. Moreover, the linear instrumentation of the code is pretty

straightforward, so we do not have to use any extended features of ASM (such as

tree code view) and we can call visitors for adding the instructions only.

While translating the textual bytecode aliases into the real instructions, we

have to keep in mind that there are particular specific code extensions introduced

in the previous chapter. Each of the extensions has to be treated in a special way.

Specifically, it is a parameter list in the expanded method template and a return

type of the method template.

A usage of the method template parameters is marked using the prefix EXT_

in the template’s code and it looks as follows:

EXT ILOAD ( ${method . v a r i a b l e s } ) ;

During the evaluation of the template preceding this compilation, the meta-

variable ${method.variables} is replaced with the list of the parameter names of

the real expanded method. The prefix EXT_ of the instruction is preserved. As soon

as the compiler gets to this instruction, the instruction is replaced by the set of the

instruction loading all parameters. In addition to this particular instruction replace-

ment, all local variable indexes greater than the indexes of the variables carrying

method parameters have to be adjusted to the number of method parameters. The

local variables in a method code are indexed starting at 0 in following order: this

object reference, followed by the method parameters and then local variables used

in the method. An example of the replacement is shown in Listing 9.1.

An important fact is that the code pattern for fetching the parameters’ values

is the same in classes generated from various Java SDK vendors. Thus, the described

procedure is not vendor-specific.

/∗ Code a f t e r the meta−v a r i a b l e i s replaced ∗ /
vo id t e s t ( i n t p1 , java . lang . S t r i n g p2 , long p3 ) {

. . .
EXT ILOAD ( p1 , p2 , p3 ) ;
. . .

ASTORE( 2 ) ;
. . .

}

/∗ Code of the f i n a l c lass f i l e ∗ /
vo id t e s t ( i n t p1 , java . lang . S t r i n g p2 , long p3 ) {

. . .
ILOAD ( 1 ) ;
ALOAD( 2 ) ;
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LLOAD( 3 ) ;
. . .

ASTORE( 4 ) ;
. . .

}

Listing 9.1: A sample compilation of a reading of the method template’s parameters

The second specific extension that we mentioned is the dealing with a return

type of the method template. A particular method contains bytecode that treats the

return value as integer after the expansion of the method template. This is caused by

the precompilation process using the integer type for precompilation of the method

template (see Chapter 8). The problem can be solved by keeping track of methods’

return types in method headers. All manipulations with the returning values are

adjusted according to the collected types. It is important that the local variable

reserved for the return value is always indexed right after the method parameters,

because the initialization of the return value was forced as the first statements in

the precompiled method template. An example is shown in Listing 9.2 for better

understanding.

/∗ Code a f t e r eva lua t i on o f the template ∗ /
java . lang . S t r i n g t e s t ( i n t p1 ) {

. . .
ISTORE ( 2 ) ;
ILOAD ( 2 ) ;
IRETURN ( ) ;
. . .

}

/∗ Code a f t e r comp i la t i on ∗ /
java . lang . S t r i n g t e s t ( i n t p1 ) {

. . .
ASTORE( 2 ) ;
ALOAD( 2 ) ;
ARETURN( ) ;
. . .

}

Listing 9.2: A sample compilation of a method template’s returning value

As a result of the described compilation procedure we get a class file. This

class file is equivalent to a class file obtained from the original approach working

without the precompilation.

The compilation is performed by the BCCompiler.java program in our pro-

posed solution. The program is integrated as the new action named javacbc into the

ConGen framework. This way offers a convenient way of the switching between

solutions (existing and the precompiled) without any source code changes as it was

described in the previous chapter.



Chapter 10

Evaluation

In this chapter, we summarize the changes of the existing architecture and present

measurements and explanations that support the eligibility of the solution. Finally,

the limitations of the optimizations are concluded.

10.1 Architecture revisited

We introduced partial changes as well as the new steps that have to be performed

for optimization of the existing connector generation process. In this section we

will conclude the changes and explain what changes need to be done in the current

version of the ConGen framework.

Because we want to omit the Java compiler from deployment-time, we have

decided to use the precompilation approach. In this approach, we transform con-

nector elements’ code templates written in the ElLang-J language into the pre-

compiled form. The precompiled form does not require javac to build a final class

file. The precompiled form is denoted as ElLang-J-BC and it stores method code

as bytecode instruction. Each instruction is represented as a Java method call. The

precompiled form preserves also the meta-information used for dynamic evaluation

of the connector’s element source code. Since the syntax of the precompiled file is

compliant with the ElLang-J syntax, the existing source code generator written

in Stratego can be used.

The precompilation takes place at design-time of the connector generator’s

framework. It processes templates in the entire element repository and if it succeeds,

it redirects the element’s descriptor in the repository to the precompiled template.

One practical advantage of this solution is that only one more step is required to use

the precompiled solution. This step is an extra target in the Ant build script that

builds the distribution as the original solution and then invokes the precompilation.

The precompilation consists of two parts. The first part is a program written
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in Stratego which transforms the template into the compilable Java form and

storing the meta-information into the separated XML file. This meta-information

is used in the second part, which is realized by a program written in Java. The pro-

gram transforms the bytecode of all methods into method bodies of the precompiled

template. Both parts are coupled together in the Ant build script. The build script

ensures also the final redirecting of the descriptors in the element repository.

As a part of the precompilation designing, we had to slightly extend the ex-

isting ElLang-J grammar to be able to process a constructor call denoted by a

meta-variable.

We also had to develop a standard Stratego pretty-printing application re-

sponsible for formatting the ElLang-J meta-information back from the ATerm.

The formatted form written in an XML file is a part of the precompilation’s output.

The compiler of the precompiled code is markedly simpler than javac. It

takes only the source file, which is already dynamically evaluated by the existing

Stratego generator, and produces the class file within a one-pass read.

An important fact is how the new compiler is involved in a generation at

deployment-time. This is handled by the new element-type-specific action javacbc,

which replaces the existing unwanted javac action.

10.2 Measurements

In this section, timing and memory-consumption measurements will be presented.

The testbed for the measurements was a machine with the following configura-

tion: Single Pentium-M CPU 1300MHz, 512MB of DDR266 RAM and a local 80GB

PATA disk. The installed operating system is Debian Linux 3.1 with kernel version

2.4.27. There is one JVM installation, Sun JDK 1.6.0.01. We used another oper-

ating system for better comparison in the memory-consumption test. The second

operating system is installed on the same machine and it is Windows XP Service

Pack 2. There is also one JVM installation, Sun JDK 1.6.0.01, available in the

system.

10.2.1 Element source code compiler timing

The first of the measurements is a timing of the new compiler of the source code of

the element in comparison with the javac compiler. Javac was called in this test as

a shell process. For this purpose, a measuring capability for the element generation

actions was added to the connector generator framework.

The test was performed on the demo connector included in the ConGen’s

repository. It consists of 11 Java classes that are constructed using the Stratego
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element javac javacbc speed-up
LocalSkeleton 1182 ms 380 ms 3.1
ServerUnit 724 ms 123 ms 5.9
ClientUnit 675 ms 97 ms 7.0
LocalStub 399 ms 61 ms 6.5
ClientUnit 845 ms 88 ms 9.6
LocalSkeleton 493 ms 56 ms 8.8
ServerUnit 840 ms 67 ms 12.5
LocalStub 498 ms 43 ms 11.6
ClientUnit 597 ms 66 ms 9.0
ClientUnit 617 ms 364 ms 1.7
ServerUnit 709 ms 60 ms 11.8
total 7579 ms 1405 ms 5.4

Table 10.1: Compilation times for demo connector’s elements using the original javac
compiler and the new javacbc compiler

generator. The test was repeatedly run 20 times, the extreme values were filtered

and the average times for each of the class can be found in Table 10.2.

If we look at the table, we can see notably greater values in the first row than

in the rest of the sample. This was most probably caused by the time needed for

loading all of the parts required for the compilation, e.g., classes, libraries, etc.

The second interesting observation in the table is the surprisingly high value

364ms for the last ClientUnit unit. By more detailed examination of the mea-

surement logs, we have found that during this javacbc step, the garbage collector

regularly performed its clean-up, which prolonged the timing value.

The overall results in the table prove that using the new compiler is about 5

times faster than using the javac.

10.2.2 Saved memory spent by javac

In the second measurement, we focus on the memory spent by the javac compiler.

This amount will be saved by omitting javac calls from the connector generation

procedure. The memory used for javacbc is insignificant in this case, because the

new compiler runs internally in JVM and utilizes only very limited set of classes.

This test was performed on both JVMs introduced at the beginning of this sec-

tion, one in Linux and one in Windows. Since there is no common way in measuring

JVM’s memory consumption from within a Java program, we have used information

from the external listing of the system processes. The measurement consisted of the

compilation of two samples. The first sample was the extremely simple class with

the link to core Java classes only. The class is shown in Listing 10.1. The second
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environment simple class ConGen classes
Linux / Sun JDK 1.6.0.01 21.0 MB 42.0 MB
Windows XP / Sun JDK 1.6.0.01 17.0 MB 38.6 MB

Table 10.2: Memory used by the javac compiler for the compilation of a simple class
and a complex set of classes

sample was the set of the ConGen project’s internal classes, which is about 170

classes.

The results are shown in Table 10.2. Although the values in the table are

inaccurate, they give us a general view of how much memory javac consumes. Since

the compilation of the element’s code uses all libraries that are required for the

ConGen framework, the required memory is probably closer to the values of the

second column.

c lass Dummy{
p u b l i c Dummy( ) {

System . out . p r i n t l n ( ” This i s dummy c lass ” ) ;
}

}

Listing 10.1: Dummy class compiled during Java memory consumption measure-

ments

10.2.3 ConGen distribution build timing

In the last measurement, we focus on the comparison of the time needed for the

initial build of the application in two cases. The first case is the existing ConGen

framework and the second case is the optimized version including the full precompi-

lation procedure. Although the initial build typically proceeds only once in design

environment, it is involved in the precompilation approach, therefore we will present

the values.

The test was performed on the optimized version of the ConGen framework.

The first part was the original distribution build (launched as ant dist) and the

second was the precompiled build (launched as ant dist.precompile).

The measurement was repeatedly run 20 times, the extreme values were filtered

and the average times are shown in Table 10.3. The time needed for the precom-

pilation build is significantly higher than the time needed for pure build. Through

a more detailed examination of the precompilation process’ composition we have

found that the most of the time is spent in the Stratego program transforming

templates into a compilable form. This is caused by the intensive utilization of

external Stratego/XT tools from the program. However, the inefficiency is also
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environment ant dist ant dist.precompile
Linux / Sun JDK 1.6.0.01 11.3 s 92.2 s

Table 10.3: Timing of the full initial build of ConGen in existing version and in
version with the precompilation

multiplied by the number of descriptors in the element repository.

10.2.4 Measurements conclusion

The most important benefit in the proposed optimization is the fact that javac

is no longer required at deployment-time. Besides, this omission saves at least

20MB of memory during the generation process. Moreover, the time needed for

the compilation of the precompiled templates is significantly lower than the javac

values.

10.3 Limitations of the proposed solution

Most of the limitations of the proposed solution were already mentioned in the

previous text. In this section, we will summarize them.

• The main and most important drawback of the precompiled templates is that

no code is validated within the compilation process. Particular instructions

and all linked class names are only constructed without any validation whether

the classes exists and is accessible or not. Though, all errors will show up as

soon as the code is run.

• One of the practical disadvantages is the time that is needed for the initial

build of the entire ConGen framework. Since the design-time is not a critical

point of the project lifetime, we do not see this as a major problem.

• As we explained, a call of the constructor given by a meta-variable is restricted

only to an assignment statement and has to specify the exact description (set

of parameter types) of the constructor. For this purpose, the new feature was

introduced in ElLang-J syntax. All other commands and operations (except

the assignment) using the result of the new allocation can be solved by using

a temporary local variable.

• Another limitation is the use of the meta-variables and the dependent set meta-

statements in two methods, especially in the case of the method template.

Since the code of the meta-template is compiled twice, the designer of the
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templates should be aware of this fact and thought out every usage of the

meta-variable set.

• The next one is the restriction of using certain integer constants in the code,

because these values are used for the indexing of the meta-variables during

the precompilation. However, the restricted values go only from 987651234

increased by 1 and are bound to 512 values. This also means there can be

only 512 meta-information in the template. On the other hand the value of

512 can be easily increased if needed.

• One of the important restrictions is using the typecasting described by a meta-

variable. This kind of typecasting can only be used in assignment to a class’

field, whose type is also described by the meta-variable. However, while devel-

oping the optimized solution, we have not found any other code pattern that

strictly requires typecasting based on the meta-variable.

• The last mentionable limitation is related to the exceptions in the method

templates. The method calls described by a meta-variable in the method tem-

plates are tagged by a dummy method calls during precompilation. Therefore,

some of the catch XXXException constructions can become unreachable code.

