
Univerzita Karlova v Praze
Matematicko-fyzikálńı fakulta

DIPLOMOVÁ PRÁCE

Iva Bart̊uňková

Nástroj pro modelováńı evoluce umělého života
The Tool for Modeling of Evolution of the Artificial

Life

Kabinet software a výuky informatiky

Vedoućı diplomové práce: RNDr. Tomáš Holan, Ph.D.

Studijńı program: Informatika, architektura a principy softwarových
systémů

2007

Děkuji RNDr. Tomášovi Holanovi, Ph.D. za vedeńı práce a inspiraci, Jǐŕımu Svobodovi
a RNDr. Frantǐsku Mrázovi, CSc. za konzultace k návrhu řešeńı.

Prohlašuji, že jsem svou diplomovou práci napsala samostatně a výhradně s použit́ım
citovaných pramen̊u. Souhlaśım se zap̊ujčováńım práce a jej́ım zveřejňováńım.

V Praze dne Iva Bart̊uňková

2

Contents

1 Introduction to Artificial Life 6
1.1 What is Artificial Life? . 6
1.2 History of Artificial Life . 7
1.3 Abeetles — Simulator of Artificial life . 8
1.4 Related Terms . 8

2 Abeetles in Context of Alife Simulators 9
2.1 Classification by Creature Definition . 9
2.2 Classification by Simulated Phenomenon 10
2.3 Classification by Purpose . 10
2.4 Classification of Abeetles . 11

3 Targets of Abeetles and Their Origin 12
3.1 Brother Simulators . 12

3.1.1 Avida . 13
3.1.2 Bitozoa . 15
3.1.3 Gene Pool . 16
3.1.4 Mitozoos . 18
3.1.5 Primordial Life . 20

3.2 Features of Abeetles . 22

4 Arificial Life in Abeetles 25
4.1 Basic Ideas of the Model . 25
4.2 Brief Model of Abeetles . 25
4.3 Detailed Design of Life of Abeetles . 27

5 Creation of Abeetles: Analysis 30
5.1 Functionality of Abeetles . 30

5.1.1 Running of an Experiment . 30
5.1.2 View of an Experiment . 30
5.1.3 Learning about Abeetles . 31

6 Creation of Abeetles: Design with Discussion of Alternatives 33
6.1 Architecture . 33

6.1.1 Hardware Architecture . 33
6.1.2 Software Architecture . 33

6.2 Components . 34

3

6.3 User Interface . 35
6.3.1 Graphical User Interface . 35
6.3.2 Statistics . 35
6.3.3 Script . 36

7 Creation of Abeetles: Detailed Design and Implementation 37
7.1 Functional Components of Abeetles . 37
7.2 GUI of Abeetles . 37
7.3 Storage of Environment . 37
7.4 Statistics . 39
7.5 Script . 40

8 Experiments 42
8.1 Experiment1 — Four Caves . 42

8.1.1 Initial Settings of the Experiment 42
8.1.2 Results of the Experiment . 43
8.1.3 Subexperiment 1 — Flowers Die . 47
8.1.4 Subexperiment 2 — Random Initial Expectations 49

8.2 Experiment 2 — Species of Beetles . 49
8.2.1 Initial Settings of the Experiment 50
8.2.2 Results of the Experiment . 51

9 Conclusion 54

4

Název práce: Nástroj pro modelováńı evoluce umělého života
Autor: Iva Bart̊uňková
Katedra (ústav): Kabinet software a výuky informatiky
Vedoućı diplomové práce: RNDr. Tomáš Holan, Ph.D.
e-mail vedoućıho: Tomas.Holan@mff.cuni.cz

Abstrakt: V práci studujeme problematiku simulátor̊u modeluj́ıćıch umělý život. Práce
navrhuje a předkládá softwarový nástroj, umožňuj́ıćı provádět experimenty s vývojem
jednoduchých organismů, jejichž genom je tvořen sadou parametr̊u. Popisuje provedené
experimenty a dosažené výsledky.

Kĺıčová slova: umělý život, evoluce, simulátor

Title: The Tool for Modeling of Evolution of the Artificial Life
Author: Iva Bart̊uňková
Department: Department of Software and Computer Science Education
Supervisor: RNDr. Tomáš Holan, Ph.D.
Supervisor’s e-mail address: Tomas.Holan@mff.cuni.cz

Abstract: In the thesis we concern with simulators of artificial life. The thesis models and
submits a software simulator for research on evolution of simple organisms. Conducted
experiments and their results are described.

Keywords: artificial life, evolution, simulator

5

Chapter 1

Introduction to Artificial Life

1.1 What is Artificial Life?

Artificial Life, (commonly Alife or alife) is a field of study and an art form that examines
systems related to life, its processes and its evolution through simulations using computer
models, robotics, and biochemistry (called ”soft”, ”hard”, and ”wet” approaches respec-
tively [1]).

In this thesis the term ”Artificial Life” is often used to specifically refer to soft alife.
The term Artificial life was first coined by Christopher Langton in the late 1980s at

the first ”International Conference on the Synthesis and Simulation of Living Systems”
(otherwise known as Artificial Life I) at the Los Alamos National Laboratory in 1987. He
envisioned a study of life as it could be in any possible setting.

Artificial life studies ”natural” life by attempting to recreate biological phenomena
from scratch within non-living media like computers or RNA structures of molecules. Alife
complements the traditional analytic approach of traditional biology with a synthetic
approach in which, rather than studying biological phenomena by taking apart living
organisms to see how they work, one attempts to put together systems that behave like
living organisms.

The process of synthesis has been an extremely important tool in many disciplines.
Synthetic chemistry — the ability to put together new chemical compounds not found
in nature — has not only contributed enormously to our theoretical understanding of
chemical phenomena, but has also allowed us to fabricate new materials and chemicals
that are of great practical use for industry and technology.

Artificial life amounts to the practice of ”synthetic biology” and, by analogy with
synthetic chemistry, the attempt to recreate biological phenomena in alternative media
will result in not only better theoretical understanding of the phenomena under study,
but also in practical applications of biological principles in the technology of computer
hardware and software.[2]

The seminal novelty of ALife lies in its synthetic approach. Whereas traditional re-
search is essentially analytic, breaking down complex systems into basic components, Alife
attempts to construct complex systems from elemental units.[4]

For example, answering of questions like how the simple rules of Darwinian evolution
lead to high-level structure, or the way in which the simple interactions between ants and
their environment lead to complex trail-following behavior promises to provide novel solu-

6

tions to complex real-world problems, such as disease prevention, stock-market prediction,
and data-mining on the Internet.[3]

1.2 History of Artificial Life

Important events at development of mathematics and computer science that later led to
ideas of artificial life were presented in late 1940s at the Hixon Symposium in California.
Math and computer prodigy John Von Neumann delivered a lecture titled ”The General
and Logical Theory of Automata” where he defined the term ”automaton” and said
that natural organisms would in the end be found to follow similar simple rules. He
postulated a machine, ”kinematic automaton”, that could create an identical machine.
Later he crated one with Stanislaw Ulam, a purely logic-based automata, not requiring
a physical body but based on the changing states of the cells in an infinite grid — the
first cellular automaton (CA). It was extraordinarily complicated compared to later CAs,
having hundreds of thousands of cells which could each exist in one of twenty-nine states.

Celular automata were first field of artificial life in computer science and they are
important up to present. A cellular automaton is a discrete model that consists of a
regular grid of cells, each in one of a finite number of states. The grid can be in any finite
number of dimensions. Time is also discrete, and the state of a cell at time t is a function
of the states of a finite number of cells (called its neighborhood) at time t − 1. These
neighbors are a selection of cells relative to the specified cell, and do not change. Every
cell has the same rule for updating, based on the values in this neighbourhood. Each time
the rules are applied to the whole grid a new generation is created.[5]

The following important step towards Artificial life was realized by Edgar F. Codd,
who simplified Von Neumann’s original twenty-nine state monster to one with only eight
states.

The history of Artificial life dates back to 1987 when the ”International Conference
on the Synthesis and Simulation of Living Systems” (otherwise known as Artificial Life
I) was held at the Los Alamos National Laboratory. Researcher Christopher Langton
defined here his idea of new science that had barely existed up to that time.

In 1977 founded Ed Fredkin the Information Mechanics Group at MIT, http://www.
ai.mit.edu/projects/im/. This group created a computer especially designed to exe-
cute cellular automata, eventually reducing it to the size of a single circuit board. This
”cellular automata machine” allowed an explosion of alife research among scientists who
could not otherwise afford sophisticated computers.

In 1982, computer scientist Stephen Wolfram turned his attention to cellular automata.
He explored and categorized the types of complexity displayed by one-dimensional CAs,
and showed how they applied to natural phenomena such as the patterns of seashells and
the nature of plant growth.

