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Katedra: Katedra softwarového inženýrství 
Vedoucí diplomové práce: Doc. Ing. Petr Tůma, Dr. 
E-mail vedoucího: petr.tuma@mff.cuni.cz
Abstrakt: 

OpenMI je standard pro propojování simulačních modelů vody a životního 
prostředí. Standard a v současnosti dostupný podpůrný software ovšem podporuje pouze 
simulace běžící na jednom počítači, v jednom vlákně.  

Cílem práce bylo vytvoření systému schopného propojovat OpenMI modely běžící 
na různých počítačích pomocí síťového podsystému. Systém se skládá z uzlových serverů, 
které poskytují přístup k modelům registrovaným klienty. Klienti zpřístupňují své lokální 
modely serverům a také umožňují stávajícímu OpenMI softwaru transparentně 
přistupovat ke vzdáleným modelům registrovaným jinými uživateli.  
Klíčová slova: OpenMI, distribuovaný systém, integrující server 
 
Title: Distribution for Open Modelling Interface and Environment 
Author: Jan Čurn 
Department: Department of Software Engineering 
Supervisor: Doc. Ing. Petr Tůma, Dr. 
Supervisor's e-mail address: petr.tuma@mff.cuni.cz
Abstract:  

OpenMI is a standard used to link water and environmental models. However, the 
standard and the currently available supporting software only support single-computer 
single-threaded simulations.  

The thesis delivers a system capable of linking OpenMI models across computers 
using their network subsystem. The system consists of hub servers that provide access to 
models registered by clients. The clients make local models accessible to the servers and 
also provide the legacy OpenMI software with a transparent access to remote models 
registered by other clients.  
Keywords: OpenMI, distributed system, integrating server model 
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1. Overview 

OpenMI is European standard (see [Omi05]) for linkage of computational models 
in domain of water and environment. As defined by the OpenMI Standard, the models are 
independent software components (objects), accessible using well-known interfaces. 
OpenMI also provides set of tools enabling users to link the models and run the 
simulations on them. Currently, OpenMI is designed for a single-computer environment. 
The models may internally utilize any remote resources on different computers; however, 
there is no standardized way how to link OpenMI models running on different computers. 

The goal of this thesis is to deliver a system, which will enable users to link any 
OpenMI models running on different computers. The system consists of hub servers and 
clients. The servers are used to intermediate communication between clients, and to 
register the models provided by clients. The clients make local models accessible to the 
servers and also provide the legacy OpenMI software with a transparent access to remote 
models registered by other clients. 

The OpenMI simulation uses pull-driven mechanism, which means that one 
model invokes methods of another inter-linked model, which may then invoke methods 
of another model etc. As defined by the OpenMI Standard, all calls between models are 
synchronous, i.e. run in single thread of execution. Several models depend on this aspect 
and behave incorrectly if their methods are called from different threads.  

In fact, our task is to distribute the single-thread call-stack to several computers, 
whilst using the integrating server model. The OpenMI Standard has not been designed to 
simplify remote access to models, so there are several issues which prevent simple 
adoption of common remoting techniques. Next challenge is to integrate or implement 
right communication protocol, since our distributed system poses quite complex 
requirements on it. Considerable task is also to optimize the overall performance of the 
system. 

The outline of the text is following: Section 2 gives a brief introduction to such 
parts of the OpenMI standard that are necessary to understand the further text. Section 3 
describes the basic ideas behind our distributed system and discusses its use cases. 
Section 4 then in detail describes the components of the system and how they interact 
with each other. Next, Section 5 introduces the concept of integrating server and 
discusses how it can be incorporated in our system. Section 6 discusses what 
communication protocol has been used and why. In Section 7 we explain the performance 

 10



optimizations which have been necessary to speed-up the distributed OpenMI 
computation. Section 8 briefly describes the particular software components of our 
implementation. Last sections of the thesis conclude the work done (Section 9), suggest 
the possible future work (Section 10) and list the used literature (Section 11). 

 11



2. Introduction to OpenMI 

This section gives a brief introduction to the OpenMI Standard (see [Omi05]), 
which is necessary to understand the further text. The readers already familiar with the 
standard may skip this section. 

OpenMI is a shortcut for Open Modelling Interface and Environment, a standard 
for model linkage in the domain of water and environment. The OpenMI Standard 
defines the set of interfaces, which enable computational models to interact with each 
other. The standard is very generic allowing the linkage of different kinds of models from 
different disciplines like atmosphere processes, rainfall-runoff, river hydraulics, flooding, 
sewerage, water distribution, fishing …etc. The OpenMI interfaces are not bound to a 
particular platform, generally, component written in any language, running on any 
platform, may be OpenMI compliant, if it fulfils the requirements defined by the 
standard. However, the primary platform for which the implementation of OpenMI 
interfaces is available, is Microsoft .NET Framework (currently, OpenMI version 1.2.0 is 
targeted for .NET 2.0). The whole description of the OpenMI Standard may be found in 
[Omi05]. 

Besides the interfaces, OpenMI provides a user interface application enabling the 
users to link models and run the simulations (deployment software) and also delivers 
supporting libraries which simplify the process of both development of new models and 
migration of the legacy models to OpenMI, without the need of rewriting the cores of the 
computational engines. This software is available only for Microsoft .NET Framework, 
as well.  

2.1. Linkable Component 

Linkable component (LC) is elementary part of OpenMI. It represents a single 
computational model, i.e. computational engine populated with the data. The access to 
linkable component is abstracted using ILinkableComponent interface. Additionally, the 
linkable component may implement IDiscreteTimes interface (to inform the callers that it 
computes values in discrete time steps) and/or IManageState interface (to persist the state 
of the computation). Table 1, Table 2 and Table 3 gives a brief description of all methods 
of these interfaces: 
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Method/property  Description 
Initialize Initializes the LC using array of arguments (IArgument). 
ComponentID Gets the string identifying the computation engine. 
ComponentDescription Gets the string with description of the computation engine. 
ModelID Gets the string identifying the model (i.e. computation engine + data). 
ModelDescription Gets the string with description of the model. 
InputExchangeItemCount Gets number of input exchange items. 
GetInputExchangeItem Gets the n-th input exchange item (IInputExchnageItem). 
OutputExchangeItemCount Gets number of output exchange items. 
GetOutputExchangeItem Gets the n-th output exchange item (IOutputExchangeItem). 
TimeHorizon Gets simulation time horizon of this model (ITimeSpan). 
AddLink Adds a single link (ILink) between this LC and other LC. 
RemoveLink Removes specific link identified by its ID string. 
Validate Checks whether the computation may start on this model, i.e. that Prepare 

method can be called. If an error is encountered, the method returns a 
string with description of that error. 

Prepare Prepares the computation. 
GetValues Gets the value for specific time (ITime) and output link (identified by ID 

string). The call typically invokes the computation in the engine. The 
GetValues method returns an instance of IValueSet interface. 

EarliestInputTime Gets the earliest time (ITimeStamp), for which this LC needs input from 
other inter-linked LCs. These LCs may use this property to clean their 
internal buffers. 

Finish Finishes the computation. The models typically write their result files to 
disk when this method is called. 

Dispose Releases all resources associated with the LC. 
GetPublishedEventTypeCount Gets the number of events published by the LC. 
GetPublishedEventType Gets the n-th published event type (EventType). 
Subscribe Subscribes an event listener (IListener) to specific event type (EventType). 
UnSubscribe Unsubscribes the event listener (IListener) to specific event type 

(EventType). 
SendEvent Sends the event (IEvent) to listeners subscribed for corresponding event 

type. 

Table 1 Methods and properties of ILinkableComponent interface 

Method  Description 
HasDiscreteTimes Gets boolean value indicating that values of a specific combination 

of quantity (IQuantity) and element set (IElementSet) are defined on 
discrete time steps. 

GetDiscreteTimesCount Gets the number of discrete time steps for specific combination of 
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quantity (IQuantity) and element set (IElementSet). 
GetDiscreteTime Gets the n-th discrete time step for specific combination of quantity 

(IQuantity) and element set (IElementSet). 

Table 2 Methods of IDiscreteTimes interface 

Method  Description 
KeepCurrentState Saves the current state of LC and returns the ID string for that state. 
RestoreState Restores the state identified by ID string. 
ClearState Removes the state identified by ID string from the internal storage. 