For this reason, we recommend to catch more general exceptions that are al-

ways reachable, e.g., java.lang.Exception and then check the real exception

type within the code.



Chapter 11

Related works

This thesis participates in the research of the software connectors generation. It

proposes a solution of how to generate the connector’s elements code at deployment-

time without using the javac compiler. One of the reasons for this optimization is

the quite restrictive character of the deployment-time environment.

We can see an even stronger restriction on timing, memory and additional

resources, when we look at the run-time environment, where the connectors pursue

their activities. As we described in Chapter 1, in certain situations in the connector

system the new reference can appear while the connector is already running and the

reference can be of the type which the connector is not ready for. In such a situation

the run-time generation of the new connector’s element can be an option.

11.1 Connectors generated at run-time

There are several existing connector generation approaches. Unfortunately, most of

them prepare the connectors at design-time. For example, the Openwings system

[14] introduced in the first chapter, is one them. In this system, all the connectors

part are set up based on the special interfaces added into components at design-time.

At the beginning of the text, we have also mentioned one of the simplest

solutions of the connector generation, which is Java RMI used in EJB components.

It realizes the component interconnection by generating stubs and skeletons that

lie at the opposite end of the connection link. The stubs and the skeletons can be

generated at run-time according to the application’s current need. However, the

stubs and the skeletons are not based on any template system as the connector

elements in the existing ConGen project. ConGen is based on more complex

model, thus the simple RMI approach does not gives us any significant idea for

involvement in ConGen’s future extensions.

One representative of the component systems is Fractal [6]. The concept of
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the system is very similar to the concept that ConGen is based on. However, Frac-

tal does not manage any template system. Rather, its components consists of the

controller and the content, where the controller has the responsibility for internal

and external connections of the sub-components contained in the content part. The

variability of the connector is given by the set of the internal and the external inter-

faces of the controller. The exact semantics of the overall connector configuration

is determined by a wrapping component that encloses all the components related

to the configuration. An important fact for us is that Fractal provides a way of

modifying the connector at run-time. It is possible to stop a component, e.g., the

server component, suspend calls from all the other components, unbind the com-

ponent from the connector, then bind its replacement, e.g., new server component,

and then restart the connector again.

11.2 Precompilation as a way of making faster

compilation

A major aspect appearing in this thesis is the precompilation. The word precompi-

lation is used quite often in software engineering. However, in some situations it is

used with slightly different meanings.

The first kind is a preparation of the source code for the compiler. Typi-

cally, the grammar of the source code language is extended with a set of meta-

information used for example for omission of the code parts (e.g., #define and

#ifdef in C/C++/C#) or embedded information of another language (e.g., em-

bedded SQL in C++ language processed by the Pro*C/C++ precompiler).

Second kind of precompilation is the meaning we use for our templates. This

means that certain code is precompiled into the fashion that will significantly de-

crease time and/or memory requirements at the time when the compilation is really

needed. Typically, this approach is used in the area of web applications (e.g., the

precompilation of JSP [24] or the precompilation of ASP [1]).

From a certain point of view every virtual machine using JIT uses the precom-

pilation approach, for example, JVM using JIT. To compile native code directly from

Java source code would be too expensive. But if the Java code is first compiled into

a bytecode, then we have a binary template to build the native code instructions,

which is much cheaper in the sense of time and memory.



Chapter 12

Conclusion and future work

12.1 Summary of work

The main goal of this thesis is to optimize the compilation step in the generation

process of the connector’s element. We use the technique of bytecode manipulation

to create the class file. In the existing ConGen the class file is produced by using

the javac compiler. For building up the class file in our solution, we use the template

in the precompiled ElLang-J-BC language form as an input. The ElLang-J-BC

template is created during the distribution build which takes place at design-time

of the ConGen framework.

The important fact in the template precompilation is that the syntax of the

ElLang-J language is fully preserved in the ElLang-J-BC language. Therefore,

the existing source code generator written in Stratego can be used without mod-

ification. Precompiled bytecode is stored as a set of Java method calls where all

instruction parameters, Java strings, integers and floats are. This approach also

makes the template well readable for debugging purposes.

Since the approach uses the existing templates written in ElLang-J as the

input, the strongest benefit of the existing template system is also preserved.

In general, we can say that the particular goals listed at the beginning of this

thesis are met in our proposed solution. As we proved in Chapter 10, the time

needed for the generation of the elements’ classes has been significantly decreased.

The need for additional resources need in the form of the Java compiler was also

reduced. The prototype implementation of the optimized solution is the part of the

thesis, too.

The last question to complete the goals is whether the proposed optimization

is reusable for an architecture other than only the Java architecture or not. The

answer depends on the concrete architecture very much. We can generally say that

every language with its syntax and a compiled form of its code, which will allow us
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to tag the meta-information in source code and to recognize the tag pattern later in

the decompilation step, is suitable for our precompilation approach.

In the first chapter, we also mentioned the possible generation of the connec-

tor’s part at run-time. The run-time environment, compared to the environment

of a template and connector designer is very restrictive. Hence, our optimization

makes one step closer to producing code at run-time.

Nevertheless, the precompilation of the templates also has certain limitations

and brings some slight restrictions for a template designer. Fortunately, these re-

strictions do not impact on the overall architecture of the template system and can

be easily got around.

12.2 Prototype implementation

The part of this thesis is the prototype implementation of the precompilation ap-

proach. The solution extends the Stratego/XT version of the connector generator

(ConGen) presented in [32]. The proposed extension adds the full precompilation

step into the build process of the ConGen distribution framework as well as the

replacement of the javac compiler. Both of these new features are fully optional and

their utilization depends only on the usage of the different ConGen build target.

The current version of ConGen’s source code was used as the starting point

for the development of our solution. The modified implementation can be found in

the SVN repository on the site http://aiya.ms.mff.cuni.cz/var/svn/congen/.

12.3 Future work

As we mentioned in the text several times, the particular drawback in the generation

of the connector elements is that the programs generated by the Stratego compiler

are platform-dependent. The strc compiler of the Stratego/XT bundle transforms

the Stratego program into the C language, which is then compiled into the binary

program. Using a Stratego compiler producing Java code instead of C would be

the solution of this problem. Such a compiler can be found in [10]. However, the

project was stopped in an unstable state some time ago, so it would have to be

reopened for its usage first.

The generation of the connectors’ parts at run-time is another possible field of

a research in the connector generation and subsequently in the ConGen project.

The optimization proposed in this thesis could be a good starting point for the fast

generation of the code.

The last obvious future work in the connectors’ area, specifically in ConGen,

is the extension of the generation engine also for other languages. The work [32] has
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already laid out the future extension of the template system for the C++ and C#

languages. Other research on re-using the optimization from this thesis for the new

languages could follow, as well.
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Appendix A

Template code examples

A.1 Original ElLang-J template

The existing version of ConGen [32] includes code templates written in the ElLang-

J language. The following example shows a real template for the composite element

using most of the meta-language features given by ElLang-J.

package ${package} ;

import org . objectweb . dsrg . connector .∗ ;
/∗
∗ Meta d e c l a r a t i o n o f connector compound default
∗ /

element compound default {
/∗∗
∗ The ins tances of subelements o f t h i s composite connector element .
∗ /

protected Element [ ] subElements ;

/∗∗
∗ Remote t a r g e t s to which the remote por t s are bounded to .
∗ /

protected RemoteRefBundle [ ] remoteTargetRefs ;

/∗∗
∗ Ins tance of dock connector manager which i s respons ib le f o r connector
∗ u n i t s w i t h i n the dock .
∗ /

protected f i n a l org . objectweb . dsrg . connector . mgr . DockConnectorManager dcm;

/∗∗
∗ Reference to parent connector u n i t .
∗ /

protected f i n a l ConnectorUnit pa ren tUn i t ;

protected boolean isTopLevel ;

/∗∗
∗ Reconf igu ra t ion request handler .
∗ /

protected org . objectweb . dsrg . connector . Reconf igura t ionHandler recon f i gu ra t i onHand le r ;

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗ CONSTRUCTORS
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ /

public ${classname}( ConnectorUni t parentUni t , boolean isTopLevel )
throws ElementLinkExcept ion {

th is . pa ren tUn i t = paren tUn i t ;
th is . isTopLevel = isTopLevel ;

dcm = org . objectweb . dsrg . connector . mgr .
DockConnectorManagerHelper . getDockConnectorManager ( ) ;

i n i t i a l i z e A r c h i t e c t u r e ( ) ;
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}

/∗∗
∗ When t h i s method i s c a l l e d ?
∗ /

void i n i t i a l i z e A r c h i t e c t u r e ( ) throws ElementLinkExcept ion {
subElements = new Element [ ${elements . element#count } ] ;

t ry {
/∗ create sub−elements ∗ /
$set i = 0$
$foreach (ELEMENT i n ${elements . element})$

subElements [ ${ i } ] = new ${ELEMENT. class as ( org . objectweb . dsrg . connector . ConnectorUnit , boolean )}
( parentUni t , fa lse ) ;

/∗ remember ELEMENT index i n ar ray ∗ /
$set e l [ELEMENT. name ] = i $
$set i = i + 1$

$end$

/∗ create b ind ings ∗ /
$foreach (BINDING i n ${b ind ings . b ind ing })$

$ i f (BINDING . type == ”BINDING” ) $
( ( E lementLoca lCl ient ) subElements [ ${e l [ BINDING . from . element . name ] } ] ) . b indE lPor t ( ” ${BINDING . from . po r t} ” ,

( ( ElementLocalServer ) subElements [ ${e l [ BINDING . to . element . name ] } ] ) . lookupElPor t ( ” ${BINDING . to . po r t} ” ) ) ;
$end$

$end$
} catch ( Except ion e ) {

throw new ElementLinkExcept ion ( e ) ;
}

/∗ boundings to remote re ferences − t h i s need number o f remote por t s ∗ /
remoteTargetRefs = new RemoteRefBundle [ ${por t s . po r t ( type=REMOTE)# count } ] ;

$set i = 0$
$foreach (REMOTE PORT i n ${por t s . po r t ( type=REMOTE)} ) $

remoteTargetRefs [ ${ i } ] = nul l ;
$set r e f [REMOTE PORT. name ] = i $
$set i = i + 1$

$end$

d i s t r i b u t e R e c o n f i g u r a t i o n H a n d l e r ( ) ;
}

/∗∗
∗ D i s t r i b u t e s a re ference to t h i s element as a re ference to
∗ r e c o n f i g u r a t i o n handler to a l l r econ f i gu rab le subelements .
∗ /

protected f i n a l void d i s t r i b u t e R e c o n f i g u r a t i o n H a n d l e r ( ) {
for ( Element elem : subElements ) {

i f ( elem instanceof Reconf igurableElement ) {
( ( Reconf igurableElement ) elem ) .

se tE lRecon f igura t ionHand le r ( th is ) ;
}

}
}

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗ Element Methods
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ /

public S t r i n g getElement In fo ( S t r i n g inden t ) {
S t r i n g B u i l d e r r e s u l t = new S t r i n g B u i l d e r ( ) ;

r e s u l t . append ( inden t + ” Implementat ion : ${ implementat ion}\n ” ) ;

$foreach (ELEMENT i n ${elements . element})$
r e s u l t . append ( inden t + ”Sub−element : ${ELEMENT. name} \n ” ) ;
r e s u l t . append ( subElements [ ${e l [ELEMENT. name]} ] . getElement In fo ( inden t + ” ” ) ) ;

$end$

return r e s u l t . t o S t r i n g ( ) ;
}

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗ ElementLocalServer Methods
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ /

implements inter face ElementLocalServer {
/∗∗
∗ Look f o r element po r t .
∗
∗ Only one element po r t i s re tu rned .
∗ /

public Object lookupElPor t ( S t r i n g portName ) throws ElementLinkExcept ion {
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/∗
∗ t h i s pa r t needs number o f PROVIDED por ts and r i g h t
∗ index to subElements [ ]
∗ /

$r foreach (PORT i n ${por t s . po r t ( type=PROVIDED)} ) $
i f ( ” ${PORT. name} ” . equals ( portName ) ) {

Object r e s u l t = ( ( ElementLocalServer ) subElements [ ${e l [PORT. boundedTo . element . name ]} ] )
. lookupElPor t ( ” ${PORT. boundedTo . po r t} ” ) ;

i f ( isTopLevel ) {
dcm. rereg is te rConnectorUn i tReference ( parentUni t , portName , r e s u l t ) ;

}
return r e s u l t ;

} else $recpo in t$
$ f i n a l $

throw new ElementLinkExcept ion ( ” I n v a l i d provided po r t ’ ” +portName+ ” ’ . ” ) ;
$end$

