
Charles University in Prague
Faculty of Mathematics and Physics

Diploma thesis

Pavel Celba

Dynamická úroveň detailu

Dynamic Level of Detail

Department of Software Engineering

Supervisor: Bedřich Beneš, Ph.D

Study program: Computer science, Software systems

Acknowledgments
Many thanks to Bedřich Beneš, Ph. D, to Greenworks organic–software for
gracefully providing tree creation software and tree library, to my family and
everyone else providing me with some support or advice in relation to this work.

I declare that I wrote my diploma thesis independently and exclusively with
the use of the cited sources. I agree with lending the thesis.

In Prague 16. 7. 2007 Pavel Celba

Contents

1 Introduction 1

2 Previous work 2
2.1 Level of detail . 2

2.1.1 Categories of level of detail 3
2.1.2 Level of detail selection criteria 4
2.1.3 Geometry reduction techniques 5
2.1.4 Non-geometric level of detail 8

2.2 Ecosystem rendering . 10
2.2.1 Non real–time ecosystem rendering 10
2.2.2 Real–time ecosystem rendering 12
2.2.3 Real–time grass rendering 23

2.3 Ecosystem motion . 25
2.3.1 Tree animation methods 26

3 Problem definition 33

4 Our approach 35
4.1 Introduction and overview . 35
4.2 Obtaining data . 37

4.2.1 Basic tree representation 37
4.2.2 Modeling and exporting data 38
4.2.3 Exporting utility overview and usage 40
4.2.4 Exporting utility . 41
4.2.5 Possible improvements and other usage 43

4.3 Simple tree representation . 45
4.3.1 Simple tree representation format 45
4.3.2 Simple tree conversion utility overview and usage 46
4.3.3 Simple tree conversion utility 47
4.3.4 Possible improvements . 47

4.4 LOD tree representation . 47
4.4.1 LOD tree representation format 47
4.4.2 LOD tree conversion utility overview and usage 49
4.4.3 LOD tree conversion utility 51
4.4.4 Possible improvements . 59

4.5 Creating forests . 60
4.5.1 Forest representation structure 60
4.5.2 Forest generation utility overview and usage 62

iii

4.5.3 Forest generation utility 64
4.5.4 Possible improvements . 65

4.6 Rendering engine . 67
4.6.1 Viewer overview and usage 67
4.6.2 Viewer . 71
4.6.3 Rendering engine with impostor system 72
4.6.4 Possible improvements . 79

4.7 Forest motion . 81

5 Results 83
5.1 Measurement conditions . 83
5.2 Test suite overview . 84
5.3 Results . 87
5.4 Interpreting results . 111

6 Conclusion and future work 114
6.1 Conclusion . 114
6.2 Subjective opinion . 115
6.3 Future work . 117

7 Image gallery 119

A Installation 133

B Catalogue of trees 135

C Catalogue of forests 153

Abstract
Title: Dynamic Level of Detail
Autor: Pavel Celba
Department: Department of Software Engineering
Supervisor: Bedřich Beneš, Ph. D
Supervisor’s e-mail address: bbenes[at]purdue.edu
Abstract: The work aims to render real–time forest with lighting. Detailed
tree models created by professional application are used. A point–based method
for level of detail is used for tree model simplification and rendering. The ren-
dering of forest is based on hierarchical view–dependent pseudo–continuous level
of detail. The frustum culling is used for scene visibility testing. Novelty hierar-
chical impostor system is presented to speed up rendering. Two forest lighting
models are used. First is directional diffuse lighting to simulate sun light and
the second is ambient only lighting model. The work includes implementation
of rendering system using shader programs running on graphic card. Utilities
are provided for obtaining data from XFrog tree modeling utility, for converting
tree to format for viewing, for creating level of detail representation of trees and
placing trees into the forest.
Keywords: Real–time, Forest, Render, Level of detail, Tree

Problem assignment

Implement dynamic level of detail for rendering of lit moving ecosystems.
The task is to render animated forest with changing lighting in real–time. The
work requires to program pixel and vertex shaders.

• In first phase generate 3D models of trees. The best will be to use Maya.

• From models create dynamic level of detail. All will be working as pre-
processing and result will be validated and time–balanced levels of detail.
Different levels of detail will depend on concrete graphic card on which the
preprocessing will run. Use and discuss existing methods of billboarding,
directional billboards, point and line–based rendering, study new methods
and implement them.

• Arrange generated tree levels of detail into ecosystems and properly mea-
sure and discuss how the rendering speed is changing. Apply 2D BSP for
scene partitioning and frustum culling of invisible objects.

• On partially visible trees will be applied hierarchical level of detail on the
level of branches. Invisible parts of trees will not be rendered.

• Apply global level of detail techniques. Impostors, and billboards and
discuss how they are affecting quality and rendering speed of scene. All
(for example the position of impostor) will be again dependent on concrete
graphic card.

• Animate individual trees. The wind will be generated by Gauss fractal
noise generator. Individual trees will react on physically based model of
motion. Do not take into account collision detection.

• Consider and try to implement ecosystem lighting. Simplified shadows,
precomputed billboards and intensity of light falling onto leaves and branches.

Chapter 1

Introduction

The real–time forest rendering is interesting and challenging field of research.
The structure of forest is complex one consisting of hundred thousands of plants
or more when counting smaller plants. Only a single tree can have ten thousand
of leaves and several thousand of branches in case of adult tree. This presents
a difficult area to master with only limited resources available on nowadays
computers to mimic forest or to create virtual forest in real–time.

It’s recently that outdoor scenes appeared in games such as FarCry or The el-
der scrolls IV: Oblivion in decent quality. Many people devoted years of research
to invent methods and algorithms for forest and tree simplification in order to
bring commercially available forest rendering solution to the developers and
therefore to the final users.

The area of research is large. One can study various tree types structures and
growing habits, tree simplification methods, forest creation algorithms, special
rendering engines often requiring sophisticated spatial data structures to speed
up rendering, forest lighting, forest motion by wind or user action, and finally the
most difficult task is to put everything together. As some research papers may
look promising, it is often showed that implementing them for forest rendering
solution is unbearable because of various reasons and that a lot of important
implementation details must be often invented to provide decent visual quality
of rendered forest in most cases.

By this work we hope to provide deep insight into the topic and introduce
some new ideas in real–time forest rendering to be considered and added to the
state of the art knowledge.

The outline of this work is now overviewed. We present overview of previous
work done in this area in chapter 2. We start with overview of level of detail
techniques continuing through image–based and point–based methods for forest
rendering and we finally discuss grass rendering and forest motion. Then exact
problem to solve is defined in chapter 3 based on previous work done. We present
our approach to forest rendering in chapter 4 followed by results achieved in next
chapter 5. Then our conclusion is stated in chapter 6. Finally an image gallery
presents visual achievements of our forest rendering solution in chapter 7. Our
work is complemented by three appendixes. The first one with installation
notes for accompanied DVD disc, the second is catalogue of trees and the third
is catalogue of forests.

1

Chapter 2

Previous work

A lot of work has been done in computer graphics generally and in ecosystem
rendering specifically. In this chapter an overview of work done is reported.
Although it’s impossible to discuss everything which was done even in as small
part of computer graphic as is real–time ecosystem rendering, an effort to pro-
vide nice overview of currently used techniques is the aim of this chapter. First a
sketch of optimization techniques used in rendering is given in section 2.1 to fa-
miliarize a reader with basics. Then ecosystem rendering is discussed in section
2.2 including off–line and interactive rendering in subsection 2.2.1, real–time
rendering in subsection 2.2.2 and grass rendering in subsection 2.2.3. Finally
animation of ecosystems is reviewed in section 2.3.

2.1 Level of detail

Nowadays graphic cards performance and increasing need for real–time ren-
dering of more and more complex scenes requires sophisticated optimization
techniques to be applied to the scene before it’s send to the graphic card and
finally rendered. One of these optimization techniques is called level of detail.
The idea of level of detail is based on simple assumption that objects, which
are further from the viewer of the scene1, will not be seen by the viewer in such
detail as objects which are near the viewer of the scene. Therefore complexity,
detail of objects far from the viewer can be significantly reduced before they are
rendered by graphic card.

Level of detail is meant in relation to computer graphics as reduction of
geometry details of objects depending on the reduction criteria usually distance
of object from the viewer of the scene. Although there are other usages of level of
detail, for example level of detail for textures. There are severals ways how one
can achieve reduction of object’s geometry and how one can choose geometrically
reduced object to render. There are three main categories or frameworks of level
of detail techniques as stated in Level of Detail for 3D graphics book [15] and
with one additional category stated in A Review on Level of Detail [12]. These
categories are:

Discrete level of detail Several reduced geometry models are created for ob-
ject. Then the model of object for rendering is selected according to

1Viewer of the scene is the one who is looking at the scene

2

CHAPTER 2. PREVIOUS WORK 3

particular selection criteria at run–time.

Continuous level of detail Geometry reduction is continuous for object ac-
cording to reduction criteria.

View–dependent level of detail Reduction of object’s geometry depends not
only on reduction criteria, but also on viewing parameters such as direc-
tion from which is object viewed.

Hierarchical level of detail Like View–dependent level of detail, but addi-
tionally objects can be merged together to achieve further reduction.

We will now discuss these categories in more detail. Then we will follow by
discussion on criteria or metrics by which is particular model selected to be
rendered at run-time and techniques used for geometry reduction. Finally we
will discuss non-geometric level of detail.

2.1.1 Categories of level of detail

Discrete level of detail Discrete level of detail is the simplest of level of
detail techniques used for achieving geometry reduction of the scene. Several
geometry reduced models of objects are created in preprocess either manually or
automatically. At run–time geometry model to be rendered is chosen according
to particular selection criteria. This selection criteria is usually for real-time
graphic applications distance of the object or approximation of the size of the
object. Discrete level of detail is also the fastest and easiest to implement of level
of detail techniques. Because of that it’s most widely used technique nowadays
and popular among game developers. The disadvantage is that object introduces
ugly popping effect when geometry model changes. In practice some hysteresis
is therefore added to selection criteria in order not to introduce popping effect
too often when being near the edge of selection between two geometry mod-
els. Another approach to reduce popping effect is to alpha–blend models when
change of geometry happens. This is done so that the transparency of current
geometry model changes from maximal to minimal value while the transparency
of final model increases from minimal to maximal value over some short period
of time. But this alpha–blending level of detail method requires to render both
models as it’s obvious from explanation above.

Continuous level of detail Continuous level of detail gets rid of discrete
geometry model changes popping just introducing smooth reduction of model
geometry depending on reduction criteria for example approximated size of ob-
ject. It also renders only geometry which is really needed, opposing discrete
level of detail where only several discrete levels were selected. Disadvantage of
this technique is that models don’t always look good and object may appear to
constantly change which may be distracting. It’s also slightly less efficient to
use Continuous level of detail than Discrete level of detail on current graphic
hardware.

View–dependent level of detail Specially, when an object is large, it will
be very good to reduce detail on the far side of the object, but leave more
detail in the near side of the object to further reduce scene complexity. This

CHAPTER 2. PREVIOUS WORK 4

introduces View–dependent level of detail technique taking into account from
which direction is object actually viewed. This allows to concentrate more
geometry complexity on parts of object which need it and further reduce parts
of objects far away or on which attention isn’t focused. Also silhouette of object
can be rendered with more detail and inside of object with less detail since our
eyes are more sensitive on borders. Since it’s more advanced technique, it takes
much more time and memory resources than previous techniques.

Hierarchical level of detail Hierarchical level of detail introduces further
concept by allowing multiple objects to be united to one object. It’s very good
for scenes with a lot of small objects because uniting this objects can reduce
scene complexity greatly. This is by far most complex technique of level of
detail and thus takes most computer resources and it is its disadvantage. The
technique’s advantage is in great flexibility it provides.

2.1.2 Level of detail selection criteria

It’s important for level of detail to know how much to reduce objects in the
scene. For that purpose various criteria, metrics are introduced which allows
the control of object reduction amount. We will discuss these metrics one by
one:

Distance Distance is simplest and easiest metric to choose as criteria. Usually
for discrete level of level a set of distances is chosen where change of object’s
geometry occurs. For continuous level of detail an amount of object’s geometry
reduction can be computed based on object distance and projection parameters
of scene’s camera. However distance metric doesn’t take into account the size of
the object on the screen. This leads to situations that same level of detail is used
for both big and small objects at some fixed distance. Thus either oversampling
small object because big object takes larger area on the screen and must be
shown at better level of detail, or undersampling big object because not enough
detail is shown on it.

Size Object size metric is used to overcome limitations of distance metric.
Object size metric computes or more often approximates object’s pixel size on
the screen and according to this pixel size information computes desired level
of detail for object. In practice object’s size is approximated by some type of
object’s bounding envelope most commonly bounding box or bounding sphere.

Advanced metrics More sophisticated metrics were invented according to
human eye system and behaviour research. It can be taken into account that
human eye sees best objects on which is focused. It allows to use worse level
of detail 2 on objects on which isn’t human eye focused. Simply center of the
screen can be supposed as an area on which human will mostly focus. This
allows to reduce detail on the borders of the screen. More complex evaluation
of human attention can be also taken into account. There are several classes
of objects which attracts attention. First type is moving object. For very fast

2Worse level of detail means less geometry used on the object. This is for clarity of
discussion.

CHAPTER 2. PREVIOUS WORK 5

moving objects level of detail can be reduced significantly because it’s hard
for human to see it’s real detailed shape especially when the object is small.
But for slow or moderate speed moving objects it’s little bit more complicated
because such object usually attracts a lot of attention. So it’s good to set
better level of detail or when speed of such object is sufficient to motion blur
object allowing reduction of detail. It has also been shown that object with
significantly different color than rest of the objects attract a lot of attention.
For example red flower blossoms on the green grass field. It’s better to leave
better level of detail for such objects. In practice evaluation of this requires
special importance information to be associated with the object or to apply
some image color analysis technique. Environmental conditions such as haze,
fog or dim lighting can help in further detail reduction of objects in the scene.

2.1.3 Geometry reduction techniques

Geometry reduction techniques are divided into two types:

Geometry simplification techniques Geometry simplification techniques re-
duce number of primitives, but leaves important object’s topological prop-
erties intact.

Topology simplification techniques Topology simplification techniques re-
duce number of primitives, which can incorporate change of object’s topo-
logical properties such as number of holes.

It’s also important to somehow measure error created by object’s geometry
reduction. It introduces the need to provide metric to measure such geometry
reduction error. This metric can serve as criteria for selecting which part or
primitive of the object will be reduced. Usual practice is to compute error for
all object’s reduction options and then use some kind of greedy algorithm to
reduce geometry for reduction options with minimal error. We will now discuss
various reduction options or operators and then discussion about metrics will
follow.

Geometry simplification techniques There are several options for geom-
etry simplification by which geometry can be reduced (simplified). Attention
must be made for sharp edges of object because removing them (or part of them)
can introduce big change in object’s geometry. On the other hand removing or
merging nearly coplanar primitives generally introduces small object’s geometry
changes and thus this parts of object are candidates to be removed. Simplifica-
tion options or operators are these:

Edge collapse When edge collapses two edge vertices are united to one ver-
tex. When the united vertex is on the position of one of collapsed edge’s
vertices, the operation is called half-edge collapse. Edge collapse involves
typically two decisions. First what edge on object to collapse and second
where to place new united vertex. It’s very popular geometry simplifica-
tion technique because it doesn’t involve filling hole in geometry. But it
can introduce undesired fold over in object’s geometry.

Vertex removal Vertex removal removes vertex from object’s geometry just
creating hole which must be filled then. Usually geometry is represented

CHAPTER 2. PREVIOUS WORK 6

by set of triangles in real–time computer graphics so in that case hole is
triangulated. One of such triangulation is similar to half-edge collapse so
vertex removal can be threatened as generalization of half-edge collapse.
Caution must be taken to avoid folding. Edge swap operation can help to
prevent folding.

Triangle collapse Triangle collapse chooses triangle and collapses it to a single
vertex. But it has little practical usage.

Primitive clustering Object’s primitives are clustered together to one big
primitive or to lesser number of primitives simplifying geometry. This is
very good for nearly coplanar primitives in the object.

Topology simplification techniques

Vertex clustering Vertex clustering technique divides object by 3D uniform
grid and then merges all vertices in single grid cell to one. So all tri-
angles or primitives within single cell are destroyed and single vertex is
connected to neighbouring cells to which previous cell geometry was con-
nected. Technique can be improved by using non-uniform grid.

Vertex pair contraction Vertex pair contraction is an extension, more gen-
eral version of edge collapse, and allows to pick two different vertices in
the object regardless of vertices being neighbouring, or not and contract
them to one vertex. Because of generality of vertex pair contraction sec-
ond vertex is chosen locally only from some fixed diameter around first
vertex. This is very good for closing holes and gaps in the object.

Geometry reduction metrics There are various approaches to measure er-
ror of geometry reduced object against original object. There are not only
geometry–based metrics which measure geometry error usually by computing
distance between vertexes, planes, or surfaces, but also image–based metrics
measuring pixel differences and moreover attribute–based metrics which mea-
sures such things like vertex normal change or change of object’s texture coor-
dinates.

Geometry–based metrics Vertex to vertex distance The easiest thing is
to simply compute vertex to vertex distance. This metric can be
especially used with edge or half-edge collapse.

Vertex to plane distance Minimal distance from vertex to plane is com-
puted.

Vertex to surface distance Either minimal distance from vertex to sur-
face is computed or surface is sampled by points and minimal distance
from vertex to these sampled points on the surface is taken.

Surface to surface distance This is the most general case. There is
little bit problem with saying what is surface to surface distance.
Typical approach to compute all distances between all points and
choose the minimum is not optimal because it doesn’t account for
local surface deviations. Much more optimal is to use Hausdorff
distance which takes maximum of minimal point distances. Hausdorff

CHAPTER 2. PREVIOUS WORK 7

distance from first surface, call it A, to second surface B is computed
exactly so that for each sampling point of surface A minimal distance
to sampling points of surface B is found and then maximum of these
minimal distances is taken as it’s shown on equation 2.1.

h(A,B) = max
a∈A

min
b∈B

‖a− b‖ (2.1)

But because Hausdorff distance from surface A to surface B can dif-
fer from Hausdorff distance from surface B to surface A, maximum
of these two values is taken. This is called symmetrical Hausdorff
distance which is much more optimal to use. Symmetrical Hausdorff
distance is shown on equation 2.2

H(A,B) = max(h(a, b), h(b, a)) (2.2)

It’s also possible to compute maximal distance of all points which
takes excellent account of local surface deviations, but ignores global
surface shape.

Image–based metrics Image–based metrics function in a way that some set
of fixed cameras, scene viewers, is chosen. Usually from 20 to 30 cameras
is enough. Then simplification step is done on the object. Both original
and simplified object is rendered from every camera and finally for each
pair of images rendered some image difference metric is used. According
to [12] most well-known metric for comparing images is the Lp pixel–wise
norm and d2 root mean square error.

Attribute–based metrics Object’s geometry representation often includes at-
tributes such as vertex normals, vertex colors, texture coordinates or an-
imation indices. These attributes are in nowadays real–time computer
graphics stored in vertices. By reducing geometry reduction of attribute
information happens. Metrics should therefore include evaluation of at-
tribute changes.

Corners Special attention while reducing geometry must be paid for the
corners of object because their reduction often changes object’s ge-
ometry too much. It’s good idea to carry corner attribute within
object’s geometry representation and penalize or disallow removal of
such parts of geometry.

Colors Difference between colors in RGB space can be computed by equa-
tion 2.3.

D(C1, C2) =
√

(r1 − r2)2 + (g1 − g2)2 + (b1 − b2)2 (2.3)

The problem with RGB color difference metric is that RGB space
isn’t perceptually linear. For better results it’s better to convert color
information into some more perceptually linear space like CIE–Luv3.

3It’s three component model, where L component defines luminance and u and v compo-
nents defines chrominancy.

CHAPTER 2. PREVIOUS WORK 8

Normals The distance between two 3D normals can be computed by
angular distance metric shown on equation 2.4.

D(N1, N2) = arccos ((x1, y1, z1) · (x2, y2, z2)) (2.4)

Normals can be used for detecting fold-overs. It’s also possible to
optimize geometry reduction by minimizing normal metric error.

Texture coordinates Representation of texture coordinates is usually
(u, v), where u, v are from range [0, 1]. By reducing geometry fold-
over in texture space may occur. This should be penalized, disallowed
or completely avoided if possible.

2.1.4 Non-geometric level of detail

The concept of level of detail isn’t bounded only by geometry reduction. There is
possibility to use various imaging tricks to improve performance. In the todays
world of computer real-time graphic final scene is highly dependent on render-
ing hardware – graphic card. Attempts to optimize rendering performance of
graphic card can be made with level of detail techniques. We will first introduce
image space level of detail like impostors and point–sprite rendering. And then
we will focus on graphic card performance optimization using level of detail
techniques.

Image space level of detail Image space level of detail generally replaces
geometrically complex objects with their image representation.

Impostors Impostor is preprocessed or off–line created image of object ren-
dered in scene. Often object is modeled in some 3D modeling editor such
as 3D Studio MAX or Maya and then off-line rendered to a picture. Alter-
natively a picture of some object can be directly taken from for example
photography and altered for application needs. In application run–time
such picture, impostor is rendered as textured quad 4. When the impos-
tor’s quad is always facing toward scene viewer then it’s called billboard.
Billboards are very common technique used in computer games for such
effects like trees in distant, light coronas and so on. An object can be
rendered from multiple sides or angles, typically around vertical axis, to
achieve more 3D realism. In such case appropriate image from rendered
object’s image collection is chosen at run–time according to camera view-
ing direction and object’s position. Smooth transition between various
images can be done by texture blending5. Especially when an object has
complex geometry such as tree leaves or fences, impostors can greatly
increase performance.

Point sprites Point sprite is 3D point of selected size and texture. Because
rendering of sets of point sprites is hardware supported, it’s very fast
rendering method. Sets of Point sprites are typically used to simulate
environmental effects like show or rain, flame and smoke effects or falling

4Quad is simply rectangle in 3D space consisting of two triangle rendering primitives.
5Texture blending means combining two textures together. In most cases using alpha–

blending.

CHAPTER 2. PREVIOUS WORK 9

leaves for example. Anything, which is small and there is a lot of quantity
of it, can be simulated by point sprites. Sometimes it may be more efficient
to render whole object as set of point sprites than rendering its geometrical
representation. It occurs for example when object rendered takes only few
pixels6 on the final rendered image.

Render to texture support Nowadays graphic cards offer render to texture
capability. This introduces option to create impostors at application run–
time from object’s geometry.

Hardware dependent level of detail For nowadays graphic cards pixel
throughput and vertex transformation pipeline performance is most important
along with number of pixels written per second into final image. Various hard-
ware dependent optimizations can be made to minimize graphic card workload.
Some of these optimizations related to level of detail are now discussed.

Texture level of detail For distant objects having only few pixels on screen
after rendering, it’s wasteful to texture them using big textures. Even
more alerting is the fact that big texture area is used for only one pixel
that means to average whole texture area to obtain correct pixel texture
color. For performance reasons averaging isn’t done properly and this
introduces distracting popping of such pixel. Because of this texture level
of detail was added to hardware support. This is called mip–mapping. For
every texture, that is mip–mapped, a chain of smaller textures is created.
These smaller textures are then used for texturing when rendering object
in distance.

Shader level of detail Graphic cards used in real–time graphics are often pro-
grammable. Program for graphic card is called shader. By applying level
of detail on complexity of shaders one can save a lot of rendering time.
It’s also unpractical to use complex shaders for objects in distance.

Lighting level of detail To light scene properly is one of the most perfor-
mance drawing tasks. Less computational and visually correct lighting
model can be used to compute distant object’s lighting. Also reducing
number of light sources per object helps greatly. Typically maximal num-
ber of lights per object is determined by programmer of lighting system
and only nearest light sources is taken into account with lighting model
up to maximum number of light sources allowed. More complex approach
can be used just by determining light sources importance for given ob-
ject and prioritizing light sources with bigger importance for such object.
Moreover light sources can be clustered together and replaced by single
light source to further reduce rendering cost.

Shadow level of detail Rendering believable shadows for scene is still difficult
task to cope with current graphic hardware. Again for distant objects no
shadows can be rendered while for near objects shadows of better quality
can be rendered. There are also methods which intrinsically supports
level of detail for shadows just introducing continuous level of detail to
this problem area.

6Pixel is basic unit of image. Image is consisting of pixels.

CHAPTER 2. PREVIOUS WORK 10

Figure 2.1: An image showing result of rendering complex botanical scene from
Multiresolution Rendering of Complex Botanical scenes [16]

7

2.2 Ecosystem rendering

2.2.1 Non real–time ecosystem rendering

Although this work focuses on real–time ecosystem rendering, it’s not com-
pletely worthless to briefly look at few slower methods of rendering ecosystems.
They can introduce some concepts which possibly can be adapted by real–time
ecosystem rendering solution. We will discuss two of these works: Multiresolu-
tion Rendering of Complex Botanical scenes [16] and Realistic and Interactive
Visualisation of High–Density Plant Ecosystems [8].

In Multiresolution Rendering of Complex Botanical scenes [16] a method is

7Material as reference to write level of detail section is Level of detail for 3D graphics book
[15], article Review on level of detail [12] and Real–time rendering second edition book [2].

CHAPTER 2. PREVIOUS WORK 11

Figure 2.2: An overview of ray traced scene with 365 000 plant instances from
Realistic and Interactive Visualisation of High–Density Plant Ecosystems [8]

introduced to render off–line botanical description of plants of as large scenes as
100 million primitives. For plant models only procedural information is stored
which describes each part of plant sufficiently to create it’s polygonal represen-
tation when needed. Tetrahedral subdivision is used for scene partitioning. This
tetrahedral subdivision can be traversed in similar way to BSP tree 8. Initially
viewing pyramid is subdivided by two tetrahedrons and then refined accord-
ing to resulting image resolution and scene complexity. Space outside viewing
pyramid is also included into tetrahedral subdivision mainly for lighting and
shadowing reasons. Scene refinement is done in loop of three parts. First vis-
ibility determination is done by low resolution image of tetrahedron rendered
front to back in order to get rough estimate of total number of pixels each tetra-
hedron’s geometry will occupy in final scene. Then tetrahedron refinement step
divides tetrahedrons bigger than some amount. Finally update step distributes
contents of previously subdivided tetrahedrons to its children.

After final update step rendering is done front to back with previously col-
lected shadowing information from light sources. Although method is not fast
– 21 minutes of refinement and modeling and 6 minutes for rendering of view
from 78 million polygon scene, method eliminates 100% hidden polygons keep-
ing memory demands only as big as is size of polygons of currently rendered
scene from certain view.

Realistic and Interactive Visualisation of High–Density Plant Ecosystems
[8] uses ray–tracing rendering on clusters of PCs in order to allow interactive
walk-through in high–density plant ecosystems. L-system generated models of
68 plants by Xfrog application are used. Then functional specification of 365

8BSP tree is binary space partitioning tree which divides space by using arbitrary planes.

CHAPTER 2. PREVIOUS WORK 12

Figure 2.3: A close look on ray traced scene from Realistic and Interactive
Visualisation of High–Density Plant Ecosystems [8]

000 plant instances is created by special paint program. This specification is
converted to tree positions only when it’s needed because of high amount of
plants. Scene is divided into several layers of geometry depending on the type
of plant for example trees or shrub. OpenRT ray–tracing engine is used to
provide interactive ray–tracing rendering support. Two-level spatial kd-tree 9

is used to subdivide scene. One level is used for subdividing plants and other
level is used for subdividing scene using plant bounding boxes. Plant leaves
are represented by coarse triangle meshes with associated texture with alpha
channel. Because of high scene transparency ray can hit up to 30 transparent
surfaces before non-transparent surface is hit, recursion depth isn’t used as
ray termination criteria, but instead of it distance of ray from viewer is used.
Realistic lighting is simulated by adding directional lights to the scene. For
ray only small number of directional lights is used to light the scene which is
sufficient to approximate realistic lighting. Progressive refinement is applied so
that, when viewer is standing at place, image quality is improved. According
to article interactive performance around 1 FPS can be achieved with clusters
of PCs while at single PC an image is rendered in about 30 seconds.

2.2.2 Real–time ecosystem rendering

To achieve real–time ecosystem rendering large scale of methods have been re-
searched ranging from geometric based methods, image based methods to point
sprites rendering. We will now introduce various recent methods and practices

9Kd-tree is specific type of BSP–tree where division planes are parallel to coordinate system
axes.

CHAPTER 2. PREVIOUS WORK 13

to achieve real–time performance as stated in selection of articles contributing
to this topic.

Article Procedural Multiresolution for Plant and Tree rendering [14] presents
method for procedural multiresolution level of detail based on parametric L-
system representing the tree structure. A set of axioms and derivation rules
is given representing general tree structure. Axioms and rules are defined for
example for branch length, thickness, position and orientation. Leaves are not
addressed in this paper. Concrete tree is then constructed by giving initial value
of axiom and then applying derivation rules to some chosen extent. The result is
output chain representing concrete tree. For set of axioms and derivation rules
listed on 2.5

Axiom : A(length)
Rule1 : A(l) : itNum < maxIt → B(l)[A(l/2), A(l/2)]
Rule2 : A(l) : itNum == maxIt → B(l)

(2.5)

can be produced for example this output chain shown on 2.6.

B(1)[B(.5)[B(.25)B(.25)]B(.5)] (2.6)

Generated output chain is interpreted on the basis of turtle metaphor. Turtle
is having its position, rotation and associated stack for storing turtle’s position
and rotation attributes to allow branching of the tree. An idea is to create mul-
tiresolution output chain based on the turtle interpretation from tree’s output
chain which preserves visually important parts of the tree for lower quality lev-
els of detail. Branching length is used as part of importance length because it
reflects density of descendants of a branch. Branching length can be computed
as seen on equation 2.7 where l(n) is length of the branch n and d(n) is set of
descendants of branch n.

L(n) = l(n) +
∑

m∈d(n)

l(m) (2.7)

Weighted tree is built to contain metric information and to resemble branch tree
structure. Multiresolution output chain is created then by extracting path from
weighted tree. Multiresolution output chain is consisting of branch information
in turtle like style, SAVE and RESTORE instructions in order to be able to
recover the turtle state of previously visited branching. First lowest level of
detail is created by traversing tree from root to one of its leaves. At each step
node with the largest branching is chosen and branch information is output to
the chain. The next level of detail is generated so that next largest branch-
ing node, call it A, is chosen (not previously output to multiresolution output
chain), RESTORE(A) instruction is appended to multiresolution output chain
and similarly path from this node A to leaves is added to multiresolution out-
put chain. For nodes, which are restored, SAVE instruction must be added to
multiresolution output chain. Individual levels of detail can then be interpreted
so that nth level of detail is multiresoluton output chain from beginning to the
nth RESTORE instruction. The first level of detail is the lowest. For example
for tree on 2.6 with branch naming 2.8 following multiresolution output chain
is produced, see 2.9.

A[B[CD]E] (2.8)

CHAPTER 2. PREVIOUS WORK 14

Figure 2.4: An example of branch reduction based on importance metric from
Procedural Multiresolution for Plant and Tree rendering [14]

A SAV E(A) B SAV E(B) C RESTORE(A) E RESTORE(B) D (2.9)

The resulting multiresolution output chain represents levels of detail for tree in
way that preserves perceptually important parts of tree and allows fast extrac-
tion of individual level of detail for further rendering.

An image–based approach is chosen in An Image–Based Multiresolution
Model for Interactive Foliage Rendering [13]. An algorithm for precomputing
textures for tree leaves based on the bounding boxes is presented. From given
tree L-system definition data structure with appropriate bounding boxes is con-
structed using turtle metaphor. For every new node of tree push is used to save
turtle state and pop is used to retrieve turtle state from stack. Every branches
and leaves of tree have some geometrical representation called form. Turtle can
move forward and rotate. Tree representation is given as parametrized string
consisting of pop, push, form, forward and rotate. Bounding boxes are gener-
ated as follow:
While processing parts of parametrized string defining tree structure in case
module is:

push Create a new box
Give initial values to min, max
Mark the box as last and open
Increment level

pop Close the last box

CHAPTER 2. PREVIOUS WORK 15

Figure 2.5: An orchard rendered by image method explained in An Image–Based
Multiresolution Model for Interactive Foliage Rendering [13]

Save the box

form Update min and max of all open boxes

forward Modify the turtle position

rotate Modify the turtle orientation

To generate textures from bounding box an orthographic projection is used
from each side of box where camera is viewing from center of that box side to
the center of the bounding box. All leaves which are inside the bounding box
are then rendered to texture and stored for further use. Texture size is chosen
for all textures to be 128x128 pixels. Number of levels of detail is reduced by
eliminating bounding boxes which have ratio of current bounding box to its
parent bounding box smaller than some chosen threshold. Rendering of leaves
is then done by selecting level of detail according to bounding box projected area
size. Six mapped textures are rendered on three quads instead of complex leaves
geometry. The lowest level of detail are textures for tree root bounding box.
Distances for finer levels of detail are precomputed in such way that projected
are of such level of detail bounding boxes will be roughly 128x128 pixels. To
improve look of result six diagonally aligned textures can be rendered instead
of bounding boxes side textures. Results indicate that significant rendering
performance is achieved allowing to render hundredths of trees in real-time
without loosing realism when looking close at tree.

Real–time Hardware Accelerated Rendering of Forests at Human Scale [19]
uses another image–based method based on 2.5 impostors. An arbitrary group of
leaves arranged randomly around the center is rendered to texture with its depth
information stored in texture’s alpha channel. Tree leaves are then rendered

CHAPTER 2. PREVIOUS WORK 16

using vertex shader 10 and pixel shader11 program. Vertex shader program
is used to calculate correct depth offset for rendered texture. Pixel shader
program is used to write correct depth value to the depth buffer. Using this
technique improves realism of scene because leaves are correctly intermerging
with branches of the tree. Even when using single 2.5D impostor for whole
tree image quality and realism is increased dramatically in comparison with
standard billboards or impostors. Rendering of whole forest showed that some
sort of visibility test is needed. For that reason inclosing spheres have been
implemented for frustum culling. It turned out that writing scene depth in pixel
shader program is bottleneck because whole pixel shader program often run for
nothing hence computed pixel color is then discarded by depth test. Therefore
an idea to use alpha–blending instead of depth write for 2.5D impostors on
far trees were invented. Although this alpha–blending impostors showed some
artificial popping, it showed in practice that this is hardly noticed in resulting
scene. For close–up views high detailed geometry of tree branches and trunk
is used while for distant trees small branches are simply omitted from scene.
Final forest rendering takes four steps. First geometry is sorted because alpha–
blending impostors requires back–to–front rendering. In second step impostors
are generated into single large texture12 capable of holding 16x16 impostors.
In third phase all ”other” geometry is rendered. Finally 2.5D impostors are
rendered in front–to–back order and alpha–blending impostors are rendered in
back–to–front order. Test results showed that, after first 15 to 20 trees rendered
in high quality, rest of trees can be rendered in low quality using alpha–blending
impostors. Is has been shown that moderate sized forest consisting of 1024 trees
can be rendered in real–time performance on ATI Radeon 9700Pro graphic card.
The technique is capable of rendering high quality forest scenes without visible
popping for first person simulation and low altitude flights.

