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Abstrakt: Insulinový hexamer je alosterický protein, který můžeme nalézt ve třech 

různých konformacích (T6, T3R3, R6). Tvorbu a konformaci inzulinového hexameru 

můžeme ovlivnit například vazbou iontů, či takzvaných fenolických ligandů. V této práci 

jsem zkoumal inzulinové hexamery v různých konformacích za pomoci molekulové 

dynamiky. Studie je rozdělena na dvě části. V první části zkoumám efekt vazby kationtů  

(Zn2+, Ca2+, K+ and Na+) na T6 a T3R3 inzulinové hexamery. V druhé části se zaměřím 

na neurotransmitery serotonin a dopamin, které by mohly sloužit jako fenolické ligandy 

v in vivo podmínkách. Výsledky první části výzkumu ukazují, že ionty s vysokou 

nábojovou hustotou (Zn2+, Ca2+) jsou mnohem více lokalizované v kavitě, která se 

nachází uprostřed hexameru. Toto vede ke zpomalení difuze vodních molekul, což se 

projeví také tím, že uvnitř se nachází vždy pouze jeden kation. Monovalentní kationty 

tento efekt nemají. V druhé části práce ukáži, že z obou uvažovaných neurotransmiterů 

je pouze serotonin slibným fenolickým ligandem. Dále jsem pro neurotransmitery našel 

nová, dosud neznámá vazebná místa. Dopamin se na tyto vazebná místa váže nejsilněji. 

Nakonec porovnám všechny teoretické výsledky s experimentální prací našich 

spolupracovníků J. Jiráčka et al. a M. Brzozowskeho et al. 

 

Klíčová slova: molekulová dynamika, empirické potenciály, insulinový hexamer, 

fenolický ligand, fenol, neurotransmitery, dopamin, serotonin, ionty, zinek, vápník 

 



Title: Computer modeling of ion protein interactions: Allosteric effects of phenolic 

ligands and ions on insulin hexamer structure 

Author: Vladimír Palivec 

Department: Department of Physical and Macromolecular Chemistry Faculty of Science 

UK 

Advisor: prof. RNDr. Pavel Jungwirth, DSc., IOCB AS CR, v.v.i. 

Advisor’s email address: pavel.jungwirth@uochb.cas.cz 

 

Abstract: Insulin hexamer is an allosteric protein capable of undergoing conformational 

changes between three states: T6, T3R3, and R6. Transitions between them, as well as 

the formation of insulin hexamers, are mediated through binding of phenolic ligands or 

ions. This thesis presents a molecular dynamics study of allosteric behavior of insulin 

using empirical force fields. Two effects are closely inspected – cation (Zn2+, Ca2+, K+, 

and Na+) binding to the insulin hexamers and a possible binding of two neurotransmitters 

– dopamine and serotonin to the phenolic pocket. The results show that high charge 

density cations (Zn2+ and Ca2+) are mostly localized in the B13 glutamate cavity, slow-

down diffusion, while preventing other cations from entering. In contrast, low charge 

density cations (Na+ and K+) do not have this effect. Concerning neurotransmitters, 

dopamine does not bind to the phenolic pocket whereas serotonin binds in a similar way 

like phenol. During an investigation of the phenolic pocket, previously unknown binding 

pockets for neurotransmitters were found on the surface of hexamer. These pockets were 

closely inspected and it was found that among the investigated species, dopamine binds 

the strongest. The present computational results are supported by experimental evidence 

based on protein crystallography and biochemical essays (collaborators J. Jiracek et al. 

and M. Brzozowski et al.). 
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Chapter 1 

Introduction 

 

This chapter introduces the topic of insulin and its connection to ions and 

neurotransmitters. I am going to make an attempt to go through the story of this 

remarkable hormone while introducing all important parts of an insulin molecule. There 

are still many unknowns which I am going to emphasize during this rather brief 

introduction. They will be summarized at the end of this chapter. 

Human insulin is a signaling peptide consisting of 51 amino acids. It is composed of 

two chains linked together by one intramolecular and two intermolecular disulfide bridges 

as shown in Figure 1.1. 

 

Figure 1.1. Insulin monomer composed of a chain A (blue, 21 amino acids)  

and a chain B (yellow, 30 amino acids). Three disulfide bridges are shown as red color. 

 

Its function is to regulate the metabolism of saccharides and fats. Insulin release 

into the bloodstream leads, for instance, to an absorption of glucose into the cells, 

synthesis of glycogen or increased lipid synthesis. Disruption of insulin secretion leads 

to diabetes mellitus. Treatment for this disease often includes daily intravenous injection 

of insulin. Since the hormone’s discovery in 19221, it has been known that there is a 
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connection between zinc and insulin2–6. The effect of zinc was used in pharmaceutical 

preparations, although the exact effect was not known. Later, the connection between the 

additives in insulin medicaments, like antimicrobial preservatives (phenol, m-cresol, 

chloride, or acetate) and physiochemical stability was discovered. During testing of 

different substances, it was shown that these additives in insulin medicaments can prolong 

its desired effect. Since then, it has been shown in many studies that the insulin – zinc 

complex is an allosteric protein. Due to many experimental methods such as NMR, X-

ray, crystallography and other in order to investigate this problem, we now know that 

insulin forms dimers which form insulin hexamers7–10 in the presence of zinc. These 

hexamers essentially include three conformational states abbreviated as T6, T3R3, and 

R6 as shown in Figure 1.2. 

 

 

Figure 1.2. The scheme illustrates insulin hexamer conversions between T6 – T3R3 – R6 

conformations. The conversion of insulin monomer from the T (yellow) to the R (blue) 

conformation is known to form one phenolic pocket (white circle). Grey dots/atoms 

depict zinc cations. 
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The conversion between these three states is mediated through binding of phenolic 

ligands and ions. In insulin hexamer, two zinc cations lie on a three-fold symmetry axis 

coordinated by three B10 histidines from each trimeric unit (this will be discussed later). 

Upon the change of the conformation from a T to an R state, the first 9 residues of the B 

chain undergo a transition from an extended to an alpha-helix state (Figure 1.3.). This 

conformational change from the T to the R state opens a phenolic pocket. The details of 

the phenolic pocket will be also discussed later. 

 

Figure 1.3. The pictures depict a comparison of the T conformation of insulin monomer 

(left) and the R conformation (right). In the case of R conformation, a phenol and amino 

acids crucial for binding of phenol (A6 and A11) are shown. Note that both monomers 

were extracted from hexamer structure and therefore, an artificial beta sheet structure can 

be seen. 

 

The T6 abbreviation corresponds to a state where all of the monomeric units are in the T 

state whereas the R6 state corresponds to a state where all of the monomeric units are in 

the R state while the T3R3 state is an intermediate state between the two. Many in vitro 

studies have been performed on insulin hexamers. Crystallization of insulin in the 

presence of various cations lead, for instance, to Ni2+, Co2+, Cu2+, and Cd2+ hexamers11–

15. Apart from cations found not only in the B10 site, an additional binding site for cations 
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was discovered as well. This site is located in the middle of the hexamer between two 

B10 zincs where six B13 glutamates can be found. The glutamates are relatively close to 

each other while being positioned in a circle around the center of a ~10 Å diameter cavity, 

hence essentially forming a perfect trap for cations. A detailed picture of the middle part 

of hexamer is shown in Figure 1.4. 

 

 

Figure 1.4. The B10 histidines and B13 glutamates of insulin hexamer are shown. These 

amino acids play a critical role in the insulin hexamer structure. B10 histidines are binding 

zinc cations (grey van der Walls balls) while  B13 glutamates can bind various 

cations16–19 which is depicted by a yellow van der Waals ball. 

 

 

Using crystallography and NMR studies, it has been shown that Cd2+ binds to two 

B13 glutamates in three different conformations each with 0.33 occupancy. Same binding 

is predicted for the Ca2+ cation16–19. Binding of divalent cations to the B13 site has been 

shown to be contributory to insulin hexamer formation20. 

There are also studies which were focused on the effect of phenolic ligands. Many 

different substances such as phenol, m-cresol, hexanol, acetate, resorcinol, and other7,21–

23 have been considered. From these, the phenol and resorcinol were discovered to be the 

most effective at directing the T conformation toward the R state. It was found that not 

only phenolic ligands can drive insulin hexamer toward the R state, but also that anions 

do by binding to the B10 zinc cations. Many different anions were investigated, ranging 
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from inorganic Cl-, SCN- to organic acids like p-aminobenzoate21,24. Among these, the 

thiocyanate (SCN-) was found to be the most effective. Crystallization of insulin in the 

presence of SCN- and zinc lead to T3R3 insulin hexamer. It has been shown that R6 

hexamer is far more stable than T3R3 hexamer and that T3R3 hexamer is more stable 

than T6 hexamer25,26. However, every experiment which was mentioned was done in vitro 

and little is known about the actual conformation/composition of insulin hexamers inside 

the secretory granules of beta-cells. 

The story of insulin molecule starts in pancreas, or more specifically in the beta-

cells of islets of Langerhans (Figure 1.5.) on ribozymes where a preproinsulin is 

synthesized. 

 

 

Figure 1.5. Location of islets of Langerhans in human body. Source: Review Nursing 

 

The preproinsulin consists of insulin, a C peptide, and a signaling peptide at the N 

terminus. The preproinsulin is then transported to endoplasmic reticulum, where the 

signaling peptide is cleaved, yielding a proinsulin. Subsequently, the proinsulin is 

transported to the secretory granule which is the final storage place for insulin. The 

granules are loaded with zinc27–29 and the environment is mildly acidic (pH ~ 5.5)30,31. 

There, in the granules, the proinsulin forms proinsulin hexamers in the presence of zinc 

cations. After the formation of proinsulin hexamers, the C peptide is cleaved, yielding 
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insulin hexamers. Since the pH is ~5.5, which is also an isoelectric point of insulin, the 

insulin hexamers start to precipitate forming a solid crystal32, which reduces the 

susceptibility of insulin to enzymes33. The secretory granules are densely packed with 

insulin content of about 50-60%34 (Figure 1.6.). However, no one knows the exact stored 

form of insulin hexamers. 

 

 

Figure 1.6. A beta cell containing high amount of secretory granules. One of the granules 

is marked by a red circle. Source: http://images.nigms.nih.gov/ 

 

While insulin is stored as hexamer, the active species is a monomer. When a 

secretory granule merges with membrane and the insulin gets released to the extracellular 

milieu, the insulin hexamers starts to break down into monomers35. It has been shown 

that the insulin crystal dissolves at different rates36, which directly leads to an idea that 

the difference may be caused by a mixture of T6/T3R3/R6 hexamers. It has been known 

for many years that the beta-cells contained high amount of Zn, Ca and S elements37–39 

and that there is also a high content of phosphates, ATP. and neurotransmitters40–43 

(serotonin, dopamine, L-DOPA). There is strong evidence that the beta-cells are 

connected with the neurotransmitters44–48. For instance, there are transporters VMAT1 
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and VMAT2 which cumulate biogenic amines inside these cells49. Dopamine has been 

shown to be stored and co-secreted with insulin50,51. The beta-cells have also been shown 

to accumulate the previously mentioned neurotransmitters52–55. We shall take a closer 

look at the structure of phenolic pocket with a phenol molecule bound (Figure 1.7.) 

 

 

Figure 1.7. Phenol molecule inside the phenolic pocket. Strong binding is mediated 

through hydroxyl group of the phenol molecule. Only A6 and A11 amino acids are shown.  

 

and compare the chemical structure of dopamine and serotonin with phenols (Figure 1.8.), 

 

 

Figure 1.8. Phenol (left) and two neurotransmitters serotonin (middle) and dopamine 

(right) which could serve as phenolic ligands instead of phenol. The red hydroxyl group 

(OH) is crucial for binding. 