}
}

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗ ElementLoca lCl ient Methods
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ /

implements inter face ElementLoca lCl ient {
/∗
∗ t h i s needs number o f REQUIRED por ts and f i n d r i g h t index o f
∗ se lec ted element
∗ /

public void b indE lPor t ( S t r i n g portName , Object t a r g e t ) throws ElementLinkExcept ion {
$r foreach (PORT i n ${por t s . po r t ( type=REQUIRED)} ) $

i f ( ” ${PORT. name} ” . equals ( portName ) ) {

$foreach (BELEMENT i n ${PORT. boundedTo})$
( ( E lementLoca lCl ient ) subElements [ ${e l [BELEMENT. element . name ] } ] ) . b indE lPor t ( ” ${BELEMENT. po r t} ” , t a r g e t ) ;

$end$

} else $recpo in t$
$ f i n a l $

throw new ElementLinkExcept ion ( ” I n v a l i d requ i red po r t ’ ” +portName+ ” ’ . ” ) ;
$end$

}

public void unbindElPor t ( S t r i n g portName ) throws ElementLinkExcept ion {
$r foreach (PORT i n ${por t s . po r t ( type=REQUIRED)} ) $

i f ( ” ${PORT. name} ” . equals ( portName ) ) {
$foreach (BELEMENT i n ${PORT. boundedTo})$

( ( E lementLoca lCl ient ) subElements [ ${e l [BELEMENT. element . name ] } ] ) . unb indElPor t ( ” ${BELEMENT. po r t} ” ) ;
$end$

} else
$recpo in t$

$ f i n a l $
throw new ElementLinkExcept ion ( ” I n v a l i d requ i red po r t ’ ” +portName+ ” ’ . ” ) ;

$end$
}

}
/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗ ElementRemoteServer Methods
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ /

implements inter face ElementRemoteServer {

public RemoteRefBundle lookupElRemotePort ( S t r i n g portName ) throws ElementLinkExcept ion {
RemoteRefBundle r e s u l t = new RemoteRefBundle ( ) ;
/ / here we need number o f REMOTE por ts and r i g h t b ind ing
$r foreach (PORT i n ${por t s . po r t ( type=REMOTE)} ) $

i f ( ” ${PORT. name} ” . equals ( portName ) ) {

$foreach (BELEMENT i n ${PORT. boundedTo})$
i f ( subElements [ ${e l [BELEMENT. element . name]} ] instanceof ElementRemoteServer ) {

r e s u l t . addRefBundle ( ( ( ElementRemoteServer ) subElements [ ${e l [BELEMENT. element . name]} ] )
. lookupElRemotePort ( ” ${BELEMENT. po r t} ” ) ) ;

}
$end$

} else $recpo in t$
$ f i n a l $

throw new ElementLinkExcept ion ( ” I n v a l i d remote po r t ’ ” +portName+ ” ’ . ” ) ;
$end$
return r e s u l t ;

}

public S t r i n g [ ] l i s tE lRemotePor ts ( ) {
S t r i n g [ ] r e s u l t = new S t r i n g [ ${por t s . po r t ( type=REMOTE)# count } ] ;
$set i = 0$
$foreach (REMOTE PORT i n ${por t s . po r t ( type=REMOTE)} ) $

r e s u l t [ ${ i } ] = ” ${REMOTE PORT. name} ” ;
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$set i = i + 1$
$end$
return r e s u l t ;

}
}

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗ ElementRemoteClient Methods
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ /

implements inter face ElementRemoteClient {

public void bindElRemotePort ( S t r i n g portName , RemoteRefBundle refBundle ) throws ElementLinkExcept ion {
/ / here we need number o f REMOTE por ts and r i g h t b ind ing
$r foreach (PORT i n ${por t s . po r t ( type=REMOTE)} ) $

i f ( ” ${PORT. name} ” . equals ( portName ) ) {
$foreach (BELEMENT i n ${PORT. boundedTo})$

i f ( subElements [ ${e l [BELEMENT. element . name]} ] instanceof ElementRemoteClient ) {
( ( ElementRemoteClient ) subElements [ ${e l [BELEMENT. element . name ]} ] )

. bindElRemotePort ( ” ${BELEMENT. po r t} ” , re fBundle ) ;
}

$end$
remoteTargetRefs [ ${ r e f [PORT. name]} ] = refBundle ;

} else $recpo in t$
$ f i n a l $

throw new ElementLinkExcept ion ( ” I n v a l i d remote po r t ’ ” +portName+ ” ’ . ” ) ;
$end$

}

public void unbindElRemotePort ( S t r i n g portName ) throws ElementLinkExcept ion {
$r foreach (PORT i n ${por t s . po r t ( type=REMOTE)} ) $

i f ( ” ${PORT. name} ” . equals ( portName ) ) {
$foreach (BELEMENT i n ${PORT. boundedTo})$

i f ( subElements [ ${e l [BELEMENT. element . name]} ] instanceof ElementRemoteClient ) {
( ( ElementRemoteClient ) subElements [ ${e l [BELEMENT. element . name ] } ] ) . unbindElRemotePort ( ” ${BELEMENT. po r t} ” ) ;

}
$end$

remoteTargetRefs [ ${ r e f [PORT. name]} ] = nul l ;
} else $recpo in t$

$ f i n a l $
throw new ElementLinkExcept ion ( ” I n v a l i d remote po r t ’ ” +portName+ ” ’ . ” ) ;

$end$
}

public RemoteRefBundle getElRemoteTarget ( S t r i n g portName ) throws ElementLinkExcept ion {
/ / here we need number o f REMOTE por ts and r i g h t index o f po r t
/ / i n t o ar ray remoteTargetRefs
$r foreach (PORT i n ${por t s . po r t ( type=REMOTE)} ) $

i f ( ” ${PORT. name} ” . equals ( portName ) ) {
return remoteTargetRefs [ ${ r e f [PORT. name ]} ] ;

} else $recpo in t$
$ f i n a l $

throw new ElementLinkExcept ion ( ” I n v a l i d remote po r t ’ ” +portName+ ” ’ . ” ) ;
$end$

}
}

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗ Reconf igurableElement Methods
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ /

implements inter face Reconf igurableElement {
/∗∗
∗ Sets the r e c o n f i g u r a t i o n handler .
∗ /

public f i n a l void se tE lRecon f igura t ionHand le r ( Reconf igura t ionHand ler recon f i gu ra t i onHand le r ) {
th is . r econ f i gu ra t i onHand le r = recon f i gu ra t i onHand le r ;

}
}

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗ Reconf igura t ionHandler Methods
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ /

implements inter face Reconf igura t ionHand ler {

public void i n v a l i d a t e E l P o r t ( ElementLocalServer element , S t r i n g portName ) {
}
public void i nva l ida teE lRemotePor t ( ElementRemoteServer element , S t r i n g portName )

throws Reconf igura t ionExcept ion {
throw new Reconf igura t ionExcept ion ( ” Recon f igu ra t ion not supported on remote por ts , ye t ! ” ) ;

}
}

}
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A.2 Erlang-J template transformed for precom-

pilation

Our proposed solution precompiles the ElLang-J templates. The precompilation

of the template file proceeds in several steps. In the first step the template is

transformed into the compilable form by replacing meta-information with special

Java statements. Following example shows the template above prepared for the

Java compiler.

package org . objectweb . dsrg . congen . conrep . elements . templates . e l l ang ;

import org . objectweb . dsrg . connector .∗ ;

public class compound default implements ElementLocalServer , ElementLocalCl ient , ElementRemoteServer ,
ElementRemoteClient , Reconf igurableElement , Reconf igura t ionHandler

{
protected Element [ ] subElements ;

protected RemoteRefBundle [ ] remoteTargetRefs ;

protected f i n a l org . objectweb . dsrg . connector . mgr . DockConnectorManager dcm;

protected f i n a l ConnectorUnit pa ren tUn i t ;

protected boolean isTopLevel ;

protected org . objectweb . dsrg . connector . Reconf igura t ionHandler recon f i gu ra t i onHand le r ;

public compound default ( ConnectorUni t parentUni t , boolean isTopLevel ) throws ElementLinkExcept ion
{

th is . pa ren tUn i t = paren tUn i t ;
th is . isTopLevel = isTopLevel ;
dcm = org . objectweb . dsrg . connector . mgr . DockConnectorManagerHelper . getDockConnectorManager ( ) ;
i n i t i a l i z e A r c h i t e c t u r e ( ) ;

}

void i n i t i a l i z e A r c h i t e c t u r e ( ) throws ElementLinkExcept ion
{

subElements = new Element [987651235] ;
t ry
{

org . objectweb . dsrg . congen . meta . MetaClass . rep lace se t (987651747);
org . objectweb . dsrg . congen . meta . MetaClass . r e p l a c e f o r (987651748);
subElements [987651237] = nul l ;
new org . objectweb . dsrg . congen . conrep . elements . templates . e l l ang . temp

. MetaConstructor987651236 ( parentUni t , fa lse ) ;
org . objectweb . dsrg . congen . meta . MetaClass . rep lace se t (987651749);
org . objectweb . dsrg . congen . meta . MetaClass . rep lace se t (987651750);
org . objectweb . dsrg . congen . meta . MetaClass . replace end ( ) ;
org . objectweb . dsrg . congen . meta . MetaClass . r e p l a c e f o r (987651751);
org . objectweb . dsrg . congen . meta . MetaClass . r e p l a c e i f (987651752);
( ( E lementLoca lCl ient ) subElements [987651238] ) . b indE lPor t ( ” org . objectweb . dsrg . congen . meta . MetaString987651239 ; ” ,

( ( ElementLocalServer ) subElements [987651240] ) . lookupElPor t ( ” org . objectweb . dsrg . congen . meta . MetaString987651241 ; ” ) ) ;
org . objectweb . dsrg . congen . meta . MetaClass . replace end ( ) ;
org . objectweb . dsrg . congen . meta . MetaClass . replace end ( ) ;

}
catch ( Except ion e )
{

throw new ElementLinkExcept ion ( e ) ;
}
remoteTargetRefs = new RemoteRefBundle [987651242];
org . objectweb . dsrg . congen . meta . MetaClass . rep lace se t (987651747);
org . objectweb . dsrg . congen . meta . MetaClass . r e p l a c e f o r (987651753);
remoteTargetRefs [987651237] = nul l ;
org . objectweb . dsrg . congen . meta . MetaClass . rep lace se t (987651754);
org . objectweb . dsrg . congen . meta . MetaClass . rep lace se t (987651750);
org . objectweb . dsrg . congen . meta . MetaClass . replace end ( ) ;
d i s t r i b u t e R e c o n f i g u r a t i o n H a n d l e r ( ) ;

}

protected f i n a l void d i s t r i b u t e R e c o n f i g u r a t i o n H a n d l e r ( )
{

for ( Element elem : subElements )
{

i f ( elem instanceof Reconf igurableElement )
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{
( ( Reconf igurableElement ) elem ) . se tE lRecon f igura t ionHand le r ( th is ) ;

}
}

}

public S t r i n g getElement In fo ( S t r i n g inden t )
{

S t r i n g B u i l d e r r e s u l t = new S t r i n g B u i l d e r ( ) ;
r e s u l t . append ( inden t + ” Implementat ion : org . objectweb . dsrg . congen . meta . MetaString987651243 ;\n ” ) ;
org . objectweb . dsrg . congen . meta . MetaClass . r e p l a c e f o r (987651748);
r e s u l t . append ( inden t + ”Sub−element : org . objectweb . dsrg . congen . meta . MetaString987651244 ; \n ” ) ;
r e s u l t . append ( subElements [987651245] . getElement In fo ( inden t + ” ” ) ) ;
org . objectweb . dsrg . congen . meta . MetaClass . replace end ( ) ;
return r e s u l t . t o S t r i n g ( ) ;

}

public Object lookupElPor t ( S t r i n g portName ) throws ElementLinkExcept ion
{

org . objectweb . dsrg . congen . meta . MetaClass . r e p l a c e r f o r (987651755);
i f ( ” org . objectweb . dsrg . congen . meta . MetaString987651246 ; ” . equals ( portName ) )
{

Object r e s u l t = ( ( ElementLocalServer ) subElements [987651247])
. lookupElPor t ( ” org . objectweb . dsrg . congen . meta . MetaString987651248 ; ” ) ;

i f ( isTopLevel )
{

dcm. rereg is te rConnectorUn i tReference ( parentUni t , portName , r e s u l t ) ;
}
i f ( true )
{

return r e s u l t ;
}

}
else

org . objectweb . dsrg . congen . meta . MetaClass . r e p l a c e r e c p o i n t ( ) ;
org . objectweb . dsrg . congen . meta . MetaClass . r e p l a c e f i n a l ( ) ;
i f ( true )
{

throw new ElementLinkExcept ion ( ” I n v a l i d provided po r t ’ ” + portName + ” ’ . ” ) ;
}
org . objectweb . dsrg . congen . meta . MetaClass . replace end ( ) ;
return nul l ;