While previous image–based methods mainly focuses on rendering forests for
first person simulation or low attitude flight, Rendering Forest Scenes in Real–
Time [6] introduces rendering technique capable of rendering forests in much
larger scale of ten thousands of trees for both low and high altitude flights. This
approach is based on volumetric textures. Because of problem with volumetric
filtering on graphic hardware, slices are stored in 2D textures instead of 3D
volumetric textures. Volumetric data are created with off–line renderer from
standard polygonal representation of part of forest. Camera is orthographic
projection looking down on the part of the forest. Slices are used parallel to ter-
rain. Slices are stored in alpha premultiplied textures. Alpha premultiplication
is necessary in order to be able to use slices level of detail. For standard textures
(not alpha premultiplied) color slightly changes when number of slices changes.
For each slice texture associated MIP–map chain is created. Slices level of detail
is created so that finest level of detail contains n = 2N slices. Each lower level of
detail then contains half of slices then previous finer level of detail. Each lower
level of detail slice is created by blending two slices of finer level of detail into
one slice. Slicing quality can be tuned during rendering according to distance
from the viewer. Terrain elevation, viewing angle and height of the forest part
must be accounted because it changes distance between individual slices and so

10Vertex shader program is geometry transformation program running on graphic card.
11Pixel shader program is per pixel (or fragment) computation program running on graphic

card.
12Commonly called texture atlas in computer graphics.

CHAPTER 2. PREVIOUS WORK 17

Figure 2.6: A forest rendered using 2.5 impostors technique from Real–time
Hardware Accelerated Rendering of Forests at Human Scale [19]

opacity must be multiplied with opacity multiplication factor at each vertex to
correct it. Silhouette texcells 13 are used for situations where viewing angle of
scene is so that there is a possibility of viewing through slices. Because slices
are rendered from top and used in way parallel to terrain, this happens when
camera is viewing part of forest in way near parallel to terrain. The idea is to
transform polygons previously stored on GPU in order to avoid creating new
geometry on CPU and to minimize data transfer. Every triangle is tilted so that
approximately faces toward the viewer. Additionally filtering for all slices is cho-
sen in way that MIP–map filtering level is as close to the voxel size as possible.
Aperiodic tiling is used to avoid repeating when mapping parts of forest to the
terrain. Three directions triangular tiling is used with two different boundary
conditions in each direction. It gives 16 possibilities – 8 for triangles pointing
north and 8 for triangles pointing south. Only 8 triangles were chosen to save
memory. An aperiodic reference texture is created from triangles with bound-
aries in a way that triangles can share edge only when edge have same boundary
type. Reference texture is used to arrange parts of the forest (represented by
triangles on texture) in aperiodic manner. Types of forest parts must be created
according to triangles with boundaries and boundary condition must be leaved
intact so that pixels are same on the edge of forest parts with same boundary
type. This is achieved by replicating trees which cross boundary of the part of
the forest on all parts of the forest with same boundary type. It’s also possible
to create more than one part of forest per ”tiling triangle” as long as boundary
conditions are left intact. Results show that not repeating forest of size as large
as 37000 trees can be rendered on GeForceFX 5800 graphic card with real–time
performance achieved and no popping even on limited implementation authors
of article implemented.

Similar method as in Rendering Forest Scenes in Real–Time [6] is used in Re-
alistic real–time rendering of landscapes using billboard clouds [5] for rendering

13Authors of article consider using word texcell rather than using word texel because of
possible confusion with texture pixel - also called texel.

CHAPTER 2. PREVIOUS WORK 18

Figure 2.7: A screenshot from fly above forest rendered using texcells and ape-
riodic tiling using technique from Rendering Forest Scenes in Real–Time [6]

distant trees enhanced by rendering near trees with billboard clouds. Clusters
are generated using hierarchical information from tree model. Branches and
leaves are distinguished by texture and ratio of transparent and opaque texels
analysis. User can specify branching level so that all sub-branches bigger than
that level are included into one cluster. Minimal volume oriented bounded box
is calculated for each cluster using approximation algorithm that rotates given
initial bounding box by one degree steps in order to find better one. After the
bounding box is found special representation is taken. If the bounding box has
two long sides and one short, it’s represented by single billboard. If the bound-
ing box has only one long side, it’s represented by two crossed billboards. If all
the sides are roughly same, the bounding box is represented by three crossed
billboards. If

√
a · b > f ·c then billboard is created parallel to a and b. Authors

found that f = 0.5 produces good results. Rendering can be done in several
ways. The simplest way is to precompute lighting into billboard textures. When
also storing normal information in additional normal map texture, lighting can
be computed at run–time. Third variant is to approximate reflexion function
using spherical harmonics basis functions. Fade between simple two crossed bill-
boards and complex billboard cloud representation is used in relation to distance
of tree from scene viewer. In order to avoid back–to–front rendering the alpha
channel of billboard texture is premultiplied with gauss curve. During run–time
pixel shader implements simple test that discards pixel with alpha value smaller
than some threshold. The threshold is computed as linear function related to
distance from the viewer. When test is passed alpha value is simply set to full
opaque. A technique similar to one presented in Rendering Forest Scenes in
Real–Time [6] is used to further accelerate rendering of distant forest. Shadows
for scene were implemented using shadow mapping. Results show that forest of

CHAPTER 2. PREVIOUS WORK 19

Figure 2.8: Forest rendered using billboard clouds at close distance and shell
textures at far distance from Rendering Forest Scenes in Real–Time [6]

size 21 300 trees were rendered using NVidia FX6800 graphic card in 4 to 12
FPS.

Point–based rendering is another approach to render ecosystem researched
more recently then geometric or image–based approaches. We will discuss arti-
cle Point–based rendering of trees [11] presenting typical point–based rendering
approach for tree rendering. Representation of scene consist of blocks of vege-
tation prepared in some standard modeling software. An ”unorganized soup”
of polygons describing block of vegetation serves as an input for preprocessing
step. Polygons are converted to triangles and then to points. Each block is then
subdivided by regular grid ranging from 4 x 4 x 4 for a single tree to 4 x 16 x
16 for group of trees. For each cell hierarchical clustering is defined. The finest
level of detail forms triangular representation of cell’s geometry itself. Lower
levels of detail are based on point representation. Cell is subdivided by com-
puting eigenvectors of covariance matrix 2.10 of cluster point set call it Pi using
binary space partitioning.

C =

Pi1 − P

...
Pij

− P
...

Pin
− P

T

·

Pi1 − P

...
Pij

− P
...

Pin
− P

 , ij ∈ P and P is centroid (2.10)

This always splits point cloud along the direction of greatest variation. Subdi-

CHAPTER 2. PREVIOUS WORK 20

vision process is iterated until threshold of 5 points is reached. Coarser point
representation for each non–leaf node of subdivision is then computed by av-
eraging position of it’s left and right children nodes. Radius of new point R
is computed as average radius taking into account radius of all children points
Rl and Rr, their relative orientation α = |NlNr| and normalization factor 2

π
averaging all the possible view directions giving equation 2.11.

R =
2
π

(Rm + α(RM −Rm)),where

RM = Rl + Rr and Rm =
1
2
(Rl + Rr)

(2.11)

Because hardware doesn’t allow to render hierarchical tree structures efficiently,
all points are then sorted according to their size to single array. The same
process is done with cell’s triangle geometry. This allows to select point and
triangle size according to pixel size they will take on resulting image. Rendering
of cells depends on choosing two thresholds. One threshold is for determining
whether to render points and when to render triangles. When projected size of
primitive point is smaller than threshold SM its rendered, otherwise triangular
representation is rendered. Second threshold Sm is chosen for defining minimum
size of point projected area to render. When point projected area is smaller than
Sm, bigger sized point must be rendered. Precision of the cell rendering is further
adjusted according to viewing position and block position to take advantage of
masking. Distance d1 between camera position and center of block is computed.
Then distance d2 between camera position and center of cell is computed. Zi

ranging [−1, 1] is computed by equation 2.12.

Zi =
(d2 − d1)

R
, where R is block size (2.12)

Thresholds SM and Sm can then be adjusted by following equations 2.13.

Si
m = Sm + k · Zi

Si
M = SM + k · Zi

(2.13)

Where k is user adjustable constant. Shading is done by hardware for both
points and triangles using stored normal information. Results show that for
block with 300 000 points storage of approximately 26 MB is needed. A land-
scape with 200 000 trees were rendered using this method on NVidia GeForceFX
5800 with framerate varying from 3 to 10 FPS. Authors suggest that for forests
with less than 100 000 trees real–time performance is achieved. This methods
allows very good continuous fine tuning of level of detail.

Even more hybrid method is used by Interactive Visualisation of Complex
Plant Ecosystems [7] using both point and line–based technique to achieve real–
time performance. Plants are generated from surface oriented plant descriptions
produced by plant modelers. In pre-processing step models are converted to
point and line representation which is stored along with polygonal representa-
tion in data file for each plant. Eco system files are used to describe positioning
of the plants in the scene. Eco system files are hierarchically organized so that
one eco system file can reference several other eco system files. For each eco
system file a sparse point representation is computed which is used to render
geometry at far distances. Bounding boxes are used for visibility culling. Point

CHAPTER 2. PREVIOUS WORK 21

Figure 2.9: Hills with trees rendered using point–based approach from Point–
based rendering of trees [11]

representation is typically used for leaves. For an object with n triangles 2n
points are generated and distributed randomly in such way that equally sized
surfaces receive equal number of points. Different point generation technique is
used when an object has all triangles of about the same area. In this case 2 points
are created for each triangle. Such list of points is then randomly reordered, but
triangle–points correspondence is sustained in order to be able to merge trian-
gles and points rendering. For long things like stems of straw is generated line
representation. Line representation is generated during modelling phase where
all informations about objects are known. Generated line set is also randomly
reordered and stored along with polygonal representation into file. Important
parts of geometry are marked during plant modeling on which geometry is re-
duced more slowly during scene rendering than rest of the scene. It helps to
preserve better image quality and hide reduction of non–important parts. Ob-
ject which color is clearly distinguishable from majority of other plant’s color is
usually marked important. For example blossoms of daisies are important. In
run–time rendering of points and lines are handled separately. The number of
points that is needed to render plant faithfully depends on the surface area Ap

and its average distance r from camera. The approximate projected area A
′

p is
computed by equation 2.14.

A
′

p =
1
2

Ap

r2
(2.14)

Factor 1
2 is accounted for geometry orientation and 1

r2 corresponds to perspective
shortening. The number of points required to render plant is determined by
equation 2.15,

p = cp

A
′

p

A′
sp

np (2.15)

CHAPTER 2. PREVIOUS WORK 22

Figure 2.10: Complex plant ecosystem rendered using point–based approach
from Interactive Visualisation of Complex Plant Ecosystems [7]

where np is number of generated points for plant, cp is point scaling factor
used for closing holes in rendered point geometry and A

′

sp is point splatting
area which can be user controlled by defining average distance between two
neighbouring point samples d′, A

′

sp = d′2. Polygonal representation is rendered
if p >= np, otherwise the prefix of p generated points for plant is rendered. For
line rendering projected area A

′

l representing corresponding triangle associated
with lines is computed by equation 2.16.

A
′

l =
1
2

Al

r
(2.16)

The image plane area covered by lines with line width d′ is computed by equation
2.17

A
′

sl =
ld′

2r
, where l is length of all lines in world space (2.17)

Ratio is ql = A
′
l

A
′
sl

. If ql > 1 then triangular representation is drawn otherwise
ql · nl first lines from lines list is drawn. Triangle and point representation
is blended in such way that for k triangles and p points following rendering
method is used. For p < 2k first p points is rendered. For p > 3k only triangle
representation is rendered. And for 2k <= p <= 3k first p − 2k triangles are
rendered and then points corresponding for remaining triangles are rendered.

CHAPTER 2. PREVIOUS WORK 23

While small plants are grouped together using eco system files, large plants are
subdivided by an octree of small depth. Shadow computation is done either
by obtaining standard shadow maps in preprocessing step or using advanced
shadowing technique called perspective shadow mapping. Results show that on
NVidia GeForce3 graphic card scene with 13 000 sunflowers and large tree with
70 million triangles can maintain framerate 3 – 4 FPS. For scene representing
small palms mainly by lines and having 12 million polygons performance ranges
from 5 to 10 FPS.

2.2.3 Real–time grass rendering

Rendering grass introduces similar problems as forest or shrub ecosystem ren-
dering. However typical grass is much smaller than a tree of a shrub. This
allows to use different optimization techniques.

In Real Time Animated Grass [3] texture shells approach is used along with
vertex position displacement to animate grass. Shell textures contains grass
color and height of the grass encoded in alpha channel. When alpha channel
value is zero, ground color is stored in texture instead of grass color. Several
layers of grass is rendered displacing vertex positions of terrain along vertex nor-
mals. Alpha testing is used to render only appropriately high grass blades. For
every vertex wind vector is projected along vertex normal in order to get wind
vector perpendicular to vertex normal. This is precomputed in preprocessing
step using equation 2.18,

~Vw = ~W − (~W · ~N) · ~N (2.18)

where ~Vw is wind vector perpendicular to vertex normal, W is wind vector and N
is vertex normal. Every vertex is moved along vertex normal and perpendicular
wind vector. The amount by which is vertex moved along normal is determined
by equation 2.19,

N∑
i=0

cos(
i · I · π · S

2 ·N
) (2.19)

where i is the current shell or layer number, I is wind intensity ranging [−1, 1],
S is inter-shell distance and N is total number of shells or layers. The amount
by which is vertex moved along perpendicular wind vector is given by equation
2.20.

N∑
i=0

sin(
i · I · π · S

2 ·N
) (2.20)

An animation frame is used to get grass blades closer to viewer effect of sudden
spike in wind intensity before distant blades. This allows more realistic wind
simulation across land. Simulating winding ”waves” or attenuation of wind is
possible by using animation frame. Results show that with NVidia GeForce3
graphic card real–time performance of 23 FPS can be achieved using 8 texture
layers of grass with 1024 x 768 resolution. The method has advantage that the
number of grass blades used is independent on performance.

Another solution is used in Animating Prairies in Real–Time [18]. Three
levels of detail are used for grass. 3D grass blades geometry is used close to
viewer. Then 2.5D level of detail is used consisting of layers of vertical poly-
gon strips covered with semi–transparent texture. There are two perpendicular

CHAPTER 2. PREVIOUS WORK 24

Figure 2.11: An example animated grass using texture shell approach from Real
Time Animated Grass [3]

orientations for each polygon strip. One that isn’t parallel to view direction is
chosen. A 2D texture is used as lowest quality level of detail. Grass on terrain
is divided into square elements to support various levels of detail. Level of de-
tail for given square element is selected according to number of square elements
between camera and given square element. Range of distances is chosen for
each level of detail. Whole scene is rendered back to front because transpar-
ent textures are used, but no sorting takes place because it’s enough to render
square elements in right order. A concept of receivers is introduced to allow
grass to be animated and thus convincingly simulate the wind blowing over
the grass. At each frame receivers associated with grass receive information
from wind primitives. For 3D geometry receivers are associated to 3D blades
of grass and for 2.5D texture receivers are associated to the vertical edges. For
2D textures receiver isn’t associated because it isn’t animated. The receiver
contains two information for every wind primitive affecting given receiver – di-
rection in which grass is bent and amount of how much is bent ranging from
-1 to 1. The largest bend is of 90 degrees. In practice each grass primitive has
precomputed bent postures for fixed number of bend amounts. When rendering
nearest precomputed bent posture is selected according to bend amount. To
provide fine control over various wind primitives on grass field a 2D mask is
provided that represents extent of each wind primitive action on grass field. An
action procedure is defined for each wind primitive which sends information to
appropriate receivers, using 2D mask, according to given time. This enables
animation of grass field. Authors are saying that they successfully implemented
gust of wind, whirlwind, blast of air and gentle breeze wind primitives. They
also suggest to add some random oscillation of bent direction and bend amount
around prescribed value to achieve more realism. For transition between 3D and
2.5D level of detail morphing is used. For every grass blade on 2.5D patch of
grass a relative texture coordinates of several blade positions are stored. Then,
when morphing, 3D blade geometry is forced to move to stored positions. By
this way the transition between 2.5D and 3D representation is smooth. For

CHAPTER 2. PREVIOUS WORK 25

Figure 2.12: Blast of air wind effect on grass from Animating Prairies in Real–
Time [18]

making transition between 2.5D and 2D level of detail two tricks are applied.
Rather than texturing the terrain an offset of terrain located as average distance
between tip and top of the grass is textured. Transition is then made by making
2.5D grass patches progressively grow or shrink to match 2D textured offseted
terrain. Results show that terrain of 100 x 100 meters with approximately 1 000
000 blades per image can be rendered on ONYX 2 infinite reality computer with
8 FPS. This is slow computer compared to nowadays processing power and so
speed should be more than enough for real–time rendering on current graphic
hardware.

2.3 Ecosystem motion

A motion is very important factor which adds a lot of realism to the whole scene.
However it’s not easy to achieve real–time ecosystem motion on current hard-
ware due to complexity of scene. Even worse is the fact that not all ecosystem
rendering methods described above in section 2.2 allows ecosystem motion to be
implemented. Especially image–based rendering methods generally prohibits to
implement motion of tree leaves and also greatly limits motion of tree branches.
Geometrically–based rendering methods are best suited to ecosystem motion,
but are often to slow to render forests with thousands of trees in real–time. This
leaves point–based rendering methods and hybrid approaches as best candidates
for both real–time ecosystem rendering and motion.

But in this section we will look rather at methods researched to bring trees in
motion then coping with problem how to bring motion and rendering together.
We will discuss one work looking at this problem at the end of this section.

CHAPTER 2. PREVIOUS WORK 26

2.3.1 Tree animation methods

A hybrid method of procedural and physically–based animation of tree branches
is described by An interactive forest [10]. The tree model used consists of nodes
defining topology and meshes defining geometry. Nodes defining geometry de-
fines length and angle of branches (h, θ, φ) in hierarchical way. A wind primitive
is defined by area of influence (disk(C, r)), force vector F and pulsation ω. For
procedural animation each branch of tree in area of influence undergoes the
force f defined by equation 2.21,

f =
r − d

r
sin(ωt)F (2.21)

where d is 2D distance to the branch from center of influence area of wind
primitive. A wind force creates a torque at base of the branch approximated by
equation 2.22,

τ(t) = Lz × f(t) (2.22)

where L is length of the branch and z its axis. Torque is then projected to
rotation axis to obtain a new rotations θ and φ given by equation 2.23,

θ = θ0 +
1
m

τ(t)zparent

φ = φ0 +
1
m

τ(t)y
(2.23)

where zparent and y are axes of rotation of the branch with respect to its parent
and m is approximation of the inertia of the branch. For more wind primitives
torque is simply summed just giving equations 2.24

θ = θ0 +
1
m

zparent

∑
i

τi(t)

φ = φ0 +
1
m

y
∑

i

τi(t)
(2.24)

For physically–based animation wind action is modeled as real force using equa-
tion 2.25.

τphysical = −ω2 r − d

r
sin(ωt)Lz × F (2.25)

The torque is modeled by linear damped angular springs. The stiffness k is
estimated as d2

l and damping v is proportional to stiffness. The torque generated
by joints is then computed as in 2.26,

(kθ + vθ̇)zp + (kφ + vφ̇)y (2.26)

where θ̇ and φ̇ denotes derivation of θ and φ respectively. The torque applied
to given branch is then computed as sum of wind primitive actions and joint
forces by following equation 2.27.

τ =−
∑

i∈winds

ω2
i τi

− (kθ + vθ̇)zp − (kφ + vφ̇)y

+
∑

j∈children

(kjθj + vj θ̇j)z − (kjφj + vj φ̇j)yj

(2.27)

CHAPTER 2. PREVIOUS WORK 27

Figure 2.13: Example of wind primitive affecting a tree from An interactive
forest [10]

Angular joints accelerations are computed by equations 2.28,

Ω̇rel =
1
m

τ − Ω̇p

θ̈ = zpΩ̇rel

φ̈ = yΩ̇rel

(2.28)

where m is proportional to ld2 and Ω̇rel is derivation of parent’s angular velocity.
Time integration is then performed using standard Euler method 2.29.

θ̇(t + dt) = θ̇(t) + θ̈(t)dt

θ̇(t + dt) = θ(t) + θ̇(t)dt
(2.29)

A hybrid animation is produced so that bottom branches of the tree are ani-
mated physically, intermediate branches of the tree are animated procedurally
and top branches of the tree are fixed (no animation). For making transition
between procedural and physically–based animation both representations are
computed and linear interpolation between representation takes place over some
time. Results show that animating 256 trees forest is possible on Pentium III
800 MHz with 512 MB RAM and NVidia GeForce256 graphic card in real–time.

A method for animating both leaves and branches using 1/fβ noise is dis-
cussed in A hybrid method for real–time animation of trees swaying in wind
fields [17]. The 1/fβ noise is defined in article [17] as follows:

1/fβ noise The spectral density S(f) of a function X(t) is the mean square of
the Fourier transform of X where t means time and f means frequency.

CHAPTER 2. PREVIOUS WORK 28

1/fβ noise is a noise of which the spectral density is proportional to 1/fβ .
The value β determines the correlation between noise values varying along
time axis t. As β decreases, the fluctuation of the noise increases. On the
other hand, as β increases, the fluctuation decreases.

1/fβ noise is generated by Fourier filtering. Discrete 1/fβ noise is generated
and then values are interpolated to obtain smooth 1/fβ noise. Such generated
1/fβ noise is periodic. The discrete noise values are normalized and then stored
in one–dimensional array. A leaf motion consist of horizontal, vertical and
rotational motion around leaf’s petiole. The leaf has some initial state rotation
and position in world coordinates and then horizontal and vertical motion angles
are added to it’s position. The horizontal and vertical motion is determined by
equation 2.30,

θx(t) = WxNx(t)
θy(t) = WyNy(t)

(2.30)

where Wx and Wy are maximum motion angles, Nx and Ny are 1/fβ noise
functions. Various effects of leaves motion can be achieved by changing β value,
period and phase in noise functions Nx and Ny. For computing rotation angle
around petiole’s axis similar equation is used, see 2.31.

θRf (t) = WrNr(t) (2.31)

In order to achieve more realistic motion a helix angle is added according to
following equation 2.32,

θRX = aθx(t) (2.32)

where a is user definable. The total rotation angle is therefore given as 2.33

θR(t) = θRf (t) + θRX(t) (2.33)

Only one 1/fβ noise is used for all leaves. Variation of period and phase is used
instead to attain realism. For hierarchical branch model a simulation based on
spring model is used. A branch is approximated as squared timber and the
deflection range is determined from load given to the branch. The loads are
determined by following equations 2.34,

PX(t) = FX(t) + PBNX(t)
PY (t) = FY (t) + PBNY (t)

(2.34)

where FX and FY are directional loads usually from wind or user action, PB is
the maximum non-directional load, NX(t) and NY (t) are 1/fβ noise functions.
The deflection ranges δX(t) and δY (t) are determined by following equation
2.35,

δX(t) =
PX(t)

k

δY (t) =
PY (t)

k

(2.35)

where k is the spring constant of the timber computed by equation 2.36,

k =
Ebt3

4l3
(2.36)

CHAPTER 2. PREVIOUS WORK 29

Figure 2.14: Serie of pictures showing results from A hybrid method for real–time
animation of trees swaying in wind fields [17]

where E is elastic modulus specific to each tree specie, b is width, t is thickness
of branch and l is span length of timber. Motion angles are then obtained by
following equation 2.37,

θX(t) = arcsin(
δX(t)

L
)

θY (t) = arcsin(
δY (t)

L
)

(2.37)

where L is length of branch. The motion angles of individual branches are
accumulated from root toward children. In order to properly accentuate overall
motion of the tree a noise modulation of Wx, Wy, Wr and PB is used. The noise
modulation is defined by two equations 2.38,

W ′(t) = (1−m)W + mWN(t)
P ′

B(t) = (1−m)PB + mPBN(t)
(2.38)

where m is modulation factor ranging from 0 to 1. Results show that realistic
animation of a tree can be achieved by tuning few parameters manually.

More recent method is described in Real–time visualisation of animated trees
[20]. Trees are built from stems and leaves. Stems are branches and tree trunk.
Creation of tree starts from tree trunk and then children branches and leaves
follow in hierarchical way. Random variations of branches and leaves properties
are allowed to support wider variety of tree instances. A health property is
introduced to support creating of less healthy trees. Rendering of trees are
done using line and point primitives where possible. For close view branches
are rendered geometrically while leaves are rendered by single quad to reduce
rendering overhead. Animation incorporates swaying of branches and fluttering
of leaves. Swaying is implemented as periodical rotational motion around the
origin of the trunk. Fluttering done by quickly rotating around the spine of the
leaf. The animated position of vertex swaying is found by following equation
2.39,

posvertex = (x, r cos α, r sinα)t (2.39)

where r is polar distance to vertex from base of the trunk and α is computed
by equation 2.40

α = θ + r · sway amount · sin(frequency · time) (2.40)

and θ being polar angle from base of the trunk to vertex. Authors further state,
that it was empirically shown, that swaying frequency can be computed from
tree height using equation 2.41,

frequency = A · heightB (2.41)

CHAPTER 2. PREVIOUS WORK 30

Figure 2.15: Benchmarking scene of 1210 trees from Real–time visualisation of
animated trees [20]

where A = 2.55 and B = −0.59. For leaves fluttering final vertex position is
found as in equation 2.42

posvertex = posleaf + localx · cos β + localy sinβ (2.42)

and β = max flutter · sin(global offset+ local offset). Six different classes of
vertices is defined for use with static, swaying and fluttering mode – textured
and untextured to get number of six. This can be packed in vertex data with
some effort and optimization in order to compute animation solely by graphic
hardware. For effective rendering and level of detail automation, geometry is
arranged into two vertex buffers, one for stems and other for leaves, in advance
while connection between leaves and branches is left intact. By rendering only
prefix of these vertex buffers one can achieve lower levels of detail. Stems are
textured by photographs taken from real trees and lit using precomputed light-
ing information stored in vertex buffers. Self–shadowing is approximated by
reducing lighting intensity of vertices near the center of the tree. A cheap trick
is used to simulate reduction of lighting in densely populated areas of forest by
rendering barely visible black polygon across bound of each tree. Results show
that 139 trees forest can be rendered at 32 FPS at resolution 1600 x 1200 on
ATI Radeon 9800 XT graphic card. Result also show that adding more trees
further back into the scene doesn’t influence rendering rate greatly.

A complete motion framework is outlined in Simulation Levels of Detail for
Plant Motion [4]. Plants are described using L–system grammar with stochas-
tic turtle interpretation where several parameters can be randomly scaled. The
basic information described by the grammar is length of branches, orientation
of child branches, strength of joints and whether a branch has a leaf attached
to the end and the area of that leaf. Plant motion is done through applying
external force. The model used is angular spring model. At each joint two
springs are defined, first oriented in parent direction× child direction and sec-
ond oriented in parent direction. External force is applied to the leaves and

CHAPTER 2. PREVIOUS WORK 31

Figure 2.16: Simulation level of detail of a tree from Simulation Levels of Detail
for Plant Motion [4]

propagated down to the branches and trunk. Euler integration scheme is used
to update positions at each step. Level of detail called simulation level of detail
is generated to simplify computation of motion animation. Two operations are
used for computation simplification. First operator simplifies parent with one
terminal child by combining them to single simplified branch. Second operator
simplifies parent with more than one terminal children by combining all chil-
dren into one child branch. All simplifications are done so that new structure
approximate non–simplified version within some error bound. A propagation
factor for each simplified branch is stored in order to account propagated bend
strength correctly according to simplification when computing animation. A
lookup table indexed by leaf area and bend strength is generated in order to be
able to look for similar amplitude and frequency characteristics for given pair of
branches. This lookup table is used during preprocessing for creating simulation
level of detail. Maximum strength of wind force is applied during simplification
calculations. An error metric chosen is one involving world space distance be-
tween tips of pair of branches and their maximal amplitudes. This metric has
an advantage of being directly related to screen space error. Parent–child er-
ror in amplitude is straightforwardly computed from lookup table. Child–child
amplitude error is computed by equation 2.43,

Childrenerror = 2 ·MO −MS (2.43)

where MO is maximum amplitude of children branches and MS is maximum
amplitude of simplified branch. Screen space error is specified as maximum error
in pixels ahead of time – few steps of computation. An error calculated is stored
as the distance to camera, in which it is acceptable, and used as run–time error
bounds. In order to secure smooth transition between simulation levels of detail
an interpolation must take place when transiting from higher level of detail to
lower level of detail. In case of parent–child simplification linear interpolation
between key properties is sufficient, but in case of child–child simplification lin-
ear interpolation must occur between both computation models, simplified one
and normal one. Simulation level of detail can be to high degree independent on

CHAPTER 2. PREVIOUS WORK 32

geometric level of detail. Mapping can be easily established between simulation
level of detail and geometric level of detail with cost of additional data storage.
Results show that animation cost can be significantly reduced using simulation
level of detail while specified error bound is kept.

Chapter 3

Problem definition

The image–based techniques do not provide enough detail for close look–ups.
It’s widely known that billboarding doesn’t provide enough visual quality for
small viewing distances. From our review the Realistic real–time rendering of
landscapes using billboard clouds [5] uses most advanced billboarding technique
of billboard clouds for near trees, but realistically looking leaves are not achieved
for close look–ups. With 2.5 impostors used in Real–time Hardware Accelerated
Rendering of Forests at Human Scale [19] it’s little bit better because of depth
information stored in alpha channel, but still quality for very close look–up is
miserable.

Moreover a lot of attention was devoted to research image–based techniques
for forest rendering and the knowledge in this area is large. The more myste-
rious, unexplored area of forest rendering lies within point–based techniques.
There are still many questions unanswered and only few implementations exist.
We therefore focus our attention on point–based techniques as a candidate for
future use in real–time forest rendering.

Our aim is to implement hybrid forest rendering solution usable for both
forest walkthroughs and flights above the forest in real–time or at least inter-
active rendering speed! We will focus on mixed triangle and point rendering
technique similar as in Point–based rendering of trees [11] which we view as
promising approach. We believe that such approach will lead to detailed close
look–ups as well as for good tree detail in distance. Moreover by having similar
implementation as in [11] we can potentially discuss and compare our method
with authors of [11] to pinpoint most problematic parts and to confirm or deny
their results independently.

Our primary aim is to render middle–sized forest of few thousand trees, but
we will also try more demanding big forest rendering of ten thousands or even
hundredth thousands of trees. It is difficult to say what to name a ”forest”? One
must ask how dense and how big must be the group of trees to name it forest.
The question of forest size is from our viewpoint easier. We think that trees
on area of 1 square kilometer is more than enough to name it forest although
we are aware of fact that some Russian living on taiga will disagree with us
completely saying that it’s only very very small forest. The question of forest
density is more demanding especially when one realizes that it’s very difficult
to achieve real–time rendering of trees with density of real forest. We consider
that 20 to 30 trees per 10000 square meters is enough to at least resemble forest.

33

CHAPTER 3. PROBLEM DEFINITION 34

The resulting look will depend on tree size and look. If trees are small, much
bigger density is needed to provide realistically looking forest.

We will first make forest rendering solution and then, if there is enough time
left, we’ll possibly try to add some procedural animation by wind to our forest
rendering solution.

By this our problem is sufficiently defined and task to work on is set forth.

Chapter 4

Our approach

4.1 Introduction and overview

Our approach aims to render middle–sized forest of few thousand trees in real–
time or at least in interactive framerates. We have chosen mixed triangle and
point based method in order to extend further research in this area of forest
rendering and to evaluate usefulness of this rendering method. While point
based method is somewhat slower than nowadays leading approaches for forest
rendering using sprite–based methods such as SpeedTree, we believe, that for
future use, point based method will be candidate to choose as soon as graphics
hardware becomes fast enough.

The usage of mixed triangle and point representation is promising in sense
of quality it can provide for closer look on tree’s leaves and branches while also
providing decent detail of trees further in the scene. Moreover level of detail
can be adjusted by quality settings either for high detail slow rendering or lower
quality fast rendering, which introduces nice flexibility of whole approach.

By providing an implementation of our forest rendering method we are also
able to outline pros and cons of our approach and to pinpoint most problematic
parts of it. In many cases we are able to outline the direction of potential
improvements to make our approach better and more ready to use for potential
practical applications.

Nevertheless we are putting here some words on an approach of how an
implementation was developed because this puts some light on structure of
whole approach and further improves understanding of why some choices has
been made so and not the other way. We have partly applied practices of extreme
programming in making of our implementation. This implies that the structure
of whole application resembles an iterative process of improving application and
its functionality rather than having one big analysis of whole project done at
the beginning and implementing project along with the analysis provided. This
approach has several advantages. First it decreases the risk of whole project
failure because in iterative process of implementation individual steps are solved
separately and for each step a basic functionality is assured before next step in
development is taken. This also leaves open choice whether to proceed with
next step and so improve functionality of whole solution or to work more on
perfection of current step. This is ideal for research development where there

35

CHAPTER 4. OUR APPROACH 36

is often necessary to make choices to improve certain part, or even postpone
selection of next step in development with respect to performance and other
issues which may arise. We are also counting with fact that it’s often extremely
difficult to divide code well into classes or provide useful set of classes methods
before some implementation has been made. On the contrary it’s mostly not so
difficult to refactor or recode parts of code which call for improved functionality.

In the sense of implementation scheme selected we first created a way to ob-
tain tree data to our basic tree representation used as source tree representation
for whole implementation. Then we developed utility to convert this tree data
to simple viewing representation. And by creating simple viewer application we
were able to see that data are correctly converted to our representation and also
we have a viewer of our tree data. Only after then we proceeded with creation
of an utility for tree level of detail and improved our simple viewer to provide
viewing capability of single tree with level of detail. We followed by creating
an utility for positioning trees into a forest and again updated our viewer appli-
cation to provide viewing capability for forests. Then we further improved our
viewer application and our utilities.

On the contrary implementation using previously made analysis might look
differently. For example steps of creating independent basic tree file represen-
tation and simple viewer representation may be completely omitted. Although
these steps doesn’t relate to diploma thesis problem assignment in any way,
we are sure that they provide added value and much more flexibility to the
whole solution. For these reasons we have chosen the iterative approach for our
implementation.

In this chapter we’ll describe our approach in detail. First we’ll describe
data structure of our basic tree representation. Basic tree file representation
is representation of tree with all information necessary to create further tree
data representations used for rendering and viewing. Then we’ll explain a way
of how we obtained a tree data along with textures and other needed things.
This includes process of creation and preparation of data followed by process of
converting data into our basic tree representation. This is described in section
4.2.

In next section 4.3 we’ll describe the structure of our simple tree represen-
tation data structure which is just simple representation of tree used for fast
rendering on current graphics hardware. No level of detail is applied to sim-
ple tree representation. This simple tree representation can then be viewed by
viewer application explained in section 4.6. Then we’ll introduce an utility for
creation of simple tree representation from our basic tree representation data
structure and explain how it works.