Computer animator Craig Reynolds similarly used three simple rules to create recog-
nizable flocking behavior in groups of computer-drawn ”boids” in 1987. With no top-down
programming at all, the boids produced life-like solutions to evading obstacles placed in
their path. Computer animation has continued to be a key commercial driver of alife
research as the creators of movies attempt to find more realistic and inexpensive ways to
animate natural forms such as plant life, animal movement, hair growth, and complicated
organic textures.

7

The Unit of Theoretical Behavioral Ecology at the Free University of Brussels applied
the self-organization theories to model behavior of swarms and colonies of organisms.

A conference in May of 1985 called ”Evolution, Games, and Learning” focused Alife
to tie to the emerging field of complex adaptive systems. Key figure was J. Doyne Farmer
working at the Center for Nonlinear Studies.

In 2000s the field is underway to create cellular models of artificial life. Initial work
on building a complete biochemical model of cellular behavior is underway as part of a
number of different research projects, namely BlueGene which seeks to understand the
mechanisms behind protein folding.

The current progress in Artificial life is regularly presented at Alife —International
Conference on the Simulation and Synthesis of Living Systems and ECAL —- European
Conference on Artificial Life organized by International Society of Artificial Life (ISAL),
http://www.alife.org.

1.3 Abeetles — Simulator of Artificial life

This thesis is bounded within software approach to Artificial life. Its main target is to
design and create software simulator Abeetles. Abeetles runs life of simple organisms in
its specific environment and is concerned with evolution of their features and behavior.
The system avails experiments with evolution of the organisms under various conditions
and offer overviews and statistics of the process. Experiments performed with the system
will be described in chapter Experiments.

1.4 Related Terms

Abeetles concerns with evolution and genetics. They originate from biology and therefore
their definition is also biological. Following terms will be used in this thesis: gene, genome,
genotype and phenotype.

Gene is a structural unit of inheritance in living organisms. A gene is, in essence, a
segment of DNA that has a particular purpose, i.e., that codes for (contains the chemical
information necessary for the creation of) a specific enzyme or other protein.[6]

In biology the genome of an organism is its whole hereditary information and is encoded
in the DNA (or, for some viruses, RNA). This includes both the genes and the non-coding
sequences of the DNA. The term was coined as a portmanteau of the words gene and
chromosome.[8]

The genotype of an organism is the class to which that organism belongs as determined
by the description of the actual physical material made up of DNA that was passed to the
organism by its parents at the organism’s conception. For sexually reproducing organisms
that physical material consists of the DNA contributed to the fertilized egg by the sperm
and egg of its two parents. For asexually reproducing organisms, for example bacteria,
the inherited material is a direct copy of the DNA of its parent.

The phenotype of an organism is the class to which that organism belongs as deter-
mined by the description of the physical and behavioral characteristics of the organism,
for example its size and shape, its metabolic activities and its pattern of movement. [7]

8

Chapter 2

Abeetles in Context of Alife
Simulators

The family of software simulators of artificial life is numerous. Therefore to find a position
for a new simulator needs some classification. This thesis will expand on three classifi-
cation possibilities of Alife simulators. First, categorization according to the method of
creature definition will be used. Second, simulators will be distinguished with respect to
the feature or features of Artificial life, that they simulate. Third, the criterion of purpose
of the simulator and target group of users will be used. The fourth section places Abeetles
into these classification systems and thereby specifies sphere of Artificial life that will be
dealt in this thesis.

2.1 Classification by Creature Definition

In existing systems individual agents are modeled and constructed in many different ways
that rank them roughly into following categories:

• Program Based — In program based simulators an individual is represented by a
program which substitutes biological DNA and make up the genome of the agents.
Language of the program is usually Turing complete. Assembly derivatives are the
most common languages used. Tom Ray’s Tierra is a famous example of a program
based simulator.

• Module Based — An agent in a module based system is a composition of indi-
vidual modules. These modules modify the creature’s behavior and characteristics
either directly, by hard coding into the simulation (leg type A increases speed and
metabolism), or indirectly, through the emergent interactions between a creature’s
modules (leg type A moves up and down with a frequency of X, which interacts
with other legs to create motion). Generally these are simulators which emphasize
user creation and accessibility over mutation and evolution.

• Parameter Based — If an organism is constructed to have defined and fixed
behavior that is controlled by various parameters that mutate, the system is referred
as a parameter based. It means that each organism contains a collection of numbers

9

or other finite parameters. Each parameter controls one or several aspects of the
organism in a well defined way.

• Neural Network Based — These systems simulates processes of creatures that
learn and grow using neural networks or a close derivative. Emphasis is often,
although not always, more on learning than on natural selection.

2.2 Classification by Simulated Phenomenon

Another grouping of simulators can be done according to phenomenon, that they simulate.
It is presented at the web page of Monash University’s Complexity Virtual Lab. http:

//vlab.infotech.monash.edu.au/

• Networks — Relationships in complex natural systems are simulated according
to network theory (or diktyology) as networks or graphs and their statistical and
topological properties are analyzed.

• Nonlineality — Nonlineal systems are systems that cannot be mathematically
described as a sum of their components. While certain assumptions can be made
for lineal systems, that often make the mathematical modelling of such systems easy,
mathematical modelling of nonlineal systems is often very difficult or impossible.
As a result, nonlineal systems are often studied through use of simulations.

• Swarms — A swarm is a group of independent agents that gather together in
order to collectively carry out a certain task. Typically, each agent exhibits a very
simple behavior pattern that is influenced by direct or indirect interactions with
other swarm members. As a result, the swarm as a whole may exhibit complex and
intelligent behavior patterns. In nature, swarms can be observed in social insects,
fish schools, but also in primitive single cell organisms.

• Evolution — Evolution is the process of development or grows by accumulation
of small advantageous changes. The study of all forms of evolutionary processes is
one of the primary goals of ALife. This includes the study of biological evolution
of species as well as other evolutionary processes in natural, artificial and social
systems.

• Cellular Automata — The term cellular automaton (CA)is described in the previ-
ous chapter. It is not directly a phenomenon of natural life, but it is a discrete model
of mutual influence of neighboring elements, which can be in the nature observed.

2.3 Classification by Purpose

Apparently, the main purpose of Artificial life simulators is to simulate artificial life. The
target can be the complexity of simulation as well as the concentration on a small selection
of its attributes. As the simulator is a software system, it is designed for a certain group
of users and expected usage. And a decision in this field influences interface, adjustability
and output of the program. Also availability of the system is related to the purpose.

10

• Games — Frequent purpose of simulators is entertainment, because game industry
is constantly researching for new ideas to animate artificial characters. Simulators
from this class are usually supplied with attractive user interface, but neither ar-
tificial life techniques and settings nor source code are accessible to examination.
The game Creatures is a well-known example of an artificial life computer program
series, created in the mid-1990s by English computer scientist Steve Grand. The
program is regarded as an important breakthrough in the advancement of artificial
life research.

• Scientific simulators - A simulator can be designed primarily for use as a platform
in Artificial Life research. Such programs allow to perform experiments in certain
subfields of Alife, e.g. evolutionary dynamics, theoretical biology etc. They are
usually highly adjustable and configurable and afford opportunities to gather high-
quality statistics. The graphical output is not expected to be the most important
feature in comparison with games. They are often open source. Tom Ray’s system
Tierra and Avida from Devolab are such simulations.

• Simulators for teaching purposes — Efforts of creators of a simulator can be also
concentrated on the idea of demonstration of natural life processes using a computer
with the objective that through experimentation and interactive play users learn
underlying patterns of life. Intriguing example is the simulator Mitozoos.

• Related systems — Many systems are closely related to Artificial life simulators,
but they are not considered to be Artificial life systems, because they only use tech-
niques, that originate from Alife like genetic algorithms or ant colony optimization.
Their purpose can be various. The primary difference lies in the fact that these
programs explicitly define the fitness of an agent by its ability to solve another
problem than find food, reproduce and avoid death as it is typical for real life and
its simulations.

2.4 Classification of Abeetles

As far as definition of agents is concerned, target class of Abeetles are parameter based
systems. Genome of agents is defined as a set of parameters that directly influence their
life and behavior.

In classification by simulated phenomenon Abeetles can be ranked among systems
concerned with evolution. Abeetles evolves population of agents under various conditions
and enables to monitor the development.

The purpose of Abeetles is to be a scientific simulator. But not only for users from
community of computer scientists, but also for those who besides fast results also ap-
preciate user friendly interface with visualisation, even if it decreases performance of the
system.

11

Chapter 3

Targets of Abeetles and Their Origin

The main target of Abeetles, as well as of other similar programs, is to simulate artificial
life. But artificial life is rather a general idea, because to simulate all natural life as we
know it on the Earth is with contemporary means impossible. Therefore every simulator
chooses just a restricted subset. As stated above, Abeetles is concerned with evolution.
The next step is thus to specify what will be evolved and how will look like the world,
where it will be evolved. In the following text the subject to evolution will be called
agents and the world will be called environment.