}

public void b indE lPor t ( S t r i n g portName , Object t a r g e t ) throws ElementLinkExcept ion
{

org . objectweb . dsrg . congen . meta . MetaClass . r e p l a c e r f o r (987651756);
i f ( ” org . objectweb . dsrg . congen . meta . MetaString987651246 ; ” . equals ( portName ) )
{

org . objectweb . dsrg . congen . meta . MetaClass . r e p l a c e f o r (987651757);
( ( E lementLoca lCl ient ) subElements [987651249])

. b indE lPor t ( ” org . objectweb . dsrg . congen . meta . MetaString987651250 ; ” , t a r g e t ) ;
org . objectweb . dsrg . congen . meta . MetaClass . replace end ( ) ;

}
else

org . objectweb . dsrg . congen . meta . MetaClass . r e p l a c e r e c p o i n t ( ) ;
org . objectweb . dsrg . congen . meta . MetaClass . r e p l a c e f i n a l ( ) ;
i f ( true )
{

throw new ElementLinkExcept ion ( ” I n v a l i d requ i red po r t ’ ” + portName + ” ’ . ” ) ;
}
org . objectweb . dsrg . congen . meta . MetaClass . replace end ( ) ;
return ;

}

public void unbindElPor t ( S t r i n g portName ) throws ElementLinkExcept ion
{

org . objectweb . dsrg . congen . meta . MetaClass . r e p l a c e r f o r (987651756);
i f ( ” org . objectweb . dsrg . congen . meta . MetaString987651246 ; ” . equals ( portName ) )
{

org . objectweb . dsrg . congen . meta . MetaClass . r e p l a c e f o r (987651757);
( ( E lementLoca lCl ient ) subElements [987651249])

. unb indElPor t ( ” org . objectweb . dsrg . congen . meta . MetaString987651250 ; ” ) ;
org . objectweb . dsrg . congen . meta . MetaClass . replace end ( ) ;

}
else

org . objectweb . dsrg . congen . meta . MetaClass . r e p l a c e r e c p o i n t ( ) ;
org . objectweb . dsrg . congen . meta . MetaClass . r e p l a c e f i n a l ( ) ;
i f ( true )
{

throw new ElementLinkExcept ion ( ” I n v a l i d requ i red po r t ’ ” + portName + ” ’ . ” ) ;
}
org . objectweb . dsrg . congen . meta . MetaClass . replace end ( ) ;
return ;
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}

public RemoteRefBundle lookupElRemotePort ( S t r i n g portName ) throws ElementLinkExcept ion
{

RemoteRefBundle r e s u l t = new RemoteRefBundle ( ) ;
org . objectweb . dsrg . congen . meta . MetaClass . r e p l a c e r f o r (987651758);
i f ( ” org . objectweb . dsrg . congen . meta . MetaString987651246 ; ” . equals ( portName ) )
{

org . objectweb . dsrg . congen . meta . MetaClass . r e p l a c e f o r (987651757);
i f ( subElements [987651249] instanceof ElementRemoteServer )
{

r e s u l t . addRefBundle ( ( ( ElementRemoteServer ) subElements [987651249])
. lookupElRemotePort ( ” org . objectweb . dsrg . congen . meta . MetaString987651250 ; ” ) ) ;

}
org . objectweb . dsrg . congen . meta . MetaClass . replace end ( ) ;

}
else

org . objectweb . dsrg . congen . meta . MetaClass . r e p l a c e r e c p o i n t ( ) ;
org . objectweb . dsrg . congen . meta . MetaClass . r e p l a c e f i n a l ( ) ;
i f ( true )
{

throw new ElementLinkExcept ion ( ” I n v a l i d remote po r t ’ ” + portName + ” ’ . ” ) ;
}
org . objectweb . dsrg . congen . meta . MetaClass . replace end ( ) ;
i f ( true )
{

return r e s u l t ;
}
return nul l ;

}

public S t r i n g [ ] l i s tE lRemotePor ts ( )
{

S t r i n g [ ] r e s u l t = new S t r i n g [987651242] ;
org . objectweb . dsrg . congen . meta . MetaClass . rep lace se t (987651747);
org . objectweb . dsrg . congen . meta . MetaClass . r e p l a c e f o r (987651753);
r e s u l t [987651237] = ” org . objectweb . dsrg . congen . meta . MetaString987651251 ; ” ;
org . objectweb . dsrg . congen . meta . MetaClass . rep lace se t (987651750);
org . objectweb . dsrg . congen . meta . MetaClass . replace end ( ) ;
return r e s u l t ;

}

public void bindElRemotePort ( S t r i n g portName , RemoteRefBundle refBundle ) throws ElementLinkExcept ion
{

org . objectweb . dsrg . congen . meta . MetaClass . r e p l a c e r f o r (987651758);
i f ( ” org . objectweb . dsrg . congen . meta . MetaString987651246 ; ” . equals ( portName ) )
{

org . objectweb . dsrg . congen . meta . MetaClass . r e p l a c e f o r (987651757);
i f ( subElements [987651249] instanceof ElementRemoteClient )
{

( ( ElementRemoteClient ) subElements [987651249])
. bindElRemotePort ( ” org . objectweb . dsrg . congen . meta . MetaString987651250 ; ” , re fBundle ) ;

}
org . objectweb . dsrg . congen . meta . MetaClass . replace end ( ) ;
remoteTargetRefs [987651252] = refBundle ;

}
else

org . objectweb . dsrg . congen . meta . MetaClass . r e p l a c e r e c p o i n t ( ) ;
org . objectweb . dsrg . congen . meta . MetaClass . r e p l a c e f i n a l ( ) ;
i f ( true )
{

throw new ElementLinkExcept ion ( ” I n v a l i d remote po r t ’ ” + portName + ” ’ . ” ) ;
}
org . objectweb . dsrg . congen . meta . MetaClass . replace end ( ) ;
return ;

}

public void unbindElRemotePort ( S t r i n g portName ) throws ElementLinkExcept ion
{

org . objectweb . dsrg . congen . meta . MetaClass . r e p l a c e r f o r (987651758);
i f ( ” org . objectweb . dsrg . congen . meta . MetaString987651246 ; ” . equals ( portName ) )
{

org . objectweb . dsrg . congen . meta . MetaClass . r e p l a c e f o r (987651757);
i f ( subElements [987651249] instanceof ElementRemoteClient )
{

( ( ElementRemoteClient ) subElements [987651249])
. unbindElRemotePort ( ” org . objectweb . dsrg . congen . meta . MetaString987651250 ; ” ) ;

}
org . objectweb . dsrg . congen . meta . MetaClass . replace end ( ) ;
remoteTargetRefs [987651252] = nul l ;

}
else

org . objectweb . dsrg . congen . meta . MetaClass . r e p l a c e r e c p o i n t ( ) ;
org . objectweb . dsrg . congen . meta . MetaClass . r e p l a c e f i n a l ( ) ;
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i f ( true )
{

throw new ElementLinkExcept ion ( ” I n v a l i d remote po r t ’ ” + portName + ” ’ . ” ) ;
}
org . objectweb . dsrg . congen . meta . MetaClass . replace end ( ) ;
return ;

}

public RemoteRefBundle getElRemoteTarget ( S t r i n g portName ) throws ElementLinkExcept ion
{

org . objectweb . dsrg . congen . meta . MetaClass . r e p l a c e r f o r (987651758);
i f ( ” org . objectweb . dsrg . congen . meta . MetaString987651246 ; ” . equals ( portName ) )
{

i f ( true )
{

return remoteTargetRefs [987651252] ;
}

}
else

org . objectweb . dsrg . congen . meta . MetaClass . r e p l a c e r e c p o i n t ( ) ;
org . objectweb . dsrg . congen . meta . MetaClass . r e p l a c e f i n a l ( ) ;
i f ( true )
{

throw new ElementLinkExcept ion ( ” I n v a l i d remote po r t ’ ” + portName + ” ’ . ” ) ;
}
org . objectweb . dsrg . congen . meta . MetaClass . replace end ( ) ;
return nul l ;

}

public f i n a l void se tE lRecon f igura t ionHand le r ( Reconf igura t ionHandler recon f i gu ra t i onHand le r )
{

th is . r econ f i gu ra t i onHand le r = recon f i gu ra t i onHand le r ;
}

public void i n v a l i d a t e E l P o r t ( ElementLocalServer element , S t r i n g portName )
{ }

public void i nva l ida teE lRemotePor t ( ElementRemoteServer element , S t r i n g portName ) throws Reconf igura t ionExcept ion
{

throw new Reconf igura t ionExcept ion ( ” Recon f igu ra t ion not supported on remote por ts , ye t ! ” ) ;
}

}

A.3 Meta-information from precompiled template

The previous section contains the template transformed for the compilation. The

transformation replaces all meta-information occurrences with the Javacode. Before

the replacement the meta-information is collected and stored for the latter decom-

pilation process. The collected information is stored in a XML file and the following

example shows the one related to the template from Section A.1.

<?xml vers ion= ” 1.0 ” ?>

<r e s u l t>
<metavar i d = ” 987651235 ”>${elements . element#count}</metavar>
<metavar i d = ” 987651236 ”>C ${ELEMENT. class}( org . objectweb . dsrg . connector . ConnectorUnit , boolean)</metavar>
<metavar i d = ” 987651237 ”>${ i}</metavar>
<metavar i d = ” 987651238 ”>${e l [ BINDING . from . element . name]}</metavar>
<metavar i d = ” 987651239 ”>${BINDING . from . po r t}</metavar>
<metavar i d = ” 987651240 ”>${e l [ BINDING . to . element . name]}</metavar>
<metavar i d = ” 987651241 ”>${BINDING . to . po r t}</metavar>
<metavar i d = ” 987651242 ”>${por t s . po r t ( type=REMOTE)# count}</metavar>
<metavar i d = ” 987651243 ”>${ implementat ion}</metavar>
<metavar i d = ” 987651244 ”>${ELEMENT. name}</metavar>
<metavar i d = ” 987651245 ”>${e l [ELEMENT. name]}</metavar>
<metavar i d = ” 987651246 ”>${PORT. name}</metavar>
<metavar i d = ” 987651247 ”>${e l [PORT. boundedTo . element . name]}</metavar>
<metavar i d = ” 987651248 ”>${PORT. boundedTo . po r t}</metavar>
<metavar i d = ” 987651249 ”>${e l [BELEMENT. element . name]}</metavar>
<metavar i d = ” 987651250 ”>${BELEMENT. po r t}</metavar>
<metavar i d = ” 987651251 ”>${REMOTE PORT. name}</metavar>
<metavar i d = ” 987651252 ”>${ r e f [PORT. name]}</metavar>
<metastm i d = ” 987651747 ”>$set i = 0$</metastm>
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<metastm i d = ” 987651748 ”>$foreach (ELEMENT i n ${elements . element})$</metastm>

<metastm i d = ” 987651749 ”>$set e l [ELEMENT. name ] = i$ </metastm>

<metastm i d = ” 987651750 ”>$set i = i + 1$</metastm>

<metastm i d = ” 987651751 ”>$foreach (BINDING i n ${b ind ings . b ind ing })$</metastm>

<metastm i d = ” 987651752 ”>$ i f (BINDING . type == &quot ; BINDING&quot ; ) $</metastm>

<metastm i d = ” 987651753 ”>$foreach (REMOTE PORT i n ${por t s . po r t ( type=REMOTE)} ) $</metastm>

<metastm i d = ” 987651754 ”>$set r e f [REMOTE PORT. name ] = i$ </metastm>

<metastm i d = ” 987651755 ”>$r foreach (PORT i n ${por t s . po r t ( type=PROVIDED)} ) $</metastm>

<metastm i d = ” 987651756 ”>$r foreach (PORT i n ${por t s . po r t ( type=REQUIRED)} ) $</metastm>

<metastm i d = ” 987651757 ”>$foreach (BELEMENT i n ${PORT. boundedTo})$</metastm>

<metastm i d = ” 987651758 ”>$r foreach (PORT i n ${por t s . po r t ( type=REMOTE)} ) $</metastm>

</ r e s u l t>

A.4 Precompiled Erlang-J-BC template

The following example shows the precompiled form of the template above.