In section 4.4 we’ll explain our single tree data structure format with level of
detail. We’ll call it LOD tree representation. We then follow by describing an
utility for creation of LOD tree representation from basic tree representation.
This LOD tree representation can be viewed by viewer application.

The section 4.5 introduces our forest representation along with utility for
creating forests from LOD tree representation, forest definition text files and
tree definition text files. This forest representation can be viewed by viewer
application.

Next section 4.6 explains functionality of viewer application capable of view-
ing simple tree representation, LOD tree representation and forest representa-
tion. Then more in–depth explanation of various parts of viewing application

CHAPTER 4. OUR APPROACH 37

takes place.
In sections 4.3, 4.4, 4.5 and 4.6 a subsection for possible improvements is

included where various future improvements are discussed.
Last section 4.7 of this chapter discusses possible future improvement of

adding forest motion system into implementation. Forest motion system wasn’t
implemented due to time limitations and thus is only discussed.

4.2 Obtaining data

This section is outlined as follows. Subsection 4.2.1 explains basic tree represen-
tation, subsection 4.2.2 gives insight of how are data created and exported into
basic tree representation. Exporting utility functionality is described in sub-
section 4.2.3 while algorithmical details are discussed in next subsection 4.2.4.
Last subsection 4.2.5 exploits various possible improvements and other usage.

4.2.1 Basic tree representation

Basic tree representation is source representation for single tree. This is not
a representation used for viewing or rendering, but basic tree representation
containing data necessary for creation of such representation. This means that
structure of basic tree representation is not optimized for today’s hardware
rendering, but provides good structure for working on given data such as com-
putation of normals from triangle faces.

Basic tree representation structure The structure of basic tree represen-
tation is:

Array of branches Array containing all tree branches data including tree
trunk.

Array of leaves Array containing all tree leaves data.
Array of materials Array of materials used for tree parts texturing.
Hierarchy Tree hierarchy containing connection logic of tree’s branches and

leaves.

Branch representation structure The branch representation structure is:

Flag Determines which information is present for branch - can be any combi-
nation of Coordinates, Normal, Texcoord, Faces, Material, Level, Bound-
ingBox flag.

Array of coordinates Array of vertex positions for given branch. Coordi-
nates flag indicates that this information is present.

Array of normals Array of vertex normals for given branch. Normal flag
indicates that this information is present.

Array of texture coordinates Array of texture coordinates for given branch.
Texcoord flag indicates that this information is present.

Array of triangle faces Array of triangle faces for given branch. Faces flag
indicates that this information is present.

CHAPTER 4. OUR APPROACH 38

Material ID Identification of material for given branch. This ID is number
pointing into Array of materials in basic tree representation. Material
flag indicates that this information is present.

Level Level of branch in branching hierarchy. The trunk branches have level
0. Branches growing from trunk branches have level 1. Branches growing
from level 1 branches have level 2 and so on. Level flag indicates that this
information is present.

Bounding box Minimal axis–aligned bounding box containing all branches
vertexes. BoundingBox flag indicates that this information is present.

Leaves representation structure Leaves representation structure is same
as branch representation structure with exception that Level data entry is not
present.

Tree hierarchy structure Tree hierarchy structure is:

Root Root to tree hierarchical structure. Root is of type tree hierarchy part
structure.

Tree hierarchy part structure Tree hierarchy part structure is:

Object type Type of object. Can be leave, branch or root. In case of root
the hierarchy part is actually not pointing to any branch or leave data
representation, but is virtual root having level 0 branches (trunks) as its
children.

Object ID Unique object identification in hierarchy.
Array of children Contains children of current hierarchy part.

The basic tree representation is in binary form and in such form can be saved
into and loaded from hard drive. The basic tree representation is usually saved
as *.FullTree file. Note that implementation saves basic tree representation into
a file with 4 byte magic number followed by 4 byte file version which identifies
whether the file is basic tree representation or not. Basic tree representation
files and any other representations saved in our implementation onto hard drive
uses this mechanism in order to recognize file regardless of its filename.

4.2.2 Modeling and exporting data

It isn’t easy to model realistically looking trees. In professional 3D modeling
programs like Maya or 3D Studio MAX this task requires professional skilled
modeler and many hours to work before a single tree is made. That’s why special
plants and tree modeling tools have been made available for plants modeling
purposes.

The other approach is to generate tree based on grammatic language auto-
matically. A set of rules for tree structure, branches and leaves size, position,
rotation and other important things is defined using grammatic. This is done
with some degree of freedom so that, when final automatic generation process
takes place, there can be some variation of trees of same type generated. How-
ever it requires detail knowledge of particular tree type to achieve realistically
looking results. And also set of attributes to model such a tree is relatively high

CHAPTER 4. OUR APPROACH 39

Figure 4.1: XFrog 3.5 tool environment showing custom modeled oak tree

incorporating attributes like branches twist, photo-tropism and gravitropism.
That’s why we decided to use professional tool for generation of trees called
XFrog. The XFrog 3.5 tool was gracefully donated to us by Greenworks organic
software company in exchange for our research results.

The tool environment consist of tree structure part in the left, tree viewing
window in the middle and properties in the right. This is shown on the figure 4.1
along with custom made oak tree. Tree creation process is simple enough. The
modeler stars with creating tree structure in tree structure part in the left from
various primitives such as tree primitive used for trunk and branches or leaf
primitive used for tree leaves. The resulting tree can be immediately viewed
in the middle viewing window. If the modeler is unsatisfied with the result,
primitive’s properties can be adjusted in the properties part in the right.

Using XFrog modeling tool has another big advantage and it’s so that it
comes with tree library consisting of twenty trees each modeled in tree ages.
This gives us enough testing data without the need to model trees ourselves
although we tried to model our own custom oak which is also showed on the
figure 4.1.

The resulting tree models are then exported from XFrog into *.3DS file
format. And after that we use our exporting utility which converts *.3DS tree
file (3D studio file format) into our basic tree representation This is discussed

CHAPTER 4. OUR APPROACH 40

in next subsection.

4.2.3 Exporting utility overview and usage

Because we didn’t get any XFrog software development kit, but only modeling
tool, we weren’t able to convert our tree data from XFrog file format directly
into our basic tree representation. That’s why we examined exported tree data
in *.3DS file format by dumping whole 3DS file into textual representation.
We then decided that’s fair enough for us to use this easy understood dumped
textual representation for conversion into our basic tree representation. We
know that this is not an optimal solution, but we only needed light-weight tool
for obtaining data into our basic tree representation and for this purpose such
solution was easiest we found.

For this whole process we made conversion utility called FullTreeConvert.
With this utility we have not only been able to convert data, but also to com-
pute missing normals, split branches and leaves groups into individual branches
and leaves and even successfully reconstruct tree hierarchy by our own invented
reconstructing algorithm. And this all can be done with minimal manual ef-
fort of naming primitives parts by specified naming convention in XFrog tree
modeling tool.

We will now describe a usage of our FullTreeConvert utility and leave algo-
rithmical details into next subsection where we’ll also further explain meanings
of usage parameters.
Fulltree utility is a command-line utility with usage:

FullTreeConvert [-m(1 or 2)] [-s] [-n] [-h] [-f Tolerance] [-o Output-
FileName] InputFileName

FullTree utility parameter meaning:
-m1 Coordinates with minimal texture coordinate in y axis are averaged and

average is used as significant point for leaf. This relates to tree structure
reconstruction algorithm and defines method for finding leaves connection
with branches.

-m2 All leaves vertex positions are averaged and average is used as significant
point for leaf. This relates to tree structure reconstruction algorithm and
defines method for finding leaves connection with branches.

-s Do not split loaded data into parts. Branches and leaves are exported by
XFrog in groups. By specifying this option groups are not split into indi-
vidual branches or leaves.

-n Do not compute missing normals. If vertexes normals are not present in the
data, normals will not be computed.

-h Do not try to reconstruct tree hierarchy. Tree hierarchy is not reconstructed
by FullTreeConvert conversion utility.

-f Tolerance Distance by which to grow bounding boxes when reconstructing
tree hierarchy. This relates to tree structure reconstructing algorithm and
defines maximal distance for tree part bounding box in which connection
with other tree part can be found.

-o OutputFileName Specifies custom output filename. Otherwise input file-
name is used having *.FullTree extension.

CHAPTER 4. OUR APPROACH 41

InputFileName Specifies input filename which must be 3D Studio file usually
with extension *.3DS. This is only mandatory parameter. Special naming
convention must be used in 3DS file for object names. Leaves names
must start with ”lf” and branches names must start with ”br” followed by
hierarchy number. Hierarchy number is ”0” for trunk, ”1” for branches
growing from trunk and so on. For example ”br0MainTrunk” is correct
branch name conformable with our naming convention.

4.2.4 Exporting utility

Our FullTreeConvert utility works in following succeeding steps:

1. Converts 3DS file format into textual dump file DumpFile.Dump.

2. Loads textual dump file and parses it in order to read all tree data infor-
mation.

3. Splits branches groups into individual branches.

4. Splits leaves groups into individual leaves.

5. Computes normals for branches.

6. Computes normals for leaves.

7. Computes axis–aligned bounding boxes for branches.

8. Computes axis–aligned bounding boxes for leaves.

9. Computes so called significant points for tree hierarchy reconstruction for
branches.

10. Computes so called significant points for tree hierarchy reconstruction for
leaves.

11. Reconstructs tree hierarchy.

12. Saves result into basic tree representation file.

3DS file is required to have special names of data groups, otherwise data
are skipped and not loaded into basic tree representation. This special name
convention is used to recognize what are leaves and what are branches. And
for branches their hierarchy level is also determined with this special naming
convention. This is only extra manual step required to convert data into basic
tree representation. Leaves must start their names with ”lf” and branches with
”br” followed by hierarchy number. Hierarchy numbering start from 0 for trunk
branches and continues increasingly. So for branches growing from trunk it’s
1 and so on. An example of naming convention can also be seen on figure 4.1
with right naming convention for our oak tree.

The branches and leaves groups are split by optimized equivalence class
finding algorithm. The equivalence class is in this particular case specified so
that all vertices indexed by triangle face lies in the same equivalence class and
when two triangle faces index same vertex then all vertices of this two faces lies
also in the same equivalence class. The algorithm 1 shows a pseudo–code of
equivalence class finding algorithm.

CHAPTER 4. OUR APPROACH 42

Algorithm 1 Equivalence class finding algorithm
Vertexes – An array of all vertexes
Faces – An array of all triangle faces
Groups – Resulting equivalence classes aka split parts of tree
procedure FindEquivalence(Vertexes, Faces, Groups)

Assign each vertex its unique group number
for all Faces do

Find group of first vertex in triangle face. Call it A.
Find group of second vertex in triangle face. Call it B.
Find group of third vertex in triangle face. Call it C.
if A is different from B then

Renumber all vertexes having group B to group A
end if
if A is different from C then

Renumber all vertexes having group C to group A
end if

end for
Return found equivalence groups as Groups

end procedure

The trick in implementing this fast is to optimize renumbering steps by also
remembering mapping from group numbers to vertexes. This can be done by
some sort of multimap container.

Normal for vertex is computed by first computing adjacency information for
each vertex. Adjacency information for vertex contains all triangle faces the
vertex is lying on. Then normal for each triangle face is computed as plane
normal aligned with triangle face vertices. Finally normal for each vertex is
averaged as average of triangle face normals of faces vertex is lying on. For this
last step adjacency information is used in the obvious way.

Computation of axis–aligned bounding boxes is straightforward. Minimum
and maximum in each axis is taken as bounding box minimum and maximum
by which axis–aligned bounding box is defined.

Perhaps most interesting part of FullTreeConvert utility is tree hierarchy
reconstruction algorithm. We use branches hierarchy level information and
whether a tree part is branch or leaf information acquired in previous processing
steps. First we compute point we call significant point for each tree part. The
significant point of some tree part can be understood as point which is possibly
nearest point from lower level tree part to which is currently examined tree part
connected or more subtly from which is current tree part growing.

With all significant points computed we start reconstructing our tree hier-
archy from trunk. First all branches of level 0 are automatically considered as
trunks. Then for each branch of level 1 its significant point is tested against
growed axis–aligned bounding box of all branches of level 0. When level 1
branch significant point lies inside growed axis–aligned bounding box of some
level 0 branch, this level 0 branch is taken as candidate for connection. On
the contrary when significant point falls outside axis–aligned bounding box, the
level 0 branch is discarded as not connected with this level 1 branch. From all
level 0 branches considered as candidates for connection minimal distance of all

CHAPTER 4. OUR APPROACH 43

branch vertexes from significant point is found. The level 0 branch with nearest
vertex from significant point is taken as hierarchy parent for examined level
1 branch and connection is established. When all level 1 branches connection
is established, the method proceeds with level 2 branches and so on until all
branches levels are connected and so branches hierarchy reconstructed. Then
in the same manner leaves are connected with highest level branches only. This
reconstructs whole tree hierarchy.

It’s very important to choose right significant point for tree parts. By ex-
amining data structure exported from XFrog we found that for branches it’s
good to choose significant point as vertex which appears on the lowest number
of faces. For leaves we are using significant point as an average of vertexes posi-
tions with minimal texture coordinates on axis y. This is very good assumption
when leaf texture has leaf petiole in the bottom. We are providing an option to
alternatively choose significant point as an average of all leaf vertexes positions.

The degree of how much branches or leaves are discarded from tree hierarchy
reconstruction can be influenced by setting an amount of axis–aligned bounding
box growth. By setting large enough value one can assure that all branches
and leaves are connected, but with higher potentiality of bad connection. This
is however not so big issue to have few leaves are small branches connected
incorrectly.

The algorithm 2 shows tree hierarchy reconstruction in pseudocode.
The whole FullTreeConvert utility speed depends on size of the input data.

On our AMD 3.8+ Ghz the utility takes tens of seconds to few minutes to convert
a single tree from 3DS file representation into basic tree representation with all
things computed and tree hierarchy reconstructed. We just assume that utility
is fast enough and doesn’t provide any detailed utility speed measurements.
Note that in our collection of trees we have tree with as much as one million of
triangle faces which also completes its conversion within specified time range.
Memory requirements are proportional to the size of the input data.

On the contrary of approach used for conversion, we have successfully con-
verted more than 30 trees from 3DS file format into our basic tree representation
with no problem. Many of trees are from XFrog basic plants library and so these
trees haven’t been modeled by us. This shows that our conversion utility isn’t
dependent on any single tree modeling style used within XFrog modeling tool.

We note that current implementation of FullTreeConvert handles case of
leaf or branch with no vertexes incorrectly when reconstructing hierarchy and
displays warning that such leaf or tree cannot be added to tree hierarchy. This
is however minor issue.

4.2.5 Possible improvements and other usage

There can be done various improvements. First 3DS file format can be read
directly from its binary form and not its textual dump file. We however believe
that this improvement will mainly bring utility speed enhancement and intro-
duce possible option to read normals directly from 3DS file if they are present.
This is reasonable believe because 3DS file format is quite simple and doesn’t
provide many other options.

Potential extension of our basic tree representation can be made to provide
support for more types of tree parts like tree roots, fruits and blossoms. Even

CHAPTER 4. OUR APPROACH 44

Algorithm 2 Tree hierarchy reconstruction algorithm
Branches – Array of all tree branches
Leaves – Array of all tree leaves
TreeHierarchy - Reconstructed tree hierarchy returned from algorithm
procedure TreeHierarchyReconstruction(Branches, Leaves, Tree-
Hierarchy)

Compute significant points for branches
Compute significant points for leaves
Let L be branches level and set it to 0
while Some branch has level L do

for all Branches with level L do
Let A be branch of level L
if Level is 0 then

Add branch to hierarchy
else

for all Branches of Level (L - 1) do
Let B be branch of level (L - 1)
if Significant point of A is in growed

axis–aligned bounding box of B then
Compute minimal distance of branch A
significant point from branch B vertexes and store it

end if
end for
Connect branch A to branch B with lowest minimal
distance. If there is no such minimal distance do nothing.

end if
end for
Increase level L by 1

end while
for all Leaves do

Let A be leaf
for all Branches of Level (L - 1) do

Let B be branch of level (L - 1)
if Significant point of A is in growed

axis–aligned bounding box of B then
Compute minimal distance of leaf A
significant point from branch B vertexes and store it

end if
Connect leaf A to branch B with lowest minimal
distance. If there is no such minimal distance do nothing.

end for
end for

end procedure

CHAPTER 4. OUR APPROACH 45

larger extension can be made to provide support not only for trees, but also for
grass, flowers and shrub types of plants.

We are sure that used solution is far from any general conversion tool into
our basic tree representation. But we see that for our purposes our data conver-
sion solution is good enough. To write any more general tool would probably
require to solve much more than loading from various data file formats. Various
modeling tools exporting habits should be discovered and taken into account for
such general solution and this is far beyond our need and aim of our diploma
thesis.

We presented tree hierarchy reconstruction algorithm which we believe can
be adapted for many other reconstruction tasks. We note that we aren’t using
reconstructed tree hierarchy in the current implementation in any place. We
have planned its use for level of detail tree representation generation, but never
actually get so far in implementing level of detail tree representation conversion
utility to use it. Other tasks were more important. But still we leave this
reconstructing feature in for possible further use by anyone who wants to extend
our work or simply use our basic tree representation for his own purposes.

4.3 Simple tree representation

In this sections we’ll discuss our simple tree representation used for basic view-
ing of single tree. In subsection 4.3.1 we’ll present data structures used by
simple tree representation. Then we’ll overview our simple tree conversion util-
ity called ConvertToSimple in subsection 4.3.2. We’ll proceed with explaining
ConvertToSimple utility in more depth in subsection 4.3.3. Finally possible
improvements are discussed in subsection 4.3.4.

4.3.1 Simple tree representation format

Simple tree representation is representation used for basic viewing of single tree.
Simple tree representation is optimized for viewing by sorting triangle faces and
vertices by material and also designed with respect to the fact that all data are
finally loaded into OpenGL vertex buffer object and stored in graphic card’s
memory for rendering. There are no level of detail techniques applied for trees
stored in this representation. This representation can be viewed by our viewer
application.

Simple tree representation structure Simple tree representation struc-
ture is as follows:

Array of branches sorted by material Array of branches data arranged in
a way that every array entry has unique material and all branches having
such material are included as data.

Array of leaves sorted by material Array of leaves data arranged in a way
that every entry has unique material and all leaves having such material
are included as data.

For every array entry all vertices data are stored in single continuous block
of memory and also all indices (triangle faces) data are stored in another single
continuous block of memory. The difference from basic tree representation is

CHAPTER 4. OUR APPROACH 46

that in basic tree representation vertices data are stored in multiple blocks of
memory for each data component. For example vertex normals are stored in one
memory block while vertex coordinates are stored in another memory block. In
simple tree representation data are interleaved so that all vertex components are
stored in defined order before next vertex is stored. This is optimal for todays
graphic hardware because it uses vertex shader unit’s memory cache on graphic
card in the best way. There is no information of tree hierarchy or axis–aligned
bounding boxes stored in simple tree representation structure.

Material with associated data Material with associated data structure is
arranged as follows:

Material Material definition.
Vextexes data Single block of continuous memory containing all vertexes hav-

ing material defined by Material. Vertex format is introduced below.
Indices data Single block of continuous memory containing all indices having

material defined by Material. Each indice is stored as triple index into
Vertexes data. This is arrangement used for triangle list OpenGL draw
call.

Interleaved vertex structure Interleaved vertex structure looks as follows:

Position Vertex position x, y and z.
Normal Vertex normal nx, ny and nz.
Texture coordinates Single set of texture coordinates u and v.

Note that this arrangement is also optimal for vertex shader unit’s memory
cache, because its size is 32 bytes and most of graphic hardware memory caches
are arranged in multiplies of 32 bytes.

Simple tree representation can be saved onto and loaded from hard drive in
binary representation.

4.3.2 Simple tree conversion utility overview and usage

Our simple tree conversion utility is used to convert data from basic tree repre-
sentation into simple tree representation. This utility is called ConvertToSimple
and it is the simplest utility we created.

ConvertToSimple utility is command-line utility with usage:

ConvertToSimple [-o OutputFileName] InputFileName

Usage parameter meaning:
-o OutputFileName Output filename. The *.SimpleTree is usually used as

filename extension.
InputFileName Input filename. Basic tree representation file must be used as

input filename. If no output filename is specified, input filename is used
with changed file extension to *.SimpleTree.

CHAPTER 4. OUR APPROACH 47

4.3.3 Simple tree conversion utility

ConverToSimple utility works in three steps:

1. Loads basic tree representation.

2. Converts basic tree representation into simple tree representation.

3. Saves resulting simple tree representation into file.

From this only second step is interesting. Conversion is done by first sorting
branches and leaves arrays in basic tree representation according to their mate-
rial ID. Then for every material vertex interleaved structure is assembled from
coordinate, normal and texture coordinate arrays and filled into single continu-
ous block of memory. Triangle indices are reindexed accordingly and filled into
another single continuous block of memory. Material definition is also added.
This process is done separately for branches and leaves.

Memory requirements are proportional to the size of input file. Because of
its relative simplicity the ConvertToSimple utility is running fast in terms of
seconds or tens of seconds on our computer with AMD 3.8+ Ghz processor. We
therefore see no need in exact measurements of utility running time.

4.3.4 Possible improvements

Possibly even better performance could be achieved by constructing triangle
strips for branches. It’s not good to arrange data in a way that for each con-
structed triangle strip there is a separate draw call by OpenGL. This would
lead in too much draw calls and predictably in loose of performance rather than
gain. We believe it’s possible to connect constructed triangle strips by insertion
of fake triangle which is never rendered and discarded in triangle culling step
by graphic card hardware. For leaves no such trick is good because leaves are
rendered double–sided and single leaf is often represented as quad consisting of
two triangles which is very small number for construction of triangle strip.

Some memory can be saved by making face indexes only two bytes long
instead of four bytes long in exchange of some increase in draw calls.

4.4 LOD tree representation

This section explains our level of detail approach for single tree. First we intro-
duce our LOD tree representation format in subsection 4.4.1. In next subsection
4.4.2 we overview LOD tree conversion utility which is followed by detail ex-
planation in subsection 4.4.3. Finally we discuss possible improvements in last
subsection 4.4.4.

4.4.1 LOD tree representation format

The main purpose of LOD tree representation is to be used for single tree level
of detail. Its structure is on the contrary to previous formats more general and
can be easily extended. For our needs we implemented it in a way to support
hierarchical pseudo–continuous view–dependent level of detail with storage ca-
pability for mixed point and triangle tree data. We also made an extension of

CHAPTER 4. OUR APPROACH 48

some parts of LOD tree representation in order to support entire forest. This
extension is discussed in section 4.5. LOD tree representation can be viewed by
our viewing application.

LOD tree representation structure LOD tree representation structure is
defined as follows:

Root node Pointer to root node of whole hierarchy.

LOD tree representation node structure Node structure for LOD tree
is:
Data type Type of data stored in Data pointer. This can be:

None No data.
Points Data contains only point representation.
Geometry and points Data contains mixed triangles and points repre-

sentation.
Instance info Instance information data used to instantiate tree into

forest.
Data pointer Stores data representation specified by Data type.
Bounding type Type of bounding object stored in Bounding pointer. This

can be:

None No bounding object.
Axis–aligned bounding box Axis–aligned bounding box is used as bound-

ing object.
Bounding pointer Stores bounding object specified by Bounding type.
Distance type Type of object used to determine distance from node stored in

Distance pointer. This can be:

None No distance object.
Point Single point.
Points Multiple points.

Distance pointer Stored distance object specified by DistanceType.
Additional data with its size This can be any user added data.
Children Any number of children nodes of this hierarchy node. In this way

tree hierarchy is defined.
As it can be seen, LOD tree representation creates tree structure and just is

hierarchical. In our implementation it offers either to carry solely points data
or mixed points and triangles data. Instance info is special data node used
for instantiation of the tree into the forest. And will be described in section 4.5.
Either none or axis–aligned bounding box can be carried which is mostly used
for frustum culling. Distance object is used for fast determination of distance
from the node object. Any additional user data can be carried in Additional
data.

Point data structure We’ll now describe point data structure:

Points Single continuous block with points data.

CHAPTER 4. OUR APPROACH 49

Point area Sorted points area corresponding with points by one to one map-
ping.

Single Point data entry is organised in following way:

Position Point position x, y and z.
Normal Point normal nx, ny and nz.
Size Diameter of point.
Color Point color in RGB.

Mixed point and triangle data structure Mixed triangle and point struc-
ture is defined as follows:

Geometry Array of branches or leaves geometry with associated material per
array entry. Material with associated data is used as defined in simple
tree representation in subsection 4.3.1.

Points Single continuous block with points data.
Geometry area Array of arrays of sorted triangle areas with one to one map-

ping into Geometry.
Point area Sorted points area corresponding with points by one to one map-

ping.
Is branch Array of booleans defining whether geometry are branches or leaves.

Corresponds with Geometry by one to one mapping.
It can be seen that point data structure is similar to mixed triangle and point

structure. While for points data a single continuous block is used, because points
don’t have associated material information with it, for triangles data storage
scheme is similar to simple tree representation having vertexes and indices stored
with associated material information. Sorted point and triangle area are used
in viewer to determine current node level of detail. This is explained in detail
later.

LOD Tree representation can be saved into and loaded from hard drive in
binary form. The usually used extension is *.LODTree.

4.4.2 LOD tree conversion utility overview and usage

For the purpose to get our level of detail tree representation, we have developed
utility which converts basic tree representation into LOD tree representation.
This utility is called ConvertToLODTree.

Our LOD tree generation method is slightly changed one used in Point–
based rendering of trees [11]. In short first for each triangle exactly one point
is generated. Then these generated points are subdivided by regular grid into
cells. For each cell a tree of points is constructed where subdivided cell points
are merged together to create higher and bigger tree level points used for lower
level of detail. For each cell a LOD tree representation node is created. Mixed
triangle and point representation is used. All cell’s points are gathered from
created tree and sorted by its area. In such sorted way they are stored in mixed
triangle and point data structure. Corresponding triangles to points in cell are
also sorted by material and then by area and stored in mixed triangle and point
data structure. Finally solely point representation is created for whole tree by
gathering some user specified percentage amount of biggest points from all nodes
with mixed triangle and point data structure. Point binary tree is constructed

CHAPTER 4. OUR APPROACH 50

having these gathered points in lowest nodes of tree. In the same manner as
previously higher level points are created by merging these points into bigger
ones. Points are then gathered from binary tree, sorted by their area and stored
in point data structure. All nodes with mixed triangle and point data structure
are then added as children into node with point data structure. For all nodes
axis–aligned bounding boxes are computed and in runtime used for frustum
culling.

We now describe usage of ConvertToLODTree conversion utility. Algo-
rithmical detail and in–depth study follows in next section 4.4.3. Convert-
ToLODTree command–line utility usage is:

ConvertToLODTree [-c ConfigurationFileName] [-o OutputFileName]
InputFileName

ConvertToLODTree parameters meaning:

-c ConfigurationFileName Configuration filename with all options. If not
specified config.ini is used as configuration filename.

-o OutputFileName Output filename in LOD tree representation. If not
specified input filename is used with extension *.LODTree.

InputFileName Input filename. This must be basic tree representation file.
Our configuration file has similar structure to a *.ini file structure. Textual

representation is used where two things may appear on the line of configuration
file:

; commentary Line starting with apostrophe serving as commentary.
Key=Value ; commentary Pair of key and its assigned value. This can be

optionally followed by commentary.
Configuration keys for ConvertToLODTree are:

GridSizeX Size of regular grid by which is tree subdivided in X axis. Can be
positive integer smaller than 11.

GridSizeY Size of regular grid by which is tree subdivided in Y axis. Can be
positive integer smaller than 11.

GridSizeZ Size of regular grid by which is tree subdivided in Z axis. Can be
positive integer smaller than 11.

PercentageOfUpliftPoints Percentage amount of biggest points used for cre-
ation of node for whole tree. Can be floating point number within range
[0, 1]. This also relates to change distance from mixed triangle and point
nodes rendering to solely point rendering of tree with only whole tree node.

PointScaleFactor A factor by which to scale each point size and area, and
triangle area. Can be floating point positive number.

NumberOfColorApproxPoints Number of color samples used for point color
approximation while creating point from triangle. Can be positive integer.

NumberOfColorApproxRetries Number of retries for acquiring color sam-
ple used for point color approximation in case that acquiring of color
sample fails by low alpha value of texel accessed. Can be positive integer
or zero.

CHAPTER 4. OUR APPROACH 51

MinAlphaValue Minimal alpha value to accept color sample for point color
approximation. Can be floating point number within range [0, 1].

MaxPointGroupSize Maximal point group size. This is used for generation
of bigger points for cells. This number tells maximal number of points
which can be united to generate first bigger point from points created
from triangles. This can be positive integer.

SixPointsTreeLevelDistance Enables to use six points for distance determi-
nation for tree level node instead of one point. This can be 0 or 1.

CircumscribedCircleArea Enables to use circumscribed circle triangle area
as point area instead of triangle area. This can prevent holes in tree while
rendering with points. This can be 0 or 1.

DesiredDistance Desired distance in meters where change from mixed trian-
gle and point nodes rendering to solely point rendering of tree with only
whole tree node occurs. Serves only for display of statistics where amount
of PercentageOfUpliftPoints is displayed in order to achieve desired
change distance. Note that TriangleCutOffToleration may also alter
change distance. This is positive floating point number.

TriangleCutOffToleration Relates to change from mixed triangle and point
nodes rendering to solely point rendering of tree with only whole tree
node. This occurs in certain distance, but distance must not be too small
to discard rendering of some percentage of biggest triangles. This float-
ing point number means maximal percentage amount of biggest triangles
which can be discarded from rendering. Refer to next subsection 4.4.3 for
more information.

Metric options can also be specified in order to evaluate desired change dis-
tance setting and statistics:

ScreenWidth Width of rendering screen in pixels. Can be positive integer
number.

ScreenHeight Height of rendering screen in pixels. Can be positive integer
number.

MinPointArea Minimal point area on screen in pixels to render point. This
can be positive floating point number.

MaxPointArea Maximal point area on screen in pixels to render point. This
can be positive floating point number.

FOV Field of view in y axis. Can be positive floating point number.
NearPlaneDistance Distance to near plane from eye in meters. Can be pos-

itive floating point number.
Many configurations parameters closely relates to used level of detail gener-

ation technique. To gain better insight into parameter usage, we recommend to
read next subsection 4.4.3 where whole ConvertToLODTree utility is described
in much more detail and depth.

4.4.3 LOD tree conversion utility

ConvertToLODTree utility works in listed succeeding steps:

1. Loads basic tree representation from file.

2. Loads textures belonging to loaded basic tree representation from files.

CHAPTER 4. OUR APPROACH 52

3. Creates point for each branch triangle face.

4. Creates point for each leaf triangle face.

5. Divides points by regular grid.

6. For each cell

(a) Bigger points are generated by merging cell’s points.

(b) Creates mixed triangle and point data structure.

(c) Computes axis–aligned bounding box and distance point.

(d) Creates node data structure to carry mixed triangle and point data
structure along with axis–aligned bounding box and distance point.

7. Creates point data structure for whole tree node data structure, computes
axis–bounding box and distance point(s) for whole tree.

8. Creates whole tree node data structure carrying point data structure.

9. Prints statistics regarding to change distance where mixed point and tri-
angle rendering is changed only to point rendering of whole tree node.

10. Saves resulting LOD tree representation into file.

Loading of basic tree representation from file is self–explaining process. Ap-
propriate textures are loaded using DevIL, a cross–platform image library, and
texture’s data are then converted into same RGBA format. This is done to
simplify task of point color approximation. It’s much more easier to read color
from texture’s data only in one specified color format then from many color
formats.

Branches and leaves are first sorted by material in basic tree representation
and then points are generated from triangle faces in the manner that for one face
exactly one point is created. This one to one mapping is also stored to be able
to identify which point belongs to which triangle face. For each generated point
its position, normal, color and diameter is computed. We have implemented
computation of point components as callback functions in order to be easily
interchanged by anyone trying to program its own point generation behaviour.

We tried to compute point position as an average of triangle face vertices po-
sitions as it’s suggested in Point–based rendering of trees [11], but we discovered
that it has a drawback of having generated point positions in circle shapes for
branches and thus branches covering by points is not good, holes may appear
in points representation during rendering and one can see through branches.
This has to do with a method of generating branches by segments with same
or almost same triangles around branch. We therefore abandoned method sug-
gested by [11] and computed points positions as random position on triangle.
For this we used triangle interpolation method from Linear interpolation [1].
Having triangle with vertices positions A,B, C we compute vectors U = B −A
and V = C −A and then random numbers α and β where 0 ≤ α + β ≤ 1. The
random point position is finally computed as Prandom = A + α · U + β · V .

We compute point normal as triangle face normal. Point color computation
is algorithmically most difficult to compute from all point components. Having
three texture coordinates, texture size and texture data the task is to get color

CHAPTER 4. OUR APPROACH 53

for point. Our first approach was to compute all texels of three lines on the
texture determined by triangle texture coordinates and save them as bounds.
These points bound all texels on texture which are used as color for triangle
while rendering. So we just computed an average of all such texel colors being
bounded by bounding points on texture. Process of computing point color is
shown on algorithm 3. Only texels with alpha value greater or equal to specified
amount in configuration as MinAlphaValue are used to average point color.
A coverage amount is also returned and computed point diameter is multiplied
by it to account texture coverage for point size. If texture is transparent in a
way that point color cannot be computed, the point for such triangle face is not
generated and triangle face is discarded from further processing.

Algorithm 3 Precise point color
TexCoordA, TexCoordB, TexCoordC – Texture coordinates of triangle face
vertices
TextureSize – Texture width and height in pixels
TextureData – Texture color data
procedure PrecisePointColor(TexCoordA, TexCoordB, TexCoordC,
TextureSize, TextureData)

Compute line points determined by TexCoordA
and TexCoordB on texture
Compute line points determined by TexCoordA
and TexCoordC on texture
Compute line points determined by TexCoordB
and TexCoordC on texture
for all texels bounded by line points do

Compute average color of texture’s texels color
with alpha value ≥ minimum alpha value

end for
Return average color of texture’s texels color and coverage amount

end procedure

This approach however proved to be slow. It takes a lot of time to com-
pute precise point color and so we decided to only approximate point color.
Approximation of point color is done in similar way as precise point color com-
putation. First points of bound lines are computed and then only color from
specified number of texels determined by config option NumberOfColorAp-
proxPoints is used for point color approximation. If texel with too much
transparent color value is encountered, an another random texel is taken in-
stead. For too transparent texels this process of new texel selection is repeated
until configuration option NumberOfColorApproxRetries reaches zero. If
NumberOfColorApproxRetries reaches zero, a texel is skipped and color
approximation is taken from one less point. The algorithm 4 describes point
color approximation in pseudo–code for clarity.