 

we can acknowledge that all these substances have a crucial hydroxyl group required for 

binding to the phenolic pocket. In the light of these facts, might it be possible that the 

neurotransmitters could substitute phenol as a phenolic ligand in in vivo conditions? 
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During the introduction, we have stumbled upon several interesting questions 

which remained unanswered up to this point. In order to begin, there are a few 

publications which examined the inner B13 cavity, however, only using cadmium. Of 

course, the experimental investigation of the cavity is rather difficult and it has not been 

done yet to my knowledge. Molecular dynamics is a suitable method for tackling this 

experimentally elusive problem. Therefore, the first problem I investigated was binding 

of calcium and other cations to the insulin hexamers and their respective effects. 

Moreover, I have proposed an idea that dopamine and serotonin neurotransmitters work 

in secretory granules as phenolic ligands. This is thus the second question I will try to 

answer in this thesis. 



 

Chapter 2: Computational techniques  9 

     

 

 

Chapter 2  

Computational techniques 

1. Theory and methods 

 

As mentioned at the end of the last chapter, the research was done with the usage 

of classical molecular dynamics simulations. This chapter therefore discusses all general 

concepts and methods of molecular dynamics as well as the quantum mechanical methods 

used throughout this work. 

 

1.1.  Molecular dynamics 
 

This section covers basic theories and technical tricks from classical molecular 

mechanics which have been applied throughout this thesis. At first a concept of computer 

experiment is introduced which is then discussed more thoroughly in a form of molecular 

dynamics simulation. The notations and theoretical framework were taken from Frenkel, 

D, Smit, B.56, Jungwirth, P.57, Allen, M. P., Tildesley, D. J.58. 

 

1.1.1. General concepts 
 

There is only one real world, however, there are many ways to model it. If we 

choose to model our system with every detail, a quantum mechanical description has to 

be used. If we need to study bigger systems, we have to make some approximations. One 

way of doing this is to describe all particles just by classical mechanics. Computer 

simulations use theories of statistical mechanics which were been developed long time 

ago, but computers allowed us to use them thoroughly later. In classical computer 

experiment, e.g. molecular dynamics simulation, one obtains positions and velocities of 
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every particle. This information, of course, is not accessible by any present experiment. 

What gets usually measured is an average property of the studied system, e.g. its density. 

This real experiment is done in a finite amount of time and the studied property is 

averaged over many atoms/molecules. Similar thing can be done during a computer 

experiment. If system is ergodic then the average property of the system is just the time 

average over the trajectory of our molecular dynamics simulation. We can achieve certain 

condition such as constant volume during a computer experiment which is also similar to 

the real world. According to the met condition, we distinguish for example following 

ensembles: NpT, NVT, NVE, or µVT. In molecular dynamics, the pressure (NpT) and 

constant volume (NVT) ensembles are most commonly used constants. 

 

1.1.2. Molecular dynamics – basic ideas 
 

In a molecular dynamics simulation, all atoms move according to the laws of 

classical mechanics. This is usually an excellent approximation for a wide range of 

conditions. All atoms are described as balls of certain size with a partial charge. Any 

microstate is fully described by positions and momenta of all atoms and the system 

evolves according to Newton’s equations of motion. Second Newton’s law reads 

 

�� = ���, (2.1) 

 

which connects force ��� with mass � and acceleration ���. When the forces acting on all 

particles are known, we can integrate this equation to obtain future position of all atoms. 

Many algorithms have been proposed, although one usually uses a Verlet algorithm 

 

�	
 + ∆
 ≈ 2�	
 − �	
 − ∆
 + �	
� ∆
�, (2.2) 
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where �	
 stands for a position, ∆
 is the time step in our molecular dynamics simulation 

and �	
 is a force. The force is computed in a following way 

 

�	
 = ���	��� ��, (2.3) 

 

Where we introduced an interaction potential energy �	� . This potential energy is 

divided into several terms including intermolecular (non–bonded interactions) terms and 

intramolecular terms (bonded interactions). The overall potential can be, and usually is, 

constructed as follows 

 

�	�� = � ��	� − ����
��� ! + � �"	# − #���

"�$%�!
+ � � 12 ��	1 + cos	*+ − ,� -.� /"% "�$%�!
+ � 12-3�-34� − 5-3�-36 + 7-7349:�-3;-<3 , 

(2.4) 

 

where the first three terms describe bonded interactions while the last term describes non-

bonded interactions composed of van der Waals and electrostatic energies. The first term 

involves summation of all bonds and it takes form of a simple harmonic spring described 

by a bond force constant �=. Similarly to the first term, the second term describes an 

angular dependence of energy. A simple harmonic description is usually sufficient. The 

third term represents energy of twisting bonds and it is described by Fourier series. The 

fourth term describes all non-bonded interactions composed of van der Waals and 

electrostatic terms. The van der Waals term usually takes form of the Lennard-Jones 

potential and the electrostatic term of the simple Coulombs law. A set of these parameters 

which describe all interactions between atoms is called a force field. It is derived from 

the best fit to experimental or ab initio data.  
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1.1.3. Temperature and pressure coupling 
 

 One is usually interested in constant temperature or/and constant pressure 

simulation. The constant temperature ensemble can be achieved by using so-called 

thermostats. Many thermostats have been introduced and they can be divided into three 

bundles. The first of them simply rescales the velocities (e.g. velocity rescale or the 

Berendsen thermostat). Furthermore, we can regulate the temperature by introducing 

stochastic forces (e.g. the Andersen or Langevin thermostat). The last one uses extended 

Lagrangian formalisms and the Nosé-Hoover thermostat could serve as an example. The 

pressure coupling can be conducted in a similar way to the temperature. In analogy to the 

Berendsen thermostat, we can rescale not temperature but dimensions. Another method 

how to control the pressure is to use the Parinello-Rahman barostat which is an analog to 

the Nosé-Hoover thermostat. 

 

1.1.4. Periodic boundary conditions 
 

 Another widely used trick to suppress the fact that our system in simulation is very 

small in comparison with the real system is to use periodic boundary conditions (PBC). 

The method is used for simulating an ‘infinite’ system with limited computational time. 

The idea is as follows. We construct a unit cell and when an object passes through one 

side, it reappears on the opposite side of our unit cell. In molecular dynamics simulations, 

we usually use this trick in order to calculate bulk properties of a system, e.g. a protein 

solvated in a bath of explicit solvent. Another advantage of this method is that it saves 

computer time. For instance we can make simulation box bigger in order to simulate bulk 

water environment. However, this is not feasible even with the best computers which are 

available nowadays. The PBC are thus an acceptable way to do it. 
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1.1.5. Ewald summation 
 

 As mentioned in the last paragraph, computer time is always limited. Therefore, 

next of many computer tricks we introduce is a so-called cutoff. The non-bonded 

interactions take a long computation time to be calculated. We can take advantage of the 

knowledge that these interactions go to zero in direct relation to an increasing distance 

between the two considered atoms. Therefore, if we neglect all interaction after certain 

distance value, we can save a lot of computer time. Truncation of the van der Waals term 

usually does not cause any problem, although truncating electrostatic interaction leads 

(due to slow convergence to zero in relation to the distance) to huge errors and some 

correction has to be introduced. Under PBC, one can, for example, use the Particle Mesh 

Ewald method59. The trick is as follows. Under PBC, the electrostatic term has a form of 

an infinite sum. This sum is divided into a short-range part which is solved in real space. 

The rest (long-range part), which originates mostly from periodic images, is then solved 

in reciprocal space. A cutoff of 0.9 –1.2 nm is usually sufficient after this correction. 

 

1.1.6. Bond constraining 
 

In molecular dynamics simulation, one has to decide how big the time step in 

integrating Newton’s equations should be. We would like to have the time step as big as 

possible. However, we still need to capture all possible motions in our system. This covers 

diffusion but also vibrations or rotations, from which the vibrational motions of bonds, 

formed by hydrogen atoms, are the fastest. In order to capture these motions, a time step 

of ~0.5‒1 fs has to be used. Nevertheless, if we manage to constrain these bonds, we can 

use a time step of ~2 fs. There are several algorithms which are used in molecular 

dynamics. There is a SETTLE60 algorithm which is used for water molecules. There are 

SHAKE and LINCS61 algorithms which are used for all other bonds. 
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1.2. Quantum mechanics 
 

As the quantum mechanical calculations are not the main goal of this work but 

solely a ligand parameterization, I will briefly go through this section. Firstly, the basic 

ideas of quantum chemistry calculations will be introduced. Then we proceed to the core 

of all wave function methods – the Hartree-Fock approximation. The Hartree-Fock 

approximation is important as this is the common method to parameterize small 

molecules. As we speak about parameterization, we need to obtain a reasonable geometry 

of our parameterized molecule. For this purpose, the density functional theory is an 

excellent quantum chemistry method. At the end of this section, we are finally going to 

gather our desired results – partial atomic charges which are part of parameterization of 

a small molecule in molecular dynamics simulation. Notations and theoretical 

descriptions were mainly taken from Szabo, A., Ostlund, N. S.62 and Cramer, C.63. 

 

1.2.1. Electronic structure calculations of the ground state 
 

The key relationship that is being solved in all quantum mechanical calculations 

is the non-relativistic time-independent Schrödinger equation  

 

>?|ΦB = ℰ|ΦB, (2.5) 

 

with >?  being the Hamiltonian operator for the system of M nuclei and N electrons 

described by positions of vectors RM and rN. Φ is our unknown wave function and ℰ is its 

corresponding energy. The Hamiltonian for N electrons and M nuclei is defined as follows 

 

>? = − � 12 ∇-�
�

-E4 − � 12FG ∇G�
H

GE4 − � � IG�-G
H

GE4
�

-E4 + � � 1�-3
�

3J-
�

-E4 + � � IGIKLGK
H

KJG
H

GE4 , (2.6) 

 



 

Chapter 2: Computational techniques  15 

     

with MA being the mass of a nucleus, A, ZA being the atomic number of the nucleus, A, i, 

j being the electron indices, and A, B being the nuclei indices. �-3 denotes the distance 

between the ith and jth electron. Similarly, �-G stands for the distance between the ith 

electron and Ath nucleus. The distance between Ath and Bth nucleus is denoted LGK in 

the same way. The Laplacian operators ∇-� and ∇G� involve differentiation with respect to 

the coordinates of the ith electron and Ath nucleus. The first two terms in equation 2 

describe the kinetic energy of electrons and nuclei. The third term defines the attraction 

between electrons and nuclei. The last two terms describe repulsion between two nuclei 

or between two electrons. 

As we said, the ultimate goal is to solve the Schrödinger equation but this is not 

feasible even for a system of two electrons. Therefore, approximations have to be made. 

One of the first and central of them is the Born-Oppenheimer approximation. Since nuclei 

are much heavier than electrons, we can separate the motion of electrons from nuclei. 

With this in mind, we arrive to the so-called electronic Hamiltonian which reads as 

follows 

 

>?�%�M = − � 12 ∇-�
�

-E4 − � � IG�-G
H

GE4
�

-E4 + � � 1�-3
�

3J-
�

-E4 . (2.7) 

 

All indices here have the same meaning as in the Hamiltonian defined in equation 2.6. 