Abeetles is one of the simulators where both environment and agents are very simplified
abstractions that do not have any concrete model in the nature. Abeetles does not
endeavor to simulate any existing organisms, but to explore features of natural processes
like evolution or natural selection on organisms that are in essence virtual. The question,
that arises from this kind of simulation of evolutional processes is, what should parameters
of agents and environment, whose models have little in common with real life, look like,
so as to cause that the results and course of evolution would resemble patterns of natural
organisms in their environment.

Browsing in the Internet, one easily ascertains that there are already many simulators
of artificial life. Therefore it is necessary to define targets of Abeetles in the context of
other artificial life simulators. Attributes of several of these ”brother programs” will be
described in details and afterwards features of the environment and agents of Abeetles will
be stated after careful comparison. For this purpose will serve five existing simulators:
Avida, Bitozoa, Gene Pool, Mitozoos and Primordial life. Reasons for choice of each
of them will be described. Common attribute of all of them is that their binaries are
accessible freely or on demand. Abeetles is also free software and is intended to examine
contributing set of features of natural life only within free software.

3.1 Brother Simulators

The simulators are classified by twenty-seven features. Features are sorted to five cate-
gories: Agents, Mating, Environment, User interface settings and Implementation. Sym-
bol (?) in the classification means that features of the simulator from this aspect are
unknown.

Category Agents contains following features: Body (= description of body of agents),
Moving (= how do agents move), Behavior (= what they do besides basic activities of life

12

— moving, mating and eating), Features (= features that change during life), Life-span,
Genes (= representation of genes), Phenotypic space (= space of all possible phenotypes
of agents), Learning (= whether some ability to learn is included in the model of agents)

Category Mating comprises: Number of offspring in one reproduction, (Genetic al-
gorithm (= algorithm used for creation of genes of a descendant), Choice of partner (=
features that a partner must have to be chosen for mating), Conditions of mating (=
what conditions must be satisfied before mating), Investment in offspring (= the amount
of some resource, usually energy, that is given to a descendant by its parents at its birth)

Category Environment includes: Description (= what does the environment look like),
Features (= parameters of the environment, that are not represented by objects contained
in the environment),Elements (= objects, that inhabit or are placed in the environment
together with agents)

Category User Interface Settings encompasses attributes by which a user influences
the run of life in the simulator. They are sorted to three categories: Mating, Life of
individual and Environment.

Category Statistics is standalone.
Category Implementation holds: Implementation (= features of implementation of the

simulator), Distribution of computation (= whether and how it is possible to distribute the
computation of the artificial life to more computers), Speed settings (= whether and how
it is possible to influence the speed of computation), Available sources (= whether source
file of the simulator are available), Availability of binaries (= under what conditions are
binaries available, e.g. on registration, free, etc.), Programming language (= programming
language used and key libraries)

3.1.1 Avida

Avida is an often presented example of a program based simulator. It studies evolution of
programs. For definition of targets of Abeetles Avida’s implementation is important —
two programs, console and GUI version — serve to scientific purposes, the first one can
run very fast and the other one can offer graphical output. Examined release was Avida
version 2.0b7 2003 for OS Windows. Avida is a joint project of the Digital Life Laboratory
at the California Institute of Technology, http://dllab.caltech.edu/, (headed by Chris
Adami) and the Digital Evolution Group, http://devolab.cse.msu.edu/, at Michigan
State University. Web page of the project is http://dllab.caltech.edu/avida/.

Agents segments of code in a simple language called
strings

Body one cell in the grid of the environment
Moving no
Behavior execution of the code
Features content of stack and registers
Life-span not restricted
Genes string is itself a genome
Phenotypic space any finite string constructed of instruction

of the language.
Learning no

13

Figure 3.1: Avida 2.0b7 — graphical viewer.

Mating
Number of parents 1
Number of offsprings 1
Genetic algorithm Poisson-random mutation
Choice of partner no
Conditions of mating no
Investment in offspring no

Environment
Description a grid of cells in the form of torus
Features resources and tasks, completion of a task

gives a bonus to the string
Inhabitants strings

UI settings
Mating mutation rate
Life of individual initial genomes of initial individuals
Environment resources and tasks of the environment

Statistics instruction viewer, string details, etc.

Implementation
Distribution of computation no
Speed settings console version versus GUI version
Available sources yes
Availability of binaries free
Programming language C++

14

Figure 3.2: Bitozoa 2.

3.1.2 Bitozoa

Bitozoa is a simulator created by M. Borkowski, that uses for representation of agents
neural network in combination with a set of parameters. It evolves two types of agents,
herbivores and carnivores. It was created for purpose of amusement and education. Used
version is Bitozoa 2 — artificial life and artificial intelligence simulation, 2000. Web page
of the project is http://www.bpp.com.pl/bitozoa2/bitozoa2.html.

Agents Bitozoa — herbivores (eat plants) and car-
nivores (eat herbivora)

Body ball with 5 eyes, 2 flagella, various num-
ber of neurons, neural network with various
topology. Eyes see all object in the world.

Moving moves using flagella
Behavior no
Features energy level — for moving and work of neu-

rons, burned with speed according to age
Life-span (?)
Genes (?)
Phenotypic space angle of flagella connection to body, num-

ber of neurons, topology of neural network,
sensitivity of eyes

Learning no

15

Mating
Number of parents 2 or 1
Number of offsprings 1–n (2 parents) or 1 (1 parent)
Genetic algorithm random number of genes from both parents

+ mutation
Choice of partner same species and high enough stamina
Conditions of mating meeting of two bitozoa
Investment in offspring both parents give the same fixed amount

Environment
Description space in the form of a toroid
Features number of spots, where food grows
Elements food growing on special spots, herbivores

and carnivores

UI settings
Mating breed distance, breed level of stamina, in-

herited stamina
Life of individual asexual reproduction allowed, costs of an

action, flagella angle and efficiency, view
of bitozoa, adding or killing of a bitozoa,
stamina from food, strength of carnivore,
initial values of: eye sensitivity, number of
neurons and stamina

Environment number of bitozoa and food spots at the be-
ginning, time increment, viscosity, random
numbers generator seed

Statistics graph of population, energy flow and energy
flow averaged, simulation description

Implementation
Distribution of computation no
Speed settings animation on-off
Available sources partially
Availability of binaries permission from author
Programming language C++ Win32API

3.1.3 Gene Pool

Gene Pool was created by Jeffrey Ventrella, current version is 5. It is a parameter based
simulator, dealing with evolution of swimming creatures in a virtual Darwinian aquarium.
It is a game with intriguing graphical interface, san serve as an entertaining learning tool,
but author demonstrated with it also several interesting results concerning influence of
attractiveness of partners on results of evolution.[11] [12]

16

Figure 3.3: Gene Pool 5.

Agents swimbots
Body mouth, genitals and 2–10 parts for moving
Moving swimming using parts, algorithm common

for all swimbots
Behavior nothing
Features energy
Life-span not restricted
Genes (?)
Phenotypic space length, width, phases, amplitudes and at-

tachment of every part
Learning no

Mating
Number of parents 2
Number of offsprings 1
Genetic algorithm crossover algorithm with mutation
Choice of partner swimbot chooses at one snapshot in his

view horizon one mate that most satisfies
his attractiveness criterion

Conditions of mating swimbots mate when at least one of them
is pursuing the other and the distance be-
tween their genitals is less than the length
of the genital vector

Investment in offspring 50% of actual energy

17

Environment
Description rectangular pool
Features constant amount of energy in environment,

cycle: food — swimbots — pool — food
Elements food bits, swimbots

UI settings
Mating attraction criterion
Life of individual location in environment, creation a swim-

bot, hunger threshold, energy for offspring
Environment food growth — birth delay, spread radius,

energy from 1 piece

Statistics graph of number of swimbots vs. food, fea-
tures of individual, the best one in attrac-
tion/mating/eating

Implementation
Distribution of computation no
Speed settings no
Available sources no
Availability of binaries yes
Programming language (?)

3.1.4 Mitozoos

The author of project Mitozoos is Spanish software company Bestiario. Purpose of the
simulator is educational, as author states ”Mitozoos is an interactive artificial life model
created with the objective that through experimentation and play participants will un-
derstand the relationship between genetic code and life.” The web presentation of the
project can be found at http://bestiario.org/mitozoos/english/index.html.

18

Figure 3.4: Mitozoos.