/∗∗∗∗∗∗ DO NOT EDIT ∗∗∗∗∗∗∗ /
package ${package} ;

element compound default {

/∗∗∗∗∗∗ FIELDS ∗∗∗∗∗∗ /

protected org . objectweb . dsrg . connector . Element [ ] subElements ;

protected org . objectweb . dsrg . connector . RemoteRefBundle [ ] remoteTargetRefs ;

protected f i n a l org . objectweb . dsrg . connector . mgr . DockConnectorManager dcm;

protected f i n a l org . objectweb . dsrg . connector . ConnectorUnit pa ren tUn i t ;

protected boolean isTopLevel ;

protected org . objectweb . dsrg . connector . Reconf igura t ionHandler recon f i gu ra t i onHand le r ;

/∗∗∗∗∗∗ METHODS ∗∗∗∗∗∗ /

public CLASS CONSTRUCTOR( org . objectweb . dsrg . connector . ConnectorUnit arg0 , boolean arg1 )
throws org . objectweb . dsrg . connector . ElementLinkExcept ion {

LABEL ( 0 ) ;
LINE ( 2 0 ) ;
ALOAD( 0 ) ;
INVOKESPECIAL( ” java . lang . Object ” , ”<i n i t >” , ” vo id ( ) ” ) ;
LABEL ( 1 ) ;
LINE ( 2 1 ) ;
ALOAD( 0 ) ;
ALOAD( 1 ) ;
PUTFIELD( ” ${classname} ” , ” pa ren tUn i t ” , ” org . objectweb . dsrg . connector . ConnectorUni t ” ) ;
LABEL ( 2 ) ;
LINE ( 2 2 ) ;
ALOAD( 0 ) ;
ILOAD ( 2 ) ;
PUTFIELD( ” ${classname} ” , ” isTopLevel ” , ” boolean ” ) ;
LABEL ( 3 ) ;
LINE ( 2 3 ) ;
ALOAD( 0 ) ;
INVOKESTATIC( ” org . objectweb . dsrg . connector . mgr . DockConnectorManagerHelper ” , ” getDockConnectorManager ” ,

” org . objectweb . dsrg . connector . mgr . DockConnectorManager ( ) ” ) ;
PUTFIELD( ” ${classname} ” , ”dcm” , ” org . objectweb . dsrg . connector . mgr . DockConnectorManager ” ) ;
LABEL ( 4 ) ;
LINE ( 2 4 ) ;
ALOAD( 0 ) ;
INVOKEVIRTUAL( ” ${classname} ” , ” i n i t i a l i z e A r c h i t e c t u r e ” , ” vo id ( ) ” ) ;
LABEL ( 5 ) ;
LINE ( 2 5 ) ;
RETURN( ) ;

}

void i n i t i a l i z e A r c h i t e c t u r e ( ) throws org . objectweb . dsrg . connector . ElementLinkExcept ion {

LABEL ( 0 ) ;
LINE ( 2 9 ) ;
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ALOAD( 0 ) ;
LDC( I ( ${elements . element#count } ) ) ;
ANEWARRAY( ” org . objectweb . dsrg . connector . Element ” ) ;
PUTFIELD( ” ${classname} ” , ” subElements ” , ” org . objectweb . dsrg . connector . Element [ ] ” ) ;
TRY CATCH(1 ,2 ,3 , ” java . lang . Except ion ” ) ;
LABEL ( 1 ) ;
LINE ( 3 2 ) ;

$set i = 0$
LABEL ( 4 ) ;
LINE ( 3 3 ) ;

$foreach (ELEMENT i n ${elements . element})$
LABEL ( 5 ) ;
LINE ( 3 4 ) ;
ALOAD( 0 ) ;
GETFIELD( ” ${classname} ” , ” subElements ” , ” org . objectweb . dsrg . connector . Element [ ] ” ) ;
LDC( I ( ${ i } ) ) ;
LABEL ( 6 ) ;
LINE ( 3 5 ) ;
NEW( ” ${ELEMENT. c lass} ” ) ;
DUP( ) ;
ALOAD( 0 ) ;
GETFIELD( ” ${classname} ” , ” pa ren tUn i t ” , ” org . objectweb . dsrg . connector . ConnectorUni t ” ) ;
ICONST 0 ( ) ;
INVOKESPECIAL( ” ${ELEMENT. c lass} ” , ”<i n i t >” , ” vo id ( org . objectweb . dsrg . connector . ConnectorUnit , boolean ) ” ) ;
AASTORE ( ) ;
LABEL ( 7 ) ;
LINE ( 3 6 ) ;

$set e l [ELEMENT. name ] = i $
LABEL ( 8 ) ;
LINE ( 3 7 ) ;

$set i = i + 1$
LABEL ( 9 ) ;
LINE ( 3 8 ) ;

$end$
LABEL( 1 0 ) ;
LINE ( 3 9 ) ;

$foreach (BINDING i n ${b ind ings . b ind ing })$
LABEL( 1 1 ) ;
LINE ( 4 0 ) ;

$ i f (BINDING . type == ”BINDING” ) $
LABEL( 1 2 ) ;
LINE ( 4 1 ) ;
ALOAD( 0 ) ;
GETFIELD( ” ${classname} ” , ” subElements ” , ” org . objectweb . dsrg . connector . Element [ ] ” ) ;
LDC( I ( ${e l [ BINDING . from . element . name ]} ) ) ;
AALOAD ( ) ;
CHECKCAST( ” org . objectweb . dsrg . connector . E lementLoca lCl ient ” ) ;
LDC(S( ” ${BINDING . from . po r t} ” ) ) ;
ALOAD( 0 ) ;
GETFIELD( ” ${classname} ” , ” subElements ” , ” org . objectweb . dsrg . connector . Element [ ] ” ) ;
LDC( I ( ${e l [ BINDING . to . element . name ]} ) ) ;
AALOAD ( ) ;
CHECKCAST( ” org . objectweb . dsrg . connector . ElementLocalServer ” ) ;
LDC(S( ” ${BINDING . to . po r t} ” ) ) ;
INVOKEINTERFACE( ” org . objectweb . dsrg . connector . ElementLocalServer ” , ” lookupElPor t ” ,

” java . lang . Object ( java . lang . S t r i n g ) ” ) ;
INVOKEINTERFACE( ” org . objectweb . dsrg . connector . E lementLoca lCl ient ” , ” b indE lPor t ” ,

” vo id ( java . lang . S t r ing , java . lang . Object ) ” ) ;
LABEL( 1 3 ) ;
LINE ( 4 2 ) ;

$end$
LABEL( 1 4 ) ;
LINE ( 4 3 ) ;

$end$
LABEL ( 2 ) ;
LINE ( 4 8 ) ;
GOTO( 1 5 ) ;
LABEL ( 3 ) ;
LINE ( 4 5 ) ;
ASTORE( 1 ) ;
LABEL( 1 6 ) ;
LINE ( 4 7 ) ;
NEW( ” org . objectweb . dsrg . connector . ElementLinkExcept ion ” ) ;
DUP( ) ;
ALOAD( 1 ) ;
INVOKESPECIAL( ” org . objectweb . dsrg . connector . ElementLinkExcept ion ” , ”<i n i t >” , ” vo id ( java . lang . Throwable ) ” ) ;
ATHROW( ) ;
LABEL( 1 5 ) ;
LINE ( 4 9 ) ;
ALOAD( 0 ) ;
LDC( I ( ${por t s . po r t ( type=REMOTE)# count } ) ) ;
ANEWARRAY( ” org . objectweb . dsrg . connector . RemoteRefBundle ” ) ;
PUTFIELD( ” ${classname} ” , ” remoteTargetRefs ” , ” org . objectweb . dsrg . connector . RemoteRefBundle [ ] ” ) ;
LABEL( 1 7 ) ;
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LINE ( 5 0 ) ;
$set i = 0$

LABEL( 1 8 ) ;
LINE ( 5 1 ) ;

$foreach (REMOTE PORT i n ${por t s . po r t ( type=REMOTE)} ) $
LABEL( 1 9 ) ;
LINE ( 5 2 ) ;
ALOAD( 0 ) ;
GETFIELD( ” ${classname} ” , ” remoteTargetRefs ” , ” org . objectweb . dsrg . connector . RemoteRefBundle [ ] ” ) ;
LDC( I ( ${ i } ) ) ;
ACONST NULL ( ) ;
AASTORE ( ) ;
LABEL( 2 0 ) ;
LINE ( 5 3 ) ;

$set r e f [REMOTE PORT. name ] = i $
LABEL( 2 1 ) ;
LINE ( 5 4 ) ;

$set i = i + 1$
LABEL( 2 2 ) ;
LINE ( 5 5 ) ;

$end$
LABEL( 2 3 ) ;
LINE ( 5 6 ) ;
ALOAD( 0 ) ;
INVOKEVIRTUAL( ” ${classname} ” , ” d i s t r i b u t e R e c o n f i g u r a t i o n H a n d l e r ” , ” vo id ( ) ” ) ;
LABEL( 2 4 ) ;
LINE ( 5 7 ) ;
RETURN( ) ;

}

protected f i n a l void d i s t r i b u t e R e c o n f i g u r a t i o n H a n d l e r ( ) {

LABEL ( 0 ) ;
LINE ( 6 1 ) ;
ALOAD( 0 ) ;
GETFIELD( ” ${classname} ” , ” subElements ” , ” org . objectweb . dsrg . connector . Element [ ] ” ) ;
ASTORE( 1 ) ;
ALOAD( 1 ) ;
ARRAYLENGTH( ) ;
ISTORE ( 2 ) ;
ICONST 0 ( ) ;
ISTORE ( 3 ) ;
LABEL ( 1 ) ;
ILOAD ( 3 ) ;
ILOAD ( 2 ) ;
IF ICMPGE ( 2 ) ;
ALOAD( 1 ) ;
ILOAD ( 3 ) ;
AALOAD ( ) ;
ASTORE( 4 ) ;
LABEL ( 3 ) ;
LINE ( 6 3 ) ;
ALOAD( 4 ) ;
INSTANCEOF( ” org . objectweb . dsrg . connector . Reconf igurableElement ” ) ;
IFEQ ( 4 ) ;
LABEL ( 5 ) ;
LINE ( 6 5 ) ;
ALOAD( 4 ) ;
CHECKCAST( ” org . objectweb . dsrg . connector . Reconf igurableElement ” ) ;
ALOAD( 0 ) ;
INVOKEINTERFACE( ” org . objectweb . dsrg . connector . Reconf igurableElement ” , ” se tE lRecon f igura t ionHand le r ” ,

” vo id ( org . objectweb . dsrg . connector . Reconf igura t ionHandler ) ” ) ;
LABEL ( 4 ) ;
LINE ( 6 1 ) ;
IINC ( 3 , 1 ) ;
GOTO( 1 ) ;
LABEL ( 2 ) ;
LINE ( 6 8 ) ;
RETURN( ) ;

}

public java . lang . S t r i n g getElement In fo ( java . lang . S t r i n g arg0 ) {

LABEL ( 0 ) ;
LINE ( 7 2 ) ;
NEW( ” java . lang . S t r i n g B u i l d e r ” ) ;
DUP( ) ;
INVOKESPECIAL( ” java . lang . S t r i n g B u i l d e r ” , ”<i n i t >” , ” vo id ( ) ” ) ;
ASTORE( 2 ) ;
LABEL ( 1 ) ;
LINE ( 7 3 ) ;
ALOAD( 2 ) ;
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NEW( ” java . lang . S t r i n g B u i l d e r ” ) ;
DUP( ) ;
INVOKESPECIAL( ” java . lang . S t r i n g B u i l d e r ” , ”<i n i t >” , ” vo id ( ) ” ) ;
ALOAD( 1 ) ;
INVOKEVIRTUAL( ” java . lang . S t r i n g B u i l d e r ” , ” append ” , ” java . lang . S t r i n g B u i l d e r ( java . lang . S t r i n g ) ” ) ;
LDC(S( ” Implementat ion : ${ implementat ion}\n ” ) ) ;
INVOKEVIRTUAL( ” java . lang . S t r i n g B u i l d e r ” , ” append ” , ” java . lang . S t r i n g B u i l d e r ( java . lang . S t r i n g ) ” ) ;
INVOKEVIRTUAL( ” java . lang . S t r i n g B u i l d e r ” , ” t o S t r i n g ” , ” java . lang . S t r i n g ( ) ” ) ;
INVOKEVIRTUAL( ” java . lang . S t r i n g B u i l d e r ” , ” append ” , ” java . lang . S t r i n g B u i l d e r ( java . lang . S t r i n g ) ” ) ;
POP( ) ;
LABEL ( 2 ) ;
LINE ( 7 4 ) ;