Nevertheless, terms which depend only on nuclei coordinates are missing. With the Born-

Oppenheimer approximation, the wave function becomes parametrically dependent on 

nuclei coordinates. The electrons are now moving in an external field of fixed nuclei and 

the nuclear repulsion becomes just an additive constant to the overall energy. Following 

equations summarize the thoughts stated above 

 

>?�%�M|Φ�%�MB = ℰ�%�M|Φ�%�MB, (2.8) 
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ℰ��� = ℰ�%�M + � � IGIKLGK
H

KJG
H

GE4 . (2.9) 

 

By solving time-independent electronic Schrödinger equation (Equation 2.8), we obtain 

the electronic wave function Φ�%�M	�-, LG  with the corresponding electronic energy ℰ�%�M. The fundamental problem of all ab initio methods is solving the time-independent 

electronic Schrödinger equation but it cannot be done analytically. Therefore 

approximations have to be made again, which leads us to the Hartree-Fock 

approximation. The key concept of the Hartree-Fock method is that we neglect 

instantaneous motion of electrons. By this we can treat each electron as if it was moving 

under an average field created by all other electrons and nuclei.  

 

1.2.2. The Hartree-Fock approximation 
  

 To proceed any further in solving this incredibly difficult problem, one has to 

make a few assumptions. First of them is a wave function form. What does this beast look 

like? The following wave function form has been proposed 

 

ΦOP	Q4, Q�, … , Q� = 	S!U4� VV W-	Q4 W3	Q4W-	Q� W3	Q� … WX	Q4… WX	Q�⋮ ⋮W-	Q� W3	Q� ⋱ ⋮… WX	Q�VV. (2.10) 

 

It has a form of a single Slater determinant ΦOP of N electrons. The prefactor is just the 

normalization constant and W-  are so-called molecular spin orbitals. One advantage is that 

this assumption ensures that the wave function will be antisymmetric. The molecular spin 

orbitals are further expanded into a linear combination of K known atomic orbitals [X 

with expansion coefficients \X-. 
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W- = � \X-[X
]

XE4 . (2.11) 

 

A set of known atomic orbitals is called a basis set. Infinite amount of different basis 

sets64–66 can be found in the literature and to decide which one is the best, that depends 

largely on the experience of the user. 

Secondly, we have to apply so-called mean field approximation, otherwise we 

would end up in an unsolvable problem. The electron-electron repulsion is replaced by 

an interaction of electron with an averaged external field ^-_`{b} created by all of the other 

electrons j as follows  

 

� � 1�-3
�

3J-
�

-E4  →  ^-_`{b}. (2.12) 

 

Using this approximation, we have come to an effective one-electron operator which is 

called the Fock operator. It reads 

 

�e- = − 12 ∇-� − � IG�-G
H

GE4 + ^-_`{b}, (2.13) 

 

in which the first two terms were already described and the last term is the Hartree-Fock 

potential ̂ -_`{b}. With this approximation, we arrive to a set of one-electron equations 

 

�e-|χ-B = ℰ-|χ-B, (2.14) 
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however, each equation depends on all the other electrons through the average external 

potential ̂ -_`{b}. Because of this, one has to solve this set iteratively until the self-

consistency has been achieved. 

 

1.2.3. Density functional theory 
 

The wave function is rather complicated 3N dimensional function which is hard 

to obtain. Is there not any easier way to deal with the ab initio problems? In 20th century, 

M. Born interpreted squared wave function as a probability to find an electron, i.e. 

electron density. Do we need this complicated 3N dimensional wave function or does the 

electron density provide us with all the required information? These questions were raised 

in the last century and thanks to P. Hohenberg, L.J. Sham, and W. Kohn, we know that 

the electron density itself is enough for describing the ground state of a quantum system. 

The simplification in the wave function is amazing. From 3N electron problem, we come 

down to a problem with only 3 dimensions. An overall energy functional ghij has a form 

of 

 

ghij = k�-hij + ���hij + ���hij +△ khij +△ ���hij, (2.15) 

 

where k�-hij  stands for functional kinetic energy of non-interacting electrons, ���hij 
represents interaction of the nuclei with electron density, and ���hij  is the electron-

electron repulsion term. The last two terms △ khij and △ ���hij are the corrections which 

are together referred to as the exchange-correlation term gmMhij 
 gmMhij =△ khij +△ ���hij, (2.16) 

 

but unfortunately the form of this functional is unknown. We know certain properties of 

this functional such as what it should look like and so on. However, it still has to be 

approximated. The simplest form of this exchange functional depends only on the 

electron density and it is thus called a local density approximation (LDA functionals). Of 
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course, there are far more advanced methods which also include first derivatives. These 

methods are called generalized gradient approximations (GGA functionals). There is 

another option and that is to combine the exact exchange energy from the Hartree-Fock 

method with some empirical approximation like LDA or GGA in certain ratio. 

Functionals created in this way are called hybrid functionals. The ratio is usually 

determined by fitting onto experimental values.  

 The density functional theory has proved itself to be a valuable method in ab initio 

calculations. It outmatches the wave function theories many times with the same 

resources. Therefore, it is a feasible and quite accurate method for determining 

equilibrium geometries and many other chemical properties. 

 

1.2.4. Population analysis and parametrization of small molecules 
 

Finally we have reached the purpose of the whole quantum chemical section. One 

of the non-bonded interactions included in every classical force field is the electrostatic 

term. This electrostatic part takes form of a simple Coulomb’s law and all atoms interact 

according to this law. Therefore, every atom has a defined partial atomic charge but the 

way to obtain such charge is not completely clear. The partial charges are not physically 

observable quantity and hence there are many ways to obtain them. A common way is to 

perform an ab initio calculation and assign the partial atomic charges in accordance with 

some method. There are many methods which have been proposed such as the Natural 

Population Analysis (NPA)67 which assigns partial atoms charges according to the degree 

of a contribution of an atomic basis function to the overall wave function. The next type 

of methods uses the electrostatic potential. From the wave function, we can calculate the 

electron density and subsequently the electrostatic potential. This is already an observable 

property and we can therefore compare the computed electrostatic potential to the one 

experimentally observed. Partial atomic charges can be then fitted to reproduce this 

computed/experimentally measured electrostatic potential. As an example of this method 

can serve a CHELPG method68. A modification to this procedure, which ensures that 

rotationally degenerate atoms have equivalent partial atoms charges, is called the 

Restrained Electrostatic Potential method (RESP)69. This method is recommended to 
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parameterize a small molecule for the AMBER force fields in a condensed phase. The 

electrostatic potential should be calculated by a HF/6‒31G* level of theory in a gas phase. 

In spite of using such low level of description, the error in this calculation is close to the 

difference in charge distribution between the gas phase and what we observe in the 

solution. 

 

2. Advanced sampling methods 

 

After going through general methods and theories, we will now focus on more 

advanced methods of computer modeling which are used throughout this thesis. The 

common theoretical framework was taken from D.A. McQuarrie70, C. Chipot, A. 

Pohorille71, D. Frenkel, B. Smith56. More advanced approaches, which have not been yet, 

present in books are cited on the fly. 

 

2.1.  Free energy calculations 

 

When any reaction, e.g. sn2 chemical reaction, occurs, we can say that there is a 

certain driving force which pushes the reaction along its reaction coordinate. This driving 

force is often expressed in a magical term - free energy difference.  

Statistical mechanics dictate that if we know canonical partition function, then we 

know everything. The canonical partition function Q of a system can be calculated if we 

integrate over the whole phase space  

 

n = 1op�S! q rUs	���Xtu v7�, (2.17) 

 

where w expresses the potential energy of a system, 7� being the set of 3N coordinates, �= 

being the Boltzmann’s constant, k  being the absolute thermodynamic temperature, S 
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being number of particles, and o being the temperature dependent de Broglie wavelength. 

The canonical partition function can be related to Helmholtz free energy 2 

 

2 = −��kx*	n. (2.18) 

 

Helmholtz free energy is relevant if a process is performed under constant number of 

particles, constant volume and constant temperature. However, Gibbs free energy y 

usually has greater importance. It takes place under constant pressure instead of constant 

volume. Under small pressures and in a condensed phase, in which the volume changes 

are small, the difference between Helmholtz free energy 2 and Gibbs free energy y is 

negligible. 

 The difference between two states, e.g. bound and unbound state of a protein and 

a ligand is what people are usually interested in. This difference is commonly expressed 

by a free energy difference ∆2. When we now express this free energy difference in terms 

of partition functions, we get 

 

Δ2 = −��kx* �n�n4� = −��kx* {| rUs}	���Xtu v7�
| rUs~	���Xtu v7��. (2.19) 

 

All free energy methods used in computer simulations can be derived from this equation.  

As the partition function defines the effective number of available states, the free 

energy difference could be also evaluated by a so called probability method 

 

Δ2 = −��kx* ����4�, (2.20) 
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where �� is a probability of being in the state 2, while �4 is a probability of being in the 

state 1. This method is convenient when the energetic barrier between these two states is 

not high and when the free energy difference is low. If these requirements are not met 

then we need to use more advanced methods like thermodynamic integration or umbrella 

sampling methods. 

In computer modeling, we are often interested in a free energy difference between 

two states along certain pathway. It is convenient to have some reaction coordinate o 

which makes a distinction between our two thermodynamic states. The reaction 

coordinate can be of any kind, ranging from the simplest like distance between two atoms 

to more complex like root mean square deviation between two structures.  

 

2.1.1. Thermodynamic integration 

 

Thermodynamic integration is one of the most common methods for calculating 

the free energy difference. Starting with the formula for a free energy 

 

2 = −��kx*	n = −��kx* �q rUs	���Xtu v7��, (2.21) 

 

defining a reaction coordinate o  and taking a derivate with respect to the reaction 

coordinate o yields 

 

v2vo = −��k vvo x*	n = −��k vvo x* �q rUs	�,���Xtu v7��, (2.22) 

 

which can be rearranged into 
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v2vo = | vw	o, 7�vo rUs	�,���Xtu v7�
| rUs	�,���Xtu v7� = 〈vw	o, 7�vo 〉�. (2.23) 

 

The brackets denote an average of the quantity which is inside. By integration over the 

reaction coordinate o, we get the free energy difference Δ2 

 

Δ2 = q 〈vw	o, 7�vo 〉� vo4
� , (2.24) 

 

where o = 0 defines an initial state with a free energy 24and o = 1 defines a final state 

with a free energy 2�.  

One of the simplest application of the above derived formula is to evaluate 〈 s	�,��� � 〉�  for a number of intermediate values of o  and then perform numerical 

integration. There are various methods for numerically evaluating the integral using, for 

instance, the trapezoidal or the Simpson’s rule.  

At first the potential w	o, 7� has to be defined. It is done by dividing overall 

potential to common part wM�����	7� and a part that is being perturbed �	o, 7� as follows 

 

w	o, 7� = wM�����	7� + �	o, 7�. (2.25) 

 

The way we define the coupling between initial state o = 0 and the final state o = 1 is 

also important. The simplest approach uses linear mixing between an initial state 0 and a 

final state 1 

 

�	o = 	1 − o�� − o�4, (2.26) 
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with �0 being the potential of the initial state and �1being the potential of the final state. 

This form of coupling is often sufficient. In this case however,we make some atoms 

appear or disappear and the integrand in Equation 2.24 diverges at o = 0  or o = 1 

(depends on whether atoms are appearing or disappearing). An elegant way of solving 

this problem is to use softcore potentials. A modified version of the Lennard-Jones 

potential then gets a form of 

 

��, -!!"��"/-�$ = 4:	1 − o ���
�� 1
��o + ��-3� �6�� − 1�o + ��-3� �6���

��, (2.27) 

 

�4,"��"/-�$ = 4:o ���
�� 1
��	1 − o + ��-3� �6�� − 1�	1 − o + ��-3� �6���

��, (2.28) 

 

where � is an empirical parameter. With this modification, the linear coupling between 

potentials can, and should be, used for the van der Waals transformations. 