Agents mitozoos
Body spider-like, with 2 eyes, body in shape of

tetrahydron and four bent legs
Moving walking using legs, algorithm common for

all mitozoos
Behavior strategy of eating, frequency and duration

of resting periods
Features energy
Life-span not restricted
Genes ten genes, each gene has four bases repre-

sented by colors
Phenotypic space length of parts of legs, procreation thresh-

old, eating strategy
Learning no

Mating
Number of parents 2
Number of offsprings 1
Genetic algorithm crossover algorithm with mutation
Choice of partner no
Conditions of mating meeting of two mitozoos with energy higher

than procreation threshold
Investment in offspring a fixed amount of energy

Environment
Description space in the form of a circle
Features rate of food growth
Elements mitozoos, food bits

19

UI settings
Mating no
Life of individual special application, which avails user to cre-

ate a mitozoos by setting its genes and add
it to running life.

Environment initial number of mitozoos and food pieces,
food growing rate, mutation rate

Statistics graph of number of swimbots vs. food, fea-
tures of individual, genetic landscape, log
of events, on reproduction join crossjoin of
genotypes is shown

Implementation
Distribution of computation no, but coders can run on different comput-

ers.
Speed settings no
Available sources no
Availability of binaries yes
Programming language Action Script, (?)

3.1.5 Primordial Life

For following evaluation Primordial Life 3.0 by Jason Spofford was tried. It can be down-
loaded at http://www.io.com/~spofford/prim30.html. Primordial life is a shareware
parameter based artificial life screen saver written for purpose to capture the principles
of evolution in an interesting and visual way.

20

Figure 3.5: Primordial Life 3.21.

Agents biots
Body pattern of vectors of different colors, color

of a part determines its special function.
Moving moved by environment or by its motor

(light blue parts)
Behavior fighting with each other
Features energy level
Life-span restricted
Genes 64 numbers, describe lines color, orienta-

tion and length. Certain genes have special
meaning detailing how many lines a biot
has, its symmetry, whether it has mirrored
or radial symmetry, how many children it
should have and whether or not it should
disperse its children after they are born.
Complete description available.

Phenotypic space number and symmetry of vectors, color, ori-
entation and length of each vector, number
and dispersion of offspring in a birth

Learning learn from collision with other biots

21

Mating
Number of parents 2 or 1
Number of offsprings 1–n
Genetic algorithm genetic crossover with mutation (2 par-

ents), mutation (1 parent)
Choice of partner no
Conditions of mating collision of two biots, one of them with

white parts
Investment in offspring yes

Environment
Description rectangular space
Features mixing of biots continually up and provid-

ing of light, absorbable by green parts of
biots and used up as energy

Elements biots

UI settings
Mating mutation rate, sexual/asexual/ both repro-

duction
Life of individual life span, speed, regeneration rate and cost,

attacking of child, battle of siblings, level of
selfchange thanks to collision

Environment solar intensity, friction, starting popula-
tion, plague — its duration and lethality

Statistics ecosystem status (population, death and
birth rate numbers), global status of all
connected ecosystems (no. of connected
ecosystems, population)

Implementation
Distribution of computation connection of ecosystems in a network over

the Internet.
Speed settings no
Available sources no
Availability of binaries register

3.2 Features of Abeetles

The original idea of Abeetles is to create a successor of existing program Broucci (=
Beetles) introduced by Tomáš Holan as an example of a different attitude to solution
of complex problems. It is not an artificial life simulator, but it could be classified as a
related system. It uses genetic programming to solve a specifical problem. The assignment
of Broucci is that there is a world where beetles live. Beetles can move — make a step,
rotate left and rotate right. The step can head for an empty space or to eat a beetle and

22

Figure 3.6: Broucci.

occupy its place. They can see what is around them — in the front, on the left and on the
right. Task is to find an algorithm that should a beetle use so as not to die of hunger and
not be eaten up by another beetle. Solution described by the author is a console program
where beetles are visualized as arrows turned in the direction of their sight. Beetles take
turns regularly and always when the number of beetles goes down under certain level,
new beetles are created from the most successful ones using genetic crossover algorithm.
Parents do not meet.[14]

Abeetles takes over following ideas of Broucci: beetles can move by sequence of steps
and rotations. According to what they see is in the front, on the left and on the right do
they decide which action to take.

”Brother programs” were compared according to 27 different cathegories. Abeetles
does not strive to be contributing in all these categories. Instead of it, six were chosen as
the key ones: moving, learning, choice of partner, distribution of computation, obstacles
in environment and aging. The following table compares Abeetles with other solutions
only using these categories.

Avida PLife Bitozoa Mit. GPool Abeetles
Moving: strategy x x G S S G
Learning x O x x x G/O
Choice of partner x x x x O G
Distribution x Y x x x x
Obstacles x x x x x O
Aging x x x x x O

O — optional (user can influence it), S — static (fixed), G — genetically evolved, x
— not present, Y — yes

Moving strategy is a function of an organism, where input is the view and state of the
organism and output is a decision what to do. Bitozoa evolve such a function genetically,
but bases it on neural networks. Mitozoos uses fixed strategy that is influenced by several
parameters. These parameters, e.g. maximal distance of a food bit in the view so as to

23

head for it, are subject to evolution. Gene Pool has also fixed strategy. Abeetles overtake
the idea of evolution of strategy of moving from its predecessor Broucci and intends to
explore it.

Learning is a feature that is usually connected with neural networks. Parameter
based simulators generally do not use it. But influence of simple learning on evolution
of moving might be interesting, therefore it is placed among objectives of Abeetles. The
term learning is very general, Abeetles inspired its view of learning with memetic theory.

The term meme was first coined by Richard Dawkins in 1976. Dawkins defined the
meme as ”a unit of cultural transmission or a unit of imitation”[15]. Memes have as an
important characteristic their propagation through imitation, a concept introduced by
the French sociologist Gabriel Tarde. Imitation involves copying the observed behavior
of another individual. Researchers have observed memetic copying in just a few species
on Earth, including hominids, dolphins and birds (which learn how to sing by imitating
their parents). The technique of dissemination of memes in population can be formalized
and it is described e.g. in lectures of Vlado Kvasnicka from CHTF STU at ftp://math.
chtf.stuba.sk/pub/vlado/Evol_alg_MFF/prednaska1_transp.pdf.

Abeetles uses imitation of behavior in the way that agents copy some patterns of
behavior from other more successful beetles. It would be interesting to explore, to which
extent is mutual learning convenient. Abeetles adds probability of learning from another
beetle to features of agents and evolves it.

Choice of partner for mating is the next idea Abeetles concerns with. In Primordial
Life, Bitozoa and Mitozoos choice of partner is restricted to demand on sufficient level of
energy of both parents. Gene Pool is on the other hand interested in influence of criterion
of choice of partner on results of evolution. [12] In contrast to it, Abeetles chooses fixed
criteria and evolves their values.

Simulator Primordial life offers possibility to connect simulators and in order to it
connect environments together. The plan of Abeetles originally included computation
distributed to more computers, but finally it is only a single computer application. Rea-
sons are described later.

Obstacles are incorporated in none of the five simulators. But obstacles and conse-
quently the shape of the environment can be very interesting for Abeetles, which evolves
strategy of motion.

Aging is generally meant as dependence of performance of an agent on age. None of
the five simulators implements it. Abeetles makes it possible for a user to set amount of
energy obtained from food according to age of a beetle.

24

Chapter 4

Arificial Life in Abeetles

This chapter describes the model of life in simulator Abeetles. It starts with basic ideas
and continues to details and diagrams of the model.

4.1 Basic Ideas of the Model

Artificial life in simulator Abeetles is an environment inhabited by agents. Agents are the
elements of environment that are subject to evolution and environment is all the space
occupied by agents as well as not evolved objects. The conceptual model of key entities
in Abeetles is shown in Figure 4.1.

Agents in Abeetles are called beetles and generally they all are instances of the same
model, as they share the same static part as well as constrains on the variable part of
their behavior. The variable part makes up the genome and it is altered by evolution. It
can be also influenced by learning. Relationships among beetles are created by mating
and bearing of children.

The environment is a grid in the form of a toroid. In the grid three types of objects
are placed. Beetles are the only inhabitants of the environment that are able to move.
Flowers grow in cells of the environment and serve as food for beetles. Neither beetles
nor flowers can occur in cells of the grid where are walls. Walls are static obstacles that
serve for forming of the shape of the environment.

4.2 Brief Model of Abeetles

The basic model of life in Abeetles is described. Now decomposition proceeds and data
structures are designed. The key data structures of Abeetles are beetles and their envi-
ronment. A beetle has following evolvable features:

• Brain — decision function that finds to every situation one action. The situation is
a combination of what the beetle sees and of his inner states. States of a beetle are
whether he is hungry or not. A beetle sees what is on the left,in the front and on
the right, overall three cells of the grid of the environment.

• Expectations on parter — A beetle checks before mating whether the partner fulfills
its expectations on amount of energy, investment in children, learning ability and

25

Figure 4.1: Conceptual data model of Abeetles.

age.

• Hungry threshold — The threshold defines whether the beetle is or is not hungry.

• Investment in children — A beetle invests this amount of energy into its new born
offspring.

• Learning Ability — A beetle expects certain level of learning ability from its partner.