Table 3 Methods of IManageState interface 

2.2. OMI File 

In OpenMI, the model is described using OMI file. It is a XML file containing the 
information which type implements the ILinkableComponent interface and in which 
.NET assembly it resides. Additionally, OMI file contains arguments which must be 
supplied to Initialize method to initialize the LC properly (e.g. a list of simulation input 
files). Deployment software uses the information from OMI file to locate the assembly, 
load it into the memory, instantiate the linkable component and initialize it using supplied 
arguments. 

2.3. Model Linkage 

During the computation the inter-linked OpenMI models exchange the data with 
each other. Exchange items define where and what data may be exchanged. More 
precisely, single exchange item is a combination of element Set (IElementSet) saying 
“where to exchange” and quantity (IQuantity) saying “what data to exchange”. For 
example, in river hydraulics model, the element set may be a river cross-section and the 
quantity may be a water discharge. The link from model A to model B is a combination 
of one A’s output exchange item and one B’s input exchange item. The set of inter-linked 
LCs is referred to as OpenMI composition. 

An input exchange item is abstracted using IInputExchangeItem interface, an 
output exchange item using IOutputExchangeItem interface. Table 4 and Table 5 show 
properties and methods of these interfaces. 

 
Method  Description 
Quantity Gets the information about what data will be exchanged (IQuantity). 
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ElementSet Gets the information about where the data will be exchanged (IElementSet).

Table 4 Methods of IInputExchangeItem interface 

Method  Description 
Quantity Gets the information about what data will be exchanged (IQuantity). 
ElementSet Gets the information about where the data will be exchanged (IElementSet). 
DataOperationCount Gets the number of data operations associated with this output exchange item. 
GetDataOperation Gets the n-th data operation (IDataOperation). 

Table 5 Methods of IOutputExchangeItem interface 

The data operations defined by output exchange items are used to transform the 
data produced by the model (e.g. linear transformation, spatial interpolation…). The list 
of methods and properties of IQuantity, IElementSet and IDataOperation interfaces may 
be found in the [Omi05]. For our purposes their further explanation is unnecessary. 

To link two models, the AddLink method must be called on both source and target 
LC, supplying an implementation of ILink interface as argument. Table 6 lists methods 
and properties of this interface. 

 
Method  Description 
ID Gets the ID string for the link. 
Description Gets a string with description of the link. 
SourceComponent Gets the source LC. 
SourceElementSet Gets the source element set (IElementSet). 
SourceQuantity Gets the source quantity (IQuantity). 
DataOperationsCount Gets the number of data operations selected from source input exchange item. 
GetDataOperation Gets the n-th selected data operation. 
TargetComponent Gets the target LC. 
TargetElementSet Gets the target element set. 
TargetQuantity Gets the target quantity. 

Table 6 Methods of ILink interface 

2.4. Computation 

Before the computation can start, Prepare method must be called on all LCs in 
the composition. The computation is then triggered by invoking GetValues method on a 
one of LCs. LC may then, in order to compute its result, invoke GetValues method on 
other inter-linked LC, and so on. In OpenMI this is known as pull-driven mechanism. 
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Important thing is that all GetValues calls are done synchronously in a single thread of 
execution.  

After computation finishes, the deployment software must call Finish method on 
all LCs in the composition, so they may for example save the result files. 

2.5. Events 

The events system is kind of messaging between the OpenMI linkable 
components and the external tools, and is a substantial part of the OpenMI standard. 
Events allow the implementation of tools that perform tasks such as a logging, tracing, or 
online visualization. Linkable components can generate events to which other linkable 
components or tools can subscribe (using LC’s Subscribe method). The event listener 
must implement IListener interface, Table 7 shows its methods: 

 
Method  Description 
GetAcceptedEventTypeCount Gets the number of event types, which the listener wants to listen. 
GetAcceptedEventType Gets the n-th listened event type (EventType). 
OnEvent Called by LC to send an event to the listener . 

Table 7 Methods of IListener interface 

Events are handled, like the computation itself, synchronously. When event is sent 
to a listener using OnEvent method, the listener grabs the thread’s call stack. This allows 
listeners to implement for example pause functionality, or even listeners are able to 
cancel the computation by throwing an exception. 
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3. Distribution of Computation 

In this section we introduce basic ideas behind the distribution of OpenMI 
computation, and discuss the possible use cases. 

The OpenMI models can internally utilize any resources on the network, or even 
perform the calculation on a remote computer; however, there is no standardized way 
how to combine OpenMI models running on different computers into a single OpenMI 
composition. The aim of this thesis is development of a framework that will seamlessly 
allow the distribution of arbitrary OpenMI compliant models to different computers and 
run them in a single OpenMI composition, using standard OpenMI tools. In the following 
text we will refer to this framework as Distributed OpenMI. 

3.1. Concept 

Basic idea is to have a framework with the ability to make OpenMI compositions 
on the local computer including both local models and models running on remote 
computers using existing OpenMI software and tools. All OpenMI compliant models may 
be used as remote models and it should be transparent for other models whether they are 
linked to a remote or local model. 

Obviously, there are two types of clients in Distributed OpenMI: the clients who 
provide the access to their local OpenMI models to other clients; and the clients who 
access these models. 

3.2. Use Cases  

There are several situations where it is useful to link the models running on 
different computers: 

• Provide remote access to a large time series databases 
The time series databases (storing e.g. sensor data, whether forecast …) may 
be wrapped into OpenMI linkable components and provided to 
computational models using Distributed OpenMI. The computation models 
will only request the data, which they actually need for their computation.  

• Deploy the simulation on the desktop, run it on a dedicated machine  
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Client PC may only be a place from which the simulation is invoked and 
monitored. The computation may run on dedicated high-performance 
computer where the model actually resides. 

• Link models from different providers without a need for moving data 
Classical OpenMI approach necessitates moving all input data to a single 
computer before running the simulation. If the amount of the data is big, the 
preparation phase may bring significant performance overheads. Distributed 
OpenMI allows running the models on the computers where the data is 
available. Only the data necessary for the linkage will be transferred 
between the computers.  

• More effective usage of simulation software licenses 
The commercial simulation software is very expensive, so the number of 
installations customers can use is limited. It is inefficient to have all 
simulation software installed on a single computer. 
 

All previous situations may be solved in other ways; however, our concept 
enables developers to use a simple framework to achieve these goals and protects them 
from implementation of a complex distributed functionality.  

3.3. Remote Procedure Call 

OpenMI is an object oriented system, the computation consists of method calls 
between the objects representing inter-linked models and thus a natural approach how to 
distribute the computation is to use Remote Procedure Call (RPC). There are many 
implementations of remote procedure calls; the paper [Bir83] gives general background 
about implementation of RPC. RPC will be used to invoke the methods of original 
Linkable Component (LC) on a particular client. 

Our distributed system aims to be OpenMI compliant, so any changes in the 
existing OpenMI models providing the remote access to other models are not acceptable. 
The only entity, which can be linked to existing LC, is other LC. This naturally implies 
that we have to encapsulate the RPC client functionality into a special LC, which can be 
seamlessly linked to existing LCs. In our system, we introduced Remote Linkable 
Component (RLC) to proxy the method calls to original LC on a remote side. 

On the other hand, it is useful to introduce additional layer between original LC 
and RPC server subsystem. In Distributed OpenMI the Model Provider (MP) component 
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is used to receive remote calls from the RPC subsystem and to forward them to original 
LC. Moreover, this layer allows us to implement functionality like authorization (see 
Section 4.3), direct local model linkage and piggybacking (see Section 7). 

 
Figure 1 Basic concept of the remote access to the models 

 

3.4. Model Provision and Access  

OpenMI models are described using OMI files, thus the Distributed OpenMI 
clients, who provide the access to their local models, must able to register these models 
using the OMI files. On the other side, the accessing client must have special OMI file 
holding all the information needed by Distributed OpenMI system to connect to the 
providing client and access a particular model.  

On the start, the deployment software on accessing client instantiates RLC using 
the information from the OMI file. This in fact means that the Distributed OpenMI 
system is started in the deployment software process. RLC connects to the remote 
providing client and requests it to instantiate LC for the original model (using a registered 
OMI file). After that, the providing client creates MP around LC, and registers it to RPC 
subsystem in order to receive the remote method calls. The instantiation of a provided 
model must be done on demand because single client can provide large number of models 
and their pre-instantiation could bring significant memory overheads. After MP is 
created, the accessing client receives a RPC-reference to it, which is attached to the RLC. 
Now RLC is ready to proxy calls to remote LC. 