The statistical error of thermodynamic integration is usually evaluated as follows. 〈 s	�,��� � 〉� is evaluated in every microstate from which variance is calculated. The total 

variance ���	Δ2 is then weighted sum of the intermediate variances � s ��- 
 

���	Δ2 = � �-��� �vwvo�-
�

-E4 , (2.29) 

 

where �-  are the weights which are determined by the integration method. To get a 

correct statistical error, each individual average needs to be further corrected for an 

autocorrelation time � by multiplying each of the intermediate variances by a factor of √2�. 
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 In order to access free energy difference between two states, one is often forced 

to use a thermodynamic cycle. An example of such cycle is shown in Figure 2.1.  

 

 

Figure 2.1. An illustration of a complete thermodynamic cycle to calculate the solvation 

energy of phenol. 

 

 We start here with a phenol molecule in vacuum (left, bottom). Δy4  represents free 

energy difference of the phenol molecule solvation. Δy� represents free energy difference 

of turning off all interactions of the phenol molecule while being present in a water 

solution. Δyp  represents free energy difference of transferring non-interacting phenol 

molecule from water environment into vacuum. As the phenol molecule gets completely 

decoupled, the free energy difference equals zero. Δy� represents free energy difference 

of turning on all interactions in vacuum. As free energy is state variable we can state that  

 

�Δy- � 0
-E�

-E4
. (2.30) 
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For instance, if we want to evaluate the solvation free energy of phenol molecule Δy4, we 

know from this thermodynamic cycle that 

 

Δy4 � �Δy� � Δy� (2.31) 

 

2.1.2. Umbrella sampling 

 

Another elegant method for calculating free energy difference between two states 

is called the umbrella sampling method. We can overcome the sampling issues by using 

this method if the brute force fails (the probability method). Graphical representation of 

the whole idea is shown in Figure 2.2.  

 

  

Figure 2.2. Graphical representation of the umbrella sampling method. From left – at 

first, we sample the reaction coordinate x with help of umbrella potentials �	Q. Then we 

calculate the biased probability �′	Q from which we obtain unbiased free energy profiles 

2	Q. Nevertheless, these profiles are shifted by a constant and need to be combined 

together as shown in the last picture. 

 

We would like to sample phase space along some reaction coordinate, where the barriers 

and the free energy differences are too big. Therefore, we sample it with help of umbrella 

potentials �	Q. 
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 Then the biased probability �′	Q is calculated from which we estimate unbiased free 

energy using the following formula 

 

2	Q = −��kx*���	Q� − �	Q + �, (2.32) 

 

with ��  being the Boltzmann’s constant, k  being the absolute thermodynamic 

temperature, and � being the constant. The value of � is undetermined but completely 

irrelevant. We obtain corresponding free energy profiles after doing many simulations 

along the reaction coordinate. However, each of them is shifted by a different constant �. 

The important thing is that the neighboring free energy profiles have to overlap. If this is 

achieved then we can combine all free energy profiles together.  

It is not completely clear how to combine all free energy profiles together. A 

weighted histogram analysis method (WHAM) was developed72,73 for this reason. This 

method utilizes all histograms at once in order to determine the optimal � values so that 

the free energy profiles are appropriately overlapped. The whole method consists of two 

following equations 

 

�	Q = ∑ *-	Q� ¡¢-E4∑ *-	Qr`¡U£¡	mXtu� ¡¢-E4
, (2.33) 

 

�- = −��kx* ¤� �	QrU£¡	mXtu
mt¡¥

¦, (2.34) 

 

where S!-� stands for the number of simulations, *-	Q stands for the number of counts 

in histogram bin associated with x, Q�-�  is the number of bins, �-	Q  is the biasing 

potential, �- is the free energy shift from simulation i, and �	Q is the best estimate of 

unbiased probability distribution. �	Q and �- are the unknowns and the equations need 
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to be solved iteratively to self-consistency. �	Q is then directly proportional to the free 

energy profile as stated above.  

 In order to obtain correct estimate of error, one usually divides simulation data 

into several blocks and then performs the WHAM. The data sets have to be reasonably 

long (> 10 x autocorrelation time). We can evaluate the variance from the obtained free 

energy profiles. 

A free energy profile calculated by the umbrella sampling method is sometimes 

called potential of mean force. Potential of mean force binding is connected to a binding 

constant §� in the context of protein-ligand by the following relation 

 

§� = q rU¨	/©u 
£ v�, (2.35) 

  

 

where the integration is restricted to the region where the ligand is defined to be bound. 

If the ligand can be found in one distinct binding site, this can be approximated with a 

good degree of accuracy by a square well potential. Then  

 

§� = ��rU ª̈©u , (2.36) 

  

 

where �� stands for the volume occupied by the ligand when bound to the protein, and «� represents the depth of the potential well which in our case is 

 

«� = «�� → �¬%"�� − «	� → ��-�, (2.37) 

  

 

where ��-�  denotes minimum in the potential of the mean force calculated by the 
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umbrella sampling, and �¬%"� represents the distance where the potential gets flat already 

(bulk solution). Binding constant §�, in the context of simple protein-ligand binding, is 

then related to the standard free energy of binding Δy�∘ by 

 

Δy�∘ = −Lkx*	®∘§�. (2.38) 

 

®∘ stands here for a standard concentration (usually 1M). The inverse of the standard 

concentration can be interpreted as volume �∘ occupied by a single molecule at standard 

concentration 1M. In my case, I chose ®∘ = 1F and then the �∘ = 1661 Åp. There is 

also an additional contribution to free energy of binding. From the statistical mechanics 

point of view, the free energy binding is determined by the following equation 

 

∆y�� = −Lkx* � ®�89� �²�³�²³ I²³I²I³� + ´�∆�²³, (2.39) 

 

where ®∘ represents standard state, � stands for a symmetry number, and Z denotes a 

configurational integral. Superscripts P, L, and PL refer to protein, ligand, and protein-

ligand complex respectively. The term ´�∆�²³  represents standard pressure times the 

change of the volume on complex formation correction, which is negligible at standard 

pressures. In molecular dynamics simulation, it is difficult to capture this symmetry 

problem. To account for this, one has to adjust final free energy of binding by a factor of 

 

∆yOµH = −Lkx* ��²�³�²³ �. (2.40) 
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To summarize, the final standard free energy of binding Δy�∘, which is calculated by the 

umbrella sampling method and corrected for symmetry, is as follows 

 

Δy�∘ � �Lkx* ����∘ r
U ª̈©u� � ∆yOµH . (2.41) 

 

 

2.2.  Spatial distribution functions 

 

Spatial binding functions are convenient for presenting data in a clear and simple 

way. An illustration of such function is presented in Figure 2.3.  

From a collection of microstates, e.g. frames of molecular dynamics 

simulation (t1, t2, …, tn), we can construct a spatial binding map of an atom/molecule (e.g. 

the yellow atom) around another molecule (e.g. the protein depicted as blue) we are 

interested in. Final spatial distribution function then presents overall mean distribution of 

a molecule of our interest around the chosen molecule. Spatial distribution function is 

Figure 2.3. An illustration of a spatial distribution function of yellow atoms around a 

solute of interest (blue protein). 
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constructed in the following way. At first all of the microstates are collected and our 

molecule of interest (protein) is overlapped in every frame according to the lowest root 

mean square displacement. Then the space is divided into a grid and studied molecules 

(the yellow atoms) are mapped onto this grid. In order to smoothen the spatial distribution 

function, the studied molecule does not only contribute to one point on this grid as its 

contribution is unequally divided into all surrounding grid points. This final spatial 

distribution function can be then visualized as depicted. 

 

3. Simulated systems  

 

The last section covers specific preparation of all parameters, systems, and 

calculations which are used throughout this work. At first general things are described 

which include the protein structure, ligand parameters, and general simulation 

parameters. Moreover, the composition, simulation settings and specific things for every 

particular calculation are listed. 

  

3.1.  General preparation and parameterization 

 

Insulin hexamer preparation  

 

Insulin is stored at mildly acidic conditions (pH ~ 5.5)31, which corresponds to 

protonated B5 histidine. However, the B10 histidine is deprotonated30,74 due to zinc 

coordination. The six B13 glutamates in the middle region of the insulin hexamer were 

considered as deprotonated. One cation was always present in the middle region to 

compensate for the negative charge of glutamates. In case of R conformation, there was 

also one chloride anion binding to the B10 zinc. The initial protein coordinates were taken 

from the following pdb structures: 1AIY75 (R6 insulin hexamer), 1MSO3 (T6), and 1TRZ8 

(T3R3). These structures were used and modified as described below. 
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Neurotransmitters preparation 

 

Phenol, serotonin, as well as dopamin were the assigned parameters from ff03 

AMBER force field using the ANTECHAMBER package76. Partial atomic charges were 

derived by the standard HF/6‒31G* method in the gas phase using the RESP method. 

These calculations were performed in the Gaussian 09 package77. Note that both 

neurotransmitters are charged at pH 5.5 (charge +1). 

 

The B10 zinc binding site 

 

The B10‒Zn interaction potential had to be re-parameterized in order to at least 

partially account for electronic polarization and charge transfer effects and to reproduce 

experimental data. The partial atomic charges on the B10 zincs and B10 histidines were 

changed according to results from ab initio calculations which lead to the charge of B10 

Zn cation of +1.5 and each B10 histidine residues having a net charge of +0.1677. Zinc 

non-bonded van der Waals parameters r0 and ε were set to 2.44 Å and 0.25 kcal/mol. The 

presence of another cation (in addition to the two B10 coordinated zincs) in the highly 

negatively charged middle region of protein (B13 glutamates site) is crucial for achieving 

stability of the B10‒Zn site.  

 

Ion parameterization 

 

In order to model ions properly, I used recently published force fields for NaCl 

and CaCl278,79. These new force fields have, so that we can account for the polarizability 

of ions, rescaled charges by a factor of 0.7580–82. The van der Waals parameters were also 

rescaled to match neutron scattering data reference. By using these rescaled charges, I 

was sometimes forced to have a chloride ion of charge -1.0 to achieve systems’ 

electroneutrality. In a similar way, all other ionic charges were rescaled by a factor of 
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0.75 in order to account for electronic polarization effects at least in a mean-field way80–

82. However, the van der Waals parameters were not changed. 

 

General simulations parameters 

 

All molecular dynamics simulations were prepared and performed using the 

AMBER 14 program with GPU acceleration whenever possible83,84. Throughout all 

simulations, the AMBER ff03 non-polarizable protein force field and the SPC/E water 

model were used85. Production simulations were performed in isothermal-isobaric 

ensemble at ambient conditions T = 300 K and p = 1 atm using the Berendsen barostat 

and thermostat86. The only exception were thermodynamic integration calculations, 

where the temperature was controlled by Langevin dynamics with a reference 

temperature of T = 300 K and a collision frequency 5 ps-1 in order to avoid problem of 

ergodicity when the ligand is fully decoupled from its environment. 3D periodic boundary 

conditions were applied in with a general cutoff of 9 Å. The long range electrostatic 

interactions were accounted for by using the particle mesh Ewald method59. Bonds 

containing hydrogen atoms were constrained using the SHAKE algorithm61(analytical 

version SETTLE for water molecules60). The time step of 2 fs was used for dynamics. 