Evolvable features are concatenated into a chromosome. Process of mating and cre-
ation of genome of a child has three steps:

• Selection — beetles must meet and consider each other attractive using their feature
expectation on partner.

• Crossover — There are several possible algorithms:

– One-point crossover: Standard algorithm chosen for Abeetles.

– Two-point crossover: This algorithm seems to be also useful for the case of
Abeetles. It would be interesting to implement it, too, and compare results
with the one-point algorithm.

– ”Cut and splice”: This technique is not suitable for the case of Abeetles, be-
cause created children have different length of chromosomes.

– Uniform Crossover and Half Uniform Crossover: These aproaches may also be
useful, but the standard one-point algorithm was preffered.

26

– Crossover for Ordered Chromosomes: This aproaches may also be interesting,
but the standard one-point algorithm was preffered.

• Mutation — Genome of a new-born beetle is mutated.

Non evolvable features of beetles are current direction in environment, e.a. east, north,
west or south and amount of energy.

The Environment contains beetles, flowers, walls and empty cells. Flowers are objects
in environment that serve as food for beetles. Similar source of energy for agents use
Bitozoa, Gene Pool and Mitozoos. Gene Pool keeps a fixed amount of energy in the
environment, the less agents the more food and vice versa. This attitude prevents users
from exploring, how would agents develop with higher of lower supplies of food. In contrast
to Gene Pool, in Abeetles can amount of food vary from zero to full grid of flowers. Due
to demand on local interactions for purposes of possible parallelization, growth of flowers
is an individual matter of every cell influenced only by general parameter. Each cell has
an optional probability of growth of flowers. If it happens, the flower springs up in one
update and occupies the cell until it is eaten or dies. Flower can die in any turn with
fixed probability.

Environment updates in turns. One update goes gradually, cell by cell. If a cell is
empty, flower springs up with certain probability. When there is already a flower, it can
with certain probability die. If the cell is occupied by a beetle, the beetle takes a snapshot
of three neighboring cells and according to it and his hunger he decides what to do and
carries it out.

4.3 Detailed Design of Life of Abeetles

Detailed design of life of Abeetles compounds three classes. CEnvironment, CGrid and
CBeetle. UML Class diagram of all three classes and their relationships is in 4.2.

Class CGrid represents the grid of the environment. It stores its size and contents.
The most important operations are GetFlowerGrowingProbability and GetCellContent,
which returns what is placed in certain cell and in case it is a beetle, it returns reference
to it. This class is designed to encapsulate prospective paralelization.

Class CBeetle represents a beetle with all respective features. Beetles make one action
in every turn. It can be a step, a rotation or a mating. An attempt to mate happens every
time, when a beetle sees another beetle in front of him. If the attempt is not successful,
the beetle chooses another action according to his Brain. In the Brain only rotations and
steps are included.

The possibility to place mating among other actions in the brain was tried for Abeetles,
but it made it impossible for randomly created beetles to evolve, because only a small
number of them received randomly the decision to mate in the suitable situation. And
the number was not enought to keep the density of population in next generation above
the border of extinction.

The most interesting process connected with class CBeetle in mating of two bee-
tles. First, demands of both beetles are checked by function IsExpOnPartnerSatisfied().
When beetles find themselves mutualy attractive, operation CreateChild() is called. This

27

method first applies Crossover1Point() containing a genetic crossover algorithm and gen-
erates two genomes. One of them is randomly chosen for the new-born descendant. The
descendant then undergoes random changes in operation Mutation(). The new beetle is
then placed in one of four cells that are neighboring for both parents. Afterwards it starts
to live its own life.

Another important process in the environment is the run of life in the environment.
Instance of class CEnvironment is called env. Its attribute Grid contains the actual
situation in the environment. Using the following code one update of the environment is
performed.

for(I=0;I<Grid.G_Width;I++)

for(J=0;J<Grid.G_Height;J++)

{

//if cell was not updated yet, update it.

if ((Grid.IsCellUpdated(I,J))==false)

{

if (Grid.GetCellContent(I,J)==BEETLE) MakeBeetleAction(I,J);

else if (Grid.GetCellContent(I,J)==NOTHING) MakeFlowerGrow(I,J);

else if (Grid.GetCellContent(I,J)==FLOWER) MakeFlowerDie(I,J);

//Mark the cell as updated one

Grid.SetCellUpdated(I,J);

}

}

The border between two updates is method NextTime() placed in class CEnvironment.
Among others, it counts statistics of the previous turn.

28

Figure 4.2: Class diagram of Alife in Abeetles.

29

Chapter 5

Creation of Abeetles: Analysis

5.1 Functionality of Abeetles

The simulator runs the model of life described above. Scenarios of usage can be encapsu-
lated in three particular cases of usage: running of an experiment, view of an experiment,
and learning of life in the simulator and usage of the application.

5.1.1 Running of an Experiment

UML sequence diagram is shown in figure 5.1.In this case, the expectations on the system
are:

• Speed: Experiment run with the simulator should execute thousands of turns so
as to get interesting results of evolution. Also for statistical purposes high number
of various inputs must be used when experimenting on random data. Therefore
Abeetles should offer very fast execution.

• Input: The start of experiments cannot be done manually one by one. Data entry
should be read from a script.

• Output data: It should be possible to save results of experiments in an interchange-
able format and make their collection automatically during execution.

• Run of the simulator: The simulator should just obtain a script at the start and
then run without need for any other input from the user.

5.1.2 View of an Experiment

UML sequence diagram is displayed in figure 5.1. Expectations:

• User interface: Interface should offer possibility to look at the environment with
all its objects so as to see any particular situation in the environment that cannot
be logged in statistics, e.g. differences between beetles in separate parts of the
environment. This could be realized by ability to visualize different aspects of the
environment on demand and by ability to zoom various parts of the environment.

30

Figure 5.1: UML Sequence diagram — run of a script.

Also details of individual beetles should be accessible in a concise form. All suitable
features should be possible to reset so as to observe step by step development under
different conditions.

• Run of simulator: Simulator should be capable of running step by step, of running
optional number of turns or of running until being stopped.

5.1.3 Learning about Abeetles

• Speed: A slow run of the simulator helps to see what is happening and understand
relationships between events.

• User Interface: The interface should show all the environment with clearly differ-
entiated objects. Legend, explaining what is what, should be easily reachable. A
zoom can make possible to see the situation in details as well as to overlook the
whole environment.

• Input: Possibility to start default interface with random beetles easily is necessary
at the beginning of work with the simulator. As well as the possibility to save the
environment and load it so as to continue later.

• Output: Actual statistics can be reached in any turn.

31

Figure 5.2: UML Sequence diagram — view of a situation.

32

Chapter 6

Creation of Abeetles: Design with
Discussion of Alternatives

6.1 Architecture

6.1.1 Hardware Architecture

Abeetles is designed as an application that runs on a single computer, because it is
tailored for only one user and for small amount of data. It does not need any special or
demanding support. Only the demand on speed could be a reason for a more complicated
solution. The simulator should be as fast as possible when running an experiment, but
simultaneously it should be possible to go slowly and display a particular situation step
by step. Speed can be from the point of view of hardware improved by parallelization
of computation. This possibility was not realized, but might be interesting for future
improvement of Abeetles.

6.1.2 Software Architecture

Modules of Abeetles

Important facts from analysis that influence choice of layout of modules are usage as a
tool for experiments, which expects fast run without visualisation, and usage as a viewer
and a learning tool, which expects slow run with elaborate graphical interface. Separation
of these two attitudes therefore comes into consideration.

Abeetles could be designed as a tool containing two separate applications that can
only share some representation of data. First application is a graphical viewer and second
one is a program that is run from a command line or a console application. This attitude
is used by simulator Avida. Avida contains even three kinds of applications: graphical
viewer, console application and primitive run with only listing of updates in a console.

Abeetles was first considered to be designed in this way. The console application could
be written really primitively without any GUI concerned libraries and therefore could run
very fast. Gui needs a supporting graphical library. For Abeetles the program language
C++ together with graphical library Qt by Trolltech was used, as described in following
section. This library, as well as Win32API or MFC, contains useful tools for work with
files and parsing of text, which are necessary in both versions. To develop these operations

33

for console version separately using non library constructs would be more difficult and
time consuming, but without any real contribution. Therefore parallel development of
two applications was abandoned.

Division of application into modules could also follow separation of computation of
artificial life from all wrapping functionality. The computation could be called as a dy-
namical library. For reuse of the core of Abeetles with different interface it would be
convenient and it would also be suitable for cooperation of more developers. Abeetles are
planned to be prepared for transfer to other operation systems, unix based or MacOS.
And dynamical libraries are only usable at one system.

To sum up, Abeetles is an application that contains only one module that serves
for both purposes — running of experiments as well as overlooking individual situations
in the environment and running step by step. Disadvantage is lower reusability, but it
simplified development and thanks to chosen library conforms to future compilation on
other operation systems.