In Section 4 there is more detailed information about all mentioned components 
and processes. 
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3.5. Platform 

Current OpenMI release (version 1.2.0) is targeted to Microsoft .NET Framework 
2.0 (an implementation of CLI, as defined in [Ecm06]). This naturally implies that 
Microsoft .NET Framework 2.0 is the platform, on which the Distributed OpenMI system 
should be running. Although the OpenMI Standard has earlier been released for the Java 
platform as well, the support for Java has been stopped recently by OpenMI Association, 
which is the responsible authority maintaining the OpenMI Standard. This is reason why 
a formerly proposed Java implementation of the client has been abandoned. 
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4. Making Linkable Components Remotable 

In this section, we describe components and processes taking part in the 
preparation and execution of a distributed OpenMI composition. 

4.1. Remote Linkable Component 

The Remote Linkable Component (RLC) is a substantial part of the Distributed 
OpenMI. It implements the OpenMI’s ILinkableComponent, IPublisher, IManageState 
and IDiscreteTimes interfaces, and is used in the OpenMI composition to proxy method 
calls of these interfaces to original Linkable Component (LC) instantiated in a different 
process, eventually on a remote computer. Additionally, RLC is the initiator of the access 
to a remote model (see 5.4), and incorporates the authorization (see 4.3) and caching (see 
7.2) functionality.  

If the RLC is instantiated by the OpenMI deployment software as a result of 
opening the OMI file (as described in 2.2), we talk about explicit instantiation. If RLC is 
instantiated as a result of model linkage, we talk about implicit instantiation (see 4.6). 

4.2. Model Provider 

Model Provider (MP) is a wrapper around original linkable component, which 
enables invocation of its methods from a remote side over RPC. For each 
ILinkableComponent interface method MP has an equivalent method. In our 
implementation, the IModelProviderRemote interface represents all MP’s methods which 
may be called from a remote side (remotable methods).  

There are more reasons why it is useful to introduce this additional layer. 
Generally, for security reasons, it is not a good idea to allow the direct access to 
underlying LC from RPC server subsystem. Moreover, some RPC subsystems have 
restrictions about the objects receiving remote calls (e.g. in Microsoft .NET Remoting the 
server objects must be inherited from MarshalByRefObject object, as described in 
[Net07]). Such restrictions may not be fulfilled by a particular linkable component 
implementation, which could even by legacy and cannot be changed. Additionally, MP is 
useful to implement piggybacking performance optimizations (see 7.2). 
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Note that each remote model in Distributed OpenMI is uniquely identified by 
GUID (Globally Unique Identifier, as defined in [Rfc4122]), which is stored in both RLC 
and MP. This GUID is for example useful for direct model linkage (see 7.1).  

4.3. Authorization 

Using MP, we could also supply simple an RPC-independent authorization 
mechanism which prevents unauthorized remote access to provided LC. In our 
implementation, each MP stores a 16 byte long unique authorization ticket (Auth). This 
ticket is generated by a cryptographically safe random number generator (in our 
implementation using RNGCryptoServiceProvider provided by .NET, see [Net07]). 
When calling any remotable method on MP, the caller must supply exactly the same 
authorization ticket in a special input parameter. If supplied ticket does not match, an 
exception is thrown. During the remote model access handshake, the MP’s authorization 
ticket is provided to corresponding RLC, which stores it internally and uses it for each 
call to remote MP. 

4.4. Object Serialization 

In OpenMI there are several objects, described via interfaces, which are passed to 
or returned from methods of a linkable component. These objects are state-less and 
residually independent according to the OpenMI standard, thus it is useful to transfer 
them by-value over the process or computer boundary. 

The implementations of the objects may vary, and it is not ensured that a 
particular implementation may be serialized by the RPC subsystem (e.g. in .NET 
Remoting all serializable objects must be flagged with [Serializable] meta-data attribute, 
as described in [Net07]). This is the reason why these objects are converted to a special 
serializable representation before they are passed to the RPC subsystem. The serializable 
representation stores all the information from the original object accessible via the 
standard OpenMI interfaces. The values of internal attributes are lost in this process, what 
is not a problem since linkable components should only provide the data using the well-
known interfaces according to the OpenMI standard.  
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Figure 2 Serialization and deserialization of OpenMI objects  

After the serializable representation of an object reaches its destination on the 
remote side, a wrapper object implementing particular OpenMI interface is created from 
it. This object is then passed to original LC (RLC – MP – LC way), or returned as result 
of RLC method call (LC – MP – RLC way). The wrapper object emulates the state of the 
original object in the way that all its properties and methods return the same values (for 
same input parameters, eventually). Here we assume with respect to the OpenMI standard 
that original object does not change its state in the time. The only exception is 
IDataOperation object, as explained in Table 8. Note that we cannot instantiate the 
original object on a remote side because its implementing type may not be present there. 
The transfer of an assembly implementing specific type to a remote host is not possible 
due to security reasons.  

The conversion to the serializable representation and creation of the wrapper is 
handled transparently by RLC and MP components. Table 8 lists objects for which this is 
needed and comments the non-trivial cases: 

 
Object Comments 
IArgument  
IDataOperation Problematic are Initialize and IsValid methods. Initialize method may change the 

state of the instance. The resulting value of IsValid method for all combinations 
of input parameters could be calculated on the original object, but for that 
(number of input exchange items) x (number of output exchange items) x 
(number of data operations) calls to that object would be needed, what is not 
acceptable. In our implementation, the wrapper object has a reference to owning 
RLC, and calls to both Initialize and IsValid methods are proxied to original LC 
on the remote side. MP has DataOperationInitialize and DataOperationIsValid 
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methods which call the corresponding methods on the original IDataOperation. 
IDimension Serialized as part of IQuantity, not directly. 
IElementSet  
IEvent References LC which generated the event. The model GUID of that LC is used in 

the serializable representation. After deserialization wrapper object uses that 
GUID to find correct LC in its address space (if such exists).  

IInputExchangeItem  
ILink References source and target LCs. Model GUIDs are stored in the serializable 

representation. After deserialization the wrapper object uses that GUID to find 
correct LCs in its space (it is guaranteed they exist, see 4.6). 

IOutputExchangeItem  
IQuantity  
ISpatialReference  
ITime Itself has no properties and is just base interface for ITimeSpan and ITimeStamp. 

The serializable representation stores the information about which interface is 
actually implemented and after deserialization the wrapper object implements 
same one(s). 

ITimeSpan Serialized as ITime 
ITimeStamp Serialized as ITime 
IUnit Serialized as part of IQuantity, not directly. 
IValueSet Base interface for IScalarSet and IVectorSet interfaces. The serializable 

representation stores the information about which interface is actually 
implemented and after deserialization the wrapper object implements same 
one(s). 

IVector Serialized as part of IVectorSet, not directly. 

Table 8 OpenMI objects transported over network 

The OpenMI Standard also defines several enumerations (DimensionBase, 
ElementType, EventType and ValueType). All of them are based on a 32-bit integer, thus 
the serialization is trivial. 

4.5. Object Deposit 

Although the OpenMI Standard has been developed quite recently, it is not 
designed to make the remote access to linkable components simple. One of the issues is 
that several LC’s (and IDataOperation) methods expect as input parameters objects 
provided earlier by other methods. If just an identifier of these objects could be used, the 
situation would be much easier. Passing the wrapper object instead would defy the 
OpenMI Standard and could cause errors since a linkable component may depend on 
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passing of correct objects. Table 9 lists problematic methods and the objects they need 
(fixed objects): 

 
Method  Passed Object(s) 
AddLink  IElementSet, IQuantity, IDataOperation 
IDataOperation.IsValid IInputExchangeItem, IOutputExchnageItem, IDataOperation 
HasDiscreteTimes IElementSet, IQuantity 
GetDiscreteTimesCount IElementSet, IQuantity 
GetDiscreteTime IElementSet, IQuantity 

Table 9 Fixed objects in OpenMI 

In our implementation, the Object Deposit component has been developed to store 
fixed objects produced by a linkable component. With each fixed object (including its 
serializable representation and wrapper) there is a GUID associated. Whenever LC 
produces an instance of a fixed object, MP looks into the object deposit whether that 
object is already present there. If yes, the serializable representation of that object reuses 
a same GUID. If not, a new GUID is generated for the object and saved to the object 
deposit (together with object itself). 

When a problematic method is called on RLC, it is expected that input parameters 
are our wrapper objects, according to the OpenMI Standard. RLC takes GUID from the 
wrapper object, and passes only that to remote MP. The MP finds the corresponding fixed 
object in its object deposit, and passes it to original LC (as depicted on Figure 3). 