The diameter for point is computed such that Dresult = Scale ·D where D
is a point diameter computed in a way that point area Areapoint = D2 equals
to triangle area. Scale is specified by configuration parameter PointScale-
Factor. We decided to use square area instead of rectangular area, because
points render as squares by default in OpenGL. This behavior can be changed

CHAPTER 4. OUR APPROACH 54

Algorithm 4 Point color approximation
TexCoordA, TexCoordB, TexCoordC – Texture coordinates of triangle face
vertices
TextureSize – Texture width and height in pixels
TextureData – Texture color data
procedure ApproximatedPointColor(TexCoordA, TexCoordB, TexCo-
ordC, TextureSize, TextureData)

Compute line points determined by TexCoordA
and TexCoordB on texture
Compute line points determined by TexCoordA
and TexCoordC on texture
Compute line points determined by TexCoordB
and TexCoordC on texture
for Specified number of texels do

for Specified number of retries do
Let T be random texel from bounded area determined by line points
if Minimum alpha value of T ≥ minimum alpha value then

Account color of T in point color average
Break

end if
end for

end for
Return average color of texture’s texels color and coverage amount

end procedure

by enabling point smoothing, but when we do so, it drastically reduces point
rendering performance by an order of magnitude. When configuration option
CircumscribedCircleArea is enabled, a point area Areapoint must instead
equal to an area of circumscribed circle to given triangle. An area of triangle’s
circumscribed circle can be easily computed as Areacircumcircle = π · r2 where
r = a·b·c

4·Areatriangle
with a, b, c being sizes of triangle sides. Usage of circum-

scribed circle area prevents point representation from showing holes between
points while rendering.

After points are generated for triangle faces with one to one mapping, points
are divided by regular grid of size specified as configuration parameters Grid-
SizeX, GridSizeY and GridSizeZ. First minimal axis–aligned bounding box
is computed from all generated points to determine entire grid size. Then points
are divided into cells separately for branches and leaves points. This separate
division is because we need to remember which points belong to branches and
which to leaves. Points division is simply done by computing to which cell given
point comes.

Number of steps is then performed for each cell separately. If some cell is
empty with no points, processing for such cell is skipped and cell is discarded.
Very interesting is generation of bigger points for given cell by merging cell’s
points. But before we proceed with explanation, we need to clarify terminology.
We are using general, in meaning that nodes can have multiple children, tree
data structure in next utility step and for this reason we’ll use a word ”tree”
as data structure and not a plant with branches and leaves. We’ll also refer to

CHAPTER 4. OUR APPROACH 55

”tree node”, ”leaf nodes” and ”tree root” as parts of this data structure.
For the purpose of bigger points generation we need to divide cell points into

small groups with property that points in the group have close distance to each
other. We are using axis–aligned bounding box for points division. First axis–
aligned bounding box is computed for all cell points. Points are then divided
into two groups by plane coming through and perpendicular to longest side of
axis–aligned bounding box. The plane just divides axis–aligned bounding box
into two parts and creates two point groups. For each group the same process
is then repeated. The points division stop when number of points in group
is equal or smaller than configuration parameter MaxPointGroupSize. This
points division process just creates a tree structure with cell points stored in
the leaf nodes of the tree. The tree has a property that only parent nodes of
leaf nodes can have more than two children. On the upper levels, meaning that
lowest level are tree leaf nodes, the tree is binary. Created tree is then used
for bigger points creation in a way that for each non–leaf tree node exactly one
point is created from its children node points. Algorithm 5 shows cell points
division along with creation of point tree in pseudo–code.

Algorithm 5 Point tree creation
Points - Cell points
PointTreeNode - A node of tree, first called with tree root
procedure CreatePointTree(Points, PointTreeNode)

if Number of Points ≤ maximal number of points in group then
Add Points to PointTreeNode
Return

end if
Compute axis–aligned bounding box B for points
Divide point to groups G and H by plane
coming through longest side of B
Create two children nodes C and D for PointTreeNode
Call CreatePointTree(G, C)
Call CreatePointTree(H, D)

end procedure

The bigger points creation is done by traversing previously constructed tree
nodes from bottom to top by recursive algorithm. For each non–leaf node one
bigger point is created with position, normal, color and diameter. Bigger point
for given node is computed from points contained in its children nodes. The
creation of bigger point can be also viewed as merge of smaller points into
one bigger point. We have implemented bigger point components computation
by callback functions in order to allow anyone to easily write its own bigger
point components computation. In our implementation we compute bigger point
position as an average of all point positions. The normal as a weighted average of
all point normals. The weight used is point diameter. We compute bigger point
color as a weighted average of all points color with point diameter used as weight
too. These computations are similar as used in Point–based rendering of trees
[11]. We however were unsatisfied with heuristic used for point size computation
in [11]. We have discovered that much more predictable and good behaving is
to determine point diameter by computing area of squares drawn on the plane.

CHAPTER 4. OUR APPROACH 56

We threat all points as squares with side size of point’s diameter and project
them on XY coordinate system axis–aligned plane. Then we compute area on
the plane covered by union of projected squares. This is called Klee’s problem
and can be solved by a sort of sweepline algorithm. Bigger point diameter is
simply a side of square with area equal to area of projected squares union. In
our opinion this solution returns exactly the information we need to know. For
the case when point squares don’t overlap, we get union square area equal to
sum of all point squares. For the case with a lot of point squares overlapping,
we get union square area which doesn’t overgrow region determined by point
squares.

We’ll now describe our implementation of union square area computation.
We have implemented a hybrid algorithm. For one point degenerate case we
simply return point’s square area. For two points we determine square union
area by subtraction of square intersection area from sum of two square areas.
For more points we use a sort of sweepline algorithm to compute union square
area. For each point square its starting and ending position on axis X is added
into event queue. Event queue is sorted in ascending order. Then events are
processed one by one. For square starting position event minimal and maximal
square position on axis Y is added into height list. For square ending position
event appropriate minimal and maximal square position on axis Y is removed
from height list. For each event a rectangle area is added to whole area sum.
This rectangle area is determined by (X − Xprev) · (MaxY − MinY) where
X is position X of current event, Xprev is position X of previous event and
MaxY, MinY is maximal and minimal Y value currently in height list. One can
imagine whole algorithm as summing area of rectangles going from left to right
with maximal height. This is in fact re-representation of overlapping squares to
rectangles which don’t overlap. Algorithm 6 recapitulates whole computation
in pseudo–code.

After whole hierarchy of bigger points is created, all points are gathered from
tree and mixed point and triangle data structure is constructed from gathered
points and appropriate triangles. First point to triangle face mapping is used
to determine which triangle faces and vertices belong to given grid cell. All
vertices are then searched in basic tree representation, converted into interleaved
vertex component format and stored in single continuous block of the memory
in mixed triangle and point data structure. Because in basic tree representation
branches and leaves were sorted by material previously in ConvertToLODTree
utility, its enough to sort point to triangle mapping in ascending order and then
incrementally walkthrough all branches and collect vertices indexed in mapped
triangle faces. Vertices are stored in single entry of Geometry part of mixed
triangle and point data structure as long as they belong to same material. When
branch with new material ID appears, vertices are stored to next Geometry
entry. Faces are stored in same manner, but must be reindexed to correctly
index vertices stored in new arrangement. Exactly same process of storing faces
and vertices is done then for leaves. An info whether branch or leaf is stored in
Geometry array, is written into Is branch array of mixed point and triangle
data structure.

After vertices and faces storage is complete, triangle areas are computed with
use of callback function for computation of point diameter from triangle. This
guarantees that generated point from given triangle and the triangle have same
areas saved in Geometry area and Point area data entries of mixed triangle

CHAPTER 4. OUR APPROACH 57

Algorithm 6 Union square area computation
Squares - Array of squares for which to compute union square area
ResultingArea - Resulting union square area
procedure UnionSquareArea(Squares, ResultingArea)

Let ResultingArea = 0
Let QUEUE be event queue
Let H be height list
Add square’s starting X positions to QUEUE as starting events
Add square’s ending X positions to QUEUE as ending events
Sort QUEUE by X in ascending order
for all Events E in QUEUE do

if E is starting event then
Add square’s minimal and maximal position on axis Y into H

else if E is ending event then
Remove square’s minimal and maximal position on axis Y from H

end if
Find MAXY – maximal Y in H
Find MINY – minimal Y in H
Add (MAXY −MINY) · (X − PREV X) to ResultingArea

end for
end procedure

and point data structure. This area doesn’t have to be real triangle area because
it is only used by metric to determine what will be rendered. It is better to
have triangle and point area same because, when triangle falls off from rendering,
immediate replacement by appropriate point occurs. Triangle faces and triangle
areas are then sorted in ascending order. Point areas are computed, stored and
points along with point areas also sorted in ascending order. Basically this whole
step of creating mixed triangle and point representation is about data format
conversion, but, as it can be seen, even data conversion can be non–trivial task.

New LOD tree representation node is created. Mixed triangle and point data
structure is stored in it. Axis–aligned bounding box is computed from vertex
positions stored in Geometry array of mixed triangle and point data. Distance
point is computed as points position average. Both axis–aligned bounding box
and distance point are stored in LOD tree representation node.

When all LOD tree representation nodes are created for grid cells, a process
of creating node for whole tree follows. This node contains only point rendering
data and is used to render more distant trees. First a percentage amount of
biggest points is extracted (by copying) from nodes with mixed triangle and
point data structure. This percentage amount is specified by PercentageO-
fUpliftPoints configuration parameter. From extracted points a point data
structure is created. This includes bigger points generation with only one point
allowed in point tree data structure leave nodes, point areas computation, points
and point areas sort to ascending order. Only one point is allowed in point tree
data structure leaf nodes because bigger points are meant to be continuation
from previously generated bigger points for grid cells.

New LOD tree representation node is created. Point data structure is stored
in it. Nodes with mixed triangle and point data structure are connected to

CHAPTER 4. OUR APPROACH 58

whole tree node as children. Axis–aligned bounding box is computed from
children axis–aligned bounding boxes and stored. Distance point is computed
either from points of point data structure when SixPointsTreeLevelDistance
configuration option is switched off or as six points of axis–aligned bounding box
side centers when SixPointsTreeLevelDistance is switched on.

The smallest point of points in the whole tree node determines safe change
distance when rendering of tree can be done by rendering only points in the
whole tree node. However this change distance can be too small so that some
big triangles can be still rendered. In such case by changing rendering from
mixed triangle and point representation to only point representation, it’s obvious
that all such triangles disappear from resulting rendered tree. This can cause
sudden change in tree’s visual quality and even introduce holes in the tree. To
prevent this behavior we introduce TriangleCutOffToleration configuration
parameter which determines percentage amount of biggest triangles that can be
discarded when changing rendering representation. Therefore the area of first
”non–discardable” triangle is saved in whole tree node’s additional data. In
runtime smallest point of whole tree node and saved triangle area is used to
determine real safe change distance dependent on metric settings. The metric
and this computation is described in section 4.6 in more detail.

This rendering representation change is vital and necessary for entire forest
rendering. Having for example only 1000 trees in the forest and tree divided
by 4x4x4 grid into 64 cells. One can easily count that, when viewing all 1000
trees, 64000 nodes must be walked by computer processor. This is not affordable
even for interactive performance on nowadays processors and burdens graphic
hardware with overwhelming number of rendering calls. We found by experience
that representation change should occur between 50 and 100 meters distance of
camera from tree.

To allow fine tunning of change distance ConvertToLODTree utility prints
statistics according to specified target metric settings. This information helps
user to set PercentageOfUpliftPoints and TriangleCutOffToleration con-
figuration parameters to optimal values for given tree. Note that really used
change distance is computed at runtime for every type of tree as we stated be-
fore. This is only hint. But still very useful hint. One might set target metrics
setting little higher and set configuration options accordingly in order to be sure
that rendering representation change occurs in appropriate distance not to ruin
viewer application rendering performance totally!

The last step is straightforward. Generated whole tree node is set as root in
LOD tree representation and entire LOD tree representation is saved into file.

The memory usage is proportional to the size of input data. We provide a
table 4.1 of time measurements for various tree conversions. Conversion speed is
measured on AMD Athlon 3.8+ Ghz with 2 GB of RAM. The parameter settings
for measurement is 4x4x4 division grid with 100 color approximation points and
10 retries when point color is not acquired. As it can be seen small tree models
are converted almost instantly while for larger ones it takes some time. The
most time consuming part is point creation from leaves triangle faces. We note
that false acacia model is the biggest one we use in our tree dataset. We find
ConvertToLODTree utility speed fast enough considering that it’s preprocessing
utility.

CHAPTER 4. OUR APPROACH 59

Tree name Branch faces Leaf faces Running time
Spruce 9 K 11 K 2 s
Oak 220 K 29 K 16 s
Plum 41 K 164 K 23 s
Chestnut 300 K 112 K 30 s
Silver maple 452 K 393 K 91 s
Red Oak 164 K 643 K 101 s
False Acacia 35 K 1100 K 160 s

Table 4.1: Conversion times for ConvertToLODTree utility.

4.4.4 Possible improvements

There is a drawback of randomizing position for points created from triangle
faces. Leaf point positions can be chosen on place where texture is transparent.
These points then causes visual artefact of solely flying in the air. This is
disturbing. An improvement can be made to choose point random position only
when appropriate texel on texture has enough opacity.

We aren’t completely satisfied with one point from triangle face creation.
For branches triangles are long in branch growing direction while in the direc-
tion of branch thickness short. This is problem because generated points are
squares and square of the same area as long triangle cannot cover such trian-
gle sufficiently just introducing holes in branches. It showed that this coverage
problem is especially bad for small branches where branch segments are created
only from few triangles. Resulting visual quality of such small branch is often
really bad. The small branch look is scattered.

We tried to fix this issue with use of circumscribed circle triangle area. But
we are aware that it is far from good solution to this problem and we have
reasons to prove it. First circumscribed circle triangle area is for long triangles
multiple times bigger than triangle area itself. This postpone points usage to
farther view of tree. This is bad because high–detail rendering of tree using
triangles is very costly and thus need arises to switch into point rendering as
early as it only goes! Also secondary problem with circumscribed circle triangle
area emerged unexpectedly. The color for bigger points creation is weighted by
point sizes. Having a lot of small branches with triangle area much bigger than
it really is introduces too much branch color in bigger points. This affects tree
rendering in two ways. Usually too much branches color points are rendered at
certain viewing distance making tree look like having much less leaves. Then at
even bigger distance tree look goes back to leave color, but this color is slightly
different than it is for close–up view. The tree changing its appearance isn’t
certainly what we wanted.

We therefore propose to use another points from triangles generation scheme.
We believe that using scheme as in Interactive Visualisation of Complex Plant
Ecosystems [7] will yield much better quality results. Points are assigned to
triangles based on triangle area. We advise to use equal number of points as
there is number of triangles on the tree. Then separately for branches and leaves
distribute points based on triangle areas in a way that equally sized triangles
receive equal number of points. We expect that effect of using this distribution
scheme will be that bigger branches and trunk receive more points while small

CHAPTER 4. OUR APPROACH 60

branches will not receive a point. Distributing points in such way will hide holes
on bigger branches and trunk while small branches will not be rendered at all
from some distance. We propose that for leaf triangles area is computed as
triangle area multiplied with texture coverage percentage to account for leaves
texture transparency. This is more important than it may seem. In our tree
dataset we have one tree where leaf texture is positioned on quad consisting of
two triangles so that leaf petiole takes one triangle and the rest of leaf the other
triangle. unfortunately leaf petiole has yellow color and the rest of the leaf is
dark green. So a yellow point is generated for triangle with leaf petiole. These
yellow points are very disturbing during tree viewing. Accounting for leaves
texture transparency with introduced point distribution scheme will eradicate
these yellow points completely because petiole has much smaller area than the
rest of the leaf and so triangle with petiole will never receive a point.

A configuration parameter specifying minimum branch triangle area for
which a point is generated can be also added to complement proposed points
from triangles generation scheme or to be used alone. We note that implemen-
tation of this small improvement may not be as easy as it seems because our
implementation is heavily one to one triangle and point mapping driven. And
just a code may require some amount of refactoring.

Another division scheme than division by regular grid can be used. With
our reconstructed tree hierarchy a scheme more compliant with tree hierarchy
can be used. We expect that this will have a primary effect on allowing easier
and more realistic animation of trees by wind.

For bigger points creation a point color average can also be computed in
more perceptually linear space such as CIE LUV space. Maybe even adding a
little color randomization can help to compensate lack of complex lighting.

The size of bigger point can be also computed by enhancing union square
area computation algorithm 6 to compute union of cube volume instead and thus
taking into account a view of tree from more sides. A tree with big differences of
side lengths of its axis–aligned bounding box will benefit from this improvement
most. Algorithm 7 shows the modified version of algorithm 6 in pseudo–code.

4.5 Creating forests

This section discusses our forest solution. Forest representation structure is
described in subsection 4.5.1. Forest generation utility is then overviewed in
subsection 4.5.2 followed by detailed explanation in subsection 4.5.3. Finally
possible improvements are considered in subsection 4.5.4.

4.5.1 Forest representation structure

Our forest representation is used to represent a whole forest of trees. Forest rep-
resentation heavily rely on previously described LOD tree representation node
structure. In fact forest representation can be viewed as extension of LOD
tree representation with added instantiation support for various types of trees
stored in LOD tree representation. Whole forest stored in forest representation
can be viewed by our viewer application. We’ll now describe forest representa-
tion structure along with its instantiation support provided by instance info
data structure.

CHAPTER 4. OUR APPROACH 61

Algorithm 7 Union cube volume computation
Cubes - Array of cubes for which to compute union cube volume
ResultingVolume - Resulting union cube volume
procedure UnionCubeArea(Cubes, ResultingVolume)

Let ResultingVolume = 0
Let QUEUE be event queue
Let H be height list
Let D be depth list
Add cube’s starting X positions to QUEUE as starting events
Add cube’s ending X positions to QUEUE as ending events
Sort QUEUE by X in ascending order
for all Events E in QUEUE do

if E is starting event then
Add cube’s minimal and maximal position on axis Y into H
Add cube’s minimal and maximal position on axis Z into D

else if E is ending event then
Remove cube’s minimal and maximal position on axis Y from H
Remove cube’s minimal and maximal position on axis Z from D

end if
Find MAXY – maximal Y in H
Find MINY – minimal Y in H
Find MAXZ – maximal Z in D
Find MINZ – minimal Z in D
Add (MAXZ −MINZ) · (MAXY −MINY) · (X − PREV X)
to ResultingVolume

end for
end procedure

CHAPTER 4. OUR APPROACH 62

Forest representation structure Forest representation structure is defined
as follows:
Root node Pointer to root node of whole hierarchy.
Instance table Array with filenames of trees saved as LOD tree representation

files
LOD tree representation node structure is used for nodes in forest repre-

sentation. Nodes in current implementation don’t carry any data for rendering
nor distance data, but only axis–aligned bounding boxes used mainly for frus-
tum culling. Special instance info is carried in data for tree instantiation into
forest.

Instance info data structure Instance info data structure is defined:
Instance type Type of instantiated object. Can be FOREST for forest repre-

sentation or LODTREE for LOD tree representation, but only LODTREE
is fully supported now.

Instance type number Entry identification for Instance table. This de-
scribes what to be instantiated.

World matrix World matrix storing instantiation transformation of instanti-
ated object.

Forest representation can be saved into and loaded from hard drive as binary
file. Usually used filename extension is *.Forest.

4.5.2 Forest generation utility overview and usage

We have developed forest generation utility called CreateForest in order to au-
tomatize tree placement into forest. The CreateForest utility takes as input
forest definition, tree definitions, and LOD tree representations and returns for-
est representation as an output. The method used for tree positions generation
is variant of Poisson sampling where trees cannot be overmuch overlapped.

We now present usage of CreateForest utility. CreateForest utility is command–
line utility with following usage:

CreateForest [-c ConfigFilename] [-o OuputFilename] ForestDefini-
tionFilename

The parameter meaning is:
-c ConfigFilename Name of configuration file for application. If not entered

config.ini is used as default configuration file.
-o OutputFilename Output filename of forest tree representation. Usually

with extension *.Forest. If not entered forest definition filename is used
as output filename with extension *.Forest.

ForestDefinitionFilename Forest definition filename. Forest definition file
is in form of configuration textual file and is explained below. Usually
decorated with *.ForestDef extension.

Parameters meaning for configuration file of CreateForest utility is:
Method Method for tree placement into forest. Currently only supported

method is Poisson sampling with allowed amount of tree axis–aligned
bounding boxes intersection. Must be set to 1.

CHAPTER 4. OUR APPROACH 63

AllowIntersection Allowed amount of intersection between axis–aligned bound-
ing boxes of two trees. If the percentage amount of intersection volume
compared to candidate tree axis–aligned bounding box volume is smaller
or equal than AllowIntersection, tree position is accepted and tree is
placed on generated position. Otherwise the tree placement is rejected and
process of generating tree position is repeated. This can be floating point
number from interval [0, 1]. Zero means that no amount of overlapping is
acceptable between trees. One means that any amount of overlapping is
acceptable between placed trees.

NumberOfRetries Number of retries for tree position generation when tree
placement is rejected because of unallowed intersection amount with al-
ready placed trees into the forest. This can be zero or positive integer
number.

The forest definition file specifies parameters for forest generation such as
forest size and tree types used. The forest definition file is textual configuration
file with same structure as utility configuration file. Allowed keys, values and
their meaning will be now described.

Forest definition file Forest definition file is described:
Width Width of the forest in meters. Can be positive integer number.
Depth Depth of the forest in meters. Can be positive integer number.
NodesPerNode Maximum number of tree instances in one node or maximal

number of nodes in higher level node. This is used as limit for subdivision
of hierarchy nodes. Can be positive integer number.

TreesPath Basic path to tree data folder structure. This can is string and
should contain valid path to folder present on hard drive.

Tree0 – TreeN Filenames of tree definitions containing definition of types of
trees used for forest creation. This starts with Tree0 key and continues
incrementally with keys Tree1, Tree2 and so on until all tree definition
filenames are specified. For example forest definition with four tree defini-
tions will have Tree0, Tree1, Tree2 and Tree3 keys used. String values
are associated with keys.

The tree definition file contains definition of tree type for forest creation.
This includes LOD tree representation used for tree type, density of tree type in
forest and basic transformations. The tree definition file is textual configuration
file with same structure as utility configuration file.

Tree definition file Tree definition file is described:
TreeFile Filename and path to LOD tree representation used for this tree

type. TreesPath configuration value is used as basic path to tree data.
TreeFile can contain path relative to basic tree path. This can be string
value.

Density Density of trees in number of trees per 10000 square meters. Note
that requested number of trees may not fit into forest and so less trees can
be placed into forest. This can be positive floating point number.

SizeDeviationXMin Minimal scale of tree along axis X. Tree scale along axis
X is randomly chosen between SizeDeviationXMin and SizeDevia-
tionXMax. This can be positive floating point number.

CHAPTER 4. OUR APPROACH 64

SizeDeviationXMax Maximal scale of tree along axis X. This can be positive
floating point number.

SizeDeviationYMin Minimal scale of tree along axis Y. This can be positive
floating point number.

SizeDeviationYMax Maximal scale of tree along axis Y. This can be positive
floating point number.

SizeDeviationZMin Minimal scale of tree along axis Z. This can be positive
floating point number.

SizeDeviationZMax Maximal scale of tree along axis Z. This can be positive
floating point number.

BaseRotationX Basic tree rotation along axis X in degrees. This can be
floating point number.

BaseRotationY Basic tree rotation along axis Y in degrees. This can be
floating point number.

BaseRotationZ Basic tree rotation along axis Z in degrees. This can be float-
ing point number.

BaseTranslationY Basic tree translation along axis Y. Note that basic tree
translation along axis X and Z doesn’t have sense, because tree positions
in forest are randomly generated. This can be floating point number.

4.5.3 Forest generation utility

The CreateForest forest creation utility works in following steps:

1. Loads configuration file, forest definition file and appropriate tree defini-
tion files.

2. Loads all LOD tree representations specified in tree definition files.

3. Computes basic transformation matrix for every tree type.

4. Computes axis–aligned bounding box of every tree type transformed by
basic transformation matrix.

5. Generates valid tree sizes and positions in forest.

6. Creates instance info data structure for each placed tree.

7. Creates LOD tree representation node’s hierarchy carrying all trees in-
stantiation information.

8. Creates and saves forest representation into file.

First two steps are apparent. Third step computes basic transformation
matrix for each tree type from BaseRotationX, BaseRotationY, BaseRo-
tatationZ and BaseTranslationY values of tree definition file. This allows
user to reorient each tree type data. Transformations are applied in this exact
order:

1. Rotate along axis X.

2. Rotate along axis Y.

3. Rotate along axis Z.

CHAPTER 4. OUR APPROACH 65

4. Translate along axis Y.

An axis–aligned bounding box is then to be recomputed for trees transformed
by basic transformation matrix. These bounding boxes are used in next step of
tree positions generation for tree overlapping amount computation.

Tree positions and scales generation starts with computation of expected
number of trees to be placed into forest. This is computed from forest sizes
determined by Width and Depth configuration parameters and each tree type
density determined by Density configuration parameter. Then for each tree
type, starting with tree type zero, an attempt is made to place expected num-
ber of trees into forest. A random position of tree is computed along with
random scale in given maximal and minimal bounds denoted by SizeDevia-
tion configuration parameters of tree definition. Appropriate tree type axis–
aligned bounding box is adjusted to generated tree’s scale. Adjusted tree’s
axis–aligned bounding box is then searched using quad tree data structure for
overlapping with other axis–aligned bounding boxes. If there is overlapping
with some bounding box, an amount of overlapping is computed as ration of
overlapped volume to adjusted axis–aligned bounding box volume. If an amount
of overlapping is higher than AllowIntersection utility configuration param-
eter, then process of position and scale generation is repeated number of times
specified in NumberOfRetries configuration parameter. When there is no or
acceptable amount of overlapping, tree position and scale is stored and adjusted
axis–aligned bounding box is added into quad tree to be used for overlapping
test of trees. Process of tree position generation is showed in algorithm 8.

Because of trees placement generation method we advise user to specify tree
types with low density first in order to assure that all low density trees will be
placed. For mixed trees with approximately same tree type densities it’s left
on the user to adjust densities accordingly to get expected resulting forest trees
distribution.

Then for each tree position LOD tree representation node with instance info
is created. Nodes are then subdivided by quad tree into groups with maximal
number of nodes determined by NodesPerNode configuration parameter. For
each group higher level node is created carrying nodes with instance info as
its children. Axis–aligned bounding box is computed for all nodes to be used
mainly for frustum culling. Higher level nodes are then also subdivided by quad
tree into groups and parent nodes created for them. This process is repeated
until only one node is created as top of hierarchy.

Forest representation is created having top hierarchy node in its root. In-
stance table is filled with LOD tree representation filenames and relative paths
for each tree type. Finally forest representation is stored into file.

The CreateForest utility memory requirements are proportional to size and
density of forest and size of LOD tree representations used. The utility running
time is low and even forests with 200 000 trees can be generated in matter of
tens of seconds.

4.5.4 Possible improvements

We don’t support any random rotation of tree in some interval. This can be
added to make forest look even more natural. Also support for tree elevation
by terrain high isn’t currently implemented. This is because the issue with

CHAPTER 4. OUR APPROACH 66

Algorithm 8 Trees positions and scale generation
TreeTypes - Array of tree types containing density and scale bounds
Boxes - Array of axis–aligned bounding boxes of tree types
PositionsAndSizes - Resulting generated tree positions and sizes
procedure PlaceTreesIntoForest(TreeTypes, Boxes, PositionsAnd-
Sizes)

for all TreeTypes do
Compute expected number of tree types

end for
Let Q be quad tree of axis–aligned bounding boxes
for all TreeTypes and expected number of tree types do

Generate random tree position and scale
Adjust axis–aligned bounding box according to scale, name it A
Search Q for overlaping with A
Let B be axis–aligned bounding boxes from Q overlapping with A
for all Axis–aligned bounding boxes C in B do

Compute intersection volume VI of C with A
Compute volume V of A
if V I

V > Allowed amount of overlapping then
Repeat position and scale generation specified number of times

end if
end for
Store tree position and scale into PositionsAndSizes
Insert A into Q

end for
end procedure

CHAPTER 4. OUR APPROACH 67

terrain rendering on forest sizes as large as 100 square kilometers isn’t easy one.
While large area terrain rendering is covered quite good in literature, it’s not
an easy implementation task to do and our estimation shows that it can take
two weeks or more to implement terrain rendering solution into diploma thesis.
It was never worth the time. Because of that it was pointless to add support
for terrain elevation into CreateForest utility.

Tree positions generation method can be improved by adding an option to
specify places where trees don’t grow such as on forest glades or dusty roads.
Different method can be implemented to support plantation or park trees place-
ment based on the fact that trees are often planted in rows or alleys. Support
for tree positions input list can be also added to provide a way to specify directly
look of the park or garden.

4.6 Rendering engine

This section 4.6 introduces our forest rendering solution. The Viewer application
is overviewed in 4.6.1 and explained in detail in next subsection 4.6.2. Rendering
engine with impostor system is then separately described in subsection 4.6.3.
Finally possible improvements are discussed in subsection 4.6.4.

4.6.1 Viewer overview and usage

We have implemented our rendering solution as an application called Viewer.
The Viewer application provides hardware accelerated rendering of our represen-
tations. For simple tree representation the Viewer offers pure viewing capability
of tree with no extra options. For LOD tree representation viewing capability
of tree with hierarchical view–dependent pseudo–continuous level of detail is
offered with additional directional lighting option. For forest representation
the Viewer application supports forest viewing capability with level of detail,
directional forest lighting, frustum culling and impostor system rendering ac-
celeration.

From implementation view–point the Viewer application is based on OpenGL
for rendering using GLUT (OpenGL Utility Toolkit written by Mark Kilgard).
The GLUT allows an easy usage and initialization of OpenGL with a degree
of platform independence. While GLUT consists of purely functions, we have
wrapped its necessary functionality to object–oriented model or classes, which
can be denoted as the core of the Viewer application. Other important parts
are resource management system, rendering engine, impostor system, animation
and statistics system. Our own resource management system handles loading
of data and preparatory steps before rendering. The rendering engine renders
trees and forest with the help of shader programs running on graphic card. The
NVIDIA CG Toolkit is used as framework for shader programs. The impostor
system speeds up rendering by rendering distant parts of the forest into images
and displaying them in the scene as billboards. Animation and statistics system
is used for scene fly–through and statistical data gathering.

The user control for the Viewer application is simple. Holding left mouse but-
ton moves camera position forward along view direction. Holding right mouse
button moves camera position backward along view direction. Moving mouse to
left or right rotates view direction along its Y axis. And moving mouse upward

CHAPTER 4. OUR APPROACH 68

Action Result
Left mouse button Moves camera forward
Right mouse button Moves camera backward
Move mouse left or right Rotates camera along its Y axis
Move mouse up or down Rotates camera along its X axis
ESC key Exits application

Table 4.2: Application controls.

or downward rotates view direction along its X axis. The escape key exists
application. The table 4.2 summarizes application controls.

We’ll now describe usage of Viewer application. The Viewer application is
command–line application with graphical window interface with usage:

Viewer [-c ConfigFileName] ViewFileName

With parameter meaning:
-c ConfigFileName Configuration filename containing application configura-

tion. If not specified config.ini is used as default configuration filename.
ViewFileName Filename to be viewed using Viewer application. This file can

be simple tree, LOD tree or forest representation.
The configuration file is the textual file containing application configuration

in the same way as for ConvertToLODTree and CreateForest utilities. Because
this configuration file is rather long, we divide its keys and values description in
several paragraphs related to concrete parts of Viewer application. We believe
this will lead to better orientation in waste number of configuration options.

Configuration options related to Viewer application core:
ScreenWidth Screen width in pixels. This can be positive integer number.
ScreenHeight Screen height in pixels. This can be positive integer number.
MovementSpeed Speed of movement in meters per second. This can be pos-

itive floating point number.
FullScreen Whether to run application in fullscreen or not. This can be one

for fullscreen mode and zero for windowed mode.
ShowMouseCursor Whether to show mouse cursor. This can be one for

shown mouse cursor and zero for hidden mouse cursor.
Configuration options related to resource management system:

TreePath Basic tree path. Specifies directory base for tree data loading.
Configuration options related to rendering engine:

MinPointSize Minimal rendered point size on screen in pixels. This relates
to metric for rendering. This can be non–negative floating point value.

MaxPointSize Maximal rendered point size on screen in pixels. This relates
to metric for rendering. This can be non–negative floating point value.

MinGeometrySize Minimal rendered geometry size on screen in pixels. This
relates to metric for rendering. This can be non–negative floating point
value.

MinTreeLevelPointSize Minimal rendered point size on screen in pixels for
whole tree node rendering. This relates to metric for rendering. This can
be non–negative floating point value.

CHAPTER 4. OUR APPROACH 69

MaxTreeLevelPointSize Maximal rendered point size on screen in pixels for
whole tree node rendering. This relates to metric for rendering. This can
be non–negative floating point value.

FarPlaneDistance Distance to far plane in meters. This is maximal viewing
distance. This can be positive floating point number.

LightingMethod Lighting method used for lighting of LOD tree representa-
tion and forest rendering. This can be one for ambient lighting only and
two for diffuse directional lighting with ambient light.

AmbientR Amount of ambient light for red component. This can be floating
point value in range [0, 1].

AmbientG Amount of ambient light for green component. This can be floating
point value in range [0, 1].

AmbientB Amount of ambient light for blue component. This can be floating
point value in range [0, 1].

UsePerTreeAmbient Whether to use per tree ambient randomization. When
enabled this causes to have slightly randomized ambient value for each
tree. The amount of randomization is specified by AmbientRando-
mAmount configuration key. This can be one for enabled and zero for
disabled.

AmbientRandomAmount The amount of per tree ambient value random-
ization. This specifies interval with center in ambient light color value.
This can be non–negative floating point number.

DiffuseR Amount of diffuse light for red component. This can be floating point
value in range [0, 1].

DiffuseG Amount of diffuse light for green component. This can be floating
point value in range [0, 1].

DiffugeB Amount of diffuse light for blue component. This can be floating
point value in range [0, 1].

LightDirectionX The X component of light direction. This can be floating
point value.

LightDirectionY The Y component of light direction. This can be floating
point value.

LightDirectionZ The Z component of light direction. This can be floating
point value.

BackgroundR The red component of background color. This can be floating
point value in range [0, 1].

BackgroundG The green component of background color. This can be floating
point value in range [0, 1].

BackgroundB The blue component of background color. This can be floating
point value in range [0, 1].

UseGround Whether to render ground. This can be one for rendering with
ground or zero for rendering without ground.

GroundTexture The name of filename with ground texture. This is string.
GroundColorR The red component of ground color. This can be floating

point number in range [0, 1].
GroundColorG The green component of ground color. This can be floating

point number in range [0, 1].
GroundColorB The blue component of ground color. This can be floating

point number in range [0, 1].
Configuration options related to impostor system:

CHAPTER 4. OUR APPROACH 70

UseImpostorSystem Whether to use impostor system or not. One for en-
abled and zero for disabled.

ImpostorTextureWidth Width of impostor texture atlas in pixels. This can
be positive integer number.

ImpostorTextureHeight Height of impostor texture atlas in pixels. This can
be positive integer number.