Choice of Platform and Programming Language

Platform for Abeetles is MS Windows XP. Thanks to usage of Qt library it should be
possible to compile Abeetles for other OS in future.

Speed was the leading criterion when the question of programming language was con-
sidered. The model of Abeetles invokes realization by a class based languages, the ab-
straction is then intuitive. Abeetles needs graphical interface and for the chosen language
a library for creation of GUI should be accessible. Three languages were taken into ac-
count: Java, C# and C++. Both Java and C# are, thanks to interpretation of bytecode
at runtime, slow in comparison with C++. But a Java application can be run at different
OS and it is a language with many convenient features. e.g. garbage collector. The
criterion of speed was considered crucial for Abeetles and therefore C++ was chosen.

Graphical user interface in Abeetles is created using library Qt by Trolltech. Is of-
fers encapsulating class based abstraction of interface and can be used for MS Windows,
MacOS Unix and many Unix based platforms. Details are published at Trolltech’s web-
page http://trolltech.com/products/qt. Abeetles uses the open source version of Qt,
which demands compilation using MinGW, http://mingw.org/.

Other possibilities were Win32API and MFC. The first is not class based and is difficult
to use. MFC is a class based library, it is distributed freely with MS Visual Studio, but
the level of abstraction is lower than in Qt and Microsoft now prefers usage of .NET to
usage of this library.

Graph algorithms used in Abeetles are realized using Boost C++ library, http://

www.boost.org/. This library is designed for usage in C++ programs and compilation
by MinGW is supported.

6.2 Components

Functionality of Abeetles is divided into following components: Environment, Run of
Script, Run of Gui, Statistics and Configuration Manager. Configuration Manager en-
capsulates functions for saving and loading of environments and scripts. Each of these
components is represented by its key class, see figure 6.1.

34

Figure 6.1: Diagram of main classes of Abeetles.

6.3 User Interface

6.3.1 Graphical User Interface

The idea of graphical user interface of Abeetles was inspired by interface of Broucci,
see figure 3.6 on page 23, regarding visualization of beetles. In Abeetles agents are also
represented by arrows showing their direction.

Layout of the window of GUI of Abeetles resembles the qt-view of Avida, see Figure
3.1 on page 14 . The reason is the similarity of grid base of environments and intention
to serve as a scientific tool.

6.3.2 Statistics

Every artificial life simulator, that endeavors after more than being just a game, includes
some kind of statistics. Systems compared with Abeetles display information either graph-
ically or output them to a file (indicated in brackets):

• Avida: instruction viewer, details of individual strings

• Bitozoa: graph of populations, energy flow and energy flow averaged, information
about environment (to file), details about an agent

• Gene Pool: graph of relationship between number of swimbots and amount of food,
features of individual agents, to seek the best agent in chosen criteria

35

• Mitozoos: genetic landscape, log of events, on reproduction the crossjoin of geno-
types is shown graphically, details about an agent

• Primordial life: information about the environment (population, time death and
birth rate numbers), global status of all connected ecosystems, information about
an agent

These simulators prefer to show statistics graphically or textually in the program. But
for further processing, output to files in a standard format might be more useful. Abeetles
writes statistics into files, only several actual numbers shows in the graphical interface.
Abeetles, as well as all described simulators, shows details of an individual, besides all
other statistics. The first type of statistics offered by Abeetles is actual information about
environment — time, number of agents, number of flowers and average values of features
of beetles. The second type are graphs of development in time that are very useful for
observation of what is going on in the simulator within time. They are also offered by
Bitozoa and Gene Pool. In contrast to them, Abeetles does not show graphs directly, but
saves values into a file in comma separated value format. Graphs can be then drawn by a
special program, e.g. MS Excel. In this format changes of number of beetles, number of
flowers and number of births within time are stored. It is also used for graphs displaying
frequency of distribution of values of age, learning abilities, investment in children and
energy. Data in output files are precise without any modifications and can be further
proccessed by additional software.

6.3.3 Script

Script for Abeetles is intended to be easy to understand. It uses format ”command =
value” or only ”command” and facilitates gradual start of any number of runs of the
simulator. For each of them all necessary parameters can be defined.

The alternative of usage of command line parameters instead of an Abeetles specific
script was considered. One command could start one run of Abeetles and a set of runs
could be created in a command line script. But the first alternative was chosen, because
it makes it possible to write the script without knowledge of system commands.

36

Chapter 7

Creation of Abeetles: Detailed
Design and Implementation

7.1 Functional Components of Abeetles

Components of the system Abeetles and their relationships can be visualised as a class
diagram, see figure6.1. The class CfgManager encapsulates input and output methods
and should be available to all other classes any time. Therefore this class exists in the
system only in one instance as a global variable. Class CEnvironment is instantiated by
CRunScript as well as by CRunGui. In both it exists in only one instance at a time. The
object of class CStatisticsEnv collects information about the run of an environment. So it
is designed to be an attribute of CEnvironment, it is constructed and destructed together
with it.

7.2 GUI of Abeetles

Grafical user interface of Abeetles is designed as a window with many widgets affecting
the run of the simulator, see figure 7.1. Detailed description and guidelines of usage are
described in user documentation of the application as a readme file.

7.3 Storage of Environment

The environment run by Abeetles can be saved and loaded from a disc. This function is
accessible from both graphical and script interface. The representation of the environment
is designed to use standard formats. User can access a saved situation of an environment
and modify it. Thereby is the possibility to influence the course of life in Abeetles even
wider.

Environment is saved into the following bunch of files:

• envname.btl — main file of the environment, user chooses its name in dialog or
script file. It is a text file that contains information about environment in following
format:

37

Figure 7.1: User interface of Abeetles.

38

2000; //time

1; //1 --- learning on, 2 --- learning off

4; //Rate of growing of flowers

2; //mutation probability in %

2; //cost of a step

2; //cost of a rotation

3; //cost of a mating

1; //cost of waiting

10,12; //coordinates of a flower, on following lines are

//coordinates of the other flowers

• envname map.bmp — image file that contains the map of the environment

• envname eff.bmp — image file that contains the function energy from flower

• envname btl.txt — text file containing beetles and their features

• envname tst.csv — time statistics of elapsed updates

7.4 Statistics

As described in previous chapter, there are three types of statistics produced by Abeetles:
aggregated statistics, statistics of behavior of the environment within time and histogram
statistics.

• Aggregated statistics: Aggregated statistics shows actual number of beetles,
number of flowers, number of new-born beetles and average values of age, energy,
hungry threshold, investment in child, learning ability and number of children.
These statistics serve to show actual situation in the environment.

• Time statistics: Time statistics show development of environment within time.
The included values are number of beetles, number of children and number of new-
born beetles. These values are saved to a file in the comma separated value format.
Specialised applications, e.g. MS Excel can create the respective graph.

• Histogram statistics: Structure of population can be observed using histogram
statistics. It shows how many beetles have certain value of a particular feature.
It contains age, learning ability,investment in children, energy, number of children
and hungry threshold. Also expectations of beetles on partners on energy, age,
investment in children and learn ability are included. Each value is connected with
number of all beetles who have it within their range.

Besides statistics, Abeetles offers in the GUI also view of details of individual beetles,
where all features are published. The brain of beetles is showed in eight tables, see figure
img.BrainGUI.

In the main window of the application it is possible to choose a type of view of the
situation.

• Normal: Flowers and beetles with their direction are displayed.

39

Figure 7.2: Representation of brain of beetles.

• Age, energy, number of children, hunger: Color distinguished beetles of
different value of the feature.

• Growth of flowers: Shows growth of flowers in cells.

• Species: Species of beetles in Abeetles are defined as groups whose members cannot
in all their life mate with members of any other group. More detailed description
of species in Abeetles is in chapter Experiments, section Experiment 2 — Species.
In GUI they are distinguished by different colors.