$foreach (ELEMENT i n ${elements . element})$
LABEL ( 3 ) ;
LINE ( 7 5 ) ;
ALOAD( 2 ) ;
NEW( ” java . lang . S t r i n g B u i l d e r ” ) ;
DUP( ) ;
INVOKESPECIAL( ” java . lang . S t r i n g B u i l d e r ” , ”<i n i t >” , ” vo id ( ) ” ) ;
ALOAD( 1 ) ;
INVOKEVIRTUAL( ” java . lang . S t r i n g B u i l d e r ” , ” append ” , ” java . lang . S t r i n g B u i l d e r ( java . lang . S t r i n g ) ” ) ;
LDC(S( ”Sub−element : ${ELEMENT. name} \n ” ) ) ;
INVOKEVIRTUAL( ” java . lang . S t r i n g B u i l d e r ” , ” append ” , ” java . lang . S t r i n g B u i l d e r ( java . lang . S t r i n g ) ” ) ;
INVOKEVIRTUAL( ” java . lang . S t r i n g B u i l d e r ” , ” t o S t r i n g ” , ” java . lang . S t r i n g ( ) ” ) ;
INVOKEVIRTUAL( ” java . lang . S t r i n g B u i l d e r ” , ” append ” , ” java . lang . S t r i n g B u i l d e r ( java . lang . S t r i n g ) ” ) ;
POP( ) ;
LABEL ( 4 ) ;
LINE ( 7 6 ) ;
ALOAD( 2 ) ;
ALOAD( 0 ) ;
GETFIELD( ” ${classname} ” , ” subElements ” , ” org . objectweb . dsrg . connector . Element [ ] ” ) ;
LDC( I ( ${e l [ELEMENT. name ]} ) ) ;
AALOAD ( ) ;
NEW( ” java . lang . S t r i n g B u i l d e r ” ) ;
DUP( ) ;
INVOKESPECIAL( ” java . lang . S t r i n g B u i l d e r ” , ”<i n i t >” , ” vo id ( ) ” ) ;
ALOAD( 1 ) ;
INVOKEVIRTUAL( ” java . lang . S t r i n g B u i l d e r ” , ” append ” , ” java . lang . S t r i n g B u i l d e r ( java . lang . S t r i n g ) ” ) ;
LDC(S( ” ” ) ) ;
INVOKEVIRTUAL( ” java . lang . S t r i n g B u i l d e r ” , ” append ” , ” java . lang . S t r i n g B u i l d e r ( java . lang . S t r i n g ) ” ) ;
INVOKEVIRTUAL( ” java . lang . S t r i n g B u i l d e r ” , ” t o S t r i n g ” , ” java . lang . S t r i n g ( ) ” ) ;
INVOKEINTERFACE( ” org . objectweb . dsrg . connector . Element ” , ” getElement In fo ” , ” java . lang . S t r i n g ( java . lang . S t r i n g ) ” ) ;
INVOKEVIRTUAL( ” java . lang . S t r i n g B u i l d e r ” , ” append ” , ” java . lang . S t r i n g B u i l d e r ( java . lang . S t r i n g ) ” ) ;
POP( ) ;
LABEL ( 5 ) ;
LINE ( 7 7 ) ;

$end$
LABEL ( 6 ) ;
LINE ( 7 8 ) ;
ALOAD( 2 ) ;
INVOKEVIRTUAL( ” java . lang . S t r i n g B u i l d e r ” , ” t o S t r i n g ” , ” java . lang . S t r i n g ( ) ” ) ;
ARETURN( ) ;

}

public java . lang . Object lookupElPor t ( java . lang . S t r i n g arg0 ) throws org . objectweb . dsrg . connector . ElementLinkExcept ion {

LABEL ( 0 ) ;
LINE ( 8 3 ) ;

$r fo reach (PORT i n ${por t s . po r t ( type=PROVIDED)} ) $
LABEL ( 1 ) ;
LINE ( 8 4 ) ;
LDC(S( ” ${PORT. name} ” ) ) ;
ALOAD( 1 ) ;
INVOKEVIRTUAL( ” java . lang . S t r i n g ” , ” equals ” , ” boolean ( java . lang . Object ) ” ) ;
IFEQ ( 2 ) ;
LABEL ( 3 ) ;
LINE ( 8 6 ) ;
ALOAD( 0 ) ;
GETFIELD( ” ${classname} ” , ” subElements ” , ” org . objectweb . dsrg . connector . Element [ ] ” ) ;
LDC( I ( ${e l [PORT. boundedTo . element . name ]} ) ) ;
AALOAD ( ) ;
CHECKCAST( ” org . objectweb . dsrg . connector . ElementLocalServer ” ) ;
LDC(S( ” ${PORT. boundedTo . po r t} ” ) ) ;
INVOKEINTERFACE( ” org . objectweb . dsrg . connector . ElementLocalServer ” , ” lookupElPor t ” ,

” java . lang . Object ( java . lang . S t r i n g ) ” ) ;
ASTORE( 2 ) ;
LABEL ( 4 ) ;
LINE ( 8 7 ) ;
ALOAD( 0 ) ;
GETFIELD( ” ${classname} ” , ” isTopLevel ” , ” boolean ” ) ;
IFEQ ( 5 ) ;
LABEL ( 6 ) ;
LINE ( 8 9 ) ;
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ALOAD( 0 ) ;
GETFIELD( ” ${classname} ” , ”dcm” , ” org . objectweb . dsrg . connector . mgr . DockConnectorManager ” ) ;
ALOAD( 0 ) ;
GETFIELD( ” ${classname} ” , ” pa ren tUn i t ” , ” org . objectweb . dsrg . connector . ConnectorUni t ” ) ;
ALOAD( 1 ) ;
ALOAD( 2 ) ;
INVOKEINTERFACE( ” org . objectweb . dsrg . connector . mgr . DockConnectorManager ” , ” re reg is te rConnec torUn i tReference ” ,

” vo id ( org . objectweb . dsrg . connector . ConnectorUnit , java . lang . S t r ing , java . lang . Object ) ” ) ;
LABEL ( 5 ) ;
LINE ( 9 3 ) ;
ALOAD( 2 ) ;
ARETURN( ) ;
LABEL ( 2 ) ;
LINE ( 9 7 ) ;

$ recpo in t$
LABEL ( 7 ) ;
LINE ( 9 8 ) ;

$ f i n a l $
LABEL ( 8 ) ;
LINE ( 1 0 1 ) ;
NEW( ” org . objectweb . dsrg . connector . ElementLinkExcept ion ” ) ;
DUP( ) ;
NEW( ” java . lang . S t r i n g B u i l d e r ” ) ;
DUP( ) ;
INVOKESPECIAL( ” java . lang . S t r i n g B u i l d e r ” , ”<i n i t >” , ” vo id ( ) ” ) ;
LDC(S( ” I n v a l i d provided po r t ’ ” ) ) ;
INVOKEVIRTUAL( ” java . lang . S t r i n g B u i l d e r ” , ” append ” , ” java . lang . S t r i n g B u i l d e r ( java . lang . S t r i n g ) ” ) ;
ALOAD( 1 ) ;
INVOKEVIRTUAL( ” java . lang . S t r i n g B u i l d e r ” , ” append ” , ” java . lang . S t r i n g B u i l d e r ( java . lang . S t r i n g ) ” ) ;
LDC(S( ” ’ . ” ) ) ;
INVOKEVIRTUAL( ” java . lang . S t r i n g B u i l d e r ” , ” append ” , ” java . lang . S t r i n g B u i l d e r ( java . lang . S t r i n g ) ” ) ;
INVOKEVIRTUAL( ” java . lang . S t r i n g B u i l d e r ” , ” t o S t r i n g ” , ” java . lang . S t r i n g ( ) ” ) ;
INVOKESPECIAL( ” org . objectweb . dsrg . connector . ElementLinkExcept ion ” , ”<i n i t >” , ” vo id ( java . lang . S t r i n g ) ” ) ;
ATHROW( ) ;

$end$
}

public void b indE lPor t ( java . lang . S t r i n g arg0 , java . lang . Object arg1 )
throws org . objectweb . dsrg . connector . ElementLinkExcept ion {

LABEL ( 0 ) ;
LINE ( 1 0 9 ) ;

$r fo reach (PORT i n ${por t s . po r t ( type=REQUIRED)} ) $
LABEL ( 1 ) ;
LINE ( 1 1 0 ) ;
LDC(S( ” ${PORT. name} ” ) ) ;
ALOAD( 1 ) ;
INVOKEVIRTUAL( ” java . lang . S t r i n g ” , ” equals ” , ” boolean ( java . lang . Object ) ” ) ;
IFEQ ( 2 ) ;
LABEL ( 3 ) ;
LINE ( 1 1 2 ) ;

$foreach (BELEMENT i n ${PORT. boundedTo})$
LABEL ( 4 ) ;
LINE ( 1 1 3 ) ;
ALOAD( 0 ) ;
GETFIELD( ” ${classname} ” , ” subElements ” , ” org . objectweb . dsrg . connector . Element [ ] ” ) ;
LDC( I ( ${e l [BELEMENT. element . name ]} ) ) ;
AALOAD ( ) ;
CHECKCAST( ” org . objectweb . dsrg . connector . E lementLoca lCl ient ” ) ;
LDC(S( ” ${BELEMENT. po r t} ” ) ) ;
ALOAD( 2 ) ;
INVOKEINTERFACE( ” org . objectweb . dsrg . connector . E lementLoca lCl ient ” , ” b indE lPor t ” ,

” vo id ( java . lang . S t r ing , java . lang . Object ) ” ) ;
LABEL ( 5 ) ;
LINE ( 1 1 4 ) ;

$end$
GOTO( 6 ) ;
LABEL ( 2 ) ;
LINE ( 1 1 7 ) ;

$ recpo in t$
LABEL ( 6 ) ;
LINE ( 1 1 8 ) ;

$ f i n a l $
LABEL ( 7 ) ;
LINE ( 1 2 1 ) ;
NEW( ” org . objectweb . dsrg . connector . ElementLinkExcept ion ” ) ;
DUP( ) ;
NEW( ” java . lang . S t r i n g B u i l d e r ” ) ;
DUP( ) ;
INVOKESPECIAL( ” java . lang . S t r i n g B u i l d e r ” , ”<i n i t >” , ” vo id ( ) ” ) ;
LDC(S( ” I n v a l i d requ i red po r t ’ ” ) ) ;
INVOKEVIRTUAL( ” java . lang . S t r i n g B u i l d e r ” , ” append ” , ” java . lang . S t r i n g B u i l d e r ( java . lang . S t r i n g ) ” ) ;
ALOAD( 1 ) ;
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INVOKEVIRTUAL( ” java . lang . S t r i n g B u i l d e r ” , ” append ” , ” java . lang . S t r i n g B u i l d e r ( java . lang . S t r i n g ) ” ) ;
LDC(S( ” ’ . ” ) ) ;
INVOKEVIRTUAL( ” java . lang . S t r i n g B u i l d e r ” , ” append ” , ” java . lang . S t r i n g B u i l d e r ( java . lang . S t r i n g ) ” ) ;
INVOKEVIRTUAL( ” java . lang . S t r i n g B u i l d e r ” , ” t o S t r i n g ” , ” java . lang . S t r i n g ( ) ” ) ;
INVOKESPECIAL( ” org . objectweb . dsrg . connector . ElementLinkExcept ion ” , ”<i n i t >” , ” vo id ( java . lang . S t r i n g ) ” ) ;
ATHROW( ) ;

$end$
}

public void unbindElPor t ( java . lang . S t r i n g arg0 ) throws org . objectweb . dsrg . connector . ElementLinkExcept ion {

LABEL ( 0 ) ;
LINE ( 1 2 9 ) ;

$r fo reach (PORT i n ${por t s . po r t ( type=REQUIRED)} ) $
LABEL ( 1 ) ;
LINE ( 1 3 0 ) ;
LDC(S( ” ${PORT. name} ” ) ) ;
ALOAD( 1 ) ;
INVOKEVIRTUAL( ” java . lang . S t r i n g ” , ” equals ” , ” boolean ( java . lang . Object ) ” ) ;
IFEQ ( 2 ) ;
LABEL ( 3 ) ;
LINE ( 1 3 2 ) ;

$foreach (BELEMENT i n ${PORT. boundedTo})$
LABEL ( 4 ) ;
LINE ( 1 3 3 ) ;
ALOAD( 0 ) ;
GETFIELD( ” ${classname} ” , ” subElements ” , ” org . objectweb . dsrg . connector . Element [ ] ” ) ;
LDC( I ( ${e l [BELEMENT. element . name ]} ) ) ;
AALOAD ( ) ;
CHECKCAST( ” org . objectweb . dsrg . connector . E lementLoca lCl ient ” ) ;
LDC(S( ” ${BELEMENT. po r t} ” ) ) ;
INVOKEINTERFACE( ” org . objectweb . dsrg . connector . E lementLoca lCl ient ” , ” unb indElPor t ” , ” vo id ( java . lang . S t r i n g ) ” ) ;
LABEL ( 5 ) ;
LINE ( 1 3 4 ) ;

$end$
GOTO( 6 ) ;
LABEL ( 2 ) ;
LINE ( 1 3 7 ) ;

$ recpo in t$
LABEL ( 6 ) ;
LINE ( 1 3 8 ) ;