ImpostorWidth Width of single impostor in pixels. This can be positive
integer number.

ImpostorHeight Height of single impostor in pixels. This can be positive
integer number.

ImpostorMinimalDistance Minimal distance from node’s axis–aligned bound-
ing box to allow impostoring of node. This is in meters and can be positive
floating point number.

ImpostorRefreshNumber A number of impostors to refresh. This can be
positive integer number.

ImpostorRefreshInterval Interval between impostor refresh steps in millisec-
onds. In each impostor refresh step a number of impostors specified in Im-
postorRefreshNumber is refreshed. This can be non–negative integer
number.

ImpostorUpdateInterval Interval between impostor update steps in millisec-
onds. During impostor update step impostors are created and destroyed.
This can be non–negative integer number.

ImpostorHierarchyMaxDepth The maximal depth from the top of the node’s
hierarchy to allow for impostoring. This limits node candidates for impos-
toring. The zero means that only top node can be impostored, one means
that top node and its children can be impostored and so on. This can be
non–negative integer value.

Configuration options related to statistics and animation system:
UseAnimationSystem Whether to use animation system for automatic scene

fly–through. This can be one for enabled or zero for disabled.
AnimationSystemFileName Filename with fly path definition for animation

system. This can be string value.
LoopAnimation Whether to loop animation. When this is enabled, the ani-

mation is played from start after its ending. This can be one for enabled
or zero for disabled.

TerminateAppAtEndOfAnimation When enabled application is exited at
the end of animation. This can be one for enabled or zero for disabled.

UseStatisticalSystem Whether to use statistical system for statistics logging.
This can be one for enabled or zero for disabled.

StatSystemSavePath Path to directory where statistical results should be
saved.

The fly path definition for animation system is line oriented text file with
two allowed line formats:
X Y Z Azimuth Ascendent Roll Time Defines camera position, rotation

and time. The X, Y and Z determines camera position. The Azimuth,
Ascendent and Roll in degrees determines camera rotation where north
for azimuth is in Z+ axis. Roll is about direction determined by azimuth
and ascendent. Time is animation time in seconds and must be entered
in non–decreasing order for line entries. The X, Y, Z, Azimuth, Roll and
Time can be floating point values.

CHAPTER 4. OUR APPROACH 71

; Commentary Line starting with apostrophe is commentary.

4.6.2 Viewer

The Viewer application work can be summarized as follows:

1. Loads configuration and initializes.

2. Loads viewing data by resource management system.

3. Prepare viewing data for rendering.

4. Enters render loop and renders scene using rendering engine with or with-
out impostor system.

5. Deallocates data and exits.

First configuration parameters are read. Then window or fullscreen mode is
initialized along with OpenGL, DevIL library for texture loading and NVIDIA
CG framework for shader support. Vertex and pixel shader programs for graphic
card are loaded from files and compiled for use. If impostor system, animation
system or statistics system is in use, they are also initialized. Then data are
loaded using resource management system.

Our resource management system handles all data loading and deallocation.
First data types are registered as callback functions for data loading and deal-
location. Then resource management system can be called in order to load
specific data of registered data type regardless the data are yet loaded or not,
because resource management alone handles data multiplicity. This prevents
from having same data multiple times in memory and just saves memory. The
main advantage is that once types are registered and loading and deallocation
functions written, there is no need to care about data in any way. The resource
management system cares for loaded data instead.

The data are loaded into memory from file and then converted to format
used for rendering. This includes allocating OpenGL textures in graphic card’s
memory, storing textures there, allocating Vertex buffer objects for vertices,
and indices data and storing geometry data there. The vertex buffer object is
OpenGL extension for geometry data storage in the memory of graphic card.
For simple tree representation loading process is straightforward by only loading
data from file and then converting them into rendering representation storing
textures and geometry data in the graphic card memory. For LOD tree represen-
tation its same with the addition of change distance computation determining
distance where to switch from mixed triangle and point data rendering into
whole tree node point rendering. This computation is done according to metric
and is explained in rendering engine subsection 4.6.3.

For forest representation not only forest hierarchy but also all trees from
LOD tree representation must be loaded. Then using Instance table data
from forest representation and instance info information from forest nodes all
trees are connected as children of appropriate nodes with instance info. This is
done in a way that a node with instance info can have only one children which
is connected LOD tree representation hierarchy. By these connections the scene
acyclic graph is formed.

CHAPTER 4. OUR APPROACH 72

When all data are loaded and application initialization is successful, a render-
ing loop is entered. When animation system is used, the camera automatically
flies through the scene and user controls are suppressed except for application
exit. When animation system isn’t used, the user can view rendered scene and
exit the Viewer application at any time. When statistics system is enabled,
statistics with average rendered frames per second, lowest framerate per sec-
ond, average number of points rendered, average number of triangles rendered
and average number of nodes walked are written into uniquely named statistical
text file along with application configuration at application exit.

4.6.3 Rendering engine with impostor system

Our rendering engine handles several steps to render resulting scene. First
node’s hierarchy is traversed in order to determine what nodes will be rendered.
This includes hierarchical frustum culling and level of detail computation for
nodes with geometry data. All nodes with some triangle or point geometry
selected for rendering into scene fill in rendering request during node’s hierarchy
walkthrough. After all rendering requests have been gathered, they are sorted by
certain criteria to speed up rendering. Then rendering itself occurs either with
ambient only rendering path or diffuse directional light with ambient rendering
path. We can summarize rendering process in steps as:

1. Walkthrough node’s hierarchy. Determine what to render and fill in ren-
dering request.

2. Sort rendering requests.

3. Render scene using sorted rendering requests.

This is view of rendering process without the impostor system. With impos-
tor system the work of updating and refreshing impostored parts of the scene
is added as well as impostor rendering. Impostoring is only available for forest
rendering. With added impostor system rendering process looks like:

1. Update and refresh impostors.

2. Walkthrough node’s hierarchy. Determine what to render and fill in ren-
dering request.

3. Sort rendering requests.

4. Render scene using sorted rendering requests.

5. Render impostors.

The simple tree representation rendering is an exception, because it’s ren-
dered directly without the need to walkthrough hierarchy or sort rendering re-
quests and just stays as separate part from the rest of the rendering engine. For
simple tree representation a simple ambient shader program is used for render-
ing branches and leaves. Rendering follows standard steps of specifying shader
program parameters, vertex format, texture and vertex buffer objects and then
rendering using geometry draw calls. No extra steps are done.

For LOD tree representation and forest rendering the situation is different.
As stated above first node’s hierarchy is walked through. The node’s bounding

CHAPTER 4. OUR APPROACH 73

boxes are tested for visibility against camera view frustum consisting of six
planes. With every camera movement or change of its looking direction its
view frustum planes are extracted along with eye position and stored for future
use. They are then used for frustum culling in a way that for every frustum
plane an effective radius of bounding box is computed and intersection with
sphere with size of effective radius is performed against frustum plane. When
node is not visible, its traversal is ended. When node is visible there can be
several cases. When node is purely used for frustum culling such as node from
forest hierarchy, node’s traversal continues with its children. When node carries
instantiation data, the transformation is accounted and its one child is traversed.
Lastly when node carries data for rendering, a distance from eye position to the
node is approximated using distance information, level of detail is calculated
using metric and rendering request is filled.

Metric Our used metric calculates approximate screen space taken by triangle
or point in the pixels on the screen. This is dependent on distance from the
eye position, width and height of the screen and projection parameters. In fact
from screen space area, triangle or point area and distance we can compute any
one of these parameters having two other parameters as input.

We now present our metric in detail. Let FOV Y be vertical viewing angle,
WIDTH, HEIGHT width and height of the screen in pixels and N the distance
of perspective projection center from near plane, we can compute perspective
projection rectangle width W and height H using equation 4.1.

H = N · tan
FOV Y

2

W =
WIDTH

HEIGHT
·H

(4.1)

Then our metric constant C can be computed as in equation 4.2 where scaling
from perspective rectangle to screen size is accounted along with perspective
projection.

C =
WIDTH ·HEIGHT ·N2

W ·H
(4.2)

Let A be area of triangle or point, As area on screen in number of pixels and let
D be directional distance from eye position to triangle or point position along
view direction. Then we can compute As from known A and D as in equation
4.3, A from known As and D as in equation 4.4 and D from known As and A
as in equation 4.5.

As =
C ·A
D2

(4.3)

A =
D2 ·As

C
(4.4)

D =
√

C ·A
As

(4.5)

For point data the level of detail is computed in the following way. The point
area data are present in mixed triangle and point data structure or point data
structure. The minimal and maximal screen area bounds are the Viewer ap-
plication configuration parameters MinPointSize, MaxPointSize for mixed

CHAPTER 4. OUR APPROACH 74

triangle and point data and MinTreeLevelPointSize, MaxTreeLevelPoint-
Size for point data. The points with screen area between minimal and maximal
screen area bounds are displayed. For node this involves computation of point
maximal and minimal point area from node’s directional distance and maximal
and minimal screen area. The points with point area between computed range
are then searched using binary range search algorithm in sorted point area
array.

For triangles the situation is similar. All triangles with screen area bigger
than MinGeometrySize application configuration parameter are displayed.
For node this involves computation of minimal triangle area from directional
distance to node and MinGeometrySize. Then all triangles bigger or equal
to minimal triangle area are searched using binary range search algorithm in
sorted geometry area array. When some geometry falls into the interval for
displaying, a render request is filled and stored for upcoming scene rendering.

Change distance issue There is one last issue with node’s hierarchy traversal
we have talked about in LOD tree representation section 4.4. When node’s
distance is bigger than change distance, only whole tree node point data are
rendered instead of its children node’s data and no children nodes of whole tree
node are traversed. This is because traversing too many nodes makes application
processor bounded and just slows down rendering speed and also because whole
tree node contains bigger points which can be used for distant rendering. The
change distance is computed as maximum of two values. First value is computed
as distance of smallest point area in whole tree node to take screen space of
MinTreeLevelPointSize configuration parameter. Second value is computed
from additional node’s information containing area of largest triangle which can
be omitted from rendering after it’s switched only to point rendering. This
second value is distance computed using metric from additional information
triangle area and MaxTreeLevelPointSize configuration parameter. This is
very important thing in whole node’s hierarchy traversal because it reduces
traversal time substantially. The bigger number of nodes is used for tree, the
bigger is the traversal time reduction.

Rendering After all rendering requests are filled and stored, they are sorted
by following criteria:

1. Triangles before points.

2. Leaves before branches.

3. Different vertex buffer objects.

4. Different textures.

5. Distance in ascending order.

It’s difficult question what is the best order because some criteria are contra-
dictory to other. We have however selected this order of criteria for smallest
number of vertex buffer object and texture change calls and then for reduced
redraw of scene pixels by partially sorting geometry in front to back order.

Sorted rendering requests are then processed one by one. This is done by one
of two rendering paths. First rendering path uses only ambient lighting. Second

CHAPTER 4. OUR APPROACH 75

uses directional diffuse lighting with ambient component just approximating
sun lighting. For ambient only lighting path two things are interesting. Point
size must be attenuated by distance in shader program in order to get right
point size on the screen. This is done by computing attenuation constant from
node’s distance, perspective projection parameters and screen size. Because
of bad visual appearance of distant trees which have all same color and so
there was no detail apparent in distance, we have used a cheap trick to resolve
this issue. We have assigned each tree a slightly different ambient lighting
color. It leads to differentiation of trees in the distant parts of forest and just a
viewer can see tree silhouettes. The AmbientRandomAmount configuration
parameter specifies how much are ambient values randomized for trees in the
way that the ambient lighting color is in the center of interval specified by
AmbientRandomAmount configuration parameter.

For directional diffuse lighting with ambient path there is only one thing
worth mentioning. We have used only one–sided leaves triangles representation
and because of that we have only one normal for one leaf side. For the other
side of leaf the normal must be flipped in order to correctly compute directional
lighting for that side. This flipping is done in shader program by computing
signed distance of eye position to the plane defined by triangle’s normal. This
is done in view space where eye position is in the center of coordinate system
and just computation is simplified a little bit. We note that testing in view
space whether triangle’s normal has positive or negative Z component isn’t a
right way to determine whether to flip normal or not because of perspective
projection used for viewing of scene.

Impostor system The impostor system consists of several parts. At applica-
tion initialization top hierarchy nodes are taken as impostor candidates. During
rendering loop impostors must be updated, refreshed and rendered. The up-
date step consists of planning what nodes to impostor from impostor candidates
and what impostors to delete. This is followed by impostor removal and cre-
ation. The refresh step renew impostor positions and images and rendering step
renders impostors to the scene.

Our impostor system approach is novelty because our impostor system is
hierarchical. We therefore build impostor candidate tree at application initial-
ization. The depth of tree is controlled by ImpostorHierarchyMaxDepth
configuration parameter specifying maximal depth of nodes from the top of the
node’s hierarchy to be taken as impostor candidates. We threat top hierarchy
node as level zero, its children as level one and so on. This means that value
of one in ImpostorHierarchyMaxDepth configuration parameter takes top
hierarchy node and its children as impostor candidates.

The impostor candidate tree is built in depth linearized fashion. This means
that impostor candidates are organized in a way to allow easy walkthrough
through impostor candidates with same depth level. In fact impostors with
same depth level are stored in one array. This however doesn’t mean that
tree fashion has gone. The impostor candidates from arrays of different depth
levels are interlinked in parent–children manner. We have chosen this data
organization because it’s best for our hierarchical impostor planning algorithm.

The planning is most difficult task for our impostor system in algorithmical
sense. The task is to use impostor atlas texture which is holding impostor

CHAPTER 4. OUR APPROACH 76

images in an efficient way. We define that we want to plan impostors in a way
that, if node is impostored, no sibling of this node have impostor. This is an
invariant we want to hold in all cases. And the meaningful one because we don’t
waste an impostor’s texture atlas space with impostor images which will not be
in fact used. The impostor candidate can be impostored if the metric allows it.
We also want to impostor higher level nodes of node’s hierarchy if it is allowed
by metric. To achieve this we prioritize such nodes over lower level nodes, but
this isn’t an invariant. The planning process therefore selects higher level nodes
for impostoring first and then lower level nodes if there is enough space left in
impostor atlas texture. We must also remove all impostors which are disallowed
by metric usually because they are too close to camera. We therefore summarize
our planning efforts in following way:

• Prioritize higher level nodes to be impostored before lower level nodes.

• Don’t allow siblings of impostored node to be impostored. (Invariant)

• Remove impostors which are disallowed by impostor metric.

We now describe our planning algorithm. The impostor candidates are
walked one by one starting from highest level to the lowest level. If the im-
postor candidate isn’t impostored and metric allows its impostoring, then the
impostor candidate is added into possible creation list and its siblings must be
walked in order to remove impostored ones. If an impostored sibling is found,
it’s added into removal list with mark that its removal is dependent on creating
specific higher level impostor. If the impostor candidate is impostored, metric is
checked for that candidate. If metric disallows this candidate to be impostored,
it’s added into removal list, otherwise nothing is done.

By this way removal list is assembled. The creation list is then assembled
from possible creation list. All impostor candidates which causes to remove some
impostored sibling are automatically added because they paid for itself. For the
other candidates on the possible creation list the higher level ones are taken
before the lower level ones until there is free place for them on impostor texture
atlas. The algorithm 9 shows impostor planning algorithm in pseudo–code.

After removal and creation steps are planned, the removal step takes place.
This is straightforward. All impostors from removal list are removed and it’s
space on the texture atlas is marked as free. Then comes the creation step
where for all impostor candidates from creation list impostors are created and
space for them is allocated on the texture atlas. All created impostors are then
immediately refreshed to obtain their image and billboard shape in the forest
scene.

The metric used for impostor system is two part. First it’s tested that dis-
tance of camera from impostor candidate node is bigger than minimal distance
specified by ImpostorMinimalDistance configuration parameter. Then the
area of rectangle is computed from node’s axis–aligned bounding box corner
points projection onto plane going through center of axis–aligned bounding box
and being perpendicular to direction going from eye position to axis–aligned
bounding box center. Using same metric as for level of detail computation the
rectangle area is projected onto screen and compared to impostor size given
by ImpostorWidth and ImpostorHeight configuration parameters. If the
rectangle screen area is smaller than impostor area size, the impostor candidate
is allowed to be impostored, otherwise it’s not allowed.

CHAPTER 4. OUR APPROACH 77

Algorithm 9 Impostor planning algorithm
ImpostorCandidates - Impostor candidate nodes for impostoring
RemovalList - List of impostors to be removed
CreationList - List of impostors to be created
procedure PlanImpostors(ImpostorCandidates, RemovalList, Creation-
List)

Let C be possible creation list
for all ImpostorCandidates walked in depth level

order from highest to lowest do
Let I be impostor candidate
if I is not impostored then

if Metric allow impostoring of I then
Add I into C. Search siblings of I for impostors.
Add them into RemovalList.
Mark them as dependent removal on I.

end if
else if I is impostored and metric doesn’t allow impostoring then

Add I into Removal list.
end if

end for
for all Impostor candidates I in C with

marked dependent removal in RemovalList do
Add I into CreationList

end for
while There is free impostor space do

Add highest level impostor candidate I from C into CreationList
Remove I from C

end while
end procedure

CHAPTER 4. OUR APPROACH 78

The impostor refresh assures that visual appearance of impostored nodes is
correct while the camera is moving. We decided to refresh specified amount
of impostors by round robin scheme at the end of some time interval. The
ImpostorRefreshNumber specifies the number of impostors and Impostor-
RefreshInterval specifies the time interval. We found that it’s better to refresh
small number of impostors more often then large number of impostors less of-
ten. This prevents from application stall during refresh step. We also found
that update step doesn’t need to be done as often as refresh step and so we
differentiated update and refresh step intervals. Our implementation however
do refresh with every update step which was easier to code. This means that
there can occur separate refresh step or update with refresh step in our imple-
mentation. The ImpostorUpdateInterval configuration parameter specifies
the time interval between two impostor updates.

There are two things which must be done in refresh step for each impostor
refreshed. The billboard position and rotation in the scene must be computed
and actual image of forest from current eye position must be taken. The bill-
board position and rotation is computed from node’s axis–aligned bounding box.
The corner points of axis–aligned bounding box are transformed into projection
space, the axis–aligned bounding rectangle is computed from transformed corner
points and transformed back to world space where it’s used as billboard posi-
tion. Then metric is adjusted according to impostor size and image is rendered
into the impostor texture atlas by rendering impostor’s node and its siblings by
rendering engine. We don’t move or rotate billboard position elsewhere. We
assume that refresh step is taken often enough for billboards to have approxi-
mately correct position and rotation. The impostor rendering is straightforward
and just displays impostor billboards.

Implementation and rendering method errors We’ll now discuss our im-
plementation and method visual appearance errors because nothing is errorless.
Sometimes one or more big points appear on the rendered tree model. We claim
that is our implementation error. This can be corrected by recreating LOD tree
representation few times and observing resulting rendered tree for occurence of
big points. We haven’t yet discovered what is causing this error and because of
it no more information can be given to this error.

Sometimes holes may appear in points rendered tree as we discussed in
section 4.4. This is because points may badly approximate triangle shape and
it happens mainly with small branches. This is more error of used method than
implementation issue, but can be solved with points having a size of triangle’s
circumscribed circle area. In our implementation this is good solution for some
trees while for the other it’s not optimal. This is also discussed in section 4.4
and depends on the way the LOD tree representation is created.

The trunk from tree in the distance may also disappear. This is caused by
LOD tree creation method. The reason why it’s happening is in fact that trunk
has limited number of points in comparison with the rest of the tree. By point
averaging scheme the bottom of the trunk is shifted upward for bigger points
and just there are no bigger points for the bottom of the trunk.

There can be points flying separately from the tree. This is caused by ran-
dom point position generation which can be generated on the places where tree
leaf texture is transparent. This is discussed in section 4.4 and it’s our imple-

CHAPTER 4. OUR APPROACH 79

mentation issue.
Tree visual appearance in far distance is insufficient. This is caused by small

number of bigger points for far away tree rendering. Depending on level of detail
metric setting and tree size the point representation is sufficient to distance from
2000 to 3500 meters. Exceeding this distance will cause nothing to be rendered.
We e–mailed with authors of Point–based rendering of trees [11] on behalf of
this issue and they also admitted that even using point representation for couple
of trees produces bad visual quality of far trees. We therefore claim that it’s
point–based rendering technical issue which wasn’t addressed adequately yet.

The point representation is noisy during movement. This is visible on col-
orful trees. We suspect that this is caused by the way the bigger points are
created. The authors of Point–based rendering of trees [11] don’t mention this,
but maybe they don’t test their rendering method enough. We however have
done testing on numerous tree types and because of it we are of opinion that
this is also used method drawback.

White points may appear on the tree. This is caused by approximating
transparent leaf texture where transparent points are usually in white color
with full transparency. If the border of texture is correctly edited, white point
rarely appears. But when resizing of big leaf texture is done to smaller one, the
left border is damaged and white points may appear on the tree. This can be
always fixed by choice of right texture size and manually editing border of the
leaf on the texture.

These are the errors we are aware of, but we don’t claim that other errors
may not occur. We are however confident that these errors don’t lessen or
somehow disturb the resulting scene in a way that is crucial for gaining look
and feel of the used method and its speed measurements. Every method usually
has its own unique look and feel. For our method the look and feel is little bit
like in fairy tale images.

4.6.4 Possible improvements

The problem with movement from fixed function pipeline rendering to shader
programing is in increased difficulty to make fast and reliable rendering engine.
One might think that using such library as NVIDIA CG for shader programs
handling is enough, but it’s naive approach to rely only on basic functionality
NVIDIA CG is offering. The more shader programs are used the harder it
becomes to manage them. One must load every shader program separately, fetch
all of its constant parameters and set them separately before rendering. This
becomes quickly annoying and it’s the waste of time. In fact this practically
means to program separate rendering path for every pair of vertex and pixel
shader to provide effective means of rendering. This is the reason why we have
two rendering paths in our Viewer application.

Because of that it’s actually a very good idea to build a shader handling sys-
tem upon NVIDIA CG. The simple rule of having same meaning for uniquely
named constant parameters in all shader programs allows to build an effective
shader handling system where every constant parameter can be set by using
same handle for it to all shader programs using it. Or even better the constant
parameters can be set only once to shader handling system and shader handling
system can set them automatically to currently used shader program. Using
such shader handling system makes shader programs much more easier to han-

CHAPTER 4. OUR APPROACH 80

dle. Let say we would like to add some shadows into our forest. With current
state we are forced to write shader loading, constant parameter fetching, new
rendering path and so on. With shader handling system shader program part
is almost free and we can focus on implementing shadow solution solely.

The same it’s with geometry data vertex format which is now fixed. It’ll
be great improvement to have more flexible way to set vertex format either
from shader program used or from geometry data structures. Having more
flexible data structures will be even better. This will simplify task of computing
ambient occlusion term and adding it to vertex and point data. Setting aside
that computing ambient occlusion term requires to program ray–casting system,
the secondary most difficult task is to add computed ambient term value to
data. With our fixed data structures it’s simply not an easy task. Having more
flexible data structures and rendering engine will help much. It’s especially
important when one realizes that lighting using ambient occlusion is probably
one of the best ways to add cheap and realistically looking lighting to the forest
and therefore the way to go to improve forest lighting.

The level of detail computation can be speeded up by precomputing tables
of point and triangle intervals to render based on distance. We note that this
lowers number of level of details for tree and may introduce more popping to
the scene.

Our node’s hierarchy walkthrough can be easily parallelized and just utilize
multiple processor architecture which is becoming common on desktop comput-
ers. The rendering requests are independent to each other and because of it
different threads can be assigned to walkthrough different parts of node’s hier-
archy. The good candidates are children of top level node. They can be assigned
to threads by round robin scheme. Each thread can also sort its filled render-
ing requests to further put off computation burden from rendering. The sorted
rendering requests from threads can be then merged together using merge part
of merge sort algorithm. Because of the way we create our forest level node
hierarchy, we have the tree which is balanced or almost balanced. We believe
that this is almost ideal for parallelization and will speed up processor compu-
tations in optimal way. Because walking through node’s hierarchy is the most
computational expensive part of the Viewer application, we expect huge perfor-
mance gain on processor side and we just get rid of processor bound limitation
for rendering of the forest scene totally.

Questionable is whether to implement some sort of occlusion culling. It’s
true that recent graphic hardware supports occlusion queries natively, but it’s
not without cost. The result of occlusion query isn’t available immediately. One
must wait for the result some time and it’s not clear what to do in that time
on processor side. The naive approach of rendering near trees and then ask for
occlusion query for each distant tree, wait for occlusion query result and based
on the result decide whether to render tree or not, is simply not possible. We
believe that it slows application in most cases, if not in all cases! Obviously the
more dense is the forest the bigger is the chance to save rendering resources by
using occlusion queries. Unfortunately this is only true for forest walkthroughs
and not for flying above the forest where almost every top of the tree can be
seen. For coniferous forest its also very questionable how far can one see through
the dense forest. If the forest is old, it’s not a rare case to see the bottom of
tree trunks half or one kilometer far away. For such forests it would require to
divide each tree approximately in the level where leaves start to appear to even

CHAPTER 4. OUR APPROACH 81

begin thinking about occlusion queries! Because of these reasons we strongly
advise to implement occlusion queries only with some sort of mechanism which
can detect whether occlusion queries bring performance advantage or not.

Another interesting problem is putting forest on the terrain. The algorithms
for large scale terrain rendering exist, but they aren’t cheap in terms or rendering
power they take. The Geometry clipmaps [9] is probably best method to choose.
We actually believe that this approach can solve problem with poor quality of
distant trees. The idea is to render whole forest from top into one extremely
big texture of for example 30000 x 30000 pixels and then generate chain of
lower resolution textures from it. Then higher resolution textures are discarded
and lower resolution textures starting for example from resolution 4000x4000
pixels are used for terrain texturing. This fits perfectly into geometry clipmaps
terrain rendering algorithm where terrain is rendered as number of regular grid
rings each assigned different resolution of terrain heightfield texture. As we
need to start using forest textures in distance of 1.5 to 2 kilometers, we can
omit high resolution textures and start using relatively low resolution forest
textures for distant rings as terrain texture combined with ground texture. All
textures can be generated in preprocessing step by some utility. To provide even
better resolution, we can slice up the forest and render several slicing textures
from the top in the same way as previous texture and then we can render
far terrain several times lifted up by some amount according to slice height in
which the slicing texture was taken. We note that by using such scheme the need
for aperiodic tiling of forest parts is surpassed. We predict that the need for
aperiodic tiling will be one of the reasons why developers will not use methods
incorporating it in practice. This is often simply too limiting.

4.7 Forest motion

We’ll discuss forest animation in order to get brief overview of potential ex-
tension of our implementation by animation system. We haven’t implemented
animation system because of the lack of time. It’s relatively easy to extend our
implementation by some simple tree animation system, but it becomes more
challenging as more realistic looking animation or leaves animation is required.

The simplest way to animate a tree is to swing whole tree according to
wind direction and intensity. This can be simulated with added whole tree
transformation according to some noise function defining intensity and direction
of the wind over time for whole forest. Only trees to specified maximal distance
from the camera should be animated in order to cut down overall animation
computation time and not to have problem with bad looking animation because
of used impostor system. The impostor system is in fact not an animation
compatible part. We expect that animating impostored parts of the forest
will look unrealistically and disturbingly, the trees will suddenly change their
positions when impostor refreshes. Also circle wind primitive can be added to
simulate local strong wind conditions.

To achieve more realistically looking animation, there need to be some
more tree structure information present. Unfortunately such information is
not present in our current implementation. The only format having such in-
formation is our basic tree representation where reconstructed tree hierarchy is
held. Probably the easiest way is to incorporate information about branch level

CHAPTER 4. OUR APPROACH 82

into vertex and point geometry. Then for every tree the transformation matrix
for each branch level is computed by the Viewer application and set into ver-
tex shader program. The vertex shader program determines which branch level
has given vertex or point and applies right transformation matrix to vertex or
point position. We note that matrixes must be created in a way that for higher
level branches all lower level branches transformations must be also accounted,
otherwise the tree will fall into parts during animation.

Another way, how to enable wind animation, is to make tree node hierarchy
structure according to tree structure. This however means for our implemen-
tation to rewrite LOD tree representation utility ConverToLODTree in rather
radical way. The advantage of this method is practically no additional geometry
size cost and ability to handle wind animation solely by the Viewer application
without the need to use shader programs. Also animation level of detail can
be controlled with this method easily. As tree gets further not all tree node’s
hierarchy is walked and just lower animation level of detail is computed.

The hardest part is to achieve animation of the leaves. The paper A hybrid
method for real–time animation of trees swaying in wind fields [17] achieves
animation of the leaves for single tree. We therefore expect that it will be
possible to animate leaves only for few closest trees to the camera. We prefer
to use single vertex format representation for both static and animated leaves
because otherwise memory requirements will be unacceptable. We expect that
assigning each leaf a unique identification number and position of the leaf petiole
should be enough to achieve some leaves animation, but acknowledgement of this
expectation should be done by an effort to implement leaves animation.

Chapter 5

Results

This chapter discuss results of our approach. First measuring conditions are
introduced in section 5.1. Then our test suite developed for measurement pur-
poses is overviewed in section 5.2. Results are presented in a form of graphs in
section 5.3 and finally discussed in section 5.4.

5.1 Measurement conditions

Before any measurement is taken, there is a need to discuss measurement condi-
tions. We have decided to test on our computer with powerful graphic card. We
believe that this will give more proper view on speed of our method for future
use. The table 5.1 shows parameters of our testing machine.

We have included 3DMark 2005 score as overall information of our testing
machine speed. The 3DMark 2005 is industry benchmarking professional so-
lution and thus this score captures graphical power of testing machine in the
most appropriate way. We hope that it becomes more usual to include such
information in measurement conditions.

Our diploma thesis aims to achieve interactive to real–time graphical speed
of our forest rendering solution. The real–time rendering speed is considered 30
frames per second (FPS) and above. However in most cases everything above
15 FPS is just enough to view resulting scene in relatively smooth way. We
therefore threat range from 15 to 30 FPS as near real–time speed. We threat
range from 8 to 15 FPS as interactive speed.

We have measured all our test forests in fullscreen mode and with framerate
synchronization turned off in order not to be limited by monitor refresh rate.
The framerate synchronization was turned off in driver settings. As it’s stated

Processor: AMD Athlon 64 3800+
Graphic card: NVIDIA GeForce 8800 GTX with 768 MB RAM
RAM: 2 GB
Motherboard: ASUS A8N-SLI DELUXE
Operating system: Microsoft Windows XP Service Pack 2
3DMark 2005 score: 10834

Table 5.1: Parameters of computer for results measurement.

83

CHAPTER 5. RESULTS 84

in subsection 4.6.2, we have incorporated animation and statistical system into
our Viewer application. This ensures that results are correctly measured under
same condition for every Viewer application setting. We have however done
measurement only once mainly because it takes several hours to complete our
test set. We still believe that taking measurements only ones doesn’t alter
resulting data in any relevant way since graphical rendering power of computer
is stable.

For FPS measurements we count every frame rendered and running time.
Then we compute average FPS as division of counted frames by running time.
In this way the exact average FPS is computed. The minimal FPS is taken
as the lowest FPS counted by our application. There can be some variation
however because our application waits until time counter exceeds one second
and then computes FPS by dividing frame rate count by elapsed time which
can be slightly bigger than exact one second. We also count average triangles
and points rendered. This is also done by counting total number of triangles or
points rendered during application run–time and then dividing it by application
running time. By triangles or points rendered we mean number of triangles
or points sent to graphic card for drawing by OpenGL draw calls. The last
measured parameter is average number of hierarchy nodes walked. This includes
every walked node of scene acyclic graph including forest nodes used for frustum
culling, nodes with instantiation information and all tree nodes. When impostor
system is turned on, the nodes walked, in order to create impostor images, are
also counted.

5.2 Test suite overview

We have developed test suite in order to carry on with application rendering
speed testing. The test suite is two part. First part is designed to test single
tree LOD representation against simple tree representation. Second part tests
various aspects of forest rendering.

We decided not to show results from first part because it isn’t interesting
enough. The rendering of single tree is just fast enough and for both representa-
tions the performance is in hundredths of frames per second in every case. The
only interesting fact is that our LOD tree representation outperforms single tree
representation in every case and even for close look–ups. We expected that from
some distance LOD tree representation will be faster, but we didn’t expect that
it will be so for close look–ups. But it showed that frustum culling had done its
job for close look–ups well.

The second part consists of various tests for forest rendering speed. We’ll
now discuss second part in more detail. First series of tests is designed to test
forest rendering speed according to five metric settings and three screen reso-
lutions. Also performance of lighting paths and impostor system is evaluated.
The table 5.2 shows metric settings for each detail level chosen. The testing
screen resolutions are 800x600, 1024x768 and 1600x1200. We note that using
for example high detail setting of metric for 800x600 screen resolution is not the
same as using it for 1024x768. The quality of using high detail setting of metric
is in fact higher for 1024x768 screen resolution. This is because of chosen metric
which is dependent on screen resolution. We however do not recompute metric
settings based on screen resolution. We just left quality to be higher for bigger

CHAPTER 5. RESULTS 85

Detail level Min point Max point Min triangle Min tree level Max tree level
size size size point size point size

Extra high 1 5 5 1 5
High 1 5 5 4 10
Normal 5 10 10 7 15
Low 7 15 15 10 20
Extra low 10 20 20 15 30

Table 5.2: Metric settings for test suite.

resolutions in order to put more stress to forest rendering. According to our
opinion for screen resolutions 800x600 and 1024x768 the normal detail metric
setting has enough quality while for 1600x1200 low detail metric settings can
be used without problem for scene viewing in practice.

We test for two scene animation paths: the walkthrough through the forest as
someone walks or runs in the forest and flight above the forest. The animations
are 50 and 55 seconds long. We have adjusted the animations to resemble real
scenario of how will probably the user look at the forest. But because the
animations are relatively short we tried to avoid not to look into forest even for
short period of time. Our previous tests showed that even short look into the
ground while walking in the forest can alter average FPS to become 20 or 30
frames higher. For forest flight above the minimum and average FPS is usually
very different. This is because the animation starts with low altitude flight
upon the forest while at the end of the animation the flight upon the forest is
in much higher altitude. We therefore strongly advise the reader to take a look
at animation fly paths for itself in order to make an idea about relevancy of our
results for various viewing conditions.

Getting back to first series of tests we have chosen a poplar forest with den-
sity of 20 trees per 10000 square meters. This choice ensures enough visibility to
the distance while maintaining relatively good speed in all of our tests. We test
five detail metric settings for three screen resolutions and two fly paths resulting
in 30 tests. This is done three times. Once for directional diffuse lighting path
with impostor system turned on, once for directional diffuse lighting path with
impostor system turned off and lastly for ambient lighting path with impostor
system turned on. This yields total of 90 test runs for first series of testing.
The purpose of this first test series is to test forest rendering performance in
various detail and screen resolution conditions. Moreover the impostor system
performance and the effect of different lighting paths is measured.