 

3.2.  Specific simulation settings 

 

Cation binding to T6 and T3R3 insulin hexamers – simple MD simulations 

 

The simulations of cation binding to insulin hexamers were done in 0.5 M ZnCl2, 

CaCl2, NaCl or KCl. The unit cell consisted of a single insulin hexamer, 27 000 SPC/E 

water molecules, 2 B10 Zn cations, 1 central B13 glutamate cation of the same type as in 

the salt used, 242 cations, 239 chloride anions (or 482 chloride anions in case of divalent 

cations), and one chloride anion with -1.0 charge to ensure electroneutrality. After the 
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preparation, the systems were minimized using 5 000 steps of the steepest descent 

method, where the protein was restrained with a harmonic potential. To equilibrate, at 

first the velocities for T = 10 K were assigned from the Maxwell-Boltzmann distribution. 

The systems were then subjected to 200 ps of isothermal-isochoric molecular dynamics 

while the temperature was slowly raised to T = 300 K. This was followed by 1.2 ns of 

isothermal-isobaric equilibration which lead to a cell of approximately 95 × 95 × 95 Å3. 

The total simulation time for each ion binding simulation was 1.5 µs, with preceding 10 

ns of equilibration. 

 

Phenolic pocket – initial direct MD simulations 

 

I investigated substitution of phenol in its known binding place by serotonin or 

dopamine neurotransmitters. As a reference, I used an insulin structure crystalized in the 

presence of phenol75. This resulted in the R6 insulin hexamer with 6 phenol molecules in 

the phenolic pockets. In order to obtain an initial picture, the phenol molecules were 

exchanged either for dopamine or serotonin. For both neurotransmitters, two initial 

starting orientations in the phenolic pocket were used. All starting geometries of phenolic 

ligands inside the phenolic pockets are shown in Figure 2.4. 

 

 

Figure 2.4. Phenol together with serotonin and dopamine neurotransmitters are depicted 

in the phenolic pocket. Two initial orientations of serotonin and dopamine were used.  
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Furthermore, every insulin R6 hexamer was immersed into a unit cell containing 9 000 

SPC/E water molecules with chloride/sodium ions added to ensure overall 

electroneutrality. After the preparation, the systems were minimized using 5 000 steps of 

the steepest descent method, where the protein and phenolic ligands were restrained with 

a harmonic potential. For equilibrating, at first the velocities for T = 10 K were assigned 

from the Maxwell-Boltzmann distribution. The systems were then subjected to 200 ps of 

isothermal-isochoric molecular dynamics, where the temperature was slowly raised to T 

= 300 K. This was followed by 1.2 ns of isothermal-isobaric equilibration which lead to 

a cell of approximately 69 × 68 × 66 Å3. After the equilibration, the production 

simulations were run for 600 ns under the conditions stated above in the general 

simulation parameters. 

  

The phenolic pocket – free energy calculations 

 

Thermodynamic integration is an excellent way to compare different phenolic 

ligands inside the phenolic pocket. Forward and backward mutations between phenol, 

dopamine, and serotonin were performed. Each mutation consisted of several smaller 

steps. Using this approach, one can effectivelly calculate the so-called binding free energy 

difference ∆∆G. However, it is also possible to calculate the absolute free energies of 

binding for small molecules by a double annihilation method87. The double annihilation 

method is the most precise when the perturbation is small, i.e. when the number of 

mutated atoms is the smallest. Therefore, a phenol molecule was chosen as this 

calculation should be the most accurate. Only one ligand was being mutated at that time. 

By combining these methods, one gets absolute free energies of all three binding 

neurotransmitters. Illustration of all calculations is shown in Figure 2.5. Details of all 

calculations will be described below. 
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Figure 2.5. An illustration of free energy calculations, which are the aim of this work, 

(relative free energies of binding (∆∆y, and absolute free energies of binding (∆y ). 

 

Composition of prepared systems was as following: insulin R6 hexamer, 9 000 

SPC/E water molecules with chloride/sodium ions added to ensure overall 

electroneutrality, 5 phenol molecules present in the phenolic pockets, and 1 phenolic 

ligand (phenol, dopamine, or serotonin). In thermodynamic cycles, which will be 

introduced below. there are also calculations of mutating/decoupling phenolic ligand in 

bulk water. One phenolic ligand was immersed here into a box of 2611 SPC/E water 

molecules. 

 After the preparation, the systems were minimized using the steepest descent 

method. In order to equilibrate, at first the velocities for T = 10 K were assigned from the 

Maxwell-Boltzmann distribution. The systems were then subjected to 200 ps of 

isothermal-isochoric molecular dynamics, where the temperature was slowly raised to T 

= 300 K. This was followed by 1.2 ns of isothermal-isobaric equilibration which lead to 

a cell of approximately 69 × 68 × 66 Å3, or 42 × 42 × 42 Å3. 

At first the differences in free energy of binding (∆∆y4U�) between phenol (PHN), 

dopamine (DPN), and serotonin (SEN) were calculated as follows. For these types of 

calculations, a complete thermodynamic cycle shown in Figure 2.6. was used (example 

calculation ∆∆y²_�UO¶�). 
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Figure 2.6. A practical example of a complete thermodynamic cycle used to calculate the 

differences in the free energies of binding (∆∆y4U� between different phenolic ligands 

to phenolic pocket of insulin R6 hexamer. A thermodynamic cycle to calculate 

∆∆y²_�UP²� is shown here. The restraints are indicated by a red circle; the grey ligand 

indicates that the electrostatic interactions of a ligand are turned off. ∆y�4 represents free 

energy of binding of phenol to the phenolic pocket whereas ∆y � represents free energy 

of dissociation of serotonin from the phenolic pocket. ∆y/�  represents free energy of 

restraining phenol to a certain position inside the phenolic pocket. ∆y4 represents gradual 

turning off electrical charges of phenol inside the phenolic pocket while keeping proposed 

restraints on. ∆y� represents mutation of a restrained phenol to a restrained serotonin 

inside the phenolic pocket while all charges are turned off. ∆yp represents free energy of 

turning on the electrical charges of the serotonin while the restrains are on. ∆y/�¬¬ 

represents free energy of releasing restraints on the serotonin inside the phenolic pocket. 

∆y� stands for free energy of turning off electrical charges of the serotonin in the bulk 

solution. ∆y· represents free energy of mutating serotonin to phenol while all electrical 

charges are off in the bulk solution. ∆y6 represents free energy of turning on electrical 

charges of phenol in the bulk solution. 
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∆y�4 represents free energy of binding of a ligand 1 to the insulin while ∆y � represents 

free energy of dissociation of a ligand 2 from the insulin. ∆∆y4U� reflects the difference 

in free energies of binding between these two ligands. As this is a complete 

thermodynamic cycle, this energy equals to 

 

∆∆y4U� = −∆y�4 − ∆y �, (2.42) 

 

∆∆y4U� = ∆y4 + ∆y� + ∆yp + ∆y� + ∆y· + ∆y6 + ∆y/�� + ∆y/�¬¬. (2.43) 

 

Explanation of these terms can be found in Figure 2.6. One of the corrections that has 

been proposed is the long range dispersion correction ∆y³©¸ 88. However, this 

contribution turned out to introduce significant errors and thus it was omitted. Each 

subsequent simulation was performed using linear scaling between potential V0 and V1 

with lambda windows 0, 0.1, up to 1.0, resulting in 11 windows. The only exception were 

simulations where the van der Waals parameters were changed. The softcore potentials 

were used here while the lambda step stayed shorter – 0.0, 0.05, up to 1.0, resulting in 21 

windows. Integration was always carried out by the trapezoidal rule. All simulations were 

performed with a simulation step of 2 fs for a total simulation time  

5 ns (at first) with preceding 1.2 ns equilibration. In certain cases, an additional set of  

20 ns calculations was performed to check for a convergence. Altogether, a single 

calculation of binding free energy difference ∆∆y4U�  consisted of 108 subsequent 

simulations. To restrain a ligand in the phenolic pocket, a simple distance restraint 

between center of mass of A6 backbone nitrogen atom, and A11 backbone oxygen atom 

to phenolic ligands crucial oxygen atom was used with a force constant of 0.5 XM"%��%⋅Å}. and 

equilibrium value of 1.5 Å. With this force constant, it was proved that the steps of 

applying (∆y/� and releasing restraints (∆y/�¬¬ are negligible. In order to be able to 

reasonably estimate an error in these calculations, every calculation was performed in 

both directions (forward and backwards mutations) and multiple times as depicted in 

Figure 2.5. This lead to 6 separate mutations with the following differences in binding 
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free energies ∆∆y²_�→P²� , ∆∆yP²�→²_� , ∆∆y²_�→O¶� , ∆∆yO¶�→²_� , ∆∆yP²�→O¶� , 

and ∆∆yO¶�→P²�. 

Furthermore, one can take the advantage of the fact, that forward and backward 

calculations like ∆∆y²_�→P²� and ∆∆yP²�→²_� should be of the same value, differing 

only in a sign. With this in mind, one can combine all 6 simulations to obtain a reasonable 

error estimate. Moreover, free energy of mutating dopamine to serotonin with all 

electrical charges off (∆yP²�→O¶� was calculated in accordance with the following 

thermodynamic relation 

  

∆y²_�→P²� + ∆yP²�→O¶� + ∆yO¶�→²_� = 0. (2.44) 

 

This is due to the fact that the step of mutating atoms is the most accurate when one is 

mutating only a few atoms (perturbation is not large). Other general parameters of 

calculations, which are not listed here, are stated in the General simulation parameters 

section. 

To obtain the absolute free energy of a phenol molecule binding to a phenolic 

pocket (∆y²_�, a thermodynamic cycle shown in Figure 2.7. was used. 
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Figure 2.7. A complete thermodynamic cycle used to calculate the absolute free energy 

of binding of a phenol molecule to a phenolic pocket	of insulin R6 hexamer (∆y²_�. 
The restraints are depicted by a red circle; grey ligand means that the electrostatic 

interactions are turned off; fully transparent ligand means that the ligand is fully 

decoupled from its environment. ∆y²_� represents free energy of binding of phenol to 

the insulin. ∆y¼ represents free energy of restraining phenol to a certain position inside 

the phenolic pocket. ∆y½ represents free energy of turning off electrical charges of phenol 

inside the phenolic pocket while keeping the proposed restraints on. ∆y¾ stands for the 

free energy of decoupling restrained phenol from the phenolic pocket while all charges 

stay turned off. ∆y4� stands for the free energy of transferring decoupled phenol from 

phenolic pocked to the bulk water environment. As the phenol does not interact with the 

protein at all, the energy of bound and unbound phenol is the same. Hence the free energy 

difference between these two states is zero. ∆y44 represents free energy of releasing the 

proposed restrains from phenol which is now situated in the bulk solution. ∆y4� 
represents the free energy of turning on the van der Waals interactions of phenol in the 

bulk solution. ∆y4p stands for the free energy of turning on electrical charges of phenol 

in the bulk solution. 
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The computational protocol was as follows. Each subsequent simulation was performed 

using linear scaling between potential V0 and V1. The only exception were the 

simulations where the phenol molecule was completely decoupled from its environment 

(∆y¾. The softcore potentials were used here for achieving better stability and smoother 

shape of free energy derivations’ curve. Integration was always done using the trapezoidal 

rule. The first step of the whole thermodynamic cycle was proposing restrains on the 

phenol molecule (∆y¼. This was done by using same restrains as Boresch et al.87,89, 

where I restrain the phenol molecule by 3 dihedral angles 

( W	�1, �2, �3, À4; 	Â	�2, �3, À4, À5; ,	�3, À4, À5, À6	 , 2 angles 

(+	�2, �3, À4; 	ϕ	P3, L4, L5 , and one distance restraint 	r	P3, L4 . While using 

these restraints, we need to choose 3 protein atoms (labeled P), and 3 phenol atoms 

(labeled L). In my calculations, I chose P1 – A6 cysteine backbone oxygen, P2 – A11 

cysteine backbone H (NH), P3 – A11 cysteine side change Sulphur, L4 – phenols C4, 

L5 – phenols oxygen, and L6 – phenols C2 (Figure 2.8.). 