7.5 Script

Abeetles can be run with an input script file. The script is a text file containing description
of one or more individual runs of the simulator. Runs are separated by key word run. The
complete form of the file is described in following example using C++-style comments. In
the script file itself no comments are allowed. Guidelines about scripts are also enclosed
to the simulator in a readme file.

run=env3 //name of the run and name of directory to store

//results

map=env_cfg.bmp //name of bmp picture of the map that should

//be used

beetles=random,200,20 //Initial set of beetles can be either

//random or can be read from a file. If it is random, it must

//be stated by word "random", then follows the seed for

//a generator of pseudorandom numbers "200" and then number

//of beetles to be generated. Both numbers can be -1, which

//means time-based seed and default number of beetles.

eff=EnergyFromFlower.bmp //name of bmp image that describes

40

//dependency of beetles energy exploited from an eaten flower.

mutationprob=5//probabality of mutation of genes of new-born

//beetles. Must be within range 0--10.

nolearning //switches off mutual learning of beetles

noflowersdie //switches off dying of beetles

nosteponflower //switches off rules "Step on flower" used for

//creation of random beetles

randomexpectations //makes expectations on partners random when

//random beetles are created

costs=1,1,2,0 //cost of actions of a beetle: step, rotation,

//mating, waiting

endtime=199000 //number of turns of the run of the simulator

aggrstatfn=aggr.txt //name of files where aggregated statistics

//should be written

histstatfn=hist.csv //the same for histogram statistics

timestatfn=time.csv //the same for time statistics

savetimeaggrreg=150 //every 150 turns will be aggregated

//statistics saved to file <time><aggrstatfn>

savetimehistreg=200 //the same for histogram statistics

run=env4

map=env_cfg.bmp

beetles="beetles.txt"//name of file of beetles

eff=EnergyFromFlower.bmp

costs=1,1,2,0

endtime=1000

aggrstatfn=aggr.txt

histstatfn=hist.csv

timestatfn=time.csv

savetimeaggrreg=100

savetimeshist=70,500,1000 //enumeration of turns, when

//histogram statistics should be saved.

savetimesaggr=70,500,1000 //the same for aggregated statistics

41

Chapter 8

Experiments

With Abeetles numerous experiments can be conducted. The space is set by possible
values in cathegories size of map of environment, layout of walls in the map, probability
of growth of flowers, initial number and features of beetles, mutation rate, availability of
learning, function energy from flower — absolute values as well as the course of the curve,
and costs of actions and their ratio.

Focus of experiments can be manifold. As mentioned above, such simulators are used
for exploration of paralels between artificial and natural life. Parameters could be set
to resemble some natural life feature and then examine what happens or search initial
parameters that would cause development with some attributes of natural life. Often
problem of artificial life simulators is that the evolution after starting development gets
to a balanced point, around which it only oscilates, but does not change essentialy any
more.

In this chapter two experiments conducted with Abeetles will be introduced and de-
scribed.

8.1 Experiment1 — Four Caves

Target of the first experiment called Four Caves is to monitor development of population of
beetles in four caves connected with narrow corridors. The experiment should demonstrate
that life in Abeetles is not determined by initial setting, but coincidence influences it to
a great extent and therefore each run can bring more or less different results. Mutual
dependence of development of populations in the caves will be observed. And influence of
evolution on features of beetles will be researched from initial random values to resulting
ones after thousands updates.

8.1.1 Initial Settings of the Experiment

Map of the environment of Four Caves contains 900 cells. Percentage of growth of flowers
is 100% in all cells and dying is switched off.

Initial number of beetles is 100, their features were chosen randomly with rule ”step
on flower” and ”noexpectations”. The first rule means that all initial beetles decide to
make a step when they are hungry and there is a flower in from of them. The second
means that feature Expectation on parter is initially set to maximal intervals and thus

42

Figure 8.1: Map of environment in Experiment1 — Four Caves.

Figure 8.2: Course of function Energy From Flower in Experiment1 — Four Caves. Hor-
izontal vertex = time: 0 .. 100th update, vertical vertex = energy: 0–20.

every two beetles can mate without restrictions of expectations. Costs of actions were set
to 2 for a step, 2 for a turn, 3 for mating and 1 for waiting. Mutation rate was 2%. 30,000
updates were made. The used function of energy from flower (EFF function) is shown in
figure 8.2. The EFF function borders the age of beetles by approximately 100 years.

The experiment contains four runs with seeds 300, 350, 400 and 450 for generator of
pseudorandom numbers.

8.1.2 Results of the Experiment

Development of population in the four runs of the experiment is in figures 8.3, 8.4, 8.5 and
8.6. Number of beetles, number of flowers and number on new born beetles are shown in
the figures.

Differences among the four graphs of development of populations in the four runs show
that coincidence influences the course of runs significantly — each of them is different.

In all four cases the initial number of beetles falls under half of it at first. This is
a general event that happens at the beginning of every simulation with random beetles.
A plenty of them are not able to survive, because the random values are not suitable.
Only one or two caves remain populated. But children of these beetles are already able
to cope with the situation better and they keep the life in the caves. Through corridors
they get to neigboring cells and when the number of immigrants is high enough the new
cave is inhabited. Inhabitation of a free cave is visible in the graphs, as the number of
beetles jumps swiftly by about 50. In run 1 around 4,800th update two empty caves are
inhabited, population increased by approximately 100. Between 12,000th and 15,000th
update the fourth cave was and was not inhabited alternately. Similarly the development

43

Figure 8.3: Run 1 Experiment1 — Four Caves.

Figure 8.4: Run 2 Experiment1 — Four Caves.

44

Figure 8.5: Run 3 Experiment1 — Four Caves.

Figure 8.6: Run 4 Experiment1 — Four Caves.

45

Figure 8.7: Run 1 Experiment1 — Four Caves, histogram of features of beetles at the
beginning.

of population in caves can be observed in the other three runs.
From the development of population in the experiment can be concluded that beetles

with the introduced settings are able to inhabitate empty areas through a narrow corridor.
Inhabitation in the scope of Abeetles means that the density of population in the cave is
high enough to be independent on immigration from other caves. In other words there
are enough beetles to meet, mate and thereby keep the population. On the other hand,
if the population shinks under certain size, it becomes extinct in the cave.

Features of beetles developed interestingly in the experiment. Initial features of beetles
were random. So as to support the problematic initial period, expectations on partners
were set to maximal intervals. Figure 8.7 shows the distribution of values of features
of beetles at the beginning of run 1 and figure 8.8 describes the situation after 30,000
updates. The values of features can be 0 – 50, only age goes up to 100.

The fluctuation of age is low, no significant death rate of any age group can be observed.
Thus the EFF function gives enough chance to survive in any time.

Random learn abilities from the beginning narrowed to two major values (35 and
48) and several minor values. In other experiments these values also show direction of
development towards several values. In run 2 the major values of learn ability are 4 (133
beetles) and 13 (31 beetles). In run 3 learn abilities narrowed to 4 values and in run 4 to
2 values. Investment in child also narrowed in run 1, to values 11 and 12. Other runs the
results are similar.

The reduction of values of these two features is a general effect of any run of Abeetles.
It is a result of the fact that these two features are also subject of expectations on partner.
The expectation on a partner’s learning ability of a beetle is set as a deviation from the
value of learning ability of the beetle. Thus if they both have the same values, they
are always suitable partner for the other one no matter what are the expectations. And

46

Figure 8.8: Run 1 Experiment1 — Four Caves, histogram of features of beetles after
30,000th update.

therefore a group of beetles with similar values can mate more easily. And thanks to this
fact and the fact that crossover algorithm with low rate of mutation varies the value only
rarely, the particular value from such a group is propagated through children to the next
generations more successfully, then from groups of beetles with different values.

There is reciprocial proportion between number of children and number of beetles
who have it, which resembles common situation in nature. Hungry thresholds, which are
borders between two decision strategies, also narrowed to several values between 20 and
38. This is probably suitable border for this type of map with the 100% rate of growth
of flowers.

8.1.3 Subexperiment 1 — Flowers Die

If the initial setting of the experiment Four Caves is changed so, that flowers can die
with 20% probability, then they the population becomes extinct rapidly,in run 1 after 440
updates, in run 2 after 1260 updates, in run 3 after 9420 updates, see Figure 8.9 and in
run 4 after 303 updates.

When the Subexperiment 1 is run with costs of actions 1,1,2,1, then the population
survives in all four cases. It differs from the Experiment 1 in the way that the oscilation
range of numbers short slice of time is about 100 whereas in Experiment 1 the oscilation
range is about 50. The course of run 2 is in Figure 8.10

The subexperiment 1 implies that dying of flowers only decreases the real availability of
food for beetles, but does not confuse their ability to survive in more variable environment
that changes irregulary.

47

Figure 8.9: Subexperiment 1 Experiment1 — Four Caves.

Figure 8.10: Subexperiment 1 Experiment1 — Four Caves.

48

Figure 8.11: Subexperiment 1 Experiment1 — Four Caves.

8.1.4 Subexperiment 2 — Random Initial Expectations

If the initial expectations are random, the beetles tend much more to become extinct.
With 250 beetles at the beginning in all four runs all beetles died within first 320 updates.

Run of this settings was then tried with random seeds and the 16th attempt was
successful and population survived all 30,000 updates. At the end there were 144 beetles.
Thanks to this success, development of expectation on partner can be observed in the case
of random values of expectations. See Figure 8.11. One curve in the histogram, e.g. Age
Expectations, shows for how many beetles (axes y) is the value of partners’s age (axes x)
acceptable.