The second series of tests are designed to test forest rendering performance
under various forest types from our vast tree library. Nine forests are tested
for two fly paths at normal metric settings in 1024x768 screen resolution. The
forests are created with density of 30 trees per 10000 square meters with three
different ages of each tree type.

The next series aim to measure impact of memory consumption on forest
rendering. Our most memory intensive tree model of falseacacia taking 82 MB
of hard disk space is used six times in one to six copies for forests. The most
memory intensive forest just takes approximately 492 MB in graphic card mem-
ory.

The fourth series of tests are designed to test forest rendering performance

CHAPTER 5. RESULTS 86

depending on the forest size. We do this on four forest sizes of 4x4, 5x5, 10x10
and 20x20 km of forest and with four far plane distance settings starting at
2000 meters and ending at 3500 meters. We use special high altitude and super
fast fly path to test this. We note that our forest rendering ends at far plane
distance, but still added high level hierarchy to handle such big forest may
also have its impact on forest rendering speed. We note that 20x20 km forest
contains almost 400 000 trees.

The fifth series of tests measure forest rendering performance according to
various forest densities. Spruce, poplar and falseacacia forests are measured
with tree densities of 5, 10, 20, 40 and for poplar forest also 80 trees per 10000
square meters. Although the forest density is one of the most important factors
for forest rendering, we hardly find such information in any tech paper we read
about forest rendering. This we consider as serious flaw and mistake of the
authors of these tech papers. With our results we can show, that by altering
forest density, practically any speed of rendering results can be achieved.

The last but one series of tests are designed to test performance impact
of various LOD tree representation grid subdivision schemes. The spruce and
Colorado spruce forests are used to test five grid subdivision schemes of 1x1x1,
2x2x2, 3x3x3, 4x4x4 and 5x5x5 nodes. This test is undertaken in 800x600 screen
resolution with normal detail in order to test application processor bound and
because of that the graphic card is relieved from any extra rendering burden.

Final series of tests measure impact of forest subdivision scheme. This is
done for 16, 32, 64, 128 and 256 maximal nodes per node setting with impostor
system turned on and off. The forest used is of 2x2 km size because smaller
forest of 1x1 km size is not enough for bigger maximal nodes per node value to
manifest its properties.

If it isn’t said otherwise all tests are done with forests of size 1x1 km with
trees subdivided by 4x4x4 grid and with 64 maximal nodes per node forest
subdivision scheme. If the reader is interested in any other parameter used and
its setting, there is always a possibility to find it in test suite rendering settings,
tree creation settings or forest creation settings. The appendixes also contain
much more information about settings used for various trees and forests.

CHAPTER 5. RESULTS 87

5.3 Results

Forest with directional lighting and impostor system

Rendering performance

14

30.8

48.9

63.1

75.9

8.7

19.9

34

46.9

57.2

9.5

17.9

32.8

22.1

77.4

124.7

156.7

186.2

10.8

41.4

77.9

105

137.7

67.5

25

39

46.3

6.3

8

26

16.7

49

6.1

2.9

12.6

17.7

22.9

12

10.2

19.7

15.5

13

8

3.5

31

17

18

10

5.7

24.9

37.4

30

20

10.7

4.9

14.8

29.9

47.1

24.6

5

0 20 40 60 80 100 120 140 160 180 200

800x600 Extra high detail walkthrough

800x600 High detail walkthrough

800x600 Normal detail walkthrough

800x600 Low detail walkthrough

800x600 Extra low detail walkthrough

1024x768 Extra high detail walkthrough

1024x768 High detail walkthrough

1024x768 Normal detail walkthrough

1024x768 Low detail walkthrough

1024x768 Extra low detail walkthrough

1600x1200 Extra high detail walkthrough

1600x1200 High detail walkthrough

1600x1200 Normal detail walkthrough

1600x1200 Low detail walkthrough

1600x1200 Extra low detail walkthrough

800x600 Extra high detail flight above

800x600 High detail flight above

800x600 Normal detail flight above

800x600 Low detail flight above

800x600 Extra low detail flight above

1024x768 Extra high detail flight above

1024x768 High detail flight above

1024x768 Normal detail flight above

1024x768 Low detail flight above

1024x768 Extra low detail flight above

1600x1200 Extra high detail flight above

1600x1200 High detail flight above

1600x1200 Normal detail flight above

1600x1200 Low detail flight above

1600x1200 Extra low detail flight above

R
e

s
o

lu
ti

o
n

,
d

e
ta

il
a

n
d

s
c

e
n

e
fl

y
p

a
th

FPS

Minimal FPS Average FPS

Figure 5.1: First series of tests. Rendering performance results of forest with
directional lighting and impostor system.

The rendering performance shows that most of resolution and detail settings run
in real–time or in near real–time. The slowest is 1600x1200 extra high detail
setting which don’t run even in interactive speed. The speed up between extra

CHAPTER 5. RESULTS 88

high and high detail setting is caused by using different detail settings for tree
level rendering by points only.

Forest with directional lighting and impostor system

Primitive count

9283177

3179458

1484773

1116606

785746

12729045

4672844

2185511

1634375

1178925

8841314

4164967

2344900

7082433

2156640

863210

12921686

3730997

1968516

1417708

993902

19302849

7823767

3796384

2839528

2085745

31477

14580

9619

328948

84553

24740

39828

213171

1440496

883060

309709

165121

103991

93393

129825

584232

766289

1107142

2111193

2083493

265630

330190

488541

925980

948544

160712

219582

319650

590386

611196

1204274

585252

3243280

17800248

0 5000000 10000000 15000000 20000000 25000000

800x600 Extra high detail walkthrough

800x600 High detail walkthrough

800x600 Normal detail walkthrough

800x600 Low detail walkthrough

800x600 Extra low detail walkthrough

1024x768 Extra high detail walkthrough

1024x768 High detail walkthrough

1024x768 Normal detail walkthrough

1024x768 Low detail walkthrough

1024x768 Extra low detail walkthrough

1600x1200 Extra high detail walkthrough

1600x1200 High detail walkthrough

1600x1200 Normal detail walkthrough

1600x1200 Low detail walkthrough

1600x1200 Extra low detail walkthrough

800x600 Extra high detail flight above

800x600 High detail flight above

800x600 Normal detail flight above

800x600 Low detail flight above

800x600 Extra low detail flight above

1024x768 Extra high detail flight above

1024x768 High detail flight above

1024x768 Normal detail flight above

1024x768 Low detail flight above

1024x768 Extra low detail flight above

1600x1200 Extra high detail flight above

1600x1200 High detail flight above

1600x1200 Normal detail flight above

1600x1200 Low detail flight above

1600x1200 Extra low detail flight above

R
e

s
o

lu
ti

o
n

,
d

e
ta

il
a

n
d

s
c

e
n

e
fl

y
p

a
th

Primitive count

Average point count Average triangle count

Figure 5.2: First series of tests. Primitive count results of forest with directional
lighting and impostor system.

The primitive count results show that point rendering is most costly for our
method since there is only small amount of triangles rendered. The extra high

CHAPTER 5. RESULTS 89

detail setting uses extreme amount of points to be rendered.

Forest with directional lighting and impostor system

Nodes walked

863

781

727

7032

1742

1237

1036

928

14455

3762

2490

1809

1382

1041

3493

1892

2444

3144

5100

12971

1221

1428

1722

2463

8220

963

1110

1308

1746

4978

0 2000 4000 6000 8000 10000 12000 14000 16000

800x600 Extra high detail walkthrough

800x600 High detail walkthrough

800x600 Normal detail walkthrough

800x600 Low detail walkthrough

800x600 Extra low detail walkthrough

1024x768 Extra high detail walkthrough

1024x768 High detail walkthrough

1024x768 Normal detail walkthrough

1024x768 Low detail walkthrough

1024x768 Extra low detail walkthrough

1600x1200 Extra high detail walkthrough

1600x1200 High detail walkthrough

1600x1200 Normal detail walkthrough

1600x1200 Low detail walkthrough

1600x1200 Extra low detail walkthrough

800x600 Extra high detail flight above

800x600 High detail flight above

800x600 Normal detail flight above

800x600 Low detail flight above

800x600 Extra low detail flight above

1024x768 Extra high detail flight above

1024x768 High detail flight above

1024x768 Normal detail flight above

1024x768 Low detail flight above

1024x768 Extra low detail flight above

1600x1200 Extra high detail flight above

1600x1200 High detail flight above

1600x1200 Normal detail flight above

1600x1200 Low detail flight above

1600x1200 Extra low detail flight above

R
e

s
o

lu
ti

o
n

,
d

e
ta

il
a

n
d

s
c

e
n

e
fl

y
p

a
th

Number of nodes

Average nodes walked

Figure 5.3: First series of tests. Nodes walked results of forest with directional
lighting and impostor system.

Notice how number of nodes walked falls off between extra high and high
detail setting. Setting tree level detail settings for lower detail allows this. The
number above 8000 average nodes walked definitively causes the application to

CHAPTER 5. RESULTS 90

be processor bounded.

Forest with directional lighting

Rendering performance

14.2

32.1

49.5

64

82.7

9

21.1

35.5

47.8

59.8

9.5

17.4

32.7

69.8

112

141.8

167.6

10.7

42.4

77.5

104.9

128.9

14.9

30.4

47.8

68.4

12.8

35.3

18

4.4

15.3

14

27.6

15.7

2.9

6.1

12.6

16.5

22

20.7

9.6

21.3

17.2

12.8

7.6

3.7

17.6

25.6

11

8

4.6

53.1

24

14.3

9.6

11.6

17.3

4.98

24.9

5.3

0 20 40 60 80 100 120 140 160 180

800x600 Extra high detail walkthrough

800x600 High detail walkthrough

800x600 Normal detail walkthrough

800x600 Low detail walkthrough

800x600 Extra low detail walkthrough

1024x768 Extra high detail walkthrough

1024x768 High detail walkthrough

1024x768 Normal detail walkthrough

1024x768 Low detail walkthrough

1024x768 Extra low detail walkthrough

1600x1200 Extra high detail walkthrough

1600x1200 High detail walkthrough

1600x1200 Normal detail walkthrough

1600x1200 Low detail walkthrough

1600x1200 Extra low detail walkthrough

800x600 Extra high detail flight above

800x600 High detail flight above

800x600 Normal detail flight above

800x600 Low detail flight above

800x600 Extra low detail flight above

1024x768 Extra high detail flight above

1024x768 High detail flight above

1024x768 Normal detail flight above

1024x768 Low detail flight above

1024x768 Extra low detail flight above

1600x1200 Extra high detail flight above

1600x1200 High detail flight above

1600x1200 Normal detail flight above

1600x1200 Low detail flight above

1600x1200 Extra low detail flight above

R
e

s
o

lu
ti

o
n

,
d

e
ta

il
a

n
d

s
c

e
n

e
fl

y
p

a
th

FPS

Minimal FPS Average FPS

Figure 5.4: First series of tests. Rendering performance results of forest with
directional lighting.

Unfortunately the impostor system doesn’t yield any speed performance im-
provement, but also doesn’t slow down application. We’ll discuss this issue in
next section 5.4.

CHAPTER 5. RESULTS 91

Forest with directional lighting

Primitive count

5919

8906248

3155584

1498095

1123826

793033

11326725

4591550

2188554

1657629

1171898

8772700

4154665

2353546

9288403

2482906

1289434

909876

13035136

3805682

1921689

1401352

19735988

7896034

3835802

28619

12392

309620

214693

72538

36634

18866

1437033

881655

310245

162998

102776

103431

155871

589161

771822

1111067

2115168

2083676

258744

340053

485782

908037

936581

164103

217724

312931

578401

607475

590322

973572

2864217

2087662

3247015

16968652

0 5000000 10000000 15000000 20000000 25000000

800x600 Extra high detail walkthrough

800x600 High detail walkthrough

800x600 Normal detail walkthrough

800x600 Low detail walkthrough

800x600 Extra low detail walkthrough

1024x768 Extra high detail walkthrough

1024x768 High detail walkthrough

1024x768 Normal detail walkthrough

1024x768 Low detail walkthrough

1024x768 Extra low detail walkthrough

1600x1200 Extra high detail walkthrough

1600x1200 High detail walkthrough

1600x1200 Normal detail walkthrough

1600x1200 Low detail walkthrough

1600x1200 Extra low detail walkthrough

800x600 Extra high detail flight above

800x600 High detail flight above

800x600 Normal detail flight above

800x600 Low detail flight above

800x600 Extra low detail flight above

1024x768 Extra high detail flight above

1024x768 High detail flight above

1024x768 Normal detail flight above

1024x768 Low detail flight above

1024x768 Extra low detail flight above

1600x1200 Extra high detail flight above

1600x1200 High detail flight above

1600x1200 Normal detail flight above

1600x1200 Low detail flight above

1600x1200 Extra low detail flight above

R
e

s
o

lu
ti

o
n

,
d

e
ta

il
a

n
d

s
c

e
n

e
fl

y
p

a
th

Primitive count

Average triangle count Average point count

Figure 5.5: First series of tests. Primitive count results of forest with directional
lighting.

The primitive count for scene without impostor system is much the same as
with impostor system used.

CHAPTER 5. RESULTS 92

Forest with directional lighting

Nodes walked

1089

1020

936

7088

1865

1304

1160

1029

14477

3804

2548

1852

1419

1370

4617

1864

2401

3080

4991

12809

1197

1444

1708

2415

8067

1045

1164

1351

1760

4991

0 2000 4000 6000 8000 10000 12000 14000 16000

800x600 Extra high detail walkthrough

800x600 High detail walkthrough

800x600 Normal detail walkthrough

800x600 Low detail walkthrough

800x600 Extra low detail walkthrough

1024x768 Extra high detail walkthrough

1024x768 High detail walkthrough

1024x768 Normal detail walkthrough

1024x768 Low detail walkthrough

1024x768 Extra low detail walkthrough

1600x1200 Extra high detail walkthrough

1600x1200 High detail walkthrough

1600x1200 Normal detail walkthrough

1600x1200 Low detail walkthrough

1600x1200 Extra low detail walkthrough

800x600 Extra high detail flight above

800x600 High detail flight above

800x600 Normal detail flight above

800x600 Low detail flight above

800x600 Extra low detail flight above

1024x768 Extra high detail flight above

1024x768 High detail flight above

1024x768 Normal detail flight above

1024x768 Low detail flight above

1024x768 Extra low detail flight above

1600x1200 Extra high detail flight above

1600x1200 High detail flight above

1600x1200 Normal detail flight above

1600x1200 Low detail flight above

1600x1200 Extra low detail flight above

R
e

s
o

lu
ti

o
n

,d
e

ta
il

a
n

d
s

c
e

n
e

fl
y

p
a

th

Number of nodes

Average nodes walked

Figure 5.6: First series of tests. Nodes walked results of forest with directional
lighting.

The same counts for average nodes walked results. The difference between
impostor system used and not used is minimal.

CHAPTER 5. RESULTS 93

Forest with ambient lighting and impostor system

Rendering performance

17.9

47.1

67.3

86

110.4

10.9

28

47.7

64.6

75.2

12.7

23.2

43.8

24.2

87.3

138.9

174.4

219

12.4

47.4

88.4

121.3

149.1

33.8

52.4

76.3

27

46

96

4.8

20.7

15

49

31.5

3.4

7.9

16.5

22.7

31

14.6

11.6

27.6

23

17.7

10.8

4.6

22

37

10.9

9.6

5

72

29.5

20.4

27

14.8

6

17.1

33

6.3

0 50 100 150 200 250

800x600 Extra high detail walkthrough

800x600 High detail walkthrough

800x600 Normal detail walkthrough

800x600 Low detail walkthrough

800x600 Extra low detail walkthrough

1024x768 Extra high detail walkthrough

1024x768 High detail walkthrough

1024x768 Normal detail walkthrough

1024x768 Low detail walkthrough

1024x768 Extra low detail walkthrough

1600x1200 Extra high detail walkthrough

1600x1200 High detail walkthrough

1600x1200 Normal detail walkthrough

1600x1200 Low detail walkthrough

1600x1200 Extra low detail walkthrough

800x600 Extra high detail flight above

800x600 High detail flight above

800x600 Normal detail flight above

800x600 Low detail flight above

800x600 Extra low detail flight above

1024x768 Extra high detail flight above

1024x768 High detail flight above

1024x768 Normal detail flight above

1024x768 Low detail flight above

1024x768 Extra low detail flight above

1600x1200 Extra high detail flight above

1600x1200 High detail flight above

1600x1200 Normal detail flight above

1600x1200 Low detail flight above

1600x1200 Extra low detail flight above

R
e

s
o

lu
ti

o
n

,d
e

ta
il

a
n

d
s

c
e

n
e

fl
y

p
a

th

FPS

Minimal FPS Average FPS

Figure 5.7: First series of tests. Rendering performance results of forest with
ambient lighting and impostor system.

The ambient lighting only rendering path is about 20 percent faster than
directional lighting with ambient rendering path.

CHAPTER 5. RESULTS 94

Forest with ambient lighting and impostor system

Primitive count

9066409

3041579

1434309

1091267

775561

12119616

4591211

2156957

1630236

1159218

8828759

4162739

2345912

7426016

2210241

1198452

878319

12845786

3928033

1950263

1422429

19140002

8206025

3980811

2983640

2141317

35655

17994

10826

344928

261363

88753

46040

25177

1479573

1002262

359999

193760

122798

110289

149255

589197

772956

1109920

2118899

2083793

257596

334506

475119

904579

933451

161580

214215

302143

563411

601496

590599

98224

3249625

17725235

0 5000000 10000000 15000000 20000000 25000000

800x600 Extra high detail walkthrough

800x600 High detail walkthrough

800x600 Normal detail walkthrough

800x600 Low detail walkthrough

800x600 Extra low detail walkthrough

1024x768 Extra high detail walkthrough

1024x768 High detail walkthrough

1024x768 Normal detail walkthrough

1024x768 Low detail walkthrough

1024x768 Extra low detail walkthrough

1600x1200 Extra high detail walkthrough

1600x1200 High detail walkthrough

1600x1200 Normal detail walkthrough

1600x1200 Low detail walkthrough

1600x1200 Extra low detail walkthrough

800x600 Extra high detail flight above

800x600 High detail flight above

800x600 Normal detail flight above

800x600 Low detail flight above

800x600 Extra low detail flight above

1024x768 Extra high detail flight above

1024x768 High detail flight above

1024x768 Normal detail flight above

1024x768 Low detail flight above

1024x768 Extra low detail flight above

1600x1200 Extra high detail flight above

1600x1200 High detail flight above

1600x1200 Normal detail flight above

1600x1200 Low detail flight above

1600x1200 Extra low detail flight above

R
e

s
o

lu
ti

o
n

,
d

e
ta

il
a

n
d

s
c

e
n

e
fl

y
p

a
th

Primitive count

Average triangle count Average point count

Figure 5.8: First series of tests. Primitive count results of forest with ambient
lighting and impostor system.

CHAPTER 5. RESULTS 95

Forest with ambient lighting and impostor system

Nodes walked

874

795

734

7206

1861

1255

1070

933

14356

4075

2690

1936

1464

1087

3742

1884

2444

3132

5072

12952

1191

1423

1681

2413

8125

949

1076

1247

1671

4889

0 2000 4000 6000 8000 10000 12000 14000 16000

800x600 Extra high detail walkthrough

800x600 High detail walkthrough

800x600 Normal detail walkthrough

800x600 Low detail walkthrough

800x600 Extra low detail walkthrough

1024x768 Extra high detail walkthrough

1024x768 High detail walkthrough

1024x768 Normal detail walkthrough

1024x768 Low detail walkthrough

1024x768 Extra low detail walkthrough

1600x1200 Extra high detail walkthrough

1600x1200 High detail walkthrough

1600x1200 Normal detail walkthrough

1600x1200 Low detail walkthrough

1600x1200 Extra low detail walkthrough

800x600 Extra high detail flight above

800x600 High detail flight above

800x600 Normal detail flight above

800x600 Low detail flight above

800x600 Extra low detail flight above

1024x768 Extra high detail flight above

1024x768 High detail flight above

1024x768 Normal detail flight above

1024x768 Low detail flight above

1024x768 Extra low detail flight above

1600x1200 Extra high detail flight above

1600x1200 High detail flight above

1600x1200 Normal detail flight above

1600x1200 Low detail flight above

1600x1200 Extra low detail flight above

R
e

s
o

lu
ti

o
n

,d
e

ta
il

a
n

d
s

c
e

n
e

fl
y

p
a

th

Number of nodes

Average nodes walked

Figure 5.9: First series of tests. Nodes walked results of forest with ambient
lighting and impostor system.

CHAPTER 5. RESULTS 96

F
o

re
s

t
ty

p
e

s
re

n
d

e
ri

n
g

p
e

rf
o

rm
a

n
c

e

8
5

.3

1
5

9
.4

1
8

.3

7
5

5
8

.6

1
0

8
.4

5
1

.3

1
2

6
.9

1
7

9
.8

2
7

6

4
0

.9

6
6

.7

3
7

.5

9
6

.5

3
2

.3

1
0

4
.9

2
9

2
1

3
5

2
9

.6

7
9

2
0

.7

1
1

.3

1
1

.5

2
1

1

5
0

.2

3
4 3
6

5
3

4
6

1
2

.8

7

5
5

.3

5
7

1
0

9
.7

1
5

0
5
0

1
0
0

1
5
0

2
0
0

2
5
0

3
0
0

B
ir

c
h

fo
re

s
t

w
a

lk
th

ro
u

g
h

B
ir

c
h

fo
re

s
t

fl
ig

h
t

a
b

o
v

e

C
o

lo
ra

d
o

s
p

ru
c

e
fo

re
s

t
w

a
lk

th
ro

u
g

h

C
o

lo
ra

d
o

s
p

ru
c

e
fo

re
s

t
fl

ig
h

t
a

b
o

v
e

F
a

ls
e

c
y

p
re

s
s

fo
re

s
t

w
a

lk
th

ro
u

g
h

F
a

ls
e

c
y

p
re

s
s

fo
re

s
t

fl
ig

h
t

a
b

o
v

e

F
a

ls
e

c
y

p
re

s
s

lo
w

re
s

fo
re

s
t

w
a

lk
th

ro
u

g
h

F
a

ls
e

c
y

p
re

s
s

lo
w

re
s

fo
re

s
t

fl
ig

h
t

a
b

o
v

e

M
u

g
o

p
in

e
fo

re
s

t
w

a
lk

th
ro

u
g

h

M
u

g
o

p
in

e
fo

re
s

t
fl

ig
h

t
a

b
o

v
e

N
o

rw
a

y
s

p
ru

c
e

fo
re

s
t

w
a

lk
th

ro
u

g
h

N
o

rw
a

y
s

p
ru

c
e

fo
re

s
t

fl
ig

h
t

a
b

o
v

e

P
e

c
a

n
fo

re
s

t
w

a
lk

th
ro

u
g

h

P
e

c
a

n
fo

re
s

t
fl

ig
h

t
a

b
o

v
e

P
o

p
la

r
fo

re
s

t
w

a
lk

th
ro

u
g

h

P
o

p
la

r
fo

re
s

t
fl

ig
h

t
a

b
o

v
e

W
ill

o
w

fo
re

s
t

w
a

lk
th

ro
u

g
h

W
ill

o
w

fo
re

s
t

fl
ig

h
t

a
b

o
v

e

Foresttype

F
P

S

M
in

im
a

lF
P

S
A

v
e

ra
g

e
F

P
S

Figure 5.10: Second series of tests. Rendering performance results of various
forest motives.

The results show that various forest motives can be also rendered in real–
time or near real–time speed. The density used is 30 trees per 10000 square
meters. The exceptional mugo pine performance is caused by the fact that it’s
shrub.

CHAPTER 5. RESULTS 97

F
o

re
s

t
ty

p
e

s
p

ri
m

it
iv

e
c

o
u

n
t

2
9

9
9

1
0

2
2

1
5

4
1

1
1

8
2

7
1

4

1
3

2
7

0
9

7

1
4

7
9

0
2

4

1
4

5
2

1
8

1

8
8

1
4

4
8

8
3

8
1

6
5

4
3

9
2

9

1
6

0
6

7

1
0

1
8

6
5

6

2
6

2
7

8
6

3

1
7

6
3

6
9

3

1
3

5
9

1
0

8

1
9

9
5

8
6

9

1
8

0
8

1
3

3
5

6
2

6
3

6
2

0
1

6
3

3
7

3
7

7

3
0

2
6

1
9

8
9

9
3

2
1

0
9

5
7

5
8

3
3

2

1
9

3
6

5
6

0 6
4

5
8

9
1

8
6

8
2

6
9

6

2
6

6
0

1

1
6

0
5

9
2

3
1

1
0

4 2
1

2
5

7
8

9
4

8

4
1

1
0

2

2
2

2
9

8
3

6

1
1

5
5

5
3

9

0
5
0
0
0
0
0

1
0
0
0
0
0
0

1
5
0
0
0
0
0

2
0
0
0
0
0
0

2
5
0
0
0
0
0

3
0
0
0
0
0
0

B
ir

c
h

fo
re

s
t

w
a

lk
th

ro
u

g
h

B
ir

c
h

fo
re

s
t

fl
ig

h
t

a
b

o
v

e

C
o

lo
ra

d
o

s
p

ru
c

e
fo

re
s

t
w

a
lk

th
ro

u
g

h

C
o

lo
ra

d
o

s
p

ru
c

e
fo

re
s

t
fl

ig
h

t
a

b
o

v
e

F
a

ls
e

c
y

p
re

s
s

fo
re

s
t

w
a

lk
th

ro
u

g
h

F
a

ls
e

c
y

p
re

s
s

fo
re

s
t

fl
ig

h
t

a
b

o
v

e

F
a

ls
e

c
y

p
re

s
s

lo
w

re
s

fo
re

s
t

w
a

lk
th

ro
u

g
h

F
a

ls
e

c
y

p
re

s
s

lo
w

re
s

fo
re

s
t

fl
ig

h
t

a
b

o
v

e

M
u

g
o

p
in

e
fo

re
s

t
w

a
lk

th
ro

u
g

h

M
u

g
o

p
in

e
fo

re
s

t
fl

ig
h

t
a

b
o

v
e

N
o

rw
a

y
s

p
ru

c
e

fo
re

s
t

w
a

lk
th

ro
u

g
h

N
o

rw
a

y
s

p
ru

c
e

fo
re

s
t

fl
ig

h
t

a
b

o
v

e

P
e

c
a

n
fo

re
s

t
w

a
lk

th
ro

u
g

h

P
e

c
a

n
fo

re
s

t
fl

ig
h

t
a

b
o

v
e

P
o

p
la

r
fo

re
s

t
w

a
lk

th
ro

u
g

h

P
o

p
la

r
fo

re
s

t
fl

ig
h

t
a

b
o

v
e

W
il
lo

w
fo

re
s

t
w

a
lk

th
ro

u
g

h

W
il
lo

w
fo

re
s

t
fl

ig
h

t
a

b
o

v
e

Foresttype

P
ri

m
it

iv
e

c
o

u
n

t

A
v

e
ra

g
e

tr
ia

n
g

le
c

o
u

n
t

A
v

e
ra

g
e

p
o

in
t

c
o

u
n

t

Figure 5.11: Second series of tests. Primitive count results of various forest
motives.

Although the Colorado spruce forest doesn’t have the highest average point
count used for walkthrough, it’s the slowest in FPS. This can be caused by the
fact that Colorado spruce is rather big tree.

CHAPTER 5. RESULTS 98

F
o

re
s

t
ty

p
e

s
n

o
d

e
s

w
a

lk
e

d 1
1

2
8

1
3

7
9

1
4

0
5

2
0

7
1

1
2

3
2 1
3

7
8

1
5

7
3

2
3

9
6

8
1

6

6
0

9

1
2

1
3

1
6

5
4

1
3

0
8

1
5

7
7

1
2

3
4

1
9

1
8

1
0

6
3

9
9

5

0
5
0
0

1
0
0
0

1
5
0
0

2
0
0
0

2
5
0
0

3
0
0
0

B
ir

c
h

fo
re

s
t

w
a

lk
th

ro
u

g
h

B
ir

c
h

fo
re

s
t

fl
ig

h
t

a
b

o
v

e

C
o

lo
ra

d
o

s
p

ru
c

e
fo

re
s

t
w

a
lk

th
ro

u
g

h

C
o

lo
ra

d
o

s
p

ru
c

e
fo

re
s

t
fl

ig
h

t
a

b
o

v
e

F
a

ls
e

c
y

p
re

s
s

fo
re

s
t

w
a

lk
th

ro
u

g
h

F
a

ls
e

c
y

p
re

s
s

fo
re

s
t

fl
ig

h
t

a
b

o
v

e

F
a

ls
e

c
y

p
re

s
s

lo
w

re
s

fo
re

s
t

w
a

lk
th

ro
u

g
h

F
a

ls
e

c
y

p
re

s
s

lo
w

re
s

fo
re

s
t

fl
ig

h
t

a
b

o
v

e

M
u

g
o

p
in

e
fo

re
s

t
w

a
lk

th
ro

u
g

h

M
u

g
o

p
in

e
fo

re
s

t
fl

ig
h

t
a

b
o

v
e

N
o

rw
a

y
s

p
ru

c
e

fo
re

s
t

w
a

lk
th

ro
u

g
h

N
o

rw
a

y
s

p
ru

c
e

fo
re

s
t

fl
ig

h
t

a
b

o
v

e

P
e

c
a

n
fo

re
s

t
w

a
lk

th
ro

u
g

h

P
e

c
a

n
fo

re
s

t
fl

ig
h

t
a

b
o

v
e

P
o

p
la

r
fo

re
s

t
w

a
lk

th
ro

u
g

h

P
o

p
la

r
fo

re
s

t
fl

ig
h

t
a

b
o

v
e

W
il
lo

w
fo

re
s

t
w

a
lk

th
ro

u
g

h

W
il
lo

w
fo

re
s

t
fl

ig
h

t
a

b
o

v
e

Foresttype

N
u

m
b

e
r

o
f

n
o

d
e

s

A
v

e
ra

g
e

n
o

d
e

s
w

a
lk

e
d

Figure 5.12: Second series of tests. Nodes walked results of various forest mo-
tives.

The average nodes walked are at affordable number for real–time rendering
for nowadays hardware.

CHAPTER 5. RESULTS 99

Forest dependence on memory used

Rendering performance

299.2

285.7

296.9

300

296

269.8
119

100

109.3

110

89

128

0 50 100 150 200 250 300 350

Memory 82 MB

Memory 164 MB

Memory 246 MB

Memory 328 MB

Memory 410 MB

Memory 492 MB

M
em

or
y

ta
ke

n

FPS

Minimal FPS Average FPS

Figure 5.13: Third series of tests. Performance impact of used memory on
application.

Forest dependence on memory used

Primitive count

188444

192369

181781

195724

190426

210849
430

179

476

186

192

1269

0 50000 100000 150000 200000 250000

Memory 82 MB

Memory 164 MB

Memory 246 MB

Memory 328 MB

Memory 410 MB

Memory 492 MB

M
em

or
y

ta
ke

n

Primitive count

Average point count Average triangle count

Figure 5.14: Third series of tests. Primitive count of memory tests.

Forest dependence on memory used

Nodes walked

440

406

408

419

440

425

380 390 400 410 420 430 440 450

Memory 82 MB

Memory 164 MB

Memory 246 MB

Memory 328 MB

Memory 410 MB

Memory 492 MB

M
em

or
y

ta
ke

n

Number of nodes

Average nodes walked

Figure 5.15: Third series of tests. Nodes walked of memory tests.

The dependence of application on memory used by graphic card is minimal.
The different primitive count and nodes walked results are caused by another

CHAPTER 5. RESULTS 100

forests used for every memory usage test. All forests however have the same
density and consist of same tree type!

Forest dependence on size and far plane distance

Rendering performance

24.5

23.6

23.7

18.5

28.8

22

22

13.2

25.9

24

10.6

27.1

19.3

9
7

15

18.7

12.8

8.2

15

18.7

13.2

10.7

16.7

15.3

15.5

13.8

17.4

18.7

16

25.9

20.3

0 5 10 15 20 25 30 35

Size 4 km x 4 km Far plane 2000 m

Size 5 km x 5 km Far plane 2000 m

Size 10 km x 10 km Far plane 2000 m

Size 20 km x 20 km Far plane 2000 m

Size 4 km x 4 km Far plane 2500 m

Size 5 km x 5 km Far plane 2500 m

Size 10 km x 10 km Far plane 2500 m

Size 20 km x 20 km Far plane 2500 m

Size 4 km x 4 km Far plane 3000 m

Size 5 km x 5 km Far plane 3000 m

Size 10 km x 10 km Far plane 3000 m

Size 20 km x 20 km Far plane 3000 m

Size 4 km x 4 km Far plane 3500 m

Size 5 km x 5 km Far plane 3500 m

Size 10 km x 10 km Far plane 3500 m

Size 20 km x 20 km Far plane 3500 m

F
o

re
s

t
s

iz
e

a
n

d
fa

r
p

la
n

e
d

is
ta

n
c

e

FPS

Minimal FPS Average FPS

Figure 5.16: Fourth series of tests. Performance impact of forest size and far
plane distance.

This shows that increasing far plane distance doesn’t have any high perfor-
mance impact. This is caused by low number of points used for trees rendered

CHAPTER 5. RESULTS 101

far away from the camera. The 20 km x 20 km forest rendering is slow. This is
caused by the increased number of forest level hierarchy nodes used for frustum
culling. Managing about 400 000 trees uses a lot of node’s hierarchy levels.

Forest dependence on size and far plane distance

Primitive count

2811994

3103456

3127300

3421485

2220871

3078801

3098473

3471439

2220340

3059124

3499873

2194167

3075353

3512438
160559

158648

138037

57123

147342

147618

142414

56813

139271

139815

139068

54658

130043

133002

135185

110792

3058244

3078962

0 500000 1000000 1500000 2000000 2500000 3000000 3500000 4000000

Size 4 km x 4 km Far plane 2000 m

Size 5 km x 5 km Far plane 2000 m

Size 10 km x 10 km Far plane 2000 m

Size 20 km x 20 km Far plane 2000 m

Size 4 km x 4 km Far plane 2500 m

Size 5 km x 5 km Far plane 2500 m

Size 10 km x 10 km Far plane 2500 m

Size 20 km x 20 km Far plane 2500 m

Size 4 km x 4 km Far plane 3000 m

Size 5 km x 5 km Far plane 3000 m

Size 10 km x 10 km Far plane 3000 m

Size 20 km x 20 km Far plane 3000 m

Size 4 km x 4 km Far plane 3500 m

Size 5 km x 5 km Far plane 3500 m

Size 10 km x 10 km Far plane 3500 m

Size 20 km x 20 km Far plane 3500 m

F
o

re
s

t
s

iz
e

a
n

d
fa

r
p

la
n

e
d

is
ta

n
c

e

Primitive count

Average triangle count Average point count

Figure 5.17: Fourth series of tests. Performance impact of forest size and far
plane distance – primitive count.

There is not a big jump of primitive count between 10 km x 10 km and 20

CHAPTER 5. RESULTS 102

km x 20 km forest which shows that increased primitive count doesn’t cause
the performance difference. However there is a big jump between the 4 km x 4
km and 5 km x 5 km, but still the performance is about the same. This can be
caused by the fact that spruce forest used looks dense or still processor bound
prevails.