 
Figure 3 Usage of object deposit 

Internally, the object deposit consists of two complementary hash-tables, one has 
GUID as the key and reference to the fixed object as the value, second has reference to 
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the fixed object as the key and GUID as the value. All object deposit operations have 
O(1) amortized complexity.  

4.6. Model Linkage  

In OpenMI, to link two models, the deployment software calls 
ILinkableComponent’s AddLink method on both source and target LC. As parameters of 
this method, the references to both LCs are supplied. This means that after AddLink is 
called, one LC can invoke methods of other LC, and vice versa. 

If one of the inter-linked models is RLC, simply the reference to RLC is supplied. 
However, the AddLink method still must be called on the original LC on the remote side, 
supplying a reference to some there local LC which would represent the inter-linked LC. 
The natural approach solving this situation is the instantiation of RLC on remote side, 
which would proxy the calls to locally inter-linked LC. In Distributed OpenMI this is 
known as implicit RLC instantiation. Of course, MP has to be created around locally 
inter-linked LC, enabling it to receive calls from remote side, as depicted on Figure 4. 

  
Figure 4 Link between local and remote model 

The creation of MP and implicit RLC instantiation on the remote side takes place 
during the local AddLink call. Note that the remote model on a providing client side now 
has the opportunity to perform callbacks to accessing client, what is one of the 
requirements posed on a RPC communication protocol. 

There are some special cases in the model linkage, which may be handled 
different way to achieve better performance (see 7.1.2). 

4.7. Event Callback 

Event handling is an important part of the OpenMI standard and our system aims 
to support it entirely. Each LC is producer of events, and any component implementing 
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OpenMI’s IListener interface may subscribe to LC in order to receive its events. This 
approach must be preserved for RLCs as well. 

When an event listener subscribes to RLC using Subscribe method, the 
subscription must also be done on the remote side. After that, if LC on the remote side 
produces an event, the event must be send to RLC using a callback. The OpenMI 
Standard defines that events are handled synchronously (i.e. LC may call the IListener’s 
OnEvent method only during the execution of some method and the computation is 
blocked until OnEvent returns, as depicted on Figure 5). This implies that our system 
must handle events synchronously, as well. If we used piggybacking mechanism to pack 
occurred events together with result of some later call to remote LC, the state of the 
OpenMI composition would never be the same as the state when the event really 
occurred. This could cause strange behavior. 

 
Figure 5 Synchronous event handling 

In our implementation, the IEventReceiver interface is used as a callback interface 
for event dispatching. RLC implements this interface and registers itself to the RPC 
subsystem to be able to receive event callbacks. The RPC-reference to RLC is sent to MP 
during the event subscription request. 

4.8. Threading 

The OpenMI Standard defines that composition preparation and computation is 
run within a single thread of execution. There are models and tools which depend on this 
aspect of OpenMI, for example: 
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• Graphical utilities  
For example, on Microsoft Windows operating system, after a window is 
created, all manipulation with it (using operating system’s handle) must be 
done within the same thread of execution that created the window (described 
in [Win07]). 

• Legacy models 
For example, industry standard river hydraulics model MIKE 11 (developed 
by DHI Water, Environment and Health) utilizes several COM (Component 
Object Model) components with STA (Single Thread Apartment, see 
[Win07]) model. This necessitates that all method calls to LC must be done 
within a single thread of execution, because the methods internally utilizes 
mentioned COM components (explained in [Win07]). 

Because Distributed OpenMI aims to support all OpenMI compliant models, we 
must ensure that all LC methods are called within a single thread of execution. In fact, 
our task is to spread single-thread call stack to multiple processes, possibly on different 
computers. To achieve that, for each provided model, there must be a reserved thread on 
which all calls to LC will be executed. Moreover, all LCs from a single composition on a 
single client must use the same thread to enable the direct model linkage, which makes 
possible that LCs call directly each other (see 7.1.2). The OpenMI Standard does not 
forbid cycles in calls between LCs in the composition. In our distributed system this 
means that nested RPC calls must be dispatched on a causal thread waiting for a result of 
another pending RPC call. 

Possible solution is to assign single thread on the providing client for all models 
belonging to a same composition. MP would then marshal the LC calls to that thread. The 
RLC would need to send the RPC calls asynchronously, and then grab the calling thread 
so that MP could marshal the nested calls again to that thread. 

Although the solution of threading issues could be implemented on the level of 
RLC and MP as outlined, the idea to separate this quite general problem became more 
interesting. From the discussion in Section 6 the need for implementation of a proprietary 
RPC protocol arises. Our threading issues (namely reserved worker thread for dispatching 
of remote method calls and execution of nested remote calls on the blocked causal thread) 
may be solved transparently on the RPC level, bringing a clean and reusable solution. 
The decision to go this way has been made. In the following paragraphs we describe how 
threading issues have been solved using the features of new YA-RPC protocol. In Section 
6.3 we explain how these features were actually implemented. 
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4.8.1. Reserved Worker Thread 

YA-RPC protocol has the possibility to assign Single Thread Worker Queue 
(STW) for specific server objects registered to the RPC subsystem. When a remote 
method call is received, the request is queued to STW and executed after STW thread has 
nothing to do. The first idea is to associate one STW with each MP on a providing client 
and perform the calls to underplaying LC directly on the STW thread. However, as 
mentioned, the MPs for LCs belonging to a same OpenMI composition must share the 
same thread, thus must share same STW. Unfortunately, the fact that two LCs fall into a 
same OpenMI composition is first determined when they are linked together – in time 
when they are already initialized and STW is already assigned. Two LCs from one 
providing client, accessed even by a same client, may of course be completely 
independent, thus assignment of one STW to all MPs is not possible. 

In our implementation we assumed that a single OpenMI composition is identified 
not by the model linkage, but by the thread under which the models are instantiated on 
the accessing client. This perfectly fits our concept of a single thread call-stack spreading, 
because if the OpenMI deployment software instantiates two RLCs in two different 
threads, it cannot suppose that corresponding LCs on remote side shares a same thread. 
When RLC is instantiated explicitly, it sends globally unique thread identifier (16-byte 
GUID) together with model access request to the remote providing client. The providing 
client looks whether STW for this unique identifier already exists; if yes it reuses the 
STW, if not it creates a new one.  

As the thread identifier we could not simply use operating system’s identifier or 
handle, since it is not guaranteed to be globally unique. Our globally unique identifier is 
stored in the thread local storage (abstracted using .NET [ThreadStatic] meta-data 
attribute, as described in [Net07]). 

Because there is some performance overhead associated with usage of STW and 
not all models necessitates the execution under a single thread, the providing client have 
the opportunity to turn this feature off. 

4.8.2. Nested Remote Calls 

Other nice feature of YA-RPC is that it has the option to track the nesting of 
remote calls and execution of nested remote calls on a blocked causal thread. It means 
that if the node A sends a synchronous (i.e. blocking) remote call to node B (causal call), 
and node B sends another call (nested call) back to node A during the execution of the 
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causal call, the nested call is dispatched on the A’s blocked thread (causal thread). This 
feature solves completely our problems, since MP executes methods of LC directly 
without additional marshaling layer.  

Note that STWs for model providers are necessary only on providing clients, 
accessing clients do not need them because the initiator of the computation is some 
(causal) thread on the accessing client, and callbacks to its MPs are executed on that 
blocked causal thread. Although, if LC on the providing client asynchronously (out of the 
computation call-stack) invokes some method on accessing client’s LC, that call is 
executed on a thread-pool thread, and that is perfectly correct.  
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5. Integrating Server Model 

Distributed OpenMI aims to distribute the computation in the internet wide 
environment (WAN), and not only in the intranet (LAN). However, many computers and 
networks in today’s internet are hidden behind firewalls and NAT (Network Address 
Translation, described in [Rfc3022]). The configuration of firewalls and routers allowing 
connection to protected networks may be apparently a problem, e.g. for security reasons, 
or just for a user inability. In the server-less model, each providing client would have to 
make configuration changes in order to use Distributed OpenMI. This could limit the 
number of model providers and make the commercial expansion of the system 
impossible. 

This led to an idea of one central server, which would be the only place where the 
firewall or router configuration settings need to be changed. Silently we pose another 
requirement to selected communication protocol – the ability to perform callbacks 
without the need of server-initiated connection. If the communication protocol does not 
have this capability, the central server is meaningless. 