$ f i n a l $
LABEL ( 7 ) ;
LINE ( 1 4 1 ) ;
NEW( ” org . objectweb . dsrg . connector . ElementLinkExcept ion ” ) ;
DUP( ) ;
NEW( ” java . lang . S t r i n g B u i l d e r ” ) ;
DUP( ) ;
INVOKESPECIAL( ” java . lang . S t r i n g B u i l d e r ” , ”<i n i t >” , ” vo id ( ) ” ) ;
LDC(S( ” I n v a l i d requ i red po r t ’ ” ) ) ;
INVOKEVIRTUAL( ” java . lang . S t r i n g B u i l d e r ” , ” append ” , ” java . lang . S t r i n g B u i l d e r ( java . lang . S t r i n g ) ” ) ;
ALOAD( 1 ) ;
INVOKEVIRTUAL( ” java . lang . S t r i n g B u i l d e r ” , ” append ” , ” java . lang . S t r i n g B u i l d e r ( java . lang . S t r i n g ) ” ) ;
LDC(S( ” ’ . ” ) ) ;
INVOKEVIRTUAL( ” java . lang . S t r i n g B u i l d e r ” , ” append ” , ” java . lang . S t r i n g B u i l d e r ( java . lang . S t r i n g ) ” ) ;
INVOKEVIRTUAL( ” java . lang . S t r i n g B u i l d e r ” , ” t o S t r i n g ” , ” java . lang . S t r i n g ( ) ” ) ;
INVOKESPECIAL( ” org . objectweb . dsrg . connector . ElementLinkExcept ion ” , ”<i n i t >” , ” vo id ( java . lang . S t r i n g ) ” ) ;
ATHROW( ) ;

$end$
}

public org . objectweb . dsrg . connector . RemoteRefBundle lookupElRemotePort ( java . lang . S t r i n g arg0 )
throws org . objectweb . dsrg . connector . ElementLinkExcept ion {

LABEL ( 0 ) ;
LINE ( 1 4 9 ) ;
NEW( ” org . objectweb . dsrg . connector . RemoteRefBundle ” ) ;
DUP( ) ;
INVOKESPECIAL( ” org . objectweb . dsrg . connector . RemoteRefBundle ” , ”<i n i t >” , ” vo id ( ) ” ) ;
ASTORE( 2 ) ;
LABEL ( 1 ) ;
LINE ( 1 5 0 ) ;

$r fo reach (PORT i n ${por t s . po r t ( type=REMOTE)} ) $
LABEL ( 2 ) ;
LINE ( 1 5 1 ) ;
LDC(S( ” ${PORT. name} ” ) ) ;
ALOAD( 1 ) ;
INVOKEVIRTUAL( ” java . lang . S t r i n g ” , ” equals ” , ” boolean ( java . lang . Object ) ” ) ;
IFEQ ( 3 ) ;
LABEL ( 4 ) ;
LINE ( 1 5 3 ) ;

$foreach (BELEMENT i n ${PORT. boundedTo})$
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LABEL ( 5 ) ;
LINE ( 1 5 4 ) ;
ALOAD( 0 ) ;
GETFIELD( ” ${classname} ” , ” subElements ” , ” org . objectweb . dsrg . connector . Element [ ] ” ) ;
LDC( I ( ${e l [BELEMENT. element . name ]} ) ) ;
AALOAD ( ) ;
INSTANCEOF( ” org . objectweb . dsrg . connector . ElementRemoteServer ” ) ;
IFEQ ( 6 ) ;
LABEL ( 7 ) ;
LINE ( 1 5 6 ) ;
ALOAD( 2 ) ;
ALOAD( 0 ) ;
GETFIELD( ” ${classname} ” , ” subElements ” , ” org . objectweb . dsrg . connector . Element [ ] ” ) ;
LDC( I ( ${e l [BELEMENT. element . name ]} ) ) ;
AALOAD ( ) ;
CHECKCAST( ” org . objectweb . dsrg . connector . ElementRemoteServer ” ) ;
LDC(S( ” ${BELEMENT. po r t} ” ) ) ;
INVOKEINTERFACE( ” org . objectweb . dsrg . connector . ElementRemoteServer ” , ” lookupElRemotePort ” ,

” org . objectweb . dsrg . connector . RemoteRefBundle ( java . lang . S t r i n g ) ” ) ;
INVOKEVIRTUAL( ” org . objectweb . dsrg . connector . RemoteRefBundle ” , ” addRefBundle ” ,

” vo id ( org . objectweb . dsrg . connector . RemoteRefBundle ) ” ) ;
LABEL ( 6 ) ;
LINE ( 1 5 8 ) ;

$end$
GOTO( 8 ) ;
LABEL ( 3 ) ;
LINE ( 1 6 1 ) ;

$ recpo in t$
LABEL ( 8 ) ;
LINE ( 1 6 2 ) ;

$ f i n a l $
LABEL ( 9 ) ;
LINE ( 1 6 5 ) ;
NEW( ” org . objectweb . dsrg . connector . ElementLinkExcept ion ” ) ;
DUP( ) ;
NEW( ” java . lang . S t r i n g B u i l d e r ” ) ;
DUP( ) ;
INVOKESPECIAL( ” java . lang . S t r i n g B u i l d e r ” , ”<i n i t >” , ” vo id ( ) ” ) ;
LDC(S( ” I n v a l i d remote po r t ’ ” ) ) ;
INVOKEVIRTUAL( ” java . lang . S t r i n g B u i l d e r ” , ” append ” , ” java . lang . S t r i n g B u i l d e r ( java . lang . S t r i n g ) ” ) ;
ALOAD( 1 ) ;
INVOKEVIRTUAL( ” java . lang . S t r i n g B u i l d e r ” , ” append ” , ” java . lang . S t r i n g B u i l d e r ( java . lang . S t r i n g ) ” ) ;
LDC(S( ” ’ . ” ) ) ;
INVOKEVIRTUAL( ” java . lang . S t r i n g B u i l d e r ” , ” append ” , ” java . lang . S t r i n g B u i l d e r ( java . lang . S t r i n g ) ” ) ;
INVOKEVIRTUAL( ” java . lang . S t r i n g B u i l d e r ” , ” t o S t r i n g ” , ” java . lang . S t r i n g ( ) ” ) ;
INVOKESPECIAL( ” org . objectweb . dsrg . connector . ElementLinkExcept ion ” , ”<i n i t >” , ” vo id ( java . lang . S t r i n g ) ” ) ;
ATHROW( ) ;

$end$
}

public java . lang . S t r i n g [ ] l i s tE lRemotePor ts ( ) {

LABEL ( 0 ) ;
LINE ( 1 7 7 ) ;
LDC( I ( ${por t s . po r t ( type=REMOTE)# count } ) ) ;
ANEWARRAY( ” java . lang . S t r i n g ” ) ;
ASTORE( 1 ) ;
LABEL ( 1 ) ;
LINE ( 1 7 8 ) ;

$set i = 0$
LABEL ( 2 ) ;
LINE ( 1 7 9 ) ;

$foreach (REMOTE PORT i n ${por t s . po r t ( type=REMOTE)} ) $
LABEL ( 3 ) ;
LINE ( 1 8 0 ) ;
ALOAD( 1 ) ;
LDC( I ( ${ i } ) ) ;
LDC(S( ” ${REMOTE PORT. name} ” ) ) ;
AASTORE ( ) ;
LABEL ( 4 ) ;
LINE ( 1 8 1 ) ;

$set i = i + 1$
LABEL ( 5 ) ;
LINE ( 1 8 2 ) ;

$end$
LABEL ( 6 ) ;
LINE ( 1 8 3 ) ;
ALOAD( 1 ) ;
ARETURN( ) ;

}

public void bindElRemotePort ( java . lang . S t r i n g arg0 , org . objectweb . dsrg . connector . RemoteRefBundle arg1 )
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throws org . objectweb . dsrg . connector . ElementLinkExcept ion {

LABEL ( 0 ) ;
LINE ( 1 8 8 ) ;

$r fo reach (PORT i n ${por t s . po r t ( type=REMOTE)} ) $
LABEL ( 1 ) ;
LINE ( 1 8 9 ) ;
LDC(S( ” ${PORT. name} ” ) ) ;
ALOAD( 1 ) ;
INVOKEVIRTUAL( ” java . lang . S t r i n g ” , ” equals ” , ” boolean ( java . lang . Object ) ” ) ;
IFEQ ( 2 ) ;
LABEL ( 3 ) ;
LINE ( 1 9 1 ) ;

$foreach (BELEMENT i n ${PORT. boundedTo})$
LABEL ( 4 ) ;
LINE ( 1 9 2 ) ;
ALOAD( 0 ) ;
GETFIELD( ” ${classname} ” , ” subElements ” , ” org . objectweb . dsrg . connector . Element [ ] ” ) ;
LDC( I ( ${e l [BELEMENT. element . name ]} ) ) ;
AALOAD ( ) ;
INSTANCEOF( ” org . objectweb . dsrg . connector . ElementRemoteClient ” ) ;
IFEQ ( 5 ) ;
LABEL ( 6 ) ;
LINE ( 1 9 4 ) ;
ALOAD( 0 ) ;
GETFIELD( ” ${classname} ” , ” subElements ” , ” org . objectweb . dsrg . connector . Element [ ] ” ) ;
LDC( I ( ${e l [BELEMENT. element . name ]} ) ) ;
AALOAD ( ) ;
CHECKCAST( ” org . objectweb . dsrg . connector . ElementRemoteClient ” ) ;
LDC(S( ” ${BELEMENT. po r t} ” ) ) ;
ALOAD( 2 ) ;
INVOKEINTERFACE( ” org . objectweb . dsrg . connector . ElementRemoteClient ” , ” bindElRemotePort ” ,

” vo id ( java . lang . S t r ing , org . objectweb . dsrg . connector . RemoteRefBundle ) ” ) ;
LABEL ( 5 ) ;
LINE ( 1 9 6 ) ;

$end$
LABEL ( 7 ) ;
LINE ( 1 9 7 ) ;
ALOAD( 0 ) ;
GETFIELD( ” ${classname} ” , ” remoteTargetRefs ” , ” org . objectweb . dsrg . connector . RemoteRefBundle [ ] ” ) ;
LDC( I ( ${ r e f [PORT. name ]} ) ) ;
ALOAD( 2 ) ;
AASTORE ( ) ;
GOTO( 8 ) ;
LABEL ( 2 ) ;
LINE ( 2 0 0 ) ;

$ recpo in t$
LABEL ( 8 ) ;
LINE ( 2 0 1 ) ;

$ f i n a l $
LABEL ( 9 ) ;
LINE ( 2 0 4 ) ;
NEW( ” org . objectweb . dsrg . connector . ElementLinkExcept ion ” ) ;
DUP( ) ;
NEW( ” java . lang . S t r i n g B u i l d e r ” ) ;
DUP( ) ;
INVOKESPECIAL( ” java . lang . S t r i n g B u i l d e r ” , ”<i n i t >” , ” vo id ( ) ” ) ;
LDC(S( ” I n v a l i d remote po r t ’ ” ) ) ;
INVOKEVIRTUAL( ” java . lang . S t r i n g B u i l d e r ” , ” append ” , ” java . lang . S t r i n g B u i l d e r ( java . lang . S t r i n g ) ” ) ;
ALOAD( 1 ) ;
INVOKEVIRTUAL( ” java . lang . S t r i n g B u i l d e r ” , ” append ” , ” java . lang . S t r i n g B u i l d e r ( java . lang . S t r i n g ) ” ) ;
LDC(S( ” ’ . ” ) ) ;
INVOKEVIRTUAL( ” java . lang . S t r i n g B u i l d e r ” , ” append ” , ” java . lang . S t r i n g B u i l d e r ( java . lang . S t r i n g ) ” ) ;
INVOKEVIRTUAL( ” java . lang . S t r i n g B u i l d e r ” , ” t o S t r i n g ” , ” java . lang . S t r i n g ( ) ” ) ;
INVOKESPECIAL( ” org . objectweb . dsrg . connector . ElementLinkExcept ion ” , ”<i n i t >” , ” vo id ( java . lang . S t r i n g ) ” ) ;
ATHROW( ) ;

$end$
}

public void unbindElRemotePort ( java . lang . S t r i n g arg0 ) throws org . objectweb . dsrg . connector . ElementLinkExcept ion {

LABEL ( 0 ) ;
LINE ( 2 1 2 ) ;

$r fo reach (PORT i n ${por t s . po r t ( type=REMOTE)} ) $
LABEL ( 1 ) ;
LINE ( 2 1 3 ) ;
LDC(S( ” ${PORT. name} ” ) ) ;
ALOAD( 1 ) ;
INVOKEVIRTUAL( ” java . lang . S t r i n g ” , ” equals ” , ” boolean ( java . lang . Object ) ” ) ;
IFEQ ( 2 ) ;
LABEL ( 3 ) ;
LINE ( 2 1 5 ) ;