Forest dependence on size and far plane distance

Nodes walked

20505

7964

5567

6227

16254

7752

6295

6411

12633

7115

6892

5831

8912

6572

6560

6532

0 5000 10000 15000 20000 25000

Size 4 km x 4 km Far plane 2000 m

Size 5 km x 5 km Far plane 2000 m

Size 10 km x 10 km Far plane 2000 m

Size 20 km x 20 km Far plane 2000 m

Size 4 km x 4 km Far plane 2500 m

Size 5 km x 5 km Far plane 2500 m

Size 10 km x 10 km Far plane 2500 m

Size 20 km x 20 km Far plane 2500 m

Size 4 km x 4 km Far plane 3000 m

Size 5 km x 5 km Far plane 3000 m

Size 10 km x 10 km Far plane 3000 m

Size 20 km x 20 km Far plane 3000 m

Size 4 km x 4 km Far plane 3500 m

Size 5 km x 5 km Far plane 3500 m

Size 10 km x 10 km Far plane 3500 m

Size 20 km x 20 km Far plane 3500 m

F
o

re
s

t
s

iz
e

a
n

d
fa

r
p

la
n

e
d

is
ta

n
c

e

Number of nodes

Average nodes walked

Figure 5.18: Fourth series of tests. Performance impact of forest size and far
plane distance – nodes walked.

CHAPTER 5. RESULTS 103

Doubled number of average nodes walked at 20 km x 20 km forest shows the
reason why its rendering is so slow.

Forest densities

Rendering performance

158

68.4

37.5

20

8.8

142.7

61.7

36.8

17.8

8.9

169

64.3

30.5

64.6

32.6

16.4

241.6

136.6

79.7

42.9

21.3

359.6

219.2

127.1

72.4

39

29

15.5

7

70

48

26.6

66

5.1

10.5

20.3

33.5

28

59

97

122

8

14.8

24

45

78

8.1

15.5

30.5

51.2

113.9

124.1

0 50 100 150 200 250 300 350 400

Spruce forest density 5 walkthrough

Spruce forest density 10 walkthrough

Spruce forest density 20 walkthrough

Spruce forest density 40 walkthrough

Poplar forest density 5 walkthrough

Poplar forest density10 walkthrough

Poplar forest density 20 walkthrough

Poplar forest density 40 walkthrough

Poplar forest density 80 walkthrough

Falseacacia forest density 5 walkthrough

Falseacacia forest density 10 walkthrough

Falseacacia forest density 20 walkthrough

Falseacacia forest density 40 walkthrough

Spruce forest density 5 flight above

Spruce forest density 10 flight above

Spruce forest density 20 flight above

Spruce forest density 40 flight above

Poplar forest density 5 flight above

Poplar forest density10 flight above

Poplar forest density 20 flight above

Poplar forest density 40 flight above

Poplar forest density 80 flight above

Falseacacia forest density 5 flight above

Falseacacia forest density 10 flight above

Falseacacia forest density 20 flight above

Falseacacia forest density 40 flight above

F
o

re
s

t
ty

p
e

,
d

e
n

s
it

y
a

n
d

s
c

e
n

e
fl

y
p

a
th

FPS

Minimal FPS Average FPS

Figure 5.19: Fifth series of tests. Rendering performance of forests with various
densities. Density is stated in number of trees per 10000 square meters.

The results show that relation between forest density and rendering perfor-
mance is exponential. Still even high density forests can be viewed in interactive

CHAPTER 5. RESULTS 104

speed. We note that density of real forest is even higher than ours in all cases.

Forest densities

Primitive count

395359

806257

1671973

3184531

508078

1165311

2213395

4629173

9010999

304582

1032237

2077296

1046355

2124406

4060648

522133

1025622

1934908

3684705

7041322

296971

625365

1156576

40188

80673

137767

260653

564

969

2828

3820

18445

521972

260373

126331

68155

269623

125604

81006

47146

1735342

937914

487537

260086

106377

1197796

541649

278398

151624

155244

572405

523852

0 2500000 5000000 7500000 10000000

Spruce forest density 5 walkthrough

Spruce forest density 10 walkthrough

Spruce forest density 20 walkthrough

Spruce forest density 40 walkthrough

Poplar forest density 5 walkthrough

Poplar forest density10 walkthrough

Poplar forest density 20 walkthrough

Poplar forest density 40 walkthrough

Poplar forest density 80 walkthrough

Falseacacia forest density 5 walkthrough

Falseacacia forest density 10 walkthrough

Falseacacia forest density 20 walkthrough

Falseacacia forest density 40 walkthrough

Spruce forest density 5 flight above

Spruce forest density 10 flight above

Spruce forest density 20 flight above

Spruce forest density 40 flight above

Poplar forest density 5 flight above

Poplar forest density10 flight above

Poplar forest density 20 flight above

Poplar forest density 40 flight above

Poplar forest density 80 flight above

Falseacacia forest density 5 flight above

Falseacacia forest density 10 flight above

Falseacacia forest density 20 flight above

Falseacacia forest density 40 flight above

F
o

re
s

t
ty

p
e

,
d

e
n

s
it

y
a

n
d

s
c

e
n

e
fl

y
p

a
th

Primitive count

Average triangle count Average point count

Figure 5.20: Fifth series of tests. Primitive count results of forests with various
densities. Density is stated in number of trees per 10000 square meters.

Although falseacacia tree contains highest number of triangles and points,
the falseacacia forest is not so demanding on primitive count because falseacacia
tree is rather small.

CHAPTER 5. RESULTS 105

Forest densities

Nodes walked

702

1219

2187

4197

335

585

1088

1946

373

4258

2201

1142

645

3409

1683

847

581

6573

3533

1741

1002

425

6729

3120

1654

893

0 1000 2000 3000 4000 5000 6000 7000 8000

Spruce forest density 5 walkthrough

Spruce forest density 10 walkthrough

Spruce forest density 20 walkthrough

Spruce forest density 40 walkthrough

Poplar forest density 5 walkthrough

Poplar forest density10 walkthrough

Poplar forest density 20 walkthrough

Poplar forest density 40 walkthrough

Poplar forest density 80 walkthrough

Falseacacia forest density 5 walkthrough

Falseacacia forest density 10 walkthrough

Falseacacia forest density 20 walkthrough

Falseacacia forest density 40 walkthrough

Spruce forest density 5 flight above

Spruce forest density 10 flight above

Spruce forest density 20 flight above

Spruce forest density 40 flight above

Poplar forest density 5 flight above

Poplar forest density10 flight above

Poplar forest density 20 flight above

Poplar forest density 40 flight above

Poplar forest density 80 flight above

Falseacacia forest density 5 flight above

Falseacacia forest density 10 flight above

Falseacacia forest density 20 flight above

Falseacacia forest density 40 flight above

F
o

re
s

t
ty

p
e

,
d

e
n

s
it

y
a

n
d

s
c

e
n

e
fl

y
p

a
th

Number of nodes

Average nodes walked

Figure 5.21: Fifth series of tests. Nodes walked of forests with various densities.
Density is stated in number of trees per 10000 square meters.

CHAPTER 5. RESULTS 106

Forest dependence on tree grid subdivision

Rendering performance

137.9

128.8

65.4

36.2

23.9

160

150.5

100.4

76.2

64.4

145.8

70.5

39.4

263

235.9

190.7

165.3

165.3

41

40

70

128

174

25

22.3

48

118

120

21.7

30.5

55

108

113

20.7

30

56

108

119

39.8

168.5

0 50 100 150 200 250 300

Spruce grid 1x1x1 walkthrough

Spruce grid 2x2x2 walkthrough

Spruce grid 3x3x3 walkthrough

Spruce grid 4x4x4 walkthrough

Spruce grid 5x5x5 walkthrough

Spruce grid 1x1x1 flight above

Spruce grid 2x2x2 flight above

Spruce grid 3x3x3 flight above

Spruce grid 4x4x4 flight above

Spruce grid 5x5x5 flight above

Colorado spruce grid 1x1x1 walkthrough

Colorado spruce grid 2x2x2 walkthrough

Colorado spruce grid 3x3x3 walkthrough

Colorado spruce grid 4x4x4 walkthrough

Colorado spruce grid 5x5x5 walkthrough

Colorado spruce grid 1x1x1 flight above

Colorado spruce grid 2x2x2 flight above

Colorado spruce grid 3x3x3 flight above

Colorado spruce grid 4x4x4 flight above

Colorado spruce grid 5x5x5 flight above

F
o

re
s

t
ty

p
e

,
g

ri
d

s
u

b
d

iv
is

io
n

s
c

h
e

m
e

a
n

d
s

c
e

n
e

fl
y

p
a

th

FPS

Minimal FPS Average FPS

Figure 5.22: Sixth series of tests. Rendering performance of forests with various
tree grid subdivisions.

The results show that using lower resolution grid is better and that appli-
cation is surprisingly still heavily processor bounded. We did not expect so big
performance penalty of using higher resolution grid subdivision schemes.

CHAPTER 5. RESULTS 107

Forest dependence on tree grid subdivision

Primitive count

1085494

1155811

1131186

1155781

1175435

1056340

1156926

1207294

1254957

1250256

831677

870650

886914

766908

800426

803711

801317

796076

13740

13563

20064

30983

49081

139730

138322

144881

153026

193492

68063

92807

124694

178400

219057

261719

273788

272509

270433

325086

889161

787405

0 200000 400000 600000 800000 1000000 1200000 1400000

Spruce grid 1x1x1 walkthrough

Spruce grid 2x2x2 walkthrough

Spruce grid 3x3x3 walkthrough

Spruce grid 4x4x4 walkthrough

Spruce grid 5x5x5 walkthrough

Spruce grid 1x1x1 flight above

Spruce grid 2x2x2 flight above

Spruce grid 3x3x3 flight above

Spruce grid 4x4x4 flight above

Spruce grid 5x5x5 flight above

Colorado spruce grid 1x1x1 walkthrough

Colorado spruce grid 2x2x2 walkthrough

Colorado spruce grid 3x3x3 walkthrough

Colorado spruce grid 4x4x4 walkthrough

Colorado spruce grid 5x5x5 walkthrough

Colorado spruce grid 1x1x1 flight above

Colorado spruce grid 2x2x2 flight above

Colorado spruce grid 3x3x3 flight above

Colorado spruce grid 4x4x4 flight above

Colorado spruce grid 5x5x5 flight above

F
o

re
s

t
ty

p
e

,
g

ri
d

s
u

b
d

iv
is

io
n

s
c

h
e

m
e

a
n

d
s

c
e

n
e

fl
y

p
a

th

Primitive count

Average triangle count Average point count

Figure 5.23: Sixth series of tests. Primitive count of forests with various tree
grid subdivisions.

Notice that more triangles are used for lower resolution grids. This is in our
opinion caused by only small number of node distance approximations which in
turn cause to render more triangles in the back of the tree.

CHAPTER 5. RESULTS 108

Forest dependence on tree grid subdivision

Nodes walked

456

454

436

397

337

782

778

541

377

291

1175

1048

867

643

455

2570

1761

1123

697

482

0 500 1000 1500 2000 2500 3000

Spruce grid 1x1x1 walkthrough

Spruce grid 2x2x2 walkthrough

Spruce grid 3x3x3 walkthrough

Spruce grid 4x4x4 walkthrough

Spruce grid 5x5x5 walkthrough

Spruce grid 1x1x1 flight above

Spruce grid 2x2x2 flight above

Spruce grid 3x3x3 flight above

Spruce grid 4x4x4 flight above

Spruce grid 5x5x5 flight above

Colorado spruce grid 1x1x1 walkthrough

Colorado spruce grid 2x2x2 walkthrough

Colorado spruce grid 3x3x3 walkthrough

Colorado spruce grid 4x4x4 walkthrough

Colorado spruce grid 5x5x5 walkthrough

Colorado spruce grid 1x1x1 flight above

Colorado spruce grid 2x2x2 flight above

Colorado spruce grid 3x3x3 flight above

Colorado spruce grid 4x4x4 flight above

Colorado spruce grid 5x5x5 flight above

F
o

re
s

t
ty

p
e

,
g

ri
d

s
u

b
d

iv
is

io
n

s
c

h
e

m
e

a
n

d
s

c
e

n
e

fl
y

p
a

th

Number of nodes

Average nodes walked

Figure 5.24: Sixth series of tests. Nodes walked of forests with various tree grid
subdivisions.

The average number of nodes walked copies the grid subdivision scheme
used, but not exactly. Practically this is caused by the fact that for higher
resolution grid the point only representation rendering is started earlier because
more grid cells mean smaller generated points in them.

CHAPTER 5. RESULTS 109

Forest dependence on forest subdivision scheme

Rendering performance

40.7

52.1

45.3

43.4

38.8

63.2

78.1

72.4

74.6

64.3

34.2

31.8

30.9

60.2

60.4

57.6

58.4

57.1

19.7

19

19.7

20.4

20

25.6

25

27

29.5

28.5

31.5

35.5

26.2

37

31

34

37

36.5

38

35

31.8

33.9

0 10 20 30 40 50 60 70 80 90

Division 16 impostor used walkthrough

Division 32 impostor used walkthrough

Division 64 impostor used walkthrough

Division 128 impostor used walkthrough

Division 256 impostor used walkthrough

Division 16 impostor used flight above

Division 32 impostor used flight above

Division 64 impostor used flight above

Division 128 impostor used flight above

Division 256 impostor used flight above

Division 16 walkthrough

Division 32 walkthrough

Division 64 walkthrough

Division 128 walkthrough

Division 256 walkthrough

Division 16 flight above

Division 32 flight above

Division 64 flight above

Division 128 flight above

Division 256 flight above

M
a

x
im

a
l
n

u
m

b
e

r
o

f
n

o
d

e
s

,
im

p
o

s
to

r
s

y
s

te
m

in
fo

a
n

d
s

c
e

n
e

fl
y

p
a

th

FPS

Minimal FPS Average FPS

Figure 5.25: Seventh series of tests. Rendering performance of forest with vari-
ous forest subdivision schemes.

The last test series showed that practically any forest subdivision scheme can
be used. The results for this test series maybe slightly misleading because for
every division scheme a different position of trees is used. With our current forest
creation solution it isn’t easy to generate same tree positions. This means that
results are only accurate to show whether the dependence on forest subdivision

CHAPTER 5. RESULTS 110

scheme is significant or not.

Forest dependence on forest subdivision scheme

Primitive count

1667488

1089356

1130470

1368053

1570695

1401214

1020199

1267218

1286169

1378587

1847388

1853134

1869012

1389480

1398307

1415874

1412853

1415985

79842

80585

80526

77086

76389

201155

200532

200708

176055

175891

90010

84497

77754

84510

83858

201354

201206

201452

160275

174123

1849348

1831053

0 500000 1000000 1500000 2000000

Division 16 impostor used walkthrough

Division 32 impostor used walkthrough

Division 64 impostor used walkthrough

Division 128 impostor used walkthrough

Division 256 impostor used walkthrough

Division 16 impostor used flight above

Division 32 impostor used flight above

Division 64 impostor used flight above

Division 128 impostor used flight above

Division 256 impostor used flight above

Division 16 walkthrough

Division 32 walkthrough

Division 64 walkthrough

Division 128 walkthrough

Division 256 walkthrough

Division 16 flight above

Division 32 flight above

Division 64 flight above

Division 128 flight above

Division 256 flight above

M
a

x
im

a
l
n

u
m

b
e

r
o

f
n

o
d

e
s

,
im

p
o

s
to

r
s

y
s

te
m

in
fo

a
n

d
s

c
e

n
e

fl
y

p
a

th

Primitive count

Average triangle count Average point count

Figure 5.26: Seventh series of tests. Primitive count of forest with various forest
subdivision schemes.

CHAPTER 5. RESULTS 111

Forest dependence on forest subdivision scheme

Nodes walked

2182

2494

2142

2045

2058

3978

3634

3560

3438

3473

1990

1417

1507

1186

1805

2523

1890

1565

1519

2488

0 500 1000 1500 2000 2500 3000 3500 4000 4500

Division 16 impostor used walkthrough

Division 32 impostor used walkthrough

Division 64 impostor used walkthrough

Division 128 impostor used walkthrough

Division 256 impostor used walkthrough

Division 16 impostor used flight above

Division 32 impostor used flight above

Division 64 impostor used flight above

Division 128 impostor used flight above

Division 256 impostor used flight above

Division 16 walkthrough

Division 32 walkthrough

Division 64 walkthrough

Division 128 walkthrough

Division 256 walkthrough

Division 16 flight above

Division 32 flight above

Division 64 flight above

Division 128 flight above

Division 256 flight above

M
a

x
im

a
l
n

u
m

b
e

r
o

f
n

o
d

e
s

,
im

p
o

s
to

r
s

y
s

te
m

in
fo

a
n

d
s

c
e

n
e

fl
y

p
a

th

Number of nodes

Average nodes walked

Figure 5.27: Seventh series of tests. Nodes walked of forest with various forest
subdivision schemes.

5.4 Interpreting results

The first series of tests showed that most of our configurations can run in real–
time or near real–time on average, but can potentially fallback to interactive
speed in worst case. Unfortunately for this setup the impostor system doesn’t

CHAPTER 5. RESULTS 112

introduce any marginal speed up, but also don’t slow rendering speed as well.
We suspect that this is caused by the fact that the impostor system also refreshes
actually not seen parts of forest. Therefore a more sophisticated impostor re-
freshing algorithm should be implemented to avoid updating parts of forest
actually not seen by the camera. We also note that for forest walkthrough the
impostor system can be much more relaxed than it’s set in test suite because
our walkthrough is in rather fast speed and even for that a much more relaxed
impostor system refreshing rate is sufficient.

Nice speed up is between extra high and high detail setting. For forest
walkthrough it is more than 100 percent speed up and for flight above the forest
it is more than 300 percent speed up. This shows the importance of second
metric settings for whole tree node rendering. Without changing the rendering
representation from mixed triangle and point representation into point only
representation such speed up wouldn’t be possible.

The difference between the directional diffuse lighting with ambient render-
ing path and ambient only rendering path is about 20 percent on average. From
this we can conclude that adding extra quality by using better lighting model
is rather cheap.

The second series of tests proved that various forest motives can be viewed
at 1024x768 normal detail setting in real–time or in near real–time. The excep-
tional mugo pine forest performance is caused by the fact that the mugo pine
tree is shrub. The mugo pine is only 1 or 2 meters high and because of that the
tree vanishes from view fast with added distance. There is indeed some depen-
dence of rendering performance on tree size which is quite obvious because of
the fact that small trees vanishes from scene quite fast.

The memory usage test proved that the application performance is minimally
dependent on amount of used memory as long as whole data can fit into graphic
card’s memory. We note that we tested scenes which don’t fit into memory
of graphic card on other graphic cards and our Viewer application don’t crush
and still provides some rendering speed making interactive walkthrough often
possible with some holes where user must wait a little time for data to be
uploaded onto graphic card.

The forest size test series provided data showing that adding more trees to
the far distance is rather cheap. We believe that this is caused by the fact that
only few points are rendered for the trees in distance. Our representation is
just not enough for trees far away. For 20 km x 20 km forest it showed that
just walking the node’s hierarchy is rather expensive and application is heavily
processor bounded in this case. We have the data for smaller spruce forest of
1 km x 1 km and 2 km x 2 km which aren’t included in the test series. This
is because the used fly path will easily fly off these small forests. We can say
that difference between 2 km x 2 km forest and 4 km x 4 km forest is that
performance is cut approximately to half.

The fifth series of tests measure effect of various forest densities on rendering
performance. It showed that both FPS and primitive count growed exponen-
tially with our 5, 10, 20, 40 and 80 trees per 10000 square meters test set. This
is expected result for our point–based rendering technique used. We believe
that also for image–based techniques based on billboarding the forest density
will have significant importance for performance measuring.

Our one but last series of tests showed surprisingly that our application is
still heavily processor bounded. It’s apparent from the results that it’s best

CHAPTER 5. RESULTS 113

to use 2x2x2 grid subdivision scheme which minimizes processor bound. Some
effort should be required to speed up application in order to use more demanding
subdivision schemes.

The last tests showed that using any forest subdivision scheme doesn’t have
any significant performance impact. However using 32 or 64 maximal nodes per
node setting proved to have some small advantage.

From the overall results we can say that our method can render forest scenes
in real–time or near real–time speed and that we therefore achieved the goal
of our diploma thesis. However the tests showed that some things must be
improved to fine tune our solution to achieve even bigger performance and visual
quality. We believe that the potential of radical speed improvement is big within
our solution.

Chapter 6

Conclusion and future work

This is concluding chapter. First conclusion about our rendering solution is
written in section 6.1. Then author’s subjective opinion is referred in section
6.2. Finally future work is outlined in section 6.3.

6.1 Conclusion

We have successfully implemented real–time forest rendering solution! While
there is still some amount of errors and improvements left behind in current state
of implementation, we are sure that our implementation realistically represent
pros and cons of using our point–based forest rendering solution. The visual
quality of trees for close look–ups is superior thanks to very nice models of
trees used from XFrog utility. However, as these models are very detailed, it
proved to be rather challenging to display whole forest of them in real–time or
at least interactive speed. Only few series of latest graphic cards have potential
to display whole and enough dense forests in real–time. This includes NVidia
GeForce 6, GeForce 7 and GeForce 8 series and its ATI graphic card equivalents.

The point rendering solution showed to be extremely vertex program com-
putationally intensive. This is problem for graphic cards before the latest series
where most of computational power is devoted to pixel shader programs. Cur-
rently only NVidia’s and ATI’s latest series of graphic cards make dynamic
assignment of streaming processors between vertex and pixel shader programs
possible. We hope that this will improve in future.

Nevertheless our solution is meant to be used in future. The problems to
solve still remain. Visual quality of distant trees is poor using point–based
approach and point assignment scheme to triangles should be also improved.
Another problem poses processor bound of our rendering solution. The pseudo–
continuous view–dependent hierarchical level of detail for trees proved to be
computationally intensive for processor. We believe that our frustum culling
speed can be significantly improved. Maybe less computationally expensive
spheres can be used for this purpose instead of arbitrary oriented bounding
boxes. The level of detail selection alone now uses binary interval searching
algorithm which is also not so fast when used 1000 times or more. We have
however proposed to use linear array instead dependent on distance from camera
in cost of lower number of levels of detail.

114

CHAPTER 6. CONCLUSION AND FUTURE WORK 115

The real–time forest rendering is indeed difficult field to master. The tree
solely is complex plant with many leaves and branches, and it’s the complexity
of nature and plants which places man before difficult task to render virtual
forests similar with real forests with only limited resources and computational
power available. Moreover in nature every plant is in its own way unique. This
is even much more challenging than rendering forest with few selected trees of
one type for each tree type. To achieve realistically looking unique trees in
forest rendering, years of research would be required to study various tree types
growing habits and look in order to mimic tree’s uniqueness. This is totally out
of scope of this diploma thesis and cannot be completed by only one person.

The importance of this work cannot be underestimated. We believe that
we have extended the knowledge in point–based real–time forest rendering sig-
nificantly. We pinpointed weak spots of this approach, researched several im-
provements and even were able to complete implementation. Unfortunately our
novelty impostoring approach doesn’t prove by our test suite to bring any ad-
vantage. On the contrary to test results we believe that the impostor system
actually brings in many cases significant improvement. It’s simply more an is-
sue of fine tuning and implementing some small improvements which needs to
be done on impostor system to unravel its real power. In fact our impostor
system approach has nice properties regarding to hierarchy node structure. To
impostor for example single trees only doesn’t have sense.

We decided to left our test suite as it’s once we have it completed. We
could alter our test suite for example to provide better results for our impostor
system, but we did not do so. By this some darker side of our implementation
was revealed in best way and it may be useful in making our implementation
better. It’s much more useful than some nice results carefully chosen by several
tests.

Before we’ll proceed to subjective opinion, we would like to say that we
threat our work as successful despite the number of issues which arises during
development of various parts for our forest rendering solution.

6.2 Subjective opinion

I, author of this diploma thesis for forest rendering will now speak in first person
for this section. I have written other parts of this diploma thesis in plural or
in passive to comply with publication standards of research work. As much as
plural maybe misleading to thought that this diploma thesis is made by more
than one person, it’s not so. The plural is my preferred publication style of
choice because one must be aware of fact that every work is not only work of
person in meaning of man, but also work of inspiration, clever advise and spirit
of science. And in this light it’s most appropriate to present work in plural of
we as I, inspiration, spirit of science and everyone somehow involved in making
this work even by small amount of for example an advise how to use text editor
which in case of LaTeX is often really necessary. This is for clarifying of my
presentation style.

It took me almost a year to finish this diploma thesis. The amount of work
I have done is in my opinion rather large. I have four utilities and one Viewer
application. The code is approximately 25 000 lines of unique code. This count
includes free lines and commentaries, but doesn’t include that I actually utilize

CHAPTER 6. CONCLUSION AND FUTURE WORK 116

heavy reuse of coded parts among all four utilities and Viewer. During the
development of my forest rendering solution I used approximately 35 trees to
test the solution and most of them for final test suite.

I programmed most of implementation parts myself. I used third party
libraries only for rendering and textures loading which I really don’t want to
write myself. Perhaps too much used for DirectX luxury from previous racing
game project (see http://www.crazyanimals.net) I was working on, I found
that OpenGL mathematical library support is miserable at best. So I developed
my light–weight mathematical library on need to use basis during development.
This is good example of how code evolved during project development. First
the mathematical library has only few functions regarding to vector dot and
cross products, points average and so on. Then when need arises I started to
add some matrix support and at the end I added even quaternion support staff.
Actually mathematical library is now in state that I can completely throw off
every OpenGL matrix operation call and even these calls for setting worldview
and projection matrixes because I really don’t need them any more when using
shaders. Only the last step of generalizing some things such as vectors is not
done for mathematical library and last step of refactoring is required to make
mathematical library more general to use it elsewhere. I found this production
system quite effective because everything worked with minimal programming
effort. When a need arises, I refactored particular part of code to support what
I needed.

Sometimes it proved that for example spending some time on serialization
support will be more productive and will lead to better performance, but it
was often difficult at the time I was doing on the parts of program to realize
that I will need such thing so much. And sometimes I spent more time on
some particular thing or algorithm. For example I have in my implementation a
general templated implementation of quad tree which actually proved very useful
and is easily portable to any other project. This templated implementation has
an advantage that you can program the quad tree to store almost anything you
want, the quad tree division scheme can be altered in any way and support for
intersection with any number of classes can be also added easily.

Regarding to the visual quality of the solution I’m little bit unsatisfied with
distant trees where the visual quality is not optimal. This was stated in paper
Point–based rendering of trees [11] in rather misty way difficult to decipher.
They also don’t state what is their representation for even further trees rendering
and in what conditions they carry their forest testing. The problem with holes
in trees were not also stated or simply I wasn’t able to handle it effectively
myself. Maybe they also used simple solution of circumscribed circle area of
triangle to deal with this problem. From my personal testing I’m almost sure
that this can however cut performance to half in some cases.

From my opinion the most painful problem with this solution is that the
detail is lost radically with increasing distance. It’s difficult to produce good
point average from set of points. For point position it would be perhaps best
to test branches and leaves mass in the area to better position the point. With
color and normal generation it’s even more difficult to say what is right color
and normal.

I’m satisfied with impostor system which I believe will work well when some
minor changes are made. After I had seen the results from test suite I made some
personal testing to pinpoint whether the problem of ineffectiveness of impostor

CHAPTER 6. CONCLUSION AND FUTURE WORK 117

system is serious and it turned out that it isn’t. For example for thematic1.forest
it makes about 40 percent speed up with same fly paths used. I just decided not
to make any relevant changes after I ended with developing implementation. I
held to this and therefore I didn’t try to make any implementation changes to
bring impostor system back to help with rendering performance in these bad
cases.

I hadn’t made any heavy fly path testing before I tried my test suite and
with subjective testing it seemed that impostor system brought performance
advantage in every case. However the test suite testing proved this to be slippery.
For upcoming projects it maybe good to develop some sort of test suite first in
order to have more relevant data at hand earlier in the project when it comes
to performance measuring.

The only thing I didn’t do is to bring forest into motion. I calculated that
for some solution it can take me two or three weeks to implement it and I was
out of the time. The same it’s with terrain rendering. When my project leader
tells me that he would like to see the forest on the terrain, I responded that
it will take me several weeks to implement something like this. And it’s really
true that it will take minimally three weeks to implement some sort of terrain
rendering solution and after turning this feature on the performance will be
cut to half. This is reality of time to take for implementation. Even 4 square
kilometers terrain grid only solution will look ugly because the terrain cells will
be 5x5 meters big. Not talking about 320 000 triangles needed for such grid.
And for bigger forests such solution is not bearable. There is no easy way out
of this.

The problem assignment for this diploma thesis covers several topics and
therefore it’s very extensive. To cover such wide area I decided not to look
for minor issues and not to fix every visual quality defect or error. When you
are staying before such big task as is real–time forest rendering without any
implementation basis, utility support or something like this, then you are at
position to make first time implementation. And after I completed this project,
I actually have this utility support, structures lay out and 25 000 lines of code
to build on. Moreover I have completely reconstructed tree hierarchy at hand
when I decide to change my level of detail method to account for tree hierarchy,
I can do it. It’s only now after the first time implementation has been done that
problematic areas are uncovered and that parts, which need refactoring, are
pinpointed. It’s not before! It’s really hard to tell what will cause the problems
before any implementation is written. For these reasons the actual codebase is
very valuable although some parts of code can be really badly written which
doesn’t matter! They can be rewritten in better way and with relative easiness.
The question which matters is: Would we know what parts to make more general
and in what way, if there wasn’t some implementation coded? And for that I
answer that in most cases no.

6.3 Future work

We have outlined most of possible improvements in appropriate subsections in
chapter 4. We will therefore now introduce some priority plan for improving
our forest rendering solution.

The testing revealed that two things require immediate attention. First thing

CHAPTER 6. CONCLUSION AND FUTURE WORK 118

is to fix impostor system to provide speed improvement in every situation. The
second thing is to try to speed up hierarchy node’s walkthrough and to measure
application performance with some utility which tells what parts take the longest
time on processor such as AMD CodeAnalyst.

Then some visual quality improvements should take place. Probably the
easiest is to get rid of points flying solely in the space. This requires to position
points only on the positions on triangle where the texture is not transparent
overmuch. It will be also good to get rid of our error where oversized points are
rendered although it may not be easy to find what is causing such error.

Some more serious changes should take place after. This includes rewriting
parts of codes to be more general and to support more features. The best candi-
dates are data structures to make them more flexible, rendering engine to easier
task of rendering with flexible data structures and various shader programs and
impostor system to support impostors of different sizes.

After these changes the doors are opened to make either big improvements
to tree level of detail, for developing forest motion system, or to improve forest
lighting by adding ambient occlusion. The tree level of detail improvements
include rewriting point distribution scheme to get rid of the holes in tree when
rendering with points and to divide tree according to its reconstructed tree
hierarchy. Possible extension by forest motion system is discussed in whole
section 4.7 and how to add ambient occlusion is relatively straightforward.

Probably the most difficult will be to add some terrain rendering support in
the way not to harm application rendering speed overmuch and to try to make
some rendering approach for trees in far distance. These tasks are not to be
taken lightly and may prove difficult.

The area of improvements is large and many other small or big improvements
can be made. For example second method for creating forest trees placement
can be implemented for our forest creation utility to support either park trees
placement or to designate areas where trees cannot be placed such as roads. We
will left other improvements for decision of someone who will possibly continue
on our work.

Chapter 7

Image gallery

Figure 7.1: The poplar forest in normal detail used in first series of tests in test
suite.

119

CHAPTER 7. IMAGE GALLERY 120

Figure 7.2: Detail of poplar forest in normal detail used in first series of tests
in test suite.

Figure 7.3: The poplar forest in extra high detail used in first series of tests in
test suite.

CHAPTER 7. IMAGE GALLERY 121

Figure 7.4: Detail of poplar forest in extra high detail used in first series of tests
in test suite.

Figure 7.5: The birch forest used in second series of tests in test suite.

CHAPTER 7. IMAGE GALLERY 122

Figure 7.6: Detail of birch forest used in second series of tests in test suite.

Figure 7.7: The Colorado spruce forest used in second series of tests in test
suite.

CHAPTER 7. IMAGE GALLERY 123

Figure 7.8: The Lawson false cypress forest used in second series of tests in test
suite.

Figure 7.9: Detail of Lawson’s Falsecypress forest used in second series of tests
in test suite. Notice holes in the tree.

CHAPTER 7. IMAGE GALLERY 124

Figure 7.10: The mugo pine shrub forest used in second series of tests in test
suite.

Figure 7.11: The norway spruce forest used in second series of tests in test suite.

CHAPTER 7. IMAGE GALLERY 125

Figure 7.12: The pecan forest used in second series of tests in test suite.

Figure 7.13: Extreme close detail of leaves on pecan tree.

CHAPTER 7. IMAGE GALLERY 126

Figure 7.14: The willow forest used in second series of tests in test suite.

Figure 7.15: Detail of willow forest used in second series of tests in test suite.

CHAPTER 7. IMAGE GALLERY 127

Figure 7.16: The falseacacia forest used for memory usage testing in test suite.

Figure 7.17: Detail of falseacacia forest used for memory usage testing in test
suite.

CHAPTER 7. IMAGE GALLERY 128

Figure 7.18: The spruce forest used for forest size testing in test suite. This is
look–down from high above.

Figure 7.19: The spruce forest used for forest size testing in test suite.

CHAPTER 7. IMAGE GALLERY 129

Figure 7.20: Detail of spruce forest used for density testing in test suite. This
is with density of 40 trees per 10000 square meters.

Figure 7.21: The falseacacia forest used for density testing in test suite. This is
with density of 40 trees per 10000 square meters.

CHAPTER 7. IMAGE GALLERY 130

Figure 7.22: Detail of falseacacia forest used for density testing in test suite.
This is with density of 40 trees per 10000 square meters.

Figure 7.23: Thematic forest of intermixed oak and spruce.

CHAPTER 7. IMAGE GALLERY 131

Figure 7.24: Detail of oaks from thematic forest of intermixed oak and spruce.

Figure 7.25: Detail of maple tree. There is the problem with yellow points
created from leaf petiole.

CHAPTER 7. IMAGE GALLERY 132

Figure 7.26: Detail of poplar tree with extra big point. This is error in our
implementation.

Figure 7.27: Problem with scattered points for small branches. This is detail of
silver maple tree.

Appendix A

Installation

The installation is simple. Simply copy all DVD content to the hard–drive. If
you don’t have installed Visual Studio 2005, then you have to install Visual
Studio 2005 redistributable files. The installation is contained in directory: Im-
plementation/Runtime/

The DVD has following structure:
Text Contains text of diploma thesis in PDF format.
Implementation Contains our implementation.

ConvertToLODTree Contains conversion utility to LOD tree represen-
tation.

ConvertToSimpleTree Contains conversion utility to simple tree rep-
resentation.

Forest Creation Contains forest creation utility along with all forests
and forest creation configuration files. All forests can be recreated
by running MakeForests.bat file.