 
Figure 6 Integrating server model 

5.1. Clients Management 

The presence of a central server in Distributed OpenMI brings also the possibility 
to add features which would not be possible otherwise. Server may maintain the list of 
clients, serve their authentication, and maintain the list of provided models… For the 
communication between the clients Remote Procedure Call (RPC) has been proposed. 
Natural approach how to publish these server features is also to use RPC. In our 
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implementation, access to the server is abstracted using the IServer interface. Table 10 
summarizes its methods. 

 
Method  Description 
GetGuid Gets the unique identifier of the server.  
GetServerInfo Gets the basic information about the server. 
RegisterUser Registers the client to the server. 
UnregisterUser Remove registration of the client from the server. 
LogOn Performs logon to the server. 
RenewAuth Renews logon on the server. 
LogOff Logs off from the server. 
ProvisionStart Starts the model-provision mode. 
ProvisionStop Stops the model-provision mode. 
ProvisionAddModel Add a provided model. 
ProvisionUpdateModel Updates a provided model. 
ProvisionRemoveModel Removes a provided model. 
GetAllUserNames Gets the client-names of all providing users. 
GetAllModelNames Gets the names of all provided models for a specific user. 
GetModelInfo Gets the information about a specific provided model. 
AccessModel Initiates the access to a remote model. 

Table 10 Methods of IServer interface 

To be able to use most of the server methods, the client must be logged on using 
the client-name and password (LogOn method). If the client does not have an account, it 
can create a new one using RegisterUser method. In our prototype implementation the 
registration always succeeds, what in fact means that the anonymous user accounts are 
allowed. One can imagine that, in the commercial environment, the registration may be 
contingent on some approval (e.g. based on a received payment). Client-names must be 
unique within the single server, of course. In our implementation the server persists the 
list of registered users regularly to a data file.  

After the registration and logon to the server, the client is able to provide access to 
local models, to browse the other providing clients, browse their provided models and 
also access the models. In the source code of our implementation we sometimes refer to 
“client” as “user” (because clients are kind of users of the server); however in the 
following text we will only use the term “client”.    

Note that every Distributed OpenMI server is identified by a globally unique 
identifier (16-byte GUID). This identifier is used by clients to determine that specific 
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server is already connected. The server hostname cannot be used for this purpose, 
because more hostnames may point to single host. 

5.2. Remote Calls Forwarding 

The most important role of the server is that it forwards remote method calls from 
a one client to another. This regards the calls to Model Provider (MP) and event callbacks 
to Remote Linkable Component (RLC). The forwarding works the way, that the server 
registers objects with same interface (forwarder) to the RPC subsystem. When a client 
sends a remote call to the forwarder, it internally sends another RPC call to the original 
object on the target client. When the latter call finishes, the forwarder returns the result to 
the calling client.  

The forwarding of remote calls must be asynchronous – forwarder’s method must 
just schedule the remote call to a target object, and return immediately. After the method 
on the target object returns, the call to forwarder may also be finished. If the call to 
forwarder’s method would block the thread on the server until target client object’s 
method returns, a malicious client could simply “hijack” a high number of server’s 
threads, what in fact is kind of Denial of Service (DoS) attack. The ability to 
asynchronously forward remote calls poses a new requirement on the selected 
communication protocol (see Section 6).  

 
Figure 7 Model provider and event receiver forwarders 

On the Distributed OpenMI server there are two types of forwarders: Model 
Provider Forwarder (based on IModelProviderRemote interface) and Event Receiver 
Forwarder (based on IEventReceiver interface). First one forwards the remote calls in the 
RLC-Server-MP direction, second one in the MP-Server-RLC direction. The concept of 
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remote call forwarding does not affect introduced concept of clients much. The clients 
simply send all calls to the server, instead to the target clients. 

Additionally, in our implementation, during the forwarding the server checks the 
authorization ticket for the model provider (described in Section 4.3) and tracks the event 
subscription process in order to forward the events only where needed (see Section 7.3). 

5.3. Model Provision 

Before the client can enter the provision mode, it must logon to the server. Using 
IServer interface’s ProvisionStart method the client enters the provision mode. As 
parameter of this call the client must supply RPC-reference to IProvisionCallback 
callback, which is used to initiate access to the model on demand. 

The providing client process then waits for incoming requests. The client 
periodically calls server’s RenewAuth method to refresh the logon. This is necessary 
since the logon timeouts after a period of time to prevent dead clients to be considered 
alive. 

5.4. Model Access 

After explicit instantiation of RLC in the OpenMI deployment software’s process, 
Distributed OpenMI connects and logons to the server using credentials stored in 
corresponding OMI file. After that, RLC calls server’s AccessModel method. Server finds 
requested providing user, and using callback requests it to provide the access to the 
model (i.e. calls IProvisionCallback interface’s ProvideModel method). RPC-reference to 
event receiver forwarder is sent as part of this request. 

As described in Section 3.4, the providing client instantiates and initializes the 
linkable component and creates a MP for it. Reference to MP is sent back to server as a 
result. The server then creates a model provider forwarder and sends its RPC-reference 
back to the accessing client as a result. Now the client is able to call the methods of 
original LC on a remote side, and the event system is ready to work. 
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6. Communication Protocol 

Selection of a right RPC communication protocol was one of the biggest 
challenges during the development of Distributed OpenMI. The architecture of the 
system poses very specific requirements on the selected protocol. In this section we 
compare available protocols with respect to our requirements, and explain why we 
decided to implement a proprietary protocol. 

6.1. Requirements 

The following list summarizes all the requirements posed on the communication 
protocol by our Distributed OpenMI concept. There are other requirements not explicitly 
pronounced, which we silently consider as a matter of course (e.g. reliable delivery, 
stable release, synchronous method calls, serialization of complex data types …etc). 

• Callbacks on client initiated connection 
As mentioned many times, the server must be able to invoke methods on the 
clients. The client-server connection must be client-initiated to deal with 
firewalls and NAT (explained in Section 5). 

• Asynchronous remote calls and server methods dispatch 
The RPC must have opportunity to invoke a remote method call without the 
need of blocking the calling thread. When the remote method finishes, a 
supplied callback has to be called by the RPC subsystem. Similarly, a server 
object must have the opportunity to return immediately when its method is 
called and be able to notify the RPC subsystem about the completion and 
return value. These two features are necessary for the asynchronous remote 
call forwarding on a server (as described in Section 5.2). 

• Free availability for Microsoft .NET Framework 
Distributed OpenMI may become either commercial or open source 
software. In both cases the dependence on a commercial RPC protocol 
would be very unpleasant. An open source or SDK library is the desired 
choice, for Microsoft .NET Framework of course.  

• High performance 
The distribution of OpenMI computation must have as small performance 
overhead as possible, and RPC must be fast enough to achieve this 
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objective. Note that Distributed OpenMI may also be used in intranet 
environment, where network latency is insignificant – here the performance 
of the RPC subsystem may be a bottleneck.  

• Internet wide usability 
The clients connected to the server may be in different networks of internet. 
This limits the choice of RPC’s underlying protocol to widely extended and 
supported TCP/IP protocol. 

6.2. Protocol Comparison 

In Table 11, we list the most widely used RPC protocols, and show whether they 
implement the necessary features. 

 
 

Callbacks 
Asynchronous 
call forwarding 

Availability 
High 
performance 

Internet wide 
usability 

CORBA [Omg04]      
DCOM [Dcom98]      
Java RMI [Java03]      
.NET Remoting [Net07]      
Web services [Web04]      
XML-RPC [Xml99]      
FastRPC [Fast]      
ONC RPC [Rfc1831]      
DCE/RPC [Dce97]      

Table 11 The comparison of RPC protocols 

The summary is that for our purpose no existing RPC protocol is available. This 
led to the decision to implement a proprietary protocol, which would incorporate all the 
necessary features. Additionally, the proprietary protocol enables us to transparently 
solve threading issues on the RPC level (as described in Section 4.8) and is ready for a 
future extension (e.g. Java implementation, encryption, transparent failover …etc). The 
new protocol was named YA-RPC. 

6.3. YA-RPC 

YA-RPC stands for Yet Another Remote Procedure Call. It is a simple binary 
communication protocol which has been developed from the scratch. As underlying 
transport protocol, the Transmission Control Protocol (TCP) is used (described in 
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[Rfc793]). The choice of TCP was very natural – it is simply the most widely supported 
internet protocol with reliable stream delivery. The remote method calls and return values 
are packed into messages, which are transported using TCP over the network. The first 
implementation of YA-RPC has been done for Microsoft .NET Framework. 