 

Figure 2.8. Numbering of the atoms used for the restraining the orientation of the phenol 

in the phenolic pocket. P1 – A6 cysteine backbone oxygen, P2 – A11 cysteine backbone 

H (NH), P3 – A11 cysteine side change Sulphur, L4 – phenols C4, L5 – phenols oxygen, 

and L6 – phenols C2. 

 

The phenol is thus effectively restrained the phenolic pocket. The equilibrium values were 

taken from a non-restrained molecular dynamics simulation. The values were W �
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80.0∘, Â =  −46.35∘ , , =  −137.75∘ , + = 37.25∘, ϕ = 30.6∘ , � = 7.15 Å . The force 

constant values for restraining a ligand in the binding pocket should not generally matter. 

However, it was proved that the distance force constant §/ = 10 XM"%��%∙Å} , and the 

dihedral/angle restraint force constant §- = 200 XM"%��%∙/" } , É = +, [, W, Â, , work well in 

the case when the ligand has a well-defined position in the binding pocket. These 

restraints were used during the whole process of decoupling the phenol from its phenolic 

binding pocket in insulin R6 hexamer. Process of calculating the free energy difference 

of restraining the phenol was broken into 12 windows with a lambda value of 0.000, 

0.200, …, 0.800, 0.850, 0.875, …, and 1.000. Each window was equilibrated for 2 ns and 

then the data were gathered for 5 ns. The second step was turning the electrical charges 

of the phenol in the binding pocket off (∆y½, while the restraints are on. This was done 

in 11 windows (lambda values: 0.000, 0.200, …, 0.600, 0.700, 0.750, …, 1.000), each 

equilibrated for 2 ns, followed by 30 ns data acquisition. The next step involved full 

decoupling of the phenol while the proposed restrains stayed on and the electrical charged 

turned off (∆y¾. As this was the most problematic step, the calculation was divided into 

33 windows (lambda values: 0.000, 0.025, …, 0.250, 0.300, …, 0.600, 0.625, …, 1.000), 

each equilibrated for 2 ns, followed by 50 ns of data collection. The next step, the 

transition from the bound to the unbound state (bulk solution) has a zero free energy 

difference ∆y4� = 0  as the ligand gets fully decoupled from its environment. The 

following step is releasing the restraints from the phenol (∆y44 . As the phenol is 

completely decoupled, the releasing of the proposed restrains can be done anallytically87 

by the following formulae 

 

∆y4� = −Lkx* � 89����� sin	+ sin	ϕ ∙ 	§/§Ì§Í§Î§Ï§Ð�.·	29Lkp �, (2.45) 

 

where T stands for the thermodynamic temperature, R is the molar gas constant, r is the 

equilibrium distance of our chosen distance restraint, + and ϕ are the equilibrium angles 

of our chosen angle restraints, �� is factor which corrects the energy to a 1M standard 

state and its value is 1661 Åp, §/ is the force constant for distance restraint, §Ì and  §Í 
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are force constants for angle restraints; §Î ,  §Ï , and §Ð  are the force constants for 

dihedral angle restraints. Now that the restraints got released, the only remaining steps 

are to turn on the van der Waals interactions (∆y4� and electrical charges of the phenol 

(∆y4p in the bulk solution. The van der Waals interactions were turned on in 21 windows 

(lambda values: 0.00, 0.05, …, 1.00), each equilibrated for 2 ns, and followed by 10 ns 

of data collection. The electrostatic interactions were turned on in 11 windows (lambda 

values: 0.0, 0.1, …, 1.0), each equilibrated for 2 ns, and followed by 10 ns of data 

collection.  

Summing all the terms, we obtain the standard free energy difference of 

decoupling the phenol from the phenolic pocket ∆y²_� 

 

∆y²_� = −	∆y¼ + ∆y½ + ∆y¾ + ∆y44 + ∆y4� + ∆y4p. (2.46) 

 

However, due to the symmetry of insulin R6 hexamer, there is also an additional 

contribution toward the free energy of binding. In my calculations, I did not sample the 

whole configurational space (due to the restraints). There are 6 equivalent binding sites 

for a phenol molecule. To account for this, the final free energy of binding has to be 

adjusted by a factor of ∆y!Ñ�� 

 

∆y!Ñ��_- = −Lkx*	É, (2.47) 

 

where i is dependent on remaining free binding sites for the phenol molecule. For R6 

insulin hexamer without any phenol bound, i equals 6 hence the entropy contribution is 

the highest. This number goes to zero as the phenolic pockets get occupied by phenol 

molecules. Table 2.1. summarizes the entropy effects ∆y!Ñ��_É on binding of phenol 

while there are É − 6 phenol molecules bound.  
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Table 2.1. Entropy contribution to the free energy of binding of a phenol to the phenolic 

pockets according to how many phenolic pockets are unoccupied 	∆y!Ñ��_É. If É = 6, 

then there is no phenol molecule bound and the contribution is the highest. 

 

 

I will report entropy contribution as an average of these values 〈∆y!Ñ��〉. By combining 

both approaches, one gets the absolute standard free energies of binding of phenol, 

serotonin, and dopamine to a phenolic pocket of the insulin R6 hexamer as follows 

 

∆y²_�∘ = ∆y²_� +  〈∆y!Ñ��〉, (2.48) 

 

∆yP²�∘ = ∆y²_�∘ + ∆∆y²_�→P²� , (2.49) 

 

∆yO¶�∘ = ∆y²_�∘ +  ∆∆y²_�→O¶� . (2.50) 

 

The standard free energy of binding is also often expressed in terms of a disociation 

constant §P 

 

§P = rÓÔt∘©u . (2.51) 

 

The A14/A17 binding pocket – direct MD simulations 

 

 During the direct simulations a hitherto unknown binding sites for 

neurotransmitters on the surface of insulin R6 hexamer were discovered. To investigate 

-1.07 -0.96 -0.83 -0.65 -0.41 0.00 -0.65

É 6            5            4             3            2     1
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these new, previously unknown binding sites, four additional simulations were 

performed.Insulin R6 hexamer with six phenol molecules present in the phenolic pockets 

was propagated here in time in 74 mmol solution of one of the neurotransmitters. This 

was done either in pure water or in a 0.5 M CaCl2 solution. The computational setup of 

insulin R6 hexamer in 74 mmol solution of neurotransmitters was the following: insulin 

R6 hexamer with 6 phenol molecules present in the phenolic pockets, 9 000 SPC/E water 

molecules, 12 dopamine, or 12 serotonin molecules, and counterions to ensure overall 

electroneutrality. Computational setup for insulin hexamer in solution of 

neurotransmitters and 0.5 M CaCl2 was similar. However, due to the ions, the box had to 

be larger. The simulation box contained the following: insulin R6 hexamer with 6 phenol 

molecules present in the phenolic pockets, 27 000 SPC/E water molecules, 36 dopamine, 

or 36 serotonin molecules, 243 calcium cations with a charge +1.5, 529 chloride anions 

with a charge -0.75, and 1 chloride anion with a charge -1.0. After the preparation, the 

systems were minimized using 5 000 steps of steepest descent method, where the protein 

and phenol molecules were restrained with a harmonic potential. In order to equilibrate 

the system, at first the velocities for T = 10 K were assigned from the Maxwell-Boltzmann 

distribution. The systems were then subjected to 200 ps of isothermal-isochoric molecular 

dynamics, where the temperature was slowly raised to T = 300 K. This was followed by 

1.2 ns of isothermal-isobaric equilibration which lead to a cell of approximately 70 × 68 

× 66 Å3 in the case of a smaller system and to 96 × 95 × 95 Å3 in the case of the larger 

one. After the equilibration, we ran production simulations for 1000 ns (pure water) or 

800 ns (salt solution).  

 

The A14/A17 binding pocket – free energy calculations  

 

As the A14/A17 binding pocket is located on the surface of the insulin hexamer, 

umbrella sampling is a suitable option for obtaining energetics of binding of 

neurotransmitters to the A14/A17 binding site. As a reaction coordinate, the distance from 

the center of mass of the insulin hexamer to center of mass of heavy atoms of a phenolic 

ligand was used. In order to restrain the phenolic ligand, a simple harmonic potential with 
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value of a force constant 6 XM"%��%⋅Å} was used. The calculations were performed using 21 

evenly spaced windows from 20 Å to 35 Å. Slightly longer equilibration run (5 ns) was 

used to ensure right position of a ligand at the reaction coordinate. Each of the production 

windows were simulated for 50 ns (phenol), 80ns (dopamine), and 100 ns (serotonin). 

The initial computational setup was following: insulin R6 hexamer with 6 phenol 

molecules present in the phenolic pockets, 9 000 SPC/E water molecules, 1 dopamine, 

phenol, or serotonin molecule in the A14/A17 binding pocket, and counterions to ensure 

overall electroneutrality. Finally, the results were analyzed by the WHAM procedure90 

for obtaining the potential of mean force « . As our reaction coordinate is expressed in 

spherical coordinates, one has to correct the results by a factor of Lkx*	49Õ� , where L 

is a molar gas constant, k stands for the thermodynamic temperature, and r is the distance 

used in each of the umbrella window. This correction is already accounted for in 

potentials of mean force presented later. 

Because of the symmetry, there are 3 equivalent binding sites again. Therefore, 

the free energy of binding has to be adjusted similarly as in the case of phenolic pocket. 

Table 2.2. shows entropy correction to a free energy of binding in the case of the A14/A17 

binding pocket.  

 

Table 2. Entropy contribution to the free energy of binding of a phenolic ligand to the 

A14/A17 binding pockets according to how many pockets are unoccupied	∆y!Ñ��_É. If É = 3 then there is no phenolic ligand bound and the contribution is the highest. 〈∆y!Ñ��〉 
represents an average value. 

 

 

-0.65 -0.41 0.00 -0.36

É 3                  2                  1   
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Chapter 3 

Results  

 

This chapter summarizes behavior of different conformations of insulin hexamers 

under various conditions. The first part covers the influence of different cations on T6 

and T3R3 insulin hexamer structures. This is truly essential since the B13 glutamates 

cavity is located in the middle of insulin hexamer regardless of insulin hexamer 

conformation. The second part is dedicated to the famous phenolic pocket of insulin 

hexamer. In this section, I am going to focus on the question whether dopamine and 

serotonin neurotransmitters could work as in vivo ligands of insulin hexamers. In the last 

part of Chapter 3, a new, and hitherto unknown, binding pocket for studied 

neurotransmitters dopamine and serotonin will be introduced and described. 

 

1. Cations and the middle B13 glutamate cavity 

 

Ions have a profound effect on insulin hexamer structures. Insulin is one of the 

few known proteins in which zinc cations are used to store the hormone rather than 

modulating its release into the bloodstream. Here we discuss effects and binding sites of 

various other cations present in beta-cells, namely effects of Na, K, Zn, and Ca on the 

T3R3, and T6 insulin hexamer structures. R6 conformation was omitted to keep system 

as simple as possible because phenol molecules are needed for stabilizing the R6 

structure. 