It can be compared with result of run of Experiment 1 and its histogram after 30,000
updates in 8.12. It shows that random expectations on a partner allow opportunity for
value to vary more, but tendences are not so different from result of case when the ranges
of expectations were the widest possible. In that case it is only expectation on energy
that changed significantly and can be in connection with the fact that energy at the time
of mating is already restricted by hungry threshold. We expected the expectation on
investment in child to grow to at least fourth of maximum of energy, but it developed to
about 4 (but did not shrink under 2) in case of random initial values and in case of the
widest ranges remained 0 for most of beetles but a tenth of them. Even it this case only
one beetle in 144 invests less than 2. The result implies that it is enough for a new-born
beetle to get 4 pieces of energy at the beginning when costs are 2,2,3,1.

8.2 Experiment 2 — Species of Beetles

This experiment have for its objective to explore possibilities of development of species of
beetles. A species is usually defined as a group of organisms capable of interbreeding and
producing fertile offspring. In special case more precise or differing measures are often

49

Figure 8.12: Run 1 Experiment1 — histogram after 30,000 updates.

used, such as based on similarity of DNA or on the presence of specific locally-adapted
traits. Nevertheless the precise definition of the term is not clear and discussions about
it are referred as the species problem.[16]

Species of beetles are defined for the purpose of Abeetles as such groups of beetles
that members of one group can never mate with beetles from another group. The dif-
ference that would cause such incompatibility can only spring up when expectations and
respective features do not match. The group must have at least three members, one or
more incompatible beetles often occurs through mutation and die without descendants.
Abeetles marks these abnormalities, but they cannot be considered as a real species.

Species are searched in Abeetles as connected components in an undirected graph.
Vertices of the graph are beetles and an edge is between every pair of beetles that have
compatible features and expectations on them.

The choice of these features is important. A part of expectations concerns energy
and age, which cannot be counted as difference between species. Only expectations on
investment in children and on learning ability could serve for this purpose.

8.2.1 Initial Settings of the Experiment

The question is, what initial setting of environment and beetle to choose, so as to reach
separation of beetles into species. For separation of species local separation to some
extent will be necessary — beetles should be bred separately. When they are bred totaly
separately, it is the same situation as if the two different runs with same general settings
is performed and resulting beetles compared. Then species can be bred easily, as it
Experiment 1 run 2 values of learning ability are up to 13 and in run 3 at least value 16
is expected.

Therefore the level of local separation will be searched. First, spaces connected with
a corridor of width 1 cell will be examined. For this purpose the map from experiment

50

Figure 8.13: Run1 Experiment1 histogram of features of beetles after 365,000 updates.

Four Caves can be used and species can be searched in results of the four runs of that
experiment.

It can be predicted from conclusions of Subexperiment 2 of Experiment 1 that envi-
ronment of abeetles will not tend to development towards various values of investment in
children and expectations on it easily.

In figure 8.11 and figure 8.12 is visible that values of expectations on investment in
children have very restricted range and from figure 8.8 and other descriptions of results
of Experiment 1 is clear that values of investment in children behave similarly.

Development of learning abilities in Experiment 1 was more hopeful, as the values
narrowed to two separated ranges, see 8.8. When the situation of the environment is
viewed, details of beetles proove that beetles with learning ability 34 live in the bottom
left cave and beetles with learning ability 46 live in the bottom right cell (the other two
cells are not inhabited). Thus beetles really developed to two different groups, which is for
species very promising, even though expectations, see 8.12, are a wide range over almost
all possible values. Therefore this result will be used for this experiment

In order to it, initial setting of Experiment 2 is the final setting of Experiment 1 run
1. Now various attempts will be done to breed species from these beetles.

8.2.2 Results of the Experiment

The first attempt was to increase mutation rate so as to restrict expectations closer to
respective values. The result was that also the value of learning ability started to vary
swiftly and also the beetles became extinct in several thousands updates.

The second attempt was to run the environment much longer and leave enough time for
evolution to do its work. After roughly 300,000 updates two species of beetles separated,
see graphs in figure 8.13 and figure 8.14 and situation in 8.15 . But they stayed apart

51

Figure 8.14: Run1 Experiment1 histogram of expectations on partner after 365,000 up-
dates.

Figure 8.15: Run1 Experiment1 histogram of expectations on partner after 365,000 up-
dates.

52

for only about one thousand updates and then beetles from one species passing through
corridors prevailed against the other species and the weaker species became extinct.

To sum up, species in Abeetles can evolve, in separated territories easily, in connected
territories it is more difficult and it holds only for a short time.

53

Chapter 9

Conclusion

Objectives of this thesis were to create simulator Abeetles and run experiments on it.
Abeetles focused on five key features. Experiments testing all of them would be advisable,
but scope of the thesis is restricted and therefore only experiments concerning population
and species are included.

• Moving strategy — Abeetles realizes it as a simple decision table and offers only
straightforward visualization in a set of tables. It is quite hard to work with it
and search for results of evolution. Some better functions that process these results
would be contributing.

• Learning — Mutual learning of beetles was realized and offers space for experiments.

• Choice of partner — Evolution of choice of partner was important for breeding
of species in Abeetles. Realization of expectations as intervals can be considered
suitable.

• Obstacles — Walls shaping the environment were important for local separation of
beetles and searching for species. These objects significanly increases possibilities
of experiments.

• Aging — Special function for aging was introduced and waits for further experi-
ments.

Abeetles open possibilities for further searching for interesting results of evolution and
offer supporting tools.

54

Bibliography

[1] Mark A. Bedau, 2003, ”Artificial life: organization, adaptation and complexity
from the bottom up”. TRENDS in Cognitive Sciences, http://www.reed.edu/~mab/
publications/papers/BedauTICS03.pdf.

[2] Chris G. Langton 1989, ”Artificial Life”, Addison-Wesley, http://zooland.alife.
org/.

[3] Chris Adami and Titus Brown, 2000, ”What is Artificial Life?” The Seventh Interna-
tional Conference on the Simulation and Synthesis of Living Systems, Reed College,
Portland, Oregon, USA.

[4] Stefan Bornhofen and Claude Lattaud, 2006, ”Artificial Evolution”, chapter ”Out-
lines of Artificial Life: A Brief History of Evolutionary Individual Based Models”,
pages 226–237, Springer.

[5] Marianne Delorme, ”An Introduction to Cellular Automata”, Cellular Automata: a
Parallel Model, Mathematics and Its Application, Kluwer. http://citeseer.ist.
psu.edu/delorme98introduction.html.

[6] Gene. (n.d.). Columbia Electronic Encyclopedia. Retrieved from Reference.com web-
site: http://www.reference.com/browse/columbia/gene-ent.

[7] Richard Lewontin, ”The Genotype/Phenotype Distinction”, The Stanford Encyclo-
pedia of Philosophy (Spring 2007 Edition), Edward N. Zalta (ed.), http://plato.
stanford.edu/archives/spr2007/entries/genotype-phenotype/.

[8] Joshua Lederberg and Alexa T. McCray, 2001, ”’Ome Sweet ’Omics – A Genealogical
Treasury of Words”, The Scientist 15 (7), http://lhncbc.nlm.nih.gov/lhc/docs/
published/2001/pub2001047.pdf

[9] C. Ofria and C.O. Wilke, 2004, ”Avida: A Software Platform for Research in Com-
putational Evolutionary Biology”, Artificial Life 10, pages 191–229.

[10] T. S. Ray 1991, ”Evolution and optimization of digital organisms”, in Billingsley
K.R. et al (eds), Scientific Excellence in Supercomputing: The IBM 1990 Contest
Prize Papers, Athens, GA, 30602: The Baldwin Press, The University of Georgia,
pages 489–531.

[11] Jeffrey Ventrella, 1998, ”Attractiveness vs. Efficiency: How Mate Preference Af-
fects Locomotion in the Evolution of Artificial Swimming Organisms”, Artificial

55

Life VI 1998, MIT Press, http://www.ventrella.com/Alife/Attractiveness/

attractiveness_0.html.

[12] Jeffrey Ventrella, 2005, ”Gene Pool: Exploring the Interaction Between Natural Se-
lection and Sexual Selection”, Chapter 4 in Artificial Life Models in Software, edited
by Andrew Adamatzky and Maciej Komosinski, Springer.

[13] Bestiario company, ”The book of the mitozoos”, http://bestiario.org/mitozoos/
english/pdf/mitozoos_en.pdf.

[14] Tomáš Holan, 2004, Jiné programováńı ”The Different Programming” In Vojtáš, Pe-
ter, ITAT 2004 Information Technologies – Applications and Theory, Košice: UPJŠ,
2004, pages 139–148, http://ksvi.mff.cuni.cz/~holan/jinak/itat.pdf

[15] Richard Dawkins, The Selfish Gene, 11. Memes:the new replicators, Oxford Univer-
sity, second edition, December 1989, ISBN 0-19-217773-7.

[16] G. C. Robson, 1928, ”The Species Problem: an Introduction to the Study of Evolu-
tionary Divergence in Natural Populations”, Oliver and Boyd, Edinburgh.

56