In this section, we only show the most important features of YA-RPC protocol. 
The technical details are beyond the scope of this document and may be found in the YA-
RPC documentation.  

6.3.1. Server Objects and Methods 

YA-RPC uses object-oriented approach, i.e. remotable methods are defined on 
objects (server objects). Each server object must implement IYaRpcRemotable interface. 
Before an object may receive the remote method calls, it must be registered to the YA-
RPC subsystem. The server objects are identified by a globally unique identifier (16-byte 
GUID), which is supplied during the registration. The methods of server objects are 
identified using 32-bit signed integer. When a client performs the remote call, it must 
provide both the object GUID and method ID. The server object methods may have 
unlimited number of input parameters, and unlimited number of return values. 

During the dispatch of the remote call, the YA-RPC subsystem first calls 
IYaRpcRemotable’s interface GetMethodDefinition method on the server object. Based 
on the result of this method, either the ExecuteMethod or BeginExecuteMethod method is 
later called on the server object to perform the job. Additionally, GetMethodDefinition 
method is used by the YA-RPC subsystem to determine the types of input parameters for 
a method. These types are used to deserialize the message, so that the parameters may be 
supplied to the method in fair form. 

To receive the remote calls, the server must either be listening on a specific 
network interface and TCP port, or it must be connected to another remote host. 

6.3.2. Remote Calls 

To perform the remote call over YA-RPC, the caller must have open connection 
to remote host, server object GUID, method ID and the array of method parameters, 
whose types must exactly match the types defined by GetMethodDefinition method on 
the server, so that these parameters are deserialized correctly. Moreover, the caller 
supplies array of types defining the return values of the method. These types are used to 
deserialize the return message received from the server after remote call finished. Of 
course, the return values of the remote method must exactly match these types. 
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The types of parameters and return values supplied by the server object and the 
caller define the RPC communication interface. For this purpose, other RPC protocols 
use more user-friendly approaches like Interface Definition Language (IDL, described in 
[Omg04]), which however may be quite complicated to implement. Fortunately, YA-
RPC provides helper methods which automatically generate the method definitions for a 
supplied type (implemented via .NET Reflection). 

The remote call can be either synchronous (i.e. blocking) or asynchronous. In the 
second case, the caller supplies a callback delegate which is called after the remote call 
finishes (or fails). The caller can also specify a timeout for the remote call, after which 
the unfinished call fails. 

As described earlier, remote calls may be sent both from the client to the server, 
and from the server to the client. In this context, the client is understood as the initiator of 
the connection. 

6.3.3. Serialization 

YA-RPC serializes objects to a binary representation with little-endian byte order. 
Common data types (Boolean, Byte, SByte, Int16, UInt16, Int32, UInt32, Int64, UInt64, 
Single, Double, Decimal, String, DBNull, DateTime, Guid) and arrays of such types (and 
arrays of arrays, recursively) are serialized automatically. The serialization of complex 
data types is also possible, however these objects must implement IYaRpcSerializable 
interface to control the serialization process by themselves. Generally, the serialization 
process is platform independent, thus future migration to Java and potentially other 
platforms is possible. 

6.3.4. Asynchronous Remote Calls Forwarding 

YA-RPC supports both asynchronous remote calls, and asynchronous server 
methods dispatch. These features are necessary for an implementation of asynchronous 
remote call forwarding. 

As discussed earlier in this chapter, the remote call can be send asynchronously. 
Similarly, the server object may using IYaRpcRemotable interface’s GetMethodDefinition 
method specify, that specific method is asynchronous. In such case the YA-RPC 
subsystem calls BeginExecuteMethod to invoke the method. After method’s job is 
finished, a supplied callback must be called by the server object in order to finish the 
remote call in YA-RPC.  
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6.3.5. Performance 

During the development of YA-RPC, the performance was one of the key aspects 
taken in the mind. Following list summarizes used methodologies which helped with 
achievement of this goal: 

• Low-level TCP protocol 
• Binary serialization 
• Asynchronous socket operations 

For the network subsystem manipulation, our implementation uses socket 
interface provided by .NET Framework libraries, which internally utilizes 
Windows Sockets (described in [Net07], [Win07]). With Windows Sockets 
the best performance, throughput and stability is achieved using the 
asynchronous model, because it internally utilizes Windows NT I/O 
Completion Ports (IOCP), as described in [Jon02]. YA-RPC adopts this 
model. 

• Intelligent growth and shrink of receive buffer  
• Remote call forwarding with no additional context switch 

When dispatching an asynchronous remote call, the invocation of the 
asynchronous method (i.e. the send of forwarded remote call) is done 
directly in the IOCP thread, thus no additional context switch is needed. 
This is a desired behavior for high performance server applications.  

• Multiple listening sockets 
The server listens on several sockets at the time, with pre-prepared 
accepting sockets. This is useful in order to serve high number of newly 
opened simultaneous connections. The number of listening sockets is 
configurable. 

6.3.6. Execution of Nested Calls in Causal Thread 

If a client invokes synchronously remote call on a server (causal call), and the 
server sends a callback to the client as part of the execution of that call (nested call), the 
callback is dispatched on the client’s blocked thread (causal thread). Naturally, during 
execution of one nested call other remote call may be send … and so on. It is desired that 
both asynchronous remote call and asynchronous call dispatch preserve this behavior (i.e. 
remote call forwarding will not break this approach). 
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In YA-RPC each remote call is identified using 16-byte GUID. The message 
representing the remote call contains the GUID of the causal call send from that host, if 
such exists. When dispatching the remote call, the YA-RPC subsystem looks whether 
there is some pending synchronous call with that GUID, and if so, uses the blocked 
thread to execute the call. 

Crucial is how to obtain the GUID of the causal call. Each YA-RPC host must 
track the information, which remote call caused the invocation of other remote call. In the 
situation where communication between only two YA-RPC hosts is done is simple – in 
fact we only need to acquaint the thread dispatching the remote call with the GUID of 
that call. This GUID must be saved to some location accessible only by the dispatching 
thread – in YA-RPC we used Windows Thread Local Storage via .NET Framework 
[ThreadStatic] attribute for this purpose (described in [Net07] and [Win07]). 

 
Figure 8 Execution of nested method calls in YA-RPC 

Unfortunately, if the communication is done between more than two hosts, the 
situation becomes quite more complicated. An example of such case is depicted on the 
Figure 8. Because the dispatch of the call GUID3 on the server is nested to the call 
GUID2, it is executed on server’s thread which waits for result of the call GUID2. During 
the dispatch of call GUID3, other remote call GUID4 is sent to client A. This call is 
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nested to the call GUID1, but the thread local storage would say GUID3 is the causal call. 
To avoid this problem, each host must track more information than only “GUID of 
currently dispatched call”. For this purpose YA-RPC uses special data structure named 
Call Stacks. This structure contains remote-call-stack for each group of nested remote 
calls. The each record of such call-stack contains remote call GUID and the reference to 
connection on which the call has been made. The remote call stack tracked by each host 
is depicted on the bottom part of the sequence diagram. To find the GUID of the causal 
call, the YA-RPC only needs to iterate thru the call-stack in bottom-down order, and find 
the topmost call from the connection, where nested call should be sent. 

Note that each host tracks only remote calls between direct neighbors and not all 
remote calls in a whole distributed system. Such kind of tracking would be needed in case 
we wanted to support execution of nested calls in a causal thread for cyclic remote call 
graphs. Distributed OpenMI uses only one central server, ensuring acyclic topology of 
the remote calls, so currently there is no reason why to implement such feature. 

6.3.7. Single Thread Worker Queue 

The server object has opportunity to specify a worker on which the dispatched 
remote method call should be executed. This may be done using IYaRpcRemotable 
interface’s GetMethodDefinition method. The worker is represented using IYaRpcWorker 
interface.  

YA-RPC currently ships with only one implementation of this interface – 
YaRpcSingleThreadWorker (single thread worker, STW). Each instance of this worker 
has one thread reserved for the work. When STW is requested to execute some work 
item, it internally queues that work item. Queued items are executed on the underlying 
thread in the FIFO order. 

6.3.8. Proxy and Stub Helpers 

To simplify the usage of the YA-RPC subsystem, there are two generic abstract 
classes: YaRpcProxy<T> and YaRpcStub<T>. The generic type parameter T identifies 
the type which is used as RPC communication interface (i.e. the method definitions are 
read from it). The remotable methods of that type must be marked with [YaRpcMethod] 
.NET meta-data attribute.  