T3R3, and T6 insulin hexamers were simulated in 0.5 M solutions of the following 

salts: NaCl, KCl, CaCl2, and ZnCl2 for 1.5 µs from which the ion spatial distributions 

were obtained for each of the cation. The results are summarized in Figure 3.1.1. 
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Figure 3.1.1. The cation spatial distribution functions of the T6 (top) or T3R3 (bottom) 

insulin hexamer in different 0.5 M salt solutions (silver – Zn1.5+, cyan – Ca1.5+,  

green – Na0.75+, blue – K0.75+) are shown with an isovalue of 10 (10 x higher concentration 

than what is present in the solution).  
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The first thing to be noticed is that the surface binding of cations follow the series 

Zn1.5+ ≈ Ca1.5+ > Na0.75+ > K0.75+, which is in agreement with the normal Hoffmeister 

ordering. However, the only significantly different place is the middle part of the insulin 

hexamers. The ions with the biggest charge densities (Ca1.5+, Zn1.5+) are localized, i.e., 

occupy a very specific position in the cavity. On the other hand, ions with the small charge 

density (Na0.75+, K0.75+) are more delocalized. The ion localization further affects the 

water structure inside the central cavity. Upon entering of a cation with high charge 

density in the middle of the cavity, the water molecules form a rigid structure and the 

diffusion is slowed down. As an example of this behavior, the water molecule map of a 

T6 hexamer in ZnCl2 solution is presented in Figure 3.1.2.  

 

 

Figure 3.1.2. The spatial distribution function of water molecules in the central cavity of 

the insulin T6 hexamer in 0.5 M ZnCl2. The density isovalue of 2 for hydrogen atoms and 

3 for oxygen atoms is used. The top and the bottom B10 histidines coordinating zinc 

cations are shown and also the six B13 glutamates with a central cation (zinc in this case). 

Zinc cations are depicted in grey. 

 

It is necessary to state that such slow diffusing water molecules cannot be found anywhere 

else in the insulin hexamer. The water structuring is observed up to the B10 histidines, 

essentially closing all 6 possible paths for another cation entering the central cavity. I also 

tried to quantify this phenomenon in Figure 3.1.3. 
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Figure 3.1.3. Cumulative mean of the exchanged water molecules in the B13 region after 

2 ns. The end value on Y axis essentially shows mean percentage of water molecules 

which is exchanged with a bulk solution in 2 ns. T3R3 insulin hexamers are depicted by 

a full curve while T6 hexamers are shown by a dashed line. 

 

The closest 35 water molecules in the B13 glutamate region were assigned as cavity water 

molecules. Figure 3.1.3 shows cumulative mean of a fraction of exchanged water 

molecules in the B13 region after 2 ns. In other words, for example the T3R3 insulin 

hexamer in NaCl solution (full green) – in average, 3.4 out of the 10 water molecules are 

exchanged with the bulk solution within 2 ns. The first thing that strikes us is that water 

exchange is slower in T6 insulin hexamers than in T3R3 hexamers. Another, but maybe 

not surprising thing, is that doubly charged cations of zinc and calcium generally lay 

below sodium and potassium. The only exceptions are T3R3_ZnCl2 and T3R3_KCl 

which otherwise lay close together. Another interesting fact is the number of ions that 

enter the B13 cavity which is shown in a Figure 3.1.4.  
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Figure 3.1.4. The integrated radial distribution function for cations from the middle of 

the cavity essentially showing averaged number of cations inside the B13 glutamates 

cavity during the 1.5 µs simulations. Results are divided into T3R3 insulin hexamer (left) 

and T6 insulin hexamer (right). In the case of T6 insulin hexamer, the curves of T6_Zn 

and T6_Ca overlap. 

 

This figure shows an integrated radial distribution function for cavity cations, i.e., an 

averaged number of cations inside the cavity during the simulation. Every simulation 

started with one cation already inside and it is observed that none of them left (average 

number of cations is always higher than one). In the case of the high charge density 

cations (Zn1.5+, Ca1.5+), the number of cations remained exactly one, and in case of the 

low charge density cations (Na0.75+, K0.75+), additional cations diffused inside the cavity 

(value 1.4 – 2.9). 

 

2. The phenolic pocket 

 

In this part, I thoroughly explore the possibility of dopamine and serotonin 

neurotransmitters substituting phenol inside the phenolic pocket of insulin R6 hexamer. 

For this purpose, I firstly substituted phenols in the phenolic pockets by serotonin or 

dopamine molecules while assuming two possible initial orientations of the 

neurotransmitters as shown in Figure 3.2.1.  
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Figure 3.2.1. Phenol together with serotonin and dopamine neurotransmitters are 

depicted in the phenolic pocket. Two initial orientations of serotonin, and dopamine were 

considered.  

 

These systems were then propagated in time without any constraints. The resulting root 

mean square deviations (RMSD) of the backbone of the insulin R6 hexamers with 

different phenolic ligands are presented in Figure 3.2.2.  

 

Figure 3.2.2. Root mean square deviations of a protein backbone from the insulin R6 

hexamer crystal structure with different phenolic ligands (phenol, dopamine, and 

serotonin). Both for serotonin and dopamine, there were two starting orientations. The 

crystal structure with phenols was the reference geometry for the RMSD evaluations75. 

 

As expected, the insulin R6 hexamer containing phenol molecules has the lowest RMSD 

of ~1.6 –1.8 Å indicating that the system does not significantly deviate from the crystal 

structure during the simulation. Starting from the first orientation, both serotonin and 
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dopamine behave similarly to phenol with backbone RMSD just above 2 Å while, starting 

from the second orientation, leading to somewhat higher RMSDs (~2.8 Å). Closer picture 

can be obtained upon inspecting RMSDs pertinent directly to the binding pocket. Figure 

3.2.3. thus shows RMSDs with respect to the phenolic ligand and the A6 cysteine 

backbone oxygen.  

 

Figure 3.2.3. Root mean square deviations of all 6 phenolic ligands from the phenol 

binding pockets in the insulin R6 hexamers. Each line corresponds to RMSD of one 

phenolic ligand from its starting position with respect to the phenolic ligand and A6 

cysteine backbone oxygen. The zero value of RMSD shows direct binding on phenolic 

ligand to insulin R6 hexamer through hydrogen bond while any significant increase 

indicates breaking of this hydrogen bond.  

 

As expected, phenol essentially stays in its binding pocket again. Two in six phenols 

transiently break the hydrogen bonds with protein A6 and A11 amino acids. However, 

they remain in the binding pocket and eventually reestablish the original geometry. 

Starting from the first geometry, serotonins also stay in the binding pocket with the 

exception of one molecule which temporarily leaves it (but eventually diffuses back). 

This demonstrates the reversibility of the binding/dissociation process. In the other cases 

however, the neurotransmitter molecules mostly leave the original binding site. This 

suggests that the phenolic pocket is rather tight and unfit for strong binding of dopamine 
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in either orientation and serotonin in the second one. In Figure 3.2.4., I compare binding 

of phenol and serotonin (in the first geometry) in the phenolic pocket.  

 

 

Figure 3.2.4. Phenol (left) and substituted serotonin(1) (right) in the phenolic pocket. The 

binding pocket is mainly composed of hydrophobic amino acids (not shown) and A6 and 

A11 amino acids which provide crucial binding through hydroxyl group. 

 

Based on the figure, it is clear that the charged amino group of serotonin provides another 

contribution toward the binding energy by binding to the A11 backbone oxygen atom. 

These results suggest that serotonin may be a viable candidate for a substitution of phenol 

in the in vivo conditions. In order to explore this possibility further, I performed free 

energy calculations of binding of phenol, serotonin or dopamine to the phenolic pocket 

using the thermodynamic integration method. The final results are presented in Table 

3.2.1. From Table 3.2.1., we see that while phenol is the strongest binder among the three 

molecules, the strength of serotonin binding is comparable. In contrast, dopamine, which 

does not fit into the phenolic pocket, is not bound at all. Free energies of successive 

transformations steps are summarized in Table 3.2.2.  

 

Table 3.2.1. Standard free energies of binding of dopamine, serotonin, and phenol 

molecules to the phenol binding pocket in the insulin R6 hexamer with corresponding 

dissociation constants. ∆y�∘ – standard free energy of binding, §P – dissociation constant. 
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Table 3.2.2. Free energies of binding of dopamine, serotonin, and phenol molecules to 

the phenolic binding pocket are divided into several steps. 

 

∆y4 – free energy difference of charge decoupling of phenol molecule inside the phenolic pocket, ∆y� – free energy 

difference of mutation of phenol into dopamine/serotonin inside the phenolic pocket, ∆yp – free energy difference of 

introducing charges on dopamine/serotonin inside the phenolic pocket, ∆y�  – free energy difference of charge 

decoupling of dopamine/serotonin in the bulk solution, ∆y· – free energy difference of van der Waals transformation 

of dopamin/serotonin into phenol in the bulk solution, ∆y6 – free energy difference of introducing charges on phenol 

in the bulk solution, ∆∆y -!� – dispersion contribution to the free energy difference between phenol/neurotransmitter, 

∆∆y�%� – electrostatic contribution to the free energy difference between phenol/neurotransmitter, ∆∆y4U� – overall 

free energy difference between phenol/neurotransmitter. 

∆y¼ – free energy difference of introducing the restraints to the phenol molecule inside the phenolic pocket,	∆y½ – free 

energy difference of charge decoupling of phenol inside the phenolic pocket, ∆y¾ – free energy difference of van der 

Waals decoupling of phenol inside the phenolic pocket, ∆y44  – free energy difference of releasing restrains 

(analytically, correction to the standard state), ∆y4� – free energy difference of charge decoupling of phenol in the bulk 

solution, ∆y4p – free energy difference of van der Waals decoupling of phenol in the bulk solution, ∆y²_� – overall 

standard free energy of binding without the entropy contribution originating from the symmetry ,	〈∆y!Ñ��〉 – average 

symmetry contribution to the free energy of binding, ∆y²_�∘  – overall standard free energy of binding of phenol to the 

phenolic pocket. 

 

When we compare electrostatic (∆∆Gele) and van der Waals contributions (∆∆Gdisp) with 

the overall free energy of binding of serotonin over phenol, we see that serotonin does 

not gain as much from electrostatics as phenol. Nevertheless, the dispersion term does 
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compensate for this loss. In the case of dopamine, the electrostatic term is largely positive 

and the dispersion term is insufficient to compensate. 

 

3. The A14/A17 binding pocket 

 

While dopamine does not bind into the phenolic pocket, my simulations indicate 

an existence of new binding sites for this molecule on the surface of the R6 hexamer. The 

resulting spatial distributions of dopamine corresponding to these three equivalent 

binding sites are depicted in Figure 3.3.1. For comparison, I also show spatial 

distributions of serotonin which occupies similar sites but seems to be more loosely 

distributed on the surface of the R6 hexamer.  

 

 

 

Figure 3.3.1. Dopamine (left, red) and serotonin (right, magenta) spatial distributions 

around the insulin R6 hexamer using the same isodensity value (~50x). Chain A is shown 

in blue color while a chain B is shown in yellow color. Black circles depict the A14/A17 

binding pockets.  
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These three binding sites for dopamine, which are identical due to the symmetry of insulin 

hexamer, are also present in the T3R3 or the T6 conformation of the insulin hexamer. A 

detailed view on one of these dopamine binding sites is shown in Figure 3.3.2. The 

binding pocket is formed between two adjacent insulin monomers. The strong binding to 

dopamine is mediated by a hydrogen bond, a salt bridge, and hydrophobic interactions, 

including the crucial A14 tyrosine and A17 glutamate amino acids. As a result, I denote 

this new site as the A14/A17 binding pocket.  

 

 

Figure 3.3.2 Dopamine (bottom) and serotonin (top) in a new A14/A17 binding pocket. 

It is formed by two adjacent insulin monomers, where chain A is depicted in blue color 

while the chain B is depicted in yellow color.  