FullTreeConvert Contains utility for conversion to our basic tree rep-
resentation.

Generated Trees Contains all tree representations.
Runtime Contains installation of Visual Studio 2005 runtime.
Test suite Contains our test suite.
Utilities Contains source code for utilities along with solution files for

Visual Studio 2005.
Viewer Contains our Viewer application.
Viewer project Contains source code for Viewer application along with

solution file for Visual Studio 2005.

For viewing any forest with our Viewer application: Go to the ”Im-
plementation/Viewer” folder and type Viewer followed by forest name. For
example: Viewer ”../Forest creation/Thematic1.forest” The configuration pa-
rameters and usage of Viewer application is described in subsection 4.6.1.

To run test suite: Run RunAllTests.bat in ”Implementation/Test suite/”
folder for all tests. Or run SingleTreeTest.bat in ”Implementation/Test suite/Single
tree” folder for single tree tests only. Or run TestForest.bat in ”Implementa-
tion/Test suite/Forests” folder for forest tests only.

133

APPENDIX A. INSTALLATION 134

To reconvert all trees to basic tree representation: Go to ”Implementa-
tion/FullTreeConvert” folder and run ConvertAllTrees.bat. The usage of Full-
TreeConvert utility is described in subsection 4.2.3.

To reconvert all trees to simple tree representation: Go to ”Imple-
mentation/ConvertToSimple” folder and tun ConvertAllTrees.bat. The usage
of ConvertToSimple utility is described in subsection 4.3.2.

To reconvert all trees to LOD tree representation: Go to ”Implemen-
tation/ConvertToLODTree” folder and run ConvertAllTrees.bat. The usage of
ConvertToLODTree utility is described in subsection 4.4.2.

To recreate all forests: Go to ”Implementation/Forest creation” folder and
run MakeForests.bat. The usage of CreateForest utility is described in subsec-
tion 4.5.2.

Appendix B

Catalogue of trees

This catalogue contains every important tree with details. Some trees used for
test suite may not be listed, but they are trees of listed types with modified
conversion parameters.

Tree name: Birch – adult

Picture:
Location: /Generated trees/Birch/
Full tree filename: BirchA.FullTree
LOD tree filename: BirchA.LODTree
Simple tree filename: BirchA.SimpleTree
XFrog filename: Not available – copyright issues
Number of triangles for branches: 147066
Number of triangles for leaves: 22110
Conversion parameters:
Grid subdivision: 4x4x4
Percentage of uplift points: 0.03
Point scale factor: 2.0
Maximal point group size: 2

135

APPENDIX B. CATALOGUE OF TREES 136

Tree name: Birch – mediocre

Picture:
Location: /Generated trees/Birch/
Full tree filename: BirchM.FullTree
LOD tree filename: BirchM.LODTree
Simple tree filename: BirchM.SimpleTree
XFrog filename: Not available – copyright issues
Number of triangles for branches: 97653
Number of triangles for leaves: 14558
Conversion parameters:
Grid subdivision: 4x4x4
Percentage of uplift points: 0.03
Point scale factor: 2.0
Maximal point group size: 2
Tree name: Birch – young

Picture:
Location: /Generated trees/Birch/
Full tree filename: BirchY.FullTree
LOD tree filename: BirchY.LODTree
Simple tree filename: BirchY.SimpleTree
XFrog filename: Not available – copyright issues
Number of triangles for branches: 49932
Number of triangles for leaves: 7554
Conversion parameters:
Grid subdivision: 4x4x4
Percentage of uplift points: 0.03
Point scale factor: 2.0
Maximal point group size: 2

APPENDIX B. CATALOGUE OF TREES 137

Tree name: Chestnut

Picture:
Location: /Generated trees/Chestnut/
Full tree filename: Castanea sativa.FullTree
LOD tree filename: Castanea sativa.LODTree
Simple tree filename: Castanea sativa.SimpleTree
XFrog filename: Castanea sativa.xfr
Number of triangles for branches: 317926
Number of triangles for leaves: 112910
Conversion parameters:
Grid subdivision: 4x4x4
Percentage of uplift points: 0.1
Point scale factor: 1.0
Maximal point group size: 5
Tree name: Colorado spruce – adult

Picture:
Location: /Generated trees/Colorado spruce/
Full tree filename: ColoradoSpruceA.FullTree
LOD tree filename: ColoradoSpruceA.LODTree
Simple tree filename: ColoradoSpruceA.SimpleTree
XFrog filename: Not available – copyright issues
Number of triangles for branches: 65200
Number of triangles for leaves: 17500
Conversion parameters:
Grid subdivision: 4x4x4
Percentage of uplift points: 0.28
Point scale factor: 1.0
Maximal point group size: 5

APPENDIX B. CATALOGUE OF TREES 138

Tree name: Colorado spruce – mediocre

Picture:
Location: /Generated trees/Colorado spruce/
Full tree filename: ColoradoSpruceM.FullTree
LOD tree filename: ColoradoSpruceM.LODTree
Simple tree filename: ColoradoSpruceM.SimpleTree
XFrog filename: Not available – copyright issues
Number of triangles for branches: 54496
Number of triangles for leaves: 9376
Conversion parameters:
Grid subdivision: 4x4x4
Percentage of uplift points: 0.2
Point scale factor: 1.0
Maximal point group size: 5
Tree name: Colorado spruce – young

Picture:
Location: /Generated trees/Colorado spruce/
Full tree filename: ColoradoSpruceY.FullTree
LOD tree filename: ColoradoSpruceY.LODTree
Simple tree filename: ColoradoSpruceY.SimpleTree
XFrog filename: Not available – copyright issues
Number of triangles for branches: 41620
Number of triangles for leaves: 6904
Conversion parameters:
Grid subdivision: 4x4x4
Percentage of uplift points: 0.05
Point scale factor: 1.0
Maximal point group size: 5

APPENDIX B. CATALOGUE OF TREES 139

Tree name: Falseacacia

Picture:
Location: /Generated trees/Falseacacia/
Full tree filename: Robinia pseudoacacia.FullTree
LOD tree filename: Robinia pseudoacacia.LODTree
Simple tree filename: Robinia pseudoacacia.SimpleTree
XFrog filename: Robinia pseudoacacia.xfr
Number of triangles for branches: 37338
Number of triangles for leaves: 1101276
Conversion parameters:
Grid subdivision: 4x4x4
Percentage of uplift points: 0.02
Point scale factor: 1.0
Maximal point group size: 2
Tree name: Lawson’s falsecypress – adult

Picture:
Location: /Generated trees/Lawson Falsecypress/
Full tree filename: LawsonFalsecypressA.FullTree
LOD tree filename: LawsonFalsecypressA.LODTree
Simple tree filename: LawsonFalsecypressA.SimpleTree
XFrog filename: Not available – copyright issues
Number of triangles for branches: 204877
Number of triangles for leaves: 31444
Conversion parameters:
Grid subdivision: 4x4x4
Percentage of uplift points: 0.1
Point scale factor: 1.0
Maximal point group size: 5

APPENDIX B. CATALOGUE OF TREES 140

Tree name: Lawson’s falsecypress – mediocre

Picture:
Location: /Generated trees/Lawson Falsecypress/
Full tree filename: LawsonFalsecypressM.FullTree
LOD tree filename: LawsonFalsecypressM.LODTree
Simple tree filename: LawsonFalsecypressM.SimpleTree
XFrog filename: Not available – copyright issues
Number of triangles for branches: 235353
Number of triangles for leaves: 23972
Conversion parameters:
Grid subdivision: 4x4x4
Percentage of uplift points: 0.1
Point scale factor: 1.0
Maximal point group size: 5
Tree name: Lawson’s falsecypress – young

Picture:
Location: /Generated trees/Lawson Falsecypress/
Full tree filename: LawsonFalsecypressY.FullTree
LOD tree filename: LawsonFalsecypressY.LODTree
Simple tree filename: LawsonFalsecypressY.SimpleTree
XFrog filename: Not available – copyright issues
Number of triangles for branches: 104186
Number of triangles for leaves: 18428
Conversion parameters:
Grid subdivision: 4x4x4
Percentage of uplift points: 0.1
Point scale factor: 1.0
Maximal point group size: 5

APPENDIX B. CATALOGUE OF TREES 141

Tree name: Lawson’s falsecypress low resolution – adult

Picture:
Location: /Generated trees/Lawson Falsecypress/
Full tree filename: LawsonFalsecypressAlowres.FullTree
LOD tree filename: LawsonFalsecypressAlowres.LODTree
Simple tree filename: LawsonFalsecypressAlowres.SimpleTree
XFrog filename: Not available – copyright issues
Number of triangles for branches: 36164
Number of triangles for leaves: 14796
Conversion parameters:
Grid subdivision: 4x4x4
Percentage of uplift points: 0.3
Point scale factor: 1.0
Maximal point group size: 5
Tree name: Lawson’s falsecypress low resolution – mediocre

Picture:
Location: /Generated trees/Lawson Falsecypress/
Full tree filename: LawsonFalsecypressMlowres.FullTree
LOD tree filename: LawsonFalsecypressMlowres.LODTree
Simple tree filename: LawsonFalsecypressMlowres.SimpleTree
XFrog filename: Not available – copyright issues
Number of triangles for branches: 40830
Number of triangles for leaves: 10136
Conversion parameters:
Grid subdivision: 4x4x4
Percentage of uplift points: 0.1
Point scale factor: 1.0
Maximal point group size: 5

APPENDIX B. CATALOGUE OF TREES 142

Tree name: Lawson’s falsecypress low resolution – young

Picture:
Location: /Generated trees/Lawson Falsecypress/
Full tree filename: LawsonFalsecypressYlowres.FullTree
LOD tree filename: LawsonFalsecypressYlowres.LODTree
Simple tree filename: LawsonFalsecypressYlowres.SimpleTree
XFrog filename: Not available – copyright issues
Number of triangles for branches: 22613
Number of triangles for leaves: 14252
Conversion parameters:
Grid subdivision: 4x4x4
Percentage of uplift points: 0.1
Point scale factor: 1.0
Maximal point group size: 5
Tree name: Maple

Picture:
Location: /Generated trees/Maple/
Full tree filename: Acer monspessulanum.FullTree
LOD tree filename: Acer monspessulanum.LODTree
Simple tree filename: Acer monspessulanum.SimpleTree
XFrog filename: Acer monspessulanum.xfr
Number of triangles for branches: 16472
Number of triangles for leaves: 780912
Conversion parameters:
Grid subdivision: 4x4x4
Percentage of uplift points: 0.1
Point scale factor: 1.0
Maximal point group size: 5

APPENDIX B. CATALOGUE OF TREES 143

Tree name: Mugo pine – adult

Picture:
Location: /Generated trees/Mugo pine/
Full tree filename: MugoPineA.FullTree
LOD tree filename: MugoPineA.LODTree
Simple tree filename: MugoPineA.SimpleTree
XFrog filename: Not available – copyright issues
Number of triangles for branches: 61610
Number of triangles for leaves: 11956
Conversion parameters:
Grid subdivision: 4x4x4
Percentage of uplift points: 0.03
Point scale factor: 1.0
Maximal point group size: 5
Tree name: Mugo pine – mediocre

Picture:
Location: /Generated trees/Mugo pine/
Full tree filename: MugoPineM.FullTree
LOD tree filename: MugoPineM.LODTree
Simple tree filename: MugoPineM.SimpleTree
XFrog filename: Not available – copyright issues
Number of triangles for branches: 47492
Number of triangles for leaves: 7472
Conversion parameters:
Grid subdivision: 4x4x4
Percentage of uplift points: 0.03
Point scale factor: 1.0
Maximal point group size: 5

APPENDIX B. CATALOGUE OF TREES 144

Tree name: Mugo pine – young

Picture:
Location: /Generated trees/Mugo pine/
Full tree filename: MugoPineY.FullTree
LOD tree filename: MugoPineY.LODTree
Simple tree filename: MugoPineY.SimpleTree
XFrog filename: Not available – copyright issues
Number of triangles for branches: 29186
Number of triangles for leaves: 4356
Conversion parameters:
Grid subdivision: 4x4x4
Percentage of uplift points: 0.03
Point scale factor: 1.0
Maximal point group size: 5
Tree name: Norway spruce – adult

Picture:
Location: /Generated trees/Norway spruce/
Full tree filename: NorwaySpruceA.FullTree
LOD tree filename: NorwaySpruceA.LODTree
Simple tree filename: NorwaySpruceA.SimpleTree
XFrog filename: Not available – copyright issues
Number of triangles for branches: 71326
Number of triangles for leaves: 6228
Conversion parameters:
Grid subdivision: 4x4x4
Percentage of uplift points: 0.1
Point scale factor: 1.0
Maximal point group size: 2

APPENDIX B. CATALOGUE OF TREES 145

Tree name: Norway spruce – mediocre

Picture:
Location: /Generated trees/Norway spruce/
Full tree filename: NorwaySpruceM.FullTree
LOD tree filename: NorwaySpruceM.LODTree
Simple tree filename: NorwaySpruceM.SimpleTree
XFrog filename: Not available – copyright issues
Number of triangles for branches: 71989
Number of triangles for leaves: 7368
Conversion parameters:
Grid subdivision: 4x4x4
Percentage of uplift points: 0.1
Point scale factor: 1.0
Maximal point group size: 2
Tree name: Norway spruce – young

Picture:
Location: /Generated trees/Norway spruce/
Full tree filename: NorwaySpruceY.FullTree
LOD tree filename: NorwaySpruceY.LODTree
Simple tree filename: NorwaySpruceY.SimpleTree
XFrog filename: Not available – copyright issues
Number of triangles for branches: 36724
Number of triangles for leaves: 4656
Conversion parameters:
Grid subdivision: 4x4x4
Percentage of uplift points: 0.1
Point scale factor: 1.0
Maximal point group size: 2

APPENDIX B. CATALOGUE OF TREES 146

Tree name: Oak

Picture:
Location: /Generated trees/Oak/
Full tree filename: Oak1.FullTree
LOD tree filename: Oak1.LODTree
Simple tree filename: Oak1.SimpleTree
XFrog filename: Oak1.xfr
Number of triangles for branches: 220000
Number of triangles for leaves: 29396
Conversion parameters:
Grid subdivision: 4x4x4
Percentage of uplift points: 0.2
Point scale factor: 1.0
Maximal point group size: 2
Tree name: Pecan – adult

Picture:
Location: /Generated trees/Pecan/
Full tree filename: PecanA.FullTree
LOD tree filename: PecanA.LODTree
Simple tree filename: PecanA.SimpleTree
XFrog filename: Not available – copyright issues
Number of triangles for branches: 263468
Number of triangles for leaves: 142750
Conversion parameters:
Grid subdivision: 4x4x4
Percentage of uplift points: 0.1
Point scale factor: 1.0
Maximal point group size: 2

APPENDIX B. CATALOGUE OF TREES 147

Tree name: Pecan – mediocre

Picture:
Location: /Generated trees/Pecan/
Full tree filename: PecanM.FullTree
LOD tree filename: PecanM.LODTree
Simple tree filename: PecanM.SimpleTree
XFrog filename: Not available – copyright issues
Number of triangles for branches: 117678
Number of triangles for leaves: 52180
Conversion parameters:
Grid subdivision: 4x4x4
Percentage of uplift points: 0.1
Point scale factor: 1.0
Maximal point group size: 2
Tree name: Pecan – young

Picture:
Location: /Generated trees/Pecan/
Full tree filename: PecanY.FullTree
LOD tree filename: PecanY.LODTree
Simple tree filename: PecanY.SimpleTree
XFrog filename: Not available – copyright issues
Number of triangles for branches: 102823
Number of triangles for leaves: 106150
Conversion parameters:
Grid subdivision: 4x4x4
Percentage of uplift points: 0.02
Point scale factor: 1.0
Maximal point group size: 5

APPENDIX B. CATALOGUE OF TREES 148

Tree name: Plum

Picture:
Location: /Generated trees/Plum/
Full tree filename: Prunus cerasifera nigra.FullTree
LOD tree filename: Prunus cerasifera nigra.LODTree
Simple tree filename: Prunus cerasifera nigra.SimpleTree
XFrog filename: Prunus cerasifera nigra.xfr
Number of triangles for branches: 41000
Number of triangles for leaves: 164556
Conversion parameters:
Grid subdivision: 4x4x4
Percentage of uplift points: 0.1
Point scale factor: 1.0
Maximal point group size: 5
Tree name: Poplar – adult

Picture:
Location: /Generated trees/Poplar/
Full tree filename: PoplarA.FullTree
LOD tree filename: PoplarA.LODTree
Simple tree filename: PoplarA.SimpleTree
XFrog filename: Not available – copyright issues
Number of triangles for branches: 110912
Number of triangles for leaves: 37914
Conversion parameters:
Grid subdivision: 4x4x4
Percentage of uplift points: 0.1
Point scale factor: 2.0
Maximal point group size: 2

APPENDIX B. CATALOGUE OF TREES 149

Tree name: Poplar – mediocre

Picture:
Location: /Generated trees/Poplar/
Full tree filename: PoplarM.FullTree
LOD tree filename: PoplarM.LODTree
Simple tree filename: PoplarM.SimpleTree
XFrog filename: Not available – copyright issues
Number of triangles for branches: 95308
Number of triangles for leaves: 29710
Conversion parameters:
Grid subdivision: 4x4x4
Percentage of uplift points: 0.1
Point scale factor: 2.0
Maximal point group size: 2
Tree name: Poplar – young

Picture:
Location: /Generated trees/Poplar/
Full tree filename: PoplarY.FullTree
LOD tree filename: PoplarY.LODTree
Simple tree filename: PoplarY.SimpleTree
XFrog filename: Not available – copyright issues
Number of triangles for branches: 48584
Number of triangles for leaves: 14790
Conversion parameters:
Grid subdivision: 4x4x4
Percentage of uplift points: 0.02
Point scale factor: 2.0
Maximal point group size: 2

APPENDIX B. CATALOGUE OF TREES 150

Tree name: Red oak

Picture:
Location: /Generated trees/RedOak/
Full tree filename: Quercus rubra.FullTree
LOD tree filename: Quercus rubra.LODTree
Simple tree filename: Quercus rubra.SimpleTree
XFrog filename: Quercus rubra.xfr
Number of triangles for branches: 164985
Number of triangles for leaves: 643572
Conversion parameters:
Grid subdivision: 4x4x4
Percentage of uplift points: 0.2
Point scale factor: 1.0
Maximal point group size: 5
Tree name: Silver maple

Picture:
Location: /Generated trees/SilverMaple/
Full tree filename: Acer saccarinum.FullTree
LOD tree filename: Acer saccarinum.LODTree
Simple tree filename: Acer saccarinum.SimpleTree
XFrog filename: Acer saccarinum.xfr
Number of triangles for branches: 452432
Number of triangles for leaves: 393358
Conversion parameters:
Grid subdivision: 4x4x4
Percentage of uplift points: 0.2
Point scale factor: 1.0
Maximal point group size: 5

APPENDIX B. CATALOGUE OF TREES 151

Tree name: Spruce

Picture:
Location: /Generated trees/Spruce/
Full tree filename: Picea pungens glauca.FullTree
LOD tree filename: Picea pungens glauca.LODTree
Simple tree filename: Picea pungens glauca.SimpleTree
XFrog filename: Picea pungens glauca.xfr
Number of triangles for branches: 9396
Number of triangles for leaves: 11700
Conversion parameters:
Grid subdivision: 4x4x4
Percentage of uplift points: 0.6
Point scale factor: 1.0
Maximal point group size: 5
Tree name: Willow – adult

Picture:
Location: /Generated trees/Willow/
Full tree filename: WillowA.FullTree
LOD tree filename: WillowA.LODTree
Simple tree filename: WillowA.SimpleTree
XFrog filename: Not available – copyright issues
Number of triangles for branches: 166963
Number of triangles for leaves: 59296
Conversion parameters:
Grid subdivision: 4x4x4
Percentage of uplift points: 0.1
Point scale factor: 1.0
Maximal point group size: 5

APPENDIX B. CATALOGUE OF TREES 152

Tree name: Willow – mediocre

Picture:
Location: /Generated trees/Willow/
Full tree filename: WillowM.FullTree
LOD tree filename: WillowM.LODTree
Simple tree filename: WillowM.SimpleTree
XFrog filename: Not available – copyright issues
Number of triangles for branches: 93535
Number of triangles for leaves: 30016
Conversion parameters:
Grid subdivision: 4x4x4
Percentage of uplift points: 0.1
Point scale factor: 1.0
Maximal point group size: 5

Tree name: Willow – young

Picture:
Location: /Generated trees/Willow/
Full tree filename: WillowY.FullTree
LOD tree filename: WillowY.LODTree
Simple tree filename: WillowY.SimpleTree
XFrog filename: Not available – copyright issues
Number of triangles for branches: 63447
Number of triangles for leaves: 18216
Conversion parameters:
Grid subdivision: 4x4x4
Percentage of uplift points: 0.1
Point scale factor: 1.0
Maximal point group size: 5

Appendix C

Catalogue of forests

This catalogue contains list of all forests used in diploma thesis. All forests are
saved in directory /Forest Creation/.

Forest filename: BirchForest.Forest
Size: 1 km x 1 km
Nodes per node: 64

Picture:
Contained trees (density): Birch – adult (10)

Birch – mediocre (10)
Birch – young (10)

Forest filename: ColoradoSpruceForest.Forest
Size: 1 km x 1 km
Nodes per node: 64

Picture:
Contained trees (density): Colorado spruce – adult (10)

Colorado spruce – mediocre (10)
Colorado spruce – young (10)

153

APPENDIX C. CATALOGUE OF FORESTS 154

Forest filename: FalsecypressForest.Forest
Size: 1 km x 1 km
Nodes for node: 64

Picture:
Contained trees (density): Falsecypress – adult (10)

Falsecypress – mediocre (10)
Falsecypress – young (10)

Forest filename: ForestDensity5.Forest
Size: 1 km x 1 km
Nodes per node: 64

Picture:
Contained trees (density): Spruce (5)
Forest filename: ForestDensity5B.Forest
Size: 1 km x 1 km
Nodes per node: 64

Picture:
Contained trees (density): Poplar – adult (5)
Forest filename: ForestDensity5C.Forest
Size: 1 km x 1 km
Nodes per node: 64

Picture:
Contained trees (density): Falseacacia (5)

APPENDIX C. CATALOGUE OF FORESTS 155

Forest filename: ForestDensity10.Forest
Size: 1 km x 1 km
Nodes per node: 64

Picture:
Contained trees (density): Spruce (10)
Forest filename: ForestDensity10B.Forest
Size: 1 km x 1 km
Nodes per node: 64

Picture:
Contained trees (density): Poplar – adult (10)
Forest filename: ForestDensity10C.Forest
Size: 1 km x 1 km
Nodes per node: 64

Picture:
Contained trees (density): Falseacacia (10)
Forest filename: ForestDensity20.Forest
Size: 1 km x 1 km
Nodes per node: 64

Picture:
Contained trees (density): Spruce (20)

APPENDIX C. CATALOGUE OF FORESTS 156

Forest filename: ForestDensity20B.Forest
Size: 1 km x 1 km
Nodes per node: 64

Picture:
Contained trees (density): Poplar – adult (20)
Forest filename: ForestDensity20C.Forest
Size: 1 km x 1 km
Nodes per node: 64

Picture:
Contained trees (density): Falseacacia (20)
Forest filename: ForestDensity40.Forest
Size: 1 km x 1 km
Nodes per node: 64

Picture:
Contained trees (density): Spruce (40)
Forest filename: ForestDensity40B.Forest
Size: 1 km x 1 km
Nodes per node: 64

Picture:
Contained trees (density): Poplar – adult (40)

APPENDIX C. CATALOGUE OF FORESTS 157

Forest filename: ForestDensity40C.Forest
Size: 1 km x 1 km
Nodes per node: 64

Picture:
Contained trees (density): Falseacacia (40)
Forest filename: ForestDensity80B.Forest
Size: 1 km x 1 km
Nodes per node: 64

Picture:
Contained trees (density): Poplar – adult (80)
Forest filename: ForestDivision16.Forest
Size: 2 km x 2 km
Nodes per node: 16

Picture:
Contained trees (density): Spruce (10)
Forest filename: ForestDivision32.Forest
Size: 2 km x 2 km
Nodes per node: 32

Picture:
Contained trees (density): Spruce (10)

APPENDIX C. CATALOGUE OF FORESTS 158

Forest filename: ForestDivision64.Forest
Size: 2 km x 2 km
Nodes per node: 64

Picture:
Contained trees (density): Spruce (10)
Forest filename: ForestDivision128.Forest
Size: 2 km x 2 km
Nodes per node: 128

Picture:
Contained trees (density): Spruce (10)
Forest filename: ForestDivision256.Forest
Size: 2 km x 2 km
Nodes per node: 256

Picture:
Contained trees (density): Spruce (10)
Forest filename: ForestGrid1.Forest
Size: 1 km x 1 km
Nodes per node: 64

Picture:
Contained trees (density): Spruce with 1x1x1 grid (15)

APPENDIX C. CATALOGUE OF FORESTS 159

Forest filename: ForestGrid1B.Forest
Size: 1 km x 1 km
Nodes per node: 64

Picture:
Contained trees (density): Colorado spruce with 1x1x1 grid (15)
Forest filename: ForestGrid2.Forest
Size: 1 km x 1 km
Nodes per node: 64

Picture:
Contained trees (density): Spruce with 2x2x2 grid (15)
Forest filename: ForestGrid2B.Forest
Size: 1 km x 1 km
Nodes per node: 64

Picture:
Contained trees (density): Colorado spruce with 2x2x2 grid (15)
Forest filename: ForestGrid3.Forest
Size: 1 km x 1 km
Nodes per node: 64

Picture:
Contained trees (density): Spruce with 3x3x3 grid (15)

APPENDIX C. CATALOGUE OF FORESTS 160

Forest filename: ForestGrid3B.Forest
Size: 1 km x 1 km
Nodes per node: 64

Picture:
Contained trees (density): Colorado spruce with 3x3x3 grid (15)
Forest filename: ForestGrid4.Forest
Size: 1 km x 1 km
Nodes per node: 64

Picture:
Contained trees (density): Spruce with 4x4x4 grid (15)
Forest filename: ForestGrid4B.Forest
Size: 1 km x 1 km
Nodes per node: 64

Picture:
Contained trees (density): Colorado spruce with 4x4x4 grid (15)
Forest filename: ForestGrid5.Forest
Size: 1 km x 1 km
Nodes per node: 64

Picture:
Contained trees (density): Spruce with 5x5x5 grid (15)

APPENDIX C. CATALOGUE OF FORESTS 161

Forest filename: ForestGrid5B.Forest
Size: 1 km x 1 km
Nodes per node: 64

Picture:
Contained trees (density): Colorado spruce with 5x5x5 grid (15)
Forest filename: ForestMemory1.Forest
Size: 1 km x 1 km
Nodes per node: 64

Picture:
Contained trees (density): Falseacacia (6)
Forest filename: ForestMemory2.Forest
Size: 1 km x 1 km
Nodes per node: 64

Picture:
Contained trees (density): Falseacacia (5)

Falseacacia (1)
Forest filename: ForestMemory3.Forest
Size: 1 km x 1 km
Nodes per node: 64

Picture:
Contained trees (density): Falseacacia (4)

Falseacacia (1)
Falseacacia (1)

APPENDIX C. CATALOGUE OF FORESTS 162

Forest filename: ForestMemory4.Forest
Size: 1 km x 1 km
Nodes per node: 64

Picture:
Contained trees (density): Falseacacia (3)

Falseacacia (1)
Falseacacia (1)
Falseacacia (1)

Forest filename: ForestMemory5.Forest
Size: 1 km x 1 km
Nodes per node: 64

Picture:
Contained trees (density): Falseacacia (2)

Falseacacia (1)
Falseacacia (1)
Falseacacia (1)
Falseacacia (1)

Forest filename: ForestMemory6.Forest
Size: 1 km x 1 km
Nodes per node: 64

Picture:
Contained trees (density): Falseacacia (1)

Falseacacia (1)
Falseacacia (1)
Falseacacia (1)
Falseacacia (1)
Falseacacia (1)

APPENDIX C. CATALOGUE OF FORESTS 163

Forest filename: ForestSize11.Forest
Size: 1 km x 1 km
Nodes per node: 64

Picture:
Contained trees (density): Spruce (10)
Forest filename: ForestSize22.Forest
Size: 2 km x 2 km
Nodes per node: 64

Picture:
Contained trees (density): Spruce (10)
Forest filename: ForestSize33.Forest
Size: 3 km x 3 km
Nodes per node: 64

Picture:
Contained trees (density): Spruce (10)
Forest filename: ForestSize44.Forest
Size: 4 km x 4 km
Nodes per node: 64

Picture:
Contained trees (density): Spruce (10)

APPENDIX C. CATALOGUE OF FORESTS 164

Forest filename: ForestSize55.Forest
Size: 5 km x 5 km
Nodes per node: 64

Picture:
Contained trees (density): Spruce (10)
Forest filename: ForestSize1010.Forest
Size: 10 km x 10 km
Nodes per node: 64

Picture:
Contained trees (density): Spruce (10)
Forest filename: ForestSize2020.Forest
Size: 20 km x 20 km
Nodes per node: 64

Picture:
Contained trees (density): Spruce (10)
Forest filename: LawsonFalsecypressLowresForest.Forest
Size: 1 km x 1 km
Nodes per node: 64

Picture:
Contained trees (density): Lawson’s falsecypress low resolution – adult (10)

Lawson’s falsecypress low resolution – mediocre (10)
Lawson’s falsecypress low resolution – young (10)

APPENDIX C. CATALOGUE OF FORESTS 165

Forest filename: MugoPineForest.Forest
Size: 1 km x 1 km
Nodes per node: 64

Picture:
Contained trees (density): Mugo pine – adult (10)

Mugo pine – mediocre (10)
Mugo pine – young (10)

Forest filename: NorwaySpruceForest.Forest
Size: 1 km x 1 km
Nodes per node: 64

Picture:
Contained trees (density): Norway spruce – adult (10)

Norway spruce – mediocre (10)
Norway spruce – young (10)

Forest filename: PecanForest.Forest
Size: 1 km x 1 km
Nodes per node: 64

Picture:
Contained trees (density): Pecan – adult (10)

Pecan – mediocre (10)
Pecan – young (10)

APPENDIX C. CATALOGUE OF FORESTS 166

Forest filename: PoplarForest.Forest
Size: 1 km x 1 km
Nodes per node: 64

Picture:
Contained trees (density): Poplar – adult (10)

Poplar – mediocre (10)
Poplar – young (10)

Forest filename: Thematic1.Forest
Size: 2 km x 2 km
Nodes per node: 64

Picture:
Contained trees (density): Oak (3)

Spruce (15)
Forest filename: WillowForest.Forest
Size: 1 km x 1 km
Nodes per node: 64

Picture:
Contained trees (density): Willow – adult (10)

Willow – mediocre (10)
Willow – young (10)

Bibliography

[1] Szymczak A. Linear interpolation. Published as part of teaching material on
website http://www-static.cc.gatech.edu/classes/AY2004/cs4451a_
spring/lininter.pdf. Found by searching on Google for triangle linear
interpolation.

[2] Akenine-Möller, Tomas and Eric Haines. Real-Time Rendering Second Edi-
tion. A K Peters, 2002.

[3] Brooke Bakay, Paul Lalonde, and Wolfgang Heindrich. Real time animated
grass. Eurographics, 2002.

[4] J. Beaudoin and J. Keyser. Simulation levels of detail for plant mo-
tion. Symposium on Computer Animation - Proceeding of the 2004 ACM
SIGGRAPH/Eurographics symposium on Computer animation, Session on
Natural phenomena, pages 297 – 304, 2004.

[5] S. Benhrendt, C. Colditz, O. Franzke, J. Kopf, and O. Deussen. Realistic
real-time rendering of landscapes using billboard clouds. Eurographics 2005,
24(3), 2005.

[6] Philipe Decaudin and Fabrice Neyret. Rendering forest scenes in real-time.
Eurographics Symposium on Rendering, 2004.

[7] Oliver Deussen, Carsten Colditz, Marc Stamminger, and George Drettakis.
Interactive visualisation of complex plant ecosystems. Visualisation, Pro-
ceedings of the conference on Visualisation ’02, Session nature visualiza-
tion, 2002.

[8] Andreas Dietrich, Carsten Colditz, Oliver Deussen, and Philipp Slusallek.
Realistic and interactive visualisation of high-density plant ecosystems. Eu-
rographics Workshop on Natural phenomena, 2005.

[9] Losasso F. and Hoppe H. Geometry clipmaps: terrain rendering using
nested regular grids. In SIGGRAPH ’04: ACM SIGGRAPH 2004 Papers,
pages 769–776. ACM Press, 2004.

[10] Thomas Di Giacomo, Stéphane Capo, and Fran¸cois Faure. An interactive
forest. Proceedings of the Eurographic workshop on Computer animation
and simulation, 2001.

[11] Guillaume Gilet, Alexandre Meyer, and Fabrice Neyret. Point-based ren-
dering of trees. Eurographics Workshop on Natural phenomena, 2005.

167

BIBLIOGRAPHY 168

[12] Tan Kim Heok and Daut Daman. A review on level of detail. International
Conference on Computer Graphics, Imaging and Visualisation (CGIV’04),
pages 70–75, 2004.

[13] J. Lluch, E. Camahort, and R. Vivo. An image-based multiresolution model
for interactive foliage rendering. Journal of WSCG, 12(1 - 3), 2004.

[14] Javier Lluch, Emilio Camahort, and Roberto Vivó. Procedural multireso-
lution for plant and tree rendering. Computer graphics, virtual reality, vi-
sualisation and interaction in Africa, Proceedings of the 2nd international
conference on Computer graphics, virtual Reality, visualisation and inter-
action in Africa, Session on Natural phenomena, pages 31 – 38, 2003.

[15] David Luebke, Martin Reddy, D. Jonathan Cohen, Amitabh Varshney, Ben-
jamin Watson, and Robert Huebner. Level of Detail for 3D Graphics. The
Morgan Kaufmann Series in Computer Graphics and Geometric Modeling.
Morgan Kaufmann, 2003.

[16] Dana Marshall, Donald S. Fussell, and A. T. Campbell III. Multiresolution
rendering of complex botanical scenes. Graphics Interface, pages 97 – 104,
1997.

[17] Shin Ota, Machiko Tamura, Tadahiro Fujimoto, Kazunobu Muraoka, and
Norishige Chiba. A hybrid method for real-time animation of trees swaying
in wind fields. The Visual Computer, 20(10), 2004.

[18] Frank Perber and Marie-Paule Cani. Animating prairies in real–time. Sym-
posium on Interactive 3D graphics, Proceedings of the 2001 symposium on
Interactive 3D graphics, 2001.

[19] G. Szijártó and J. Kaloszár. Real-time hardware accelerated rendering of
forests at human scale. Journal of WSCG, 12(1 - 3), 2004.

[20] Daniel Wesslén and Stefan Seipel. Real-time visualisation of animated trees.
The Visual Computer, 21(6), 2005.