To implement a synchronous proxy class to a remote server object, one can inherit 
the proxy class from YaRpcProxy<T>. The implementer must then provide the 
implementations for proxy methods, which actually send the remote call. To simplify that 
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process YaRpcProxy<T> provides some helper methods. One can note that this is not the 
most convenient way how to get a proxy object, since .NET Framework provides the 
opportunity to dynamically generate the IL code (defined in [Ecm06]), which might be 
used to generate the implementations of proxy methods. Unfortunately, the generation of 
dynamic type is quite complex to implement and was beyond the scope of our work. 
However, it is possible to extend YA-RPC with this feature in future.  

Analogously, to implement server object, the implementer may inherit server 
object from YaRpcStub<T> class. Thereafter, when a remote call is dispatched by that 
object, YaRpcStub<T> uses internally .NET Reflection to find the corresponding method 
in derived class, and invokes it automatically. 
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7. Performance 

The network communication is surely the main factor affecting the performance 
of Distributed OpenMI. Since the amount of data transferred between the Linkable 
Components (LC) and external tools typically is not big, and current network subsystems 
have high throughput, the main bottleneck for the performance is the network latency. 
Generally, the only method how to fight against the network latency is to limit the 
number of network roundtrips. In this section we describe performance optimization 
techniques adopted by Distributed OpenMI. 

7.1. Direct Model Linkage 

There are two special cases, where it would be very inefficient to adhere the 
linkage approach described in Section 4.6.  

7.1.1. Server-side Model Linkage 

If the accessing client links two remote models provided over same server, i.e. 
adds link between two Remote Linkable Components (RLC), by definition the linkage 
process would create Model Provider (MP) around both RLCs, create two new 
forwarders on the server for them and create RLC on both remote providing clients, so 
they can call each other (as described in Section 4.6). We can see that this is very 
inefficient since every call between inter-linked remote models must be transmitted over 
the accessing client. 

 
Figure 9 Server-side direct model linkage 
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As shown on Figure 9, Distributed OpenMI solves this special case differently. 
When link between two RLCs is added, Distributed OpenMI still creates MP over each 
RLC (necessary for case RLCs points to different servers), but when the server is going 
to create the forwarder for a particular MP, it looks first whether there is not already a 
forwarder for that model, and if so, reuses it. The effect is that calls between the models 
are now transmitted directly to the providing client. 

7.1.2. Client-side Model Linkage 

Similarly, when the link between two remote models provided by the same client 
(over the same server) is added, by default the Distributed OpenMI would create MPs 
over corresponding RLCs on the accessing client, create new forwarders for them on the 
server and create RLCs on the providing client. After that, all the communication 
between inter-linked models would be transmitted over the accessing client. 

 
Figure 10 Client-side direct model linkage 

Distributed OpenMI solves this special as follows. Before the client creates a 
RLC for some remote model, it first looks whether that RLC would not correspond to 
some local LC. If so, no RLC is created and the LC is used directly. This means that the 
models may now call their methods directly, without any assistance of Distributed 
OpenMI. 

7.2. Caching and Piggybacking 

The linkable component has several methods and properties that should not 
change the state of the component, according to the OpenMI Standard, and are used quite 
often. These methods are candidates for the caching and/or piggybacking. The caching 
may simply be implemented on the RLC level, the piggybacking necessitates the 
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cooperation between RLC and MP, so that during one method call other values produced 
by LC are transferred to RLC and cached there.  

Table 12 lists methods and properties of a linkable component and discusses the 
caching and piggybacking opportunities. 

 
Method/property Comments 
Initialize Called only once to initialize the LC. 
ComponentID 
ComponentDescription 
ModelID 
ModelDescription 
TimeHorizon 

These properties should not change the internal state of LC and should 
get the same value during whole lifetime of LC (after Initialize is 
called), thus it is desirable to piggyback them all together with a result 
of Initialize method or when one of the properties is read (for case the 
cache has been invalidated – explained below). 

InputExchangeItemCount 
GetInputExchangeItem 
OutputExchangeItemCount 
GetOutputExchangeItem 

Methods/properties should not change the internal state of LC. The 
exchange items are often read all at a time, so it is desirable to transfer 
them all together. On the other hand, iteration thru all exchange items 
may be expensive even if done locally. This naturally implies that the 
exchange items should be piggybacked and cached only if they are 
needed, i.e. when one of the method/properties is called and 
input/output handled separately. 

AddLink 
RemoveLink 

Methods change the internal state of LC. 

Validate Method should not change the state of LC and may be called multiple 
times, thus caching of a resulting value is desirable. Unfortunately, the 
validation can be expensive operation, thus piggybacking with other call 
is not possible. The cached value must be invalidated whenever the state 
of LC changes. 

GetValues Performs the computation step; changes the internal state of LC. 
However, the latest computed value may be cached, since it may be 
reused several times. The cached value must be invalidated whenever 
the state of LC further changes, because validation result may also 
change. 

EarliestInputTime Should not change the internal state of LC. Typically, the value of this 
property changes only after GetValues is called. This implies that 
piggybacking together with a result of GetValues will be useful. If the 
cached value has been invalidated, the value is read directly and cached 
thereafter. 

Prepare 
Finish 
Dispose 

Methods change the internal state of LC, called maximum once during 
lifetime of LC. 

GetPublishedEventTypeCount Should not change the internal state of LC. Published event types are 
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GetPublishedEventType typically read all at a time, thus it is desirable to piggyback them all 
together when they are needed, i.e. when some of the methods is called.  

Subscribe 
UnSubscribe 
SendEvent 

Methods change the internal state of LC. 

KeepCurrentState 
RestoreState 
ClearState 

Methods change the internal state of LC, called rarely. 

HasDiscreteTimes 
GetDiscreteTimesCount 
GetDiscreteTime 

Methods should not change the internal state of LC, and should return 
the same values during whole lifetime of LC. Typically, for a one 
combination of Element Set and Quantity all discrete times are read at a 
time. It is not possible to predict the requested combination of Element 
Set and Quantity, thus the piggybacking must be done for concrete 
combination first when one of these methods is called. Caching of the 
values for more than one combination is not useful, since typically the 
values are read only once during the computation.  

Table 12 Caching and piggybacking for linkable component methods and properties 

The usage of caching and piggybacking may cause unexpected side effects in the 
case some method or property unexpectedly changes the internal state of the linkable 
component. To cope with that, Distributed OpenMI has the ability to adjust the caching 
or even turn it completely off. It is also for example possible to force Distributed OpenMI 
to invalidate the cache after state of LC is expected to change.  

7.3. Intelligent Event Forwarding 

As described in Section 4.7, the event receiver callback is associated with each 
RLC. In our integrating server model, the events produced by original LC are first send to 
a forwarder on the server, and then forwarded to all attached RLCs. The simple idea 
behind intelligent event forwarding is that not all RLCs do listen to a specific event types, 
thus some events do not need to be send to all RLCs. To support this behavior, the server 
must track which RLC called ILinkableComponent’s Subscribe and UnSubscribe method 
– the model provider forwarder is the right place where to do it. 

Moreover, RLC sends the Subscribe/UnSubscribe calls only when it is really 
necessary. For example, if there are two subscribers for a same event type, it is sufficient 
to call Subscribe method only once, since RLC may broadcast the event to all subscribers 
locally. 
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One can see that events increase the number of network roundtrips in Distributed 
OpenMI heavily, thus in a production system it is desirable to limit the number of event 
subscriptions. 

 47



8. Deployment 

The Distributed OpenMI system is divided into several software components. In 
this section we will describe these components, their installation and software 
prerequisites.  

All components were developed in C# language and they are primary intended for 
the Microsoft Windows operating system with Microsoft .NET Framework 2.0 installed. 
The components may possibly run on other operating systems, using MONO framework 
(developed in [Mono]) or DotGNU (developed in [DotGnu]), because our 
implementation is generally platform independent. However at the time of the 
development (Q1/2007), the support for .NET 2.0 and necessary libraries has been fully 
implemented neither by MONO nor by DotGNU. These frameworks are currently the 
only opportunity how to run the existing system on Linux. This implies that only 
Microsoft Windows is currently “officially” supported by Distributed OpenMI. After 
MONO finishes the necessary support for .NET 2.0 (planned to Q3/2007), there is 
nothing in the way to migrate our system to Linux and potentially other operating 
systems. 

8.1. Client 

Both providing and accessing clients are encapsulated in the 
DHI.OpenMI.Distributed.Client.exe assembly. To use this assembly, the OpenMI 
Standard software must be installed on the local computer.  