$foreach (BELEMENT i n ${PORT. boundedTo})$
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LABEL ( 4 ) ;
LINE ( 2 1 6 ) ;
ALOAD( 0 ) ;
GETFIELD( ” ${classname} ” , ” subElements ” , ” org . objectweb . dsrg . connector . Element [ ] ” ) ;
LDC( I ( ${e l [BELEMENT. element . name ]} ) ) ;
AALOAD ( ) ;
INSTANCEOF( ” org . objectweb . dsrg . connector . ElementRemoteClient ” ) ;
IFEQ ( 5 ) ;
LABEL ( 6 ) ;
LINE ( 2 1 8 ) ;
ALOAD( 0 ) ;
GETFIELD( ” ${classname} ” , ” subElements ” , ” org . objectweb . dsrg . connector . Element [ ] ” ) ;
LDC( I ( ${e l [BELEMENT. element . name ]} ) ) ;
AALOAD ( ) ;
CHECKCAST( ” org . objectweb . dsrg . connector . ElementRemoteClient ” ) ;
LDC(S( ” ${BELEMENT. po r t} ” ) ) ;
INVOKEINTERFACE( ” org . objectweb . dsrg . connector . ElementRemoteClient ” , ” unbindElRemotePort ” ,

” vo id ( java . lang . S t r i n g ) ” ) ;
LABEL ( 5 ) ;
LINE ( 2 2 0 ) ;

$end$
LABEL ( 7 ) ;
LINE ( 2 2 1 ) ;
ALOAD( 0 ) ;
GETFIELD( ” ${classname} ” , ” remoteTargetRefs ” , ” org . objectweb . dsrg . connector . RemoteRefBundle [ ] ” ) ;
LDC( I ( ${ r e f [PORT. name ]} ) ) ;
ACONST NULL ( ) ;
AASTORE ( ) ;
GOTO( 8 ) ;
LABEL ( 2 ) ;
LINE ( 2 2 4 ) ;

$ recpo in t$
LABEL ( 8 ) ;
LINE ( 2 2 5 ) ;

$ f i n a l $
LABEL ( 9 ) ;
LINE ( 2 2 8 ) ;
NEW( ” org . objectweb . dsrg . connector . ElementLinkExcept ion ” ) ;
DUP( ) ;
NEW( ” java . lang . S t r i n g B u i l d e r ” ) ;
DUP( ) ;
INVOKESPECIAL( ” java . lang . S t r i n g B u i l d e r ” , ”<i n i t >” , ” vo id ( ) ” ) ;
LDC(S( ” I n v a l i d remote po r t ’ ” ) ) ;
INVOKEVIRTUAL( ” java . lang . S t r i n g B u i l d e r ” , ” append ” , ” java . lang . S t r i n g B u i l d e r ( java . lang . S t r i n g ) ” ) ;
ALOAD( 1 ) ;
INVOKEVIRTUAL( ” java . lang . S t r i n g B u i l d e r ” , ” append ” , ” java . lang . S t r i n g B u i l d e r ( java . lang . S t r i n g ) ” ) ;
LDC(S( ” ’ . ” ) ) ;
INVOKEVIRTUAL( ” java . lang . S t r i n g B u i l d e r ” , ” append ” , ” java . lang . S t r i n g B u i l d e r ( java . lang . S t r i n g ) ” ) ;
INVOKEVIRTUAL( ” java . lang . S t r i n g B u i l d e r ” , ” t o S t r i n g ” , ” java . lang . S t r i n g ( ) ” ) ;
INVOKESPECIAL( ” org . objectweb . dsrg . connector . ElementLinkExcept ion ” , ”<i n i t >” , ” vo id ( java . lang . S t r i n g ) ” ) ;
ATHROW( ) ;

$end$
}

public org . objectweb . dsrg . connector . RemoteRefBundle getElRemoteTarget ( java . lang . S t r i n g arg0 )
throws org . objectweb . dsrg . connector . ElementLinkExcept ion {

LABEL ( 0 ) ;
LINE ( 2 3 6 ) ;

$r fo reach (PORT i n ${por t s . po r t ( type=REMOTE)} ) $
LABEL ( 1 ) ;
LINE ( 2 3 7 ) ;
LDC(S( ” ${PORT. name} ” ) ) ;
ALOAD( 1 ) ;
INVOKEVIRTUAL( ” java . lang . S t r i n g ” , ” equals ” , ” boolean ( java . lang . Object ) ” ) ;
IFEQ ( 2 ) ;
LABEL ( 3 ) ;
LINE ( 2 4 1 ) ;
ALOAD( 0 ) ;
GETFIELD( ” ${classname} ” , ” remoteTargetRefs ” , ” org . objectweb . dsrg . connector . RemoteRefBundle [ ] ” ) ;
LDC( I ( ${ r e f [PORT. name ]} ) ) ;
AALOAD ( ) ;
ARETURN( ) ;
LABEL ( 2 ) ;
LINE ( 2 4 5 ) ;

$ recpo in t$
LABEL ( 4 ) ;
LINE ( 2 4 6 ) ;

$ f i n a l $
LABEL ( 5 ) ;
LINE ( 2 4 9 ) ;
NEW( ” org . objectweb . dsrg . connector . ElementLinkExcept ion ” ) ;
DUP( ) ;
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NEW( ” java . lang . S t r i n g B u i l d e r ” ) ;
DUP( ) ;
INVOKESPECIAL( ” java . lang . S t r i n g B u i l d e r ” , ”<i n i t >” , ” vo id ( ) ” ) ;
LDC(S( ” I n v a l i d remote po r t ’ ” ) ) ;
INVOKEVIRTUAL( ” java . lang . S t r i n g B u i l d e r ” , ” append ” , ” java . lang . S t r i n g B u i l d e r ( java . lang . S t r i n g ) ” ) ;
ALOAD( 1 ) ;
INVOKEVIRTUAL( ” java . lang . S t r i n g B u i l d e r ” , ” append ” , ” java . lang . S t r i n g B u i l d e r ( java . lang . S t r i n g ) ” ) ;
LDC(S( ” ’ . ” ) ) ;
INVOKEVIRTUAL( ” java . lang . S t r i n g B u i l d e r ” , ” append ” , ” java . lang . S t r i n g B u i l d e r ( java . lang . S t r i n g ) ” ) ;
INVOKEVIRTUAL( ” java . lang . S t r i n g B u i l d e r ” , ” t o S t r i n g ” , ” java . lang . S t r i n g ( ) ” ) ;
INVOKESPECIAL( ” org . objectweb . dsrg . connector . ElementLinkExcept ion ” , ”<i n i t >” , ” vo id ( java . lang . S t r i n g ) ” ) ;
ATHROW( ) ;

$end$
}

public f i n a l void se tE lRecon f igura t ionHand le r ( org . objectweb . dsrg . connector . Reconf igura t ionHandler arg0 ) {

LABEL ( 0 ) ;
LINE ( 2 5 7 ) ;
ALOAD( 0 ) ;
ALOAD( 1 ) ;
PUTFIELD( ” ${classname} ” , ” r econ f i gu ra t i onHand le r ” , ” org . objectweb . dsrg . connector . Reconf igura t ionHandler ” ) ;
LABEL ( 1 ) ;
LINE ( 2 5 8 ) ;
RETURN( ) ;

}

public void i n v a l i d a t e E l P o r t ( org . objectweb . dsrg . connector . ElementLocalServer arg0 , java . lang . S t r i n g arg1 ) {

LABEL ( 0 ) ;
LINE ( 2 6 1 ) ;
RETURN( ) ;

}

public void i nva l ida teE lRemotePor t ( org . objectweb . dsrg . connector . ElementRemoteServer arg0 , java . lang . S t r i n g arg1 )
throws org . objectweb . dsrg . connector . Reconf igura t ionExcept ion {

LABEL ( 0 ) ;
LINE ( 2 6 5 ) ;
NEW( ” org . objectweb . dsrg . connector . Reconf igura t ionExcept ion ” ) ;
DUP( ) ;
LDC(S( ” Reconf igura t ion not supported on remote por ts , ye t ! ” ) ) ;
INVOKESPECIAL( ” org . objectweb . dsrg . connector . Reconf igura t ionExcept ion ” , ”<i n i t >” , ” vo id ( java . lang . S t r i n g ) ” ) ;
ATHROW( ) ;

}

/∗∗∗∗∗∗ METHOD TEMPLATES ∗∗∗∗∗∗ /

/∗∗∗∗∗∗ REMAINING INTERFACES ∗∗∗∗∗∗ /

implements inter face org . objectweb . dsrg . connector . ElementLocalServer {
}

implements inter face org . objectweb . dsrg . connector . E lementLoca lCl ient {
}

implements inter face org . objectweb . dsrg . connector . ElementRemoteServer {
}

implements inter face org . objectweb . dsrg . connector . ElementRemoteClient {
}

implements inter face org . objectweb . dsrg . connector . Reconf igurableElement {
}

implements inter face org . objectweb . dsrg . connector . Reconf igura t ionHandler {
}

}
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A.5 Original element descriptor

Element code templates are not the primary information about the element. The

primary information is the element XML descriptor stored in the element reposi-

tory. The descriptor defines actions that must be processed to generate the element.

The following example is an original element descriptor using the template from

Section A.1

<?xml vers ion= ” 1.0 ” encoding= ”UTF−8” ?>

<element name= ” s e r v e r u n i t ” type= ” r p c s e r v e r u n i t ” impl−class= ” ServerUni t ”>

<a r c h i t e c t u r e cost= ” 0 ”>
<i n s t name= ” ske le ton ” type= ” ske le ton ” c a r d i n a l i t y = ” m u l t i p l e ” />
<b ind ing por t1= ” l i n e ” element2= ” ske le ton ” por t2= ” l i n e ” />
<b ind ing element1= ” ske le ton ” por t1= ” c a l l ” por t2= ” c a l l ” />

</ a r c h i t e c t u r e>

<nfp−dec la ra t i ons>

<nfp−mapping name= ” communicat ion sty le ” value= ” method invocat ion ” />
</nfp−dec la ra t i ons>

<s c r i p t>
<command ac t i on = ” j i m p l ”>

<param name= ” generator ” value= ” org . objectweb . dsrg . congen . elemgen . generators . s t ra tego . StrategoGenerator ” />
<param name= ” c lass ” value= ” ServerUni t ” />
<param name= ” template ” value= ” e l l ang / compound default . e l l ang ” />

</command>

<command ac t i on = ” javac ”>
<param name= ” c lass ” value= ” ServerUni t ” />

</command>

<command ac t i on = ” de le te ”>
<param name= ” source ” value= ” ServerUni t ” />

</command>

</ s c r i p t>

</element>

A.6 Redirected element descriptor

As soon as the ElLang-J template are precompiled the descriptor is redirected

to the precompiled template and the compiler action is changed from the original

javac to the new javacbc. The following example shows the redirected version of the

descriptor from Section A.5.

<?xml vers ion= ” 1.0 ” encoding= ”UTF−8”?>
<element name= ” s e r v e r u n i t ” type= ” r p c s e r v e r u n i t ” impl−class= ” ServerUni t ”>

<a r c h i t e c t u r e cost= ” 0 ”>
<i n s t name= ” ske le ton ” type= ” ske le ton ” c a r d i n a l i t y = ” m u l t i p l e ” />
<b ind ing por t1= ” l i n e ” element2= ” ske le ton ” por t2= ” l i n e ” />
<b ind ing element1= ” ske le ton ” por t1= ” c a l l ” por t2= ” c a l l ” />

</ a r c h i t e c t u r e>

<nfp−dec la ra t i ons>

<nfp−mapping name= ” communicat ion sty le ” value= ” method invocat ion ” />
</nfp−dec la ra t i ons>

<s c r i p t>
<command ac t i on = ” j i m p l ”>

<param name= ” generator ” value= ” org . objectweb . dsrg . congen . elemgen . generators . s t ra tego . StrategoGenerator ” />
<param name= ” c lass ” value= ” ServerUni t ” />
<param name= ” template ” value= ” e l l ang / compound default . e l l ang . bc ” />

</command>
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<command ac t i on = ” javacbc ”>
<param name= ” c lass ” value= ” ServerUni t ” />

</command>

<command ac t i on = ” de le te ”>
<param name= ” source ” value= ” ServerUni t ” />

</command>

</ s c r i p t>

</element>



Appendix B

Content of attached CD-ROM

This work is accompanied by the CD-ROM containing source code and binaries of

the prototype implementation. The content of the CD-ROM is structured as follows:

/README.TXT

Description of the CD-ROM content.

/thesis/

Electronic version of this document.

/src/java/

Newly added or modified source code of the Java part of the prototype imple-

mentation.

/src/stratego/

Newly added or modified source code of the Stratego part of the prototype

implementation.

/src/prototype.congen.full/

Full prototype implementation.

/examples/

Examples of the precompiled templates written in the ElLang-J-BC lan-

guage.

/prereqs/

Software prerequisites of the prototype implementation: StrategoXT v0.16,

ATerm library v2.4.2, SDF2-bundle v2.3.3, Java-front v0.8.
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