 

These results suggest that dopamine in particular may bind to these sites with high 

affinity. To this end, free energies of binding dopamine as well as serotonin (and phenol 

for comparison) to the A14/A17 binding site were evaluated using the umbrella sampling 

method. The resulting binding free energy curves are presented in Figure 3.3.3. with the 

binding constants summarized in Table 3.3.1. Upon applying symmetry and volume 

entropy corrections, we see that it is dopamine distributions which are attached the 

strongest to the new binding site while the corresponding binding of serotonin (as well as 

phenol) is rather weak. 
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Figure 3.3.3. Free energy profiles of phenolic ligands entering the A14/A17 binding 

pocket in a bulk solution. The A14/A17 binding pocket is located at ~21-23 Å at the 

reaction coordinate while ~35 Å represents the bulk solution. 

 

Table 3.3.1. Standard free energies of binding of dopamine, serotonin, and phenol 

molecules to the A14/A17 binding pocket with corresponding dissociation constants. «� – free energy difference form umbrella sampling calculations, Ö∆y!Ñ��× – symmetry 

contribution, ∆yØ�% – volume entropy contribution (correction to standard state (1M)), ∆y�∘ – overall standard free energy of binding, §P – corresponding dissociation constant. 

 

 

It is also important to address the question whether calcium cations, which are abundantly 

present in beta cells, could affect the interactions with the binding sites above. This is 

very topical since an important contribution to binding comes from the A17 glutamates. 

Figure 3.3.4. shows the resulting spatial of neurotransmitters and calcium cations on the 

insulin R6 hexamer in 0.5 M CaCl2 aqueous solution. 

 

phenol -1.83 ± 0.28 -0.36 1.38  ± 0.22 -0.81 2.59E-01

dopamine -6.23 ± 0.67 -0.36 3.2  ± 0.2 -3.24 4.38E-03

serotonin -2.65 ± 0.55 -0.36 2.0  ± 0.1 -0.92 2.13E-01

214/217 ´Ú\�r
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Figure 3.3.4. Dopamine (left, red) and serotonin (right, purple) spatial distribution 

functions around the insulin R6 hexamer in a 0.5 M CaCl2 solution using the same 

isodensity value (~50x). Spatial distribution functions of calcium cations are depicted in 

cyan color (isodensity value 15x). Chain A is shown in blue color; chain B is shown in 

yellow color. Black circles depict the A14/A17 binding pockets. 

 

Even though the neurotransmitter distributions are quantitatively altered in the calcium 

chloride solution compared with pure water (the comparison in Figure 3.3.1.), the same 

binding patterns to the A14/A17 pocket can still be seen. However, in the case of 

serotonin in particular, the resulting binding is weaker. This weakening is likely due to 

the relatively strong binding of Ca2+ cations to each of the A17 glutamates. In other words, 

binding of dopamine to the new A14/A17 biding pocket effectively inhibits binding of 

calcium to the A17 glutamates whereas binding of calcium to the A17 glutamates inhibits 

binding of serotonin. 
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Chapter 4  

Discussion 

 

1. Ions and the inner cavity 
 

The experimental results proved that cation concentrations inside the secretory 

granules are dramatically different from anywhere else. As the secretory granules contain 

high amount of insulin, a question regarding specific binding of cations to the insulin 

hexamers arose. I investigated this phenomenon by means of molecular dynamics 

simulations.  

Binding of cations to the surface of hexamers follows classical Hoffmeister series. 

However, behavior of cations in the middle of the B13 glutamates cavity is completely 

different. The high charge density cations (zinc and calcium) stabilize the water structure 

inside the cavity and consequently prevent other cations from entering. The low charge 

density cations (sodium and potassium) do not stabilize the structure strongly enough to 

hinder all possible paths which eventually leads to the presence of ~2‒3 cations at the 

same time. It seems that either the repulsion of two divalent cations inside the inner cavity 

is too high or that the effective radius of divalent cations is too big for entering the B13 

cavity. Sadly, the results obtained are purely theoretical and no comparative experiment 

has been performed so far. 

 

2. Neurotransmitters 
 

 An idea that neurotransmitters could somehow be connected with insulin hexamer 

conformation is very thrilling. To this day, they are no substances serving as stabilizing 

agents which are naturally present in our bodies. In order to shed more light on this idea, 
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a possible substitution of phenol in the phenolic pocket by dopamine or serotonin was 

investigated. 

At first I substituted phenol molecules for dopamine or serotonin and then 

performed simple classical MD simulations to get the initial idea. The first results showed 

that only binding strength of serotonin was similar to the phenols’. These results were 

further supported by the free energy calculations. One phenolic ligand was mutated 

between phenol, serotonin and dopamine to obtain the difference in free energies of 

binding between these considered phenolic ligands. Results clearly show that serotonin 

is similar to phenol in terms of thermodynamics. However, the strength of dopamine 

binding is by ~5.6 kcal/mol lower. Furthermore, the absolute free energies of binding of 

considered phenolic ligands were calculated which lead to standard free energies of 

binding of phenol (-4.5 ± 1.6 kcal/mol), serotonin (-4.2 ± 1.9 kcal/mol), and dopamine 

(1.1 ± 1.7 kcal/mol). 

 During the research, a new, and previously unknown, binding pocket for 

dopamine and serotonin was found. The new binding pocket was named after the 

interactions involved in binding – a A14/A17 binding pocket. I have described the 

A14/A17 binding pocket both in structural and energetics terms. From the structural point 

of view, the A14/A17 binding pocket is located on the surface of hexamer regardless its 

conformation (T6/T3R3/R6). Moreover, due to the three-fold symmetry of insulin 

hexamer there are three identical binding pockets. From the thermodynamics point of 

view, I have shown that dopamine binds the strongest while serotonin and phenol not so 

much. Standard free energies of binding are as follows: dopamine (-3.2 kcal/mol), 

serotonin (-0.9 kcal/mol), and phenol (-0.8 kcal/mol).  

 As previously stated, the research was carried out in collaboration with J. Jiracek 

et al, and M. Brzozowski et al. M. Brzozowski who succeeded in crystalizing insulin 

hexamer in the presence of serotonin. The neutron scattering analysis revealed the T3R3 

conformation with 6 serotonin molecules present. Three of them were in the phenolic 

pocket and three of them were in the new binding pockets which had been predicted by 

molecular dynamics simulation before the experiment. The structural arrangement of 

serotonin inside the phenolic pocket and comparison to my molecular dynamics 

simulation is shown in a Figure 4.1. 
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Figure 4.1. Comparison of structural arrangement of serotonin inside the phenolic pocket 

predicted by molecular dynamics simulations with the experimental  

results (crystallography). 

 

In the case of the A14/A17 binding pocket, I predicted two degenerate low energy laying 

structures. Comparison with the experimental result is shown in Figure 4.2. 

 

 

Figure 4.2. The newly discovered A14/A17 binding pocket for neurotransmitters and two 

possible orientations predicted by the molecular dynamics simulation in comparison with 

the experimental result. 

 

From the structural point of view, the agreement is very good. From the energetics point 

of view however, the MD simulations predicted that serotonin binds only non-

specifically. Clearly more theoretical investigation has to be done in this topic. Moreover, 
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my simulations predict that not serotonin, but dopamine is the ultimate binder to this 

A14/A17 binding pocket. Unfortunately, this has not been proved yet experimentally as 

there are problems with dopamine’s molecule stability. 

 Another piece of information which support this work is experiment done by J. 

Jiracek et al. There are three possible conformations (T6, T3R3, R6) of insulin hexamer 

and all hexamers contain two B10 coordinated zinc cations. Various ligands can bind to 

these zinc cations. However, only if that part of the hexamer is present in R3 form. 

Therefore, the following experiment was performed. A phenolic ligand was titrated to a 

solution of insulin T6 hexamers in the presence of a ligand which binds to the B10 zinc 

cation. If the hexamers are in T conformation, there is no binding. Nevertheless, if they 

are in R conformation, the binding occurs. This binding can be monitored by absorption 

spectroscopy. In this experiment, a 4-hydroxy-3-nitrobenzoic acid (4H3N) was used. This 

molecule change the absorption near 441 nm as it binds. And so if titrated ligand changes 

conformation of insulin hexamer, we will see it as a change in the absorption. Figure 4.3. 

shows the ideas of the experiment and results. The first step is to measure a titration curve 

(against blank titration) which can be fitted using the Hill equation. This equation will 

give us three parameters – a strength of response ΔAmax, an apparent dissociation 

constant Kd, and the Hill coefficient. What we see from this experiment is that only 

phenol and dopamine display change in the absorption and therefore, only these two 

ligands bind to the phenolic pocket and change the conformation of insulin hexamer. This 

is in agreement with the molecular dynamics simulations. Moreover, MD simulations 

predict that phenol binds stronger than serotonin, which is also in agreement with the 

experiment. However, one should be careful about interpreting these results as the binding 

of a phenolic ligand to the phenolic pocket is observed only indirectly. 
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Figure 4.3. Results of an experiment conducted by J. Jiracek et al. Left top: Illustration 

of the experiment arrangement – a phenolic ligand (phenol/serotonin/dopamine) is titrated 

to insulin hexamer solution with 4-hydroxy-3-nitrobenzoic acid (4H3N). 4H3N binds to 

the proximity of B10 zinc cation but only to the R conformer. This binding changes 

absorption of 4H3N at 441 nm. A titration curve is measured (right top) and fitted using 

the Hill equation. From this technique, the strength of response ΔAmax, dissociation 

constant Kd, and the Hill coefficient was obtained. Note that no response was acquired in 

the case of dopamine titration.  
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Chapter 5 

Conclusions 

 

The results of my computer experiments show clear difference between doubly 

charged cations (zinc and calcium) compared with singly charged cations (sodium and 

potassium). However, there are still many unanswered questions like whether a divalent 

cation present in the B13 cavity prevents other monovalent cations from entering and 

furthermore, whether it is possible for a divalent cation to enter the cavity while 

monovalent cation/cations is/are present. The next fact is that only T6 and T3R3 hexamers 

were investigated and therefore, the R6 hexamer should also be probed. Another 

interesting question is why zinc is so important to insulin hexamer although this is 

probably a question concerning the QM/MM methods. All these questions were asked for 

now since proper parametrization of all ions is essential. A group of P. Jungwirth is now 

developing a force field for zinc cation and we have decided to wait until we have proper 

description of this crucial ion regarding this problem. 

Concerning neurotransmitters overall in both MD experimental simulations, the 

results suggest that serotonin might work as in vivo phenolic ligand while dopamine does 

not. Nevertheless, all the presented results are indirect and the final answer about the 

actual conformation of insulin hexamer in in vivo conditions still cannot be answered. 

However, this is the first progress in this topic after several decades. Another questions, 

which must be raised now, include: How does the transition from T to R conformation 

happen? Why is zinc cation so unique to insulin hexamer? Moreover, we know that 

arginine inhibits hexamerization (according to recent M. Brzozowski’s experimental 

results) while an addition of serotonin overcomes this inhibition. Because arginine is a 

residual product of insulin hexamer formation, it is quite abundant in secretory granules. 

What is thus the overall interplay between cations – neurotransmitters – arginine? We 

hope that these questions will be answered soon. 
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Chapter 6 

List of abbreviations 
 

HF – Hartree–Fock 

DFT – density functional theory 

NPA – natural population analysis 

RESP – restrained electrostatic potential fit  

WHAM – weighted histogram analysis method 

NMR – nuclear magnetic resonance 

LINCS – A linear constraint solver for molecular simulations 

L-DOPA – L-3, 4-dihydroxyphenylalanine 

DPN – dopamine 

SEN – serotonin 

PHN – phenol 

MD – molecular dynamics 

T6 – insulin hexamer with all monomers in T conformation 

T3R3 – intermediate form of insulin hexamer between T6 and R6 conformation 

R6 – insulin hexamer with all monomers in R conformation 
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