To start the accessing client, the type implementing RLC 
(DHI.OpenMI.Distributed.Client.RemoteLinkableComponent, contained in the client 
assembly) must be explicitly instantiated and RLC thereafter initialized using 
ILinkableComponent’s Initialize method – this is typically done via the OMI file using 
the standard OpenMI deployment software.  

To start the client front-end application, simply run the 
DHI.OpenMI.Distributed.Client.exe assembly. The application snapshot is depicted on 
Figure 11. 
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Figure 11 Distributed OpenMI client application 

Using the client application, the user is able to: 
• Manage the connections to Distributed OpenMI servers 
• Browse the providing clients connected to the server 
• Browse the provided models 
• Display the properties of a provided model 
• Generate the OMI file to access a remote model 
• Provide own local models 

When a user provides some models, the client application must keep running and 
the connection to server must remain open. All settings done in the client application may 
be saved to a XML file (by default, it has DMI extension), and reused later. To 
automatically open such file, we can add path to it as a single command-line argument 
when starting the client application. This may be useful for example to automatically start 
the providing client on a computer startup. 

8.2. Server 

The server is encapsulated in DHI.OpenMI.Distributed.Server.exe assembly. It 
may either run as standalone application or may be installed as Windows Service. For the 
installation of the service and configuration of the server, special tool has been 
developed. 

 49



 
Figure 12 Distributed OpenMI server configuration tool 

To run this tool, simply run DHI.OpenMI.Distributed.Server.exe with no 
command-line options. The /help command line option will display help dialog 
describing other start-up options. Note that both server and the configuration tool do not 
need the OpenMI Standard to be installed on the computer.  

8.3. Tester 

For testing of Distributed OpenMI the DHI.OpenMI.Distributed.Tester.exe 
application has been developed. This application is able to prepare an OpenMI 
composition of remote models provided by various clients over various servers. The 
exact definition of the composition is supplied using command-line arguments. The 
application performs following tasks: 

• Automatically start the requested server processes 
• Automatically start the providing client processes, and instruct them to 

connect to corresponding servers and provide the requested models 
• Generate OMI files for remote models 
• Create the standard OpenMI composition consisting of both remote and local 

models, add a trigger and link models appropriately 
• Save the OpenMI composition to OPR file, so it may be opened by OmiEd (a 

standard OpenMI deployment application) 
• Run the composition, if requested 
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All remote and local models taking part in the composition are special linkable 
components (DHI.OpenMI.Distributed.Tester.TestLinkableComponent), which reside in 
the DHI.OpenMI.Distributed.Tester.exe assembly. These LCs tests various aspects of 
Distributed OpenMI, for example: 

• Check LC methods are called from same thread 
• Check LC methods are called in correct order 
• Check client-side direct model linkage 
• Test event sub-system 

To run the tester application, the OpenMI Standard software must be installed on 
the computer. 

8.4. User Documentation 

Because the Distributed OpenMI system is currently a prototype, there is still no 
user documentation available. However, it will be delivered in the future, and will mainly 
focus on: 

• Installation and usage of the client application 
• Installation and configuration of the server 
• Optimization of performance 
• Solution of possible problems (caused e.g. by caching mechanism) 
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9. Conclusion 

The Distributed OpenMI system has shown that it is possible to seamlessly 
distribute the OpenMI composition of any OpenMI-compliant models to different 
computers. Distributed OpenMI is a system, which is simple to configure and to use, and 
thus may be adopted by users without advanced computer skills. Current system is 
reliable in the way that it may be used for real-world projects.  

Moreover, we proved that it is possible to spread single-thread call-stack to 
several computers, even in the integrating server environment, whilst ensuring that nested 
calls are executed on a same thread as the causal calls. This feature is necessary to 
guarantee high performance thanks to low thread utilization and is of a vital importance 
for various software components. The classical distributed computing philosophy is 
“distribute the data to the computers, and let each one to compute locally”, we say “leave 
the data locally, and distribute the computation”. Thanks to the independence of YA-RPC 
protocol, our novel approach may be reused by other software systems. 

However, current Distributed OpenMI system does not incorporate all the 
functionality proposed in the specification of this thesis. The following list summarizes in 
points all parts of the specification and discusses how they are realized in current 
Distributed OpenMI: 

• System capable of linking OpenMI models across computers 
Completely fulfilled 

• Hub servers for Windows and Linux 
As described in Section 8, the server software runs on Microsoft Windows 
using Microsoft .NET Framework platform. .NET Framework 2.0 is 
currently completely supported neither by MONO framework nor DotGNU, 
what is the presumption to run the existing server on Linux. The Java 
implementation of the server would necessitate providing Java 
implementation of the YA-RPC protocol, which was beyond the scope of 
this thesis. In addition, this might be a useless work because the release of 
MONO 2.0 is planned to Q3/2007. 

• The clients providing local models 
Completely fulfilled 

• Transparent access to remote models for legacy OpenMI software 
Completely fulfilled 
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• Clients for .NET and Java 
As described in Section 8, the client software runs on Microsoft Windows 
using Microsoft .NET Framework. The Java client has not been 
implemented, because OpenMI Association stopped the support for Java in 
the OpenMI Standard. After that, there was no reason why to implement a 
Java client. 

• Strong encryption, privileges management (optionally) 
These features are not implemented, because they are unnecessary for the 
current non-commercial release of Distributed OpenMI. Even if they would 
be implemented, an additional work is still needed to suit the needs of a 
commercial environment – Section 10 gives more details about that. This 
led to a decision to skip the implementation of these features. 

• Transparent communication failover (optionally) 
The natural place for integration of the communication failover is the RPC 
protocol layer. Because during the development of the system the necessity 
to implement a proprietary communication protocol arisen (as described in 
Section 6), we would need to implement the failover capability there. The 
amount of work for that would be enormous, and thus has been skipped. 
However, YA-RPC may be extended with this feature later. 

• Recommendations for true parallel computing (optionally) 
The recommendations for an asynchronous computation have not been made 
because the OpenMI Association does not give an indication that such 
functionality will ever be adopted by OpenMI. 

• Reliable system usable in real situations 
Completely fulfilled 

• Demonstration on a real scenario 
The Distributed OpenMI system has been tested on real setups of MIKE 11, 
MOUSE and EPANET modeling software (provided by DHI Water, 
Environment and Health). Unfortunately, both the modeling software and 
setups are proprietary software, which could not be attached to the thesis. 
However, the statement of DHI, a.s., the company who carried out the tests, 
is attached to the thesis in a separate paper. 

All decisions to not implement specific proposed features have been consulted 
with the supervisor of the thesis. 
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10. Future Work 

Although Distributed OpenMI delivers a system usable in real-world projects, 
there are still some features, which need to be implemented before the commercial 
expansion of the software, i.e. before the software may be shipped as a boxed product. 
These features are: 

• Privileges 
Privileges enable the users to specify, which clients may access their 
models, whether additional arguments may be supplied to initialization of a 
linkable component, whether users may see exceptions generated by 
particular model…etc.  

• Client administration tool on server 
The tool for administration of clients on the server, which would be used to 
manually control the registration (e.g. based on a received payment), remove 
the server clients… 

• Encryption 
In a production environment, the model data are often not public, or even 
may be confidential (e.g. simulations for military purposes). Since the data 
may be transferred over unsecured networks, potential attacker may sniff the 
communication between the clients and the server. The only sufficient 
protection is the encryption of the communication, most likely implemented 
on the YA-RPC protocol layer. 

• Transparent network failover 
Internet consists of networks which differ in the quality a lot. TCP is 
connection oriented protocol, what unfortunately means that if the network 
does not transmit TCP packets for a period of time, the TCP connection may 
be lost. If the connection between any client and corresponding server 
participating in the Distributed OpenMI composition is lost, even for small 
period of time, the whole simulation fails. The solution is to implement a 
failover mechanism, most likely on the YA-RPC level, which would simply 
try to reconnect to the server for a specific period of time in case TCP 
connection has been accidentally lost. If the re-connection succeeds, the 
state of the remote calls must also be restored and lost remote calls must be 
re-sent. 
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• Java client in case OpenMI Association decides to support Java again 
Java platform may be supported by OpenMI in the future again, what may 
request the creation of a Java client. It may be possible to re-compile 
existing .NET assemblies to Java byte-code automatically without much 
effort (e.g. using IKVM.NET framework, [Ikvm]).  
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